WorldWideScience

Sample records for generator chemical cleaning

  1. Chemical cleaning - essential for optimal steam generator asset management

    International Nuclear Information System (INIS)

    Ammann, Franz

    2009-01-01

    Accumulation of deposits in Steam Generator is intrinsic during the operation of Pressurized Water Reactors. Such depositions lead to reduction of thermal performance, loss of component integrity and, in some cases, to power restrictions. Accordingly, removal of such deposits is an essential part of the asset management program of Steam Generators. Every plant has specific conditions, history and constraints which must be considered when planning and performing a chemical cleaning. Typical points are: -Constitution of the deposits or sludge - Sludge load - Sludge distribution in the steam generator - Existing or expected corrosion problems - Amount and tendency of fouling for waste treatment The strategy for chemical cleaning is developed from these points. The range of chemical cleaning treatments starts with very soft cleanings which can remove approximately 100kg per steam generator and ends with full scale, i.e., hard, cleanings which can remove several thousand kilograms of deposits from a steam generator. Dependent upon the desired goal for the operating plant and the steam generator material condition, the correct cleaning method can be selected. This requires flexible cleaning methods that can be adapted to the individual needs of a plant. Such customizing of chemical cleaning methods is a crucial factor for an optimized asset management program of steam generators in a nuclear power plant

  2. Chemical cleaning an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Amman, Franz

    2008-01-01

    Chemical Cleaning an essential part of Steam Generator asset management accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: - Sludge load amount and constitution of the deposits - Sludge distribution in the steam generator - Existing or expected corrosion problems - Amount and tendency of fouling for waste treatment Depending on this points the strategy for chemical cleaning shall be evolved. the range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. This requires flexible and 'customisable' cleaning methods that can be adapted to the individual needs of a plant. Such customizing of chemical cleaning methods is an essential factor for an optimized asset management of the steam generator in a nuclear power plant

  3. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  4. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  5. Chemical cleaning for sludge in steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Lu Yucheng; Zhang Binyong; Yu Jinghua

    2002-01-01

    The sludge induced corrosion damage to secondary side of tubes of Steam Generator (SG), effect of chemical cleaning technique on maintenance integrity of tubes of SG NPP and use of chemical cleaning technique in SG NPP have been summarized. The engineering technique of chemical cleaning for removing sludge in secondary side of SG NPP has been studied and qualified by CIAE (China Institute of Atomic Energy). Chemical cleaning engineering technique is introduced (main agent is EDTA, temp. <100 degree C), including chemical cleaning technology for tube plate and full tube nest of secondary side of SG, the monitoring technique of chemical cleaning process (effectiveness and safety), the disposal method of wastage of chemical cleaning, the system of chemical cleaning. The method for preventing sludge deposition in secondary side and the research on advanced water chemistry of secondary loop are introduced

  6. Chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Stiepani, C.; Ammann, F.; Jones, D.; Evans, S.; Harper, K.

    2010-01-01

    Accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: Sludge load amount and constitution of the deposits; Sludge distribution in the steam generator; Existing or expected corrosion problems; Amount and treatment possibilities for the waste generated. Depending on these points the strategy for chemical cleaning shall be evolved. The range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. Flexible and 'customizable' cleaning methods that can be adapted to the individual needs of a plant are therefore a must. Particular for the application of preventive cleanings where repeated or even regular application are intended, special focus has to be put on low corrosion and easy waste handling. Therefore AREVA has developed the 'C3' concept, Customized Chemical Cleaning concept. This concept covers the entire range of steam generator cleaning. Particular for the preventive maintenance cleanings processes with extreme low corrosion rates and easy waste handling are provided which make repeated applications safe and cost efficient. (author)

  7. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  8. Chemical cleaning of the Bruce A steam generators

    International Nuclear Information System (INIS)

    Le Surf, J.E.; Mason, J.B.; Symmons, W.R.; Yee, F.

    1992-01-01

    Deposits consisting mostly of oxides and salts and copper metal in the secondary side of the steam generators at the Bruce A Nuclear Generating Station have caused instability in the steam flow and loss of heat capacity, resulting in derating of the units and reduction in power production. Attempts to remove the deposits by pressure pulsing were unsuccessful. Water lancing succeeded in restoring stability, but restrictions on access prevented complete lancing of the tube support plate holes. Chemical cleaning using a modified EPRI-SGOG process has been selected as the best method of removing the deposits. A complete chemical cleaning system has been designed and fabricated for Ontario Hydro by Pacific Nuclear, with support from AECL CANDU and their suppliers. The system consists of self contained modules which are easily interconnected on site. The whole process is controlled from the Control Module, where all parameters are monitored on a computer video screen. The operator can control motorized valves, pumps and heaters from the computer key board. This system incorporates all the advanced technologies and design features that have been developed by Pacific Nuclear in the design, fabrication and operation of many systems for chemical decontamination and cleaning of nuclear systems. 2 figs

  9. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemen's high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.

    1996-01-01

    The secondary sides of all four steam generators at the Point Lepreau Nuclear Generating Stations were cleaned during the 1995 annual outage run-down using the Siemens high temperature chemical cleaning process. Traditionally all secondary side chemical cleaning exercises in CANDU as well as the other nuclear power stations in North America have been conducted using a process developed in conjunction with the Electric Power Research Institute (EPRI). The Siemens high temperature process was applied for the first time in North America at the Point Lepreau Nuclear Generating Station (PLGS). The paper discusses experiences related to the pre and post award chemical cleaning activities, chemical cleaning application, post cleaning inspection results and waste handling activities. (author)

  10. PWR steam generator chemical cleaning. Phase I: Final report, Volume I

    International Nuclear Information System (INIS)

    1978-07-01

    Two chemical cleaning solvent systems and two application methods were developed to remove the sludge in nuclear steam generators and to remove the corrosion products in the annuli between the steam generator tubes and the support plates. Laboratory testing plus subsequent pilot testing has demonstrated that, in a reasonable length of time, both solvents are capable of dissolving significant amounts of sludge, and of dissolving tightly packed magnetite in tube/support plate crevices. Further, tests have demonstrated that surface losses of the materials of construction in steam generators can be controlled to acceptable limits for the duration of the required cleaning period. Areas requiring further study and test have been identified, and a preliminary procedure for chemical cleaning nuclear steam generators has been chosen subject to quantification based on additional tests prior to actual in-plant demonstration

  11. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  12. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  13. Chemical cleaning review

    International Nuclear Information System (INIS)

    Dow, B.L.; Thomas, R.C.

    1995-01-01

    Three main chemical processes for cleaning steam generators have evolved from the early work of the industry. Of the more than 50 chemical cleanings carried out to date most have been considered a success by the utilities performing them. (author)

  14. Chemical-Cleaning Demonstration Test No. 2 in a mock-up steam generator

    International Nuclear Information System (INIS)

    Jevec, J.M.; Leedy, W.S.

    1983-04-01

    This report describes the results of the mockup demonstration test of the first modified baseline process under Contract S-127, Chemical Cleaning of Nuclear Steam Generators. The objective of this program is to determine the feasibility of cleaning the secondary side of nuclear steam generators with state-of-the-art chemical cleaning technology. The first step was to benchmark a baseline process. This process was then modified to attempt to eliminate the causes of unacceptable cleaning performance. The modified baseline process consists of an EDTA/H 2 O 2 -based copper solvent and a near-neutral, EDTA/N 2 H 4 -based magnetite and crevice solvent. This report also presents the results of three inhibitor evaluation mockup runs used in the evaluation of the modified baseline process

  15. Steam generator secondary side chemical cleaning at Gentilly-2

    International Nuclear Information System (INIS)

    Plante, S.

    2006-01-01

    After more than 20 years of operation, the secondary side of the four steam generators at Gentilly-2 were chemically cleaned during the 2005 annual outage. The FRAMATOME ANP high temperature cleaning process used to remove magnetite loading involved stepwise injection of solvent with PHT temperature in the range 160 o C to 175 o C. The heat required to maintain the PHT temperature was provided by the operation of the main PHT pumps and the reactor core residual heat. The temperature control was accomplished by the shutdown cooling system heat exchangers. A total of 1280 kg of magnetite was removed from the four steam generators. A copper-cleaning step was applied after the iron step. The PHT has been cooled down and the steam generators drained to temporary tanks and dried in preparation of the copper step. The process has been applied at room temperature, two boilers at a time. The solvent removed a total of 116 kg of copper. During the iron step, steam flow to the feedwater tank chemically contaminate the Balance Of Plant (BOP) systems. The isolation of this path should have been part of the G2 procedures. Around 700 m3 of water had to be drained to interim storage tanks for subsequent resin treatment before disposal. Visual inspection of BO1 tubesheet and first support plate showed clean surfaces without measurable sludge pile. Upper support plates visual inspection of BO4 revealed that broach holes blockage reported in 2000 is still present in peripheral area. Following the plant restart, the medium range level measurement instability observed since several years for BO3 was no more present. As anticipated, it also has been observed that the medium and wide range level measurements have shifted down as a result of downcomer flow increase after the cleaning. The cleaning objectives were achieved regarding the fouling reduction on the steam generators secondary side but broach holes blockage of the upper support plate is still present in periphery. (author)

  16. Steam Generator Chemical Cleaning Application: Korean Experience in PWR NPP

    International Nuclear Information System (INIS)

    Hwang, In-Ho; Varrin-Jr, Robert-D.; Little, Michael-J.; Oh, Yeon-Ok; Choo, Seong-Jib; Park, Jin-Hyeok

    2012-09-01

    Korea Hydro and Nuclear Power (KHNP) performed an EPRI/SGOG chemical cleaning of the secondary side of the steam generators at Ulchin Unit 3 (UCN3) in March 2011 and at Ulchin Unit 4 (UCN4) in September 2011. The steam generator chemical cleaning (SGCC) was performed with venting at the top-of-tube sheet (TTS) and at tube support plates (TSPs) 4, 5, 6, 7, 8, 9, and 10. A primary objective of this SGCC was to address outer diameter stress corrosion cracking (ODSCC), which has been observed at the TTS and TSPs in the UCN3 SGs. The EPRI/SGOG process has been shown to effectively reduce prevailing ODSCC rates at the TTS and TSPs, particularly when applied with periodic venting in this application. This was the first full-length SGCC campaign with venting performed in Korea. Ulchin Unit 3 commenced commercial operation in August 1998 and Ulchin Unit 4 commenced commercial operation in December 1999. UCN3 and UCN4 are a two-loop pressurized water reactor (PWR) of the Korea Standard Nuclear Plant (KSNP) design. The SGs contain high-temperature mill annealed (HTMA) Alloy 600 tubing and are similar in design to the Combustion Engineering CE-80. The KSNP SGs have been susceptible to outer diameter stress corrosion cracking (ODSCC), which is consistent with operating experience for other SGs containing Alloy 600HTMA tubing material. The UCN3/4 SGs have recently begun to experience ODSCC. Hankook Jungsoo Industries Co., Ltd (HaJI) was selected as the cleaning vendor by KHNP. To date, HaJI has completed five Advanced Scale Conditioning Agent (ASCA) cleaning applications and two EPRI/SGOG Steam Generator Chemical Cleaning (SGCC) campaigns for KHNP. The goal of total deposit removal of the applications were successfully achieved and the amounts are 3,579 kg at UCN3 and 3,786 kg at UCN4 which values were estimated before each cleaning by analysing ECT signal and liquid samples from the SGs. The deposits from the SGs were primarily composed of magnetite. There were no chemical

  17. Chemical cleaning of steam generators: application to Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1991-01-01

    EDF has patented a chemical cleaning process for PWR steam generators, based on the use of a mixture or organic acids in order to dissolve iron oxides and copper with a single solution and clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its innocuousness related to steam generator materials. The process, the licence of which belongs to SOMAFER RA and Framatome has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units. (author)

  18. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  19. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    Key, G.L.; Helyer, M.H.

    1981-04-01

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  20. The AREVA customized chemical cleaning C3-concept as part of the steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen; Drexler, Andreas

    2012-09-01

    In pressurized water reactors corrosion products and impurities are transported into the steam generators by feed water. Corrosion products and impurities are accumulated in the SGs as deposits and scales on the tubes, the tube support structures and the tube sheet. Depending on the location, the composition and the morphology such deposits may negatively affect the performance of the steam generators by reducing the thermal performance, changing the flow patterns and producing localized corrosion promoting conditions. Accordingly removal of deposits or deposit minimization strategies are an essential part of the asset management program of the steam generators in Nuclear Power Plants. It is evident that such a program is plant specific, depending on the individual condition prevailing. Parameters to be considered are for example: - Steam generator and balance of plant design; - Secondary side water chemistry treatment; - Deposit amount and constitution; - Deposit distribution in the steam generator; - Existing or expected corrosion problems. After evaluation of the steam generator condition a strategy for deposit minimization has to be developed. Depending on the individual situation such strategies may span from curative full scale cleanings which are capable of removing the entire sludge inventory in the range of several 1000 kg per SG to preventive cleanings that remove only a portion of the deposits in the range of several 100 kg per SG. But also other goals depending on the specific plant situation, like tube sheet sludge piles or hard scale removal, may be considered. Beside the chemical cleaning process itself also the integration of the process into the outage schedule and considerations about its impact on other maintenance activities is of great importance. It is obvious that all these requirements cannot be met easily by a standardized cleaning method, thus a customisable chemical cleaning technology is required. Based on its comprehensive experience

  1. Carbon steel corrosion prevention during chemical cleaning of steam generator secondary side components

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Velciu, L.

    2009-01-01

    During operation of a nuclear power plant, many contaminants, such as solid particles or dissolved species are formed in the secondary circuit, go into steam generator and deposit as scales on heat transfer tubing, support plate or as sludge on tube sheet. By accumulation of these impurities, heat transfer is reduced and the integrity of the steam generator tubing is influenced. Chemical cleaning is a qualified, efficient measure to improve steam generator corrosion performance. The corrosion mechanism can be counteracted by the chemical cleaning of the deposits on the tube sheet and the scales on the heat transfer tubing. The major component of the scales is magnetite, which can be dissolved using an organic chelating agent (ethylenediaminetetraacetic acid, EDTA) in combination with a complexing agent such as citric acid in an alkaline reducing environment. As the secondary side of SG is a conglomerate of alloys it is necessary to choose an optimal chemical cleaning solution for an efficient cleaning properties and at the same time with capability of corrosion prevention of carbon steel components during the process. The paper presents laboratory tests initiated to confirm the ability of this process to clean the SG components. The experiments followed two paths: - first, carbon steel samples have been autoclavized in specific secondary circuit solutions of steam generator to simulate the deposits constituted during operation of this equipment; - secondly, autoclavized samples have been cleaned with a solvent composed of EDTA citric acid, hydrazine of pH = 5 and temperature of 85 deg. C. Before chemical cleaning, the oxide films were characterized by surface analysis techniques including optical microscopy, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Applied to dissolve corrosion products formed in a steam generator, the solvents based on chelating agents are aggressive toward carbon steels and corrosion inhibitors are

  2. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  3. Chemical cleaning of nuclear (PWR) steam generators

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Mundis, J.A.

    1982-01-01

    This paper reports on a significant research program sponsored by a group of utilities (the Steam Generator Owners Group), which was undertaken to develop a process to chemically remove corrosion product deposits from the secondary side of pressurized water reactor (PWR) power plant steam generators. Results of this work have defined a process (solvent system and application methods) that is capable of removing sludge and tube-to-tube support plate crevice corrosion products generated during operation with all-volatile treatment (AVT) water chemistry. Considers a plant-specific test program that includes all materials in the steam generator to be cleaned and accounts for the physical locations (proximity and contact) of those materials. Points out that prior to applying the process in an operational unit, the utility, with the participation of the NSSR vendor, must define allowable total corrosion to the materials of construction of the unit

  4. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  5. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  6. Chemical cleaning specification: few tube test model

    International Nuclear Information System (INIS)

    Hampton, L.V.; Simpson, J.L.

    1979-09-01

    The specification is for the waterside chemical cleaning of the 2 1/4 Cr - 1 Mo steel steam generator tubes. It describes the reagents and conditions for post-chemical cleaning passivation of the evaporator tubes

  7. Evaluation of EDTA based chemical formulations for the cleaning of monel-400 tubed steam generators

    International Nuclear Information System (INIS)

    Velmurugan, S.; Rufus, A.L.; Sathyaseelan, V.S.; Kumar, P.S.; Veena, S.N.; Srinivasan, M.P.; Narasimhan, S.V.

    1998-01-01

    The Steam Generator (SG) is an important component in any nuclear power plant which contributes significantly for the over all performance of the reactor. The failure of SG tubes occurs mainly by corrosion under accelerated conditions caused by fouling. There is continuous ingress of the corrosion products and ionic impurities from the condenser and feed train of the secondary heat transfer system. The corrosion products accumulate in the stagnant areas near the tube sheet, over the tube support plates and in the tube to tube support plate crevices. These accumulated deposits help to concentrate the aggressive impurities and induce a variety of corrosion processes affecting the structural materials and finally leading to failure of the SG tube. Scale forming impurities can deposit over the tube surfaces and result in reduction of heat transfer efficiency and over heating of the surfaces. Every effort is being made to control the transport of impurities to the steam generator. Increased blow down, installation of condensate polishers and use of all volatile amines have helped to reduce the corrosion product and ionic impurities input into the steam generators of PHWRs. Despite these efforts, failures of SG tubes in PHWRs have been reported. Hence, attempts are being made to develop chemical formulations to clean the deposits accumulated in the steam generators. The EPRI-SGOG chemical cleaning process has been tried with good success in steam generators of different designs including the steam generators of PHWRs. This paper discusses the work on the evaluation of EDTA based chemical cleaning formulations for monel-400 tubed steam generators of PHWRs. (author)

  8. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  9. Importance of deposit information in the design and execution of steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Flores, O.; Remark, J.

    1997-01-01

    During the planning stages of the chemical cleaning of the San Onofre Nuclear Generating Station (SONGS) units 2 and 3 steam generators, it was determined that an understanding of the steam generator deposit loading and composition was essential to the design and success of the project. It was also determined that qualification testing, preferably with actual deposits from the SONGS steam generators, was also essential. SONGS units 2 and 3 have Combustion Engineering (CE)-designed pressurized water reactors. Each unit has two CE model 3410 steam generators. Each steam generator has 9350 alloy 600 tubes with 1.9-cm (3/4 in.) outside diameter. Unit 2 began commercial operation in 1983, and unit 3, in 1984. The purpose of this technical paper is to explain the effort and methodology for deposit composition, characterization, and quantification. In addition, the deposit qualification testing and design of the cleaning are discussed

  10. Field experience with KWU SG chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1989-01-01

    The ingress of corrosion products into PWR steam generators (SG's) their deposition and the subsequent concentration of salt impurities can induce a variety of mechanisms for corrosion attack on SG tubing. Already, some plants have had to replace their steam generators due to severe corrosion damage and others are seriously considering the same costly action in the near future. One of the most effective ways to counteract corrosion mechanisms and thus to reduce the likelihood of SG replacement becoming necessary is to clean the SG's and to keep them clean. For many years, the industry has been involved in developing different types of cleaning techniques. Among these, chemical cleaning has been shown to be especially effective. In this article, the KWU chemical cleaning process, for which there is considerable application experience, is described. The results of field applications will be presented together with material compatibility data and information on cleaning effectiveness. (author)

  11. Results of the secondary side chemical cleaning of the steam generators

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.

    2001-01-01

    A significant amount of deposit has developed on the secondary side of the heat transfer tubes of the steam generators (SG) of the Paks Nuclear Power Plant units in course of the years. More than 99.5% of the deposit is made up of magnetite (Fe 3 O 4 ) generated in the secondary circuit of the power plant. Those deposits lead to the decrease of the heat transfer. Even more important is its role from the point of view of operational reliability of the steam generators, leak tightness between the primary and secondary sides. The first series of cleaning took place following 8-9 years of operation of the units. Following the first cleaning cycle the transport of the corrosion products into the steam generators did not change, and thus obviously new cleaning was required. Periodical cleaning of the steam generators shall be assured. (R.P.)

  12. Weld region corrosion during chemical cleaning of PWR [pressurized-water reactor] steam generators: Volume 2, Tests and analyses: Final report

    International Nuclear Information System (INIS)

    Barna, J.L.; Bozeka, S.A.; Jevec, J.M.

    1987-07-01

    The potential for preferential corrosion of steam generator weld regions during chemical cleaning using the generic SGOG solvents was investigated. The investigations included development and use of a corrosion assessment test facility which measured corrosion currents in a realistic model of the steam generator geometry in the vicinity of a specific weld during a simulated chemical dissolution of sludge consisting of essentially pure magnetite. A corrosion monitoring technique was developed and qualified. In this technique free corrosion rates measured by linear polarization techniques are added to corrosion rates calculated from galvanic current measured using a zero resistance ammeter to give an estimate of total corrosion rate for a galvanically corroding material. An analytic modeling technique was developed and proved useful in determining the size requirements for the weld region mockup used in the corrosion assessment test facility. The technique predicted galvanic corrosion rates consistent with that observed in a corrosion assessement test when polarization data used as model input were obtained on-line during the test. The test results obtained during this investigation indicated that chemical cleaning using the SGOG magnetite dissolution solvent can be performed with a small amount of corrosion of secondary side internals and pressure boundary welds. The maximum weld region corrosion measured during a typical chemical cleaning cycle to remove essentially pure magnetite sludge was about 8 mils. However, additional site specific weld region corrosion assessment testing and qualification will be required prior to chemical cleaning steam generators at a specific plant. Recommendations for site specific qualification of chemical cleaning processes and for use of process monitors and on-line corrosion instrumentation are included in this report

  13. Update-processing steam generator cleaning solvent at Palo Verde

    International Nuclear Information System (INIS)

    Peters, G.

    1996-01-01

    Framatome Technologies Inc.(FTI) recently completed the steam generator chemical cleanings at the Palo Verde Nuclear Generating Station Units 1, 2 and 3. Over 500,000 gallons of low-level radioactive solvents were generated during these cleanings and were processed on-site. Chemical cleaning solutions containing high concentrations of organic chelating wastes are difficult to reduce in volume using standard technologies. The process that was ultimately used at Palo Verde involved three distinct processing steps: The evaporation step was conducted using FTI's submerged combustion evaporator (SCE) that has also been successfully used at Arkansas Nuclear One - Unit 1, Three Mile Island - Unit 1, and Oconee on similar waste. The polishing step of the distillate used ultrafiltration (UF) and reverse osmosis (RO) technology that was also used extensively by Ontario Hydro to assist in their processing of chemical cleaning solvent. This technology, equipment, and operations personnel were provided by Zenon Environmental, Inc. The concentrate from the evaporator was absorbed with a special open-quotes peat mossclose quotes based media that allowed it to be shipped and buried at the Environcare of Utah facility. This is the first time that this absorption media or burial site has been used for chemical cleaning solvent

  14. Qualification test of chemical cleaning for secondary side of steam generator in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Yu Jinghua; Hou Shufeng

    1997-07-01

    The chemical cleaning technique for removing sludge on the secondary side in Qinshan Nuclear Power Plant has been qualified. The chemical cleaning process will carry out during shutdown refuelling. The qualification test has studied the effect of chemical cleaning agent component, cleaning time on dissolution effectiveness of sludge (Fe 3 O 4 ) and to evaluate corrosion situation of main materials of SG in the cleaning process. The main component of cleaning agent is EDTA. The cleaning temperature is 20∼30 degree C. It is determined that allowable remains amount of cleaning agent (EDTA). The technique of cleaning, rinse, passivation for the chemical cleaning in Qinshan Nuclear Power Plant has been made. The qualification test shown that the technique can dissolve Fe 3 O 4 >1 g/L, the corrosion of materials is in allowable value, the allowable remains of EDTA is <0.01%. The technique character is static, ambient temperature. (9 refs., 12 tabs.)

  15. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.; Kuhnke, K.

    1997-01-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pitting and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators

  16. Preventive acid chemical cleaning operation (PACCO) on steam generator in French nuclear power plants

    International Nuclear Information System (INIS)

    Traino, Jules; Ruiz Martinez, Jose Thomas; Rottner, Bernard; Vedova, Eric

    2014-01-01

    Steam Generators (SG) usually present important deposit loading and Tube Support Blockage, resulting from Secondary Side corrosion products. These phenomena modify SG behavior which can lead to safety, heat exchange performance and lifetime problems. In this context, a Chemical Cleaning Process (PACCO) was designed to solve the issue. After almost two years of intensive lab tests, pilot simulation and mock-ups, the chemical process was finally qualified by EDF. The aim of the work was firstly the development in laboratory of a chemical process that could eliminate partially the deposit loading, respecting the integrity of materials and gas emission limits. Secondly, the objective was the design and the implementation of the process on-site. The process has been applied successfully in 3 SG in Dampierre nuclear power plant in France on July 2013. The main results were: - Corrosion < 100 μm. - 40% of the initial deposit loading, removed by SG. (authors)

  17. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  18. The AREVA C3 concept. Customized chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen

    2011-01-01

    As the nuclear industry moves forward and the world's power demand increases, the continued safe, reliable, and efficient operation of existing plants has become indispensable. For these plants asset management is an essential factor. A crucial part of the plant assets are the steam generators (SG). Not only that the SG tubes are by far the largest boundary between the primary and secondary sides, they are also instrumental in the overall performance of the plant. The main concern for operational lifetime is tube degradation due to either ID or OD corrosion. At the secondary side, sludge and corrosion products accumulate in the SG resulting in the buildup of secondary side deposits. Such deposits can negatively affect the SG performance in different ways, not only by reduction of the heat transfer rates and, thus, by reducing the efficiency of the SG but also as cause or promotion of different types of corrosion phenomena. The cleanliness of the secondary side of SG is of essential interest to all utilities. There is not just one solution for SG asset optimization. The utilities must weigh the pros and cons of SG cleaning, with the associated impact on outage time and cost, versus the potential benefits. Each plant that considers a SG chemical cleaning has different objectives and goals. AREVA has developed the C 3 (Customized Chemical Cleaning - or in short 'C cubed') concept in order to provide the utility with a chemical cleaning method that is tailored to the needs of the individual units and that addresses them directly. (orig.)

  19. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    1993-04-01

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m 3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  20. Chemical cleaning's role in tube failure prevention and correction

    International Nuclear Information System (INIS)

    Shields, K.J.; Dooley, R.B.

    2002-01-01

    Properly applied, chemical cleaning is a valuable tool used to prevent tube failures involving overheating and corrosion due to waterside deposits. In many cases, however, cleaning becomes yet an additional cost associated with correction of tube failure incidents. Discussion is focused on approaches taken to appraise tube waterside cleanliness and determine the need to clean, as typically practiced in conventional fossil plants. Also presented is an assessment of the suitability and limitations of these approaches to plants with heat recovery steam generator (HRSG) units. (orig.)

  1. Processing method for chemical cleaning liquid on the secondary side of steam generator

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Inagaki, Yuzo.

    1993-01-01

    Upon processing nitrilotriacetate (NTA), Fe liquid wastes mainly comprising Fe and Cu liquid wastes mainly comprising ethylene diamine and Cu generated upon chemical cleaning on the secondary side of a steam generator, pH of the Fe liquid wastes is lowered to deposit and separate NTA. Then, Fe ions in a filtrates are deposited on a cathode by electrolysis, as well as remaining NTA is decomposed by oxidation at an anode by O 2 gas. Cu liquid wastes are reacted with naphthalene disulfate and Ba ions and the reaction products are separated by deposition as sludges. Remaining Cu ions in the filtrates are deposited on the cathode by electrolysis. With such procedures, concentration of COD(NTA), Fe ions and Cu ions can greatly be reduced. Further, since capacity of the device can easily be increased in this method, a great amount of liquid wastes can be processed in a relatively short period of time. (T.M.)

  2. Chemical cleaning, decontamination and corrosion

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Das Chintamani; Gaonkar, K.B.

    1991-01-01

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  3. Pickering Unit 1 chemical cleaning

    International Nuclear Information System (INIS)

    Smee, J.L.; Fiola, R.J.; Brennenstuhl, K.R.; Zerkee, D.D.; Daniel, C.M.

    1995-01-01

    The secondary sides of all 12 boilers at Pickering Unit 1 were chemically cleaned in 1994 by the team of Ontario Hydro, B and W International (Cambridge, Ontario) and B and W Nuclear Technologies (Lynchburg, Virginia). A multi-step EPRI/SGOG process was employed in a similar manner to previous clearings at Units 5 and 6 in 1992 and 1993, respectively. A major innovation with the Unit 1 cleaning was the incorporation of a crevice cleaning step, the first time this had been done on Ontario Hydro plants. In addition, six boilers were cleaned in parallel compared to three at a time in previous Pickering cleanings. This significantly reduced cleaning time. A total of 6,770 kg of sludge was removed through direct chemical dissolution. It consisted of 66% iron/nickel oxides and 28% copper metal. A total of 1,600,000 L (420,000 US gallons) of liquid waste was produced. It was processed through the spent solvent treatment facility located at the Bruce Nuclear Power Development site. Visual inspection performed after the cleaning indicated that the crevices between the boiler tubes and the tube support structure were completely clear of deposit and the general condition of the tubing and lattice bars appeared to be in 'as new' condition. (author)

  4. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  5. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR.

    Science.gov (United States)

    Cai, Weiwei; Liu, Jiaqi; Zhang, Xiangru; Ng, Wun Jern; Liu, Yu

    2016-11-01

    On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Steam generator cleaning campaigns at Bruce A: 1993-1996

    International Nuclear Information System (INIS)

    Puzzuoli, F.V.; Leinonen, P.J.; Lowe, G.A.

    1997-01-01

    Boiler chemical cleaning (BOCC) and high-pressure water lancing operations were performed during the Bruce A 1993 Unit 3, 1994 Unit 3, 1995 Unit 1 and 1996 Unit 3 outages to remove secondary side deposits. High-pressure water lancing focused on three boiler areas: tube support plates, to remove broached hole deposits, hot leg U-bend supports to dislodge deposits contributing to boiler tube stress corrosion cracking and tube sheets with the aim of removing accumulated sludge piles and post BOCC insoluble residues. The chemical cleaning processes applied were modified versions of the one developed by the Electric Power Research Institute/Steam Generator Owners Group. During these BOCC operations, corrosion for several key boiler materials was monitored and was well below the specified allowances

  7. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite.

    Science.gov (United States)

    Sun, Huifang; Liu, Hang; Han, Jiarui; Zhang, Xiangru; Cheng, Fangqin; Liu, Yu

    2018-04-24

    This study characterized the dissolved organic matter (DOM) and byproducts generated after the exposure of activated sludge to ozone and NaClO in ceramic MBR. It was found that NaClO triggered more significant release of DOM than ozone. Proteins with the molecular weight greater than 20 kDa and humic acid like-substances were the principal components of DOM generated by NaClO, while ozone was found to effectively degrade larger biopolymers to low molecular weight substances. The results showed that more than 80% of DOM generated by NaClO and ozone could pass through the 0.2-μm ceramic membrane. Furthermore, total organic chlorine (TOCl) was determined to be the principal species of halogenated byproducts in both cases, while the generation of TOCl by NaClO was much more significant than that by ozone. Only a small fraction of TOCl was removed by the 0.2-μm ceramic membrane. More importantly, the toxic bioassays further revealed that the supernatant of sludge suspension and permeate in the MBR with NaClO cleaning exhibited higher developmental toxicity to the polychaete embryos than those by ozone. The results clearly showed that on-line chemical cleaning with ozone should be a more eco-friendly and safer approach for sustaining long-term membrane permeability in ceramic MBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  9. Study of chemical cleaning technique for removing sludge in secondary side of PWR SG

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Pan Qingchun; Yu Jinghua; Hou Shufeng

    1993-12-01

    The effect of components, concentration, pH, temperature, cleaning time and flowrate of chemical cleaning solvent made from EDTA mainly on Fe 3 O 4 solubility and corrosion rate of A3 carbon steel, S271 low alloy steel and 800 alloy are introduced. A small chemical cleaning test loop (30L) was built to study the cleaning technique. The effect of residue of chemical cleaning solvent on anti-corrosion performance of materials has been studied under the simulation condition of PWR (pressure water reactor) SG (steam generator) secondary side. The results show that the chemical solvent (pH = 7, 10% EDTA, 1% assistance solvent and 0.25% inhibitor A) can dissolve Fe 3 O 4 18 ∼23 g/L under the conditions of 93 +- 5 degree C, 8 hours and 112 r/min (1.8 ∼ 2.0 t/h). The corrosion rate of material is low. When the residue of EDTA is less than 0.01% there is no impact on the anti-corrosion performance of materials in PWR SG secondary side at normal operation condition (260 +- 5 degree C)

  10. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    Hu, M.H.

    1998-01-01

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  11. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  12. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    NARCIS (Netherlands)

    Levitsky, I.; Naim, R.; Duek, A.; Gitis, V.

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning

  13. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  14. Corrosion monitoring during a chemical cleaning

    International Nuclear Information System (INIS)

    Delepine, J.; Feron, D.; Roy, M.

    1994-01-01

    In order to estimate the possible corrosion induced by the chemical cleaning, a corrosion monitoring has been realized during the cleaning of the secondary circuit (including the model boiler) of ORION loop. It included coupons and electrodes and has required a preliminary setting in laboratory. The electrochemical device which was used during the chemical cleaning included two reference electrodes (Ag/AgCl) and eight metallic electrodes (carbon steel, stainless steel, Alloy 600 and Alloy 690) for free corrosion potential monitoring, three other carbon steel electrodes for instantaneous corrosion rate measurements by polarization resistance and three coupling devices with different surface ratios between carbon steel and Alloy 600. The results showed a good agreement between corrosion rates measured by weight losses on coupons or by electrochemistry (polarization resistance), and an increase of the carbon steel corrosion rate when it was coupled with Alloy 600. (authors). 5 figs., 2 tabs., 3 refs

  15. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  16. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling.

    Science.gov (United States)

    Suleiman, Abdulqadir M; Svendsen, Kristin V H

    2015-12-01

    Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual level of importance of chemical health hazards and a model for working out the risk index (RI) indicating enterprises' conceptual risk level was established and used to categorize the enterprises. In 72.3% of cases, training takes place concurrently with task performances and in 67.4% experienced workers conduct the trainings. There is disparity between employers' opinion on competence level of the workers and reality. Lower conceptual level of importance was observed for cleaning enterprises of different sizes compared with regional safety delegates and occupational hygienists. Risk index values show no difference in risk level between small and large enterprises. Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  17. Atmospheric plasma generation for LCD panel cleaning

    Science.gov (United States)

    Kim, Gyu-Sik; Won, Chung-Yuen; Choi, Ju-Yeop; Yim, C. H.

    2007-12-01

    UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have for a long time been exclusively related to ozone generation. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The -phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

  18. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  19. EM-31 Alternative and Enhanced Chemical Cleaning Program

    International Nuclear Information System (INIS)

    King, Bill

    2010-01-01

    King's introduction to his presentation made 5 important points: (1) Numerous SRS tanks scheduled for closure (contract commitments); (2) Cannot remove all sludge by mechanical means due to obstructions; (3) Chemical removal technology needed (likely oxalic acid); (4) Post - dissolution neutralization required prior to transfer to compliant tanks; (5) Sodium oxalate salts precipitate on neutralization and have negative downstream impacts. There were three SRS chemical cleaning programs in 2010: Baseline: 8wt percent OA batch contact, ECC: 1-3 wt. percent OA with oxalate destruction, and the Alternative/Enhanced Chemical Cleaning (EM-31). This talk is on the EM-31 program.

  20. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling

    Directory of Open Access Journals (Sweden)

    Abdulqadir M. Suleiman

    2015-12-01

    Conclusion: Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  1. Chemical cleaning the service water system at a nuclear power plant

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    Chemical cleaning a large cooling water system in a nuclear power plant presented many unique problems. The selection, qualification, and performance of the cleaning process were done using a phased approach. The piping was inspected to determine the extent of the problem. Deposit samples were removed from the service water system pipe and tested in the laboratory to determine the most effective cleaning solvent for deposit removal. An engineering study was performed to define the design parameters required to implement the system-wide chemical cleaning

  2. Medium scale test study of chemical cleaning technique for secondary side of SG in PWR

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Yu Jinghua; Hou Shufeng

    1997-08-01

    The medium scale test study of chemical cleaning technique for removing corrosion product (Fe 3 O 4 ) in secondary side of SG in PWR has been completed. The test has been carried out in a medium scale test loop. The medium scale test evaluated the effect of the chemical cleaning technique (temperature, flow rate, cleaning time, cleaning process), the state of corrosion product deposition on magnetite (Fe 3 O 4 ) solubility and safety of materials of SG in cleaning process. The inhibitor component of chemical cleaning agent has been improved by electrochemical linear polarization method, the effect of inhibitor on corrosion resistance of materials have been examined in the medium scale test loop, the most components of chemical cleaning agent have been obtained, the EDTA is main component in cleaning agent. The electrochemical method for monitor corrosion of materials during cleaning process has been completed in the laboratory. The study of the medium scale test of chemical cleaning technique have had the optimum chemical cleaning technique for remove corrosion product in SG secondary side of PWR. (9 refs., 4 figs., 11 tabs.)

  3. A study on the chemical cleaning process and its qualification test by eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [KHNP Central Research Institute, Daejeon (Korea, Republic of); Min, Kyoung Mahn [UMI Inc., Daejeon (Korea, Republic of)

    2013-12-15

    Steam Generator (SG) tube, as a barrier isolating the primary coolant system from the secondary side of nuclear power plants (NPP), must maintain the structural integrity for the public safety and their efficient power generation. So, SG tubes are subject to the periodic examination and the repairs if needed so that any defective tubes are not in service. Recently, corrosion related degradations were detected in the tubes of the domestic OPR-1000 NPP, as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). According to the studies on the factors causing the heat fouling as well as developing corrosion cracking, densely scaled deposits on the secondary side of the SG tubes are mainly known to be problematic causing the adverse impacts against the soundness of the SG tubes. Therefore, the processes of various cleaning methods efficiently to dissolve and remove the deposits have been applied as well as it is imperative to maintain the structural integrity of the tubes after exposing to the cleaning agent. So qualification test (QT) should be carried out to assess the perfection of the chemical cleaning and QT is to apply the processes and to do ECT. In this paper, the chemical cleaning processes to dissolve and remove the scaled deposits are introduced and results of ECT on the artificial crack specimens to determine the effectiveness of those processes are represented.

  4. Service water chemical cleaning at River Bend gets results

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    The largest known Service Water System (SWS) chemical cleaning ever performed at a nuclear plant was successfully completed at, River Bend Station. Corrosion product buildup was observed during system inspections in the first operating cycle and the first refueling outage in 1987. Under deposit corrosion was followed with microbiologically influenced corrosion (MIC) occurring as a later stage under deposits. The heavy corrosion caused blockage of heat exchanger tubes, fouling of valve seats, and general flow blockage throughout the system. Various options were evaluated for restoring the SWS back to an acceptable long term operating condition. The large scale chemical cleaning performed arrested the corrosion by removing the deposits down to the bare metal surfaces and leaving behind a protective passivation layer. After the cleaning, the open recirculating SWS was converted to a closed system. The implementation of a molybdate/nitrate water treatment program with a copper corrosion inhibitor maintained at a high pH (8.5--10.5) has significantly reduced corrosion rates in the closed system. This should extend the life of the SWS piping for the remaining life of the plant. Several field tests were conducted to qualify the process and demonstrate its ability to achieve acceptable cleaning results prior to being used on a larger scale. In the summer of 1992, temporary and permanent modifications were installed to divide the SWS into two separate cleaning loops for the system wide cleaning. The SWS chemical was successfully performed and completed on schedule during the fourth refueling outage. Post cleaning inspections at various locations throughout the Service Water System showed the process to be very effective at complete deposit removal

  5. Chemical cleaning of AGR boilers

    International Nuclear Information System (INIS)

    Moore, S.V.; Moore, W.; Rantell, A.

    1978-01-01

    AGR boilers are likely to require post service chemical cleaning to remove accumulated oxides at intervals of 15 - 35 kh. The need to clean will be based on an assessment of such factors as the development of flow imbalances through parallel tubes induced by the formation of rough oxide surfaces, an increasing risk of localised corrosion as the growth of porous oxides proceeds and the risk of tube blockage caused by the exfoliation of steam-grown oxides. The study has shown what heterogeneous multilayer oxides possessing a range of physical and chemical properties form on the alloy steels. They include porous and compact magnetites, chromium spinels and sesquioxide. Ammoniated citric acid has been shown to remove deposited and water-grown magnetites from the carbon and alloy steels but will not necessarily remove the substituted spinels grown on the alloy steels or the potentially spalling steam-grown magnetite on the A1SI 316 superheater. Citric acid supplemented with the reducing agent glyoxal completely removes all oxides from the boiler except the protective inner spinel formed on the 316. Removal of the spinels and compact magnetites occurs more by undercutting and physical detachment than by the dissolution. (author)

  6. Chemical cleaning of Dresden Unit 1: Final report

    International Nuclear Information System (INIS)

    1986-05-01

    The introduction of NS-1 solvent into the full primary system of Dresden Unit-1 nuclear power reactor on September 12, 1984, represented the culmination of several years of development, testing, planning, and construction. The requirement was to dissolve the highly radioactive deposits of primarily nickel ferrite without any corrosion which might compromise the reactor systems. During the actual cleaning with the NS-1 solvent, the chemical condition of the circulating solvent was measured. Iron, nickel, and radioactive cobalt all dissolved smoothly. The amount of copper in solution decreased in concentration, verifying expectations that metallic copper would plate on to clean metal surfaces. A special rinse formulation was employed after the primary cleaning steps and the ''lost'' copper was thus redissolved and removed from the system. After the cleaning was complete and the reactor had been refilled with pure water, radiation levels were measured. The most accurate of these measurements gave decontamination factors ranging well above 100, which indicated a significant removal of the radioactive deposits, and demonstrated the success of this project. Treatment of the radioactive liquid wastes from this operation required volume reduction and water purification. The primary method of processing the spent cleaning solvent and rinse water was evaporation. The resulting concentrate has been stored as a liquid, awaiting solidification to allow burial at a designated site. Water which was separated during evaporation, along with the dilute rinses, was processed by various chemical means, reevaporated, treated with activated carbon, and/or demineralized before its radionuclide and chemical content was low enough to allow it to be returned to Dresden Station for treatment or disposal. 60 figs., 31 tabs

  7. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  8. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  9. Chemical Agents: Personal Cleaning and Disposal of Contaminated Clothing

    Science.gov (United States)

    ... What CDC is Doing Blog: Public Health Matters Chemical Agents: Facts About Personal Cleaning and Disposal of ... on Facebook Tweet Share Compartir Some kinds of chemical accidents or attacks may cause you to come ...

  10. Processes of elimination of activated corrosion products. Chemical decontamination - fuel cleaning

    International Nuclear Information System (INIS)

    Viala, C.; Brun, C.; Neuhaus, R.; Richier, S.; Bachet, M.

    2007-01-01

    The abatement of the individual and collective dose of a PWR imposes to control the source term through different processes implemented during the plant exploitation. When the limits of these different optimization processes are reached, the abatement of dose rates requires the implementation of curative processes. The objective is thus to eliminate the contaminated oxides and deposits present on surfaces free of radiation flux, and eventually on surfaces under radiation flux and on the fuel itself. The chemical decontamination of equipments and systems is the main and universal remedy implemented at different levels. On the other hand, the ultrasonic cleaning of fuel assemblies is a promising process. This paper aims at illustrating these different techniques using concrete examples of application in France and abroad (decontamination during steam generator replacement, decontamination of primary pump scroll in hot workshop, decontamination of loop sections, ultrasonic cleaning of fuel). The description of these different operations stresses on their efficiency in terms of dosimetric gain, duration of implementation, generation of wastes, and recontamination following their implementation. (J.S.)

  11. 40 CFR 262.213 - Laboratory clean-outs.

    Science.gov (United States)

    2010-07-01

    ... eligible academic entity is not required to count a hazardous waste that is an unused commercial chemical..., subpart C) generated solely during the laboratory clean-out toward its hazardous waste generator status... out, the date the laboratory clean-out begins and ends, and the volume of hazardous waste generated...

  12. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  13. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  14. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  15. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Bucs, Szilard; Fortunato, Luca; Hé lix-Nielsen, Claus; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Leiknes, TorOve; Amy, Gary

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  16. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  17. Development of clean chemical mechanical polishing systems; Clean CMP system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, M.; Hosokawa, M. [Ebara Corp., Tokyo (Japan)

    1998-10-20

    Described herein are clean chemical mechanical polishing (CMP) systems developed by Ebara. A CMP system needs advanced peripheral techniques, in addition to those for grinding adopted by the conventional system, in order to fully exhibit its inherent functions. An integrated design concept is essential for the CMP steps, including slurry supplying, polishing, washing, process controlling and waste fluid treatment. The Ebara has adopted a standard concept `Clean CMP, dry-in and dry-out of wafers,` and provided world`s highest grades of techniques for inter-layer insulating film, shallow trench isolation, plug and wiring. The head for the polishing module is specially designed by FEM, to improve homogeneity of wafers from the center to edges. The dresser is also specially designed, to improve pad surface topolody after dressing. A slurry dipsersing method is developed to reduce slurry consumption. Various washing modules, designed to have the same external shape, can be allocated to various functions. 10 figs.

  18. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  19. Method of cleaning oil slicks and chemical spills

    International Nuclear Information System (INIS)

    Billings, L.

    1992-01-01

    This patent describes a method of cleaning a floating chemical spill on a body of water. It comprises: providing a quantity of popular bark-based pelleted or granular product, flotation means and a flexible net having openings generally smaller than the smallest whole pellet dimension of the pelleted product, spreading the net over a chemical spill on the body of water, connecting the floatation means to the net thereby supporting the net adjacent the surface of the body of water, placing the poplar bark-based product on the net, absorbing the floating chemical spill into the product, and removing the chemical soaked product from the body of water

  20. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    International Nuclear Information System (INIS)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-01-01

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt % or 2 wt %) were used at 55 deg C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results

  1. The impact of chemical cleaning on separation efficiency and properties of reverse osmosis membrane

    KAUST Repository

    Baatiyyah, Hani

    2018-04-01

    One of most major concerns from both cost-effective and technical point of view in membrane process industry is membrane cleaning. The aim of the project was to investigate the variations in membrane surface properties and separation efficiency of reverse osmosis membrane. Compativtive analysis have to be performed on four RO membrane before and after exposing the virgin membrane into chemical cleaning to identify and analysis the impact of the chemical cleaning on the performance of RO membrane. Commerical chemical cleaning used in this project were caustic and acidic cleaning agent. The project’s aim is the investigation of simulation software’s precision for the four membranes performance projection at different conditions of the feed water. The assessment of the membranes performance was done in the Innovation Cluster at pilot plant that was industrial in size. The main commercial elements used were the thin-film composite membranes with a spiral-wound of 8-inch polyamide. Ultrafiltration (UF) and seawater RO membrane pretreatment process was done for the red sea sourced feed water. A pressure vessel dimensioned at 8-inch was operated in conjunction with an individual element at 8 -20 m3/hr feed flow rate, with an 8 to 12 % recovery and an average 35,000-42,000 mg/L of total dissolved solids (TDS) composition for the feed water. To achieve the project’s aim in assessing the membranes, three phase experimental stages were completed. The membranes performance was assessed in terms of their water flux, salt rejection, boron rejection, bicarbonate rejection and permeate quality. In addition, the membrane surfaces were characterized after exposing the fresh membranes with a chemical cleaning reagent. The experimental results showed an increase in both permeate flow and salt passage for all studied elements. The changes in the membranes performance were systematically explained based on the changes in the charge density and chemical structure of the membranes

  2. Risk in cleaning: chemical and physical exposure.

    Science.gov (United States)

    Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H

    1998-04-23

    occupants. The variety and duration of the emissions depend inter alia on the use of fragrances and high boiling VOCs. Some building materials appear to increase their VOC emission through wet cleaning and thus may affect the IAQ. Particles and dirt contain a great variety of both volatile and non-volatile substances, including allergens. While the volatile fraction can consist of more than 200 different VOCs including formaldehyde, the non-volatile fraction can contain considerable amounts (> 0.5%) of fatty acid salts and tensides (e.g. linear alkyl benzene sulphonates). The level of these substances can be high immediately after the cleaning process, but few studies have been conducted concerning this problem. The substances partly originate from the use of cleaning agents. Both types are suspected to be airway irritants. Cleaning activities generate dust, mostly by resuspension, but other occupant activities may also resuspend dust over longer periods of time. Personal sampling of VOCs and airborne dust gives higher results than stationary sampling. International bodies have proposed air sampling strategies. A variety of field sampling techniques for VOC and surface particle sampling is listed.

  3. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  4. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    International Nuclear Information System (INIS)

    Wyrwas, R. B.

    2016-01-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  5. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  6. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1–3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Cleaning of OPR1000 Steam Generator by Ultrasonic Cavitation in Water

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wootae [Korea Hydro and Nuclear Power Co., Ltd, Daejeon (Korea, Republic of); Kim, Sangtae; Yoon, Sangjung; Choi, Yongseok [Saean Engineering Corporation, Seoul (Korea, Republic of)

    2013-05-15

    Magnetic wheels are attached to the transducers to prevent tube damage which may be caused by wear between the transducers and SG tubes. To remove heat generated by transducers, we used water to water heat exchanger. Sludge removed from tube sheet area of the steam generator was pumped to filtering station for removing impurities in it. We designed an ultrasonic cleaning system for application to OPR1000 S/G. The technology was developed for removing sludge in OPR1000 S/G. However, the technology could easily be applied to other types of S/Gs. For cleaning OPR1000 SG, we designed an ultrasonic cleaning system with 12 transducers, 15 generators, a WRS, and a water treatment system. An experiment with a single transducer and the full scale OPR1000 S/G mock-up did not show very satisfactory result in ultrasound energy level. However, we expect sufficient effects if we apply 12 or more transducers in this case considering our previous experimental results as shown in the references. The ultrasonic cleaning system will be ready in August this year for performance test. After several experiments and the experiments followed, we are planning to apply this cleaning system for removing sludge in Korean OPR1000 S/Gs.

  8. Development of chemical cleaning formulation for service water system of FBTR

    International Nuclear Information System (INIS)

    Velmurugan, S.; Narasimhan, S.V.; Das, P.C.; Mathur, P.K.

    1995-01-01

    Service water system of Fast Breeder Test Reactor (FBTR) was found to be corroded and at few locations, the corrosion product oxides were choking the smaller diameter pipelines. An attempt was made to develop a chemical cleaning formulation to chemically remove the oxides using a surface conditioner and chelating agents. Of the several complexants tested, hydroxyethylethylene diamine tetraacetic acid (HEDTA) was found to be better than other complexants from the point of view of oxide dissolution efficiency, solubility etc. A two stage chemical cleaning process involving conditioning of the oxide layer with 0.1% tannic acid followed by exposure of the conditioned oxide layer with a formulation containing 1% HEDTA + 0.5% Sodium Gluconate +0.2% hexamine was recommended to remove the corrosion product oxide present in the service water system. (author). 4 refs., 2 tabs

  9. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    Directory of Open Access Journals (Sweden)

    Perry Melissa J

    2010-11-01

    Full Text Available Abstract Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC generated during the tasks were measured using a direct reading instrument (DRI with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred

  10. CHEMICAL AND ENERGETIC CONTENT OF CORN BEFORE AND AFTER PRE-CLEANING

    Directory of Open Access Journals (Sweden)

    Sandra Iara Furtado Costa Rodrigues

    2015-04-01

    Full Text Available The poultry industry normally has little control over the raw material that arrives at the processing plant. This experiment aimed to evaluate chemical and energetic quality of corn obtained in a feed mill before and after pre-cleaning. Twenty samples of 30 kg of corn each were taken from trucks delivering corn to the mill. The trucks were then unloaded and the material passed through a pre-cleaning process when another sample was taken. Samples were graded and physical properties evaluated: density (g/L, grain percentages of foreign material, impurities, fragments, broken, soft, insect damaged, fire-burnt, fermented, damaged, cracked and fine particles, as well as chemical composition analysis: Apparent metabolizable energy for poultry (AME, ether extract (EE, crude fiber (CF, starch (STA, water activity (WA, crude protein (CP, digestible and total lysine, methionine, cystine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine and arginine. The experiment was a randomized design with two treatments (before and after pre-cleaning and twenty replications. Data was analyzed using SAS ® and treatment differences obtained using F test. Correlations and principal components were calculated. There was a decrease in density after the pre-cleaning process, which was probably due to the removal of earth and stones rather than grain and its fractions. Significant increases were found for insect damage, fermented and damaged grain while fire-burn was significantly reduced after the pre-cleaning process. Starch increased after pre-cleaning which is a result of contaminants that normally are poor in this carbohydrate, but fiber levels increased too. Apparent metabolizable energy, aminoacids, digestible (P<0.05 and total (P<0.05 histidine, total lysine and methionine (P<0.1 levels were reduced after pre-cleaning. Density was higher when there were fewer impurities such as straw, husk or small grains. Broken corn was positively

  11. Final status report in preparation for the chemical cleaning of Dresden-1, DNS-D1-034

    International Nuclear Information System (INIS)

    1981-09-01

    This report discusses the status of all of the activities conducted in preparation for the chemical cleaning of the Dresden-1 Nuclear Power Plant of Commonwealth Edison of Illinois. The metallurgical testing of a solvent and its ability to remove radioactivity are reviewed. Included are all engineering details relating to the modifications to the primary system to be able to perform the chemical cleaning and to rinse the cleaning solvent out of the equipment. A facility to store and process spent cleaning solutions is described in detail. Construction activities and preoperational activities are recounted. Licensing activities, quality assurance, safety, and radiation protection are discussed. The report includes recommendations for future actions for restarting the project when approval is received. All of the efforts discussed in this Final Status Report led to the conclusion that the chemical cleaning, as planned, was feasible. All of the necessary modifications and new equipment are in place and are operational

  12. Effectiveness of aged graffiti cleaning on granite by chemical and mechanical procedures

    Science.gov (United States)

    Gomes, Vera; Dionísio, Amélia; Santiago Pozo-Antonio, José

    2017-04-01

    Granite is one of the most common building stones in the European Cultural Heritage mainly in Northwest Iberian Peninsula. Nowadays, graffiti when a result of an act of vandalism is one of the most important threat, involving a serious risk to heritage sustainability. The cleaning is expensive and in most of the cases, the complete removal is not achieved. Many cities worldwide spend huge amounts of money in cleaning campaigns and European Commission started to create urban environment policies to prevent and eliminate graffiti and also finance projects to develop new cleaning procedures and antigraffiti coatings1,2. However, in many cases graffiti is applied in monuments and façades without antigraffiti and in real practice, they are only cleaned after being long exposure to the atmosphere, reaction with the environment (rain and atmospheric pollutants) and also with the substrate, leading changes in their physical and chemical properties. However, no scientific studies focused on graffiti aging were found and also on the influence of the aging on the cleaning effectiveness, which is always evaluated with fresh graffiti. Therefore, the need to optimize the cleaning of aged graffiti is urgent. This paper aims to study the influence of the exposition of graffiti paintings to one of the most important urban contaminant SO2 on the cleaning effectiveness of graffiti on the valuable ornamental granite Rosa Porriño. Two different chemical products and two different mechanical procedures based on low pressure projection (wet and dry) were evaluated. Four different colour graffiti paintings (red, black, blue and silver) with different compositions were tested. The criteria for assessing the global cleaning effectiveness was considering the graffiti extraction and also the damage induced on the substrate through changes in the chromatic parameters, static contact angle and surface roughness of the stones, identification of deleterious products and modification of the

  13. Problems of clean coals production as a sources of clean energy generation; Problemy produkcji czystych wegli jako zrodlo wytwarzania czystej energii

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W. [Polish Academy of Sciences, Krakow (Poland). Mineral and Energy Economy Institute

    2004-07-01

    The paper advises of clean coal technology programme objectives. Issues connected with clean coals preparation for combustion have been discussed. The quality of steam fine coals has been presented, including those used in the commercial power industry. A small supply of 'clean coals' has been started in Poland, related however to a limited demand. Factors affecting the reduction in clean coal production have been discussed. The fact that there are no significant reasons to constrain supplies of clean coals has been emphasised. The quality of coal in deposits is very good, and the condition of preparation enables production of clean coal. Clean energy generation from clean coal requires only cooperation between the hard coal mining industry and the commercial power industry, passing over particular sectoral interests. 15 refs.

  14. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    Science.gov (United States)

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  15. Enhanced Chemical Cleaning: Effectiveness Of The UV Lamp To Decompose Oxalates

    International Nuclear Information System (INIS)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-01

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  16. Design of segmental ultrasonic cleaning equipment for removing the sludge in a steam generator

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Byeon, Min Suk; Lee, Ho One

    2010-01-01

    In nuclear power plants, the water in the coolant system is managed to be clean but metallic sludge is accumulated on the top of tube-sheet in a steam generator. The sludge causes the corrosion of the tubesheet. The electric utility company in Korea removes the sludge with a lancing system for every outage of nuclear power plants. But the sludge is not perfectly removed with lancing system because the pressurized water of the lancing system cannot reach all area in a steam generator. Therefore the steam generator cleaning system with ultrasonic energy has been developed in KEPCO Research Institute. In this paper, the ultrasonic cleaning system is designed for removing the sludge on the steam generator

  17. Combustion behaviour of ultra clean coal obtained by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    F. Rubiera; A. Arenillas; B. Arias; J.J. Pis; I. Suarez-Ruiz; K.M. Steel; J.W. Patrick [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    The increasing environmental concern caused by the use of fossil fuels and the concomitant need for improved combustion efficiency is leading to the development of new coal cleaning and utilisation processes. However, the benefits achieved by the removal of most mineral matter from coal either by physical or chemical methods can be annulled if poor coal combustibility characteristics are attained. In this work a high volatile bituminous coal with 6% ash content was subjected to chemical demineralisation via hydrofluoric and nitric acid leaching, the ash content of the clean coal was reduced to 0.3%. The original and treated coals were devolatilised in a drop tube furnace and the structure and morphology of the resultant chars was analysed by optical and scanning electron microscopies. The reactivity characteristics of the chars were studied by isothermal combustion tests in air at different temperatures in a thermogravimetric system. Comparison of the combustion behaviour and pollutant emissions of both coals was conducted in a drop tube furnace operating at 1000{sup o}C. The results of this work indicate that the char obtained from the chemically treated coal presents very different structure, morphology and reactivity behaviour than the char from the original coal. The changes induced by the chemical treatment increased the combustion efficiency determined in the drop tube furnace, in fact higher burnout levels were obtained for the demineralised coal.

  18. Review of cleaning techniques and their effects on the chemical composition of foliar samples

    Energy Technology Data Exchange (ETDEWEB)

    Rossini Oliva, S.; Raitio, H.

    2003-07-01

    Chemical foliar analysis is a tool widely used to study tree nutrition and to monitor the impact and extent of air pollutants. This paper reviews a number of cleaning methods, and the effects of cleaning on foliar chemistry. Cleaning may include mechanical techniques such as the use of dry or moistened tissues, shaking, blowing, and brushing, or use various washing techniques with water or other solvents. Owing to the diversity of plant species, tissue differences, etc., there is no standard procedure for all kinds of samples. Analysis of uncleaned leaves is considered a good method for assessing the degree of air contamination because it provides an estimate of the element content of the deposits on leaf surfaces or when the analysis is aimed at the investigation of transfer of elements along the food chain. Sample cleaning is recommended in order (1) to investigate the transfer rate of chemical elements from soil to plants, (2) to qualify the washoff of dry deposition from foliage and (3) to separate superficially absorbed and biomass-incorporated elements. Since there is not a standard cleaning procedure for all kinds of samples and aims, it is advised to conduct a pilot study in order to be able to establish a cleaning procedure to provide reliable foliar data. (orig.)

  19. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  20. 太阳能硅料化学清洗研究进展%Development of chemical cleaning for solar energy silicon material

    Institute of Scientific and Technical Information of China (English)

    申燕; 贾艳飞; 姚旭; 张健; 廉佳林

    2016-01-01

    Silicon as the main material of solar photovoltaic power generation in the solar photovoltaic industry, the demand for silicon material cleanliness also gradualy increases under the background of the rapid development of the market. Chemical cleaning is the main method of silicon material cleaning. In this paper, the research progress of the standard cleaning method ( RCA ) and depending on the silicon material by RCA method to develop other chemical cleaning method was reviewed.%多晶硅作为太阳能光伏发电的主要材料,在太阳能光伏产业市场迅速发展的大背景下,对硅料清洁度的需求也逐步增加。化学清洗是目前硅料清洗的主要方法。本文综述了近年来硅料化学清洗的基本方法(RCA)及根据硅料的不同由RCA法发展出的其他化学清洗方法。

  1. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  2. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  3. Is dry cleaning all wet?

    International Nuclear Information System (INIS)

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  4. Technological procedure for chemical cleaning prior to re-pyritization of H2O-H2S isotopic exchange installations

    International Nuclear Information System (INIS)

    Stefanescu, I.; Smaranda, D.; Titescu, Gh.

    1996-01-01

    In normal operation the anti-corrosive shielding of the GS installations undergo a slow, irreversible degradation in time so that after 6 - 8 years their protection characteristics break down. In order to put them back in operation the regeneration of anti-corrosive is required. The procedure achieved at ICIS - Rm.Valcea consists in chemical cleaning of the impaired layers and re-pyritization of the interior surface of installations. Chemical cleaning include the following operations: - mechanical cleaning; - water washing; - alkaline washing with sodium hydroxide, tri-sodium phosphate and sodium tri-polyphosphate; - final mechanical cleaning; - neutralizing washing; - chemical cleaning with phosphoric acid solution; - neutralizing washing. After applying this procedure, the surface is prepared for the pyritization regeneration of the anti-corrosive shielding which ensures the prolongation of the equipment service lifetime with another six year period

  5. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    International Nuclear Information System (INIS)

    Eibling, R

    2008-01-01

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based upon the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble

  6. The importance of chemical components in cleaning agents for the indoor environment

    DEFF Research Database (Denmark)

    Vejrup, Karl Ventzel

    In order to evaluate the importance for the indoor environment of chemical compounds in cleaning agents, the emission of VOCs (Volatile Organic Compounds) from 10 selected cleaning agents and the content of LAS (Linear AlkanbenzeneSulfonate) in dust samples from 7 buildings were investigated.The...... of LAS between smooth floored corridors to carpeted offices, are apparently also of importance for the LAS content in individual rooms.The amounts of LAS found in the dust samples indicated that LAS may be of importance for the indoor environment, but inadequate knowledge about how low concentrations...... investigation of VOC emission from 10 selected cleaning agents showed that it was useful to classify the VOCs into two groups: nonpolar VOCs and polar VOCs.The nonpolar VOCs consisted of several hundred different compounds, mainly terpenes typically used as perfume in cleaning agents. The nonpolar VOC...

  7. Re-establishing filtering capabilities of machined porous beryllium via chemical reduction and cleaning

    International Nuclear Information System (INIS)

    Randall, W.L.

    1975-01-01

    Porous beryllium is furnished in sheets of varying sizes and thickness; it is therefore necessary that it be machined into specified sizes. A chemical reduction and cleaning procedure was devised to remove the disrupted surface, open the sealed pores of the material, and clean entrapped contaminates from the internal structure. Dimensional stability can be closely controlled and material size is of no consequence. (U.S.)

  8. Radiocesium Removal From Synthetic Steam-Generator Cleaning Solutions. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Narbutt, H; Bartos, B [Department of Radiochemistry, Institute of Nuclear Chemistry and Technology, PL-03185 Warsaw (Poland); Taleb, H [On leave from Tajoura Nuclear Research Center, Tripoli (Libyan Arab Jamahiriya)

    1996-03-01

    Adjustment of {sup 137} Cs{sup +} on ion exchangers from aqueous solutions containing ammonia and various chelating agents was studied. The solutions simulated radioactive waste obtained after chemical cleaning of steam generators (SG) in nuclear power plants according to the technology developed by Siemens KWU and contained ammonia and one of the following chelating agents; nitrilotriacetic acid (NTA), ethylenediamine tetraacetic acid (EDTA), and ethylenediamine(EDA), to dissolve iron and/or copper corrosion deposits. The ion exchangers used were of the composite type, and consisted of powdered cobalt(II) hexacyanoferrate incorporated into beads of a phenolsulphonic resin. Another composite adsorbent with titanium hexacyanoferrate has proved to adsorb {sup 137} Cs{sup +} from the NTA and EDA solutions more effectively than commercial caesium- selective resin Lewatit DN-KR. However, because of high concentration of competitive ammonium ions at PH 7.2(at higher PH the sorbent decomposed), the removal of radiocaesium was still insufficient. 3 figs.

  9. ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-19

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  10. Decrudding and chemical cleaning of carbon steel components - an evaluation

    International Nuclear Information System (INIS)

    Gaonkar, K.B.; Elayathu, N.S.D.; Shibad, P.R.; Gadiyar, H.S.

    1982-01-01

    Corrosion and accumulation of corrosion products on the surfaces of structural components and plant equipments can cause se vereoperational problems during service. An illustration is the heat exchanger systems in nuclear power stations. Development and standardisation of appropriate chemical cleaning and decontamination procedures and their evaluation hence merit serious consideration. A number of chemical cleaning procedures using formulations based on hydrochloric and citric acid solutions have been examined to study their crud dissolving and derusting ability in addition to the attack on base material. The compositions were chosen: (1) along with complexing agents EDTA and ammonium citrate, (2) with pH control, and (3) with the use of inhibitors acridine, rhodine, hexamine and phenyl-thiourea. The evaluations have been made at 28 and 60 deg C. Rusted carbon steel coupons having a rust of 10-12 mg/cm 2 on the surface have been used for the purpose of the above evaluations. Data on corrosion rates of monel and cupronickel (70:30) in the descaling solutions have also been presented. Results on the above evaluation studies have been discussed. (author)

  11. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  12. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; King, W.

    2010-05-05

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  13. Alternative Enhanced Chemical Cleaning Basic Studies Results FY09

    International Nuclear Information System (INIS)

    Hay, M.; King, W.

    2010-01-01

    Due to the need to close waste storage tanks, chemical cleaning methods are needed for the effective removal of the heels. Oxalic acid is the preferred cleaning reagent for sludge heel dissolution, particularly for iron-based sludge, due to the strong complexing strength of the oxalate. However, the large quantity of oxalate added to the tank farm from oxalic acid based chemical cleaning has significant downstream impacts. Optimization of the oxalic acid cleaning process can potentially reduce the downstream impacts from chemical cleaning. To optimize oxalic acid usage, a detailed understanding of the chemistry of oxalic acid based sludge dissolution is required. Additionally, other acid systems may be required for specific waste components with low solubility in oxalic acid and as a means to reduce oxalic acid usage in general. Solubility tests were conducted using non-radioactive, pure metal phases known to be the primary phases present in High Level Waste sludge. The metal phases studied included the aluminum phases gibbsite and boehmite and the iron phases magnetite and hematite. Hematite and boehmite are expected to be the most difficult iron and aluminum phases to dissolve. These mineral phases have been identified in both SRS and Hanford High Level Waste sludge. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids. The results of the solubility tests indicate that oxalic and sulfuric acids are more effective for the dissolution of the primary sludge phases. For boehmite, elevated temperature will be required to promote effective phase dissolution in the acids studied. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control using a supplemental proton source (additional acid) is critical for minimization of oxalic acid usage during the dissolution of hematite. These results emphasize the importance of pH control in optimizing hematite dissolution in oxalic acid and may explain the somewhat

  14. Overview of shoreline cleaning agents

    International Nuclear Information System (INIS)

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  15. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which...

  16. Effectiveness of bone cleaning process using chemical and entomology approaches: time and cost.

    Science.gov (United States)

    Lai, Poh Soon; Khoo, Lay See; Mohd Hilmi, Saidin; Ahmad Hafizam, Hasmi; Mohd Shah, Mahmood; Nurliza, Abdullah; Nazni, Wasi Ahmad

    2015-08-01

    Skeletal examination is an important aspect of forensic pathology practice, requiring effective bone cleaning with minimal artefact. This study was conducted to compare between chemical and entomology methods of bone cleaning. Ten subjects between 20 and 40 years old who underwent uncomplicated medico-legal autopsies at the Institute of Forensic Medicine Malaysia were randomly chosen for this descriptive cross sectional study. The sternum bone was divided into 4 parts, each part subjected to a different cleaning method, being two chemical approaches i.e. laundry detergent and a combination of 6% hydrogen peroxide and powder sodium bicarbonate and two entomology approaches using 2nd instar maggots of Chrysomyia rufifacies and Ophyra spinigera. A scoring system for grading the outcome of cleaning was used. The effectiveness of the methods was evaluated based on average weight reduction per day and median number of days to achieve the average score of less than 1.5 within 12 days of the bone cleaning process. Using maggots was the most time-effective and costeffective method, achieving an average weight reduction of 1.4 gm per day, a median of 11.3 days to achieve the desired score and an average cost of MYR 4.10 per case to reach the desired score within 12 days. This conclusion was supported by blind validation by forensic specialists achieving a 77.8% preference for maggots. Emission scanning electron microscopy evaluation also revealed that maggots especially Chrysomyia rufifacies preserved the original condition of the bones better allowing improved elucidation of bone injuries in future real cases.

  17. Experience with vacuum distillation cleaning of a full-size steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Smit, C C

    1975-07-01

    In the 50 MW Sodium Component Test Facility at Hengelo tests are conducted on several types of full size prototype steam generators and an intermediate heat exchanger. The necessary post-test examination of these prototype components requires a complete removal of all sodium. Since in some cases the endurance test has to be continued after internal inspection, the cleaning-method should be such that no damage occurs to the component. After partial disassembly and internal inspection the component will be reassembled and must be acceptable for further use. The qualification tests of the Neratoom straight tube steam generator were concluded in June 1974. The evaporator module was decided to be partially disassembled in order to meet the requirement of a thorough examination before fabrication of the SNR-generators is started. In preparation for the most suitable cleaning procedure, several methods of sodium removal were considered.

  18. Experience with vacuum distillation cleaning of a full-size steam generator

    International Nuclear Information System (INIS)

    Smit, C.C.

    1975-01-01

    In the 50 MW Sodium Component Test Facility at Hengelo tests are conducted on several types of full size prototype steam generators and an intermediate heat exchanger. The necessary post-test examination of these prototype components requires a complete removal of all sodium. Since in some cases the endurance test has to be continued after internal inspection, the cleaning-method should be such that no damage occurs to the component. After partial disassembly and internal inspection the component will be reassembled and must be acceptable for further use. The qualification tests of the Neratoom straight tube steam generator were concluded in June 1974. The evaporator module was decided to be partially disassembled in order to meet the requirement of a thorough examination before fabrication of the SNR-generators is started. In preparation for the most suitable cleaning procedure, several methods of sodium removal were considered

  19. Characterization and dissolution studies of Bruce Unit 3 steam generator secondary side deposits

    International Nuclear Information System (INIS)

    Semmler, J.

    1998-01-01

    The physical and chemical properties of secondary side steam generator deposits in the form of powder and flake obtained from Bruce Nuclear Generating Station A (BNGS A) Unit 3 were studied. The chemical phases present in both types of deposits, collected prior to the 1994 chemical cleaning during the pre-clean water lancing campaign, were magnetite (Fe 3 O 4 ), metallic copper (Cu), hematite (Fe 2 O 3 ) and cuprous oxide (Cu 2 O). The major difference between the chemical composition of the powder and the flake was the presence of zinc silicate (Zn 2 SiO 4 ) and several unidentified silicate phases containing Ca, Al, Mn, and Mg in the flake. The flake deposit had high hardness values, high electrical resistivity, low porosity and a lower dissolution rate in the EPRI-SGOG (Electric Power Research Institute-Steam Generator Owner's Group) chemical cleaning solvents compared to the powder deposit. Differences in the deposit properties after chemical cleaning of the Unit 3 steam generators and after laboratory cleaning were noted. The presence of silicates in the deposit inhibit magnetite dissolution

  20. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1989-01-01

    A method is described for decontaminating garments, soft good or mixtures thereof contaminated with radioactive particulates, toxin, chemical, and biological contaminants comprising the steps of: (a) depositing contaminated garments, soft goods or mixtures thereof in a cleaning drum; (b) charging the drum with a cleaning solvent in which the chemical contaminants are soluble; (c) agitating the drum during a wash cycle to separate radioactive, toxin, biological particulate matter of mixtures thereof from the garments; (d) draining the drum of the dry cleaning solvent which contains suspended particulate contaminants and dissolved chemical contaminants; (e) contacting the drained solvent with both a neutralizing agent and an oxidizing agent, the neutralizing agent being selected from the group consisting of sodium hydroxide, potassium hydroxide and mixtures thereof and having a concentration greater than one (1.0) normal; (f) rinsing the garments, soft goods or mixtures thereof by circulating clean solvent from a solvent tank through the drum thereby effecting additional removal and flushing of particulate and chemical contaminants; (g) filtering the circulated solvent to remove the particulate material suspended in the solvent prior to addition to the drum; and (h) preferentially adsorbing the chemical contaminants dissolved in the circulated solvent prior to addition to the drum

  1. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  2. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  3. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W., E-mail: lynnww@sohu.com [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China); Li, J.X. [Tianjin Polytechnic University, Tianjin 300160 (China); Gao, C.Y. [Chinese Peoples Armed Police Forces Academy, Langfang 065000 (China); Chang, M. [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China)

    2011-10-15

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  4. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  5. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  6. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  7. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    International Nuclear Information System (INIS)

    Min, Zhong; Zhi-Tang, Song; Bo, Liu; Song-Lin, Feng; Bomy, Chen

    2008-01-01

    In order to improve nano-scale phase change memory performance, a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge 2 Sb 2 Te 5 phase change films. We use reactive ion etching (RIE) as the cleaning method. The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer. The results show that particle residue on the surface has been removed. Meanwhile, Ge 2 Sb 2 Te 5 material stoichiometric content ratios are unchanged. After the top electrode is deposited, current-voltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1mA to 0.025mA. Furthermore, we analyse the RIE cleaning principle and compare it with the ultrasonic method

  8. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene

    Science.gov (United States)

    Sun, Jianbo; Finklea, Harry O.; Liu, Yuxin

    2017-03-01

    Poly(methyl methacrylate) (PMMA) residue has long been a critical challenge for practical applications of the transferred chemical vapor deposited (CVD) graphene. Thermal annealing is empirically used for the removal of the PMMA residue; however experiments imply that there are still small amounts of residues left after thermal annealing which are hard to remove with conventional methods. In this paper, the thermal degradation of the PMMA residue upon annealing was studied by Raman spectroscopy. The study reveals that post-annealing residues are generated by the elimination of methoxycarbonyl side chains in PMMA and are believed to be absorbed on graphene via the π-π interaction between the conjugated unsaturated carbon segments and graphene. The post-annealing residues are difficult to remove by further annealing in a non-oxidative atmosphere due to their thermal and chemical stability. An electrolytic cleaning method was shown to be effective in removing these post-annealing residues while preserving the underlying graphene lattice based on Raman spectroscopy and atomic force microscopy studies. Additionally, a solution-gated field effect transistor was used to study the transport properties of the transferred CVD graphene before thermal annealing, after thermal annealing, and after electrolytic cleaning, respectively. The results show that the carrier mobility was significantly improved, and that the p-doping was reduced by removing PMMA residues and post-annealing residues. These studies provide a more in-depth understanding on the thermal annealing process for the removal of the PMMA residues from transferred CVD graphene and a new approach to remove the post-annealing residues, resulting in a residue-free graphene.

  9. In-Situ Ion Source Cleaning: Review of Chemical Mechanisms and Evaluation Data at Production Fabs

    International Nuclear Information System (INIS)

    Kaim, R.; Bishop, S.; Byl, O.; Eldridge, D.; Marganski, P.; Mayer, J.; Sweeney, J.; Yedave, S.; Fuchs, D.; Spreitzer, S.; Vogel, J.; Dunn, J.; Lundquist, P.; Rolland, J.; Romig, T.; Newman, D.; Mitchell, M.; Ditzler, K.

    2008-01-01

    Since the concept of chemical in-situ ion implanter cleaning was introduced at IIT2006 [1], evaluations of the XeF 2 cleaning technology have taken place or are ongoing at more than 40 production fabs worldwide. Testing has been focused on assessing effects of cleaning in the source arc chamber and extraction regions. In this paper we describe use of the cleaning technology in a production environment and summarize evaluation data showing advantages of the technology for improving ion source life, reducing glitching, improving beam auto-tuning and avoiding species cross-contamination. More details of the evaluations are given in several separate papers submitted to this Conference. We have supplemented the fab production data with laboratory experiments designed to investigate the reactivity of XeF 2 and fundamental aspects of the source deposition and cleaning processes. These experiments are summarized here, and more details can be found in separate papers submitted to this Conference

  10. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  11. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  12. EDF feedback on recent EPRI SGOG SG chemical cleanings applications for TSP blockage reduction and heat transfer recover

    International Nuclear Information System (INIS)

    Dijoux, M.; De Bouvier, O.; Mercier, S.; Pages, D.; Bretelle, J.-L.; Leclercq, P.; Mermillod, A.

    2010-01-01

    Between 2007 and 2008, six Steam Generators Chemical Cleanings (SGCC) with the inhibitor free high temperature process were applied on EDF PWR units. The main goal was to reduce the excessive Tube Support Plate blockages observed on several units of the EDF fleet and the consequences on wide range levels and the risk of tube cracks. The heat transfer recovery was the second objective. Despite the correct results obtained, the corrosion impact of the high temperature process on internal metallic surfaces, higher than expected, and the environmental issues led EDF to move to a new cleaning process. The low temperature process developed by EPRI SGOG and applied for many years was selected for the same purpose. Some qualification laboratory tests were performed by Dominion Engineering Inc (DEI) to demonstrate the innocuousness an the efficiency of the process to achieve these goals. The EPRI SGOG process was then applied seven times by Westinghouse on the EDF units Cruas 3, Cruas 2, Belleville 1, Cattenom 1, Cattenom 3, Chinon B3 and Cattenom 4 between 2008 and 2010. All these units operate from the initial start at low AVT pH 25 o C (9,2) in the secondary circuit. Due to copper presence in the deposits to remove, the cleaning sequence 'Copper - Iron - Copper steps' was performed each time. After a short description of the process, including the specific adaptation in France, lessons learned are reported in this paper in the following areas: process monitoring, corrosion, efficiency, liquid and gaseous wastes, chemical pollution during start-up. Based on the 3 first applications in 2008, some modifications of the process were implemented, particularly for the copper step. For the units cleaned, 1100 to 4500 kg of deposits per SG have been removed, including TS sludge lancing. The reduction of TSP blockages was satisfying. The effect on steam pressure improvement and the wide range level is then discussed. The paper concludes on EDF perspectives for soft

  13. Use of a fluorescent chemical as a quality indicator for a hospital cleaning program.

    Science.gov (United States)

    Blue, Jennifer; O'Neill, Cindy; Speziale, Paul; Revill, Jeff; Ramage, Lee; Ballantyne, Lisa

    2008-01-01

    Hamilton Health Sciences is a large teaching hospital with over 1,000 beds and consists of three acute care sites, one Regional Cancer Center and two Rehabilitation/Chronic Care facilities. An environmental cleaning pilot project was initiated at the acute care Henderson site, following an outbreak of vancomycin-resistant Enterococcus (VRE). Healthcare-associated infections (HAI) due to antibiotic-resistant organisms are increasing in Southern Ontario. Environmental cleaning plays a key role in eradicating resistant organisms that live in hospital environments, thereby helping to reduce HAIs. The environmental cleaning practices on the Orthopaedic Unit were identified as a contributing factor to the VRE outbreak after visual assessments were completed using a Brevis GlitterBug product, a chemical that fluoresces under an ultraviolet (UV) lamp. These findings led to a hospital-wide cleaning improvement initiative on all units except critical care areas. The GlitterBug potion was employed by Infection Control and Customer Support Services (CSS) as a tool to evaluate the daily cleaning of patient washrooms as well as discharge cleaning of contact precaution isolation rooms. Over a four-week period, the GlitterBug potion was applied to seven frequently touched standard targets in randomly selected patient bathrooms on each unit and 14 frequently touched targets prior to cleaning in the rooms used for isolation. The targets were then evaluated using the UV lamp to detect objects that were not cleaned and the results were recorded on a standardized form. The rate of targets cleaned versus the targets missed was calculated. The overall rate for daily cleaning of bathrooms and cleaning of isolation rooms was poor with only 23% of the targets cleaned. Based on these findings, several interventions were implemented. This resulted in a significant improvement in cleaning practices during the pilot project. Greater than 80% of the targets were cleaned compared to the baseline

  14. Mathematical modelling of flux recovery during chemical cleaning of tubular membrane fouled with whey proteins

    Directory of Open Access Journals (Sweden)

    Marković Jelena Đ.

    2009-01-01

    Full Text Available Membrane process efficiency in the dairy industry is impaired by the formation of deposits during filtration processes. This work describes cleaning procedures for ceramic tubular membrane (50 nm fouled with whey proteins. Also, mathematical modelling was performed to obtain models which allow deeper insight into the mechanisms involved during cleaning procedures. The caustic solutions (0.2%w/w, 0.4%w/w and 1.0%w/w NaOH and the mixture of two commercial detergents (0.8%w/w P3-ultrasil 69+0.5% w/w P3-ultrasil 67 and 1.2% P3-ultrasil 69+0.75 P3-ultrasil 67 were used as chemical cleaning agents. The results showed that the best flux recovery was achieved with 0.4%w/w NaOH solution. After analyzing the experimental data, five parameter and six parameter kinetic models were suggested for alkali and detergent cleaning, respectively. The changes of total and specific resistances, as well as the change of the effective pore diameter and deposit thickness during cleaning are estimated by applying these models.

  15. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  16. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  17. Characterization of Carbon-Contaminated B4C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma.

    Science.gov (United States)

    Moreno Fernández, H; Rogler, D; Sauthier, G; Thomasset, M; Dietsch, R; Carlino, V; Pellegrin, E

    2018-01-22

    Boron carbide (B 4 C) is one of the few materials that is expected to be most resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at light source facilities, B 4 C-coated optics are subject to ubiquitous carbon contaminations. Carbon contaminations represent a serious issue for the operation of FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B 4 C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B 4 C test samples via inductively coupled O 2 /Ar, H 2 /Ar, and pure O 2 RF plasma produced following previous studies using the same ibss GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B 4 C optical coating before and after the plasma cleaning are reported. We conclude that among the above plasma processes only plasma based on pure O 2 feedstock gas exhibits the required chemical selectivity for maintaining the integrity of the B 4 C optical coatings.

  18. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  19. Cleanliness criteria to improve steam generator performance

    International Nuclear Information System (INIS)

    Schwarz, T.; Bouecke, R.; Odar, S.

    2005-01-01

    High steam generator performance is a prerequisite for high plant availability and possible life time extension. The major opponent to that is corrosion and fouling of the heating tubes. Such steam generator degradation problems arise from the continuous ingress of non-volatile contaminants, i.e. corrosion products and salt impurities may accumulate in the steam generators. These impurities have their origin in the secondary side systems. The corrosion products generally accumulate in the steam generators and form deposits not only in the flow restricted areas, such as on top of tube sheet and tube support structure, but also build scales on the steam generator heating tubes. In addition, the tube scales in general affect the steam generator thermal performance, which ultimately causes a reduction of power output. The most effective ways of counteracting all these degradation problems, and thus of improving the steam generator performance is to keep them in clean conditions or, if judged necessary, to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. This paper presents a methodology how to assess the cleanliness condition of a steam generator by bringing together all available operational and inspection data such as thermal performance and water chemistry data. By means of this all-inclusive approach the cleanliness condition is quantified in terms of a fouling index. The fouling index allows to monitor the condition of a specific steam generator, compare it to other plants and, finally, to serve as criterion for cleaning measures such as chemical cleaning. The application of the cleanliness criteria and the achieved field results with respect to improvements of steam generator performance will be presented. (author)

  20. Solar photocatalytic cleaning of polluted water. Solare Reinigung verschmutzter Waesser mittels Photokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, D

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  1. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo

    2018-04-06

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between adhesion, dissipation, deformation, and modulus while simultaneously generating a topographic image of membranes. Nanomechanical maps of virgin membranes evidenced surfaces of heterogeneous properties and were described by probability density functions. Operating conditions and feed quality exerted an impact on membranes. Clean harvested membranes showed a higher mean modulus and dissipation, and a lower deformation than virgin membranes, indicating stiffer membranes of lower elastic deformation. A significant fraction of these measurements displayed peak values deviating from the distribution; which represents regions of the membrane with properties highly differing from the probability density function. The membrane polymeric material experienced severe physicochemical changes by foulant adsorption and reaction with cleaning agents. Foulant adsorption on membranes was heterogeneous in both morphology and mechanical properties and could not be statistically described. Foulants, i.e., mainly consisting of polysaccharides and proteinaceous structures, displayed low elastic deformation and high roughness and adhesion. The presence of foulants after chemical cleaning and their high adhesion would be a direct nanoscale evidence of irreversible fouling. By the end of the operation, the Trans-Membrane Pressure experienced a 40% increase. The cleaning process was not able to fully recover the initial TMP, indicating irreversible fouling, i.e., permanent change in membrane characteristics and decrease in performance. These results suggest a link between the macroscopic properties and nanomechanical characteristics of membranes. This study advances our nanoscale understanding of the impact of fouling and operating conditions on

  2. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  3. EM-31 Alternative And Enhanced Chemical Cleaning Program For Sludge Heel Removal - 11220

    International Nuclear Information System (INIS)

    King, W.; Hay, M.; Wiersma, B.; Pennebaker, F.

    2010-01-01

    Mixtures of oxalic acid with nitric acid have been shown to be superior to oxalic acid alone for the dissolution of iron-rich High Level Waste sludge heels. Optimized conditions resulting in minimal oxalate usage and stoichiometric iron dissolution (based on added oxalate ion) have been determined for hematite (a primary sludge iron phase) in oxalic/nitric acid mixtures. The acid mixtures performed better than expected based on the solubility of hematite in the individual acids through a synergistic effect in which the preferred 1:1 Fe:oxalate complex is formed. This allows for the minimization of oxalate additions to the waste stream. Carbon steel corrosion rates were measured in oxalic/nitric acid mixtures to evaluate the impacts of chemical cleaning with these solutions on waste tank integrity. Manageable corrosion rates were observed in the concentration ranges of interest for an acid contact timescale of 1 month. Kinetics tests involving hematite and gibbsite (a primary sludge aluminum phase) have confirmed that (ge)90% solids dissolution occurs within 3 weeks. Based on these results, the chemical cleaning conditions recommended to promote minimal oxalate usage and manageable corrosion include: 0.5 wt. % oxalic acid/0.175 M nitric acid mixture, 50 C, 2-3 week contact time with agitation.

  4. Testing and comparison of seventeen decontamination chemicals

    International Nuclear Information System (INIS)

    Demmer, R.L.

    1996-09-01

    This report details the testing and evaluation of seventeen decontamination chemicals. Tests were conducted with SIMCON (simulated contamination) coupons under controlled conditions to compare cleaning effectiveness, overall corrosion potential for plant equipment, interim waste generation and final waste generation

  5. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  6. Substrate Effect on Plasma Clean Efficiency in Plasma Enhanced Chemical Vapor Deposition System

    Directory of Open Access Journals (Sweden)

    Shiu-Ko JangJian

    2007-01-01

    Full Text Available The plasma clean in a plasma-enhanced chemical vapor deposition (PECVD system plays an important role to ensure the same chamber condition after numerous film depositions. The periodic and applicable plasma clean in deposition chamber also increases wafer yield due to less defect produced during the deposition process. In this study, the plasma clean rate (PCR of silicon oxide is investigated after the silicon nitride deposited on Cu and silicon oxide substrates by remote plasma system (RPS, respectively. The experimental results show that the PCR drastically decreases with Cu substrate compared to that with silicon oxide substrate after numerous silicon nitride depositions. To understand the substrate effect on PCR, the surface element analysis and bonding configuration are executed by X-ray photoelectron spectroscopy (XPS. The high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS is used to analyze microelement of metal ions on the surface of shower head in the PECVD chamber. According to Cu substrate, the results show that micro Cu ion and the CuOx bonding can be detected on the surface of shower head. The Cu ion contamination might grab the fluorine radicals produced by NF3 ddissociation in the RPS and that induces the drastic decrease on PCR.

  7. Nondestructive evaluation of the QT on the SG tubes affected by chemical cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok Shin; Cheon, Keun Young; Kim, Wang Bae [Central Research Institute, Daejeon (Korea, Republic of); Min, Kyong Mahn [UMI, Daejeon (Korea, Republic of)

    2012-10-15

    The major mechanisms of flaws detected on the currently operating steam generator(SG) tubes are wear and stress corrosion cracking(SCC) defects. Wear defect has continuously occurred in the upper tube bundle imposed to the flow induced vibration at the interaction between tube and its support structure. Meanwhile, SCC has been formed by a variety of mixed mode, such as the corrosion susceptible material, residual stress and secondary side chemical environment of the SG tubes. Recently, corrosion related defects were detected in the domestic OPR 1000 model SG tubes especially in the egg crate tube support plate(TSP), as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). Therefore, the need to take corrective measures against the corrosion defects is required and various studies have been conducted to clarify the main causes of the defects. In general, as a representing SG tube materials, Ni based alloy 600 tubes have been widely applied and also adversely shown weak properties on the corrosion cracking resistivity. According to the studies on the factors developing corrosion cracking, densely accumulated sludge pile on the secondary side of the SG tubes have been mainly attributed to the formation of the corrosion defects. Therefore, it is imperative to secure applicable and efficient sludge removal process. In this paper, the chemical cleaning processes to dissolve and remove the sludge, thus promote the integrity of the SG tubes were introduced and eddy current testing(ECT) results on the pre cracked SG tubes to determine the effectiveness of those processes were represented as well.

  8. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing

    International Nuclear Information System (INIS)

    Pogiatzis, Thomas; Ishiyama, Edward M.; Paterson, William R.; Vassiliadis, Vassilios S.; Wilson, D. Ian

    2012-01-01

    Fouling of heat exchangers causes reduced heat transfer and other penalties. Regular cleaning represents one widely used fouling mitigation strategy, where the schedule of cleaning actions can be optimised to minimise the cost of fouling. This paper investigates, for the first time, the situation where there are two cleaning methods available so that the mode of cleaning has to be selected as well as the cleaning interval. Ageing is assumed to convert the initial deposit, labelled 'gel', into a harder and more conductive form, labelled 'coke', which cannot be removed by one of the cleaning methods. The second method can remove both the gel layer and the coke layer, but costs more and requires the unit to be off-line longer for cleaning. Experimental data demonstrating the effects of ageing are presented. The industrial application is the comparison of cleaning-in-place methods with off-line mechanical cleaning. A process model is constructed for an isolated counter-current heat exchanger subject to fouling, where ageing is described by a simple two-layer model. Solutions generated by an NLP-based approach prove to be superior to a simpler heuristic. A series of case studies demonstrate that combinations of chemical and mechanical cleaning can be superior to mechanical cleaning alone for certain combinations of parameters.

  9. Steam Generator Maintenance Measures as Part of an Integrated Management in PWRs

    International Nuclear Information System (INIS)

    Weiss, S.; Drexler, A.; Fandrich, J.

    2012-01-01

    The Steam generator condition is a key factor for plant performance, high plant availability, possible life time extension and plant safety. Its major safety function is to act as a barrier between the radioactive primary side and the non-radioactive secondary side of pressurized water reactors. Any degradation mechanism, which impairs this barrier function, is a significant safety concern. The main reason for SG tube failure is known to be the accumulation of deposits contributing to formation of local aggressive conditions. Furthermore deposits on primary as well as secondary side of SG tubes reduce the heat transfer performance. A SG cleanliness management program is therefore mandatory to ensure high plant performance regarding efficiency as well as component integrity. Cleaning measures of steam generator are essential parts of the cleanliness management program. Mechanical cleaning, e.g. tubesheet and inner bundle lancing or upper bundle flushing are efficient methods for removal of local loose deposits. But a chemical cleaning is the only method to remove deposits from the complete SG. AREVA is providing with its C 3 (customized chemical cleaning) concept a tool box of chemical cleaning methods, to adapt to plant specific needs and requirements. (author)

  10. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  11. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  12. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Late washing filter cleaning cycle demonstration

    International Nuclear Information System (INIS)

    Meyer, M.L.; McCabe, D.J.

    1992-01-01

    The DWPF Late Washing Facility will filter cesium and potassium tetraphenyl borate (TPB) solids using a Mott sintered metal filter, identical to the filter now used in the In-tank Precipitation Facility. The purpose of the late wash step is primarily to remove the nitrite salts from the slurry prior to delivery to DWPF. Periodic chemical cleaning of the filter will be required, presumably after each batch although the actual required frequency could not be determined on the lab-scale. Minimization of chemical cleaning solution volumes is key to maximizing the attainment of the Late Wash facility. This report summarizes work completed in experiments designed to identify minimum cleaning solution requirements

  14. Comparison of the performance, advantages and disadvantages of nuclear power generation compared to other clean sources of electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jônatas F.C. da; Neto, Rieder O., E-mail: jonatasfmata@yahoo.com.br, E-mail: rieder.neto@gmail.com [Universidade do Estado de Minas Gerais (UEMG), João Monlevade, MG (Brazil); Mesquita, Amir Z., E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Nowadays, there is an increase in the demand for electricity in emerging countries, such as India, China and Brazil. There are several alternatives to increase energy generation, and each country has followed certain strategies to achieve this goal. For a long time, developed countries, such as the United States, the United Kingdom and Germany, had focused their efforts on the use of thermoelectric generators through the combustion of non-renewable sources such as coal, natural gas and oil. These examples were followed, also, by the emerging countries. However, pollution levels, generated by these sources, have required the breakdown of this paradigm, and the consequent reversal of large investments in clean energy sources, such as hydraulics, solar and wind. Nucleo-electric energy is also considered a clean energy source, since it does not generate polluting gases during the processing of concentrated uranium in nuclear reactors. In addition, all radioactive waste occupying relatively small volumes and being stored in controlled deposits, in aspects of health, environment and safety. The objective of this article is to compare the performance, in economic, environmental and safety aspects, of nuclear power in relation to renewable energy sources. The results show that nuclear energy has become increasingly competitive in all these fields, justifying the growth of investments in new nuclear technologies. Therefore, the coexistence between the use of clean sources of electricity and the thermonuclear matrix will bring, for humanity, truly sustainable systems of energy generation. (author)

  15. Comparison of the performance, advantages and disadvantages of nuclear power generation compared to other clean sources of electricity

    International Nuclear Information System (INIS)

    Mata, Jônatas F.C. da; Neto, Rieder O.; Mesquita, Amir Z.

    2017-01-01

    Nowadays, there is an increase in the demand for electricity in emerging countries, such as India, China and Brazil. There are several alternatives to increase energy generation, and each country has followed certain strategies to achieve this goal. For a long time, developed countries, such as the United States, the United Kingdom and Germany, had focused their efforts on the use of thermoelectric generators through the combustion of non-renewable sources such as coal, natural gas and oil. These examples were followed, also, by the emerging countries. However, pollution levels, generated by these sources, have required the breakdown of this paradigm, and the consequent reversal of large investments in clean energy sources, such as hydraulics, solar and wind. Nucleo-electric energy is also considered a clean energy source, since it does not generate polluting gases during the processing of concentrated uranium in nuclear reactors. In addition, all radioactive waste occupying relatively small volumes and being stored in controlled deposits, in aspects of health, environment and safety. The objective of this article is to compare the performance, in economic, environmental and safety aspects, of nuclear power in relation to renewable energy sources. The results show that nuclear energy has become increasingly competitive in all these fields, justifying the growth of investments in new nuclear technologies. Therefore, the coexistence between the use of clean sources of electricity and the thermonuclear matrix will bring, for humanity, truly sustainable systems of energy generation. (author)

  16. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  17. Noncontact COS charge analysis for in-line monitoring of wet cleaning processes

    Science.gov (United States)

    Zhang, Xiafang; Juang, Min; Tai, Sung-Shan; Chen, Kuo-in; Wossen, Ejigu; Horner, Gregory

    1998-08-01

    Contamination levels in chemical cleaning equipment and wafer cleanliness in general are very critical to semiconductor manufacturers. In this work, a Keithley Instruments non contact electrical tester (Quantox) is used to measure the mobile ion (Qm) contamination in a variety of cleaning processes. Results show that photoresist strip cleaning process has a higher mobile ion concentration than standard pre-diffusion cleaning process. RCA1, RCA2 and HF solutions mapping measured by the Quantox indicates some negative static charges on the surface after cleaning. This negative field appears to assist Qm removal during wet chemical cleaning. The dependence of flatband voltage and other oxide charges on various cleaning processes has also been investigated using the Quantox. The data suggests that a dipole layer has been formed by a surface reaction during chemical cleaning.

  18. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  19. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  20. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Science.gov (United States)

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  2. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung; Li, Xue; Ong, Rui Chin; Ge, Qingchun; Wang, Honglei; Han, Gang

    2012-01-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  3. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung

    2012-08-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  4. Clean room actuators

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Toshiro

    1987-06-01

    This report explains on the present status of the clean room actuators including the author's research results. In a clean room, there exists a possibility of dust generation, even when a direct human work is eliminated by the use of robots or automatic machines, from the machines themselves. For this, it is important to develop such clean robots and transfer/positioning mechanism that do not generate dusts, and to develop an actuator and its control technique. Topics described in the report are as follows: 1. Prevention of dust diffusion by means of sealing. 2. Elimination of mechanical contact (Linear induction motor and pneumatic float, linear motor and magnetic attraction float, linear motor and air bearing, and magnetic bearing). 3. Contactless actuator having a positioning mechanism (Use of linear step motor and rotary contactless actuator). (15 figs, 11 refs)

  5. Investigation of the Pulsed Annular Gas Jet for Chemical Reactor Cleaning

    Directory of Open Access Journals (Sweden)

    Zvegintsev Valery Ivanovich

    2012-01-01

    Full Text Available The most economical technology for production of titanium dioxide pigment is plasma-chemical syntheses with the heating of the oxygen. The highlight of the given reaction is formation of a solid phase as a result of interactions between two gases, thus brings the formation of particle deposits on the reactor walls, and to disturbing the normal operation of the technological process. For the solving of the task of reactor internal walls cleaning the pulsed gaseous system was suggested and investigated, which throws circular oxygen jet along surfaces through regular intervals. Study of aerodynamic efficiency of the impulse system was carried by numerical modeling and experimentally with the help of a specially created experimental facility. The distribution of the pulsed flow velocity at the exit of cylindrical reactor was measured. The experimental results have shown that used impulse device creates a pulsed jet with high value of the specified flow rate. It allows to get high velocities that are sufficient for the particle deposits destruction and their removal away. Designed pulsed peelings system has shown high efficiency and reliability in functioning that allows us to recommend it for wide spreading in chemical industry.

  6. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  7. Optimized high temperature oxidation and cleaning at Bugey 3

    International Nuclear Information System (INIS)

    Ranchoux, Gilles; Wintergerst, Matthieu; Bachet, Martin; Leclercq, Stephanie; Duron, Jean-Daniel; Meunier, Jean-Pierre; Blond, Serge; Dacquait Frederic

    2012-09-01

    As a part of the EDF Source Term Reduction project, an experimental procedure was carried out at Bugey 3 further to the steam generator replacement. This innovative procedure consists in theory in two complementary phases /1/: - Phase 1: a SG tubes optimized oxidation performed during pre-critical hot functional tests (basic and reducing chemistry) aims to generate an as protective as possible inner oxide layer allowing to reduce the later nickel release, - Phase 2: a cleaning procedure of the primary circuit performed under acid and reducing chemical conditioning at 170 deg. C intends to dissolve and eliminate the outer oxide layer by a simultaneous purification. The objective of such a procedure is to reduce corrosion products inventory (mainly nickel) generated by the first SG tube oxidation during hot functional tests and first operation months by carrying out an appropriate cleaning procedure. Gains were expected not only on RCS and auxiliary systems contamination, dose rates and thus collective dose but also on next outages duration. The objective of this paper is to describe the process implementation at Bugey 3: effective procedure put in place, monitoring program (chemistry and dose rate measurements, EMECC campaign) and firsts results. (authors)

  8. Commercial Cleaning Products for Chemical Decontamination: A Scoping Study

    Science.gov (United States)

    2014-05-01

    and may injure human skin without dilution), although this approach is less favoured in a mass casualty decontamination situation than soap and water...commercial cleaning products, full strength K-O-K® liquid bleach (5.25% aqueous solution of NaOCl), dish-washing detergent Cascade® with Extra...Bleach Action Gel, OxiClean® Versatile Stain Remover Powder, and ZEP® Industrial Purple liquid cleaner (proprietary caustic cleaner containing

  9. Development of S/G Lancing System for Upper Bundle Hydraulic Cleaning

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Hong, Sung Yull

    2005-01-01

    Steam generators of nuclear power plants are recommended to be cleaned during plant outages. Various lancing equipments are developed for the cleaning of tube sheet area of nuclear steam generators. However, no lancing system has been developed in Korea for cleaning upper bundle area of steam generators. Therefore, we developed an upper bundle cleaning system for removing sludge deposited on the tube support plates of nuclear steam generators

  10. Discussion on cleaning and maintenance of YA system reverse osmosis membrane

    International Nuclear Information System (INIS)

    Zhu Yidong

    2012-01-01

    According to the overproof of pollution data of YA system reverse osmosis membrane in extension project, the daily maintenance company is using chemical cleaning on reverse osmosis unit to eliminate the pollution blindly, the fixed prescription, fixed dosage and high frequency of the chemical cleaning. The writer analyzed the cause of the membrane pollution and commended several chemical cleaning methods by the long-period study of the system, and also some suggestion, according to the status of operational site, for the daily maintenance. (author)

  11. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater.

    Science.gov (United States)

    Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2017-10-15

    Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development of the ultra-clean dry cleanup process for coal-based syngases: pilot-scale evaluation

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Slimane; P.V. Bush; J.L. Aderhold, Jr.; B.G. Bryan; R.A. Newby; D. A. Horazak; S.C. Jain [Gas Technology Institute, Des Plaines, IL (United States)

    2005-07-01

    This paper reports on a recent successful pilot-scale evaluation of the Ultra-Clean Process performance at a 10-ton/day coal gasifier facility. In these tests, carbonaceous feedstocks were gasified, using GTI's fluidized bed U-GAS{reg_sign} gasification technology, to generate syngas. The raw syngas was then conditioned and fed to the UCP test section for deep cleaning to meet very stringent cleaning requirements for chemical feedstocks or liquid-fuel synthesis applications, or for fuel-cell power generation. Fine particle sorbents for sulfur, halide, and mercury removal were injected into the syngas upstream of two stages of particulate controlled devices, 'barrier filter-reactors', coupling efficient particle capture with an effective entrained and filter cake reaction environment for very effective multiple contaminant removal. The goal of the test program was to confirm sorbent selection, filter-reactor operating parameters and sorbent-to-contaminant ratios, which were previously determined in the laboratory to have potential to reduce contaminant concentrations to very low levels. The pilot-scale data developed are being used to update conceptual evaluations, which have shown the technical feasibility, cost effectiveness and commercial merit for the Ultra-Clean Process compared to conventional, Rectisol-based syngas cleaning. 10 refs., 5 figs.

  13. Automated cleaning of electronic components

    International Nuclear Information System (INIS)

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-01-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations

  14. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  15. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis

  16. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  17. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    Science.gov (United States)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle

  18. De novo protein structure generation from incomplete chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vernon, Robert; Baker, David [University of Washington, Department of Biochemistry and Howard Hughes Medical Institute (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-02-15

    NMR chemical shifts provide important local structural information for proteins. Consistent structure generation from NMR chemical shift data has recently become feasible for proteins with sizes of up to 130 residues, and such structures are of a quality comparable to those obtained with the standard NMR protocol. This study investigates the influence of the completeness of chemical shift assignments on structures generated from chemical shifts. The Chemical-Shift-Rosetta (CS-Rosetta) protocol was used for de novo protein structure generation with various degrees of completeness of the chemical shift assignment, simulated by omission of entries in the experimental chemical shift data previously used for the initial demonstration of the CS-Rosetta approach. In addition, a new CS-Rosetta protocol is described that improves robustness of the method for proteins with missing or erroneous NMR chemical shift input data. This strategy, which uses traditional Rosetta for pre-filtering of the fragment selection process, is demonstrated for two paramagnetic proteins and also for two proteins with solid-state NMR chemical shift assignments.

  19. Experience of steam generator tube examination in the hot laboratory of EDF: analysis of recent events concerning the secondary side

    International Nuclear Information System (INIS)

    Thebault, Y.; Bouvier, O. de; Boccanfuso, M.; Coquio, N.; Barbe, V.; Molinie, E.

    2011-01-01

    Until 2010, more than 60 steam generator (SG) tubes have been removed and analysed in the EDF hot laboratory of CEIDRE/Chinon. This article is particularly related to three recent events that lead to the extraction of several tubes dedicated to laboratory destructive examinations. The first event that constitutes a first occurrence on the EDF Park, concerns the detection of a circumferential crack on the external surface of a tube located at tube support plate elevation. After this observation, several tubes have been extracted from Bugey 3 and Fessenheim 2 nuclear power plants with steam generators equipped with 600 MA bundle. The other two events concern the consequences of chemical cleaning of the tube bundle steam generators. The examples chosen are from Cruas 4 et Chinon B2 units whose tubes were extracted following non destructive testing performed immediately after or at the completion of cycle following the chemical cleaning. In the case of Cruas 4, Eddy Current Testing (ET) were performed for requalification of steam Generators after chemical cleaning. They allowed the detection of an indication located at the bottom of tube for a large number of tubes; the ET signal was similar to that corresponding to 'deposit' corrosion. Moreover, inspections of Chinon-B2 SGs at the end of the operation cycle following the chemical cleaning, showed the presence of conductor deposits at the bottom of some tubes. The first part of this document presents the major results of laboratory examinations of the pulled tubes of Bugey 3 and Fessenheim 2 and their analysis. Hypothesis concerning damage mechanisms of the tubes are also proposed. The second part of the paper relates the results of the laboratory examinations of the pulled tubes of Cruas 4 and Chinon B 2 after chemical cleaning and their analysis. (authors)

  20. A study on the Stress Corrosion Cracking reduction method of Steam Generator secondary side of KSNP

    International Nuclear Information System (INIS)

    Kim, June Hoon; Lee, Goune Jin

    2014-01-01

    In order to avoid sludge accumulation affecting the life of the steam generator, the best way is to prevent the sludge inflow in advance by optimization of water quality management through chemical concentration and pH control etc. However it is very difficult to prevent sludge accumulation under the weak condition of corrosion, such as condensation, boiling and high temperature of feed-water in NPPs. Particularly stress corrosion cracking occurs in a top-of-tube sheet area of steam generator with an increase in number of operation years of Korea Standard Nuclear Plant(KSNP)... The purpose of this study is to improve suppression of stress corrosion cracking and life extension for steam generator and improve plant efficiency by performing full length bulk high chemical cleaning in order to remove iron oxide of steam generator secondary side in KSNP Hanbit Unit 6. This study analyzed the Free EDTA and Fe concentrations and sludge removal after performed full length bulk high temperature chemical cleaning for removing the iron oxide of steam generator secondary side, which of Hanbit unit 6 of KSNP. 1) It showed a typical pattern that Fe concentration increased in accordance with to decrease Free EDTA(Ethylene Diamine Tetea acetic Acid) concentration. 2) Sludge removal based on iron oxide after performing the full length bulk high temperature chemical cleaning was 3001kg and sludge removal by lancing additionally was 200.1kg

  1. An efficient, environmentally acceptable, clean up system for well completions

    International Nuclear Information System (INIS)

    Berg, Oe.; Saasen, A.

    1996-01-01

    Evaluation of different casing cleaning fluid systems has been a difficult task due to the lack of a standardised laboratory measurement technique for technical performance. In order to meet the need for a reliable evaluation of different chemicals and fluid systems used in casing cleaning, a laboratory procedure for the evaluation of casing cleaning chemicals has been developed. This procedure has been successfully applied in the development of a new environmentally acceptable casing cleaning fluid system. Two different procedures are presented. An old method where the drilling fluid was displaced down the annulus and up the drill string was found to be ineffective compared to a method where the drilling fluid was displaced up in the annulus. The application of this procedure together with the use of the new chemical additive has reduced the cost of casing cleanup operations in the range of 30-40%. 10 refs., 1 fig., 4 tabs

  2. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  3. Decreasing Beam Auto Tuning Interruption Events with In-Situ Chemical Cleaning on Axcelis GSD

    International Nuclear Information System (INIS)

    Fuchs, Dieter; Spreitzer, Stefan; Vogl, Josef; Bishop, Steve; Eldridge, David; Kaim, Robert

    2008-01-01

    Ion beam auto tuning time and success rate are often major factors in the utilization and productivity of ion implanters. Tuning software frequently fails to meet specified setup times or recipe parameters, causing production stoppages and requiring manual intervention. Build-up of conductive deposits in the arc chamber and extraction gap can be one of the main causes of auto tuning problems. The deposits cause glitching and ion beam instabilities, which lead to errors in the software optimization routines. Infineon Regensburg has been testing use of XeF 2 , an in-situ chemical cleaning reagent, with positive results in reducing auto tuning interruption events.

  4. Cleaning UF membranes with simple and formulated solutions

    NARCIS (Netherlands)

    Levitsky, I.; Duek, A.; Naim, R.; Arkhangelsky, E.; Gitis, V.

    2012-01-01

    The ultrafiltration membranes fouled by proteins are typically cleaned by consecutive soaking in alkali, surfactant and oxidizing solutions. We combined all three chemicals into a formulated cleaning agent and examined its efficiency to restore the water flux without damaging the membrane or

  5. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part II

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  6. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part I

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  7. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  8. Chemistry control experiences at Kaiga Generating Station (KGS), NPCIL

    International Nuclear Information System (INIS)

    Harikrishna, K.; Somasundaram, K.M.; Sanathkumar, V.V.; Nageswara Rao, G.

    2006-01-01

    The Chemistry control section at Kaiga Generating Station (KGS), NPCIL had keenly pursued many developmental works and projects which had not only improved the system performance and reliability but also largely benefited the Station by many ways. The highlights of some of the major developmental works that have contributed significantly are: 1. Studies on frequent and sharp rise in dew point values of AGMS: In the Annulus Gas Monitoring Systems (AGMS) of KGS units, it was observed that the system dew points were rising very sharply and abruptly. The systematic studies revealed the presence of Hydrogen impurity in CO 2 gas cylinders, hence emphasized the need to ensure the gaseous contents before injecting the media from the cylinders to the system. 2. a. Studies on frequent tube failures of TG auxiliary coolers: The detailed studies and investigation revealed that under deposit corrosion contributed by microbiological attack was the main cause for frequent failures of 90/10 Cupro Nickel cooler tubes which could be minimized either by resorting to periodical mechanical/chemical cleaning of cooler tubes or by regular chemical treatment with a suitable chemical formulation. b. Development of suitable chemical formulation for chemical cleaning of TG auxiliary coolers: A series of in-house experiments at site resulted in developing a suitable chemical formulation for effective cleaning of 90/10 Cupro Nickel cooler tubes. The formulation with 1 % w/w Citric acid with pH adjusted to 8.0 by Ammonia in first step followed by 1 % w/w EDTA with pH adjusted to 9.0 by Hydrazine in the second step could yield more than 90 % cleanliness. 3. Chemical cleaning of cooling circuits of AHUs: An in-house formulation was developed and used for chemical cleaning of cooling circuits (with copper tubes) of AHUs. Post chemical cleaning, the room temperatures decreased by 3-4 degC, hence resulted in better cooling. 4. Enhancement in service period of BBD IX columns: The service period of

  9. Problems of cleaning of gas releases from heat generating facilities

    International Nuclear Information System (INIS)

    Tret'yakov, V.; Burdejnaya, T.

    2000-01-01

    The paper deals with the problem of flue gases cleaning in the situation of a significant increasing use of fossil fuels in the Russian energy production. Information is given about the methods used in TPPs in different countries for cleaning of the gases released to the atmosphere from SO 2 and NO x . The main ways for solving the problem of decreasing of air pollution are outlined

  10. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  11. Strategy for maintaining cleanliness in the secondary part of Steam Generators of French PWRs fleet

    International Nuclear Information System (INIS)

    Prin, C.

    2012-01-01

    Between 2004 and 2006, EDF noticed primary / secondary leakages on Steam Generators (SG) of a French nuclear plant. Further studies have shown that fouling by iron oxides and clogging of the quatrefoils broached holes of the Tubes Support Plates (TSP) are aggravating factors of the risk of cracking by vibration-induced fatigue of the SG's tubes. EDF then initiated a program of chemical cleaning of steam generators to restore and maintain an acceptable state of cleanliness of the secondary part of SG. This paper presents EDF's strategy to achieve this goal. It is organized as follows : first, fouling and clogging phenomenon and associated estimation means are explained. Then the strategy of chemical cleaning and its evolution are presented. The implemented processes as well as process monitoring and plants requalification are also described. Finally, the operations performed, the continuous improvement process conducted in connection with the French Nuclear Safety Authority (ASN) and the control of environmental impact are reviewed. This paper was written with the support of AREVA and Westinghouse, the two operators of chemical cleaning in France. (author)

  12. Development of ultra low dew-point clean air generator; Cho tei roten seijo kuki hassei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, H.; Okamura, N. [Takasago thermal Engineering Co., Ltd., Kanagawa (Japan)

    2000-05-10

    To reduce the manufacturing cost of semiconductors, some systems have been proposed that use a cheap and high purity Clean Dry Air (CDA). CDA can reduce process step such as wafer cleaning, because CDA flow in stocker prevents the wafer surface from adsorbing of moisture and organic impurities. We have already optimized a two-stage rotary dehumidifier and have conducted a study of methods for cheaply manufacturing air that has a low dew-point of -70 degree C to -50 degree C. We have further developed the method in which a dry dehumidifier is used, and developed an ultra low dew-point air generator. The air generator is a three-stage rotary dehumidifier in which a further stage is added to the two-stage rotary dehumidifier. The main component of the rotors is metal silicate. The air generator can supply dry air with a dew-point of -110 degree C. or less, in which the concentration in all gaseous contaminants is far below 1 ppb. We made a trial calculation of the manufacturing cost, and an average cost of 0.25 yen/m{sup 3} was obtained. (author)

  13. HangOut: generating clean PSI-BLAST profiles for domains with long insertions.

    Science.gov (United States)

    Kim, Bong-Hyun; Cong, Qian; Grishin, Nick V

    2010-06-15

    Profile-based similarity search is an essential step in structure-function studies of proteins. However, inclusion of non-homologous sequence segments into a profile causes its corruption and results in false positives. Profile corruption is common in multidomain proteins, and single domains with long insertions are a significant source of errors. We developed a procedure (HangOut) that, for a single domain with specified insertion position, cleans erroneously extended PSI-BLAST alignments to generate better profiles. HangOut is implemented in Python 2.3 and runs on all Unix-compatible platforms. The source code is available under the GNU GPL license at http://prodata.swmed.edu/HangOut/. Supplementary data are available at Bioinformatics online.

  14. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  15. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  16. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  17. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  18. Cleaning and sterilization in biotechnological clean system. Biotechnological clean system no senjo sakkin

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.

    1994-02-20

    Despite their usefulness for mankind, many of microorganisms are generally emphasized of the aspect of their harmfulness as decomposable and pathogenic microorganisms, apt to implant people with wrong preconception. Moreover, the food industries have a habitual practice that they leave unexpectedly unclean conditions unattended. This paper indicates such actual circumstances by quoting various examples, and introduces characteristics and test results on commercially available chemicals having excellent cleansing and sterilizing effects. High-pressure and high-temperature sterilization processes fit the purpose of preservation, but secondary contamination may occur in subsequent processing, for example, from the ceiling and walls of a work room, or operators' fingers. Problems exist there that should be considered in biotechnological clean systems. Technologies have been advanced that mix a small amount of chemicals into plastic sheets, wall materials, and floor materials so that their surfaces are kept away from growth of microorganisms for extended periods of time. About 300 kinds of chemicals have been developed, and are available commercially. 3 refs., 8 figs.

  19. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  20. EM-21 Alternative Enhanced Chemical Cleaning Program For Sludge Heel Removal

    International Nuclear Information System (INIS)

    Hay, M.; King, W.; Martino, C.

    2009-01-01

    Preliminary studies in the EM-21 Alternative Chemical Cleaning Program have focused on understanding the dissolution of Hematite (a primary sludge heel phase) in oxalic acid, with a focus on minimizing oxalic acid usage. Literature reviews, thermodynamic modeling, and experimental results have all confirmed that pH control, preferably using a supplemental proton source, is critical to oxalate minimization. With pH control, iron concentrations as high as 0.103 M have been obtained in 0.11 M oxalic acid. This is consistent with the formation of a 1:1 (iron:oxalate) complex. The solubility of Hematite in oxalic acid has been confirmed to increase by a factor of 3 when the final solution pH decreases from 5 to below 1. This is consistent with literature predictions of a shift in speciation from a 1:3 to 1:1 as the pH is lowered. Above a solution pH of 6, little Hematite dissolves. These results emphasize the importance of pH control in optimizing Hematite dissolution in oxalic acid.

  1. On-line chemical cleaning of pipelines; Limpieza quimica de ductos en linea

    Energy Technology Data Exchange (ETDEWEB)

    Cross, Michael Brent [Brenntag Stinnes Logistics, Muelheim/Ruhr (Germany)

    2003-07-01

    The concern of efficiency and maintenance in the pipeline industry, due to fluids and sediments, has led the development of new methods of cleaning. Some methods of cleaning are described in this work with their advantages and disadvantages.

  2. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  3. Gas plant cleaning case history

    Energy Technology Data Exchange (ETDEWEB)

    Woods, B

    1971-03-22

    Basic steps to be taken before using any cleaning method are select a responsible group and give it full responsibility; know the problem, what type of fouling, lab samples, amount of material, time and cost; sell the idea to management; maintain the cleaning equipment; and follow up each cleaning operation. These principles have been applied to advantage in the amine contractor at Taylor, a vessel 60 ft high with 78-in. OD, containing carbon steel deck trays with stainless steel caps. The original attempt to clean with wire scrapers manually involved much lost time and several crews. There was limited space in the tray vessels, design created areas difficult to clean, working conditions were unpleasant, equipment downtime was extended, labor cost was high, and the final result was not satisfactory. Chemical cleaning was substituted, preceded by a water wash. Five hours of caustic wash with a 3% solution at 170$F were followed by a water wash, an acid wash, 1-hr neutralization with a weak soda ash solution, and finally passivation to eliminate iron oxide. For the acid wash, sulfamic acid was found best, in 10% concentration for 4 hr. Cascading was most economical, but flooding has been employed sometimes at 2-1/2 times the cost, to reach all the dark corners.

  4. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa; Shamiryan, Denis G.; Paraschiv, Vasile; Sano, Kenichi; Reinhardt, Karen A.

    2010-01-01

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  5. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  6. Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit.

    Science.gov (United States)

    Shi, Bobo; Su, Hetao; Li, Jinshi; Qi, Haining; Zhou, Fubao; Torero, José L; Chen, Zhongwei

    2017-07-13

    The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.

  7. Entropy Generation in a Chemical Reaction

    Science.gov (United States)

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  8. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    Science.gov (United States)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  9. PROBIOTIC CLEANING PREPARATIONS VERSUS CHEMICAL DISINFECTANTS

    Directory of Open Access Journals (Sweden)

    W. Luepcke

    2017-12-01

    Full Text Available Probiotic detergents are increasingly used and are a real alternative for limiting the use of chemical cleaners, chemical disinfectants and antibiotics. They therefore have a great future because they contribute to animal health, to the hygienic production of food products of animal origin and to their harmlessness and to consumer health and environmental protection where they even have a beneficial effect on the microflora apart from chemical disinfectants that have a negative impact and destroy the beneficial microflora.

  10. Fouling and cleaning of seawater reverse osmosis membranes in Kalpakkam Nuclear Desalination Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Rajanbabu, K.; Tiwari, S.A.; Balasubramanian, C.; Yadav, Manoj Kumar; Dangore, A.Y.; Prabhakar, S.; Tewari, P.K.

    2005-01-01

    Seawater reverse osmosis plant of 1800 m 3 /day capacity is a part of 6300 m 3 /day capacity Nuclear Desalination Demonstration Project, at Kalpakkam. The plant was commissioned in October 2002 and is in continuous operation. This paper deals with types of foulants, membrane cleaning procedures and the improvement in the reverse osmosis system after cleaning. This paper also describes analysis of foulants which may consist of adsorbed organic compounds, particulate matter, microorganisms, metallic oxides and chemical cleaning procedure to be adopted, which is characteristics of sea water used as the membrane foulant is very much specific with respect to the sea water constituents. The cleaning of the membranes in Kalpakkam Nuclear Desalination plant were taken up as the quality of permeate deteriorated and differential pressure across membrane had gone-up. This paper essentially deals with selection of cleaning chemicals, the experience gained in cleaning procedure adopted and effects of cleaning for the membrane system. (author)

  11. Emulsion type dry cleaning system

    International Nuclear Information System (INIS)

    Kohanawa, Osamu; Matsumoto, Hiroyo.

    1988-01-01

    Protective clothing against radioactive contamination used in the radiation controlled areas of nuclear plants has been washed by the same wet washing as used for underwear washing, but recently dry cleaning is getting used in place of wet washing, which generates a large quantity of laundry drain. However, it was required to use wet washing once every five to ten dry cleanings for washing protective clothing, because conventional dry cleaning is less effective in removing water-soluble soils. Therefore, in order to eliminate wet washing, and to decrease the quantity of laundry drains, the emulsion type dry cleaning system capable of removing both oil-soluble and water-soluble soils at a time has been developed. The results of developmental experiments and actual application are presented in this paper. (author)

  12. Physical chemical quality control of the molybdenum technetium generator

    International Nuclear Information System (INIS)

    Olive, E.; Cruz, J.; Isaac, M.; Gamboa, R.; D'Alessandro, K.; Desdin, L.F.

    1995-01-01

    Comparative operational procedure imported molybdenum technetium generators have been made. Procedures for determination of chemical, radiochemical and radionuclidic purities that may be applied in Hospital's laboratories and in the quality control of generators production are developed

  13. Chemical cleaning and decontamination of equipments in Rajasthan Atomic Power Station-2, Kota, NPCIL

    International Nuclear Information System (INIS)

    Pal, P.K.; Saini, S.L.

    2008-01-01

    Heat exchanger of End Shield Cooling System of RAPS-2 made up of 70:30 cupronickel was cleaned with a cleaning solution containing 5% sulphamic acid for periods of around 10 hours at a temperature of 60 deg C. The cleaning was attempted to remove the deposit inside the tube of heat exchanger to make a path of the probe to go inside the tube for eddy current testing for measurement of wall thinning. During the campaign 20 kg of CaCO 3 and 5 kg of SiO 2 were removed. Pre-cooler of heat transport system of RAPS-2 made up of monel was cleaned with a cleaning solution containing 5% citric acid, 1% ascorbic acid and 1% NTA at 50-60 deg C temperature for about 20 hours. The cleaning was attempted to remove the deposit inside the tube of pre cooler to make a path of the probe to go inside the tube for eddy current testing for measurement of wall thinning. For the pre-cooler a decontamination factor of 2 to 3 was obtained. The paper describes about the analysis of the deposit, the cleaning process, and schematic diagram of the process. (author)

  14. Electric Utility Generating Units: Repealing the Clean Power Plan

    Science.gov (United States)

    The Clean Power Plan established emission guidelines for states to follow in limiting carbon dioxide (CO2) emissions from existing power plants. EPA is proposing to repeal the CPP and rescind the accompanying legal memorandum.

  15. Gentilly 2 steam generators Spring 2000 outage: tubesheet waterlance cleaning and inspection; upper bundle inspection

    International Nuclear Information System (INIS)

    Akeroyd, J.K.; Plante, S.

    2000-01-01

    A review of the secondary side maintenance activities recently completed during the Gentilly 2 Annual Spring 2000 Maintenance Outage. Activities included: 1) Tubesheet intertube waterlance cleaning and visual inspection, 2) First tube support plate, in-bundle visual inspection of the hot leg, and 3) Upper bundle tube support plate visual inspection. A description of the waterlancing and inspection equipment and setup in the RB at Gentilly 2 is provided. Several innovative techniques were successfully employed and yielded savings in critical path duration, labour and personnel radiation dose. These included accessing the SG tubesheet region through one handhole only and sludge removal utilizing the SG blowdown system. Plant personnel judged tubesheet sludge removal successful. Before and after results of the cleaning process along with samples of the visual inspection results are provided. Inspection of the first support plate, which was a repeat of an inspection done in 1997, was conducted along with an in-bundle inspection of the upper tube supports. Results are presented along with a discussion of the implications for future steam generator maintenance. (author)

  16. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  17. Laser-assisted cleaning

    Indian Academy of Sciences (India)

    Experiments conducted with loose contamination on metal and transparent dielectric surfaces proved conclusively the dominant role played by the absorption of the incident radiation by the surface towards the generation of the cleaning force as against the absorption in the particulates alone. Further, the presence of ...

  18. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  19. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  20. Experimental study on air cleaning effect of clean air heat pump and its impact on ventilation requirement

    DEFF Research Database (Denmark)

    Fang, Lei; Sheng, Ying; Nie, Jinzhe

    2017-01-01

    This study investigated air purification effect of a Clean-Air Heat Pump (CAHP) which combined a desiccant wheel with a heat pump for both air cleaning and HVAC of buildings. The experiment was conducted in a field lab at four different outdoor air supply rates with and without air cleaning by CAHP....... Both sensory assessments of perceived air quality and chemical measurements of TVOC concentrations were conducted for evaluating the air cleaning performance of the CAHP. The results of experiment showed that running the CAHP improved significantly perceived air quality. At 2 L/s per person of outdoor...... air supply rate with operating the CAHP, the air quality was equivalent to the value at the higher outdoor air supply rate of 10 L/s per person without running CAHP. The TVOC measurements observed over 92% of efficiency on removal of indoor air VOCs and no VOCs accumulation on the desiccant wheel...

  1. Applications of chemical sensors in spent fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Achuthan, P.V.

    2012-01-01

    Environmental friendly power generation is essential to preserve the quality of life for the future generations. For more than fifty years, nuclear energy has proven its potential as an economically and commercially viable alternative to conventional energy. More over it is a clean source of energy with minimum green house effect. Recent data on climate changes have stressed the need for more caution on atmospheric discharges, hence a revival of interest in nuclear energy is in the offing. The entire world is committed to protect the atmosphere from polluting agents. Even nuclear power plants and the fuel cycle facilities are looking forward to reduce the already low gaseous emissions further and also to develop ways and means of controlling the impact of the small but significant radiotoxicity of the wastes generated in the nuclear fuel cycle. Spent fuel reprocessing and associated waste management, an integral part of the nuclear fuel cycle, employs chemical processes for the recovery of fuel value and for the conditioning of the reprocessed waste. In this respect they can be classified as a chemical plant dealing with radioactive materials. Hence it is essential to keep the gaseous, liquid and solid discharges at the lowest possible levels to comply with the regulations of discharges stipulated by the regulatory authorities. Elaborate cleaning and detection systems are needed for effective control of these discharges from both radioactive and chemical contamination point of view. Even though radiation detectors, which are non specific to the analytes, are the major tools for these controls, analyte specific chemical sensors can play a vital role in controlling the chemical vapours/gases generated during processing. The presentation will cover the major areas where chemical sensors play a significant role in this industry. (author)

  2. Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes

    Science.gov (United States)

    Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.

    2017-08-01

    The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.

  3. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  4. Atomic hydrogen cleaning of GaAs photocathodes

    International Nuclear Information System (INIS)

    Poelker, M.; Price, J.; Sinclair, C.

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs

  5. Are safety data sheets for cleaning products used in Norway a factor contributing to the risk of workers exposure to chemicals?

    Directory of Open Access Journals (Sweden)

    Abdulqadir M. Suleiman

    2014-10-01

    Full Text Available Objectives: Cleaning products are considered less hazardous than those used in other sectors. Suppliers and distributors are less conscientious when it comes to informing users on health risks. The aim of the study was to elaborate on the usefulness and clarity of information in the safety data sheets (SDS for cleaning products, and considering if the use of these SDSs can be seen as a risk factor towards occupational exposure to hazardous chemicals in the sector. Material and Methods: Safety data sheets were selected based on the risk level of the product assigned in an industrial sector scheme. 320 SDSs for cleaning products were reviewed. Constituent components found in the products over a given threshold were listed and available information thereof used to assess the perceived non-hazard consideration of the chemicals. Results: The contents of the SDSs was generic and mostly incomplete. Safety measures and health information lacked sufficient specificity despite varying compositions and concentrations of components. There is generally incompatibility between mentioned sections on the suggested non-hazardous nature of the products and health effects. Not all substances used in these products have harmonized classifications, which makes them open to various classification of the products and the suggested safety measures. This results in different companies classifying similar products differently. Risk management measures and suggested personal protective equipment (PPEs are given haphazardly. Physical properties relevant to risk assessment are not included. Conclusions: The safety data sheets are ambiguous, and they lack relevant and important information. Inadequate information and risk assessment concerning the products can lead to workers being exposed to hazardous chemicals. Underestimation of the hazard contribution of the components of the products and the insufficient, non-objective mention of appropriate control and protective

  6. Clean Slate 2 Revegetation and Monitoring Plan

    International Nuclear Information System (INIS)

    David Anderson

    1998-01-01

    This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim clean-up of radionuclide-contaminated surface soil at Clean Slate 2 located northwest of the Nevada Test Site on the Nellis Air Force Range. Surface soils at Clean Slate 2 were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Excavation of contaminated soils at Clean Slate 2 will follow procedures similar to those used during the cleanup of the Double Tracks and Clean Slate 1 sites. A maximum of approximately 33 cm (12 in) of the surface soils will be excavated and removed from the site. Near ground zero, where contamination levels are highest, approximately 2 m (7 ft) of soil may be removed. The maximum area to be excavated is estimated to be 18.4 hectares (45.4) acres. In addition to the disturbance associated with soil excavation, approximately 2.0 hectares (5.0) acres will be disturbed by the construction of staging areas and placement of support facilities. Short term stabilization consists of an application of a chemical soil stabilizer and long-term stabilizations involves the establishment of a permanent vegetative cover using selective native plant species, site preparation techniques, increasing organic matter and water holding capacity, irrigation to ensure seed germination and plant establishment. The cleanup site will be monitored to ensure success of revegetation and resuspension of soil particles is within established limits

  7. Characterization of Cleaning and Disinfecting Tasks and Product Use Among Hospital Occupations

    Science.gov (United States)

    Saito, Rena; Virji, M. Abbas; Henneberger, Paul K.; Humann, Michael J.; LeBouf, Ryan F.; Stanton, Marcia L.; Liang, Xiaoming; Stefaniak, Aleksandr B.

    2016-01-01

    Background Healthcare workers have an elevated prevalence of asthma and related symptoms associated with the use of cleaning/disinfecting products. The objective of this study was to identify and characterize cleaning/disinfecting tasks and products used among hospital occupations. Methods Workers from 14 occupations at five hospitals were monitored for 216 shifts, and work tasks and products used were recorded at five-minute intervals. The major chemical constituents of each product were identified from safety data sheets. Results Cleaning and disinfecting tasks were performed with a high frequency at least once per shift in many occupations. Medical equipment preparers, housekeepers, floor strippers/waxers, and endoscopy technicians spent on average 108–177 min/shift performing cleaning/disinfecting tasks. Many occupations used products containing amines and quaternary ammonium compounds for > 100 min/shift. Conclusions This analysis demonstrates that many occupations besides housekeeping incur exposures to cleaning/disinfecting products, albeit for different durations and using products containing different chemicals. PMID:25351791

  8. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  9. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  10. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas: treatment of offgases from chemical processing; aerosol; behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions; HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration; filter testing; and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  11. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas; treatment of offgases from chemical processing; aerosol behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions: HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration, filter testing, and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  12. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  13. Measuring cavitation and its cleaning effect

    NARCIS (Netherlands)

    Verhaagen, B.; Fernandez Rivas, David

    2016-01-01

    The advantages and limitations of techniques for measuring the presence and amount of cavitation, and for quantifying the removal of contaminants, are provided. After reviewing chemical, physical, and biological studies, a universal cause for the cleaning effects of bubbles cannot yet be concluded.

  14. Laser paper cleaning: the method of cleaning historical books

    Science.gov (United States)

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  15. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  16. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2011-01-01

    The critical flux and chemical cleaning-in-place (CIP) in a long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment were investigated. Steady filtration under high flux (30 L/(m2 h)) was successfully achieved due to effective membrane fouling control by sub-critical flux operation and chemical CIP with sodium hypochlorite (NaClO) in both trans-membrane pressure (TMP) controlling mode (cleaning with high concentration NaClO of 2000-3000 mg/L in terms of effective chorine was performed when TMP rose to 15 kPa) and time controlling mode (cleanings were performed weekly and monthly respectively with low concentration NaClO (500-1000 mg/L) and high concentration NaClO (3000 mg/L)). Microscopic analysis on membrane fibers before and after high concentration NaClO was also conducted. Images of scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that NaClO CIP could effectively remove gel layer, the dominant fouling under sub-critical flux operation. Porosity measurements indicated that NaClO CIP could partially remove pore blockage fouling. The analyses from fourier transform infrared spectrometry (FTIR) with attenuated total reflectance accessory (ATR) and energy dispersive spectrometer (EDS) demonstrated that protein-like macromolecular organics and inorganics were the important components of the fouling layer. The analysis of effluent quality before and after NaClO CIP showed no obvious effect on effluent quality. © 2010 Elsevier Ltd.

  17. Cleaning must be well planned; Rengjoeringsopplegget maa planlegges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Both detergents and water may damage painted and varnished surfaces in the long run. It is therefore important to choose the right cleaning method once the rooms are put to use. It is essential that a cleaning method be found that does not require great quantities of chemicals. Professional cleaning implies that a program is used that describes in detail the cleaning operation in each room. Materials used in walls often do not tolerate much moisture. If such components are cleaned by means of too much water to which is added detergents, they may swell. These walls are exposed above all the first time they are cleaned because those doing the cleaning are not aware of the situation. Some of the detergents in current use contain hazardous components. It is very important to know the individual detergent's contents of volatile components as these may cause damage. Some detergents may lead to deterioration of the surface if incorrectly used. Some contain perfume or dyes that may develop allergies. Thus, detergents must be selected with due consideration of both the subject and the personnel. Declaration and user instruction is necessary.

  18. CLEAN CHEMICAL SYNTHESIS IN WATER

    Science.gov (United States)

    Newer green chemistry approach to accomplish chemical synthesis in water is summarized. Recent global developments pertaining to C-C bond forming reactions using metallic reagents and direct use of the renewable materials such as carbohydrates without derivatization are described...

  19. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  20. Evaporator Cleaning Studies

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  1. CPV performance versus soiling effects: Cleaning policies

    Science.gov (United States)

    Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.

    2012-10-01

    In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.

  2. Water-chemical regime of a fast reactor ower complex

    International Nuclear Information System (INIS)

    Musikhin, R.N.; Piskunov, E.M.; Samarkin, A.A.; Yurchenko, D.S.

    1983-01-01

    Some peculiarities of water-chemical regime of a power compleX in Shevchenko are considered. The complex comprises a desalination unit, a gas-masout heating-and-power plant and the BN-350 reactor. The compleX is used for the production of electric and thermal energy and fresh water. The power complex peculiarity is the utilization of disalinated seawater in a technological cycle along with highly mineralized seawater with a total salt content of 13.5 g/l (for cooling) in heat exchanges. A regime of ammoniacal correction of feed water was used as a basic water-chemical regime in the initial period of the BN-350 steam generator operation. Deposits composed mainly of iron oxide slime were observed on steam generator surfaces during the operation under these conditions. A conclusion is made that the regime with chelating agent providing steam generator safe operation without chemical cleaning is the most expedient one

  3. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-01-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  4. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    International Nuclear Information System (INIS)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Dechelette, F.; Prele, G.; Rodriguez, G.

    2012-01-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO 2 interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  5. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Lovera, P.; Fleche, J. L. [CEA, DEN, DPC Saclay, F-91191 Gif-sur-Yvette (France); Lacroix, M. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Carra, O. [AREVA / NP, 10 Rue Juliette Recamier, 69003 Lyon (France); Dechelette, F. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Prele, G. [EDF/SEPTEN, 12-14 avenue Dutrievoz, 69628 Villeurbane Cedex (France); Rodriguez, G. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  6. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    Science.gov (United States)

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  7. Hierarchical surfaces for enhanced self-cleaning applications

    International Nuclear Information System (INIS)

    Fernández, Ariadna; Francone, Achille; Sotomayor Torres, Clivia M; Kehagias, Nikolaos; Thamdrup, Lasse H; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus

    2017-01-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets. (paper)

  8. [Comprehension of hazard pictograms of chemical products among cleaning workers].

    Science.gov (United States)

    Martí Fernández, Francesc; van der Haar, Rudolf; López López, Juan Carlos; Portell, Mariona; Torner Solé, Anna

    2015-01-01

    To assess the comprehension among cleaning workers of the hazard pictograms as defined by the Globally Harmonized System (GHS) of the United Nations, concerning the classification, labeling and packaging of substances and mixtures. A sample of 118 workers was surveyed on their perception of the GHS hazard pictograms. Comprehensibility was measured by the percentage of correct answers and the degree to which they reflected International Organization for Standardization and American National Standards Institute standards for minimum level of comprehension. The influence of different variables to predict comprehension capacity was assessed using a logistic regression model. Three groups of pictograms could be distinguished which were statistically differentiated by their comprehensibility. Pictograms reflecting "acute toxicity" and "flammable", were described correctly by 94% and 95% of the surveyed population, respectively. For pictograms reflecting "systemic toxicity", "corrosive", "warning", "environment" and "explosive" the frequency of correct answers ranged from 48% to 64%, whereas those for pictograms "oxidizing" and "compressed gas" were interpreted correctly by only 7% of respondents. Prognostic factors for poor comprehension included: not being familiar with the pictograms, not having received training on safe use of chemical products, being an immigrant and being 54 years of age or older. Only two pictograms exceeded minimum standards for comprehension. Training, a tool proven to be effective to improve the correct interpretation of danger symbols, should be encouraged, especially in those groups with greater comprehension difficulties. Copyright belongs to the Societat Catalana de Salut Laboral.

  9. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    International Nuclear Information System (INIS)

    Gholivand, Kh.; Khosravi, M.; Hosseini, S.G.; Fathollahi, M.

    2010-01-01

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H 2 O 2 ) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH 3 COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 deg. C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  10. New Clean Air Act complicates power plant operation, design

    International Nuclear Information System (INIS)

    Smock, R.W.

    1991-01-01

    In November the president signed into law the new Clean Air Act, ushering in a new era in the power generation industry. This paper reviews the six important sections of the Clean Air Act and their impact on power plant operation and design

  11. Clean vehicles as an enabler for a clean electricity grid

    Science.gov (United States)

    Coignard, Jonathan; Saxena, Samveg; Greenblatt, Jeffery; Wang, Dai

    2018-05-01

    California has issued ambitious targets to decarbonize transportation through the deployment of electric vehicles (EVs), and to decarbonize the electricity grid through the expansion of both renewable generation and energy storage. These parallel efforts can provide an untapped synergistic opportunity for clean transportation to be an enabler for a clean electricity grid. To quantify this potential, we forecast the hourly system-wide balancing problems arising out to 2025 as more renewables are deployed and load continues to grow. We then quantify the system-wide balancing benefits from EVs modulating the charging or discharging of their batteries to mitigate renewable intermittency, without compromising the mobility needs of drivers. Our results show that with its EV deployment target and with only one-way charging control of EVs, California can achieve much of the same benefit of its Storage Mandate for mitigating renewable intermittency, but at a small fraction of the cost. Moreover, EVs provide many times these benefits if two-way charging control becomes widely available. Thus, EVs support the state’s renewable integration targets while avoiding much of the tremendous capital investment of stationary storage that can instead be applied towards further deployment of clean vehicles.

  12. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference

    International Nuclear Information System (INIS)

    First, M.W.; Harvard Univ., Boston, MA

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  13. Chemical Reactions Triggered Using Electrons Photodetached from "Clean" Distributions of Anions Deposited in Cryogenic Matrices via Counterion Codeposition.

    Science.gov (United States)

    Ludwig, Ryan M; Moore, David T

    2014-09-04

    Application of matrix isolation spectroscopy to ionic species is typically complicated by the presence of neutral contaminants during matrix deposition. Herein we demonstrate that simultaneous deposition of balanced currents of counterions with mass-selected ions of interest generates "clean" distributions of matrix-isolated metal carbonyl anions, where the only bands appearing in the CO-stretching region of the vibrational spectrum arise from ions. (Neutrals are initially absent.) Photodetachment by mild irradiation with visible light leads to complete conversion of the anions into their corresponding neutral species. The photodetached electrons, in turn, initiate covalent chemistry, inducing C-C bond formation following electron-capture by CO van der Waals dimers to produce trans-OCCO(-). The initial clean distribution of ions enables clear connections to be drawn between the spectral changes occurring at each experimental step, thus demonstrating the potential of the counterion codeposition technique to facilitate detailed studies of chemistry involving ions and electron transfer in cryogenic matrices.

  14. Underwater cleaning techniqued used for removal of zebra mussels at the FitzPatrick Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hobbs, B.; Kahabka, J.

    1995-01-01

    This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority's James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, both existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft 2 of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed

  15. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Directory of Open Access Journals (Sweden)

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  16. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  17. FY1995 development of a clean CVD process by evaluation and control of gas phase nucleation phenomena; 1995 nendo kisokaku seisei gensho no hyoka to seigyo ni yoru clean CVD process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this study is to develop a high-rate and clean chemical vapor deposition (CVD) process as a breakthrough technique to overcome the problems that particles generated in the gas phase during CVD process for preparation of functional thin films cause reduced product yield and deterioration of the films. In the CVD process proposed here, reactant gas and generated particles are electrically charged to control the motion of them with an electric field. In this study, gas-phase nucleation phenomena are evaluated both theoretically and experimentally. A high-rate, ionized CVD method is first developed, in which reactant gas and generated particles are charged with negative ions generated from a radioisotope source and the UV/photoelectron method, and the motion of the charged gas and particles is controlled with an electric field. Charging and transport processes of fine particles are then investigated experimentally and theoretically to develop a clean CVD method in which generated particles are removed with the electric forces. As a result, quantitative evaluation of the charging and transport process was made possible. We also developed devices for measuring the size distribution and concentration of fine particles in low pressure gas such as those found in plasma CVD processes. In addition, numerical simulation and experiments in this study for a TEOS/O{sub 3} CVD process to prepare thin films could determine reaction rates which have not been known so far and give information on selecting good operation conditions for the process. (NEDO)

  18. Electrospun Superhydrophobic Self-Cleaning Materials

    Science.gov (United States)

    Zhao, Yong; Wang, Nü

    In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

  19. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  20. Comprehensive report to Congress Clean Coal Technology Program. Four Rivers Energy Modernization Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    One of the five projects selected for funding within the Clean Coal Technology Program is a project proposed by Air Products and Chemicals, Inc. (APCI) of Allentown, Pennsylvania. APCI requested financial assistance from DOE for the design, construction, and operation of a 95 megawatt-electric (MWe) gross equivalent, second generation, pressurized, circulating fluidized bed (PCFB) combustor cogeneration facility. The project, named the Four Rivers Energy Modernization Project, is co be located adjacent to an existing APCI chemicals manufacturing facility in Calvert City, Kentucky. Four Rivers Energy Partners, L.P. (FREP), will execute the project. The demonstration plant will produce approximately 70 MWe for the utility grid and an average of 310,000 pounds per hour of process steam for the chemicals manufacturing facility. The project, including the demonstration phase, will last 80 months at a total cost of $360,707,500. DOE`s share of the project cost will be 39.5 percent, or $142,460,000. The objective of the proposed project is to demonstrate a second generation PCFB system based on technology being supplied by Foster Wheeler Energy Corporation (FWEC), Westinghouse Electric Corporation (Westinghouse), and LLB Lurgi Lentjes Babcock Energietechnik GmbH (LLB). The integrated performance to be demonstrated will involve all of the process systems, including coal preparation and feed, sorbent feed, carbonizer, char transfer, PCFB combustor, carbonizer and combustor hot-gas filtration, carbonizer and combustor alkali removal, topping combustor, gas turbine-generator, heat recovery steam generator (HRSG), steam turbine-generator, and balance-of-plant systems. The project will utilize Western Kentucky and Southern Illinois bituminous coal.

  1. Evaluating The Operation Of Three Air Cleaners Working Individually In A Clean Room

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2011-01-01

    The use of portable air cleaners is becoming increasingly popular in many countries including Denmark. Portable air cleaners are known for not only removing but also generating particles and gases. To clarify this, three air cleaning technologies were evaluated. They were nonthermal plasma......, photochemical air purifier and corona discharge ionizer. The concentrations of ultrafine particles, ozone and total volatile organic compounds were measured both in a duct and in a clean room. It was found that the studied air cleaning technologies increased the ozone level in the clean room and the duct....... The increase of ozone level in the clean room was more than that was measured in the duct. Additionally, it was found that the number of ultrafine particles in the room increased due to the generated ozone. The number of generated particles changed with the season. The study leads to the recommendation...

  2. Development of Chemical and Mechanical Cleaning Procedures for Genesis Solar Wind Samples

    Science.gov (United States)

    Schmeling, M.; Jurewicz, A. J. G.; Gonzalez, C.; Allums, K. K.; Allton, J. H.

    2018-01-01

    The Genesis mission was the only mission returning pristine solar material to Earth since the Apollo program. Unfortunately, the return of the spacecraft on September 8, 2004 resulted in a crash landing shattering the solar wind collectors into smaller fragments and exposing them to desert soil and other debris. Thorough surface cleaning is required for almost all fragments to allow for subsequent analysis of solar wind material embedded within. However, each collector fragment calls for an individual cleaning approach, as contamination not only varies by collector material but also by sample itself.

  3. Mechanical and chemical cleaning of the tubes bundles of the moisture separator reheaters (GSS) of Nuclear power plants

    International Nuclear Information System (INIS)

    Guerra, Patrice; Ruiz, Jose T.; Ureta, Roman; Carreres, Cristina; Virginie, Le-Guerroue

    2012-09-01

    The cleaning operation concerns the 'GSS' system (GSS stands for moisture separator reheaters, MSR) which are classified as 'watch quality guarantee', not classified as safety facility and subjected to Pressure Equipment regulations. The follow-up of the operational GSS (steel carbon) of EDF nuclear power plants CP0 group reveals a clog rate due to a relevant magnetite deposits that could result in equipment damage, loss of availability and loss of plant productivity. The pressure drop between inlet and outlet of the heating steam is close to maximum design criterion. The service consisted in designing, developing, qualifying and carrying out a process which removes clog from the inside of GSS U-tubes bundle located in the vapor circuit and which respects the equipment integrity and ensures the process harmlessness. This cleaning has to enable the complete removal of deposits and oxides (magnetite) in order to recover a passage diameter and a surface finish equivalent to the origin, thus avoiding the replacement of the GSS and obtaining a considerable reduction of costs. To do so, LAINSA and SOLARCA designed, developed, qualified and operated on 14 GSS bundles, by carrying out the following operations: - Cartography of the GSS tubes bundles clogging state; - Pre-Mechanical cleaning to un-block the sealed tubes and release the inside tubes passing; - Isolation of the bundle and check of leaks of the system; - Chemical cleaning with the efficiency and harmlessness parameters follow-up: - Acid Phase by means of weak organic acids to eliminate all the deposits; - Passivation phase; - Final Rinsing respecting the customer criteria; - Drying; - Waste management and waste treatment. The implementation of this operation enables the elimination of the whole deposits (magnetite) and oxides located inside the GSS tube bundle and thus to recover a passage diameter inside the tubes, and a pressure drop close to a new system and therefore to enables the

  4. Steam generator tubesheet waterlancing at Bruce B

    Energy Technology Data Exchange (ETDEWEB)

    Persad, R. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Eybergen, D. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    High pressure water cleaning of steam generator secondary side tubesheet surfaces is an important and effective strategy for reducing or eliminating under-deposit chemical attack of the tubing. At the Bruce B station, reaching the interior of the tube bundle with a high-pressure water lance is particularly challenging due to the requirement to setup on-boiler equipment within the containment bellows. This paper presents how these and other design constraints were solved with new equipment. Also discussed is the application of new high-resolution inter-tube video probe capability to the Bruce B steam generator tubesheets. (author)

  5. The Clean Development Mechanism and Sustainable Development in China's Electricity Sector

    Institute of Scientific and Technical Information of China (English)

    Paul A. Steenhof

    2005-01-01

    The Clean Development Mechanism,a flexibility mechanism contained in the Kyoto Protocol, offers China an important tool to attract investment in clean energy technology and processes into its electricity sector. The Chinese electricity sector places centrally in the country's economy and environment, being a significant contributor to the acid rain and air pollution problems that plague many of China's cities and regions, and therefore a focus of many related energy and environmental policies.China's electricity sector has also been the subject of a number of economic analyses that have showed that it contains the highest potential for clean energy investment through the Clean Development Mechanism of any economic sector in China. This mechanism, through the active participation from investors in more industrialized countries, can help alleviate the environmental problems attributable to electricity generation in China through advancing such technology as wind electricity generation, dean coal technology, high efficient natural gas electricity generation, or utilization of coal mine methane. In this context, the Clean Development Mechanism also compliments a range of environmental and energy policies which are strategizing to encourage the sustainable development of China's economy.

  6. pyJac: Analytical Jacobian generator for chemical kinetics

    Science.gov (United States)

    Niemeyer, Kyle E.; Curtis, Nicholas J.; Sung, Chih-Jen

    2017-06-01

    Accurate simulations of combustion phenomena require the use of detailed chemical kinetics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of practical interest typically have large numbers of species and reactions and exhibit high levels of mathematical stiffness in the governing differential equations, particularly for larger fuel molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations. Some in situ and a posteriori computational diagnostics methods also require accurate Jacobian matrices, including computational singular perturbation and chemical explosive mode analysis. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the number of chemical source term evaluations scales with the square of species count. Furthermore, existing analytical Jacobian tools do not optimize evaluations or support emerging SIMD processors such as GPUs. Here we introduce pyJac, a Python-based open-source program that generates analytical Jacobian matrices for use in chemical kinetics modeling and analysis. In addition to producing the necessary customized source code for evaluating reaction rates (including all modern reaction rate formulations), the chemical source terms, and the Jacobian matrix, pyJac uses an optimized evaluation order to minimize computational and memory operations. As a demonstration, we first establish the correctness of the Jacobian matrices for kinetic models of hydrogen, methane, ethylene, and isopentanol oxidation (number of species ranging 13-360) by showing agreement within 0.001% of matrices obtained via automatic differentiation. We then demonstrate the performance achievable on CPUs and GPUs using py

  7. Changes of the more relevant PHTS parameters after the cleaning of the steam generators primary side at Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Moreno, Carlos A.; Coutsiers, Ernesto; Acevedo, Paul; Pomerantz, Marcelo E.

    2003-01-01

    During the operation of the plant magnetite deposition occurs at the inner walls of Primary Heat Transport System (PHTS). This deposition is particularly significant at the U-tubes of steam generators. The consequence of this is the deterioration of heat transfer to the Secondary System. In order to minimize this impact, during the annual outage of 2000, the steam generators primary side cleaning by the SIVABLAST technique was carried out. This technique consists in blasting the inner walls with tiny stainless steel balls propelled by air at high pressure. This paper presents the change of the more relevant parameters of PHTS after that cleaning. The parameters analyzed and the main results are the following: 1) Inlet header temperature dropped 4.7 C degrees at full power; 2) Exit quality at the outlet headers decreased from 3,5% to 1,5%; 3) Global PHTS flow in single phase evaluated from: a) In-site instrumentation increased 4,6%; b) Thermalhydraulic code NUCIRC 1.0 increased 3,2%; c) measured flows at the instrumented fuel channels increased 4.4%. (author)

  8. Customizable Generation of Synthetically Accessible, Local Chemical Subspaces.

    Science.gov (United States)

    Pottel, Joshua; Moitessier, Nicolas

    2017-03-27

    Screening large libraries of chemicals has been an efficient strategy to discover bioactive compounds; however a portion of the potential for success is limited to the available libraries. Synergizing combinatorial and computational chemistries has emerged as a time-efficient strategy to explore the chemical space more widely. Ideally, streamlining the evaluation process for larger, feasible chemical libraries would become commonplace. Thus, combinatorial tools and, for example, docking methods would be integrated to identify novel bioactive entities. The idea is simple in nature, but much more complex in practice; combinatorial chemistry is more than the coupling of chemicals into products: synthetic feasibility includes chemoselectivity, stereoselectivity, protecting group chemistry, and chemical availability which must all be considered for combinatorial library design. In addition, intuitive interfaces and simple user manipulation is key for optimal use of such tools by organic chemists-crucial for the integration of such software in medicinal chemistry laboratories. We present herein Finders and React2D-integrated into the Virtual Chemist platform, a modular software suite. This approach enhances virtual combinatorial chemistry by identifying available chemicals compatible with a user-defined chemical transformation and by carrying out the reaction leading to libraries of realistic, synthetically accessible chemicals-all with a completely automated, black-box, and efficient design. We demonstrate its utility by generating ∼40 million synthetically accessible, stereochemically accurate compounds from a single library of 100 000 purchasable molecules and 56 well-characterized chemical reactions.

  9. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  10. Continuing challenges in nuclear air cleaning

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1976-01-01

    The safe operation of nuclear facilities is heavily dependent upon the adequate performance of air cleaning systems. Although many problems have been solved, new questions and new challenges continue to arise. These are well illustrated by weaknesses in air cleaning and ventilating systems revealed by the Browns Ferry fire, and the need to develop additional data on the reliability of such systems, particularly under emergency conditions, as revealed by the Reactor Safety Study. Assessments of the degree to which engineered safety features can compensate for deficiencies in nuclear power plant sites continue to challenge those involved in risk/benefit evaluations. Additional challenges are being generated by the air cleaning requirements associated with the commercial development of the liquid metal fast breeder reactor

  11. Annealing free, clean graphene transfer using alternative polymer scaffolds.

    Science.gov (United States)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Kaitz, Joshua A; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Dong, Hefei; Haasch, Richard T; Lyding, Joseph W; Pop, Eric

    2015-02-06

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.

  12. Annealing free, clean graphene transfer using alternative polymer scaffolds

    International Nuclear Information System (INIS)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Lyding, Joseph W; Kaitz, Joshua A; Dong, Hefei; Haasch, Richard T; Pop, Eric

    2015-01-01

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications. (paper)

  13. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    Science.gov (United States)

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  14. Human-Like Room Segmentation for Domestic Cleaning Robots

    Directory of Open Access Journals (Sweden)

    David Fleer

    2017-11-01

    Full Text Available Autonomous mobile robots have recently become a popular solution for automating cleaning tasks. In one application, the robot cleans a floor space by traversing and covering it completely. While fulfilling its task, such a robot may create a map of its surroundings. For domestic indoor environments, these maps often consist of rooms connected by passageways. Segmenting the map into these rooms has several uses, such as hierarchical planning of cleaning runs by the robot, or the definition of cleaning plans by the user. Especially in the latter application, the robot-generated room segmentation should match the human understanding of rooms. Here, we present a novel method that solves this problem for the graph of a topo-metric map: first, a classifier identifies those graph edges that cross a border between rooms. This classifier utilizes data from multiple robot sensors, such as obstacle measurements and camera images. Next, we attempt to segment the map at these room–border edges using graph clustering. By training the classifier on user-annotated data, this produces a human-like room segmentation. We optimize and test our method on numerous realistic maps generated by our cleaning-robot prototype and its simulated version. Overall, we find that our method produces more human-like room segmentations compared to mere graph clustering. However, unusual room borders that differ from the training data remain a challenge.

  15. Frequent use of household cleaning products is associated with rhinitis in Chinese children.

    Science.gov (United States)

    Liu, Xudong; Lao, Xiang Qian; Wong, Claudie Chiu-Yi; Tan, Lixing; Zhang, Zilong; Wong, Tze Wai; Tse, Lap-Ah; Lau, Arthur P S; Yu, Ignatius T S

    2016-09-01

    Despite the popular use of household cleaning products worldwide, there is no published study investigating the health effects of these products on rhinitis in children. We sought to investigate the household use of cleaning products and rhinitis patterns in Chinese children. A total of 2299 children were recruited from 21 primary schools with wide geographic coverage in Hong Kong. Self-administered questionnaires were completed by parents/guardians to collect detailed information on respiratory symptoms and household use of 14 types of chemical cleaning products, as well as clean water. Students were categorized into 4 mutually exclusive rhinitis patterns (never, occasional, frequent, and persistent). The total chemical burden (TCB) score was used as the exposure indicator by calculating the total time of exposure to the 14 cleaning products. Multinomial logistic regression was used to assess the relationship between rhinitis patterns and the use of household cleaning products. Every 10-unit increment of TCB score was associated with an increase in the odds of occasional (odds ratio [OR], 1.21; 95% CI, 1.05-1.41), frequent (OR, 1.36; 95% CI, 1.13-1.60), and persistent (OR, 1.21; 95% CI, 1.01-1.56) rhinitis after adjustment for a wide range of potential confounders. Compared with the children within the lowest tertile of TCB scores, the adjusted ORs of occasional, frequent, and persistent rhinitis in children within the highest tertile were 1.29 (95% CI, 1.01-1.65), 1.97 (95% CI, 1.40-2.76), and 1.67 (95% CI, 1.10-2.54), respectively. Frequent use of chemical cleaning products at home is associated with an increase in the odds of rhinitis in Chinese primary school children. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Preliminary cleaning tests on candidate materials for APS beamline and front end UHV components

    International Nuclear Information System (INIS)

    Nielsen, R.; Kuzay, T.M.

    1992-01-01

    Comparative cleaning tests have been done on four candidate materials for use in APS beamline and front-end vacuum components. These materials are 304 SS, 304L SS, OFHC copper, and Glidcop* (Cu-Al 2 O 3 )- Samples of each material were prepared and cleaned using two different methods. After cleaning, the sample surfaces were analyzed using ESCA (Electron Spectography for Chemical Analysis). Uncleaned samples were used as a reference. The cleaning methods and surface analysis results are further discussed

  17. Optimization of Ultrasonic Fabric Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  18. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  19. Solar-Panel Dust Accumulation and Cleanings

    Science.gov (United States)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  20. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  1. Control of cavitation using dissolved carbon dioxide for damage-free megasonic cleaning of wafers

    Science.gov (United States)

    Kumari, Sangita

    equilibria revealed that the loss of released CO2(aq) upon increase in pH can be compensated by moderate increase in added NH4HCO3. Using this method, simultaneous control of SL and solution pH was demonstrated in two systems, NH4HCO3/HCl and NH4OH/CO2, at two nominal pH values; 5.7 and 7.0. Damage studies were performed on wafer samples with line/space patterns donated by IMEC and FSI International bearing Si/metal/a-Si gate stacks of thickness ~36 nm and Si/Poly-Si gate stacks of thickness ~67 nm, respectively. A single wafer spin cleaning tool MegPieRTM was used for the generation of megasonic energy for inducing damage to the structures. It was demonstrated that CO2 dissolution in DI water suppresses damage to the gate stacks in a dose-dependent manner. Together, these studies establish a systematic and strong correlation between CO2(aq) concentration, SL suppression and damage suppression. Significant damage reduction (~50 % to ~90 %) was observed at [CO2(aq)] > ~300 ppm. It was also demonstrated that CO2(aq) suppresses damage under alkaline pH condition too. This demonstration was made possible by the successful design of two new cleaning systems NH4HCO3/NH4OH and CO2/NH 4OH that could generate CO2(aq) under alkaline conditions. Damage suppressing ability of the newly designed cleaning systems were compared to the standard cleaning system NH4OH at pH 8.2 and it was found that NH4HCO3/NH4OH and CO2/NH 4OH systems were 80 % more efficient in suppressing damage compared to the standard NH4OH cleaning system. Finally, megasonic cleaning studies were conducted in the same single wafer spin cleaning tool MegPieRTM, using SiO2 particles (size 185 nm) deposited on 200 mm oxide Si wafers, as the contaminant. It was found that the standard cleaning chemical, NH4OH, pH 8.2, was effective in achieving > 95 % particle removal for 2 min irradiation of megasonic energy at power densities > 0.7 W/cm2. Based on these results, a new system, NH4HCO3/NH4OH, was designed with an aim to

  2. Development of contaminated concrete removing system 'Clean cut method'

    International Nuclear Information System (INIS)

    Kinoshita, Takehiko; Tanaka, Tsutomu; Funakawa, Naoyoshi; Idemura, Hajime; Sakashita, Fumio; Tajitsu, Yoshiteru

    1989-01-01

    In the case of decommissioning nuclear facilities such as nuclear power stations, nuclear fuel facilities and RI handling facilities and carrying out reconstruction works, if there is radioactive contamination on the surfaces of concrete structures such as the floors and walls of the buildings for nuclear facilities, it must be removed. Since concrete is porous, contamination infiltrates into the inside of concrete, and the wiping of surfaces only or chemical decontamination cannot remove it, therefore in most cases, contaminated concrete must be removed. The removal of concrete surfaces has been carried out with chipping hammers, grinders and so on, but many problems arise due to it. In order to solve these problems, the mechanical cutting method was newly devised, and clean cut method (CCRS) was completed. The depth of cutting from concrete surface is set beforehand, and the part to be removed is accurately cut, at the same time, the concrete powder generated is collected nearly perfectly, and recovered into a drum. The outline of the method and the constitution of the system, the features of the clean cut method, the development of the technology for cutting concrete and the technology for recovering concrete powder, and the test of verifying decontamination are reported. (K.I.)

  3. Chemical preventive remedies for steam generators fouling and tube support plate blockages

    International Nuclear Information System (INIS)

    Alves Vieira, M.; Mayos, M.; Coquio, N.; Fourcroy, H.; Battesti, P.

    2010-01-01

    In 2006, EDF identified on several PWR units broached hole blockage on the upper Steam Generator (SG) Tube Support Plates (TSP). TSP blockage often occurs in association with secondary fouling. The units with copper alloys materials are more affected due the applied low pH 25 o C (9.20) all volatile treatment (AVT). Carbon steels materials are less protected against flow accelerated corrosion (FAC) and therefore more corrosion products enter the SGs through the final feed water (FFW). In parallel of chemical cleanings to remove oxides deposits in SGs, EDF has defined a strategy to improve operating conditions. It mainly relies on the removal of copper alloys materials to implement a high pH AVT (9.60) as a preventive remedy. However for some plants, copper alloys removal is not straightforward due to environmental constraints. EDF must indeed manage the implementation of a biocide treatment needed in closed loop cooling systems (as copper has a bacteriostatic effect on micro-organisms) and more generally must comply with discharge authorisations for chemical conditioning reagents or biocide reagent. An alternative conditioning was tested on the Dampierre 4 unit in 2007/2008 during 6 months to assess if operating at 9.40 was acceptable regarding the impacts on copper alloys materials. The perspective would be to implement it in the units where no biocide treatment can be applied on a short term. In parallel, other chemical conditionings or additives will be implemented or tested. First of all, EDF will carry out a trial test with APA in order to assess its efficiency on the removal of oxides deposits through SG blowdown. On the other hand, AVT with high pH ethanolamine (ETA) will be implemented as an alternative of ammonia and morpholine conditioning on some chosen plants. Ethanolamine is selected as a way to mitigate FAC kinetics in two-phase flow areas (reheaters or moisture heater separator) or to limit liquid releases. This paper provides the lessons of the

  4. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  6. Clean slate corrective action investigation plan

    International Nuclear Information System (INIS)

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT)

  7. Clean slate corrective action investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Clean Slate sites discussed in this report are situated in the central portion of the Tonopah Test Range (TTR), north of the Nevada Test Site (NTS) on the northwest portion of the Nellis Air Force Range (NAFR) which is approximately 390 kilometers (km) (240 miles [mi]) northwest of Las Vegas, Nevada. These sites were the locations for three of the four Operation Roller Coaster experiments. These experiments evaluated the dispersal of plutonium in the environment from the chemical explosion of a plutonium-bearing device. Although it was not a nuclear explosion, Operation Roller Coaster created some surface contamination which is now the subject of a corrective action strategy being implemented by the Nevada Environmental Restoration Project (NV ERP) for the U.S. Department of Energy (DOE). Corrective Action Investigation (CAI) activities will be conducted at three of the Operation Roller Coaster sites. These are Clean Slate 1 (CS-1), Clean Slate 2 (CS-2), and Clean Slate 3 (CS-3) sites, which are located on the TTR. The document that provides or references all of the specific information relative to the various investigative processes is called the Corrective Action Investigation Plan (CAIP). This CAIP has been prepared for the DOE Nevada Operations Office (DOE/NV) by IT Corporation (IT).

  8. Cleaner generation, free-riders, and environmental integrity: clean development mechanism and the power sector

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, Stephen; Kartha, Sivan; Lazarus, Michael; Page, Tom [Tellus Institute and Stockholm Environmental Institute-Boston Center, Boston, MA (United States)

    2001-06-01

    This article provides a first-cut estimate of the potential impacts of the clean development mechanism (CDM) on electricity generation and carbon emissions in the power sector of non-Annex 1 countries. We construct four illustrative CDM regimes that represent a range of approaches under consideration within the climate community. We examine the impact of these CDM regimes on investments in new generation, under illustrative carbon trading prices of US$ 10 and 100/tC. In the cases that are most conductive to CDM activity, roughly 94% of new generation investments remains identical to the without-CDM situation, with only 6% shifting from higher to lower carbon intensity technologies. We estimate that the CDM would bolster renewable energy generation by as little as 15% at US$ 10/tC, or as much as 300% at US$ 100/tC. A striking finding comes from our examination of the potential magnitude of the 'free-rider' problem, i.e. crediting of activities that will occur even in the absence of the CDM. The CDM is intended to be globally carbon-neutral --- a project reduces emissions in the host country but generates credits that increase emissions in the investor country. However, to the extent that unwarranted credits are awarded to non-additional projects, the CDM would increase global carbon emissions above the without-CDM emissions level. Under two of the CDM regimes considered, cumulative free-riders credits total 250-600MtC through the end of the first budget period in 2012. This represents 10-23% of the likely OECD emissions reduction requirement during the first budget period. Since such a magnitude of free-rider credits from non-additional CDM projects could threaten the environmental integrity of the Kyoto protocol, it is imperative that policy makers devise CDM rules that encourage legitimate projects, while effectively screening out non-additional activities. (Author)

  9. Raman spectroscopy for in-situ characterisation of steam generator deposits

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Guzonas, D.A.; Turner, C.W.

    1997-12-01

    This report describes the effort to develop in-situ characterisation of steam generator deposits using remote raman spectroscopy to determine the chemical composition and semi-quantitative measurement of their concentrations. Information on the composition of the deposits is necessary in order to establish the optimal cleaning conditions and procedures. Furthermore, the composition of the deposits also provides information on the conditions that exist within the steam generator and the feedtrain. The raman spectra of the three most common iron oxide phases found in the CANDU deposits (hematite, magnetite and nickel ferrite) are shown

  10. The successful of finite element to invent particle cleaning system by air jet in hard disk drive

    Science.gov (United States)

    Jai-Ngam, Nualpun; Tangchaichit, Kaitfa

    2018-02-01

    Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.

  11. Efficacy of low-pressure foam cleaning compared to conventional cleaning methods in the removal of bacteria from surfaces associated with convenience food.

    Science.gov (United States)

    Lambrechts, A A; Human, I S; Doughari, J H; Lues, J F R

    2014-09-01

    Food borne illnesses and food poisoning are cause for concern globally. The diseases are often caused by food contamination with pathogenic bacteria due largely to poor sanitary habits or storage conditions. Prevalence of some bacteria on cleaned and sanitised food contact surfaces from eight convenience food plants in Gauteng (South Africa) was investigated with the view to evaluate the efficacy of the cleaning methods used with such food contact surfaces. The microbial load of eight convenience food manufacturing plants was determined by sampling stainless steel food contact surfaces after they had been cleaned and sanitised at the end of a day's shift. Samples were analysed for Total Plate Count (TPC), Escherichia coli, Salmonella species, Staphylococcus aureus and Listeria species. Results showed that 59 % of the total areas sampled for TPC failed to comply with the legal requirements for surfaces, according to the Foodstuffs, Cosmetics and Disinfectants Act ( 0.05) in terms of Listeria species isolates obtained from both cleaning methods. The LPF method proved to be the superior cleaning option for lowering TPC counts. Regardless of cleaning method used, pathogens continued to flourish on various surfaces, including dry stainless steel, posing a contamination hazard for a considerable period depending on the contamination level and type of pathogen. Intensive training for proper chemical usage and strict procedural compliance among workers for efficient cleaning procedures is recommended.

  12. A study on the steam generator data base and the evaluation of chemical environment

    International Nuclear Information System (INIS)

    Yang, Kyung Rin; Yoo, Je Hyoo; Lee, Eun He; Hong, Kwang Pum

    1990-01-01

    In order to make steam generator data base, the basic plant information and water quality control data on the steam generators of the PWR nuclear power plant operating in the world have been collected by EPRI. In this project, the basic information and water quality control data of the domestic PWR nuclear power plants were collected to make steam generator data base on the basic of the EPRI format table, and the computerization of them was performed. Also, the technical evaluation of chemical environments on steam generator of the Kori 2 plant chemists. Workers and researchers working at the research institute and universities and so on. Especially, it is able to be used as a basic plant information in order to develop an artificial intellegence development system in the field on the technical development of the chemical environment. The scope and content of the project are following. The data base on the basic information data in domestic PWR plant. The steam generator data base on water quality control data. The evaluation on the chemical environment in the steam generators of the Kori 2 plant. From previous data, it is concluded as follows. The basic plant information on the domestic PWR power plant were computerized. The steam generator data base were made on the basis of EPRI format table. The chemical environment of the internal steam generators could be estimated from the analytical evaluation of water quality control data of the steam generator blowdown. (author)

  13. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  14. Cleaning Schedule Operations in Heat Exchanger Networks

    Directory of Open Access Journals (Sweden)

    Huda Hairul

    2018-01-01

    Full Text Available Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

  15. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  16. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  17. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  18. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  19. Contribution to the investigation concerning the fouling and washing of steam generators

    International Nuclear Information System (INIS)

    Dijoux, M.; Vito, S. de; Millet, L.

    2002-01-01

    Steam generator secondary side tube deposits affect optimal operation of the nuclear power plants. Stress corrosion cracking (ODSCC) occurs under deposits located in confined areas, in particular the tube - tube support plates crevices for 600-MA tubes. Fouling on free span of the bundle leads to thermal transfer inhibition for all type of tube alloys. Flow accelerated corrosion (FAC) and general corrosion of the feed water train components, depending on the chemical treatment applied, are the mainly responsible for the secondary fouling. An appropriate maintenance requires a good knowledge of deposits. In this context, a study program on deposits has been started covering the following points: - Spatial distribution and mass determination by Eddy Current Testing (ECT); - Composition by chemical analysis; - Characterization by micrographic analysis; - Modelling of deposition by computer code; and - Effects on thermal transfer and fouling factor calculation. These examinations bring a best understanding of fouling mechanisms and allow to act on influential parameters: chemical secondary treatment, selection of materials in the feed water train, and pollution ingress reduction. They permit to evaluate the interest to schedule cleaning operations such as lancing or chemical cleaning. (authors)

  20. Clean Slate 1 revegetation and monitoring plan

    International Nuclear Information System (INIS)

    Anderson, D.C.; Hall, D.B.

    1997-07-01

    This document constitutes a reclamation plan for the short-term and long-term stabilization of land disturbed by activities associated with the cleanup of radionuclide contaminated surface soil at the Clean Slate 1 site. This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. The results of reclamation trials at Area 11, Area 19 and more recently the reclamation demonstration plots at the Double Tracks cleanup site, have been summarized and incorporated into this reclamation and monitoring plan. The plan also contains procedures for monitoring both the effectiveness and success of short-term and long-term soil stabilization. The Clean Slate 1 site is located on the Tonopah Test Range. The surface soils were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Short-term stabilization consists of the application of a chemical soil stabilizer that is applied immediately following excavation of the contaminated soils to minimize Pu resuspension. Long-term stabilization is accomplished by the establishment of a permanent vegetation

  1. Ecological effectiveness of oil spill countermeasures: how clean is clean?

    International Nuclear Information System (INIS)

    Baker, J.M.

    1999-01-01

    This paper with 94 references examines background levels of hydrocarbons and the difficulty of defining clean. Processes and timescales for natural cleaning, and factors affecting natural cleaning timescales are considered. Ecological advantages and disadvantages of clean-up methods are highlighted, and five case histories of oil spills are summarised. The relationships between ecological and socio-economic considerations, and the need for a net environmental benefit analysis which takes into account the advantages and disadvantages of clean-up responses and natural clean-up are discussed. A decision tree for evaluating the requirement for shore clean-up is illustrated. (UK)

  2. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Mohan, Gowtham; Dahal, Sujata; Kumar, Uday; Martin, Andrew; Kayal, Hamid

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  3. Evidence for self-cleaning in gecko setae

    Science.gov (United States)

    Hansen, W. R.; Autumn, K.

    2005-01-01

    A tokay gecko can cling to virtually any surface and support its body mass with a single toe by using the millions of keratinous setae on its toe pads. Each seta branches into hundreds of 200-nm spatulae that make intimate contact with a variety of surface profiles. We showed previously that the combined surface area of billions of spatulae maximizes van der Waals interactions to generate large adhesive and shear forces. Geckos are not known to groom their feet yet retain their stickiness for months between molts. How geckos manage to keep their feet clean while walking about with sticky toes has remained a puzzle until now. Although self-cleaning by water droplets occurs in plant and animal surfaces, no adhesive has been shown to self-clean. In the present study, we demonstrate that gecko setae are a self-cleaning adhesive. Geckos with dirty feet recovered their ability to cling to vertical surfaces after only a few steps. Self-cleaning occurred in arrays of setae isolated from the gecko. Contact mechanical models suggest that self-cleaning occurs by an energetic disequilibrium between the adhesive forces attracting a dirt particle to the substrate and those attracting the same particle to one or more spatulae. We propose that the property of self-cleaning is intrinsic to the setal nanostructure and therefore should be replicable in synthetic adhesive materials in the future. adhesion | contact mechanics | locomotion | reptilia | nanotechnology

  4. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  5. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  6. Chemical name extraction based on automatic training data generation and rich feature set.

    Science.gov (United States)

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  7. Cleaning, disinfection and sterilization of surface prion contamination.

    Science.gov (United States)

    McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E

    2013-12-01

    Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Hawaii Clean Energy Initiative 2008-2018: Celebrating 10 Years of Success

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-04

    Launched in January 2008, the Hawaii Clean Energy Initiative (HCEI) set out transform Hawaii into a world model for energy independence and sustainability. With its leading-edge vision to transition to a Hawaii-powered clean energy economy within a single generation, HCEI established the most aggressive clean energy goals in the nation. Ten years after its launch, HCEI has significantly outdistanced the lofty targets established as Hawaii embarked on its ambitious quest for energy independence. The state now generates 27 percent of its electricity sales from clean energy sources like wind and solar, placing it 12 percentage points ahead of HCEI's original 2015 RPS target of 15 percent. This brochure highlights some of HCEI's key accomplishments and impacts during its first decade and reveals how its new RPS goal of 100 percent by 2045, which the Hawaii state legislature adopted in May 2015, has positioned Hawaii to become the first U.S. state to produce all of its electricity from indigenous renewable sources.

  9. Nanomaterials for the cleaning and pH adjustment of vegetable-tanned leather

    Science.gov (United States)

    Baglioni, Michele; Bartoletti, Angelica; Bozec, Laurent; Chelazzi, David; Giorgi, Rodorico; Odlyha, Marianne; Pianorsi, Diletta; Poggi, Giovanna; Baglioni, Piero

    2016-02-01

    Leather artifacts in historical collections and archives are often contaminated by physical changes such as soiling, which alter their appearance and readability, and by chemical changes which occur on aging and give rise to excessive proportion of acids that promote hydrolysis of collagen, eventually leading to gelatinization and loss of mechanical properties. However, both cleaning and pH adjustment of vegetable-tanned leather pose a great challenge for conservators, owing to the sensitivity of these materials to the action of solvents, especially water-based formulations and alkaline chemicals. In this study, the cleaning of historical leather samples was optimized by confining an oil-in-water nanostructured fluid in a highly retentive chemical hydrogel, which allows the controlled release of the cleaning fluid on sensitive surfaces. The chemical gel exhibits optimal viscoelasticity, which facilitates its removal after the application without leaving residues on the object. Nanoparticles of calcium hydroxide and lactate, dispersed in 2-propanol, were used to adjust the pH up to the natural value of leather, preventing too high alkalinity which causes swelling of fibers and denaturation of the collagen. The treated samples were characterized using scanning electron microscopy, controlled environment dynamic mechanical analysis, and infrared spectroscopy. The analytical assessment validated the use of tools derived from colloid and materials science for the preservation of collagen-based artifacts.

  10. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  11. Dynamic self-cleaning in gecko setae via digital hyperextension

    Science.gov (United States)

    Hu, Shihao; Lopez, Stephanie; Niewiarowski, Peter H.; Xia, Zhenhai

    2012-01-01

    Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowledge, the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80 per cent of their original stickiness in only four steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment/detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reuseable and reliable dry adhesives and devices. PMID:22696482

  12. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  13. Likely-clean concrete disposition at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Betts, J.A.

    2011-01-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  14. Likely-clean concrete disposition at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Betts, J.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  15. Hmb(off/on) as a switchable thiol protecting group for native chemical ligation.

    Science.gov (United States)

    Qi, Yun-Kun; Tang, Shan; Huang, Yi-Chao; Pan, Man; Zheng, Ji-Shen; Liu, Lei

    2016-05-04

    A new thiol protecting group Hmb(off/on) is described, which has a switchable activity that may be useful in the chemical synthesis of proteins. When placed on the side chain of Cys, Cys(Hmb(off)) is stable to trifluoroacetic acid (TFA) in the process of solid-phase peptide synthesis. When Cys(Hmb(off)) is treated with neutral aqueous buffers, it is cleanly converted to acid-labile Cys(Hmb(on)), which can later be fully deprotected by TFA to generate free Cys. The utility of Cys(Hmb(off/on)) is demonstrated by the chemical synthesis of an erythropoietin segment, EPO[Cys(98)-Arg(166)]-OH through native chemical ligation.

  16. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  17. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  18. Evaluation of air cleaning technologies existing in the Danish market

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2014-01-01

    Five portable air cleaning technologies including one new technology were evaluated to find their effectiveness in removing ultrafine particles. Measurements were carried out both in a duct and in a test room. The results showed that the technologies that use/create ozone to clean air can increase...... the ozone level significantly in the room. Moreover, they can cause generation of ultrafine particles and consequently increase ultrafine particle concentration in the room. The study suggests using a mechanical filter with low pressure drop as a recommended air cleaning technology in order to remove...

  19. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    Directory of Open Access Journals (Sweden)

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  20. Cleaning power and abrasivity of European toothpastes.

    Science.gov (United States)

    Wülknitz, P

    1997-11-01

    For 41 toothpastes available to European consumers in 1995, the cleaning efficacy was evaluated in comparison with abrasivity on dentin (RDA value). For cleaning power assessment, a modified pellicle cleaning ratio (PCR) measurement method was developed. The method is characterized by a five-day tea-staining procedure on bovine front teeth slabs on a rotating wheel, standardized brushing of the slabs in a V8 cross-brushing machine, and brightness measurement by a chromametric technique. All tested products were in accordance with the new DIN/ISO standard 11,609 for toothpastes in terms of dentin abrasivity. Not a single product exceeded an RDA value of 200. The majority of toothpastes (80%) had an RDA value below 100. Only three products surpassed the reference in cleaning power. Most products (73%) had a cleaning power (PCR value) between 20 and 80. The correlation between cleaning power and dentin abrasion was low (r = 0.66), which can be explained with the different influence on dentin and stains by factors like abrasive type, particle surface and size, as well as the chemical influence of other toothpaste ingredients. Some major trends could be shown on the basis of abrasive types. The ratio PCR to RDA was rather good in most silica-based toothpastes. A lower ratio was found in some products containing calcium carbonate or aluminum trihydrate as the only abrasive. The addition of other abrasives, such as polishing alumina, showed improved cleaning power. Some active ingredients, especially sequenstrants such as sodium tripolyphosphate or AHBP, also improve the PCR/RDA ratio by stain-dissolving action without being abrasive. The data for some special anti-stain products did not differ significantly from standard products. Compared with data measured in 1988, a general trend toward reduced abrasivity without loss of cleaning efficacy could be noticed on the European toothpaste market. This may be mostly due to the increased use of high-performance abrasives such

  1. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  2. Specialised cleaning associated with antimicrobial coatings for reduction of hospital acquired infection. Opinion of the COST Action Network AMiCI (CA15114).

    Science.gov (United States)

    Dunne, Suzanne S; Ahonen, Merja; Modic, Martina; Crijns, Francy Rl; Keinänen-Toivola, Minna M; Meinke, Ruth; Keevil, C William; Gray, Jim; O'Connell, Nuala H; Dunne, Colum P

    2018-03-14

    Recognized issues with poor hand hygiene compliance among healthcare workers, and reports of re-contamination of previously chemically disinfected surfaces through hand contact, emphasize need for novel hygiene methods in addition to those currently available. One such approach involves antimicrobial (nano)-coatings (AMC), whereby integrated active ingredients are responsible for elimination of microorganisms that come into contact with treated surfaces. While widely studied under laboratory conditions with promising results, studies under real life healthcare conditions are scarce. The views of 75 contributors from 30 European countries were collated regarding specialised cleaning associated with antimicrobial coatings for reduction of hospital acquired infection. There was unanimous agreement that generation of scientific guidelines for cleaning of antimicrobial coatings, using traditional or new processes, are needed. Specific topics included: understanding mechanisms of action of cleaning materials and their physical interactions with conventional and antimicrobial coatings; that assessments mimic the life-cycle of coatings to determine the impact of repetitive cleaning and other aspects of ageing (e.g., exposure to sunlight); determining concentrations of AMC-derived biocides in effluents, and development of effective de-activation and sterilisation treatments for cleaning effluents. Further, the consensus opinion was that prior to widespread implementation of AMCs, the varying responsibilities of involved clinical, healthcare management, cleaning services, and environmental safety stakeholders need clarification. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  4. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  5. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  6. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  7. Cleaning IBL secondary sludge in the tubular plate steam generators

    International Nuclear Information System (INIS)

    Montoro de Frutos, E.; Gonzalez Carballo, S.

    2012-01-01

    After cleanings Sludge Lancing using 250bar made from the center lane, identifies an area of solidified remaining sludge on the tube plate. Since late 2010, IBERDROLA-SAVAC has developed Inner System Bundle Lancing (IBL), which locally involves shooting a jet of water at high pressure 590bar directly impacting sludge areas within the tube bundle hard to detach and break into small pieces that can be extracted from GV through a closed circuit suction.

  8. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  9. ALTERNATIVE AND ENHANCED CHEMICAL CLEANING: BASIC STUDIES RESULTS FY2010

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hay, M.

    2011-01-24

    In an effort to develop and optimize chemical cleaning methods for the removal of sludge heels from High Level Waste tanks, solubility tests have been conducted using nonradioactive, pure metal phases. The metal phases studied included the aluminum phase gibbsite and the iron phases hematite, maghemite, goethite, lepidocrocite, magnetite, and wustite. Many of these mineral phases have been identified in radioactive, High Level Waste sludge at the Savannah River and Hanford Sites. Acids evaluated for dissolution included oxalic, nitric, and sulfuric acids and a variety of other complexing organic acids. The results of the solubility tests indicate that mixtures of oxalic acid with either nitric or sulfuric acid are the most effective cleaning solutions for the dissolution of the primary metal phases in sludge waste. Based on the results, optimized conditions for hematite dissolution in oxalic acid were selected using nitric or sulfuric acid as a supplemental proton source. Electrochemical corrosion studies were also conducted (reported separately; Wiersma, 2010) with oxalic/mineral acid mixtures to evaluate the effects of these solutions on waste tank integrity. The following specific conclusions can be drawn from the test results: (1) Oxalic acid was shown to be superior to all of the other organic acids evaluated in promoting the dissolution of the primary sludge phases. (2) All iron phases showed similar solubility trends in oxalic acid versus pH, with hematite exhibiting the lowest solubility and the slowest dissolution. (3) Greater than 90% hematite dissolution occurred in oxalic/nitric acid mixtures within one week for two hematite sources and within three weeks for a third hematite sample with a larger average particle size. This dissolution rate appears acceptable for waste tank cleaning applications. (4) Stoichiometric dissolution of iron phases in oxalic acid (based on the oxalate concentration) and the formation of the preferred 1:1 Fe to oxalate complex

  10. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  11. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeyoun [Division of Restoration Technology, National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of); Cho, Namchul, E-mail: nam1611@hanmail.net [Department of Cultural Heritage Conservation Science, Kongju National University, Gongju, 314-701 (Korea, Republic of); Lee, Jongmyoung [Laser Engineering Group, IMT Co. Ltd, Gyeonggi (Korea, Republic of)

    2013-11-01

    As numerous pores are formed at plating gilt-bronze artifacts, the metal underlying the gold is corroded and corrosion products are formed on layer of gold. Through this study, the surfaces of gilt-bronze are being investigated before and after the laser irradiation to remove corrosion products of copper by using Nd:YAG laser. For gilt-bronze specimens, laser and chemical cleaning were performed, and thereafter, surface analysis with SEM-EDS, AFM, and XPS were used to determine the surface characteristics. Experimental results show that chemical cleaning removes corrosion products of copper through dissolution but it was not removed uniformly and separated the metal substrate and the gold layer. Nevertheless, through laser cleaning, some of the corrosions were removed with some damaged areas due to certain conditions and brown residues remained. Brown residues were copper corrosion products mixed with soil left within the gilt layer. It was due to surface morphology of uneven and rough gilt layer. Hence, they did not react effectively to laser beams, and thus, remained as residues. The surface properties of gilt-bronze should be thoroughly investigated with various surface analyses to succeed in laser cleaning without damages or residues.

  12. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  13. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  14. Trajectories towards clean technology. Example of volatile organic compound emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Belis-Bergouignan, Marie-Claude; Oltra, Vanessa; Saint Jean, Maider [IFREDE-E3i, University Montesquieu-Bordeaux IV, Avenue Leon Duguit, Pessac 33608 (France)

    2004-02-20

    This article is based on the observation that, up until now, corporate investment has been limited in clean technologies despite the will of governmental authorities to stimulate them in order to cope with the demands of sustainable development. The paper deals with the issue of the development of clean technologies and the role of regulations as clean technology promoters. It tries to apprehend the characteristics and specificity of clean technology from both an empirical and a theoretical point of view, so as to understand which are the most favourable (or inversely, the most detrimental) conditions for their development. We use case studies concerning the reduction of volatile organic compound (VOC) emissions in the chemical and metallurgical industries. These two examples highlight the problems created by the shift from a 'with-solvent paradigm' to a 'solvent-free paradigm' and the way clean technology trajectories may spread within such paradigms. We show that the problem of clean technology development primarily resides in some factors that impede technological adoption, although a strong and mixed incentives framework prevails. Such impediments are sector-specific, leading to different clean technology trajectories among sectors and indicating areas of sectoral intervention that could become the cornerstones of complementary technology policy.

  15. Plasma-assisted cleaning of extreme UV optics

    NARCIS (Netherlands)

    Dolgov, Alexandr Alexeevich

    2018-01-01

    Plasma-assisted cleaning of extreme UV optics EUV-induced surface plasma chemistry of photo-active agents The next generation of photolithography, extreme ultraviolet (EUV) lithography, makes use of 13.5 nm radiation. The ionizing photon flux, and vacuum requirements create a challenging operating

  16. Ultrasonic and immersion cleaning: a comparison using aqueous and fluorocarbon solvents

    International Nuclear Information System (INIS)

    Bond, R.D.; Kearsey, A.

    1984-11-01

    Decontamination is a necessary process in reducing radiation levels in the working environment in the nuclear industry. Components from active areas which require decontamination for re-use or maintenance operations. In this report, a typical chemical cleaning process using liquid pumping, airagitation and physical movement for agitation is compared with ultrasonic cleaning, now an established cleaning process in many industries. The chosen traditional method is immersion in an agitated solution of warm SDG.3 solution; an established decontaminating reagent. The decontamination effect of this process is compared with the effect of cleaning in an ultrasonic bath containing the same reagent at the same concentration and temperature. Fluorocarbon reagents are of particular interest to the nuclear industry for they offer the ability to clean electrical components without damage, and can clean product contaminated material without the risk of criticality. Such reagents are based on 1,1,2-trichloro, 1,2,2-trifluoroethane and azeotropic mixtures. This reagent and one mixture with 6% methanol were tested under agitation and ultrasonic immersion at the same temperature. Parallel control experiments were conducted using demineralised water as the cleaning media in an agitated bath. SGG3 is a good reagent for general purpose cleaning (it can remove 99% of particulate contamination) using scrubbing, immersion or spraying techniques. There is little evidence to show that ultrasonic cleaning increases its effectiveness. For special purpose fluorocarbon solvents will give satisfactory results when used in an ultrasonic system. (author)

  17. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  18. McClean Lake. Site Guide

    International Nuclear Information System (INIS)

    2016-09-01

    Located over 700 kilometers northeast of Saskatoon, Areva's McClean Lake site is comprised of several uranium mines and one of the most technologically advanced uranium mills in the world - the only mill designed to process high-grade uranium ore without dilution. Areva has operated several open-pit uranium mines at the McClean Lake site, and is evaluating future mines at and near the site. The McClean Lake mill has recently undergone a multimillion-dollar upgrade and expansion, which has doubled its annual production capacity of uranium concentrate to 24 million pounds. It is the only facility in the world capable of processing high-grade uranium ore without diluting it. The mill processes the ore from the Cigar Lake mine, the world's second largest and highest-grade uranium mine. The McClean Lake site operates 365 days a year on a week-in/week-out rotation schedule for workers, over 50% of whom reside in northern Saskatchewan communities. Tailings are waste products resulting from milling uranium ore. This waste is made up of leach residue solids, waste solutions and chemical precipitates that are carefully engineered for long-term disposal. The TMF serves as the repository for all resulting tailings. This facility allows proper waste management, which minimizes potential adverse environmental effects. Mining projections indicate that the McClean Lake mill will produce tailings in excess of the existing capacity of the TMF. After evaluating a number of options, Areva has decided to pursue an expansion of this facility. Areva is developing the Surface Access Borehole Resource Extraction (SABRE) mining method, which uses a high-pressure water jet placed at the bottom of the drill hole to extract ore. Areva has conducted a series of tests with this method and is evaluating its potential for future mining operations. McClean Lake maintains its certification in ISO 14001 standards for environmental management and OHSAS 18001 standards for occupational health

  19. A novel compound cleaning solution for benzotriazole removal after copper CMP

    International Nuclear Information System (INIS)

    Gu Zhangbing; Liu Yuling; Gao Baohong; Wang Chenwei; Deng Haiwen

    2015-01-01

    After the chemical mechanical planarization (CMP) process, the copper surface is contaminated by a mass of particles (e.g. silica) and organic residues (e.g. benzotriazole), which could do great harm to the integrated circuit, so post-CMP cleaning is essential. In particular, benzotriazole (BTA) forms a layer of Cu-BTA film with copper on the surface, which leads to a hydrophobic surface of copper. So an effective cleaning solution is needed to remove BTA from the copper surface. In this work, a new compound cleaning solution is designed to solve two major problems caused by BTA: one is removing BTA and the other is copper surface corrosion that is caused by the cleaning solution. The cleaning solution is formed of alkaline chelating agent (FA/O II type), which is used to remove BTA, and a surfactant (FA/O I type), which is used as a corrosion inhibitor. BTA removal is characterized by contact angle measurements and electrochemical techniques. The inhibiting corrosion ability of the surfactant is also characterized by electrochemical techniques. The proposed compound cleaning solution shows advantages in removing BTA without corroding the copper surface. (paper)

  20. Self-Cleaning Photocatalytic Polyurethane Coatings Containing Modified C60 Fullerene Additives

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Lundin

    2014-08-01

    Full Text Available Surfaces are often coated with paint for improved aesthetics and protection; however, additional functionalities that impart continuous self-decontaminating and self-cleaning properties would be extremely advantageous. In this report, photochemical additives based on C60 fullerene were incorporated into polyurethane coatings to investigate their coating compatibility and ability to impart chemical decontaminating capability to the coating surface. C60 exhibits unique photophysical properties, including the capability to generate singlet oxygen upon exposure to visible light; however, C60 fullerene exhibits poor solubility in solvents commonly employed in coating applications. A modified C60 containing a hydrophilic moiety was synthesized to improve polyurethane compatibility and facilitate segregation to the polymer–air interface. Bulk properties of the polyurethane films were analyzed to investigate additive–coating compatibility. Coatings containing photoactive additives were subjected to self-decontamination challenges against representative chemical contaminants and the effects of additive loading concentration, light exposure, and time on chemical decontamination are reported. Covalent attachment of an ethylene glycol tail to C60 improved its solubility and dispersion in a hydrophobic polyurethane matrix. Decomposition products resulting from oxidation were observed in addition to a direct correlation between additive loading concentration and decomposition of surface-residing contaminants. The degradation pathways deduced from contaminant challenge byproduct analyses are detailed.

  1. Effects of physical and chemical aspects on membrane fouling and cleaning using interfacial free energy analysis in forward osmosis.

    Science.gov (United States)

    Zhang, Wanzhu; Dong, Bingzhi

    2018-05-20

    Natural organic matter (NOM) in micro-polluted water purification using membranes is a critical issue to handle. Understanding the fouling mechanism in the forward osmosis (FO) process, particularly identifying the predominant factor that controls membrane fouling, could have significant effects on exerting the advantages of FO technique. Cellulose triacetate no-woven (CTA-NW) membrane is applied to experiments with a high removal efficiency (> 99%) for the model foulant. Tannic acid (TA) is used as a surrogate foulant for NOM in the membrane fouling process, thus enabling the analysis of the effects of physical and chemical aspects of water flux, retention, and adsorption. The membrane fouling behavior is affected mainly by the combined effects of the osmotic dragging force and the interaction of the pH in the working solution, foulants, and calcium ions, as demonstrated by the water flux loss and the changes of membrane retention and adsorption. The fouled CTA-NW membrane (in PRO mode) could be flux-recovered by > 85% through physical cleaning methods. The interfacial free energy analysis theory was used to analyze the membrane fouling behavior with calculating the interfacial cohesion and adhesion free energies. The cohesion free energy refers to the deposition of foulants (TA or TA combined with calcium ions) on a fouled membrane. In addition, the adhesion free energy could be used to evaluate the interaction between foulants and a clean membrane.

  2. The exergy underground coal gasification technology for power generation and chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Blinderman, M.S. [Ergo Exergy Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Underground coal gasification (UCG) is a gasification process carried out in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practised by Ergo Exergy Technologies is called the Exergy UCG Technology or {epsilon}UCG{trademark} technology. This paper describes the technology and its applications. The {epsilon}UCG technology is being applied in numerous power generation and chemical projects worldwide, some of which are described. These include power projects in South Africa, India, Pakistan and Canada, as well as chemical projects in Australia and Canada. A number of {epsilon}UCG{trademark} based industrial projects are now at a feasibility usage in India, New Zealand, USA and Europe. An {epsilon}UCG{trademark} IGCC power plant will generate electricity at a much lower cost than existing fossil fuel power plants. CO{sub 2} emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC. 10 refs., 8 figs.

  3. Reducing hazardous cleaning product use: a collaborative effort.

    Science.gov (United States)

    Pechter, Elise; Azaroff, Lenore S; López, Isabel; Goldstein-Gelb, Marcy

    2009-01-01

    Workplace hazards affecting vulnerable populations of low-wage and immigrant workers present a special challenge to the practice of occupational health. Unions, Coalition for Occupational Safety and Health (COSH) groups, and other organizations have developed worker-led approaches to promoting safety. Public health practitioners can provide support for these efforts. This article describes a successful multiyear project led by immigrant cleaning workers with their union, the Service Employees International Union (SEIU) Local 615, and with support from the Massachusetts COSH (MassCOSH) to address exposure to hazardous chemicals. After the union had identified key issues and built a strategy, the union and MassCOSH invited staff from the Massachusetts Department of Public Health's Occupational Health Surveillance Program (OHSP) to provide technical information about health effects and preventive measures. Results included eliminating the most hazardous chemicals, reducing the number of products used, banning mixing products, and improving safety training. OHSP's history of public health practice regarding cleaning products enabled staff to respond promptly. MassCOSH's staff expertise and commitment to immigrant workers allowed it to play a vital role.

  4. Laser cleaning of sulfide scale on compressor impeller blade

    International Nuclear Information System (INIS)

    Tang, Q.H.; Zhou, D.; Wang, Y.L.; Liu, G.F.

    2015-01-01

    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  5. Bio-Inspired Polymer Membrane Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2017-03-01

    Full Text Available To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling layer on its surface and regain initial permeability. Fouling tests with solutions of protein, oil, and mixtures of both, were performed, and the membrane’s ability to self-clean the fouled surface was characterized. Membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, water permeation flux, fouling tests, porosimetry, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  6. (Preoxidation cleaning optimization for crystalline silicon)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A series of controlled experiments has been performed in Sandia's Photovoltaic Device Fabrication Laboratory to evaluate the effect of various chemical surface treatments on the recombination lifetime of crystalline silicon wafers subjected to a high-temperature dry oxidation. From this series of experiments we have deduced a relatively simple yet effective cleaning sequence. We have also evaluated the effect of different chemical damage-removal etches for improving the recombination lifetime and surface smoothness of mechanically lapped wafers. This paper presents the methodology used, the experimental results obtained, and our experience with using this process on a continuing basis over a period of many months. 7 refs., 4 figs., 1 tab.

  7. Cleaning the soil

    International Nuclear Information System (INIS)

    Stegmann, R.

    1993-01-01

    Volume 6 of the Hamburg Reports contains contributions from scientists from the Special Research Field 188 'Cleaning up Contaminated Soils' of the Technical University of Hamburg-Harburg and the University of Hamburg and of experts from science and from the practical field. The soil science and analytical aspects of the biological and chemical/physical treatment processes are shown and open questions specific to processes are dealt with. Scientific results are compared with practical experience here. The evaluation of treated soils for reuse in the environment is a very important question, which is explained in the first articles here. Examples of case studies are shown in the last part of the volume. (orig.) [de

  8. An experience of cleaning and decontamination of the BN-350 reactor components

    International Nuclear Information System (INIS)

    Vasilenko, K.T.; Kochetkov, L.A.; Arkhipov, V.M.; Baklushin, R.P.; Gorlov, A.I.; Kiselev, G.V.; Rezinkin, P.S.; Samarkin, A.A.; Tverdovsky, N.D.

    1978-01-01

    In the course of start-up, adjustment and operation of the BN-350 reactor there arose a need for cleaning from sodium and decontamination of primary and secondary equipment components. Design schemes of the systems provided for this purpose as well as those specially designed for cleaning of steam generator evaporators are considered. Technological processes of cleaning and decontamination for some reactor components (removable parts of circulating pumps, evaporators, valves) are described, the results are presented. (author)

  9. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  10. Carbon Dioxide Nucleation as a Novel Cleaning Method for Sodium Alginate Fouling Removal from Reverse Osmosis Membranes desalination

    KAUST Repository

    Alnajjar, Heba

    2017-01-01

    in foulants aggregates formation. Although there are some physical techniques that can maintain the membrane performance without reducing its lifetime, only chemical cleanings are still commonly used in RO plants. In this study, a novel cleaning method

  11. TCV mirrors cleaned by plasma

    Directory of Open Access Journals (Sweden)

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.

  12. Hard surface biocontrol in hospitals using microbial-based cleaning products.

    Directory of Open Access Journals (Sweden)

    Alberta Vandini

    Full Text Available Healthcare-Associated Infections (HAIs are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies.This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans on hard surfaces in a hospital setting.The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy and approximately 20000 microbial surface samples were collected.Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3-4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities.This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost

  13. Hard surface biocontrol in hospitals using microbial-based cleaning products.

    Science.gov (United States)

    Vandini, Alberta; Temmerman, Robin; Frabetti, Alessia; Caselli, Elisabetta; Antonioli, Paola; Balboni, Pier Giorgio; Platano, Daniela; Branchini, Alessio; Mazzacane, Sante

    2014-01-01

    Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies. This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting. The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected. Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3-4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities. This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy

  14. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves

    Science.gov (United States)

    Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A.

    2006-03-01

    When rain falls on lotus leaves water beads up with a high contact angle. The water drops promptly roll off the leaves, collecting dirt along the way. This self-cleaning ability or lotus effect has, in recent years, stimulated much research effort worldwide for a variety of applications ranging from self-cleaning window glasses, paints, and fabrics to low friction surfaces. What are the mechanisms giving rise to the lotus effect? Although chemical composition and surface structure are believed important, a systematic experimental investigation of their effects is still lacking. By altering the surface structure of the leaves while keeping their chemical composition approximately the same, we report in this study the influence of micro- and nano-scale structures on the wetting behaviour of lotus leaves. The findings of this work may help design self-cleaning surfaces and improve our understanding of wetting mechanisms.

  15. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  16. Design and Activation of a LOX/GH Chemical Steam Generator

    Science.gov (United States)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  17. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  18. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  19. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  20. Design Evolution and Verification of the A-3 Chemical Steam Generator

    Science.gov (United States)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  1. Influence of Dry Cleaning on the Electrical Resistance of Screen Printed Conductors on Textiles

    Directory of Open Access Journals (Sweden)

    Kazani Ilda

    2016-09-01

    Full Text Available Electrically conducting inks were screen printed on various textile substrates. The samples were dry cleaned with the usual chemicals in order to investigate the influence of the mechanical treatment on the electrical conductivity. It was found that dry cleaning has a tremendous influence on this electrical conductivity. For several samples, it is observed that the electrical resistance increases with the square of the number of dry cleaning cycles. In order to explain this observation a theoretical model and a numerical simulation have been carried out, by assuming that dry cleaning cycles introduce a crack in the conducting layer. The theoretical analysis and the numerical analysis both confirmed the experimental observations.

  2. [Analysis and research on cleaning points of HVAC systems in public places].

    Science.gov (United States)

    Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu

    2010-03-01

    To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.

  3. Effectiveness of clean-up procedures on stain susceptibility of different orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Swati Pundlik Mane

    2014-01-01

    Conclusion: Chemical-cure adhesive showed higher stain susceptibility than light-cure adhesive in all clean-up procedures. Both adhesives would show less stain susceptibility with polishing step with rubber cup and pumice.

  4. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  5. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  6. Overview of recent advances in thermo-chemical conversion of biomass

    International Nuclear Information System (INIS)

    Zhang Linghong; Xu Chunbao; Champagne, Pascale

    2010-01-01

    Energy from biomass, bioenergy, is a perspective source to replace fossil fuels in the future, as it is abundant, clean, and carbon dioxide neutral. Biomass can be combusted directly to generate heat and electricity, and by means of thermo-chemical and bio-chemical processes it can be converted into bio-fuels in the forms of solid (e.g., charcoal), liquid (e.g., bio-oils, methanol and ethanol), and gas (e.g., methane and hydrogen), which can be used further for heat and power generation. This paper provides an overview of the principles, reactions, and applications of four fundamental thermo-chemical processes (combustion, pyrolysis, gasification, and liquefaction) for bioenergy production, as well as recent developments in these technologies. Some advanced thermo-chemical processes, including co-firing/co-combustion of biomass with coal or natural gas, fast pyrolysis, plasma gasification and supercritical water gasification, are introduced. The advantages and disadvantages, potential for future applications and challenges of these processes are discussed. The co-firing of biomass and coal is the easiest and most economical approach for the generation of bioenergy on a large-sale. Fast pyrolysis has attracted attention as it is to date the only industrially available technology for the production of bio-oils. Plasma techniques, due to their high destruction and reduction efficiencies for any form of waste, have great application potential for hazardous waste treatment. Supercritical water gasification is a promising approach for hydrogen generation from biomass feedstocks, especially those with high moisture contents.

  7. Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study

    Science.gov (United States)

    Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.

    2015-01-01

    To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.

  8. 76 FR 68381 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean...

    Science.gov (United States)

    2011-11-04

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean Vehicles Program AGENCY... Implementation Plan (SIP) revision submitted by the Commonwealth of Pennsylvania. This SIP revision contains Pennsylvania's Clean Vehicle Program, which adopts California's second generation low emission vehicle program...

  9. Operating experience in cleaning sodium-wetted components at the KNK nuclear power plant

    International Nuclear Information System (INIS)

    Stade, K.Ch.

    1978-01-01

    Since 1969, components of the KNK facility, the first sodium cooled nuclear power plant in the Federal Republic of Germany, have been cleaned both by the alcohol and the wet gas techniques. This paper outlines the experience accumulated In the application of these methods, especially in cleaning steam generators and fuel elements. Some preliminary results are indicated of the attempt to clean a cold trap from the primary circuit of the KNK facility. (author)

  10. The 1990 Clean Air Act amendments

    International Nuclear Information System (INIS)

    Torrens, I.M.; Cichanowicz, J.E.; Platt, J.B.

    1992-01-01

    The impacts of the 1990 Clean Air Act Amendments on utilities are substantial, presenting a host of new technical challenges, introducing new business risks, changing costs of electric generation, creating new winners and losers, and calling for new organizational responses capable of dealing with the complexity and short time for decisions. The magnitude of costs and unknowns puts clean air compliance into a new league of energy issues, in which the decisions utilities must make are not simply technological or engineering economic choices, but rather are very complex business decisions with numerous stakeholders, pitfalls, and opportunities. This paper summarizes the key regulatory requirements of the CAAA, outlines compliance options and questions facing the utility industry, and addresses how utility strategic business decisions could be affected

  11. Basis for the life cycle assessment (LCA) of cleaning-in-place systems in milk processing plants; Bases para el analisis de ciclo de vida de los sistemas de limpieza in situ en plantas de la industria lactea

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barral, S.; Laca Perez, A.; Gutierrez Lavin, A.; Diaz Fernandez, M.; Rendueles de la Vega, M.; Iglesias Gonzalez, E.

    2006-07-01

    Milk processing requires high hygienic operations in order to assure safe products of high quality and suitable for human diet. The cleaning operations that take place during milk processing, do cause environmental impact, because of the high volume of wastewater generated, which is contaminated with rests of milk, detergents and other chemical products. The life cycle assessment of cleaning operations can be a powerful tool to evaluate the environmental impact associated with different operation methodologies. In this work, two current alternatives are studied, by means of operational data of a dairy plant. (Author) 7 refs.

  12. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  13. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, P., E-mail: mportcal@upo.es [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Antúnez, V.; Ortiz, R.; Martín, J.M. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Gómez, M.A. [Instituto Andaluz de Patrimonio Histórico, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Hortal, A.R.; Martínez-Haya, B. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain)

    2013-10-15

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  14. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    International Nuclear Information System (INIS)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J.M.; Gómez, M.A.; Hortal, A.R.; Martínez-Haya, B.

    2013-01-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  15. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Science.gov (United States)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.

    2013-10-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  16. Aspects of cleaning environmental materials for multi-element analysis, e.g. plant samples

    International Nuclear Information System (INIS)

    Markert, B.

    1992-01-01

    Cleaning of samples is often the first step in the entire procedure of sample preparation in environmental trace element research. The question must generally be raised of whether cleaning is meaningful before chemical investigations with plant material (e.g. for the determination of transfer factors in the soil/plant system) or not (e.g. for food chain analysis in the plant/animal system). The most varied cleaning procedures for plant samples are currently available ranging from dry and wet wiping of the leaf or needle surface up to the complete removal of the cuticule with the aid of chlorofom. There is at present no standardized cleaning procedure for plant samples so that it is frequently not possible to compare analytical data from different working groups studying the same plant species. (orig.)

  17. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  18. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  19. Challenges with modifications of the McClean Lake mill to process midwest ore

    International Nuclear Information System (INIS)

    Nguyen, T.T.; Backham, L.

    2010-01-01

    Midwest is a unique uranium deposit with exceptionally high arsenic content. The ore body is located 17 km west of the McClean Lake operation. The McClean Lake mill will be modified to process Midwest ore and handle solid wastes from the Midwest water treatment plant. This paper describes the modifications required of the McClean Lake mill, process challenges associated with treatment of the arsenic, and the possibility of recovering nickel and cobalt as a by-product. It also reviews the complexity in the design of the Midwest water treatment facility which incorporates reverse osmosis technology with conventional physical-chemical water treatment. (author)

  20. Self-Cleaning Antireflective Optical Coatings

    KAUST Repository

    Guldin, Stefan

    2013-11-13

    Low-cost antireflection coatings (ARCs) on large optical surfaces are an ingredient-technology for high-performance solar cells. While nanoporous thin films that meet the zero-reflectance conditions on transparent substrates can be cheaply manufactured, their suitability for outdoor applications is limited by the lack of robustness and cleanability. Here, we present a simple method for the manufacture of robust self-cleaning ARCs. Our strategy relies on the self-assembly of a block-copolymer in combination with silica-based sol-gel chemistry and preformed TiO2 nanocrystals. The spontaneous dense packing of copolymer micelles followed by a condensation reaction results in an inverse opal-type silica morphology that is loaded with TiO2 photocatalytic hot-spots. The very low volume fraction of the inorganic network allows the optimization of the antireflecting properties of the porous ARC despite the high refractive index of the embedded photocatalytic TiO2 nanocrystals. The resulting ARCs combine high optical and self-cleaning performance and can be deposited onto flexible plastic substrates. © 2013 American Chemical Society.

  1. Ultra-clean

    International Nuclear Information System (INIS)

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  2. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  3. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov (United States)

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  4. Chemical pneumonitis

    Science.gov (United States)

    ... cleaning materials such as chlorine bleach, during industrial accidents, or near swimming pools) Grain and fertilizer dust ... and the A.D.A.M. Editorial team. Chemical Emergencies ... about A.D.A.M.'s editorial policy , editorial process and privacy policy . A.D.A.M. is ...

  5. Post-CMP cleaning for metallic contaminant removal by using a remote plasma and UV/ozone

    International Nuclear Information System (INIS)

    Lim, Jong Min; Jeon, Bu Yong; Lee, Chong Mu

    2000-01-01

    For the chemical mechanical polishing (CMP) process to be successful, it is important to establish a good post-CMP cleaning process that will remove not only slurry and particles but also metallic impurities from the polished surface. The common metallic contaminants found after oxide CMP and Cu CMP include Cu, K, and Fe. Scrubbing, a popular method for post-CMP cleaning, is effective in removing particles, but removal of metallic contaminants using this method is not so effective. In this study, the removal of Fe metallic contaminants like Fe, which are commonly found on the wafer surface after CMP processes, was investigated using remote-hydrogen-plasma and UV/O 3 cleaning techniques. Our results show that metal contaminants, including Fe, can be effectively removed by using a hydrogen-plasma or UV/O 3 cleaning technique performed under optimal process conditions. In remote plasma H 2 cleaning, contaminant removal is enhanced with decreasing plasma exposure time and increasing rf-power. The optimal process condition for the removal of the Fe impurities existing on the wafer surface is an rf-power of 100 W. Plasma cleaning for 5 min or less is effective in removing Fe contaminants, but a plasma exposure time of 1 min is more appropriate than 5 min in view of the process time, The surface roughness decreased by 30∼50 % after remote-H 2 -plasma cleaning. On the other hand, the highest efficiency of Fe-impurity removal was achieved for an UV exposure time of 30 s. The removal mechanism for the Fe contaminants in the remote-H 2 -plasma and the UV/O 3 cleaning processes is considered to be the liftoff of Fe atoms when the SiO is removed by evaporation after the chemical or native SiO 2 formed underneath the metal atoms reacts with H + and e - to form SiO

  6. Evaluating exposure of pedestrians to airborne contaminants associated with non-potable water use for pavement cleaning.

    Science.gov (United States)

    Seidl, M; Da, G; Ausset, P; Haenn, S; Géhin, E; Moulin, L

    2016-04-01

    Climate change and increasing demography press local authorities to look after affordable water resources and replacement of drinking water for city necessities like street and pavement cleaning by more available raw water. Though, the substitution of drinking by non-drinking resources demands the evaluation of sanitary hazards. This article aims therefore to evaluate the contribution of cleaning water to the overall exposure of city dwellers in case of wet pavement cleaning using crossed physical, chemical and biological approaches. The result of tracer experiments with fluorescein show that liquid water content of the cleaning aerosol produced is about 0.24 g m(-3), rending possible a fast estimation of exposure levels. In situ analysis of the aerosol particles indicates a significant increase in particle number concentration and particle diameter, though without change in particle composition. The conventional bacterial analysis using total coliforms as tracer suggests that an important part of the contamination is issued from the pavement. The qPCR results show a more than 20-fold increase of background genome concentration for Escherichia coli and 10-fold increase for Enterococcus but a negligible contribution of the cleaning water. The fluorescence analysis of the cleaning aerosol confirms the above findings identifying pavement surface as the major contributor to aerosol organic load. The physical, chemical and microbiological approaches used make it possible to describe accurately the cleaning bioaerosol and to identify the existence of significantly higher levels of all parameters studied during the wet pavement cleaning. Though, the low level of contamination and the very short time of passage of pedestrian in the zone do not suggest a significant risk for the city dwellers. As the cleaning workers remain much longer in the impacted area, more attention should be paid to their chronic exposure.

  7. Mixing zone and drinking water intake dilution factor and wastewater generation distributions to enable probabilistic assessment of down-the-drain consumer product chemicals in the U.S.

    Science.gov (United States)

    Kapo, Katherine E; McDonough, Kathleen; Federle, Thomas; Dyer, Scott; Vamshi, Raghu

    2015-06-15

    Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national

  8. Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe

    International Nuclear Information System (INIS)

    Guan Huimin; Zhu Lihua; Zhou Hehui; Tang Heqing

    2008-01-01

    Self-cleaning materials are widely applied, but the available methods for determining their photocatalytic activity are time consuming. A simple analysis method was proposed to evaluate rapidly the photocatalytic activity of self-cleaning materials. This method is based on monitoring of a highly fluorescent product generated by the self-cleaning materials after illumination. Under UV irradiation, holes photo-induced on the surface of self-cleaning materials can oxidize water molecules (or hydroxide ions) adsorbed on the surface to produce hydroxyl radicals, which then quantitatively oxidize coumarin to highly fluorescent 7-hydroxycoumarin. It was observed that the fluorescence intensity of photo-generated 7-hydroxycoumarin at 456 nm (excited at 346 nm) linearly increased with irradiation time, and the fluorescence intensity at a given irradiation time was linearly proportional to the photocatalytic activity of self-cleaning materials. Consequently, the photocatalytic activity of self-cleaning materials was able to be probed simply by using this new method, which requires an analysis time of 40 min, being much less than 250 min required for a dye method

  9. Can agriculture generate clean energy?

    International Nuclear Information System (INIS)

    Van Zeijts, H.; Oosterveld, E.B.; Timmerman, E.A.

    1994-01-01

    Fossil fuels meet a large part of the energy requirements in Europe. The carbon dioxide produced by using these fuels contributes to the greenhouse effect. By generating energy from vegetable fibres (biomass) the emission of greenhouse gasses can be reduced. As well as an ecological advantage, the cultivation of crops for the supply of energy could also improve the moderate to bad economical results of Dutch arable farms. So far research into the use of biomass as a source of energy has been mainly concerned with its technical and economic feasibility. Our research also assesses the ecological sustainability of the cultivation and use of energy crops. The principal questions we have answered are: how harmful to the environment is the cultivation of energy crops?; what are the direct and indirect environmental effects of fitting energy crops into the cropping plan?; what indirect effects are to be expected at a regional and national level?; on balance, how much energy is produced in the entire cultivation, transport and processing chain?; What effect does this have on the emission of greenhouse gases?; what is the overall conclusion for the various crops with regard to sustainability? The conclusions of this research could help policy makers answer the question whether it is useful from the point of view of sustainability to stimulate the generation of energy from biomass. We have assessed the effects of the cultivation and use of energy crops on: the emission of minerals and pesticides; the use of energy and the emission of greenhouse gases; the fixation of carbon from CO2; the use of by-products and waste products; dehydration; erosion; the contribution to natural values; the contribution to scenic values; and use of space. In the overall assessment each criterion was given equal weight. This choice is arbitrary: in practice, the ratios are different in each situation. We have studied nine crops and their processing chains. Rape is converted into bio-diesel oil by

  10. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  11. How clean is clean?---How clean is needed?

    International Nuclear Information System (INIS)

    Hays, A.K.

    1991-01-01

    This paper will provide an overview of cleaning qualifications used in a variety of industries: from small-scale manufacturer's of precision-machined products to large-scale manufacturer's of electronics (printed wiring boards and surface mount technology) and microelectronics. Cleanliness testing techniques used in the production of precision-machined products, will be described. The on-going DOD program to obtain high-reliability electronics, through the use of military specifications for cleaning and cleanliness levels, will be reviewed. In addition, the continually changing cleanroom/materials standards of the microelectronics industry will be discussed. Finally, we will speculate on the role that new and improved analytical techniques and sensor technologies will play in the factories of the future. 4 refs., 1 tab

  12. Clean nuclear power (2. part)

    International Nuclear Information System (INIS)

    Rocherolles, R.

    1998-01-01

    The 450 nuclear power plants which produce 24% of world electricity do not generate greenhouse gas effects, but 8,000 tonnes per year of irradiated, radioactive fuel. The first article which was published in the July-August 1997 issue of this journal, described the composition and management of these fuels. This article wish to show the advantage of 'advanced re-processing', which would separate fission products from actinides, in order to incinerate them separately in dedicated fuels and reactors, which, from an ecological point of view, seems more efficient than burying them underground in deep, geological layers. To rid the planet of waste which is continuing to build up, the first step is to build 'incinerators' which will eliminate fission products by slow neutron assisted neutronic capture, and actinides by fast neutron assisted fission. Various projects have been set up, in particular, in Los Alamos, Japan and the CERN. The Carlo Rubbia hybrid machine operating on the well-known thorium cycle is the most advanced project. An incinerator connected up to standard PWR reactor produces no actinide, and reduces the existing stock of plutonium. However, the proper solution, obviously, is to no longer produce waste along with power; second generation nuclear fission will do this. The CERN team bas studied a clean reactor, producing practically no actinides, or fission products, more or less. Thus, the solution to the problem of waste is at hand, and nuclear power will be cleaner that all other types of power. The world market opening up to clean nuclear power is about 1,300 Gigawatts, or 1,300 plants of 1,000 Megawatts. Remarkable progress is taking place under our very eyes; soon we will have clean power in sufficient quantities, at a lower cost than that of other forms of power. (authors)

  13. Application to cleaning of waste plastic surfaces using atmospheric non-thermal plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Araya, Masayuki [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Yuji, Toshifumi [Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)]. E-mail: t-yuji@hiroshima-cmt.ac.jp; Watanabe, Takayuki [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Kashihara, Junzou [SHARP corporation, 1-9-2 Nakase, Mihama-Ku, Chiba 261-8520 (Japan); Sumida, Yoshitake [SHARP corporation, 2613-1 Ichinomoto-cho, Tenri 632-8567 (Japan)

    2007-03-12

    The removal of paint on the surface of waste plastics is difficult by the conventional process; in this research, a new cleaning mechanism using atmospheric plasmas was examined through optical emission spectroscopy, electron spectroscopy for chemical analysis, and scanning electron microscopy. Results indicate that an increase of pulse frequency enables for a short processing time for the removal of the paint film, signifying that the production of radicals in plasma, especially oxygen radicals, can be controlled by pulse frequency. Plasma jets were generated under the experimental conditions of an input power of 250 W to 400 W, a pulse frequency of 2 kHz to 12 kHz, and a plasma gas flow rate of 30 L/min. Examination of the intensity ratio of the reactive species, as measured by emission spectroscopy, showed that the O/N value increased with an increase in pulse frequency. Results of analysis with electron spectroscopy for chemical analysis show that nitrogen atoms and molybdenum in only the paint film decreased through plasma processing.

  14. Application to cleaning of waste plastic surfaces using atmospheric non-thermal plasma jets

    International Nuclear Information System (INIS)

    Araya, Masayuki; Yuji, Toshifumi; Watanabe, Takayuki; Kashihara, Junzou; Sumida, Yoshitake

    2007-01-01

    The removal of paint on the surface of waste plastics is difficult by the conventional process; in this research, a new cleaning mechanism using atmospheric plasmas was examined through optical emission spectroscopy, electron spectroscopy for chemical analysis, and scanning electron microscopy. Results indicate that an increase of pulse frequency enables for a short processing time for the removal of the paint film, signifying that the production of radicals in plasma, especially oxygen radicals, can be controlled by pulse frequency. Plasma jets were generated under the experimental conditions of an input power of 250 W to 400 W, a pulse frequency of 2 kHz to 12 kHz, and a plasma gas flow rate of 30 L/min. Examination of the intensity ratio of the reactive species, as measured by emission spectroscopy, showed that the O/N value increased with an increase in pulse frequency. Results of analysis with electron spectroscopy for chemical analysis show that nitrogen atoms and molybdenum in only the paint film decreased through plasma processing

  15. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  16. Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection

    International Nuclear Information System (INIS)

    Al-Amoudi, Ahmed; Williams, Paul; Al-Hobaib, A.S.; Lovitt, Robert W.

    2008-01-01

    In membrane process industries, membrane cleaning is one of the most important concerns from both economical and scientific points of view. Though cleaning is important to recover membrane performance, an inappropriate selection of cleaning agents may result into unsatisfactory cleaning or irreparable membrane. In this study the cleaning performance has been studied with measurements of membrane contact angle, Updated Donnan steric partitioning pore model (UDSPM) and salt rejection as well as flux measurement. Thin film nanofiltration (NF) membranes such as DK, HL and DL provided by GE Osmonics are used in this study. Tests were carried out with virgin DK, HL and DL as well as fouled DK membranes. Several cleaning agents were investigated; some of them were analytical grade such as HCl, NaOH and others such as SDS, mix agents were commercial grade agents that are already in use in commercial plants. Contact angle, DSPM and salt rejection as well as flux of virgin and fouled membranes before and after chemical cleaning were measured and compared. The contact angle measurements with and without chemical cleaning of different virgin and fouled membranes revealed very interesting results which may be used to characterise the membrane surface cleanliness. The contact angle results revealed that the cleaning agents are found to modify membrane surface properties (hydrophobicity/hydrophilicity) of the treated and untreated virgin and fouled membranes. The details of these results were also investigated and are reported in the paper. However, UDSPM method did not give any valuable information about pore size of the untreated and treated NF membranes. The salt rejection level of monovalent and divalent ions before and after cleaning by high and low pH cleaning agents is also investigated and is reported in the paper

  17. Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amoudi, Ahmed [Centre for complex fluids processing, Multidisciplinary Nanotechnology Centre, School of Engineering, University of Wales, Swansea SA2 8PP (United Kingdom) and Saline Water Conversion Corporation (SWCC), Saline Water Desalination Research Institute Staff (Saudi Arabia)], E-mail: 310981@swan.ac.uk; Williams, Paul [Centre for complex fluids processing, Multidisciplinary Nanotechnology Centre, School of Engineering, University of Wales, Swansea SA2 8PP (United Kingdom); Al-Hobaib, A.S. [Institute of Atomic Energy Research, King Abdulaziz City for Science And Technology, P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Lovitt, Robert W. [Centre for complex fluids processing, Multidisciplinary Nanotechnology Centre, School of Engineering, University of Wales, Swansea SA2 8PP (United Kingdom)

    2008-04-30

    In membrane process industries, membrane cleaning is one of the most important concerns from both economical and scientific points of view. Though cleaning is important to recover membrane performance, an inappropriate selection of cleaning agents may result into unsatisfactory cleaning or irreparable membrane. In this study the cleaning performance has been studied with measurements of membrane contact angle, Updated Donnan steric partitioning pore model (UDSPM) and salt rejection as well as flux measurement. Thin film nanofiltration (NF) membranes such as DK, HL and DL provided by GE Osmonics are used in this study. Tests were carried out with virgin DK, HL and DL as well as fouled DK membranes. Several cleaning agents were investigated; some of them were analytical grade such as HCl, NaOH and others such as SDS, mix agents were commercial grade agents that are already in use in commercial plants. Contact angle, DSPM and salt rejection as well as flux of virgin and fouled membranes before and after chemical cleaning were measured and compared. The contact angle measurements with and without chemical cleaning of different virgin and fouled membranes revealed very interesting results which may be used to characterise the membrane surface cleanliness. The contact angle results revealed that the cleaning agents are found to modify membrane surface properties (hydrophobicity/hydrophilicity) of the treated and untreated virgin and fouled membranes. The details of these results were also investigated and are reported in the paper. However, UDSPM method did not give any valuable information about pore size of the untreated and treated NF membranes. The salt rejection level of monovalent and divalent ions before and after cleaning by high and low pH cleaning agents is also investigated and is reported in the paper.

  18. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    Science.gov (United States)

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  19. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    International Nuclear Information System (INIS)

    Blazek, Steve

    1999-01-01

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals

  20. Short communication: Reactivity of diacetyl with cleaning and sanitizing agents.

    Science.gov (United States)

    Rincon-Delgadillo, M I; Lopez-Hernandez, A; Rankin, S A

    2013-01-01

    Diacetyl is used to impart a buttery flavor to numerous food products such as sour cream, cottage cheese, vegetable oil-based spreads, baked goods, and beverages. Recent studies have linked exposure to high concentrations of diacetyl and the onset of bronchiolitis obliterans. Due to the reported risks that diacetyl may pose, many food companies have altered practices to reduce worker exposure to diacetyl, including the use of personal respirators, improved air handling systems, and adequate cleaning practices. Commonly used cleaning and sanitizing agents may be reactive with diacetyl; however, the efficacy of these chemicals has not been studied in detail and remains unclear. The objective of this work was to study the reaction chemistry of diacetyl with common industrial cleaning and sanitizing chemicals. The reactions were assessed at equimolar concentrations and analyzed by gas chromatography-mass spectrometry. Peroxyacetic acid was most reactive with diacetyl (95% reduction in diacetyl), followed by sodium hypochlorite (76% reduction), and hydrogen peroxide (26% reduction). Benzalkonium chloride (BAC) did not react with diacetyl. Acetic acid was detected as the main product of reactions of diacetyl with peroxyacetic acid, sodium hypochlorite, and hydrogen peroxide. 1,1-Dichloro-2-propanone and 1,1,1-trichloropropanone were also identified as volatile reaction products in the sodium hypochlorite reactions. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    Science.gov (United States)

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  2. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    Science.gov (United States)

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  3. Ontario's long-term energy plan, building our clean energy future

    International Nuclear Information System (INIS)

    2010-01-01

    The first energy priority of the plan is to provide all Ontarians with a clean, modern and reliable electricity system. It gives a summary of the means implemented to help families and businesses with increasing electricity costs. The plan is to shift the province from a coal-dependent system. Over the next 20 years, 15,000 MW (megawatt) of generating capacity will have to be rebuilt or constructed to replace older Ontario's energy infrastructures. In Ontario, an increase of about 3.5% per year in residential prices, resulting from the need to enjoy clean air, reliable generation and modernized transmission, is expected to occur over the next two decades. The expected electricity needs in Ontario and efficient means to satisfy them are described in this plan.

  4. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  5. New catalysts for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Maijanen, A; Hase, A [eds.; VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  6. New catalysts for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Maijanen, A.; Hase, A. [eds.] [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  7. The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater.

    Science.gov (United States)

    Cousins, Ian T; Vestergren, Robin; Wang, Zhanyun; Scheringer, Martin; McLachlan, Michael S

    2016-09-01

    Already in the late 1990s microgram-per-liter levels of perfluorooctane sulfonate (PFOS) were measured in water samples from areas where fire-fighting foams were used or spilled. Despite these early warnings, the problems of groundwater, and thus drinking water, contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) including PFOS are only beginning to be addressed. It is clear that this PFAS contamination is poorly reversible and that the societal costs of clean-up will be high. This inability to reverse exposure in a reasonable timeframe is a major motivation for application of the precautionary principle in chemicals management. We conclude that exposure can be poorly reversible; 1) due to slow elimination kinetics in organisms, or 2) due to poorly reversible environmental contamination that leads to continuous exposure. In the second case, which is relevant for contaminated groundwater, the reversibility of exposure is not related to the magnitude of a chemical's bioaccumulation potential. We argue therefore that all PFASs entering groundwater, irrespective of their perfluoroalkyl chain length and bioaccumulation potential, will result in poorly reversible exposures and risks as well as further clean-up costs for society. To protect groundwater resources for future generations, society should consider a precautionary approach to chemicals management and prevent the use and release of highly persistent and mobile chemicals such as PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Steam generator operating experience: Update for 1984-1986

    International Nuclear Information System (INIS)

    Frank, L.; Stokley, J.

    1988-06-01

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity, provides updated inspection results reported in 1984, 1985, and 1986, and highlights both prevalent problem areas and advances in improved equipment test practices, preventive measures, repair techniques, and replacement procedures. It describes equipment design features of the three major suppliers and discusses 68 plants in detail. Steam generator degradation mechanisms include intergranular stress corrosion cracking, primary water stress corrosion cracking, pitting, intergranular attack, and vibration wear that effects tube integrity and causes leakage. Plugging, sleeving heat treatment, peening, chemical cleaning, and steam generator replacements are described and regulatory instruments and inspection guidelines for nondestructive evaluations and girth weld cracking are discusses. The report concludes that although degradation mechanisms are generally understood, the elimination of unscheduled plant shutdowns and costly repairs resulting from leaking tubes has not been achieved. Highlights of steam generator research and unresolved safety issues are discussed. 21 refs., 8 tabs

  9. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  10. MIT Clean Energy Prize: Final Technical Report May 12, 2010 - May 11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Chris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Campbell, Georgina [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Salony, Jason [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Aulet, Bill [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2011-08-09

    The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educational process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.

  11. Cleaning up commingled uranium mill tailings: is Federal assistance necessary

    International Nuclear Information System (INIS)

    1979-01-01

    GAO was asked to determine whether Federal assistance should be given to operating mill owners that have processed uranium for sale to both government and industry and, thus, generated residual radioactive wastes. The wastes generated for both government and commercial use are called commingled uranium mill tailings. GAO recommends that the Congress provide assistance to active mill owners to share in the cost of cleaning up that portion of the tailings which were produced under Federal contract. Further, GAO believes that the Congress should also consider having the Federal government assist those mills who acted in good faith in meeting all legal requirements pertaining to controlling the mill tailings that were generated for commercial purposes and for which the Federal government is now requiring retroactive remedial action. At the same time, the Congress should make sure that this action establishes no precedent for the Federal government assuming the financial responsibility of cleaning up other non-Federal nuclear facilities and wastes, including those mill tailings generated after the date when the Federal government notified industry that the failings should be controlled

  12. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  13. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products.

    Science.gov (United States)

    Bondi, Cara Am; Marks, Julia L; Wroblewski, Lauren B; Raatikainen, Heidi S; Lenox, Shannon R; Gebhardt, Kay E

    2015-01-01

    Environmental chemical exposure is a major concern for consumers of packaged goods. The complexity of chemical nomenclature and wide availability of scientific research provide detailed information but lends itself to misinterpretation by the lay person. For the surfactant sodium lauryl sulfate (SLS), this has resulted in a misunderstanding of the environmental health impact of the chemical and statements in the media that are not scientifically supported. This review demonstrates how scientific works can be misinterpreted and used in a manner that was not intended by the authors, while simultaneously providing insight into the true environmental health impact of SLS. SLS is an anionic surfactant commonly used in consumer household cleaning products. For decades, this chemical has been developing a negative reputation with consumers because of inaccurate interpretations of the scientific literature and confusion between SLS and chemicals with similar names. Here, we review the human and environmental toxicity profiles of SLS and demonstrate that it is safe for use in consumer household cleaning products.

  14. Laser cleaning of parchment: structural, thermal and biochemical studies into the effect of wavelength and fluence

    International Nuclear Information System (INIS)

    Kennedy, Craig J.; Vest, Marie; Cooper, Martin; Wess, Tim J.

    2004-01-01

    Laser cleaning of parchment is a novel technique that has the potential to provide contactless, chemical-free cleaning of historically important documents. However, the effect of laser cleaning on the collagenous structure of parchment is still poorly understood, as is the effect of the wavelength or the energy density (fluence level) used to clean parchment. In this study, small angle X-ray scattering (SAXS), shrinkage temperature (Ts) measurements by the micro hot table technique and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of parchment samples after laser cleaning reveal the effect of cleaning to the structural, thermal and molecular characteristics of parchment, respectively. The effect of cleaning at infrared (1064 nm), green (532 nm) and ultraviolet (266 nm) wavelengths at a range of fluence levels is investigated. SAXS is used to investigate the removal of dirt from parchment. Laser cleaning at IR or green wavelengths appears not to alter the collagen diffraction pattern from SAXS, the shrinkage activity or shrinkage temperature from Ts measurements or the molecular integrity of parchment as shown by SDS-PAGE. However, parchments cleaned at the ultraviolet wavelength display structural damage and a reduction in hydrothermal stability and molecular integrity

  15. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties.

    Science.gov (United States)

    Xu, Qian Feng; Liu, Yang; Lin, Fang-Ju; Mondal, Bikash; Lyons, Alan M

    2013-09-25

    Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated.

  16. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  17. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  18. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  19. Clean energy: Revisiting the challenges of industrial policy

    International Nuclear Information System (INIS)

    Morris, Adele C.; Nivola, Pietro S.; Schultze, Charles L.

    2012-01-01

    Large public investments in clean energy technology arguably constitute an industrial policy. One rationale points to market failures that have not been corrected by other policies, most notably greenhouse gas emissions and dependence on oil. Another inspiration for clean energy policy reflects economic arguments of the 1980s. It suggests strategic government investments would increase U.S. firms' market share of a growing industry and thus help American firms and workers. This paper examines the reasoning for clean energy policy and concludes that: •While a case can be made that subsidizing clean energy might help address market failures, the case may be narrower than some assert, and turning theory into sound practice is no simple feat. •An appropriate price on greenhouse gases is an essential precondition to ensuring efficient incentives to develop and deploy cost-effective emissions-abating technologies. However, efficient prices alone are unlikely to generate efficient levels of basic research and development by private firms. •Government investments in clean energy are unlikely to produce net increases in employment in the long run, in part because pushing home-grown technologies at taxpayers' expense offers no guarantee that the eventual products ultimately would not be manufactured somewhere else. •Spending on clean energy technologies is not well suited to fiscal stimulus. The authors recommend that: •Federal energy spending should invest in technologies with the lowest expected cost of abatement and highest probability of market penetration. •Funding decisions ought to be insulated – as much as possible – from rent-seeking by interest groups, purely political distortions, and the parochial preferences of legislators. - Highlights: ► Clean energy technology policy may be less justifiable than many assert, and doing it well is hard. ► The government should appropriately price greenhouse gas emissions and fund technology R and D.

  20. Cleaning graphene with a titanium sacrificial layer

    International Nuclear Information System (INIS)

    Joiner, C. A.; Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-01-01

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  1. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); J. Boorsma (Jeffrey); D.A.M. van Dartel (Dorien A M); J.J. Goeman (Jelle); E.C. de Jong (Esther); A.H. Piersma (Aldert); R.H. Stierum (Rob); J. Kleinjans (Jos); J.A. Kors (Jan)

    2013-01-01

    textabstractBackground: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with

  2. Water lancing of Bruce-A Unit 3 and 4 steam generators

    International Nuclear Information System (INIS)

    Puzzuoli, F.V.; Murchie, B.; Allen, S.

    1995-01-01

    During the Bruce-A 1993 Unit 4 and 1994 Unit 3 outages, three water lancing operations were carried out along with chemical cleaning as part of the station boiler refurbishment program. The water lancing activities focused on three boiler areas.. 1) support plates to clean partially or completely blocked broach holes and prevent boiler water level oscillations, 2) hot leg U-bend supports (HLUBS) to remove deposits contributing to boiler tube stress corrosion cracking (SCC) and 3) tube sheets to dislodge sludge piles that potentially threaten boiler tube integrity and to flush out post chemical cleaning insoluble residues. The combination of water lancing and chemical cleaning effectively reduced broach hole blockage from up to 100% to 0-10% or less. As a result, boilers in Units 3 and 4 will operate for some time to come without concerns over water level oscillations. However, deposits remained in most tube support plate land areas. (author)

  3. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  4. Catching the wind - clean and sustainable solutions to China's energy shortfall

    International Nuclear Information System (INIS)

    Hayes, D.

    2002-01-01

    China's power generating capacity has increased markedly in recent years largely due new coal-fired power stations, but sadly, the environmental consequences were largely ignored. Apart from the coal used for power generation, coal is also used to fuel industrial boilers and in houses: some of the world's most polluted cities are in China. In the late 1990s, China began to curb the environmental impact by closing smaller power stations and retrofitting clean-up plant to the bigger stations, but there is still a lot of cleaning-up still to do. The government of China is now offering incentives for the development of renewable sources of energy, and wind power is seen as a clean and sustainable solution to the air pollution problem. The government has identified various geographical regions suitable for wind farms. Solar energy is also seen as a promising source of energy and is being employed in areas remote from power grids. The paper discusses incentives and bank loans for the development and application of renewables

  5. The influence of in situ argon cleaning of GaAs on Schottky diodes and metal-semiconductor field-effect transistors

    NARCIS (Netherlands)

    Hassel, van J.G.; Heyker, H.C.; Kwaspen, J.J.M.

    1995-01-01

    The influence of in situ argon cleaning of GaAs on the electrical characteristics of Schottky diodes and metal–semiconductor field-effect transistors (MESFETs) is investigated. The beam energy was varied from 50 to 500 eV and the characteristics were compared to wet chemically cleaned devices. The

  6. Controlling the clean room atmosphere

    International Nuclear Information System (INIS)

    Meeks, R.F.

    1979-01-01

    Several types of clean rooms are commonly in use. They include the conventional clean room, the horizontal laminar flow clean room, the vertical laminar flow clean room and a fourth type that incorporates ideas from the previous types and is known as a clean air bench or hood. These clean rooms are briefly described. The origin of contamination and methods for controlling the contamination are discussed

  7. Dynamic analysis of the CRBRP clean-up system (three stage aqueous scrubber)

    International Nuclear Information System (INIS)

    Kyi, R.; Bijlani, C.; Fazekas, P.; Dajani, A.

    1981-01-01

    The CRBRP containment clean-up system design required the determination of the thermal-hydraulic performance of the system during its projected operating cycle. The reduced scale component tests at HEDL provided valuable information about the generic performance of the components; however, due to the limitations of the test facility the exact simulation of the actual CRBRP conditions was not feasible. A computer program was developed to permit dynamic system analysis of the full size air cleaning system. The dynamic system analysis considered the mass and energy balances across each component. In addition to the major filtration system components, the system modeling included the supporting fluid system components such as pumps, tanks and heat exchangers. Variable gas flow, temperature, chemical concentrations, and other system parameters were also modeled. Fission product heat, chemical reaction heat and heat of solution were considered. The analysis results provided sodium hydroxide solution concentrations and temperatures, gas temperatures and other variables at the various components within the air cleaning system for each calculated time interval. The accuracy of the computer modeling was verified by comparing the calculated results with HEDL test data. The comparison indicated a better than +-10% agreement with the test data. The analysis results provided the basis for the selection of the system components

  8. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, D.A. van; Goeman, J.J.; Jong, E. de; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    BACKGROUND: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  9. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, van D.A.M.; Goeman, J.J.; Jong, de E.; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    Background: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  10. Digital processing of SEM images for the assessment of evaluation indexes of cleaning interventions on Pentelic marble surfaces

    International Nuclear Information System (INIS)

    Moropoulou, A.; Delegou, E.T.; Vlahakis, V.; Karaviti, E.

    2007-01-01

    In this work, digital processing of scanning-electron-microscopy images utilized to assess cleaning interventions applied on the Pentelic marble surfaces of the National Archaeological Museum and National Library in Athens, Greece. Beside mineralogical and chemical characterization that took place by scanning-electron-microscopy with Energy Dispersive X-ray Spectroscopy, the image-analysis program EDGE was applied for estimating three evaluation indexes of the marble micro-structure. The EDGE program was developed by the U.S. Geological Survey for the evaluation of cleaning interventions applied on Philadelphia City Hall. This computer program analyzes scanning-electron-microscopy images of stone specimens cut in cross-section for measuring the fractal dimension of the exposed surfaces, the stone near-surface fracture density, the shape factor (a surface roughness factor) and the friability index which represents the physico-chemical and physico-mechanical stability of the stone surface. The results indicated that the evaluation of the marble surface micro-structure before and after cleaning is achieved by the suggested indexes, while the performance of cleaning interventions on the marble surfaces can be assessed

  11. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  12. Sweet carbon: An analysis of sugar industry carbon market opportunities under the clean development mechanism

    International Nuclear Information System (INIS)

    McNish, Tyler; Jacobson, Arne; Kammen, Dan; Gopal, Anand; Deshmukh, Ranjit

    2009-01-01

    Bagasse power generation projects provide a useful framework for evaluating several key aspects of the Clean Development Mechanism of the Kyoto Protocol. On the positive side, our analysis, which draws in part from a data set of 204 bagasse electricity generation projects at sugar mills, indicates that these projects provide Annex I country investors with a cost-effective means to achieve greenhouse gas emissions reductions. Our analysis also confirms that the marketplace for Clean Development Mechanism-derived offsets is robust and competitive. Moreover, bagasse projects appear to provide a positive example in a 'new wave' of clean energy investment that has replaced the earlier industrial gas projects. At the same time, we also identify two aspects of the CDM that demand improvement. First, the additionality standard needs to be tightened and made more transparent and consistent. Financial additionality should be required for all projects; however, any financial additionality test applied by the Clean Development Mechanism's Executive Board must be informed by the significant barriers faced by many projects. Second, the administrative processes for registration and verification of offsets need to be streamlined in order to prevent long registration time lags from chilling clean energy investment.

  13. Chemical exposure among professional ski waxers--characterization of individual work operations.

    Science.gov (United States)

    Freberg, Baard Ingegerdsson; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag G; Daae, Hanne Line; Hersson, Merete; Molander, Paal

    2013-04-01

    Preparation of skis prior to skiing competitions involves several individual work operations and the use of a wide variety of chemically based ski waxing products to improve the performance of the skis, including products used after skiing for wax removal and ski sole cleaning. Modern ski waxes consist mainly of petroleum-derived straight-chain aliphatic hydrocarbons, perfluoro-n-alkanes or polyfluorinated n-alkanes. The wax cleaning products contain solvents such as neat aliphatic hydrocarbons (aliphates) or a mixture with limonene. Different ski waxing work operations can result in contaminated workroom atmospheres. The aim of this study was to assess the chemical exposures related to the individual ski waxing work operations by investigating the specific work operations in controlled model experiments. Four main work operations with potential exposures were identified: (i) application of glider waxes, (ii) scraping and brushing of applied glider waxes, (iii) application of base/grip waxes, and (iv) ski sole cleaning. Aerosol particle masses were sampled using conical samplers equipped with 37-mm PVC, 5-µm pore size filters and cyclones equipped with 37-mm PVC, 0.8-µm pore size filters for the inhalable and the respirable aerosol mass fractions, respectively. For measurements of particle number concentrations, a Scanning Mobility Particle Sizer was used. Mean aerosol particle mass concentrations of 18.6 mg m(-3) and 32.2 mg m(-3) were measured during application of glider wax powders in the respirable and in the inhalable aerosol mass fractions, respectively. Particle number concentration of ~900 000 particles cm(-3) was measured during application of glider wax powder products. Ski sole cleaning with products containing aliphates displayed solvent air concentrations up to 62.5 p.p.m. This study shows that the potential exposure to generated particles during ski waxing and ski preparation is considerable, especially during work using glide wax powders.

  14. New technologies of chemical management in Higashi-Niigata thermal power station; Higashi niigata karyoku hatsudensho niokeru kagaku kanri no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Takeshi; Tsuchida, Hideo; Horikawa, Minoru; Takizawa, Yasushi; Sato, Tsuneo [Tohoku Electric Power Corp., Mitagi (Japan); Suzuki, Katsuyuki [COSMO Research Institute, Saitama (Japan)

    1999-01-15

    This report presents the new technologies of chemical management in Higashi-Niigata Thermal Power Station. 1. Development of New Turbine Oil with Improved Oxidation Stability We examined the effect of the dosage of DBEP as an oxidation inhibitor on oxidation stability. As a result, the newly developed turbine oil has about 30% higher oxidation stability than the conventional turbine oil. 2. Extended Interval of Chemical Cleaning for Circulation Boiler We carried out an actual plant test using the JIS guaranteed reagent (sodium phosphate) instead of the conventional chemical. As the JIS guaranteed reagent has few corrosive compounds, the corrosive rate of water-wall tubes was decreased and therefore, the interval of chemical cleaning for the circulation boiler was extended. 3. Automatic Injection Method of Sodium Phosphate for Heat Recovery Steam Generator (HRSG) of Combined Cycle Power Plant We changed the injection method of sodium phosphate from the semi automatic to automatic injection method which was controlled with the conductivity of the boiler water. In six HRSG of the combined cycle power plant, we automatically controlled phosphoric acid concentration to within the target value. (author)

  15. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  16. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  17. Hard sludge formation in modern steam generators of nuclear power plants. Formation, risks and mitigation

    International Nuclear Information System (INIS)

    Strohmer, F.

    2014-01-01

    In recent years modern steam generators with triangular pitch tube bundle geometry have experienced damage caused by hard sludge formation on top of the tube sheet and denting. The effect can lead to a limitation of the modern steam generators’ lifetime. The current publication shows reasons for the generation of hard sludge formation. Moreover, it describes the risk arising from hard sludge formation for the concerned steam generators and the mitigation of the problem. The main factors contributing to the formation of hard sludge are: the amount of corrosion product ingress into the steam generators, hard sludge formation favouring impurities and, skipped maintenance applications during outages. The main damaging mechanism of denting that can arise under certain secondary side conditions from hard sludge is explained. For steam generator tube denting, aggressive, oxidizing conditions have to be established in crevices beneath the hard sludge piles. Severely dented tubes are sensitive toward outer diameter stress corrosion cracking (ODSCC). The denting and ODSCC mechanism is explained. In addition, a proactive long-term maintenance strategy to avoid the formation of hard sludge piles will be shown. The strategy is based on a reduction of the corrosion product ingress into the steam generator's secondary side, and on the regular removal of deposits from the tube sheet and from the entire upper bundle area by latest mechanical cleaning methods. For hard deposits - formed either by silicates or long term hardened corrosion products, which, in the past, could not be removed by chemical or mechanical means - a new, simple, mechanical cleaning method is presented. This method can be used during the normal time frame of an outage and allows the restart of the unit with clean steam generator tube sheets. This mitigates the tendency to form hard sludge and denting in the long term. (author)

  18. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  19. Petroleum storage tank cleaning using commercial microbial culture products

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  20. Ultrasonic filtration of industrial chemical solutions

    Science.gov (United States)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  1. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Fundamentals and applications of dry CO2 cryogenic aerosol for photomask cleaning

    Science.gov (United States)

    Varghese, Ivin; Balooch, Mehdi; Bowers, Charles W.

    2010-09-01

    There is a dire need for the removal of all printable defects on lithography masks. As the technology node advances, smaller particles need to be efficiently removed from smaller features without any damage or adders. CO2 cryogenic aerosol cleaning is a dry, residue-free and chemically inert technique that doesn't suffer from disadvantages of conventional wet cleaning methods such as transmission/reflectivity loss, phase change, CD change, haze/progressive defects, and/or limitation on number of cleaning cycles. Ultra-pure liquid CO2 when dispensed through an optimally designed nozzle results in CO2 clusters that impart the required momentum for defect removal. Historically nanomachining debris removal has been established with this technique. Several improvements have been incorporated for cleaning of advanced node masks, which has enabled Full Mask Final Clean, a new capability that has been successfully demonstrated. The properties of the CO2 clusters can be captured utilizing the Phase Doppler Anemometry (PDA) and effect of varying process and design parameters can be verified. New nozzles have been designed to widen the cleaning process window for advanced node optical masks, without any damage to the weak primary features and/or sub-resolution assist features (SRAFs). This capability has been experimentally proven for high aspect ratio SRAFs e.g. 2.79 (52nm wide by 145 nm tall) as well as SRAFs 45nm wide by 73 nm tall. In this paper, 100% removal of soft defects that would have printed on advanced node masks is demonstrated. No printed defects larger than 50nm is observed after the CO2 cleaning. Stability of the cleaning and handling mechanisms has been demonstrated over the last 4.5 months in a production environment. The CO2 cleaning technique is expected to be effective for more advanced masks and Extreme Ultra-Violet (EUV) lithography.

  3. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  4. Physical and chemical processes for the generation of 1-μm-structures

    International Nuclear Information System (INIS)

    Mader, L.

    1979-01-01

    The following processes for the realization of fine structures in isolator and metal layers on silicon wafers have been studied: Wet chemical etching of silicon dioxide and aluminum layers; plasma etching of polysilicon layers; ion beam etching of silicon dioxide and polysilicon layers, lift-off technique for metal pattern generation. Test structures and functioning integrated circuits (memory cells, CCDs) with minimum dimensions of 1.5 μm were realized using these methods of pattern generation. (orig.) 891 ORU/orig. 892 MB [de

  5. Darlington steam generator life assurance program

    International Nuclear Information System (INIS)

    Jelinski, E.; Dymarski, M.; Maruska, C.; Cartar, E.

    1995-01-01

    The Darlington Nuclear Generating Station belonging to Ontario Hydro is one of the most modern and advanced nuclear generating stations in the world. Four reactor units each generate 881 net MW, enough to provide power to a major city, and representing approximately 20% of the Ontario grid. The nuclear generating capacity in Ontario represents approximately 60% of the grid. In order to look after this major asset, many proactive preventative and predictive maintenance programs are being put in place. The steam generators are a major component in any power plant. World wide experience shows that nuclear steam generators require specialized attention to ensure reliable operation over the station life. This paper describes the Darlington steam generator life assurance program in terms of degradation identification, monitoring and management. The requirements for chemistry control, surveillance of process parameters, surveillance of inspection parameters, and the integration of preventative and predictive maintenance programs such as water lancing, chemical cleaning, RIHT monitoring, and other diagnostics to enhance our understanding of life management issues are identified and discussed. We conclude that we have advanced proactive activities to avoid and to minimize many of the problems affecting other steam generators. An effective steam generator maintenance program must expand the knowledge horizon to understand life limiting processes and to analyze and synthesize observations with theory. (author)

  6. Maintenance and repair aspects of the steam generator modules for the United States' LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, R W

    1975-07-01

    This paper describes the main considerations relating to the field maintenance and repair of the steam generator modules for the Clinch River Breeder Reactor Plant and the development approaches being employed for some of the critical elements of these operations. In particular, the approach to plant chemical cleaning of the waterside of the modules and the approach to recovery from leaks between the water and sodium sides of the modules are discussed. (author)

  7. Maintenance and repair aspects of the steam generator modules for the United States' LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Devlin, R.W.

    1975-01-01

    This paper describes the main considerations relating to the field maintenance and repair of the steam generator modules for the Clinch River Breeder Reactor Plant and the development approaches being employed for some of the critical elements of these operations. In particular, the approach to plant chemical cleaning of the waterside of the modules and the approach to recovery from leaks between the water and sodium sides of the modules are discussed. (author)

  8. Contamination spike simulation and measurement in a clean metal vapor laser

    International Nuclear Information System (INIS)

    Lin, C.E.; Yang, C.Y.

    1990-01-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure

  9. 1984 NRC Branch annual report: Steam Generator Group Project

    International Nuclear Information System (INIS)

    Clark, R.A.; Bickford, R.L.; Birks, A.S.

    1985-02-01

    Program objectives are to develop validated models, based on experimental data, for prediction of margins-to-failure under burst and collapse pressures of steam generator tubing found to be service-degraded by eddy current inservice inspection. This required the research contractor, Pacific Northwest Laboratory, to obtain, house and prepare an out-of-service degraded steam generator for a confirmatory research program. This research includes: (1) validation of current and developmental nondestructive examination techniques; (2) optimization of inservice inspection procedures, sampling plan and inspection period; (3) validation of tube integrity predictive models; (4) validation of stress corrosion cracking predictive models; (5) development/optimization of tube plugging criteria; and (6) evaluation of proposed chemical cleaning and decontamination processes/procedures with respect to near-term integrity and long-term effects on corrosion, degradation and safety

  10. Use of acoustic field in gas cleaning

    International Nuclear Information System (INIS)

    Boulaud, D.; Madelaine, G.; Malherbe, C.

    1985-01-01

    The use of acoustic field in gas cleaning can be done in two ways: the first is the conditioning of an aerosol by acoustic agglomeration before filtration by conventional methods (cyclones, granular beds, etc.), the second is the collection efficiency improvement of granular bed filters exposed to an acoustic field. In a first part, experimental results are given on the acoustic agglomeration of a polydisperse aerosol of mass concentration between 0.5 and 1 g/m 3 . An important effect of wall precipitation of particles is described and deposition velocity due to the presence of an acoustic field are measured as a function of particle diameter, sound pressure level and acoustic frequency. A dimensionless relationship between the deposition velocity and particle relaxation time is established for these results. At the end of this part energetic criteria for the use of acoustic agglomeration in a gas cleaning train is given. In a second part, experimental results are given to the influence of acoustic field on the collection efficiency of monodispersed aerosols ranging from 0.1 to 1 μm. For these both uses of acoustic field in industrial gas cleaning the different alternatives for the acoustic field generation are discussed

  11. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  12. How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?

    KAUST Repository

    Le, Ngoc Lieu

    2017-05-18

    We compare the efficiency of grafting polyethylene glycol (PEG) and poly(sulfobetaine) hydrogel layer on poly(ether imide) (PEI) hollow-fiber ultrafiltration membrane surfaces in terms of filtration performance, fouling minimization and stability in cleaning solutions. Two previously established different methods toward the two different chemistries (and both had already proven to be suited to reduce fouling significantly) are applied to the same PEI membranes. The hydrophilicity of PEI membranes is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from the hydrogel layers. However, these barriers increase protein rejection. In the exposure at a static condition, grafting PEG or poly(sulfobetaine) reduces protein adsorption to 23% or 11%, respectively. In the dynamic filtration, the hydrogel layers minimizes the flux reduction and increases the reversibility of fouling. Compared to the pristine PEI membrane that can recover its flux to 42% after hydraulic cleaning, the PEG and poly(sulfobetaine) grafted membranes can recover their flux up to 63% and 94%, respectively. Stability tests show that the poly(sulfobetaine) hydrogel layer is stable in acid, base and chlorine solutions, whereas the PEG hydrogel layer suffers alkaline hydrolysis in base and oxidation in chlorine conditions. With its chemical stability and pronounced capability of minimizing fouling, especially irreversible fouling, protective poly(sulfobetaine) hydrogel layers have great potential for various membrane-based applications.

  13. Morphologically intelligent underactuated robot for underwater hull cleaning

    DEFF Research Database (Denmark)

    Souto, Daniel; Faina, Andres; López-Peña, Fernando

    2015-01-01

    In this paper we discuss a new type of robot for underwater hull cleaning on ships with non-magnetic hulls. This robot is based on the concept that cleaning hulls regularly, without waiting to take them out of the water, will improve the efficiency of the ships and will permit a reduction...... in the use of the chemicals that are usually employed to prevent the growth of marine life on the hull and which are generally harmful to the environment. The robot described in this paper is an underactuated morphologically adapted robot that through an appropriate morphology and making use of the forces...... and constraints of the environment solves the most difficult problems that arise when moving along hulls. Some of these are changing planes, negotiating appendices, avoiding portholes, passing corners, and other elements. This greatly simplifies the control mechanisms that are required for its operation making...

  14. Chemical characteristics of N2O5 observed at a rural site in Beijing winter 2016: from clean to polluted air mass

    Science.gov (United States)

    Wang, H.; Lu, K.; Tan, Z.; Chen, X.; Wu, Z.; Zhu, Q.; Li, X.; Liu, Y.; Shang, D.; Wu, Y.; Min, H.; Zeng, L.; Schmitt, S. H.; Rohrer, F.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.

    2017-12-01

    Dinitrogen pentoxide (N2O5) plays a vital role in the atmospheric oxidation, the NOX removal and the nitrate formation. A comprehensive campaign was conducted in the wintertime of 2016 in Beijing to focus on the atmospheric oxidation, new particle formation and aerosol light extinctions during the wintertime in Beijing. The site is located at a rural area in the northeast of Beijing and about 60 km away from the city center. A newly developed instrument based on the cavity enhanced absorption spectroscopy (CEAS) was deployed to measure ambient N2O5. Simultaneous measurements of the properties of particles and the relevant trace gases are available. The daily peaks of N2O5 in the clean episodes was lower than that of polluted episodes, the campaign maximum of 1.4 ppbv were captured in the most serious pollution episode. The averaged N2O5 maximum was about 120 pptv near 20:00, which is higher than that observed in summer. The uptake coefficient of N2O5 was derived from an iterative box model approach based on the Regional Atmospheric Chemical Mechanism version 2 (RACM2), constrained to observed trace gas compounds as well as the aerosol surface concentrations. The mechanisms of the chemical compounds of aerosols (measured by AMS) affects the N2O5 uptake coefficient are explored in several chemical coordinate systems. The chemical behaviors of the ambient N2O5 concentrations for this campaign is further discussed in the context of other campaigns performed in the urban and suburban areas in Beijing.

  15. Advances in ultrasonic fuel cleaning

    International Nuclear Information System (INIS)

    Blok, J.; Frattini, P.; Moser, T.

    2002-01-01

    The economics of electric generation is requiring PWR plant operators to consider higher fuel duty and longer cycles. As a result, sub-cooled nucleate boiling is now an accepted occurrence in the upper spans of aggressively driven PWR cores. Thermodynamic and hydraulic factors determine that the boiling surfaces of the fuel favor deposition of corrosion products. Thus, the deposits on high-duty fuel tend to be axially distributed in an inhomogeneous manner. Axial offset anomaly (AOA) is the result of axially non-homogeneous distribution of boron compounds in these axially variable fuel deposits. Besides their axial asymmetry, fuel deposits in boiling cores tend to be qualitatively different from deposits on non-boiling fuel. Thus, deposits on moderate-duty PWR fuel are generally iron rich, predominating in nickel ferrites. Deposits on cores with high boiling duty, on the other hand, tend to be rich in nickel, with sizeable fractions of NiO or elemental nickel. Other unexpected compounds such as m-ZrO 2 and Ni-Fe oxy-borates have been found in significant quantity in deposits on boiling cores. This paper describes the ultrasonic fuel cleaning technology developed by EPRI. Data will be presented to confirm that the method is effective for removing fuel deposits from both high-duty and normal-duty fuel. The report will describe full-core fuel cleaning using the EPRI technology for Callaway Cycle 12 reload fuel. The favorable impact of fuel cleaning on Cycle 12 AOA performance will also be presented. (authors)

  16. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  17. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  18. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  19. ALKYLATION OF ISOBUTANE WITH 2-BUTENE WITH IONIC LIQUID AS A "CLEAN" CATALYST

    Science.gov (United States)

    Alkylation of isobutane with 2-butene with Ionic liquid as a "clean" catalyst Kyesang Yoo, 1 Vasudevan V. Namboodiri,2 Panagiotis G. Smirniotis,*1 and Rajender S. Varma*2 1 Department of Chemical Engineering, University of Cincinnati, Cincinnati, OH 45221-0171, USA. E...

  20. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    Science.gov (United States)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  1. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  2. Air and gas cleaning technology for nuclear applications

    International Nuclear Information System (INIS)

    First, M.W.

    1986-01-01

    All large-scale uses of radioactive materials require rigid control of off-gases and generated aerosols. Nuclear air and gas cleaning technology has answered the need from the days of the Manhattan Project to the present with a variety of devices. The one with the longest and most noteworthy service is the HEPA (high efficiency particulate air) filter that originally was referred to as an absolute filter in recognition of its extraordinary particle retention characteristics. Activated-charcoal adsorbers have been employed worldwide for retention of volatile radioiodine in molecular and combined forms and, less frequently, for retention of radioactive noble gases. HEPA filters and activated -charcoal adsorbers are often used with auxiliary devices that serve to extend their effective service life or significantly improve collection efficiency under unfavorable operating conditions. Use of both air cleaning devices and their auxiliaries figure prominently in atomic energy, disposal of high- and low-level nuclear wastes, and in the production of fissile materials. The peaceful uses of nuclear energy would be impossible without these, or equivalent, air- and gas-cleaning devices

  3. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  4. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Sustainable production of hydrogen and chemical commodities from biodiesel waste crude glycerol and cellulose by biological and catalytic processes

    OpenAIRE

    Maru, Biniam Taddele

    2013-01-01

    Hydrogen has a significant potential as clean and ‘green’ fuel of the future. Accordingly, this thesis investigated how to generate a sustainable production of hydrogen and other chemical commodities through study of: 1) Fermentative behavior of anaerobichydrogen producing microorganisms from pure glycerol and biodiesel waste crude glycerol; 2) The advantage of using a solid supportimmobilisationof microorganisms 3) The integration of the dark fermentative system with the catalytic hydrolysi...

  6. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Davies, Lincoln [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey [Univ. of Utah, Salt Lake City, UT (United States); Uchitel, Kirsten [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  7. Sodium cleaning from sodium contaminated components and operation for experimental equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. H.; Kim, J. M.; Kim, T. J.; Nam, H. Y.; Jeong, J. Y.; Choi, B. H.; Choi, J. H

    2007-11-15

    An objective of washing technology development for sodium contaminated equipment is to clean and reuse safely and effectively the used equipment through a washing and maintenance, and recovery of the sodium wastes generated during washing.

  8. Radiological pathways analysis for spent solvents from the boiler chemical cleaning at the Pickering Nuclear Site

    International Nuclear Information System (INIS)

    Garisto, N.C.; Eslami, Z.; Hodgins, S.; Beaman, T.; Von Svoboda, S.; Marczak, J.

    2006-01-01

    Spent solvents are generated as a result of Boiler Chemical Cleanings (BCC) at CANDU reactor sites. These solutions contain small amount of radioactivity from a number of different sources including: Cut tubes - short sections of boiler tubes are infrequently removed from the boilers for a detailed characterization. These tubes are typically only plugged at the tubesheet allowing the primary side deposits to be exposed to BCC solvents. Tube leaks - primary to secondary side leaks also occur infrequently as a result of tube degradation. Radioactivity from the leaking fluid can consequently be deposited in the sludge on the secondary side of the tubes. Diffusion of tritium - during normal operation of the reactor units, tritium slowly diffuses from the heavy water in the primary heat-transfer system to the light-water coolant on the secondary side. Some of this tritium is retained in the secondary side deposits. The Pickering Nuclear Generating Station (PNGS) would like the flexibility to have several options for handling the spent solvent waste and associated rinse water from BCC. To this end, a radiological pathways analysis was undertaken to determine dose consequences associated with each option. Sample results from this study are included in this paper. The pathways analysis is used in this study to calculate dose to hypothetical receptors including individuals such as truck drivers, incinerator workers, residue (ash) handlers, residents who live near the landfill, inadvertent intruders into the landfill after closure and residents who live near the outfall. This dose is compared to a de minimis dose. A de minimis dose or dose rate represents a level of risk, which is generally accepted as being of no significance. Shipments of spent solvents and rinse water with corresponding doses below de minimis can be sent to conventional (i.e., non-radioactive) landfills for incineration and disposal as the radioactive dose associated with them is much less than natural

  9. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  10. Steam generator operation and maintenance

    International Nuclear Information System (INIS)

    Lee, C.K.

    2004-01-01

    capacity due to excessive pressure drop across the tube support plates. OTSG owners group has developed both mechanical and chemical cleaning process and an upgraded secondary water chemistry in resolving these problems. The OTSG performance has been greatly improved since OTSG plants implemented chemical cleaning and morpholine water chemistry. The SGOG project officially ended December 31, 1986. A six-year Steam Generator Reliability Program (SGRP) under the EPRI base program began January 1, 1987. SGRP continued to address the generic steam generator problems facing nuclear utilities. In order to develop appropriate strategies to cope with the tube degradation problems, SGRP has performed the statistical evaluations to model the progression of damage mechanism aimed at accurate prediction of the defect growth rate of various mechanisms such that long term trends can be developed. Analysis of the behavior of group of plants indicate that insights on the potential behavior of a specific plant may be developed from the observed behavior at other plants. SGRP has provided utilities with tube inservice inspection guidelines (ISI Guideline) including ISI Performance Demonstration program to help utilities to improve tube inspection accuracy and sensitivity. SGRP has also updated the secondary Chemistry Guidelines and worked on the advanced amine application guidelines to better protect the steam generator tube corrosion

  11. Successful cleaning concept for Germany's biggest reverse osmosis plant; Ein erfolgreiches Reinigungskonzept fuer die groesste Umkehrosmoseanlage Deutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Kempen, Hermann [Kurita Europe GmbH, Viersen (Germany); Zierau, Ronald [Zellstoff-Stendal GmbH, Arneburg (Germany)

    2012-07-01

    During the last years, new developments for membrane material and also for treatment chemicals have resulted in higher efficiency and reliability of reverse osmosis (RO) plants. Nevertheless, especially RO plants receiving raw water from surface waters with open intake or from waste water streams are facing problems with fouling on membranes during operation. In such cases, the efficient cleaning of membranes is mandatory to ensure long-term supply of permeate in high quality and sufficient quantity. New cleaning concepts with proprietary cleaning products are gaining in importance. The successful application of such a cleaning concept at Germany's biggest RO plant is described in this paper. (orig.)

  12. Forward Osmosis/Low Pressure Reverse Osmosis for Water Reuse: Removal of Organic Micropollutants, Fouling and Cleaning

    KAUST Repository

    Linares, Rodrigo

    2011-07-01

    Forward osmosis (FO) is a natural process in which a solution with high concentration of solutes is diluted when being in contact, through a semipermeable membrane, with a low concentration solution. This osmotic process has been demonstrated to be efficient to recover wastewater effluents while diluting a saline draw solution. Nevertheless, the study of the removal of micropollutants by FO is barely described in the literature. This research focuses on the removal of these substances spiked in a secondary wastewater effluent, while diluting water from the Red Sea, generating feed water that can be desalinated with a low pressure reverse osmosis (LPRO) system. Another goal of this work is to characterize the fouling of the FO membrane, and its effect on micropollutants rejection, as well as the membrane cleaning efficiency of different methods. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% to 95.2%, 48.7% to 91.5% and 96.9% to 98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity and reduced mass transport capacity, membrane swelling, and the higher negative charge of the surface, related to the foulants. However, when coupled with low pressure reverse osmosis, the rejections for both, the clean and fouled membrane, increased above 98%. The fouling layer, after characterizing the wastewater effluent and the concentrated wastewater after the FO process, proved to be composed of biopolymers, which can be removed with air scouring during short periods

  13. Optimizing UF Cleaning in UF-SWRO System Using Red Sea Water

    KAUST Repository

    Bahshwan, Mohanad

    2012-07-01

    Increasing demand for fresh water in arid and semi-arid areas, similar to the Middle East, pushed for the use of seawater desalination techniques to augment freshwater. Seawater Reverse Osmosis (SWRO) is one of the techniques that have been commonly used due to its cost effectiveness. Recently, the use of Ultrafiltration (UF) was recommended as an effective pretreatment for SWRO membranes, as opposed to conventional methods (i.e. sand filtration). During UF operation, intermittent cleaning is required to remove particles and contaminants from the membrane\\'s surface and pores. The different cleaning steps consume chemicals and portion of the product water, resulting in a decrease in the overall effectiveness of the process and hence an increase in the production cost. This research focused on increasing the plant\\'s efficiency through optimizing the cleaning protocol without jeopardizing the effectiveness of the cleaning process. For that purpose, the design of experiment (DOE) focused on testing different combinations of these cleaning steps while all other parameters (such as filtration flux or backwash flux) remained constant. The only chemical used was NaOCI during the end of each experiment to restore the trans-membrane pressure (TMP) to its original state. Two trains of Dow™ Ultrafiltration SFP-2880 were run in parallel for this study. The first train (named UF1) was kept at the manufacturer\\'s recommended cleaning steps and frequencies, while the second train (named UF2) was varied according to the DOE. The normalized final TMP was compared to the normalized initial TMP to measure the fouling rate of the membrane at the end of each experiment. The research was supported by laboratory analysis to investigate the cause of the error in the data by analyzing water samples collected at different locations. Visual inspection on the results from the control unit showed that the data cannot be reproduced with the current feed water quality. Statistical analysis

  14. Cleaning at Home and at Work in Relation to Lung Function Decline and Airway Obstruction.

    Science.gov (United States)

    Svanes, Øistein; Bertelsen, Randi J; Lygre, Stein H L; Carsin, Anne E; Antó, Josep M; Forsberg, Bertil; García-García, José M; Gullón, José A; Heinrich, Joachim; Holm, Mathias; Kogevinas, Manolis; Urrutia, Isabel; Leynaert, Bénédicte; Moratalla, Jesús M; Le Moual, Nicole; Lytras, Theodore; Norbäck, Dan; Nowak, Dennis; Olivieri, Mario; Pin, Isabelle; Probst-Hensch, Nicole; Schlünssen, Vivi; Sigsgaard, Torben; Skorge, Trude D; Villani, Simona; Jarvis, Debbie; Zock, Jan P; Svanes, Cecilie

    2018-05-01

    Cleaning tasks may imply exposure to chemical agents with potential harmful effects to the respiratory system, and increased risk of asthma and respiratory symptoms among professional cleaners and in persons cleaning at home has been reported. Long-term consequences of cleaning agents on respiratory health are, however, not well described. This study aimed to investigate long-term effects of occupational cleaning and cleaning at home on lung function decline and airway obstruction. The European Community Respiratory Health Survey (ECRHS) investigated a multicenter population-based cohort at three time points over 20 years. A total of 6,235 participants with at least one lung function measurement from 22 study centers, who in ECRHS II responded to questionnaire modules concerning cleaning activities between ECRHS I and ECRHS II, were included. The data were analyzed with mixed linear models adjusting for potential confounders. As compared with women not engaged in cleaning (ΔFEV 1  = -18.5 ml/yr), FEV 1 declined more rapidly in women responsible for cleaning at home (-22.1; P = 0.01) and occupational cleaners (-22.4; P = 0.03). The same was found for decline in FVC (ΔFVC = -8.8 ml/yr; -13.1, P = 0.02; and -15.9, P = 0.002; respectively). Both cleaning sprays and other cleaning agents were associated with accelerated FEV 1 decline (-22.0, P = 0.04; and -22.9, P = 0.004; respectively). Cleaning was not significantly associated with lung function decline in men or with FEV 1 /FVC decline or airway obstruction. Women cleaning at home or working as occupational cleaners had accelerated decline in lung function, suggesting that exposures related to cleaning activities may constitute a risk to long-term respiratory health.

  15. Decontamination issues for chemical and biological warfare agents: how clean is clean enough?

    Science.gov (United States)

    Raber, E; Jin, A; Noonan, K; McGuire, R; Kirvel, R D

    2001-06-01

    The objective of this assessment is to determine what level of cleanup will be required to meet regulatory and stakeholder needs in the case of a chemical and/or biological incident at a civilian facility. A literature review for selected, potential chemical and biological warfare agents shows that dose information is often lacking or controversial. Environmental regulatory limits or other industrial health guidelines that could be used to help establish cleanup concentration levels for such agents are generally unavailable or not applicable for a public setting. Although dose information, cleanup criteria, and decontamination protocols all present challenges to effective planning, several decontamination approaches are available. Such approaches should be combined with risk-informed decision making to establish reasonable cleanup goals for protecting health, property, and resources. Key issues during a risk assessment are to determine exactly what constitutes a safety hazard and whether decontamination is necessary or not for a particular scenario. An important conclusion is that cleanup criteria are site dependent and stakeholder specific. The results of a modeling exercise for two outdoor scenarios are presented to reinforce this conclusion. Public perception of risk to health, public acceptance of recommendations based on scientific criteria, political support, time constraints, and economic concerns must all be addressed in the context of a specific scenario to yield effective and acceptable decontamination.

  16. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  17. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  18. Microbial water quality in clean water tanks following inspection and cleaning

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine Boesgaard; Esbjørn, Anne; Mollerup, Finn

    Increased bacterial counts are often registered in drinking water leaving clean water tanks after the tanks have been emptied, inspected and cleaned by flushing. To investigate the reason for the increased bacterial concentrations and consequently limit it, samples from two clean water tanks befo...... start-up of the tanks, which may indicate that a substantial part of the bacteria in the drinking water leaving the tanks originated from the sand filter. This was supported by 16S DNA analyses....

  19. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning

  20. Accurate Quantitation of Water-amide Proton Exchange Rates Using the Phase-Modulated CLEAN Chemical EXchange (CLEANEX-PM) Approach with a Fast-HSQC (FHSQC) Detection Scheme

    International Nuclear Information System (INIS)

    Hwang, Tsang-Lin; Zijl, Peter C.M. van; Mori, Susumu

    1998-01-01

    Measurement of exchange rates between water and NH protons by magnetization transfer methods is often complicated by artifacts, such as intramolecular NOEs, and/or TOCSY transfer from Cα protons coincident with the water frequency, or exchange-relayed NOEs from fast exchanging hydroxyl or amine protons. By applying the Phase-Modulated CLEAN chemical EXchange (CLEANEX-PM) spin-locking sequence, 135 o (x) 120 o (-x) 110 o (x) 110 o (-x) 120 o (x) 135 o (-x) during the mixing period, these artifacts can be eliminated, revealing an unambiguous water-NH exchange spectrum. In this paper, the CLEANEX-PM mixing scheme is combined with Fast-HSQC (FHSQC) detection and used to obtain accurate chemical exchange rates from the initial slope analysis for a sample of 15N labeled staphylococcal nuclease. The results are compared to rates obtained using Water EXchange filter (WEX) II-FHSQC, and spin-echo-filtered WEX II-FHSQC measurements, and clearly identify the spurious NOE contributions in the exchange system

  1. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    Science.gov (United States)

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  2. LC clean-up and GC/MS analysis of polycyclic aromatic hydrocarbons in river sediment

    International Nuclear Information System (INIS)

    Nondek, L.; Kuzilek, M.; Krupicka, S.

    1993-01-01

    An LC clean-up procedure based upon a complexation between polycyclic aromatic hydrocarbons (PAHs) and silica with chemically bonded 2,4-dinitroaniline has been combined with GC/MS. The LC pre-separation makes it possible to obtain a relatively clean fraction of PAHs free from alkanes, alkylbenzenes and naphthalenes, PCBs, chlorinated pesticides and many other interfering compounds. This fraction has been analyzed using capillary GC and mass selective detector (MSD). Substantial improvement of the MS spectra of PAHs with three or more fused benzene rings is achieved. (orig.)

  3. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  4. Biomonitoring in a clean and a multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor

    Energy Technology Data Exchange (ETDEWEB)

    Durou, Cyril [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France) and Institut de Biologie et Ecologie Appliquees, CEREA, Universite Catholique de l' Ouest, 44 rue Rabelais, 49008 Angers Cedex 01 (France)]. E-mail: cyril.durou@uco.fr; Poirier, Laurence [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France); Amiard, Jean-Claude [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France); Budzinski, Helene [CNRS UMR 5472, LPTC, Universite de Bordeaux I, 33405 Talence (France); Gnassia-Barelli, Mauricette [UMR INRA UNSA 1112 ROSE, Faculte des Sciences, BP 71, 06108 Nice Cedex 2 (France); Lemenach, Karyn [CNRS UMR 5472, LPTC, Universite de Bordeaux I, 33405 Talence (France); Peluhet, Laurent [CNRS UMR 5472, LPTC, Universite de Bordeaux I, 33405 Talence (France); Mouneyrac, Catherine [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France); Institut de Biologie et Ecologie Appliquees, CEREA, Universite Catholique de l' Ouest, 44 rue Rabelais, 49008 Angers Cedex 01 (France); Romeo, Michele [UMR INRA UNSA 1112 ROSE, Faculte des Sciences, BP 71, 06108 Nice Cedex 2 (France); Amiard-Triquet, Claude [CNRS, Universite de Nantes, Pole Mer et Littoral, SMAB, 2 rue de la Houssiniere, BP 92208, F-44322 Nantes Cedex 3 (France)

    2007-07-15

    Relationships between biochemical and physiological biomarkers (acetylcholinesterase [AChE], catalase, and glutathione S-transferase [GST] activities, thiobarbituric acid reactive substances, glycogen, lipids and proteins) and accumulated concentrations of contaminants (polychlorinated biphenyls [PCBs], polycyclic aromatic hydrocarbons and metals) were examined in the keystone species Nereis diversicolor. The chemical analyses of worms and sediments allowed the designation of the Seine estuary and the Authie estuary as a polluted and relatively clean site respectively. Worms from the Seine estuary exhibited higher GST and lower AChE activities. Generally, larger worms had higher concentrations of energy reserves. Principal component analyses clearly highlighted intersite differences: in the first plan, GST activities and chemical concentrations were inversely related to concentrations of energy reserves; in the second one, PCB concentrations and AChE activity were inversely related. Depleted levels of energy reserves could be a consequence of combating toxicants and might predict effects at higher levels of biological organization. The use of GST and AChE activities and energy reserve concentrations as biomarkers is validated in the field in this keystone species. - The use of N. diversicolor as a biomonitor of environmental quality via the measurement of biomarkers and accumulated concentrations of contaminants is validated in the field.

  5. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  6. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    Science.gov (United States)

    Lehmann, Jascha; Lehmann, Sebastian; Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch.; Bär, Marcus; Sadewasser, Sascha

    2014-12-01

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for "realistic" surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is - apart from a slight change in surface composition - identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  7. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  8. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  9. Limonene and tetrahydrofurfurly alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  10. Emission allowance trading under the Clean Air Act Amendments: An incentive mechanism for the adoption of Clean Coal Technologies

    International Nuclear Information System (INIS)

    South, D.W.; McDermott, K.A.

    1993-01-01

    Title IV of the Clean Air Act Amendments of 1990 (P.L. 101-549) uses tradeable SO 2 allowances as a means of reducing acidic emissions from the electricity generating industry. The use of emission allowances generates two important results; first, utilities are given the flexibility to choose their optimal (least cost) compliance strategies and second, the use of emission allowances creates greater incentives for the development and commercialization of innovative emissions control technology. Clean Coal Technologies (CCTs) are able to generate electricity more efficiently, use a wide variety of coal grades and types, and dramatically reduce emissions of SO 2 , NO x , CO 2 , and PM per kWh. However, development and adoption of the technology is limited by a variety of regulatory and technological risks. The use of SO 2 emission allowances may be able to provide incentives for utility (and nonutility) adoption of this innovative technology. Emission allowances permit the utility to minimize costs on a systemwide basis and provides rewards for addition emission reductions. As CCTs are a more efficient and low emitting source of electricity, the development and implementation of this technology is desirable. This paper will explore the relationship between the incentives created by the SO 2 allowance market and CCT development. Regulatory hindrances and boons for the allowance market shall also be identified to analyze how market development, state mandates, and incentive regulation will effect the ability of allowances to prompt CCT adoption

  11. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  12. Cleaning protocol for a FO membrane fouled in wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Yangali-Quintanilla, Victor; Li, Qingyu; Amy, Gary L.

    2013-01-01

    Forward osmosis (FO) is an emerging technology which can be applied in water reuse applications. Osmosis is a natural process that involves less energy consumption than reverse osmosis (RO), and therefore can be applied as a dilution process before low-pressure RO; it is expected to compete favourably against current advanced water reuse technologies that use microfiltration/ultrafiltration and RO. The focus of this research was to assess the efficiency of different cleaning procedures to remove fouling from the surface of a FO membrane during the operation of a submerged system working in FO-mode (active layer (AL) facing feed solution) intended for secondary wastewater effluent (SWWE) recovery, using seawater as draw solution (DS), which will be diluted and can further be fed to a low-pressure RO unit to produce fresh water. Natural organic matter (NOM) fouling was expected to affect the AL, while for the support layer (SL), transparent exopolymer particles (TEP) were used as indicators of fouling due to their stickiness and propensity to enhance the attachment of other foulants in seawater on the membrane surface. The composition of the NOM fouling layer was determined after proper characterisation with a liquid chromatograph coupled with organic carbon detection (LC-OCD), showing biopolymers and protein-like substances as the main constituents. NOM fouling showed high hydraulic reversibility after a 25% flux decline was observed, up to 89.5% when in situ air scouring for 15 min was used as a cleaning technique. Chemical cleaning with a mixture of Alconox, an industrial detergent containing phosphates, and sodium EDTA showed to increase the reversibility (93.6%). Osmotic backwash using a 4% NaCl solution and DI water proved to be ineffective to recover flux due to the salt diffusion phenomena occurring at the AL. Part of the flux that could not be recovered is attributable to TEP fouling on the SL, which forms clusters clearly identifiable with an optical

  13. Cleaning protocol for a FO membrane fouled in wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo

    2013-05-30

    Forward osmosis (FO) is an emerging technology which can be applied in water reuse applications. Osmosis is a natural process that involves less energy consumption than reverse osmosis (RO), and therefore can be applied as a dilution process before low-pressure RO; it is expected to compete favourably against current advanced water reuse technologies that use microfiltration/ultrafiltration and RO. The focus of this research was to assess the efficiency of different cleaning procedures to remove fouling from the surface of a FO membrane during the operation of a submerged system working in FO-mode (active layer (AL) facing feed solution) intended for secondary wastewater effluent (SWWE) recovery, using seawater as draw solution (DS), which will be diluted and can further be fed to a low-pressure RO unit to produce fresh water. Natural organic matter (NOM) fouling was expected to affect the AL, while for the support layer (SL), transparent exopolymer particles (TEP) were used as indicators of fouling due to their stickiness and propensity to enhance the attachment of other foulants in seawater on the membrane surface. The composition of the NOM fouling layer was determined after proper characterisation with a liquid chromatograph coupled with organic carbon detection (LC-OCD), showing biopolymers and protein-like substances as the main constituents. NOM fouling showed high hydraulic reversibility after a 25% flux decline was observed, up to 89.5% when in situ air scouring for 15 min was used as a cleaning technique. Chemical cleaning with a mixture of Alconox, an industrial detergent containing phosphates, and sodium EDTA showed to increase the reversibility (93.6%). Osmotic backwash using a 4% NaCl solution and DI water proved to be ineffective to recover flux due to the salt diffusion phenomena occurring at the AL. Part of the flux that could not be recovered is attributable to TEP fouling on the SL, which forms clusters clearly identifiable with an optical

  14. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  15. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Hettne Kristina M

    2013-01-01

    Full Text Available Abstract Background Availability of chemical response-specific lists of genes (gene sets for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM, and that these can be used with gene set analysis (GSA methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human and 588 (mouse gene sets from the Comparative Toxicogenomics Database (CTD. We tested for significant differential expression (SDE (false discovery rate -corrected p-values Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  16. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  17. Review of EPRI's steam generator R and D program

    International Nuclear Information System (INIS)

    Millett, P.J.; Welty, C.J.

    1998-01-01

    EPRI has carried out an extensive R and D program on SG technology since the mid 1970's. Very early efforts under the auspices of the Steam Generator Owners Group (SGOG) focused on developing remedial actions for the critical SG corrosion issues of denting, wastage and pitting. Fundamental work was also carried out in the development of thermal hydraulic models for vibration and wear, chemical cleaning and tube repair techniques. In the late 1980's and continuing through today, the program has shifted emphasis towards management of steam generator degradation, primarily stress corrosion cracking of the SG tubes on both the primary and secondary sides. The current Steam Generator Management Program (SGMP) carries out R and D in four areas; materials, chemistry, thermal hydraulics and non-destructive testing. The strategic goals of this program and projects put in place to achieve these goals will be reviewed in detail in this paper. (author)

  18. Investigation of Alternative Approaches for Cleaning Mott Porous Metal Filters

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2003-01-01

    The Department of Energy selected Caustic Side Solvent Extraction (CSSX) as the preferred cesium removal technology for Savannah River Site (SRS) waste. As a pretreatment step for the CSSX flowsheet, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and select actinides. The resulting slurry is filtered to remove the sludge and MST. Filter fouling occurs during this process. At times, personnel can increase the filtrate rate by backpulsing or scouring. At other times, the filtrate rate drops significantly and only chemical cleaning will restore filter performance. The current baseline technology for filter cleaning uses 0.5 M oxalic acid. The Salt Processing Project (SPP) at SRS, through the Tanks Focus Area, requested an evaluation of other cleaning agents to determine their effectiveness at removing trapped sludge and MST solids compared with the baseline oxalic acid method. A review of the technical literature identified compounds that appear effective at dissolving solid compounds. Consultation with the SPP management team, engineering personnel, and researchers led to a selection of oxalic acid, nitric acid, citric acid, and ascorbic acid for testing. Tests used simulated waste and actual waste as follows. Personnel placed simulated or actual SRS High Level Waste sludge and MST in a beaker. They added the selected cleaning agents, stirred the beakers, and collected supernate samples periodically analyzing for dissolved metals

  19. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    International Nuclear Information System (INIS)

    Camats, Nuria; Garcia, Francisca; Parrilla, Juan Jose; Calaf, Joaquim; Martin, Miguel; Caldes, Montserrat Garcia

    2008-01-01

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p ≤ 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p ≤ 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal cells

  20. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal