WorldWideScience

Sample records for generation vehicles supplies

  1. Reducing supply chain energy use in next-generation vehicle lightweighting

    Hanes, Rebecca J.; Das, Sujit; Carpenter, Alberta

    2016-09-29

    Vehicle lightweighting reduces the amount of fuel consumed in a vehicle's use phase, but depending on what lightweight materials replace the conventional materials, and in what amounts, the manufacturing energy may increase or decrease. For carbon fiber reinforced polymer (CFRP), a next-generation lightweighting material, the increase in vehicle manufacturing energy is greater than the fuel savings, resulting in a net increase in energy consumption over a vehicle's manufacturing and use relative to a standard non-lightweighted car. [1] This work explores ways to reduce the supply chain energy of CFRP lightweighted vehicles through alternative production technologies and energy efficiency improvements. The objective is to determine if CFRP can offer energy savings comparable to or greater than aluminum, a conventional lightweighting material. Results of this analysis can be used to inform additional research and development efforts in CFRP production and future directions in lightweight vehicle production. The CFRP supply chain is modeled using the Material Flows through Industry (MFI) scenario modeling tool, which calculates 'mine to materials' energy consumption, material inventories and greenhouse gas emissions for industrial supply chains. In this analysis, the MFI tool is used to model the supply chains of two lightweighted vehicles, an aluminum intensive vehicle (AIV) and a carbon fiber intensive vehicle (CFV), under several manufacturing scenarios. Vehicle specifications are given in [1]. Scenarios investigated cover alternative carbon fiber (CF) feedstocks and energy efficiency improvements at various points in the vehicle supply chains. The alternative CF feedstocks are polyacrylonitrile, lignin and petroleum-derived mesophase pitch. Scenarios in which the energy efficiency of CF and CFRP production increases are explored using sector efficiency potential values, which quantify the reduction in energy consumption achievable when process

  2. Materials used in new generation vehicles: supplies, shifts, and supporting infrastructure

    Das, S.; Curlee, T.R. [Oak Ridge National Lab., TN (United States); Schexnayder, S.M. [Univ. of Tennessee, Knoxville, (United States)

    1997-08-01

    The Partnership for a New Generation of Vehicles (PNGV) program intends to develop new designs for automobiles that will reduce fuel consumption by two thirds but otherwise have price, comfort, safety, and other measures of performance similar to the typical automobile now on the market. PNGV vehicle designs are expected to substitute lightweight materials, such as aluminum, magnesium, carbon-reinforced polymer composites, glass-reinforced polymer composites, and ultra- light steel, for heavier materials such as steel and iron in automobile components. The target mass of a PNGV vehicle is 1,960 pounds, as compared to the average current vehicle that weights 3,240 pounds. Other changes could include the use of different ferrous alloys, engineering changes, or incorporation of advanced ceramic components. Widespread adoption of these vehicle designs would affect materials markets and require concurrent development and adoption of supporting technologies to supply the materials and to use and maintain them in automobiles. This report identifies what would be required to bring about these changes and developments in materials substitution; identifies reasons that might make these substitutions difficult to accomplish within the overall objectives and timetable of the PNGV program; and identifies any issues arising from the substitution that could prompt consideration of policies to deal with them. The analysis in this paper uses scenarios that assume the production of new generation vehicles will begin in 2007 and that their market share will increase gradually over the following 25 years. The scenarios on which the analysis is based assume a maximum substitution of each potential replacement material considered. This maximum substitution of individual materials (i.e., the amount of replacement material by weight that would be added to the baseline vehicle`s composition) is as follows: ULSAB (high strength steel), 298 lbs.; glass-reinforced composites, 653 lbs.; carbon

  3. ENERGY STAR Certified Electric Vehicle Supply Equipment

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  4. Reactive power supply by distributed generators

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  5. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    None

    2017-01-02

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  6. Model Design on Emergency Power Supply of Electric Vehicle

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  7. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  8. Accelerator magnet power supply using storage generator

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  9. Renewable energy supply for electric vehicle operations in California

    Papavasiliou, Anthony; Oren, Shmuel S.; Sidhy, Ikhlaq; Kaminsky, Phil; 32nd IAEE International Conference

    2009-01-01

    Due to technological progress, policy thrust and economic circumstances, the large scale integration of renewable energy sources such as wind and solar power is becoming a reality in California, however the variable and unpredictable supply of these renewable resources poses a significant obstacle to their integration. At the same time we are witnessing a strong thrust towards the large scale deployment of electric vehicles which can ideally complement renewable power supply by acting as stor...

  10. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    2017-01-01

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  11. Challenges of locally manufactured vehicle supply chains in South Africa

    Intaher M. Ambe

    2013-08-01

    Full Text Available Locally manufactured vehicles are destined (partly for the export market and thus, global competitiveness  is  important.  This  article  explores  the  challenges  facing  supply  chains  of locally manufactured vehicles in South Africa. The automotive industry is perceived to be the most advanced in supply chain management practices in South Africa. It has embraced technology and management practices that have transformed the manufacturing environment by using cutting-edge design and visualisation tools. However, the industry has fragilities and faces new and emerging supply chain challenges. A survey research design was employed and  the  data  was  collected  through  face-to-face  semi-structured  interview  questionnaires based on the purposive sampling technique. Data analysis and interpretation was based on descriptive  statistics  using  SPSS  software.  The  findings  revealed  that  there  are  challenges hindering  best  supply  chain  practices  of  local  vehicle  manufacturers.  The  research  also revealed that there is a perceived difference in supply chain challenges between the different manufacturers of different origins in South Africa. Asian manufacturers felt much stronger about the adequacy of their information systems compared to the European manufacturers. Asian  manufacturers  tended  to  agree  more  than  their  European  counterparts  that  labour problems were a challenge. European manufacturers, on the other hand, tended to agree more that rail transport is unreliable. This article contributes to the body of knowledge on supply chain practices in South Africa.

  12. Generator voltage stabilisation for series-hybrid electric vehicles.

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  13. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  14. Neutron generator power supply modeling in EMMA

    Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S.; Merewether, K.O.

    1996-01-01

    Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia's ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described

  15. A new-generation radiation monitoring vehicle

    Gryc, Lubomir; Cespirova, Irena; Sury, Jan; Hanak, Vitezslav; Sladek, Petr

    2015-01-01

    A new radiation monitoring vehicle has been developed within the MOSTAR (Mobile and Stationary Radiation monitoring systems for a new generation of radiation monitoring network) Security Research project. The vehicle accommodates a system for radiation survey using scintillation detectors. Basic spectroscopy is performed with a sodium iodine crystal system, directional measurement is based on two side-mounted plastic detectors, logging dose rates, GPS coordinates and displaying results in a map. A semiconductor spectrometric chain for rapid qualitative and quantitative evaluation of environmental samples is also included. (orig.)

  16. Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle

    Praczyk Tomasz

    2018-03-01

    Full Text Available In order to autonomously transfer from one point of the environment to the other, Autonomous Underwater Vehicles (AUV need a navigational system. While navigating underwater the vehicles usually use a dead reckoning method which calculates vehicle movement on the basis of the information about velocity (sometimes also acceleration and course (heading provided by on-board devicesl ike Doppler Velocity Logs and Fibre Optical Gyroscopes. Due to inaccuracies of the devices and the influence of environmental forces, the position generated by the dead reckoning navigational system (DRNS is not free from errors, moreover the errors grow exponentially in time. The problem becomes even more serious when we deal with small AUVs which do not have any speedometer on board and whose course measurement device is inaccurate. To improve indications of the DRNS the vehicle can emerge onto the surface from time to time, record its GPS position, and measure position error which can be further used to estimate environmental influence and inaccuracies caused by mechanisms of the vehicle. This paper reports simulation tests which were performed to determine the most effective method for correction of DRNS designed for a real Biomimetic AUV.

  17. Power supply controlled for plasma torch generation

    Diaz Z, S.

    1996-01-01

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named 'Destruction of hazard wastes by thermal plasma' actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR's; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author)

  18. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  19. Vibration Energy Harvesting on Vehicle Suspension Using Rotary and Linear Electromagnetic Generator

    Arif Indro Sultoni

    2013-04-01

    Full Text Available In this paper, we discuss comparation of vehicle vibration energy harvesting between rotary and linear electromagnetic generator. We construct the two model of energy harvester mechanism and then analyze both of energy absorbtion and vehicle comfortability. Furthermore, we analyze both of energy absorbtion and vehicle comfortability. Vehicle is modeled as quarter car. Rotarty generator harvests 2.5 x 10-4 Watt. The other hand, linear generator has viscous characteristic and capable to generates 90 Watts with 12 Volt power supply for 0.03 m amplitude of bumpy road input. Linear generator reduces oscillation with 1.2 sec settling time. It is more comfort than the angular which has 3 sec in settling time. With unnevenees road input, mean power of this generator is 64 Watt.

  20. Electric vehicle system for charging and supplying electrical power

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  1. PS main supply: motor-generator set.

    Maximilien Brice

    2002-01-01

    In picture 04 the motor is on the right in the background and the main view is of the generator. The peak power in each PS cycle drawn from the generator, up to 96 MW, is taken from the rotational kinetic energy of the rotor (a heavy-weight of 80 tons), which makes the rotational speed drop by only a few percent. The motor replenishes the average power of 2 to 4 MW. Photo 05: The motor-generator set is serviced every year and, in particular, bearings and slip-rings are carefully checked. To the left is the motor with its slip-rings visible. It has been detached from the axle and moved to the side, so that the rotor can be removed from the huge generator, looming at the right.

  2. Stabilized x-ray generator power supply

    Saha, Subimal; Purushotham, K.V.; Bose, S.K.

    1986-01-01

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  3. Motor-Generator Set, PS Main Supply

    CERN PhotoLab

    1983-01-01

    This is the "new" motor-generator set. It replaced the previous, original, one which had served from the PS start-up in 1959. Ordered in 1965, installed in 1967, it was brought into operation at the beginning of 1968. Regularly serviced and fitted with modern regulation and controls, it still serves at the time of writing (2006) and promises to serve for several more years, as a very much alive museum-piece. See also 6803016 and 0201010.

  4. Connected vehicle insights : fourth generation wireless - vehicle and highway gateways to the cloud.

    2011-12-01

    This paper examines next generation wide-area cellular such as fourth generation (4G) will be able to support vehicular applications, and how transportation infrastructure may mesh with wireless networks. : This report is part of the Connected Vehicl...

  5. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  6. The economic performance of supply chain(s) served by the mega freight transport vehicles

    Janic, M.

    2014-01-01

    This paper deals with the economic performances of supply chain(s) served by different including the mega freight transport vehicles. These performances are considered as a dimension of the supply chain’s sustainability together with the infrastructural, technical/technological, operational,

  7. High-voltage pulse generator for electron gun power supply

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  8. Secondary coolant circuit operation tests: steam generator feedwater supply

    Beroux, M.

    1985-01-01

    No one important accident occurred during the start-up tests of the 1300MWe P4 series, concerning the feedwater system of steam generators (SG). This communication comments on some incidents, that the tests allowed to detect very soon and which had no consequences on the operation of units: 1) Water hammer in feedwater tubes, and incidents met in the emergency steam generator water supply circuit. The technological differences between SG 900 and 1300 are pointed out, and the measures taken to prevent this problem are presented. 2) Incidents met on the emergency feedwater supply circuit of steam generators; mechanical or functional modifications involved by these incidents [fr

  9. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  10. Vehicle Routing With User Generated Trajectory Data

    Ceikute, Vaida; Jensen, Christian S.

    Rapidly increasing volumes of GPS data collected from vehicles provide new and increasingly comprehensive insight into the routes that drivers prefer. While routing services generally compute shortest or fastest routes, recent studies suggest that local drivers often prefer routes that are neithe...

  11. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  12. Embedded generation: issues arising in network charging and supply

    1999-01-01

    This study has been commissioned by ETSU, as part of the DTI's New and Renewable Energy Commercialisation programme, with the intention of informing the debate about the appropriate basis for transmission and distribution charges for, and supply of electricity by, Embedded Generators (EGs). (Author)

  13. Embedded generation: issues arising in network charging and supply

    NONE

    1999-07-01

    This study has been commissioned by ETSU, as part of the DTI's New and Renewable Energy Commercialisation programme, with the intention of informing the debate about the appropriate basis for transmission and distribution charges for, and supply of electricity by, Embedded Generators (EGs). (Author)

  14. Evolutionary algorithm for vehicle driving cycle generation.

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  15. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    1982-02-01

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  16. A Thermoelectric Generator Replacing Radiator for Internal Combustion Engine Vehicles

    Shiho Kim

    2011-12-01

    Full Text Available We have proposed and developed a low temperature thermoelectric generator (TEG using engine water coolant of light-duty vehicles. Experimental results from test vehicle, of which engine size is about 2.0 liters, show that fabricated prototype Thermoelectric Generator generates more than 75W for driving condition of 80 km/hour, and output power is about 28W during idle condition. The proposed TEG can replace conventional radiator without additional water pumps or mechanical devices except for basic components of legacy water cooling system of radiator.

  17. Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

    Gorkem Sen

    2016-03-01

    Full Text Available Grid-enabled vehicles (GEVs such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H. In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

  18. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  19. Trajectory generation for an on-road autonomous vehicle

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  20. Potency of Thermoelectric Generator for Hybrid Vehicle

    Nandy Putra

    2010-10-01

    Full Text Available Thermoelectric Generator (TEG has been known as electricity generation for many years. If the temperature difference occurred between two difference semi conductor materials, the current will flow in the material and produced difference voltage. This principle is known as Seebeck effect that is the opposite of Peltier effect Thermoelectric Cooling (TEC. This research was conducted to test the potential of electric source from twelve peltier modules. Then, these thermoelectric generators were applied in hybrid car by using waste heat from the combustion engine. The experiment has been conducted with variations of peltier module arrangements (series and parallels and heater as heat source for the thermoelectric generator, with variations of heater voltage input (110V and 220V applied. The experimental result showed that twelve of peltier modules arranged in series and heater voltage of 220V generated power output of 8.11 Watts with average temperature difference of 42.82°C. This result shows that TEG has a bright prospect as alternative electric source.

  1. Life cycle analysis of energy supply infrastructure for conventional and electric vehicles

    Lucas, Alexandre; Alexandra Silva, Carla; Costa Neto, Rui

    2012-01-01

    Electric drive vehicle technologies are being considered as possible solutions to mitigate environmental problems and fossil fuels dependence. Several studies have used life cycle analysis technique, to assess energy use and CO 2 emissions, addressing fuels Well-to-Wheel life cycle or vehicle's materials Cradle-to-Grave. However, none has considered the required infrastructures for fuel supply. This study presents a methodology to evaluate energy use and CO 2 emissions from construction, maintenance and decommissioning of support infrastructures for electricity and fossil fuel supply of vehicles applied to Portugal case study. Using Global Warming Potential and Cumulative Energy Demand, three light-duty vehicle technologies were considered: Gasoline, Diesel and Electric. For fossil fuels, the extraction well, platform, refinery and refuelling stations were considered. For the Electric Vehicle, the Portuguese 2010 electric mix, grid and the foreseen charging point's network were studied. Obtained values were 0.6–1.5 gCO 2eq /km and 0.03–0.07 MJ eq /km for gasoline, 0.6–1.6 gCO 2eq /km and 0.02–0.06 MJ eq /km for diesel, 3.7–8.5 gCO 2eq /km and 0.06–0.17 MJ eq /km for EV. Monte Carlo technique was used for uncertainty analysis. We concluded that EV supply infrastructures are more carbon and energetic intensive. Contribution in overall vehicle LCA does not exceed 8%. - Highlights: ► ISO 14040 was applied to evaluate fuel supply infrastructures of ICE and EV. ► CED and GWP are used to assess the impact on WTW and CTG stages. ► EV chargers rate and ICE stations' lifetime influence uncertainty the most. ► EV facilities are more carbon and energetic intense than conventional fuels. ► Contribution of infrastructures in overall vehicle LCA does not exceed 8%.

  2. On site power generation protects water supply for Ajax, Ontario

    Morsy, Mohamed

    2011-01-15

    The Ajax water supply plant treats and distribute water for the town of Ajax and the nearby City of Pickering and the operations staff manages two other treatment plants supplying the City of Oshawa and the Town of Whitby, and a dozen pumping stations, reservoirs and elevated tanks. The plant requires around 2 MW of continuous power to supply its 150,000 customers. Although local utility power is reliable, standby generators are mandated by the Ontario Ministry of the Environment. When power goes out problems can result in the plant and system. To avoid these, the Ajax plant staff selected Cummins Power Generation who delivered one 350 kW and two 1500 kW generator sets with automatic transfer switches and paralleling switchgear. These digital systems parallel and synchronize the generator sets with each other and with the utility, which allows the plant to provide continuous service. The plant is designed for twice its current capacity and is ready to handle future requirements.

  3. Motor-generator set of the PS main supply

    Photographic Service; CERN PhotoLab

    1968-01-01

    Already in 1964, the PS improvement programme included a new main magnet supply with more power for the longer cycles needed for slow extraction at the full energy of 26 GeV. This motor-generator set was installed in 1967 and took up service at the beginning of 1968. Regularly serviced and fitted with modern electronic regulation, it pulses the PS to this day.

  4. Partial Path Column Generation for the Vehicle Routing Problem

    Jepsen, Mads Kehlet; Petersen, Bjørn

    This paper presents a column generation algorithm for the Capacitated Vehicle Routing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW). Traditionally, column generation models of the CVRP and VRPTW have consisted of a Set Partitioning master problem with each column...... of the giant tour’; a so-called partial path, i.e., not necessarily starting and ending in the depot. This way, the length of the partial path can be bounded and a better control of the size of the solution space for the pricing problem can be obtained....

  5. VersiCharge-SG - Smart Grid Capable Electric Vehicle Supply Equipment (EVSE) for Residential Applications

    Wei, Dong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haas, Harry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Terricciano, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-30

    In his 2011 State of the Union address, President Obama called for one million electric vehicles on the road by 2015 [1]. With large-scale Electric Vehicle (EV) or Plug-in Electric Vehicle (PEV or EV for short) or Plug-in Hybrid Electric Vehicle (PHEV) penetration into the US market, there will be drastic reduction in fossil fuel consumption, thus significantly reducing our dependency on foreign oil [2-6]. There will also be significant reduction on Green House Gas (GHG) emissions and smog in the major US cities [3, 7, 8]. Similar studies have also been done other industrial counties [9]. For the fuel cost, with the home electricity rate around $0.13 per kWh, it would cost about $0.05 per mile for DC operation and $0.03 cents per mile for AC operation. But, assuming 25 miles per gallon for a typical vehicle and $4 per gallon, fossil fuel will cost $0.16 per mile [10]. The overall lifecycle cost of PEVs will be several folds lower than the existing fossil fueled vehicles. Despite the above advantages of the EVs, the current cost of EVSE is not affordable for the average consumer. Presently, the cost of installing state-of-the-art residential EVSE ranges from $1500 to $2500 [11]. Low priced EVSE technology, which is easy to install, and affordable to operate and maintain by an average consumer, is essential for the large-scale market penetration of EVs. In addition, the long-term success of this technology is contingent on the PEVs having minimal excessive load and shift impact on the grid, especially at peak times. In a report [2] published by the Pacific Northwest National Laboratory (PNNL), the exiting electric power generation infrastructure, if used at its full capacity 24 hours a day, would support up to 84% of the nation’s cars, pickup trucks and SUVs for an average daily drive of 33 miles. This mileage estimate is certainly much below what an average driver would drive his/her vehicle per day. Another report [3] by the National Renewable Energy Laboratory

  6. Second Generation RLV Space Vehicle Concept

    Bailey, M. D.; Daniel, C. C.

    2002-01-01

    NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems

  7. Security of electricity supply at the generation level: Problem analysis

    Rodilla, P.; Batlle, C.

    2012-01-01

    Since the very beginning of the restructuring process, back in 1982 in Chile, the ability of an electricity market to provide the system with the required level of security of supply has been put into question. The mistrust on the ability of the market, left to its own devices, to provide sufficient generation availability when needed, is more and more leading to the implementation of additional regulatory mechanisms. This matter is undoubtedly gaining importance and it has taken a key role in the energy regulators’ agendas. In this paper, we revisit this discussion under the light of thirty years of electricity market experience. We analyze the different reasons why, although ideally the market is supposed to provide itself an adequate security of supply at the generation level, this result is still far from being achieved in practice. - Highlights: ► Discussion on the need for capacity mechanisms is revisited. ► Reasons behind adequacy problem are analyzed. ► Regulator’s intervention to guarantee supply is most of the times justified.

  8. Vehicle power supply cable with optical jacket monitoring and arcing interference detection; Bordnetzkabel mit optischer Mantelueberwachung und Stoerlichtbogendetektion

    Viehmann, Matthias [Fachhochschule Nordhausen (Germany). Lehrstuhl fuer Industrieelektronik; Kloss, Christina [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Polymere/Elastomere und Lichtwellenleiter; Lustermann, Birgit [Fachhochschule Nordhausen (Germany). Forschungsschwerpunkte Lichtwellenleiter und Simulation optischer Systeme

    2012-10-15

    In vehicles with electrical drive, vehicle power supplies are used with high-voltage level, as well as with several voltage levels. In order to minimise any hazards through arcing faults associated with this, constructive and material-technical measures are necessary. Nordhausen Technical College presents a patented, opticalelectrical combination conductor - the main constituent of an innovative vehicle power supply cable with optical jacket monitoring and arcing interference detection. (orig.)

  9. LNG as vehicle fuel and the problem of supply: The Italian case study

    Arteconi, A.; Polonara, F.

    2013-01-01

    The transport sector represents a major item on the global balance of greenhouse gas (GHG) emissions. Natural gas is considered the alternative fuel that, in the short-medium term, can best substitute conventional fuels in order to reduce their environmental impact, because it is readily available at a competitive price, using technologies already in widespread use. It can be used as compressed gas (CNG) or in the liquid phase (LNG), being the former more suitable for light vehicles, while the latter for heavy duty vehicles. The purpose of this paper is to outline the potential of LNG as vehicle fuel, showing positive and negative aspects related to its introduction and comparing the different supply options with reference to the Italian scenario, paying particular attention to the possibility of on site liquefaction. The analysis has highlighted that purchasing LNG at the regasification terminal is convenient up to a terminal distance of 2000 km from the refuelling station. The liquefaction on site, instead, asks for liquefaction efficiency higher than 70% and low natural gas price and, as liquefaction technology, the let-down plants at the pressure reduction points along the pipeline are the best option to compete with direct supply at the terminal. -- Highlights: •LNG potential as vehicles fuel is analysed. •A SWOT analysis for LNG introduction in the Italian market is presented. •An economic comparison of different supply options is performed. •Possible micro-scale liquefaction technologies are evaluated

  10. Small-scale generator opportunities in the competitive supply market

    Scrivener, G.

    1998-01-01

    The last franchises for electricity supply held by Public Electricity Suppliers are due to expire early in 1998. As a consequence from then on, after a phased start-up, all electricity consumers will be free to choose their supplier, completing the process of introducing competition into the electricity market which started in 1990 with the privatisation of the Industry. Then the framework by which the industry operates will become very different. This paper will review the changes to the operation of the market and assess the opportunities for small scale embedded generators post 1998. (Author)

  11. Small-scale generator opportunities in the competitive supply market

    Scrivener, G. [Energy Technology Support Unit (ETSU), Harwell (United Kingdom)

    1998-07-01

    The last franchises for electricity supply held by Public Electricity Suppliers are due to expire early in 1998. As a consequence from then on, after a phased start-up, all electricity consumers will be free to choose their supplier, completing the process of introducing competition into the electricity market which started in 1990 with the privatisation of the Industry. Then the framework by which the industry operates will become very different. This paper will review the changes to the operation of the market and assess the opportunities for small scale embedded generators post 1998. (Author)

  12. Generation and management of waste electric vehicle batteries in China.

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  13. Planning Under Uncertainty for Aggregated Electric Vehicle Charging with Renewable Energy Supply

    Walraven, E.M.P.; Spaan, M.T.J.; Kaminka, Gal A.; Fox, Maria; Bouquet, Paolo; Hüllermeier, Eyke; Dignum, Virginia; Dignum, Frank; van Harmelen, Frank

    2016-01-01

    Renewable energy sources introduce uncertainty regarding generated power in smart grids. For instance, power that is generated by wind turbines is time-varying and dependent on the weather. Electric vehicles will become increasingly important in the development of smart grids with a high penetration

  14. Covering path generation for autonomous turf-care vehicle

    Mai, Christian; Jouffroy, Jerome; Top, Søren

    2017-01-01

    A covering path generation algorithm is developed to generate a lengthwise pattern based on a polygon describing the outer boundary and obstacles (polygon holes) of a geographical area. The algorithm is applied to an autonomous lawn-care robot for application to large grass turfs, for example golf......-courses, which require structured and precise cutting patterns. The geographical polygon is recorded by manually driving the vehicle around the contour, resulting in a polygon given as geographical (latitude, longitude) coordinates of the vertices, which together with machine parameters are used to generate...

  15. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  16. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  17. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  18. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  19. Electric Motor-Generator for a Hybrid Electric Vehicle

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  20. Features of infrasonic and ionospheric disturbances generated by launch vehicle

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    In this paper we present a model, which describe the propagation of acoustic pulses through a model terrestrial atmosphere produced by launch vehicle, and effects of these pulses on the ionosphere above the launch vehicle. We show that acoustic pulses generate disturbances of electron density. The value of these disturbances is about 0.04-0.7% of background electron density. So such disturbances can not create serious noise-free during monitoring of explosions by ionospheric method. We calculated parameters of the blast wave generated at the ionospheric heights by launch vehicle. It was shown that the blast wave is intense and it can generates disturbance of electron density which 2.6 times as much then background electron density. This disturbance is 'cord' with diameter about 150-250 m whereas length of radio line is hundreds and thousand km. Duration of ionospheric disturbances are from 0.2 s to 3-5 s. Such values of duration can not be observed during underground and surface explosions. (author)

  1. Piezoelectric Energy Generation from Vehicle Traffic with Technoeconomic Analysis

    Hiba Najini

    2017-01-01

    Full Text Available This paper presents a technical simulation based system to support the concept of generating energy from road traffic using piezoelectric materials. The simulation based system design replicates a real life system implementation. It investigates practicality and feasibility using a real-time simulation platform known as MATLAB-Simulink. The system design structure was proposed considering factors involved with the field of material sciences for piezoelectric generator modeling and field of power electronics for additional components in producing a realist outcome. It also ensures ease of vehicle performance, as this system utilizes energy source derived as kinetic energy released from vehicles into electrical power output, that is, obtained by harnessing kinetic energy due to strain of vehicles over asphalt road surface. Due to the real-time simulation platform, the system simulation predicts the effective global carbon footprint. In addition to evaluating technical viability, a technoeconomical business analysis provides a strategic perspective. By using the simulation based power generation results, an estimation of implementation cost and payback time in real life (for United Arab Emirates was derived, hence validating and predicting real-time economic outcome. This is followed by a comparative study with other sources of renewable energy based on levelized energy cost factor that justifies the performance of the proposed system over other renewable energy sources, in support of providing an economical solution on reducing global carbon footprint.

  2. Covering path generation for autonomous turf-care vehicle

    Mai, Christian; Jouffroy, Jerome; Top, Søren

    2017-01-01

    A covering path generation algorithm is developed to generate a lengthwise pattern based on a polygon describing the outer boundary and obstacles (polygon holes) of a geographical area. The algorithm is applied to an autonomous lawn-care robot for application to large grass turfs, for example golf......-courses, which require structured and precise cutting patterns. The geographical polygon is recorded by manually driving the vehicle around the contour, resulting in a polygon given as geographical (latitude, longitude) coordinates of the vertices, which together with machine parameters are used to generate...... a suitable toolpath. The algorithm has been tested on a recorded polygon from a local park turf which is non-convex and has holes, illustrating the algorithm functionality and limitations wrt. optimality. In particular, the algorithm can generate a tool-path for any polygon orientation....

  3. Effective food supply chains : generating, modelling and evaluating supply chain scenarios

    Vorst, van der J.G.A.J.

    2000-01-01

    Logistical co-ordination in FMCG supply chains

    The overall objectives of the research described in this thesis were to obtain insight into the applicability of the concept Supply Chain Management (SCM) in food supply chains (SCs) from a logistical point of view, and to

  4. Necessity of Mutual Understandings in Supply Chain Management of Lithium-Ion Battery for Space Vehicle

    Kiyokawa, T.; Nakajima, M.; Mori, Y.

    2012-01-01

    Application of Lithium Ion Battery (LIB) is getting growth these days in space industry. Through the supply chain of LIB, it is very important to establish deepen mutual understandings between space industry people and non-space industry people in order to meet requirements of space grade quality control. Furthermore, this approach has positive effects for safety handling and safety transportation. This paper explains necessity of mutual understandings based on the analysis of aviation incident report. The study is focused on its background and issues on each related industry. These contents are studied and discussed in the New Work Item Proposal of the International Standard of LIB for space vehicle.

  5. Gas supply planning for new gas-fired electricity generation facilities

    Slocum, J.C.

    1990-01-01

    This paper explores several key issues in gas supply planning for new gas fired electric generation facilities. This paper will have two main sections, as follows: developing the gas supply plan for a gas-fired electricity generation facility and exploring key gas supply contract pricing issues

  6. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  7. Exploration of dispatch model integrating wind generators and electric vehicles

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  8. Testing the Logistics Model of Supplying Military Vehicles with Spare Parts

    Robert Spudić

    2007-07-01

    Full Text Available The use of advanced transport means understands alsotheir supply by spare and consumable parts. In order to solvethe problem of the required quantities, costs of purchase andstorage of the parts, it is necessary to solve the problem of stocksmanagement. The wear of tyres for military vehicles in extremeexploitation conditions is of random character. How fast thetyres will wear on the all-ten·ain and heavy motor vehicle dependson the driver's skill and the external conditions (weather,terrain. All the conditions are of random character and in orderto determine as accurately as possible the wear of tyres it isnecessary to monitor the wear of tyres within a certain time period,and to find the approximate probability of tyre wear in thefuture period of time. When the probability of tyre wear is determined,stochastic supply management model is used to calculatethe value of the stocks which allows optimal planning ofstocks of spare parts at minimal costs. The stochastic model allowsoptimal calculation for the purchase of consumable partsof transport means whose consumption depends on the randomconditions and events.

  9. Identifying sources of uncertainty to generate supply chain redesign strategies

    Vorst, van der J.G.A.J.; Beulens, A.J.M.

    2002-01-01

    Dynamic demands and constraints imposed by a rapidly changing business environment make it increasingly necessary for companies in the food supply chain to cooperate with each other. The main questions individual (food) companies face are whether, why, how and with whom they should start supply

  10. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... are motor vehicle diesel fuel credits generated? (a) Generation of credits from June 1, 2006 through...

  11. Vehicle Routing Problem for Fashion Supply Chains with Cross-Docking

    Zhi-Hua Hu

    2013-01-01

    Full Text Available Cross-docking, as a strategy to reduce lead time and enhance the efficiency of the fashion supply chain, has attracted substantial attention from both the academy and the industry. Cross-docking is a critical part of many fashion and textiles supply chains in practice because it can help to achieve many supply chain strategies such as postponement. We consider a model where there are multiple suppliers and customers in a single cross-docking center. With such a model setting, the issue concerning the coordinated routing between the inbound and outbound routes is much more complex than many traditional vehicle routing problems (VRPs. We formulate the optimal route selection problems from the suppliers to the cross-docking center and from the cross-docking center to the customers as the respective VRPs. Based on the relationships between the suppliers and the customers, we integrate the two VRP models to optimize the overall traveling time, distance, and waiting time at the cross-docking center. In addition, we propose a novel mixed 0/1 integer linear programming model by which the complexity of the problem can be reduced significantly. As demonstrated by the simulation analysis, our proposed model can be solved very efficiently by a commonly used optimization software package.

  12. A Comparative Study of Power Supply Architectures In Wireless Electric Vehicle Charging Systems

    Esteban, Bryan

    Wireless inductive power transfer is a transformational and disruptive technology that enables the reliable and efficient transfer of electrical power over large air gaps for a host of unique applications. One such application that is now gaining much momentum worldwide is the wireless charging of electric vehicles (EVs). This thesis examines two of the primary power supply topologies being predominantly used for EV charging, namely the SLC and the LCL resonant full bridge inverter topologies. The study of both of these topologies is presented in the context of designing a 3 kW, primary side controlled, wireless EV charger with nominal operating parameters of 30 kHz centre frequency and range of coupling in the neighborhood of .18-.26. A comparison of both topologies is made in terms of their complexity, cost, efficiency, and power quality. The aim of the study is to determine which topology is better for wireless EV charging.

  13. A 220 MVA turbo-generator for the TCV tokamak power supplies

    Perez, A.; Canay, I.M.; Simond, J.-J.; Morf, J.-J; Pahud, J.-D; Seysen, R.

    1989-01-01

    A new 220 MVA, 120 Hz, 4 pole turbo-generator will be used as a pulsed power source to supply the toroidal and poloidal power supplies of the TCV tokamak, which is being built at the Ecole Polytechnique Federale de Lausanne in Switzerland. The paper describes the particular requirements of the TCV poloidal power supplies and the main electrical and mechanical features of the turbo-generator and its principal auxillaries. (author). 6 figs.; 1 tab

  14. Smart mobile in-vehicle systems next generation advancements

    Abut, Huseyin; Takeda, Kazuya; Hansen, John

    2014-01-01

    This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.

  15. Vehicle Reference Generator for Collision-Free Trajectories in Hazardous Maneuvers

    Cuauhtémoc Acosta Lúa

    2018-01-01

    Full Text Available This paper presents a reference generator for ground vehicles, based on potential fields adapted to the case of vehicular dynamics. The reference generator generates signals to be tracked by the vehicle, corresponding to a trajectory avoiding collisions with obstacles. This generator integrates artificial forces of potential fields of the object surrounding the vehicle. The reference generator is used with a controller to ensure the tracking of the accident-free reference. This approach can be used for vehicle autonomous driving or for active control of manned vehicles. Simulation results, presented for the autonomous driving, consider a scenario inspired by the so-called moose (or elk test, with the presence of other collaborative vehicles.

  16. On-board power supply system of a magnetically levitated vehicle

    Shibata, M.; Maki, N.; Saitoh, T.; Kobayashi, T.

    1992-01-01

    In this paper a possible on-board power supply system for a magnetically levitated train is presented and its obtainable electrical power is estimated. The system uses special superconducting magnets. These magnets are used only for generating electrical power. Some induction coils to pick up high frequency components are set in front of the magnets. The special superconducting magnets and the induction coils will be mounted only at the head car and the tail car out of 14 cars in a train. The estimation shows that is possible to obtain more than 630kW of electrical power

  17. Steam generators: critical components in nuclear steam supply systems

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  18. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  19. Early Generation Seed Production and Supply in Ethiopia: Status ...

    Karta K. Kalsa

    the institutionalization of early generation seed production in Ethiopia. .... (Bishaw and van Gastel, 2007) and cross-pollinated crops (Maize Program, 1999).The .... Louwaars, 1999) have been suggested to address some critical gaps in early ...

  20. Power supply for plasma generator of HL-1M neutral beam injector

    Wang Detai; Qian Jiamei; Lei Guangjiu; Shun Mengda; Jiang Shaofeng; Wang Enyao; Lu Xuejun; Yang Tiehai; Wang Xuehua; Zhao Zhimin; Hao Ming; Huang Jianrong; Yu Yanqiu; Cheng Baoqiang; Wu Zhige; Sheng Ning; Hu Qingtao

    1999-01-01

    The diagram of the HL-1M Neutral Beam Injector (NBI) and the power supply (PS) system is shown. The NBI consists of ion source, beam line and power supply system etc. The ion source includes plasma generator and three-electrode extraction system. The power supply for plasma generator consists of a filament PS, an arc PS and gas valve PS. Testing has shown that the PS for plasma generator of the HL-1M NBI has excellent stability and obtain good plasma heating effect

  1. Electric vehicle (EV) storage supply chain risk and the energy market: A micro and macroeconomic risk management approach

    Aguilar, Susanna D.

    As a cost effective storage technology for renewable energy sources, Electric Vehicles can be integrated into energy grids. Integration must be optimized to ascertain that renewable energy is available through storage when demand exists so that cost of electricity is minimized. Optimization models can address economic risks associated with the EV supply chain- particularly the volatility in availability and cost of critical materials used in the manufacturing of EV motors and batteries. Supply chain risk can reflect itself in a shortage of storage, which can increase the price of electricity. We propose a micro-and macroeconomic framework for managing supply chain risk through utilization of a cost optimization model in combination with risk management strategies at the microeconomic and macroeconomic level. The study demonstrates how risk from the EVs vehicle critical material supply chain affects manufacturers, smart grid performance, and energy markets qualitatively and quantitatively. Our results illustrate how risk in the EV supply chain affects EV availability and the cost of ancillary services, and how EV critical material supply chain risk can be mitigated through managerial strategies and policy.

  2. High benefits approach for electrical energy conversion in electric vehicles from DC to PWM-AC without any generated harmonic

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply

  3. Supporting Infrastructure and Acceptability Issues Associated With Two New Generation Vehicles: P2000 and EXS2

    Das, S

    2000-06-06

    As the Partnership for a New Generation of Vehicles (PNGV) has been proceeding with the development of designs for high-fuel-economy vehicles, it also has been assessing whether impediments exist to the transition to these vehicles. Toward that end, as materials options and vehicle designs have been developed, Oak Ridge National Laboratory (ORNL) has been conducting analyses related to the attendant materials infrastructure requirements. This report addresses the question, what are the infrastructure requirements, acceptance issues, and life-cycle impacts associated with PNGV vehicles constructed of lightweight materials.

  4. A preliminary study on the changes in the Italian automotive supply chain for the introduction of electric vehicles

    Rossini, M.; Ciarapica, F.; Matt, D.; Spena, P.R.

    2016-01-01

    A survey has been carried out among Italian car makers, suppliers, and customers to identify the potential changes that the traditional Italian automotive supply chain would need for the introduction of electric vehicles. In addition, this study investigates the degree of importance that enterprises attribute to the electric vehicle market and their perceptions about the development of this market, also evaluating which types of electric vehicles and body styles are receiving the most relevant investment. An empirical investigation has been carried out to examine the above-mentioned aspects. Data have been collected through an on-line survey and analysed by a descriptive statistical analysisconfirmatory factors analysis, and cluster analyses. Market penetration of electric vehicles is mainly influenced by technological choices of car makers and battery manufacturers and by the ability to organize and manage the integrated actions of stakeholders, also including component suppliers, and manufacturers of vehicle management systems. Stakeholders have to exploit economies of scale, to make use and expand long-time competencies in electric engineering with automotive know-how, and to build up cooperation with experts in the new value chain to facilitate the required transfer of know-how. Alliances and joint ventures can provide manufacturers access to the know-how, technology, and production capacity of battery suppliers. Outsourcing, especially as regards research and development, will occur even more frequently in the near future. An agile supply chain should be adopted to manage a fluctuating market demand. This preliminary study contributes to provide an outlook of some of the most important changes that traditional Italian automotive supply chain would need to promote the introduction of electric vehicles and their critical components with an emphasis on production aspects. (Author)

  5. A preliminary study on the changes in the Italian automotive supply chain for the introduction of electric vehicles

    Matteo Rossini

    2016-05-01

    Full Text Available Purpose: A survey has been carried out among Italian car makers, suppliers, and customers to identify the potential changes that the traditional Italian automotive supply chain would need for the introduction of electric vehicles. In addition, this study investigates the degree of importance that enterprises attribute to the electric vehicle market and their perceptions about the development of this market, also evaluating which types of electric vehicles and body styles are receiving the most relevant investment. Design/methodology/approach: An empirical investigation has been carried out to examine the above-mentioned aspects. Data have been collected through an on-line survey and analysed by a descriptive statistical analysis, confirmatory factors analysis, and cluster analyses. Findings: Market penetration of electric vehicles is mainly influenced by technological choices of car makers and battery manufacturers and by the ability to organize and manage the integrated actions of stakeholders, also including component suppliers, and manufacturers of vehicle management systems. Stakeholders have to exploit economies of scale, to make use and expand long-time competencies in electric engineering with automotive know-how, and to build up cooperation with experts in the new value chain to facilitate the required transfer of know-how. Alliances and joint ventures can provide manufacturers access to the know-how, technology, and production capacity of battery suppliers. Outsourcing, especially as regards research and development, will occur even more frequently in the near future. An agile supply chain should be adopted to manage a fluctuating market demand. Originality/value: This preliminary study contributes to provide an outlook of some of the most important changes that traditional Italian automotive supply chain would need to promote the introduction of electric vehicles and their critical components with an emphasis on production aspects.

  6. A preliminary study on the changes in the Italian automotive supply chain for the introduction of electric vehicles

    Rossini, M.; Ciarapica, F.; Matt, D.; Spena, P.R.

    2016-07-01

    A survey has been carried out among Italian car makers, suppliers, and customers to identify the potential changes that the traditional Italian automotive supply chain would need for the introduction of electric vehicles. In addition, this study investigates the degree of importance that enterprises attribute to the electric vehicle market and their perceptions about the development of this market, also evaluating which types of electric vehicles and body styles are receiving the most relevant investment. An empirical investigation has been carried out to examine the above-mentioned aspects. Data have been collected through an on-line survey and analysed by a descriptive statistical analysisconfirmatory factors analysis, and cluster analyses. Market penetration of electric vehicles is mainly influenced by technological choices of car makers and battery manufacturers and by the ability to organize and manage the integrated actions of stakeholders, also including component suppliers, and manufacturers of vehicle management systems. Stakeholders have to exploit economies of scale, to make use and expand long-time competencies in electric engineering with automotive know-how, and to build up cooperation with experts in the new value chain to facilitate the required transfer of know-how. Alliances and joint ventures can provide manufacturers access to the know-how, technology, and production capacity of battery suppliers. Outsourcing, especially as regards research and development, will occur even more frequently in the near future. An agile supply chain should be adopted to manage a fluctuating market demand. This preliminary study contributes to provide an outlook of some of the most important changes that traditional Italian automotive supply chain would need to promote the introduction of electric vehicles and their critical components with an emphasis on production aspects. (Author)

  7. Passive system with steam-water injector for emergency supply of NPP steam generators

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  8. The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

    Kevin Walkowicz; Denny Stephens; Kevin Stork

    2001-01-01

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts

  9. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    Hendrickson, Thomas P.; Kavvada, Olga; Shah, Nihar; Sathre, Roger; Scown, Corinne D.

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23-45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6-56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.

  10. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    Hendrickson, Thomas P; Kavvada, Olga; Shah, Nihar; Sathre, Roger; D Scown, Corinne

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23–45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6–56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location. (letter)

  11. Design and Implementation of a Control Strategy for Microgrid Containing Renewable Energy Generations and Electric Vehicles

    Mingchao Xia

    2013-01-01

    Full Text Available Large amount of such renewable energy generations as wind/photovoltaic generations directly connected to grid acting as distributed generations will cause control, protection, security, and safety problems. Microgrid, which has advantages in usage and control of distributed generations, is a promising approach to coordinate the conflict between distributed generations and the grid. Regarded as mobile power storages, batteries of electric vehicles can depress the fluctuation of power through the point of common coupling of microgrid. This paper presents a control strategy for microgrid containing renewable energy generations and electric vehicles. The control strategy uses current control for renewable energy generations under parallel-to-grid mode, and uses master-slave control under islanding mode. Simulations and laboratory experiments prove that the control strategy works well for microgrid containing renewable energy generations and electric vehicles and provides maximum power output of renewable energy and a stable and sustainable running under islanding mode.

  12. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    Carlson, Richard Barney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  13. A New Generation of Electrical Power Supply for Telecom Satellites

    Bouhours, Gilles; Asplanato, Remi; Rebuffel, Christophe; Pasquet, Jean-Marie; Bardin, Bertrand; Deplus, Nicolas; Lempereur, Vincent

    2014-08-01

    This paper presents the main features of the new power subsystem generation for the Thales Alenia Space (TAS) Spacebus platforms.All its components (Solar Array, Solar Array Drive Mechanism, Power Conditioning Unit and Lithium-Ion batteries) have been upgraded, taking advantage of the latest available technologies. The modularity has been improved to perfectly match the sizing of each unit to the satellite power level requirement. These two improvements lead to optimal mass and cost over the whole power range.In addition, the customer benefits from a fully automatic operation of the subsystem, including redundancy, making the ground station workload negligible, even during eclipse periods. Finally, the capability to support any type of payload has been further improved, in terms of overall power level and operating modes. Payload pulsed operation capability has been especially increased to support all anticipated mission requirements. In parallel to the PCU hardware, a detailed electrical model has also been developed and correlated to analyse the regulation performance in any nominal or degraded mode. An extensive set of tests provides a verification of performances and interfaces, hardware as well as software.This paper will first describe the main requirements considered in this development. Then, the architecture will be detailed, showing how the requirements have been fulfilled. The design of each unit will be shortly presented, and finally the correlation between the regulation analysis model and the EQM measurements will be illustrated.

  14. Solid State High Voltage Supply for EB and X-Ray Generators

    Zobač, Martin; Vlček, Ivan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 73-75 ISSN 0861-4717 R&D Projects: GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20650511 Keywords : high voltage supply * electron beam generator * x-ray generator Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  15. Regulatory review and barriers for the electricity supply system for distributed generation in EU-15

    Ropenus, Stephanie; Skytte, Klaus

    2005-01-01

    When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from di...... distributed generation. This paper reviews the current regulation of the grids with respect to distributed generation in EU-15 Member States and compares the different systems. Several barriers are identified.......When distributed electricity supply surpasses a particular level, it can no longer be ignored in planning and operation of the electricity networks. Therefore, improvements of the regulatory framework of the electricity networks are required along with the growth of the electricity supply from...

  16. Simultaneous Optimal Placement of Distributed Generation and Electric Vehicle Parking Lots Based on Probabilistic EV Model

    M.H. Amini; M. Parsa Moghaddam

    2013-01-01

    High penetration of distributed generations and the increasing demand for using electric vehicles provide a lot of issues for the utilities. If these two effective elements of the future power system are used in an unscheduled manner, it may lead to the loss increment in distribution networks, dramatically. In this paper, the simultaneous allocation of distributed generations (DGs) and electric vehicles (EVs) parking lots has been studied in a radial distribution network. A distribution netwo...

  17. Building and Leading the Next Generation of Exploration Launch Vehicles

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  18. Free-piston engine linear generator for hybrid vehicles modeling study

    Callahan, T. J.; Ingram, S. K.

    1995-05-01

    Development of a free piston engine linear generator was investigated for use as an auxiliary power unit for a hybrid electric vehicle. The main focus of the program was to develop an efficient linear generator concept to convert the piston motion directly into electrical power. Computer modeling techniques were used to evaluate five different designs for linear generators. These designs included permanent magnet generators, reluctance generators, linear DC generators, and two and three-coil induction generators. The efficiency of the linear generator was highly dependent on the design concept. The two-coil induction generator was determined to be the best design, with an efficiency of approximately 90 percent.

  19. Compensating customer-generators: a taxonomy describing methods of compensating customer-generators for electricity supplied to the grid

    Hughes, Larry; Bell, Jeff

    2006-01-01

    The increasing popularity of on-site power generation is driving the demand for methods to compensate customer-generators that supply electricity to the grid. Although many practices exist for providing such compensation, confusion surrounds the terms often used to describe such practices (notably, net metering and net billing). To help clarify this situation, the following paper proposes a taxonomy that distinguishes between 16 distinct compensation practices

  20. Generation adequacy report on the electricity supply-demand balance in France. 2015 edition + executive summary

    2016-01-01

    France's new energy transition law for green growth takes effect in 2015, and it will support RTE in its task of assessing and analysing security of electricity supply. Indeed, RTE is required by law to periodically publish Generation Adequacy Reports on the balance between electricity supply and demand. This year's report will be used in security of supply analyses conducted as part of the planning of the next multi-annual energy program. Another highlight of 2015 is the operational implementation of the capacity mechanism. Electricity suppliers now have to contribute to security of supply in proportion to their customers' consumption via a new obligation-based system. The 2015 Generation Adequacy Report was prepared within this context. The supply-demand balance outlook is considerably better over the entire medium-term horizon than in the 2014 Generation Adequacy Report. This is a result of generators' recent decisions to keep oil-fired and combined-cycle gas plants in the market. Included in the possible courses of action RTE identified in its previous Generation Adequacy Report, these decisions were taken just as the capacity mechanism was being implemented operationally. A downward revision of demand assumptions has also improved the security of supply outlook. The 2015 Generation Adequacy Report paints a much more favourable picture of the supply-demand balance over the next five years than the previous edition. Significant margins are foreseen during the next two winters. This year's Generation Adequacy Report also includes detailed assumptions about the evolution of the European mix, which will play an increasingly important role in guaranteeing security of supply in France. Indeed, interconnections will help reduce the shortfall risk by 8 to 10 GW over the next five winters. Lastly, a new chapter about flexibility requirements and the variability of residual demand associated with the growing share of renewable generation in the

  1. Supporting Infrastructure and Acceptability Issues for Materials Used in New Generation Vehicles

    Das, S.; Curlee, T.R.; Jones, D.W.; Leiby, P.E.; Rubin, J.D.; Schexnayder, S.M.; Vogt, D.P.; Wolfe, A.K.

    1999-03-01

    To achieve its goal of producing vehicles that use two thirds less fuel than current vehicles, the Partnership of a New Generation of Vehicles (PNGV) is designing vehicles that will use lightweight materials in place of heavier materials used in current vehicles. using new materials in automobiles will require the development of a supporting infrastructure to produce both the substitute materials and the components of the substitute materials, as well as the automotive parts constructed from the new materials. This report documents a set of analyses that attempt to identify potential barriers--economic, infrastructure, and public acceptance barriers--to the materials substitution in New Generation Vehicles. The analyses rely on hypothetical vehicle market penetration scenarios and material composition. The approach is comprehensive, examining issues ranging from materials availability to their eventual disposition and its effect on the automobile recycling industry, and from supporting industries' capacity to the public acceptability of these vehicles. The analyses focus on two likely substitute materials, aluminum and glass-reinforced polymer composites.

  2. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  3. Design of electric vehicle charging station based on wind and solar complementary power supply

    Wang, Li

    2018-05-01

    Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.

  4. High speed and high functional inverter power supplies for plasma generation and control, and their performance

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    2003-01-01

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak. (author)

  5. Generation Adequacy Report on the electricity supply-demand balance in France - 2007 Edition

    2008-01-01

    Under the terms of the Law of 10 February 2000, at least every two years, RTE (Reseau de Transport d'Electricite), working under the aegis of the Government, establishes a multi-annual Generation Adequacy Report on the electricity supply-demand balance in France. A new regulatory framework specifies the methods to be used by RTE for drawing up this independent technical expert report. The Generation Adequacy Report is one of the elements used by the Minister for Energy and the Government in general, to determine the Multi-annual Investment Programme (referred to by the French acronym PPI) for investing in energy generation facilities, introduced by the above-mentioned law. RTE publishes the report, which also appears on-line on the operator's web site www.rtefrance.com. This principle of transparency means that the information can be circulated to all the players involved in the power system and helps drive the energy debate. RTE published a previous report in 2005, which was partially updated in 2006. The Generation Adequacy Report is part of measures aimed at ensuring the security of the French electricity supply. It is intended to identify the risks of imbalances between electricity demand and the generation supply available to satisfy it over a period of around fifteen years. Consequently, it identifies the generation capacity required to meet peak demand. The choice of generation technologies to be developed, which is dictated by environmental and economic concerns, is not covered by the Generation Adequacy Report, but is a matter for the other players involved in the French electric system, and more generally, the orientations determined by the PPI. In order to carry out the analysis of the overall supply- demand balance in mainland France, RTE establishes domestic electricity demand forecasts, which it then compares with expected developments in the generating fleet

  6. Game theory competition analysis of reservoir water supply and hydropower generation

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  7. High-power high-voltage pulse generator for supplying electrostatic precipitators of dust

    Radu, A.; Martin, D.

    1992-01-01

    The study and development of an experimental high voltage generator specialized in the supply of electrostatic precipitators are presented. The main parameters of the pulse generator are: U = -30 kV, I = 8.8 A, τ = 120μs, f r = 150 Hz. The pulse generator was tested on a laboratory electrostatic precipitator with nominal capacitance C = 25 nF, biased at -40 kV by means of a separate high voltage rectifier. The experimental results will be used for the creation of a more powerful pulse generator, a prototype for the supply of a real industrial electrostatic precipitator: U = -50 kV, I = 313 A, τ = 100μs, f r = 300 Hz, C = 100 nF. (Author)

  8. Scenario generation for electric vehicles' uncertain behavior in a smart city environment

    Soares, João; Borges, Nuno; Fotouhi Ghazvini, Mohammad Ali; Vale, Zita; Moura Oliveira, P.B. de

    2016-01-01

    This paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location. - Highlights: • New concept/framework in smart cities context to estimate the states of electric vehicles and energy demand. • Monte Carlo Simulation and fuzzy logic probabilistic approach to support the envisaged concept. • A day-ahead and an hour-ahead stochastic scenarios generation to support the smart grid's operational decisions.

  9. Electric Generator in the System for Damping Oscillations of Vehicles

    Serebryakov A.; Kamolins E.; Levin N.

    2017-01-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better ef...

  10. Generation Adequacy Report on the electricity supply-demand balance in France. 2009 Edition

    2010-01-01

    Under the terms of the Law of February 10, 2000, RTE (Reseau de Transport d'Electricite), working under the aegis of the Public Authorities, periodically establishes a multi-annual forecast report on the balance of electricity supply and demand in France. The Generation Adequacy Report is one basis for the Minister for Energy, and the Public Authorities in general, to build the Multi-annual Investment Plan (referred to in this document by its French acronym PPI for Programmation Pluri-annuelle des Investissements) for electricity generation facilities, introduced by the above-mentioned law. The Generation Adequacy Report deals with the security of the French electricity supply. It intends to identify over a period of about fifteen years the risks of imbalances in continental France between the electricity demand and the generation capacity available to supply it. It enables the identification of the generation capacity required to meet the peaks of demand. The choice of generation technologies to be developed, which is dictated by environmental and economic concerns, is not covered by the Generation Adequacy Report, but is a matter for the other stakeholders in the French electric system, under the guidelines determined by the PPI. The Generation Adequacy Report is published by RTE on its web site and thus accessible to all to serve transparency and contribute to the French energy debate. This document is the fourth edition of the Generation Adequacy Report published by RTE, following its 2003, 2005 and 2007 editions. RTE publishes partial updates in-between to reflect developments in generation capacity. The last update was published in 2008. The time horizon of the 2009 edition of the Generation Adequacy Report is 2025

  11. Generation adequacy report 2009 on the electricity supply - demand balance in France

    2009-01-01

    Under the terms of the Law of February 10, 2000, RTE (Reseau de Transport d'Electricite), working under the aegis of the Public Authorities, periodically establishes a multi-annual forecast report on the balance of electricity supply and demand in France. The Generation Adequacy Report is one basis for the Minister for Energy, and the Public Authorities in general, to build the Multi-annual Investment Plan (referred to in this document by its French acronym PPI for Programmation Pluri-annuelle des Investissements) for electricity generation facilities, introduced by the above-mentioned law. The Generation Adequacy Report deals with the security of the French electricity supply. It intends to identify over a period of about fifteen years the risks of imbalances in continental France between the electricity demand and the generation capacity available to supply it. It enables the identification of the generation capacity required to meet the peaks of demand. The choice of generation technologies to be developed, which is dictated by environmental and economic concerns, is not covered by the Generation Adequacy Report, but is a matter for the other stakeholders in the French electric system, under the guidelines determined by the PPI. The Generation Adequacy Report is published by RTE on its web site and thus accessible to all to serve transparency and contribute to the French energy debate. This document is the fourth edition of the Generation Adequacy Report published by RTE, following its 2003, 2005 and 2007 editions. RTE publishes partial updates in-between to reflect developments in generation capacity. The last update was published in 2008. The time horizon of the 2009 edition of the Generation Adequacy Report is 2025. (author)

  12. Source of high-voltage power supply for ozone generators at glow discharge

    Bruev, A.A.; Golota, V.I.; Zavada, L.M.; Taran, G.V.

    2000-01-01

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  13. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  14. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  15. Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil

    Jonker, J.G.G.; Junginger, H.M.; Verstegen, J.A.; Lin, T.; Rodríguez, L.F.; Ting, K.C.; Faaij, A.P.C.; Hilst, F. van der

    2016-01-01

    Highlights: • Optimal location & scale of ethanol plants for expansion in Goiás until 2030. • Ethanol costs from sugarcane vary between 710 and 752 US$/m"3 in 2030. • For eucalyptus-based ethanol production costs vary between 543 and 560 US$/m"3 in 2030. • System-wide optimization has a marginal impact on overall production costs. • The overall GHG emission intensity is mainly impacted by former land use. - Abstract: The expansion of the ethanol industry in Brazil faces two important challenges: to reduce total ethanol production costs and to limit the greenhouse gas (GHG) emission intensity of the ethanol produced. The objective of this study is to economically optimize the scale and location of ethanol production plants given the expected expansion of biomass supply regions. A linear optimization model is utilized to determine the optimal location and scale of sugarcane and eucalyptus industrial processing plants given the projected spatial distribution of the expansion of biomass production in the state of Goiás between 2012 and 2030. Three expansion approaches evaluated the impact on ethanol production costs of expanding an existing industry in one time step (one-step), or multiple time steps (multi-step), or constructing a newly emerging ethanol industry in Goiás (greenfield). In addition, the GHG emission intensity of the optimized ethanol supply chains are calculated. Under the three expansion approaches, the total ethanol production costs of sugarcane ethanol decrease from 894 US$/m"3 ethanol in 2015 to 752, 715, and 710 US$/m"3 ethanol in 2030 for the multi-step, one step and greenfield expansion respectively. For eucalyptus, ethanol production costs decrease from 635 US$/m"3 in 2015 to 560 and 543 US$/m"3 in 2030 for the multi-step and one-step approach. A general trend is the use of large scale industrial processing plants, especially towards 2030 due to increased biomass supply. We conclude that a system-wide optimization as a marginal

  16. Exploration of dispatch model integrating wind generators and electric vehicles

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, H.P.; Shariat Torbaghan, S.

    2016-01-01

    In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This

  17. Electric Generator in the System for Damping Oscillations of Vehicles

    Serebryakov A.

    2017-04-01

    Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  18. Electric Generator in the System for Damping Oscillations of Vehicles

    Serebryakov, A.; Kamolins, E.; Levin, N.

    2017-04-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  19. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  20. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  1. A DCT-Based Driving Cycle Generation Method and Its Application for Electric Vehicles

    Cheng Lin

    2015-01-01

    Full Text Available Nowadays, many widely used driving cycle (DC representing and generating methods are designed for traditional vehicles with internal combustion engines (ICE. The real-world driving is viewed as a sequence of acceleration, cruise, deceleration, and idle modes. The emission and fuel consumption in each period should be taken into account carefully. However, for electric vehicles (EVs, most of them are powered by low or zero-emission renewable energy sources. The working status and energy management algorithms of them are very different from traditional vehicles. To facilitate the EV design, we proposed a novel DC representing and construction method to generate DCs for EVs. The whole driving route is divided into several length-fixed segments and each of these segments is converted into a frequency sequence. After doing that, we can adjust the frequency and amplitude of the generated driving cycle directly. The experiment results showed that the proposed method was effective and convenient.

  2. Can Next-Generation Vehicles Sustainably Survive in the Automobile Market? Evidence from Ex-Ante Market Simulation and Segmentation

    Jungwoo Shin

    2018-02-01

    Full Text Available Introduced autonomous and connected vehicles equipped with emerging technologies are expected to change the automotive market. In this study, using stated preference (SP data collected from choice experiments conducted in Korea with a mixed multiple discrete-continuous extreme value model (MDCEV, we analyzed how the advent of next-generation of vehicles with advanced vehicle technologies would affect consumer vehicle choices and usage patterns. Additionally, ex-ante market simulations and market segmentation analyses were conducted to provide specific management strategies for next-generation vehicles. The results showed that consumer preference structures of conventional and alternative fuel types primarily differed depending on whether they were drivers or non-drivers. Additionally, although the introduction of electric vehicles to the automobile market is expected to negatively affect the choice probability and mileage of other vehicles, it could have a positive influence on the probability of purchasing an existing conventional vehicle if advanced vehicle technologies are available.

  3. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Wu, Yan; Li, Jie

    2013-01-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O 3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O 3 generation was approximate 4 mg kJ −1 ; moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  5. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  6. Diesel supply planning for offshore platforms by a mathematical model based on the vehicle routing problem with replenishment

    Fiorot Astoures, H.; Alvarenga Rosa, R. de; Silva Rosa, A.

    2016-07-01

    Oil exploration in Brazil is mainly held by offshore platforms which require the supply of several products, including diesel to maintain its engines. One strategy to supply diesel to the platforms is to keep a vessel filled with diesel nearby the exploration basin. An empty boat leaves the port and goes directly to this vessel, then it is loaded with diesel. After that, it makes a trip to supply the platforms and when the boat is empty, it returns to the vessel to be reloaded with more diesel going to another trip. Based on this description, this paper proposes a mathematical model based on the Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF) to solve the problem. The purpose of the model is to plan the routes for the boats to meet the diesel requests of the platform. Given the fact that in the literature, papers about the VRPIRF are scarce and papers about the VRPIRF applied to offshore platforms were not found in the published papers, this paper is important to contribute with the evolution of this class of problem, bringing also a solution for a real application that is very important for the oil and gas business. The mathematical model was tested using the CPLEX 12.6. In order to assess the mathematical model, tests were done with data from the major Brazilian oil and gas company and several strategies were tested. (Author)

  7. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    Castello, Charles C [ORNL

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  8. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  9. Generation Adequacy Report on the electricity supply-demand balance in France - 2011 Edition

    2012-01-01

    Working under the aegis of public authorities, RTE periodically prepares and makes public a multi-annual forecast of the electricity supply-demand balance in France, as required by law. The purpose of this report is to evaluate the ability of the French power system, in interaction with neighbouring systems, to properly satisfy demand, based on the likeliest scenarios for trends in demand, demand response and generation

  10. Modeling and simulation of the power demand and supply of a hydrothermal power generating system

    Pronini, R.A.

    1996-01-01

    Security of supply of electric energy is measured by the capacity to cover the energy demand and power of a supply grid. This coverage is important because the winter peak load period in Switzerland will become problematical in the near future. The objective of this research project is to analyze the ability of a power generating system to satisfy the power requirements of the corresponding supply network. The behaviour of the energy system in critical cases (loss of the largest generator, lack of available power from an external supplier or reduced capacity for energy storage) is tested for the present situation and for the rise in the annual load. The simulation of the load of the supply network is carried out by using a model developed for this project. This model is based on the analysis of half-hourly changes of load and on the statistical maximum values. The power generating system consists of nuclear generating units, hydro units with large reservoirs, run of the river installations and imported energy. Standby units such as gas turbines, spot market and coal-fired power stations are also available. Stochastic and deterministic energy and power models have been developed for the various power stations of the hydrothermal power system. In the case of nuclear power stations, a model has been developed on the basis of the output level, production losses and time and length of outages. The possible feeder streams of the run of the river installations and of the hydro units with a large reservoir are simulated using stochastic methods based on the historical values of the last 35 years. The commitment of the hydro units depends on the peak load requirements. The load and capacity over a period of several days and weeks have been simulated with stochastic models based on the Monte Carlo method and constantly (by half hour intervals) compared. In this manner each month can be simulated. (author) figs., tabs., 46 refs

  11. Nanosecond high-voltage generators for supplying the kickers of charged particle accelerators

    Korchuganov, V.N.; Matveev, Yu.G.; Shvedov, D.A.

    2000-01-01

    The high-voltage nanosecond generators (VNG) of rectangular pulses, developed for supplying the injection and extraction kickers of the accelerator-storage complexes are considered in this work. The pulse hydrogen thyratrons and gas-filled discharges are used as commutators in those generators. If necessary, the VNG pulses fronts may be shortened up to 2-3 ns in the coaxial lines, filled with ferrite rings. The mechanism of the pulse fronts shortening was considered earlier. The basis parameters of the VNG various types are presented [ru

  12. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation

    Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M.

    2014-01-01

    Highlights: • Difficulties in assessing distribution network adequacy with DG are addressed. • Indices are proposed to assess adequacy of energy supply and service continuity. • Analytical methodology is developed to assess the proposed indices. • Concept of joint probability distribution of demand and generation is applied. - Abstract: Continuity of electricity supply with renewable distributed generation (DG) is a topical issue for distribution system planning and operation, especially due to the stochastic nature of power generation and time varying load demand. The conventional adequacy and reliability analysis methods related to bulk generation systems cannot be applied directly for the evaluation of adequacy criteria such as ‘energy supply’ and ‘continuity of service’ for distribution networks embedded with renewable DG. In this paper, new indices highlighting ‘available supply capacity’ and ‘continuity of service’ are proposed for ‘energy supply’ and ‘continuation of service’ evaluation of generation-rich distribution networks, and analytical techniques are developed for their quantification. A probability based analytical method has been developed using the joint probability of the demand and generation, and probability distributions of the proposed indices have been used to evaluate the network adequacy in energy supply and service continuation. A data clustering technique has been used to evaluate the joint probability between coincidental demand and renewable generation. Time sequential Monte Carlo simulation has been used to compare the results obtained using the proposed analytical method. A standard distribution network derived from Roy Billinton test system and a practical radial distribution network have been used to test the proposed method and demonstrate the estimation of the well-being of a system for hosting renewable DG units. It is found that renewable DG systems improve the ‘energy supply’ and

  13. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  14. Coordinated operation of a neighborhood of smart households comprising electric vehicles, energy storage and distributed generation

    Paterakis, N.G.; Erdinc, O.; Pappi, I.N.; Bakirtzis, A.G.; Catalao, J.P.S.

    2016-01-01

    In this paper, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy procurement cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional

  15. Supply Chain Management as a Driving Force for Generating Competitive Advantage for Dairy Companies

    Irina Olegovna Poleshkina

    2016-11-01

    Full Text Available The study aims to uncover the reserves to generate competitive advantages for the participants of the market of perishables in the case of the dairy sector due to the formation of effective supply chains, as this category of goods is the most demanding in terms of periods and conditions of transportation and terms of preservation. The research technique is based on the concepts of value chains and supply chain management. In order to optimize the distribution of functions between the participants of the dairy chain a process-based approach has been applied. The research has revealed the main reasons for high aggregate costs and the places of their formation at each stage of the dairy supply chain. The article proposes the mechanisms to address three main problems arising from the process of building relations between the participants of the dairy supply chain in Russia. These problems are associated with a disproportionate margin distribution between the participants of the chain, with non-compliance of the quality of raw milk with the requirements for the production of specific types of dairy products, and with distrust of the supply chain participants, which increases transaction costs and forces to create reserve supplies which reduce the competitiveness of the whole dairy supply chain in general. In order to improve the competitiveness of all participants in the dairy chain, the article presents several mechanisms for solving these problems. The first is margin distribution based on the costs incurred by each participant of the dairy chain. The second is the use of a mathematical model to determine the assortment of goods of a dairy enterprise on the basis of the incoming volume and quality of raw milk according to the seasonal factor and the demand for dairy products. The third is the feasibility of refusal from the formation of reserve supplies by all participants of the dairy chain, which will not only minimize aggregate costs, but also

  16. Optimization of operation of energy supply systems with co-generation and absorption refrigeration

    Stojiljković Mirko M.

    2012-01-01

    Full Text Available Co-generation systems, together with absorption refrigeration and thermal storage, can result in substantial benefits from the economic, energy and environmental point of view. Optimization of operation of such systems is important as a component of the entire optimization process in pre-construction phases, but also for short-term energy production planning and system control. This paper proposes an approach for operational optimization of energy supply systems with small or medium scale co-generation, additional boilers and heat pumps, absorption and compression refrigeration, thermal energy storage and interconnection to the electric utility grid. In this case, the objective is to minimize annual costs related to the plant operation. The optimization problem is defined as mixed integer nonlinear and solved combining modern stochastic techniques: genetic algorithms and simulated annealing with linear programming using the object oriented “ESO-MS” software solution for simulation and optimization of energy supply systems, developed as a part of this research. This approach is applied to optimize a hypothetical plant that might be used to supply a real residential settlement in Niš, Serbia. Results are compared to the ones obtained after transforming the problem to mixed 0-1 linear and applying the branch and bound method.

  17. Refinements of the column generation process for the Vehicle Routing Problem with Time Windows

    Larsen, Jesper

    2004-01-01

    interval denoted the time window. The objective is to determine routes for the vehicles that minimizes the accumulated cost (or distance) with respect to the above mentioned constraints. Currently the best approaches for determining optimal solutions are based on column generation and Branch......-and-Bound, also known as Branch-and-Price. This paper presents two ideas for run-time improvements of the Branch-and-Price framework for the Vehicle Routing Problem with Time Windows. Both ideas reveal a significant potential for using run-time refinements when speeding up an exact approach without compromising...

  18. Analyzing the Relationship Between Car Generation and Severity of Motor-Vehicle Crashes in Denmark

    Rich, Jeppe; Prato, Carlo Giacomo; Hels, Tove

    2013-01-01

    .e., car’s first registration year) and injury severity sustained by car drivers involved in accidents in Denmark between 2004 and 2010. A generalized ordered logit model was estimated while controlling for several characteristics of the crash, the vehicle and the persons involved, and a sensitivity...... car market with remarkably high registration tax that causes potential buyers to hold longer onto old cars, the relationship between technological enhancements of vehicles and severity of crashes requires particular attention. The current study investigated the relationship between car generation (i...... analysis was performed to assess the effect of car generation on drivers’ injury severity. Results illustrate that newer car generations are associated to significantly lower probability of injury and fatality, and that replacing older cars with newer ones introduces significant and not to be overlooked...

  19. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  20. System engineering and design of a pulsed homopolar generator power supply for the Texas Experimental Tokamak

    Bird, W.L.; Grant, G.B.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The design of a homopolar generator power supply for the Texas Experimental Tokamak (TEXT) is presented. Four series-connected disk type homopolar machines serve as inertial energy storage and conversion devices to supply 50 to 70 MW peak power to the toroidal field coil and ohmic heating coil circuits. The system is nominally operated at 150 MJ, 430 V to provide a 0.5 sec flat top, 160 kA TF current pulse and a 0.3 sec, 10 kA OH current pulse every 2.0 min on a continuous basis. The system has a maximum capacity of 200 MJ at a maximum open circuit voltage of 500 V. The homopolar machine design is described

  1. When do firms generate? Evidence on in-house electricity supply in Africa

    Steinbuks, J.; Foster, V.

    2010-01-01

    This paper attempts to identify the underlying causes and costs of own generation of electric power in Africa. Rigorous empirical analysis of 8483 currently operating firms in 25 African countries shows that the prevalence of own generation would remain high (at around 20%) even if power supplies were perfectly reliable, suggesting that other factors such as firms' size, emergency back-up and export regulations play a critical role in the decision to own a generator. The costs of own-generation are about three times as high as the price of purchasing (subsidized) electricity from the public grid. However, because these generators only operate a small fraction of the time, they do not greatly affect the overall average cost of power to industry. The benefits of generator ownership are also substantial. Firms with their own generators report a value of lost load of less than US$50 per hour, compared with more than US$150 per hour for those without. Nevertheless, when costs and benefits are considered side by side, the balance is not found to be significantly positive. (author)

  2. Analysis of public consciousness structure and consideration of information supply against the nuclear power generation

    Shimooka, Hiroshi

    2001-01-01

    The Energy Engineering Research Institute carried out six times of questionnaire on analysis of public consciousness structure for fiscal years for 1986 to 1999, to obtain a lot of informations on public recognition against the nuclear power generation. In recent, as a feasibility on change of consciousness against the power generation was supposed by occurrence of the JCO critical accident forming the first victim in Japan on September, 1999 after investigation in fiscal year 1998, by carrying out the same questionnaire as one in previous fiscal year to the same objects after the accident, to analyze how evaluation, behavior determining factor and so forth on the power generation changed by the accident. In this paper, on referring to results of past questionnaires, were introduced on the questionnaire results and their analysis carried out before and after the JCO critical accident, to consider on information supply referred by them. (G.K.)

  3. Integrated operation of electric vehicles and renewable generation in a smart distribution system

    Zakariazadeh, Alireza; Jadid, Shahram; Siano, Pierluigi

    2015-01-01

    Highlights: • The contribution of electric vehicles to provide the reserve capacity is analyzed. • Decentralized energy and reserve scheduling in a distribution system is presented. • The integrated operation of renewable generation and electric vehicles is proposed. - Abstract: Distribution system complexity is increasing mainly due to technological innovation, renewable Distributed Generation (DG) and responsive loads. This complexity makes difficult the monitoring, control and operation of distribution networks for Distribution System Operators (DSOs). In order to cope with this complexity, a novel method for the integrated operational planning of a distribution system is presented in this paper. The method introduces the figure of the aggregator, conceived as an intermediate agent between end-users and DSOs. In the proposed method, energy and reserve scheduling is carried out by both aggregators and DSO. Moreover, Electric Vehicles (EVs) are considered as responsive loads that can participate in ancillary service programs by providing reserve to the system. The efficiency of the proposed method is evaluated on an 84-bus distribution test system. Simulation results show that the integrated scheduling of EVs and renewable generators can mitigate the negative effects related to the uncertainty of renewable generation

  4. Thyristor current-pulse generator for betatron electromagnet with independent low-voltage supply

    Baginskii, B.A.; Makarevich, V.N.; Shtein, M.M.

    1989-01-01

    A thyristor generator is described that produces unipolar current pulses in the winding of a betatron electromagnet. The voltage on the electro-magnet is increased and the shape of the current pulses is improved by use of an intermediate inductive storage device. The current pulses have a duration of 11 msec, an amplitude of 190 A, and a repetition frequency of 50 Hz. The maximum magnetic-field energy is 450 J, the voltage on the electromagnet winding is 1.5 kV, and the supply voltage is 27 V

  5. A Column Generation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem

    Majid Yousefikhoshbakht

    2017-07-01

    Full Text Available This paper addressed the heterogeneous fixed fleet open vehicle routing problem (HFFOVRP, in which the vehicles are not required to return to the depot after completing a service. In this new problem, the demands of customers are fulfilled by a heterogeneous fixed fleet of vehicles having various capacities, fixed costs and variable costs. This problem is an important variant of the open vehicle routing problem (OVRP and can cover more practical situations in transportation and logistics. Since this problem belongs to NP-hard Problems, An approach based on column generation (CG is applied to solve the HFFOVRP. A tight integer programming model is presented and the linear programming relaxation of which is solved by the CG technique. Since there have been no existing benchmarks, this study generated 19 test problems and the results of the proposed CG algorithm is compared to the results of exact algorithm. Computational experience confirms that the proposed algorithm can provide better solutions within a comparatively shorter period of time.

  6. AUTOMATIC GENERATION OF ROAD INFRASTRUCTURE IN 3D FOR VEHICLE SIMULATORS

    Adam Orlický

    2017-12-01

    Full Text Available One of the modern methods of testing new systems and interfaces in vehicles is testing in a vehicle simulator. Providing quality models of virtual scenes is one of tasks for driver-car interaction interface simulation. Nowadays, there exist many programs for creating 3D models of road infrastructures, but most of these programs are very expensive or canÂtt export models for the following use. Therefore, a plug-in has been developed at the Faculty of Transportation Sciences in Prague. It can generate road infrastructure by Czech standard for designing roads (CSN 73 6101. The uniqueness of this plug-in is that it is the first tool for generating road infrastructure in NURBS representation. This type of representation brings more exact models and allows to optimize transfer for creating quality models for vehicle simulators. The scenes created by this plug-in were tested on vehicle simulators. The results have shown that with newly created scenes drivers had a much better feeling in comparison to previous scenes.

  7. Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid

    Honarmand, Masoud; Zakariazadeh, Alireza; Jadid, Shahram

    2014-01-01

    Highlights: • Integrated operation of renewable generation and electric vehicles is presented. • The capability of electric vehicles in providing reserve has been analyzed. • A new electric vehicles charging/discharging management system is proposed. • The technical features of electric vehicle’s batteries are considered. - Abstract: Integration of Electric Vehicles (EVs) and Renewable Energy Sources (RESs) into the electric power system may bring up many technical issues. The power system may put at risk the security and reliability of operation due to intermittent nature of renewable generation and uncontrolled charging/discharging procedure of EVs. In this paper, an energy resources management model for a microgrid (MG) is proposed. The proposed method considers practical constraints, renewable power forecasting errors, spinning reserve requirements and EVs owner satisfaction. A case study with a typical MG including 200 EVs is used to illustrate the performance of the proposed method. The results show that the proposed energy resource scheduling method satisfies financial and technical goals of parking lot as well as the security and economic issues of MG. Moreover, EV owners could earn profit by discharging their vehicles’ batteries or providing the reserve capacity and finally have desired State Of Charge (SOC) in the departure time

  8. A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms

    Borghi, Carlo A; Cristofolini, Andrea; Grandi, Gabriele; Neretti, Gabriele; Seri, Paolo

    2015-01-01

    In this work a high voltage—high frequency generator for the power supply of a dielectric barrier discharge (DBD) plasma actuator for the aerodynamic control obtained by the electro-hydro-dynamic (EHD) interaction is described and tested. The generator can produce different voltage waveforms. The operating frequency is independent of the load characteristics and does not require impedance matching. The peak-to-peak voltage is 30 kV at a frequency up to 20 kHz and time variation rates up to 60 kV μs −1 . The performance of the actuator when supplied by several voltage waveforms is investigated. The tests have been performed in still air at atmospheric pressure. Voltage and current time behaviors have been measured. The evaluation of the energy delivered to the actuator allowed the estimation of the periods in which the plasma was ignited. Vibrational and rotational temperatures of the plasma have been estimated through spectroscopic acquisitions. The flow field induced in the region above the surface of the DBD actuator has been studied and the EHD conversion efficiency has been evaluated for the voltage waveforms investigated. The nearly sinusoidal multilevel voltage of the proposed generator and the sinusoidal voltage waveform of a conventional ac generator obtain comparable plasma features, EHD effects, and efficiencies. Inverse saw tooth waveform presents the highest effects and efficiency. The rectangular waveform generates suitable EHD effects but with the lowest efficiency. The voltage waveforms that induce plasmas with higher rotational temperatures are less efficient for the conversion of the electric into kinetic energy. (paper)

  9. A critical assessment of the different approaches aimed to secure electricity generation supply

    Batlle, C.; Rodilla, P. [Technological Research Institute, Pontifical University of Comillas, Sta. Cruz de Marcenado 26, 28015 Madrid (Spain)

    2010-11-15

    Since the very beginning of the power systems reform process, one of the key questions posed has been whether the market, of its own accord, is able to provide satisfactory security of supply at the power generation level or if some additional regulatory mechanism needs to be introduced, and in the latter case, which is the most suitable approach to tackle the problem. This matter is undoubtedly gaining importance and it has taken a key role in the energy regulators' agendas. In this paper, we critically review and categorize the different approaches regulators can opt for to deal with the problem of guaranteeing (or at least enhancing) security of supply in a market-oriented environment. We analyze the most relevant regulatory design elements throughout an updated assessment of the broad range of international experiences, highlighting the lessons we have learned so far in a variety of contexts. Based on the analysis, we conclude by providing a set of principles and criteria that should be considered by the regulator when designing a security of supply mechanism. (author)

  10. A critical assessment of the different approaches aimed to secure electricity generation supply

    Batlle, C.; Rodilla, P.

    2010-01-01

    Since the very beginning of the power systems reform process, one of the key questions posed has been whether the market, of its own accord, is able to provide satisfactory security of supply at the power generation level or if some additional regulatory mechanism needs to be introduced, and in the latter case, which is the most suitable approach to tackle the problem. This matter is undoubtedly gaining importance and it has taken a key role in the energy regulators' agendas. In this paper, we critically review and categorize the different approaches regulators can opt for to deal with the problem of guaranteeing (or at least enhancing) security of supply in a market-oriented environment. We analyze the most relevant regulatory design elements throughout an updated assessment of the broad range of international experiences, highlighting the lessons we have learned so far in a variety of contexts. Based on the analysis, we conclude by providing a set of principles and criteria that should be considered by the regulator when designing a security of supply mechanism.

  11. Generation Adequacy Report on the electricity supply-demand balance in France - 2005 Edition

    2006-01-01

    Under the terms of the Law of 10 February 2000, RTE is required to draw up a multi-annual Generation Adequacy Report on the electricity supply-demand balance in France. The present 2005 edition has been compiled in close conjunction with the working group in charge of long-term power generation pluri-annual investment programs at the French Directorate for Energy Demand and Markets, DIDEME. The purpose of RTE's Generation Adequacy Report is to quantify the additional electric generating facilities that need to be commissioned in the years ahead. It is based on various scenarios for the development of supply and demand, adopted on January 1, 2005, and covers the period 2006-2016. Three different consumption forecast scenarios have been used. All include a substantial drop in consumption by the Eurodif plant between 2010 and 2015. The two upper scenarios (called R1 and R2) fall within current trends, with annual growth of 1.7% and 1.5% until 2010 and a slowing down thereafter; they can be considered as equally likely to occur in the short-term. The low consumption growth scenario (R3) is intended to depict a context of environmental commitments. It is based on the assumption that demand side management initiatives will have an immediate impact, which makes it rather unlikely in the short-term. Under the reference scenario (R2), French domestic consumption, which was 468.5 TWh in 2004, reaches 508 TWh by 2010 and 552 TWh by 2020. Consumption at peak time in winter increases by around 1,000 MW per year. Up until 2016, France's fleet of generating facilities will be determined by a number of changes: the recommissioning of three of EDF's fuel-oil-fired units, the expected arrival of the EPR in 2012, and the definitive shutdown by 2015 of coal-fired plants that do not meet the requirements imposed by environmental regulations. In the field of renewable energy sources (RES), three different scenarios are considered. The main difference between them is the

  12. Satellite Images-Based Obstacle Recognition and Trajectory Generation for Agricultural Vehicles

    Mehmet Bodur

    2015-12-01

    Full Text Available In this study, a method for the generation of tracking trajectory points, detection and positioning of obstacles in agricultural fields have been presented. Our principal contribution is to produce traceable GPS trajectories for agricultural vehicles to be utilized by path planning algorithms, rather than a new path planning algorithm. The proposed system works with minimal initialization requirements, specifically, a single geographical coordinate entry of an agricultural field. The automation of agricultural plantation requires many aspects to be addressed, many of which have been covered in previous studies. Depending on the type of crop, different agricultural vehicles may be used in the field. However, regardless of their application, they all follow a specified trajectory in the field. This study takes advantage of satellite images for the detection and positioning of obstacles, and the generation of GPS trajectories in the agricultural realm. A set of image processing techniques is applied in Matlab for detection and positioning.

  13. The introduction of electric vehicles in the private fleet: Potential impact on the electric supply system and on the environment. A case study for the Province of Milan, Italy

    Perujo, Adolfo; Ciuffo, Biagio

    2010-01-01

    The study analyses the possible impact of the electric vehicles' recharging activities on the electric supply system for the Province of Milan and on the global environment with a 2030 time horizon. In particular, the impact on the electric grid is seen both in terms of total electric energy consumption and in power requested to the grid. Because of the long recharging time required by the car batteries, the probability to have thousands of cars contemporary plugged-in at a given time is not negligible. On the other hand, the impact on the environment is seen in terms of CO 2 emissions reduction. Even if, at the moment, the Italian electric energy mix is mainly generated by means of thermal power stations making use of not renewable fossil fuels, the efficiency of these plants is much higher than the efficiency of a vehicle's engine. Results obtained clearly show that electric vehicles can contribute to the overall CO 2 abatement strategy in the transport sector but at the same time without an appropriate regulation (e.g. the intelligent integration of electric vehicles into the existing power grid as decentralised and flexible energy storage asset), electric vehicles could heavily impact on the daily requested electric power.

  14. New control strategy of stand-alone brushless doubly-fed induction generator for supplying unbalanced loads in ship shaft power generation system

    Liu, Yi; Xu, Wei; Xiong, Fei

    2017-01-01

    The ship shaft power generation system based on a stand-alone brushless doubly-fed induction generator (BDFIG) have demonstrated excellent saving-energy performance. This paper presents a new control scheme of the stand-alone BDFIG for supplying unbalanced loads in the ship shaft power generation...

  15. Renewable generation technology choice and policies in a competitive electricity supply industry

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable

  16. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Fu, Zhumu; Gao, Aiyun; Wang, Xiaohong; Song, Xiaona

    2014-01-01

    This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified I...

  17. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  18. Generation Adequacy Report on the electricity supply-demand balance in France - 2017 Edition. Reference document

    2018-01-01

    In accordance with French legislation, each year RTE drafts and publishes the 'Generation Adequacy Report' concerning the supply demand balance of electricity. As a diagnostic reference for security of supply and of the electric network, the report is a key corporate exercise which is used to shed light on the medium to long term forecasts for security of supply, and therefore to develop national energy policies. This 2017 report presents: 1 - the power consumption and its perspectives according to the correct implementation of energy efficiency actions; 2 - the power generation park with scenarios integrating a public control and a modeling of the economic decisions of competing actors; 3 - A realistic European power trade vision integrating energy policy uncertainties of neighboring countries; 4 - The five next year analysis: a tight balance with necessary choices; 5 - the 'Ohm' scenario: an unprecedented adaptation of the production park to meet the nuclear share law goal; 6 - The 'Ampere' scenario for a reduction of nuclear production following the rhythm of renewable energy sources development; 7 - The 'Hertz' scenario with a development of thermal means to accelerate the nuclear phasing out without CO 2 emissions increase; 8 - The 'Volt' scenario for a sustained development of renewable energy sources together with an evolution of the nuclear park adapted to the European economic opportunities; 9 - The 'Watt' scenario for an automatic decommissioning of reactors after 40 years of operation; 10 - Self-consumption development and the transformation of the power system under the effect of investment decision decentralization; 11 - Cross-analysis of scenarios: the 2030-2035 power system has to be decided today

  19. Gas Supply, Pricing Mechanism and the Economics of Power Generation in China

    Yuanxin Liu

    2018-04-01

    Full Text Available During the “13th Five-Year Plan” period, green energy is the top priority for China. China has realized that natural gas, as a low-carbon energy source, fits with the nation’s energy demand and will play a critical role in the energy transition, but the actual industry development is slower than expected. By analyzing the major gas corporations around the world, the paper finds that the key factors of the sector are supply and price of the energy resource. A comprehensive analysis on domestic and foreign imported gas reveals a trend of oversupply in China in the future. Given the critical import dependence, China has introduced a series of gas price reforms since 2013, which have led to negative impacts on important gas consumption sectors including power generation. With the levelized cost of electricity (LCOE model, we find that under the prevailing gas supply structure and price level, the economy of utility gas power generation will remain unprofitable, while combined cooling heating and power (CCHP is only commercially feasible in coastal developed regions. If continuing, such a trend will not only bring forth disastrous consequences to gas power industry, but also damage the upstream gas industry, more importantly, impede the energy transition. We conclude the paper with policy implications on pricing mechanism reform, developing domestic unconventional gas and the R&D of gas turbine.

  20. Policy and network regulation for the integration of distribution generation and renewables for electricity supply

    Ten Donkelaar, M.; Van Oostvoorn, F.

    2005-08-01

    This study has analysed the existing policy and regulation aimed at the integration of an increased share of Distributed Generation (DG) in electricity supply systems in the European Union. It illustrates the state of the art and progress in the development of support mechanisms and network regulation for large-scale integration of DG. Through a benchmark study a systematic comparison has been made of different DG support schemes and distribution network regulation in EU Member States to a predefined standard, the level playing field. This level playing field has been defined as the situation where energy markets, policy and regulation provide neutral incentives to central versus distributed generation, which results in an economically more efficient electricity supply to the consumer. In current regulation and policy a certain discrepancy can be noticed between the actual regulation and policy support systems in a number of countries, the medium to long term targets and the ideal situation described according to the level playing field objective. Policies towards DG and RES are now mainly aimed at removing short-term barriers, increasing the production share of DG/RES, but often ignoring the more complex barriers of integrating DG/RES that is created by the economic network regulation in current electricity markets

  1. Application of solar panels in vehicle parking under the concept of distributed generation

    Calderon Vega, Jefferson

    2013-01-01

    An analysis of solar panels technologies is realized to implement an application of distributed generation in vehicle parking. The different technologies available in the market about solar panels are investigated. The climatological and geographical conditions are studied for the use of solar energy. The electrical requirements are determined for the implementation of solar panels as a distributed generation system. The benefit/cost is analyzed in establishments of vehicle parking for the implementation of solar panels. A photovoltaic system was developed in a vehicle parking attached at the Colegio Federado de Ingenieros y Arquitectos, and also the technical feasibility has been determined. The photovoltaic systems about roofs of buildings every day have been more viable, due that the cost of the systems has been lower and more efficient. Crystalline silicon ''mono'' or ''poly'' has been the most reliable option in the development of new technologies in solar cells. Costa Rica is found in a zone where the photovoltaic solar energy is harnessed and should to be fostered by the engineering sector. The installation of photovoltaic systems has contributed to reduce the carbon footprint in the distributed generation [es

  2. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  3. Generation adequacy report on the electricity supply-demand balance in France. 2016 edition + executive summary

    2016-01-01

    After a presentation of the elaboration framework of this generation adequacy report, and of the objectives of the risk analysis, this report proposes a detailed analysis of electricity consumption in France. It describes the main determining factors of electric power consumption: energy efficiency, economic growth, demography, and transfers and new uses of electricity. It proposes a sector-based analysis of energy demand (housing sector, office building sector, industrial sector, transport, energy and agriculture sectors), and an assessment of perspectives for power consumption. It also proposes a power-based analysis of electricity consumption: influence of temperature on electricity consumption, analysis of the load curve, perspectives for electricity consumption peak. The next part addresses the evolution of electricity supply in France. It presents the existing production fleet, proposes an overview of renewable energies (ground-based wind energy, offshore wind energy and marine energies, solar photovoltaic energy, bio-energies, hydraulic energy), presents some characteristics of the French nuclear fleet (installed capacity, availability), analyses the flame-based thermal fleet (oil-based, coal-based, gas-based combined, combustion turbine, and decentralised thermal installations). It also discusses the issue of load management, and proposes a synthetic overview of the electricity production fleet (supply evolutions on the medium term, evolutions with respect to the 2015 provisional assessment). The next chapter reports a risk analysis on the medium term by presenting indicators of supply safety, by proposing a failure risk analysis (diagnosis on the medium term, comparison with the previous provisional assessment, sensitivity to extreme events), by presenting energy assessments, by reporting sensitivity analysis (to consumption hypotheses, to hypotheses related to the development of renewable energies, to hypotheses related to the nuclear fleet), by reporting

  4. Measuring Aerosols Generated Inside Armoured Vehicles Perforated by Depleted Uranium Ammunition

    Parkhurst, MaryAnn

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the U.S. Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects of soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterized. A robust sampling system was designed to collect aerosols in this difficult environment and to monitor continuously the sampler flow rates. Interior aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. These data will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples

  5. Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition

    Parkhurst, M.A.

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the US Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects on soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterised. A robust sampling system was designed to collect aerosols in this difficult environment and monitor continuously the sampler flow rates. The aerosol samplers selected for these tests included filter cassettes, cascade impactors, a five-stage cyclone and a moving filter. Sampler redundancy was an integral part of the sampling system to offset losses from fragment damage. Wipe surveys and deposition trays collected removable deposited particulate matter. Interior aerosols were analysed for uranium concentration and particle size distribution as a function of time. They were also analysed for uranium oxide phases, particle morphology and dissolution in vitro. These data, currently under independent peer review, will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples. (author)

  6. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply.

    Yang, Zhigang; Yao, Hong; Fei, Fei; Li, Yuwei; Qu, Jie; Li, Chunyuan; Zhang, Shiwu

    2018-04-01

    During development and tumor progression, cells need a sufficient blood supply to maintain development and rapid growth. It is reported that there are three patterns of blood supply for tumor growth: endothelium-dependent vessels, mosaic vessels, and vasculogenic mimicry (VM). VM was first reported in highly aggressive uveal melanomas, with tumor cells mimicking the presence and function of endothelial cells forming the walls of VM vessels. The walls of mosaic vessels are randomly lined with both endothelial cells and tumor cells. We previously proposed a three-stage process, beginning with VM, progressing to mosaic vessels, and eventually leading to endothelium-dependent vessels. However, many phenomena unique to VM channel formation remain to be elucidated, such as the origin of erythrocytes before VM vessels connect with endothelium-dependent vessels. In adults, erythroid cells are generally believed to be generated from hematopoietic stem cells in the bone marrow. In contrast, embryonic tissue obtains oxygen through formation of blood islands, which are largely composed of embryonic hemoglobin with a higher affinity with oxygen, in the absence of mature erythrocytes. Recent data from our laboratory suggest that embryonic blood-forming mechanisms also exist in cancer tissue, particularly when these tissues are under environmental stress such as hypoxia. We review the evidence from induced pluripotent stem cells in vitro and in vivo to support this previously underappreciated cell functionality in normal and cancer cells, including the ability to generate erythroid cells. We will also summarize the current understanding of tumor angiogenesis, VM, and our recent work on polyploid giant cancer cells, with emphasis on their ability to generate erythroid cells and their association with tumor growth under hypoxia. An alternative embryonic pathway to obtain oxygen in cancer cells exists, particularly when they are under hypoxic conditions.

  7. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  8. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  9. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.

    Hahn, Henning; Hartmann, Kilian; Bühle, Lutz; Wachendorf, Michael

    2015-03-01

    The environmental performance of biogas plant configurations for a demand - oriented biogas supply for flexible power generation is comparatively assessed in this study. Those configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54-65 g CO(2-eq) MJ(-1) and primary energy by about 1.17 MJ MJ(-1). In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production. Using thicker biogas storage sheeting material reduces the methane permeability of up to 6m(3) d(-1) which equals a reduction of 8% of the configuration's total methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Drought Resilience of Water Supplies for Shale Gas Extraction and Related Power Generation in Texas

    Reedy, R. C.; Scanlon, B. R.; Nicot, J. P.; Uhlman, K.

    2014-12-01

    There is considerable concern about water availability to support energy production in Texas, particularly considering that many of the shale plays are in semiarid areas of Texas and the state experienced the most extreme drought on record in 2011. The Eagle Ford shale play provides an excellent case study. Hydraulic fracturing water use for shale gas extraction in the play totaled ~ 12 billion gallons (bgal) in 2012, representing ~7 - 10% of total water use in the 16 county play area. The dominant source of water is groundwater which is not highly vulnerable to drought from a recharge perspective because water is primarily stored in the confined portion of aquifers that were recharged thousands of years ago. Water supply drought vulnerability results primarily from increased water use for irrigation. Irrigation water use in the Eagle Ford play was 30 billion gallons higher in the 2011 drought year relative to 2010. Recent trends toward increased use of brackish groundwater for shale gas extraction in the Eagle Ford also reduce pressure on fresh water resources. Evaluating the impacts of natural gas development on water resources should consider the use of natural gas in power generation, which now represents 50% of power generation in Texas. Water consumed in extracting the natural gas required for power generation is equivalent to ~7% of the water consumed in cooling these power plants in the state. However, natural gas production from shale plays can be overall beneficial in terms of water resources in the state because natural gas combined cycle power generation decreases water consumption by ~60% relative to traditional coal, nuclear, and natural gas plants that use steam turbine generation. This reduced water consumption enhances drought resilience of power generation in the state. In addition, natural gas combined cycle plants provide peaking capacity that complements increasing renewable wind generation which has no cooling water requirement. However, water

  11. Households' willingness to pay for safeguarding security of natural gas supply in electricity generation

    Damigos, D.; Tourkolias, C.; Diakoulaki, D.

    2009-01-01

    Security of energy supply is a major issue for all EU Member States due to Europe's increasing dependence on imported fossil-fuel sources and the continuous rise in energy demand. The latter is of particular importance in electricity sector given the continuously increasing use of gas for electricity generation. In order to properly tackle with the problem, concerted actions are required by the EU Member States in several levels, i.e. legislative, political, etc. Nevertheless, these actions will come at an additional cost paid by the society either through increased electricity bills or through public financing for energy security investments. Thus, such policies should be justified on the basis of cost-benefit analysis. Towards this direction, it may be necessary to take into account non-market costs and benefits, i.e. the value that consumers place on interruptions avoided. In order to explore households' perceptions and willingness to pay for securing gas supply for electricity production, an empirical study was conducted by means of the contingent valuation method. The results indicate that consumers are willing to pay a premium on their electricity bills in order to internalize the external costs of electricity production, in terms of energy security, which are caused from imported fuels. (author)

  12. Supply of appropriate nuclear technology for the developing world: small power reactors for electricity generation

    Heising-Goodman, C.D.

    1981-01-01

    This paper reviews the supply of small nuclear power plants (200 to 500 MWe electrical generating capacity) available on today's market, including the pre-fabricated designs of the United Kingdom's Rolls Royce Ltd and the French Alsthom-Atlantique Company. Also, the Russian VVER-440 conventionally built light-water reactor design is reviewed, including information on the Soviet Union's plans for expansion of its reactor-building capacity. A section of the paper also explores the characteristics of LDC electricity grids, reviewing methods available for incorporating larger plants into smaller grids as the Israelis are planning. Future trends in reactor supply and effects on proliferation rates are also discussed, reviewing the potential of the Indian 220 MWe pressurised heavy-water reactor, South Korean and Jananese potential for reactor exports in the Far East, and the Argentine-Brazilian nuclear programme in Latin America. This study suggests that small reactor designs for electrical power production and other applications, such as seawater desalination, can be made economical relative to diesel technology if traditional scaling laws can be altered by adopting and standardising a pre-fabricated nuclear power plant design. Also, economy can be gained if sufficient attention is concentrated on the design, construction and operating experience of suitably sized conventionally built reactor systems. (author)

  13. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    Ou, Xunmin; Xiaoyu, Yan; Zhang, Xiliang

    2011-01-01

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO 2,e )/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO 2,e /MJ with the development of nuclear and renewable energy and to 169.014 gCO 2,e /MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  14. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  15. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    Ou, Xunmin [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China); School of Public Policy and Management (SPPM), Tsinghua University, Beijing 100084 (China); Xiaoyu, Yan [Smith School of Enterprise and the Environment, University of Oxford, Oxford OX1 2BQ (United Kingdom); Zhang, Xiliang [Institute of Energy, Environment and Economy (3E), Tsinghua University, Beijing 100084 (China); China Automotive Energy Research Center (CAERC), Beijing 100084 (China)

    2011-01-15

    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO{sub 2,e})/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO{sub 2,e}/MJ with the development of nuclear and renewable energy and to 169.014 gCO{sub 2,e}/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity. (author)

  16. A new high current laboratory and pulsed homopolar generator power supply at the University of Texas

    Floyd, J. E.; Aanstoos, T. A.

    1984-03-01

    The University of Texas at Austin is constructing a facility for research in pulse power technology for the Center for Electromechanics at the Balcones Research Center. The facility, designed to support high-current experiments, will be powered by six homopolar generators, each rated at 10 MJ and arranged to allow matching the requirements of resistive and inductive loads at various voltage and current combinations. Topics covered include the high bay, the power supply configuration and parameters, the speed and field control, and the magnetic circuit. Also considered are the removable air-cooled brushes, the water-cooled field coils, the hydraulic motor sizing and direct coupling, the low-impedance removable field coils, and the hydrostatic bearing design.

  17. Maternal Supply of Cas9 to Zygotes Facilitates the Efficient Generation of Site-Specific Mutant Mouse Models

    Cebrian-Serrano, Alberto; Zha, Shijun; Hanssen, Lars; Biggs, Daniel; Preece, Christopher

    2017-01-01

    Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply. PMID:28081254

  18. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  19. Brand personality perceptions of luxury sedan motor vehicles amongst the South African Generation Y cohort / Philasande Sokhela

    Sokhela, Philasande Nhlakanipho

    2015-01-01

    Brand personality is a set of human personality traits that are relevant to a brand. A distinctive brand personality serves a symbolic or self-expressive function and helps to create a set of unique and favourable associations in the consumer’s mind. Generation Y consumers are considerably more brand and image conscious than any other generational cohort. Given that motor vehicles, especially luxury motor vehicles, are a conspicuous consumption item that are often used to signal status to oth...

  20. An optimization model for natural gas supply portfolios of a power generation company

    Jirutitijaroen, Panida; Kim, Sujin; Kittithreerapronchai, Oran; Prina, José

    2013-01-01

    Highlights: ► An optimization model for daily operation of a natural gas-fired generation company is proposed. ► The model considers uncertainties in electricity price and natural gas price. ► The model is formulated to capture the hedging decisions by the company. ► The solution yields quantities of natural gas, generating schedule and purchasing quantities of electricity. ► Higher profit can be achieved by adapting inventory and production to the actual spot prices of natural gas and electricity. - Abstract: This paper considers a deregulated electricity market environment where a natural gas-fired generation company can engage in different types of contracts to manage its natural gas supply as well as trade on the electricity market. If the contracts are properly designed, they can protect the company from fluctuations in electricity price and demand, at some cost to the company’s expected profit. This reduction in profit can be mitigated by trading on the natural gas and electricity spot markets, but this trading activity may also sometimes result in losses. A stochastic programming model is formulated to capture the hedging decisions made by the company, as well as the interactions between the natural gas and electricity markets. The benefits offered by this approach for profit maximization in a variety of business scenarios, such as the case where the company can hold some amount of gas in storage are studied and presented. It is found that the stochastic model enables the company to optimize the electricity generation schedule and the natural gas consumption, including spot price transactions and gas storage management. Several managerial insights into the natural gas market, natural gas storage, and distribution profit are given

  1. Spectral broadening of acoustic tones generated by unmanned aerial vehicles in a turbulent atmosphere

    Ostashev, Vladimir E.; Wilson, D. K.; Finn, Anthony

    2016-01-01

    The acoustic spectrum emitted by unmanned aerial vehicles (UAVs) and other aircraft can be distorted by propagation through atmospheric turbulence. Since most UAVs are propeller-based, they generate a series of acoustic tones and harmonics. In this paper, spectral broadening of these tones due......, spectral broadening is calculated and analyzed for typical meteorological regimes of the atmospheric boundary layer and different flight trajectories of UAVs. Experimental results are presented and compared with theoretical predictions. Spectral broadening might also provide a means for remotely sensing...

  2. A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands

    Christiansen, Christian Holk; Lysgaard, Jens

    . The CVRPSD can be formulated as a Set Partitioning Problem. We show that, under the above assumptions on demands, the associated column generation subproblem can be solved using a dynamic programming scheme which is similar to that used in the case of deterministic demands. To evaluate the potential of our......In this article we introduce a new exact solution approach to the Capacitated Vehicle Routing Problem with Stochastic Demands (CVRPSD). In particular, we consider the case where all customer demands are distributed independently and where each customer's demand follows a Poisson distribution...

  3. Supply and Demand Control of Distributed Generators in a Microgrid for New Energy

    Shimakage, Toyonari; Sumita, Jiro; Uchiyama, Noriyuki; Kato, Takeyoshi; Suzuoki, Yasuo

    We report the operational results of distributed generators (DGs) in a microgrid and present the effects after incorporating photovoltaic power generation (PV) systems into the microgrid for electric power system. The microgrid was constructed at the EXPO 2005 Aichi site as part of a demonstration promoted by NEDO. A solution is needed to problems where instability in the DGs that utilize natural energy such as solar light and wind force negatively influence existing electric power systems. So, we developed energy control system and controlled DGs output to reduce the fluctuation at the grid connected point caused by PV system's instability output. Our microgrid consists of DGs such as PV systems, fuel cells, and NaS batteries, and these DGs are controlled by an energy control system. We verified practical effectiveness of the installing the microgrid as follows. (1) 99.5% of the power imbalance in the supply and demand over 30 minutes was within a range of ±3% under normal operating conditions, (2) the microgrid contributes to the load leveling, (3) energy control system smoothes the power flow fluctuation of PV system output at the grid connected point, (4) in the future, installing a microgrid will help reduce the additional LFC (Load Frequency Control) capacity.

  4. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems

    Hahn, Henning

    2016-01-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh -1 and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh -1 . While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO 2-eq MJ -1 and primary energy by about 1.17 MJ MJ -1 . In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  5. Reliability analysis of Diesel Generator power supply system of Prototype Fast Breeder Reactor

    Sharma, Pramod Kumar, E-mail: pramodks@igcar.gov.in; Bhuvana, V.; Ramakrishnan, M.

    2016-12-15

    Highlights: • The unavailability of DG success is 4.75E−3 for 2/4 and 1.47E−3 for 1/4. • Modeling includes sub systems like CB, SSWS, Fuel oil system & 220 V DC. • DG-FR, DG-FR-CCF and DG maintenance is major contributors of DG unavailability. • Uncertainty analysis has been carried out through Monte Carlo simulations. • Sensitivity analysis identifies DG mechanical FR as most sensitive part. - Abstract: The unavailability of Diesel Generator power supply system has been evaluated using Fault tree method with ISOGRAPH reliability software and is found to be 4.75E−3 for 2/4 (DG success) and 1.47E−3 for 1/4 (DG success). Common cause failures contribute significantly to the unavailability of the system. Statistical analysis indicates that the DG unavailability is uncertain by Error Factor 4.4 (90% confidence bound) for 2 out of 4 DG system (system success) and by Error Factor 4.1 (90% confidence bound) for 1 out of 4 DG system (system success). Support systems namely Safety related service water system, Fuel oil system and circuit breaker control power supply dependency have been modeled. Results of importance analysis and sensitivity study are used to identify significant contributors to unavailability. DG fails to run, DG fails to run due to CCF and DG maintenance out of service is identified as dominant and important contributors of DG unavailability. Uncertainty analysis has been carried out through Monte Carlo simulations.

  6. The seismic assessment of wheeled vehicle type equipment (e.g. emergency power supply vehicle) against severe accident for nuclear power plant in Japan

    Ikeda, Takuya; Mitsuzawa, Daisuke; Yamaguchi, Yoshikazu; Hasebe, Motohiko; Imamura, Ryutaro; Tomitani, Yuji; Ueyama, Ippei; Kawamoto, Takahiro

    2017-01-01

    After the events at the Fukushima Dai-ichi Nuclear Power Plant, the equipment to mitigate the effects of severe accidents has been installed in the domestic nuclear power plants. From the viewpoint of convenience for installation, etc., a number of industry standard-based wheeled vehicle type equipment has been placed. On the other hand, the new regulations require the equipment for severe accidents to withstand the Design Basis Earthquake. Therefore, the seismic qualification is essential item for wheeled vehicle type equipment according to the regulatory requirement. At that time, compared to the traditional safety-related equipment, there was not enough knowledge of seismic evaluation for vehicle type equipment. This paper reports the overview of wheeled vehicle type equipment and the seismic qualification by test. (author)

  7. Partial path column generation for the vehicle routing problem with time windows

    Petersen, Bjørn; Jepsen, Mads Kehlet

    2009-01-01

    This paper presents a column generation algorithm for the Vehicle Routing Problem with Time Windows (VRPTW). Traditionally, column generation models of the VRPTW have consisted of a Set Partitioning master problem with each column representing a route, i.e., a resource feasible path starting...... and ending at the depot. Elementary routes (no customer visited more than once) have shown superior results on difficult instances (less restrictive capacity and time windows). However, the pricing problems do not scale well when the number of feasible routes increases, i.e., when a route may contain a large...... number of customers. We suggest to relax that ‘each column is a route’ into ‘each column is a part of the giant tour’; a so-called partial path, i.e., not necessarily starting and ending in the depot. This way, the length of the partial path can be bounded and a better control of the size of the solution...

  8. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  9. Generation adequacy in Ontario : Essential updates on the state of generation capacity and the latest efforts to solve the supply crunch

    2004-01-01

    This 2-day comprehensive conference on 'Generation Adequacy in Ontario' provides information to answer questions on how the province's electricity market will change in the near to longer term and how to amend your business strategy to keep pace with the rapid changes taking place. Information from an outstanding faculty of industry leaders and experts on critical issues, including: Ontario's Energy Policy: what is changing and how will generation adequacy be impacted?; Current planning strategies being designed, coordinated and implemented to increase electricity supply in the province; Examining existing generation assets and the requirements for the future in order to increase supply; Importing power from surrounding jurisdictions: what are the opportunities and what are the challenges?; Incenting new generation by improving investor confidence in Ontario's electricity industry; Decommissioning coal-fired generation: how will this government initiative play out and what will replace these plants?; Green power alternatives: what role will they play in the future of Ontario's electricity industry?

  10. Current status of production and supply of molybdenum-99 and 99Mo/99mTc generators in Indonesia

    Mutalib, A.

    2003-01-01

    Production of high-specific activity molybdenum-99 and 99 Mo/ 99m Tc Generators in Indonesia commenced when a new production facility supported by the presence of a 30 MW multipurpose reactor (RSG-GAS) was established in Serpong in 1990. This report describes the current production and supply of molybdenum-99m devoted mainly to fulfill the domestic demands in supplying 99 Mo/ 99m Tc Generators. Recent development on the use of LEU (Low Enriched Uranium) targets for replacing current HEU (High Enriched Uranium) targets in the production of 99 Mo will be reviewed briefly. (author)

  11. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  12. The role of PV electricity generation in fully renewable energy supply systems

    Lehmann, H.; Peter, S.

    2004-01-01

    A sustainable energy supply will be based on renewable energies and it must use available resources efficiently. Earlier or later the energy supply will rely completely on renewable sources. A solar energy system that provides a reliable energy supply throughout the year includes the consistent use of local renewable energy sources (e.g. PV) wherever possible. Using Japan as a example it was shown that the vision of a full renewable energy supply, even with high shares of domestic sources is possible. Detailed simulations of such a system show that the PV systems play an important role delivering electricity at peak demand times. (authors)

  13. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    Perez, Marc J. R.

    With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north

  14. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind.

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/- standard deviation [SD] = 38.3 +/- 14.8 m) was detected at a significantly farther distance than the HEV (mean +/- SD = 27.5 +/- 11.5 m), t = 4.823, p vehicles (mean +/- SD = 34.5 +/- 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  15. Device for generating auxiliary electrical energy on a vehicle. Anordnung zum Erzeugen elektrischer Hilfsenergie auf einem Fahrzeug

    Lichtenberg, A

    1980-10-23

    The invention refers to a device for generating auxiliary electrical energy in a generator, which is situated in a vehicle, particularly a magnetic levitating vehicle (MAGLEV vehicle) connected to a magnetic pole rotor. This magnetic pole rotor is moved without touching relative to a fixed motor track made as a track, where, using the electro-dynamic interaction between the magnetic pole rotor and the track motor part, the torque generated by the magnetic pole rotor is transmitted to the generator. The purpose of the invention is to introduce the generation of auxiliary electrical energy on board vehicles without using propellers without contact and without a wandering field winding from vehicle movement. According to the invention, this is achieved by the track motor part being an inactive electrically conducting rail and the torque being transmitted using the eddy current effect. The magnetic pole rotor is made as a magnetic pole rotor without iron and is arranged above an electrically conducting support rail of an electrodynamic support system.

  16. Cogging Force Issues of Permanent Magnet Linear Generator for Electric Vehicle

    Izzeldin Idris Abdalla

    2017-09-01

    Full Text Available Alternatives to hydraulic drives that used on vehicles are necessary in order to reduce the Carbon dioxide (CO2 emission and oil consumption. Hence better performance and efficiency of the vehicles can be achieved by using free piston engine, in which the piston reciprocate linearly with a permanent magnet linear generator (PMLG without the need of a crankshaft. The PMLG has high performance, but suffering from the cogging force. The cogging force induces undesired vibration and acoustic noise and makes a ripple in the thrust force. Moreover, the cogging force deteriorates the control characteristics, particularly in terms of the position control and speed precisely. This paper proposes Somaloy to replace the laminated silicon steel sheets in order to reduce the cogging force in a PMLG. Through a finite-element analysis, it has been shown that, the stator core made of Somaloy minimizes the cogging force of the PMLG, moreover, giving larger flux-linkage and back-electromotive force (B-EMF, respectively.

  17. Geographical cost-supply analysis forest biomass for distributed generation in Denmark

    Möller, Bernd

    2004-01-01

    The article presents a study which uses geographical information system (GIS) to perform cost-supply analysis of wood chips resources for energy production.......The article presents a study which uses geographical information system (GIS) to perform cost-supply analysis of wood chips resources for energy production....

  18. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  19. Papers of a Canadian Institute conference on generation adequacy in Ontario : essential updates on the state of generation capacity and the latest efforts to solve the supply crunch

    2004-01-01

    The issue of power generation and supply in Ontario was addressed at this conference which provided critical information on power supply and the Ontario government's plans for easing the power supply crisis. The state of existing generation assets and the feasibility of potential supply additions were also discussed. Specific issues such as pricing regulations, as well as broader issues such as market conditions and current energy policies were assessed. Planning, investment and issues such as demand-side management were discussed. The role of government, directions for the future, and the phasing out of coal power plants were important focal points. Nuclear power, water power and the search for reliable sources of supply were examined, including the possibility of importing hydro electricity. In addition, key objectives such as clean air strategies and the development of a renewable energy strategy were discussed and various options were identified. The conference featured 24 presentations, of which 8 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. The development of power generation by electricity supply undertakings and industries in Western Europe

    Cura, H.

    1998-01-01

    Following the events of recent years - the opening up of the east, efforts to stimulate international competition - the Western European electricity industry is strongly on the move. In spite of the non-uniformity of the electricity supply structures in the individual countries, the trend towards liberalization of the electricity market is characterized by different forms of expression. Against this background, this paper provides a review of the status and prospects of electricity demand developments and of primary energy supply. It considers the consequences which thereby arise for the power plant inventory of electricity supply undertakings and industries. (orig.) [de

  1. A Study on the Optimal Generation Mix Based on Portfolio Theory with Considering the Basic Condition for Power Supply

    Kato, Moritoshi; Zhou, Yicheng

    This paper presents a novel method to analyze the optimal generation mix based on portfolio theory with considering the basic condition for power supply, which means that electricity generation corresponds with load curve. The optimization of portfolio is integrated with the calculation of a capacity factor of each generation in order to satisfy the basic condition for power supply. Besides, each generation is considered to be an asset, and risks of the generation asset both in its operation period and construction period are considered. Environmental measures are evaluated through restriction of CO2 emissions, which are indicated by CO2 price. Numerical examples show the optimal generation mix according to risks such as the deviation of capacity factor of nuclear power or restriction of CO2 emissions, the possibility of introduction of clean coal technology (IGCC, CCS) or renewable energy, and so on. The results of this work will be possibly applied as setting the target of the generation mix for the future according to prospects of risks of each generation and restrictions of CO2 emissions.

  2. The Economic Benefits of Generation Revenue Assessment in Pool-Based Market Model for Restructured Electricity Supply Industry

    Ngadiron Zuraidah

    2016-01-01

    Full Text Available The electricity supply industry had undergo deregulation and restructuring toward becoming a more transparent and competitive electricity market environment. The pool market model is amongst the most preferred electricity market model. Even though it is a safe option to be more competitive and transparent electricity supply industry, there are issues on the welfare of the generators involved. This paper addresses the pricing issue in the pool market by extending the capacity payment mechanism in the single auction power pool. In the proposed model, the approach of minimum capacity payment involving the efficiency of the generators is introduced. A case study is conducted to illustrate the proposed model. An economic analysis is performed to highlight the merits of the proposed model with the pure pool in term of generation revenue.

  3. RTE, generation adequacy report on the electricity supply-demand balance in France. 2014 Edition + Executive Summary

    2014-01-01

    As required by law, RTE's Generation Adequacy Report analyses the electricity supply-demand balance over the medium term (through the winter of 2018-2019) and proposes prospective scenarios for the long term (through 2030). Indeed, preserving the integrity of the French and interconnected European power systems requires that electricity supply and demand be balanced at all times. To determine the robustness of this balance, RTE simulates in detail how the power system will function factoring in a wide variety of technical and weather conditions, particularly winter cold spells. RTE then identifies generation capacity margins or deficits with regard to a security of supply criterion defined by law. The 2014 edition of the Generation Adequacy Report has some distinctive characteristics. - For the first time, the Generation Adequacy Report includes the risk analysis RTE was asked to conduct within the framework of the capacity mechanism. This analysis is the 'pivot point' of the economic signals sent to stakeholders and the responsibilities assigned to suppliers. - Also for the first time, the long-term scenarios in this Generation Adequacy Report seek to assess plausible variations in the French energy mix resulting from the energy transition for green growth bill (projet de loi relatif a la transition energetique pour la croissance verte). Future multi-annual energy programming (programmations pluriannuelles de l'energie) will include a specific section devoted to security of supply. With the Generation Adequacy Report attracting steadily more attention, RTE organised consultations in 2014 with many power system stakeholders. In line with RTE's commitment to transparency, collegiate consultations were held through the 'Network Outlook Committee' (Commission 'Perspectives du reseau'), information about which can be found on RTE's web site

  4. World's largest DC flywheel generator for the toroidal field power supply of JAERI's JFT-2M Tokamak nuclear fusion reactor

    Tani, Takashi; Nakanishi, Yuji; Horita, Tsuyoshi; Kawase, Chiharu; Oyabu, Isao; Kishimoto, Takeshi.

    1996-01-01

    Mitsubishi Electric has delivered the world's largest DC generator for the toroidal field coil power supply of the JFT-2M Tokamak at the Japan Atomic Energy Research Institute. The unit rotates at 225 or 460 rpm, providing a maximum rated output of 2,700 V, 19,000 A and 51.3 MW. The toroidal field is a DC field, so use of a DC generator permits a simpler design consuming less floor space than an AC drive system. The generator was manufactured following extensive studies on commutation, mechanical strength and insulation. (author)

  5. Addressing the supply security of the nuclear fuel cycle: a US merchant generator risk acceptance perspective

    Jordan, R. P.; Benavides, P.A.

    2006-01-01

    With the current rising markets across the nuclear fuel supply spectrum, understanding and managing nuclear fuel cycle supply security risk becomes an increasingly important consideration. In addressing this area, Constellation Energy is implementing an integrated multifaceted approach as consistent with a comprehensive risk profile covering the nuclear fuel supply industry. This approach is founded on use of a utility traditional procurement strategy, as dependent on the qualitative parameters of supply origination diversification, geopolitical stability, contracting duration and individual supplier financial bases. However, Constellation also adds an additional consideration into development of this nuclear fuel supply risk profile. To do such, qualitative assessments covering specific supplier risks, as based on the parameters of supplier management and organizational structure, design capacities (applicable to fabrication and enrichment only), operational history as applicable to forward-looking performance, regulatory or legal history and financial performance are also considered. Constellation overlays the risks of future availabilities, catastrophic occurrences and prices for each nuclear fuel material and service component onto a quantitative set of results. The overall focus of these assessments is the creation of a risk management perspective directed towards determining the potential loss or delay of nuclear fuel supply for our operating reactors. The conclusion of this effort is an integrated assessment of the nuclear fuel supply security as applicable to the Constellation-specific structured risk profile. Use of this assessment allows Constellation to target appropriate suppliers of interest in the marketplace and form the fundamental bases for the Constellation procurement strategy while managing risks associated with nuclear fuel cycle supply security. (authors)

  6. Diversification in the driveway: mean-variance optimization for greenhouse gas emissions reduction from the next generation of vehicles

    Oliver Gao, H.; Stasko, Timon H.

    2009-01-01

    Modern portfolio theory is applied to the problem of selecting which vehicle technologies and fuels to use in the next generation of vehicles. Selecting vehicles with the lowest lifetime cost is complicated by the fact that future prices are uncertain, just as selecting securities for an investment portfolio is complicated by the fact that future returns are uncertain. A quadratic program is developed based on modern portfolio theory, with the objective of minimizing the expected lifetime cost of the 'vehicle portfolio'. Constraints limit greenhouse gas emissions, as well as the variance of the cost. A case study is performed for light-duty passenger vehicles in the United States, drawing emissions and usage data from the US Environmental Protection Agency's MOVES and Department of Energy's GREET models, among other sources. Four vehicle technologies are considered: conventional gasoline, conventional diesel, grid-independent (non-plug-in) gasoline-electric hybrid, and flex fuel using E85. Results indicate that much of the uncertainty surrounding cost stems from fuel price fluctuations, and that fuel efficient vehicles can lower cost variance. Hybrids exhibit the lowest cost variances of the technologies considered, making them an arguably financially conservative choice.

  7. Diversification in the driveway: mean-variance optimization for greenhouse gas emissions reduction from the next generation of vehicles

    Oliver Gao, H.; Stasko, Timon H. [School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2009-12-15

    Modern portfolio theory is applied to the problem of selecting which vehicle technologies and fuels to use in the next generation of vehicles. Selecting vehicles with the lowest lifetime cost is complicated by the fact that future prices are uncertain, just as selecting securities for an investment portfolio is complicated by the fact that future returns are uncertain. A quadratic program is developed based on modern portfolio theory, with the objective of minimizing the expected lifetime cost of the 'vehicle portfolio'. Constraints limit greenhouse gas emissions, as well as the variance of the cost. A case study is performed for light-duty passenger vehicles in the United States, drawing emissions and usage data from the US Environmental Protection Agency's MOVES and Department of Energy's GREET models, among other sources. Four vehicle technologies are considered: conventional gasoline, conventional diesel, grid-independent (non-plug-in) gasoline-electric hybrid, and flex fuel using E85. Results indicate that much of the uncertainty surrounding cost stems from fuel price fluctuations, and that fuel efficient vehicles can lower cost variance. Hybrids exhibit the lowest cost variances of the technologies considered, making them an arguably financially conservative choice. (author)

  8. Influences on dispatch of power generation when introducing electric drive vehicles in an Irish power system year 2020

    Juul, Nina; Mullane, Alan; Meibom, Peter

    plants. For the future transport system, electric drive vehicles are expected to be one of the solutions. Introducing different electric drive vehicle penetrations in a power system with a large amount of wind power, changes the usage of the predefined power system. This work presents investigations......Increased focus on global warming and CO2 emissions imply increased focus on the energy system, consisting of the heat, power, and transport systems. Solutions for the heat and power system are increasing penetrations of renewable heat and power generation plants such as wind power and biomass heat...... of different charging regimes’ influence of the power dispatch in the Irish power system. Analyses show an overall cost decrease and CO2 emission increase in the heat and power system with the introduction of electric drive vehicles. Furthermore, increased intelligence in the electric drive vehicle charging...

  9. A contribution to the energy supply of innovative drive-by-wire vehicle concepts; Beitrag zur Energieversorgung innovativer Drive-by-Wire-Fahrzeugkonzepte

    Sieglin, Erik

    2009-07-01

    Due to an increasing number of functions and driver assistance systems, the architecture of modern vehicles ever becomes more complex. This especially results in an increasing expenditure with the integration of new assistance systems. In order to oppose against this trend, one approach is the centralization of data processing. In this case, a drive-by-wire architecture without mechanical relapse level particularly is suitable. The contribution under consideration therefore supplies methods and approaches with which a suitable power supply is specified and realized. Their function can be verified. Apart from the aspects in terms of safety engineering, board specific questions are observed. The explanation of the procedure takes place using a prototypical structure as an example. Additionally, the hardware-in-the-loop-simulator and the processing of the tests are described.

  10. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  11. Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system

    Colmenar-Santos, Antonio; Alberdi-Jiménez, Lucía; Nasarre-Cortés, Lorenzo; Mora-Larramona, Joaquín

    2014-01-01

    A diesel or gasoline vehicle heating is produced by the heat of the engine coolant liquid. Nevertheless, electric vehicles, due to the fact that electric motor transform directly electricity into mechanical energy through electromagnetic interactions, do not generate this heat so other method of providing it has to be developed. This study introduces the system developed in a fuel cell electric vehicle (lithium-ion battery – fuel cell) with residual heat use. The fuel cell electric vehicle is driven by a 12 kW PEM (proton exchange membrane) fuel cell. This fuel cell has an operating temperature around 50 °C. The residual heat generated was originally wasted by interaction with the environment. The new developed heating system designed integrates the heat generated by the fuel cell into the heating system of the vehicle, reducing the global energy consumption and improving the global efficiency as well. - Highlights: • Modification of heating system was done by introducing the residual heat from fuel cell. • Maximum heat achieved by the heating radiator of 9.27 kW. • Reduction of the heat dissipation by the fuel cell cooling system 1.5 kW. • Total efficiency improvement of 20% with an autonomy increase of 21 km

  12. Conceptual Feasibility Study of the Hyperloop Vehicle for Next-Generation Transport

    Decker, Kenneth; Chin, Jeffrey; Peng, Andi; Summers, Colin; Nguyen, Golda; Oberlander, Andrew; Sakib, Gazi; Sharifrazi, Nariman; Heath, Christopher; Gray, Justin S.; hide

    2017-01-01

    The Hyperloop concept is proposed as a faster, cheaper alternative to high-speed rail and traditional short-haul aircraft. It consists of a passenger pod traveling through a tube under light vacuum while being propelled and levitated by a combination of permanent and electro-magnets. The concept addresses NASA's research thrusts for growth in demand, sustainability, and technology convergence for high-speed transport. Hyperloop is a radical departure from other advanced aviation concepts, however it remains an aeronautics concept that tackles the same strategic goals of low-carbon propulsion and ultra-effcient vehicles. System feasibility was investigated by building a multidisciplinary vehicle sizing model that takes into account aerodynamic, thermodynamic, structures, electromagnetic, weight, and mission analyses. The sizing process emphasized the strong coupling between the two largest systems: the tube and the passenger pod. The model was then exercised to examine Hyperloop from a technical and cost perspective. The structural sizing analysis of the travel tube demonstrates potential for signi cant capital cost reductions by considering an underwater route. Examination of varying passenger capacity indicates that the system can be operated with a wide range of passenger loads without significant change in operating expenses. Lastly, a high-level sizing study simulated variations in tube area, pressure, pod speed, and passenger capacity showing that there is a tube pressure that minimizes operating energy usage. The value of this optimal tube pressure is highly sensitive to numerous design details. These combined estimates of energy consumption, passenger throughput, and mission analyses all support Hyperloop as a faster and cheaper alternative to short-haul flights. The tools and expertise used to quantify these results also demonstrate how traditional aerospace design methods can be leveraged to handle the complex and coupled design process. Much of the

  13. Robust Power Supply Restoration for Self-Healing Active Distribution Networks Considering the Availability of Distributed Generation

    Qiang Yang

    2018-01-01

    Full Text Available The increasing penetration of distributed generations (DGs with intermittent and stochastic characteristics into current power distribution networks can lead to increased fault levels and degradation in network protection. As one of the key requirements of active network management (ANM, efficient power supply restoration solution to guarantee network self-healing capability with full consideration of DG uncertainties is demanded. This paper presents a joint power supply restoration through combining the DG local restoration and switcher operation-based restoration to enhance the self-healing capability in active distribution networks considering the availability of distributed generation. The restoration algorithmic solution is designed to be able to carry out power restoration in parallel upon multiple simultaneous faults to maximize the load restoration while additionally minimizing power loss, topology variation and power flow changes due to switcher operations. The performance of the proposed solution is validated based on a 53-bus distribution network with wind power generators through extensive simulation experiments for a range of fault cases and DG scenarios generated based on Heuristic Moment Matching (HMM method to fully consider the DG randomness. The numerical result in comparison with the existing solutions demonstrates the effectiveness of the proposed power supply restoration solution.

  14. Metal hydride store for hydrogen supply and cooling of fuel cell vehicles; Metallhydridspeicher zur Wasserstoffversorgung und Kuehlung von Brennstoffzellenfahrzeugen

    Wenger, David

    2009-07-01

    In the context of the author's work, a compact, dynamic metal hydride store was developed which in addition to storing hydrogen can also support the thermomanagement of fuel cell vehicles in extreme situations. The requirements were identified using a semiphysical model of a fuel cell vehicle, and a store was dimensioned accordingly. Additionally, a metal hydride store model was developed on the basis of the balance equations. The model was validated by experiments on a specially designed and constructed store. The simulations enable the optimisation of the store geometry and the prediction of its efficiency in a given operating cycle. (orig.)

  15. Influence of Rare Earth Element Supply on Future Offshore Wind Turbine Generators

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Henriksen, Matthew Lee

    2011-01-01

    electrical machines. Such machines are utilized in applications such as electric cars, and wind turbines. This paper will examine the rare earth supply issue, in order to comment on its relevance to the wind turbine industry. The wind turbine topologies which are currently being used are compared...

  16. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  17. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  18. Economic and ecological evaluation of biogas plant configurations for a demand oriented biogas supply for flexible power generation

    Hahn, Henning

    2015-01-01

    The transformation of the power supply towards renewable energy (RE) sources will depend on a large scale of fluctuating RE sources, primarily of wind energy and photovoltaics. However, the variable power generation of these renewable sources will lead to an increased need of flexible power producers in order to balance differences between energy generation and consumption. Among the different types of RE sources, biogas plants have the advantage that their input biomass and the produced biogas can be stored and electricity can consequently be generated on demand. Since electricity from biogas has not been used to balance fluctuations of intermittent RE in the past, new concepts are required. These concepts should be able to meet the requirements of highly renewable electricity systems and to supply biogas according to the varying demand for long-and short-term balance power generation. In this regard, this thesis focused on the identification of biogas plant concepts for flexible power generation, as well as on ranking them regarding their economic and life cycle performance.

  19. Economic and ecological evaluation of biogas plant configurations for a demand oriented biogas supply for flexible power generation

    Hahn, Henning

    2015-07-01

    The transformation of the power supply towards renewable energy (RE) sources will depend on a large scale of fluctuating RE sources, primarily of wind energy and photovoltaics. However, the variable power generation of these renewable sources will lead to an increased need of flexible power producers in order to balance differences between energy generation and consumption. Among the different types of RE sources, biogas plants have the advantage that their input biomass and the produced biogas can be stored and electricity can consequently be generated on demand. Since electricity from biogas has not been used to balance fluctuations of intermittent RE in the past, new concepts are required. These concepts should be able to meet the requirements of highly renewable electricity systems and to supply biogas according to the varying demand for long-and short-term balance power generation. In this regard, this thesis focused on the identification of biogas plant concepts for flexible power generation, as well as on ranking them regarding their economic and life cycle performance.

  20. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  1. THE GENERATION OF BUILDING FLOOR PLANS USING PORTABLE AND UNMANNED AERIAL VEHICLE MAPPING SYSTEMS

    G. J. Tsai

    2016-06-01

    Full Text Available Indoor navigation or positioning systems have been widely developed for Location-Based Services (LBS applications and they come along with a keen demand of indoor floor plans for displaying results even improving the positioning performance. Generally, the floor plans produced by robot mapping focus on perceiving the environment to avoid obstacles and using the feature landmarks to update the robot position in the relative coordinate frame. These maps are not accurate enough to incorporate to the indoor positioning system. This study aims at developing Indoor Mobile Mapping System (Indoor MMS and concentrates on generating the highly accurate floor plans based on the robot mapping technique using the portable, robot and Unmanned Aerial Vehicles (UAV platform. The proposed portable mapping system prototype can be used in the chest package and the handheld approach. In order to evaluate and correct the generated floor plans from robot mapping techniques, this study builds the testing and calibration field using the outdoor control survey method implemented in the indoor environments. Based on control points and check points from control survey, this study presents the map rectification method that uses the affine transformation to solve the scale and deformation problems and also transfer the local coordinate system into world standard coordinate system. The preliminary results illustrate that the final version of the building floor plan reach 1 meter absolute positioning accuracy using the proposed mapping systems that combines with the novel map rectification approach proposed. These maps are well geo-referenced with world coordinate system thus it can be applied for future seamless navigation applications including indoor and outdoor scenarios.

  2. Development of a hybrid genetic algorithm based decision support system for vehicle routing and scheduling in supply chain logistics managment

    Khanian, Seyed Mohammad Shafi

    2007-01-01

    Vehicle Routing and Scheduling (VRS) constitute an important part of logistics management. Given the fact that the worldwide cost on physical distribution is evermore increasing, the global competition and the complex nature of logistics problems, one area, which determines the efficiency of all others, is the VRS activities. The application of Decision Support Systems (DSS) to assist logistics management with an efficient VRS could be of great benefit. Although the benefits of DSS in VRS are...

  3. Generation adequacy report on the electricity supply-demand balance in France - 2012 edition

    2012-01-01

    After an introduction presenting the objective of this report and the method used for the forecasts, this document proposes, first, an analysis of the medium-term evolution of: 1 - electricity consumption (past trends, medium-term perspectives, medium-term consumption scenarios); 2 - electricity supply (nuclear production, centralised and decentralised production from fossil-fueled power plants, hydro-power, wind-power and photovoltaic production, peak-load management); 3 - supply and demand balance (probabilistic approach, reference scenario, scenario sensitivity with respect to the demand). Then it presents the long-term determining factors (socio-economic context, energy efficiency, energy mix, interconnected grids development) and the long-term prospective scenarios (medium- and strong-consumption, new-mix, low growth). Finally, a summary and a comparison with the 2011 report is made

  4. Tacit Knowledge Generation and Inter-Organizational Memory Development in a Supply Chain Context

    Iskander Zouaghi

    2011-10-01

    Full Text Available In recent years, particular attention has been paid to knowledge management and organizational learning in general and tacit knowledge management and organizational memory in particular. This interest is driven by saturation of various markets, innovation speed and increasingly uncertain environments that have led companies to organize and structure themselves as parts of supply chains, by focusing on their core competencies and outsourcing non value-added and less strategic activities. Developing distinctive competencies under such circumstances comes from tacit knowledge learning, creation and memorization. In this paper, we first analyze tacit knowledge from different perspectives; we show how individuals and organizations can learn from tacit knowledge and how they also create new relational and collaborative tacit knowledge from individual, organizational and inter-organizational learning. We then explore how this knowledge can be capitalized into inter-organizational memory which is independent of individuals and organizations within the supply chain.

  5. A Study of Fuel Supplies for Emergency Power Generation at Air Logistics Centers.

    1980-06-01

    md Grade PositIon Ogan~zatro IA-aT;; till al IN 0u two Pwuaay POrN POVAfT uga $300 -M HAM I BUSINESS REPLY MAIL I _____ FINN7 MAINli MIN. NII n...34nearly all U.S. military installations met their energy need through procurement from off- site commercial supplies [8:12].". This being the case, military

  6. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Tutelea, L N; University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" data-affiliation=" (Politehnica University of Timisoara, Electrical Engineering Department, Vasile Parvan str., no. 1-2, 300223 Timisoara (Romania))" >Boldea, I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Deaconu, S I; University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" data-affiliation=" (Politehnica University of Timisoara, Department of Electrotechnical Engineering and Industrial Informatics, 5 Revolution Street, Hunedoara, 331128 (Romania))" >Popa, G N

    2014-01-01

    The actual e – continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper

  7. Dual rotor single- stator axial air gap PMSM motor/generator drive for high torque vehicles applications

    Tutelea, L. N.; Deaconu, S. I.; Boldea, I.; Popa, G. N.

    2014-03-01

    The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors, destined for hybrid electric vehicles (HEV) and military vehicles applications. The proposed topologies and the magneto-motive force analysis are the core of the paper.

  8. Autocommander: A Supervisory Controller for Integrated Guidance and Control for the 2nd Generation Reusable Launch Vehicle

    Fisher, J. E.; Lawrence, D. A.; Zhu, J. J.; Jackson, Scott (Technical Monitor)

    2002-01-01

    This paper presents a hierarchical architecture for integrated guidance and control that achieves risk and cost reduction for NASA's 2d generation reusable launch vehicle (RLV). Guidance, attitude control, and control allocation subsystems that heretofore operated independently will now work cooperatively under the coordination of a top-level autocommander. In addition to delivering improved performance from a flight mechanics perspective, the autocommander is intended to provide an autonomous supervisory control capability for traditional mission management under nominal conditions, G&C reconfiguration in response to effector saturation, and abort mode decision-making upon vehicle malfunction. This high-level functionality is to be implemented through the development of a relational database that is populated with the broad range of vehicle and mission specific data and translated into a discrete event system model for analysis, simulation, and onboard implementation. A Stateflow Autocoder software tool that translates the database into the Stateflow component of a Matlab/Simulink simulation is also presented.

  9. Transformer supply of inductive and resistive loads of a magnetocumulative generator

    Kravchenko, A.S.; Lyudaev, R.Z.; Pavlovskij, A.I.; Plyashkevich, L.N.; Shuvalov, A.M.

    1981-01-01

    Variants of transformer energy outlet from magnetocumulative generator (MCG) to inductive and resistive loads are considered. For engineer calculations of transformer MCG electrotechnical model supplemented with a known from the experiment fact of existence of optimum by energy generator finite inductivity turns to be useful. The possibility of current front shortening in the load using a transformer idle running and current pulse shaping at current damping upon the finishing of generator performance is considered [ru

  10. Generation of predictive price and trading volume patterns in a model of dynamically evolving free market supply and demand

    J. K. Wang

    2001-01-01

    Full Text Available I present a model of stock market price fluctuations incorporating effects of share supply as a history-dependent function of previous purchases and share demand as a function of price deviation from moving averages. Price charts generated show intervals of oscillations switching amplitude and frequency suddenly in time, forming price and trading volume patterns well-known in market technical analysis. Ultimate price trends agree with traditional predictions for specific patterns. The consideration of dynamically evolving supply and demand in this model resolves the apparent contradiction with the Efficient Market Hypothesis: perceptions of imprecise equity values by a world of investors evolve over non-negligible periods of time, with dependence on price history.

  11. Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil

    Soares MC Borba, Bruno; Szklo, Alexandre; Schaeffer, Roberto

    2012-01-01

    Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand PHEVs in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here. -- Highlights: ► We evaluated the use of plug-in hybrid electric vehicles (PHEV) to regularize possible energy imbalances in northeastern Brazil. ► This imbalance might result from the large-scale wind power penetration along with conventional inflexible power plants in the region. ► We adapted the MESSAGE optimization tool to the base conditions of the Brazilian power system. ► 500 thousand PHEVs in 2015 and 1.5 million in 2030 could be recharged taking advantage of wind energy surplus.

  12. Trade-Offs between Economic and Environmental Optimization of the Forest Biomass Generation Supply Chain in Inner Mongolia, China

    Min Zhang

    2017-11-01

    Full Text Available The utilization of forest residue to produce forest biomass energy can mitigate CO2 emissions and generate additional revenue for related eco-enterprises and farmers. In China, however, the benefit of this utilization is still in question because of high costs and CO2 emissions in the entire supply chain. In this paper, a multi-objective linear programming model (MLP is employed to analyze the trade-offs between the economic and environmental benefits of all nodes within the forest biomass power generation supply chain. The MLP model is tested in the Mao Wu Su biomass Thermoelectric Company. The optimization results show that (1 the total cost and CO2 emissions are decreased by US$98.4 thousand and 60.6 thousand kg, respectively; 3750 thousand kg of waste-wood products is reduced and 3750 thousand kg of sandy shrub stubble residue is increased; (2 64% of chipped sandy shrub residue is transported directly from the forestland to the power plant, 36% of non-chipped sandy shrub residue is transported from the forestland to the power plant via the chipping plant; (3 transportation and chipping play a significant role in the supply chain; and (4 the results of a sensitivity analysis show that the farmer’s average transportation distance should be 84.13 km and unit chipping cost should be $0.01022 thousand for the optimization supply cost and CO2 emissions. Finally, we suggest the following: (1 develop long-term cooperation with farmers; (2 buy chain-saws for regularly used farmers; (3 build several chipping plants in areas that are rich in sandy shrub.

  13. Always on the starting line: ELCAT 200 - the new-generation electric vehicle

    Baeckstroem, K.; Leisio, C. [ed.

    1997-11-01

    The Elcat 200 electric van can always be left charging. With most other electric van models, the situation is different. They run the risk of overcharging, which prevents continual `refuelling` of their batteries and thus considerably reduces the performance of the vehicles. The Elcat electric vehicle project has so far manufactured over 160 electric vans. Of these, the Elcat Cityvan accounts for 130, and the state-of-the-art Elcat 200 just over 30. The greatest single Elcat user is Finland Post, with 50 electric vehicles. Fifty Elcats have been sold abroad, most of them to Sweden

  14. Nuclear refinery - advanced energy complex for electricity generation, clean fuel production, and heat supply

    McDonald, C.F.

    1992-01-01

    In planning for increased U.S. energy users' demand after the year 2000 there are essentially four salient vectors: (1) reduced reliance on imported crude oil; (2) provide a secure supply with stable economics; (3) supply system must be in concert with improved environment goals; and (4) maximum use to be made of indigenous resources. For the last decade of this century the aforementioned will likely be met by increasing utilization of natural gas. Early in the next century, however, in the U.S. and the newly industrializing nations, the ever increasing energy demand will only be met by the combined use of uranium and coal. The proposed nuclear refinery concept is an advanced energy complex that has at its focal point an advanced modular helium reactor (MHR). This nuclear facility, together with a coal feedstock, could contribute towards meeting the needs of the four major energy sectors in the U.S., namely electricity, transportation, industrial heating and chemical feedstock, and space and water heating. Such a nuclear/coal synergistic system would be in concert with improved air quality goals. This paper discusses the major features and multifaceted operation of a nuclear refinery concept, and identifies the enabling technologies needed for such an energy complex to become a reality early in the 21st century. (Author)

  15. Vehicles' Sample Generation and Realization in Car-Following Mathematical Models

    Algimantas Danilevičius

    2016-02-01

    Full Text Available The object of the article is the adjustment of car-following mathematical models according to collected traffic data. Here the problem of ineffectively burdened road section is solved by adjusting the speed of vehicles in order to reduce the distance between the cars to a safe distance. The paper analyzes the car-following models to measure the interaction between vehicles in the same lane. Experimental data processed in Matlab and traffic distribution histograms are created using the most appropriate distribution curve. Distribution curve is used to compile congestion scenario of road section. Applicable model uses fundamental diagrams, which are created from the kind of traffic flow measurements. The mathematical model allows to choose the optimal vehicle speed while maintaining safe distance between vehicles, and to make recommendations to improve the traffic as the process.

  16. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    Slavin, A; Tiberkevich, V; Bankowski, E

    2006-01-01

    We propose to use the magnetic signatures, formed either by the residual magnetization or by deformation of the local Earth's magnetic field by large metal masses, for distant detection of ground vehicles...

  17. Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: a transportation network equilibrium transformation

    Kai Wu; Nagurney, A.; University of Massachusetts, Amherst, MA; Zugang Liu; Stranlund, J.K.

    2006-01-01

    Global climate change and fuel security risks have encouraged international and regional adoption of pollution/carbon taxes. A major portion of such policy interventions is directed at the electric power industry with taxes applied according to the type of fuel used by the power generators in their power plants. This paper proposes an electric power supply chain network model that captures the behavior of power generators faced with a portfolio of power plant options and subject to pollution taxes. We demonstrate that this general model can be reformulated as a transportation network equilibrium model with elastic demands and qualitatively analyzed and solved as such. The connections between these two different modeling schemas is done through finite-dimensional variational inequality theory. The numerical examples illustrate how changes in the pollution/carbon taxes affect the equilibrium electric power supply chain network production outputs, the transactions between the various decision-makers the demand market prices, as well as the total amount of carbon emissions generated. (author)

  18. VXIbus-based signal generator for resonant power supply system of the 3 GeV RCS

    Zhang, Fengqing; Watanabe, Yasuhiro; Koseki, Shoichiro; Tani, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Adachi, Toshikazu; Someya, Hirohiko [High Energy Accelerator Reseach Organization, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The 3 GeV Proton RCS of the JAERI-KEK Joint Project is a 25 Hz separate-function rapid cycling synchrotron under design. Bending magnets (BM) and quadrupole magnets (QM) are excited separately. The 3 GeV RCS requests above 10 families of magnets excited independently, far beyond 3 families in practical RCS's. Difficulty of field tracking between BM and QM is significantly increased. Magnet strings are grouped into resonant networks and excited resonantly with power supplies driven by a waveform pattern, typically a DC-biased sinusoidal signal. To achieve a close tracking between many families, the driving signal of each power supply should be adjusted in phase and amplitude flexibly and dynamically. This report proposes a signal generator based on VXIbus. The VXIbus, an extension of VMEbus (VME eXtensions for Instrument), provides an open architecture with shared process bus and timing. The VXIbus-based signal generator facilitates the timing synchronization and is easy to extend to many channels needed by the 3 GeV RCS. Experimental results of the signal generator are reported. (author)

  19. Super long-term scenario of world nuclear power generation and uranium supply and demand until 2030 and further 2100

    Komiyama, Ryoichi; Kakinoki, Tatsuro

    2007-01-01

    Based on latest nuclear policy and development trend in each country in the world, quantity of nuclear power generation and the uranium supply and demand until 2030 and further 2100 were predicted. As a result, the introduction of nuclear power stations spreads around Asia until 2030. The limitation on the uranium resources clearly does not exist until 2030, but a development period of around 10 years is necessary for exploitation of uranium resources. If timely development investment does not advance, it may invite shortage of uranium supply and promote a remarkable rise of uranium supply price. If the reinforcement of the anti-global warming measure and the diversification of the energy source advance at the super long-term time span called 2100, the world coal power largely decreases and the introduction of the nuclear power enlarges steadily. Introduction of the light water reactor (LWR) extends until 2080 since the fuel uses uranium resources of about 70 year ratio of reserves to production, but quantity of LWR power stations and power generation changes for the decrease due to the limitation of uranium resources after it. On the other hand, sustained expansion of the plutonium utilization by the fuel cycle technology and the introduction of the fast breeder reactor (FBR) advance after 2050. Then the sustained expansion of nuclear power is surely expected to occupy the first share of power generation in 2100. On this account it is necessary to push forward the plutonium use, backend technology and FBR development globally, and Japan is expected to carry a positive role to lead international nuclear energy technology development as a nuclear energy developed nation. (T. Tanaka)

  20. Electric vehicles

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  1. Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels

    Palander, Teijo

    2011-01-01

    In this paper, a multiple objective model to large-scale and long-term industrial energy supply chain scheduling problems is considered. The problems include the allocation of a number of fossil, peat, and wood-waste fuel procurement chains to an energy plant during different periods. This decision environment is further complicated by sequence-dependent procurement chains for forest fuels. A dynamic linear programming model can be efficiently used for modelling energy flows in fuel procurement planning. However, due to the complex nature of the problem, the resulting model cannot be directly used to solve the combined heat and electricity production problem in a manner that is relevant to the energy industry. Therefore, this approach was used with a multiple objective programming model to better describe the combinatorial complexity of the scheduling task. The properties of this methodology are discussed and four examples of how the model works based on real-world data and optional peat fuel tax, feed-in tariff of electricity and energy efficiency constraints are presented. The energy industry as a whole is subject to policy decisions regarding renewable energy production and energy efficiency regulation. These decisions should be made on the basis of comprehensive techno-economic analysis using local energy supply chain models. -- Highlights: → The energy policy decisions are made using comprehensive techno-economic analysis. → Peat tax, feed-in tariff and energy efficiency increases renewable energy production. → The potential of peat procurement deviates from the current assumptions of managers. → The dynamic MOLP model could easily be adapted to a changing decision environment.

  2. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles

    Li, Bo; Huang, Kuo; Yan, Yuying; Li, Yong; Twaha, Ssennoga; Zhu, Jie

    2017-01-01

    Highlights: •Shape-adapted thermoelectric module for highly compact heat recovery exchanger assembly. •Heat pipe-assisted heat transfer enhancement method for better power output. •Highest power output ratio to the total volume of heat recovery exchanger. •Cascaded thermoelectric system can be scaled and extended for various power output. •Self-clamping design of thermoelectric module can solve the thermomechanical imbalances. -- Abstract: Transport represents over a quarter of Europe's greenhouse gas emissions and is the leading cause of air pollution in cities. It has not seen the same gradual decline in emissions as other sectors. Recently, the thermoelectric power generation (TEG) technology emerges as an alternative solution to the emission reduction challenge in this area. In this paper, we present an innovative pathway to an improved heat supply into the concentric shape-adapted TEG modules, integrating the heat pipe technologies. It relies on a phase changing approach which enhances the heat flux through the TEG surface. In order to improve the heat transfer for higher efficiency, in our work, the heat pipes are configured in the radial direction of the exhaust streams. The analysis shows that the power output is adequate for the limited space under the chassis of the passenger car. Much effort can also be applied to obtain enhanced convective heat transfer by adjusting the heat pipes at the dual sides of the concentric TEG modules. Heat enhancement at the hot side of the TEG has an effective impact on the total power out of the TEG modules. However, such improvements can be offset by the adjustment made from the coolant side. Predictably, the whole temperature profile of TEG system is subject to the durability and operational limitations of each component. Furthermore, the results highlight the importance of heat transfer versus the TEG power generation under two possible configurations in the passenger car. The highest power output per

  3. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  4. Power stores and power electronics. Elements for a stable and reliable vehicle power supply system; Energiespeicher und Leistungselektronik. Elemente fuer ein stabiles und zuverlaessiges Bordnetz

    Nalbach, Marc; Hoff, Carsten; Olk, Joachim; Schoellmann, Matthias [Hella KGaA Hueck und Co., Lippstadt (Germany); Schick, Detlef [Atmel, Garching (Germany)

    2008-07-01

    The demand for fuel efficient technologies in automotive applications is driven by the ongoing and increased CO{sub 2} discussion respective the upcoming tightening of the law as well as by the exhaustion of the worldwide oil resources. Today, micro-hybrid cars using idle stop, micro-regenerative braking and/or electrification of auxiliary components deliver a cost efficient approach within the 14V E/E energy system. Furthermore, the optimization of the components themselves like turbo-charging of the combustion engine, tyres with a low rolling friction as well as weight reduction and LED lighting has a significant impact on the car efficiency. But the implementations of idle stop plus additional innovations like electrical power steering are able to jeopardize the stability of the vehicle electrical power system by its amount of electrical energy and power consumption. Contrary, these mechatronics and actuators need a reliable power supply especially if they are safety critical. To ensure the stability of the power supply the ratio of energy storage and power resources has to be balanced within the E/E system. Within this paper the optimization of energy and power resources is shown using an exemplary application and how this approach could be extrapolated to the whole automobile power system. (orig.)

  5. Feasible Path Generation Using Bezier Curves for Car-Like Vehicle

    Latip, Nor Badariyah Abdul; Omar, Rosli

    2017-08-01

    When planning a collision-free path for an autonomous vehicle, the main criteria that have to be considered are the shortest distance, lower computation time and completeness, i.e. a path can be found if one exists. Besides that, a feasible path for the autonomous vehicle is also crucial to guarantee that the vehicle can reach the target destination considering its kinematic constraints such as non-holonomic and minimum turning radius. In order to address these constraints, Bezier curves is applied. In this paper, Bezier curves are modeled and simulated using Matlab software and the feasibility of the resulting path is analyzed. Bezier curve is derived from a piece-wise linear pre-planned path. It is found that the Bezier curves has the capability of making the planned path feasible and could be embedded in a path planning algorithm for an autonomous vehicle with kinematic constraints. It is concluded that the length of segments of the pre-planned path have to be greater than a nominal value, derived from the vehicle wheelbase, maximum steering angle and maximum speed to ensure the path for the autonomous car is feasible.

  6. Test of safety injection supply by diesel generator under reactor vessel closed condition

    Zhang Hao; Bi Fengchuan; Che Junxia; Zhang Jianwen; Yang Bo

    2014-01-01

    The paper studied that the test of diesel generator full load take-up under the condition of actual safety injection and reactor vessel closed in Ningde nuclear project unit l. It is proved that test result accorded with design criteria, meanwhile, the test was removed from the key path of project schedule, which cut a huge cost. (authors)

  7. Reverse osmosis using for water demineralization for supplying the NPP and TPP steam generators

    Mamet, A.P.; Sitnyakovskij, Yu.A.

    2000-01-01

    Paper analyzes the conditions affecting the efficiency of water reverse-osmosis demineralization for NPP and TPP steam generators and presents an example of efficient application of a membrane reverse-osmosis facility serving as the first stage of water demineralization at the Mosehnergo Joint-Stock Company heating and power plant no. 23 to feed boilers [ru

  8. Optimal mix of renewable power generation in the MENA region as a basis for an efficient electricity supply to europe

    Alhamwi, Alaa; Kleinhans, David; Weitemeyer, Stefan; Vogt, Thomas

    2014-12-01

    Renewable Energy sources are gaining importance in the Middle East and North Africa (MENA) region. The purpose of this study is to quantify the optimal mix of renewable power generation in the MENA region, taking Morocco as a case study. Based on hourly meteorological data and load data, a 100% solar-plus-wind only scenario for Morocco is investigated. For the optimal mix analyses, a mismatch energy modelling approach is adopted with the objective to minimise the required storage capacities. For a hypothetical Moroccan energy supply system which is entirely based on renewable energy sources, our results show that the minimum storage capacity is achieved at a share of 63% solar and 37% wind power generations.

  9. Update of the Generation Adequacy Report on the electricity supply-demand balance in France. 2010 Edition

    2011-01-01

    Under the terms of the Law of February 10, 2000, RTE (Reseau de Transport d'Electricite), working under the aegis of the Public Authorities, establishes every two years a multi-annual forecast report on the balance of electricity supply and demand in France, known as 'Generation Adequacy Report'. The last Generation Adequacy Report, looking ahead up to 2025, was published in July 2009. It concluded that security of supply in France was reasonably ensured through 2013. It also warned that supply might fall short of demand by 2015, considering: i) decommissioning of numerous old plants that are not in compliance with environment standards established in the 'Large Combustion Plants' Directive, and ii) a slow-down in commissioning of new plants, due to the recent tendency of producers to postpone go ahead decisions in the wake of the economic and financial crisis. Decree No. 2006-1170 issued on September 20, 2006, requires that an annual update of this forecast be prepared over the next five years. Thus, the main purpose of the present update is to verify the ability of the power system in continental France, operating in close interaction with neighbouring systems, to properly satisfy demand through 2015. This update incorporates supplementary information obtained during the course of last year: - With regard to consumption, forecasts are based on actual consumption figures for 2009. Statistical data over one more year-long period are available on many consumption drivers, such as new building and housing units, along with actual electrical space heating and the sales of many electric appliances. More accurate data from the macro-economic outlook on the recovery from the present crisis were also made available. Such information is helpful in determining the most relevant and probable scenario amongst the set of scenarios developed in the 2009 Generation Adequacy Report. - With regard to generating capacity, the most probable trajectory

  10. A fast approach to generate large-scale topographic maps based on new Chinese vehicle-borne Lidar system

    Youmei, Han; Bogang, Yang

    2014-01-01

    Large -scale topographic maps are important basic information for city and regional planning and management. Traditional large- scale mapping methods are mostly based on artificial mapping and photogrammetry. The traditional mapping method is inefficient and limited by the environments. While the photogrammetry methods(such as low-altitude aerial mapping) is an economical and effective way to map wide and regulate range of large scale topographic map but doesn't work well in the small area due to the high cost of manpower and resources. Recent years, the vehicle-borne LIDAR technology has a rapid development, and its application in surveying and mapping is becoming a new topic. The main objective of this investigation is to explore the potential of vehicle-borne LIDAR technology to be used to fast mapping large scale topographic maps based on new Chinese vehicle-borne LIDAR system. It studied how to use the new Chinese vehicle-borne LIDAR system measurement technology to map large scale topographic maps. After the field data capture, it can be mapped in the office based on the LIDAR data (point cloud) by software which programmed by ourselves. In addition, the detailed process and accuracy analysis were proposed by an actual case. The result show that this new technology provides a new fast method to generate large scale topographic maps, which is high efficient and accuracy compared to traditional methods

  11. Analysis of wind driven self-excited induction generator supplying isolated DC loads

    Khaled S. Sakkoury

    2017-05-01

    Full Text Available This paper presents the analysis, modelling and simulation of wind-driven self-excited induction generator (SEIG. The three-phase SEIG is driven by a variable-speed prime mover to represent a wind turbine. Also, the paper investigates the dynamic performance of the SEIG during start-up, increasing or decreasing the load or rotor speed. The value of the excitation capacitance required for the SEIG is calculated to give suitable saturation level to assure self-excitation and to avoid heavy saturation levels. Matching of the maximum power available from the wind turbine is performed through varying the load value. The effect of AC–DC power conversion on the generator is investigated. The system simulation is carried out using MATLAB/SIMULINK toolbox program.

  12. An exploratory game-theoretic analysis of biomass electricity generation supply chain

    Nasiri, Fuzhan; Zaccour, Georges

    2009-01-01

    This study proposes a game-theoretic approach to model and analyze the process of utilizing biomass for power generation considering three players: distributor, facility developer, and participating farmer. We characterize the Nash equilibrium of the sequential game and discuss its features. A special attention is devoted to the analysis of the impact of incentives and initial target on the equilibrium, in which the biomass is part of electricity production.

  13. Outlook for world nuclear power generation and long-term energy supply and demand situations

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  14. Life cycle assessment for next generating vehicles. Feasibility study of alternative fuel vehicles and electric vehicles; Jisedai jidosha no life cycle assessment. Daitai nenryo jidosha oyobi denki jidosha no feasibility study

    Hanyu, T; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    To show environmental assessment of introduction of substitute fuel vehicles is important information to formulate the future vehicles policy. Life cycle assessment (LCA) is put forward to simulate such potential, allows us to state the reduction environmental impacts of substitute vehicles on their total life cycle. The purpose of this study is assessment and analysis of the life cycle CO2 emission for substitute fuel vehicles, such as, alternative fuel vehicles, electric vehicles, and hybrid electric vehicles. 8 refs., 9 figs., 3 tabs.

  15. Restart of the chemical preparation process for the fabrication of ZnO varistors for ferroelectric neutron generator power supplies

    Lockwood, Steven John

    2005-01-01

    To date, all varistors used in ferroelectric neutron generators have been supplied from a single, proprietary source, General Electric Corporate Research and Development (GE CR and D). To protect against the vulnerability of a single source, Sandia initiated a program in the early 1980's to develop a second source for this material. A chemical preparation process for making homogeneous, high purity ZnO-based varistor powder was generated, scaled to production quantities, and transferred to external suppliers. In 1992, the chem-prep varistor program was suspended when it appeared there was sufficient inventory of GE CR and D material to supply ferroelectric neutron generator production for many years. In 1999, neutron generator production schedules increased substantially, resulting in a predicted exhaustion of the existing supply of varistor material within five years. The chem-prep program was restarted in January, 2000. The goals of the program were to (1) duplicate the chem-prep powder synthesis process that had been qualified for WR production, (2) demonstrate sintered billets from the chem-prep powder met requirements, (3) develop a process for rod fabrication and demonstrate that all component specifications could be met, and (4) optimize the process from powder synthesis through component fabrication for full-scale production. The first three of these goals have been met and are discussed in this report. A facility for the fabrication of production quantities of chem-prep powder has been established. All batches since the restart have met compositional requirements, but differences in sintering behavior between the original process and the restarted process were noted. Investigation into the equipment, precipitant stoichiometry, and powder processing procedures were not able to resolve the discrepancies. It was determined that the restarted process, which incorporated Na doping for electrical stability (a process that was not introduced until the end of the

  16. Parallel autonomy in automated vehicles : Safe motion generation with minimal intervention

    Schwarting, Wilko; Alonso Mora, J.; Pauli, Liam; Karaman, Sertac; Rus, Daniela; Chen, I-Ming; Nakamura, Yoshihiko

    2017-01-01

    Current state-of-the-art vehicle safety systems, such as assistive braking or automatic lane following, are still only able to help in relatively simple driving situations. We introduce a Parallel Autonomy shared-control framework that produces safe trajectories based on human inputs even in much

  17. Zero Rare-Earth Magnet Integrated Starter-Generator Development for Military Vehicle Applications

    2013-08-14

    platform. – Support of on-board hybrid electric features such as regenerative braking , torque assist and stop-start operation. 14 August 2013 4...13. SUPPLEMENTARY NOTES GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013 14. ABSTRACT Briefing Charts

  18. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.

  19. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  20. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  1. Costs comparison between solar photovoltaic system and moto-generator for supplying the isolated small community

    Fadigas, E.A.F.A.; Faga, M.T.W.

    1993-01-01

    This work describes a technical configuration from which making an economic evaluation that comparing the photovoltaic option with moto-generator, energy source very used in rural community, presenting the relations of implantation cost between two options, showing the sensibility of these cost in function of some variables like: demand, reduction tax, solar radiation, and, as the solar energy market photovoltaic presents cost upper than international cost due to the inexpressive scale economy, make the analysis with one prices range, possibility an evaluation not limited to the national market. 3 refs, 8 figs

  2. Visible and thermal spectrum synthetic image generation with DIRSIG and MuSES for ground vehicle identification training

    May, Christopher M.; Maurer, Tana O.; Sanders, Jeffrey S.

    2017-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROCV) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach that has been developed to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  3. Space robot simulator vehicle

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  4. Performance and Economics of Catalytic Glow Plugs and Shields in Direct Injection Natural Gas Engines for the Next Generation Natural Gas Vehicle Program: Final Report

    Mello, J. P.; Bezaire, D.; Sriramulu, S.; Weber, R.

    2003-08-01

    Subcontractor report details work done by TIAX and Westport to test and perform cost analysis for catalytic glow plugs and shields for direct-injection natural gas engines for the Next Generation Natural Gas Vehicle Program.

  5. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  6. Small distributed generation versus centralised supply: a social cost-benefit analysis in the residential and service sectors

    Gulli, Francesco

    2006-01-01

    This paper aims at measuring the social benefits of small CHP distributed generation (DG) in the residential and service sectors. We do this by comparing the social costs of decentralised and centralised supplies, simulating 'ideal' situations in which any source of allocative inefficiencies is eliminated. This comparison focuses on assessing internal and external costs. The internal costs are calculated by simulating the optimal prices of the electricity and gas inputs. The external costs are estimated by using and elaborating the results of the dissemination process of the ExternE project, one of the most recent and accurate methodologies in this field. The analysis takes into account the main sources of uncertainty about the parameter values, including uncertainty about external cost estimations. Despite these sources of uncertainty, the paper concludes that centralised supply is still preferable to small DG. In fact, the overall range of DG social competitiveness is restricted, even considering further remarkable improvements in DG electrical efficiency and investment costs. The results are particularly unfavourable for the residential sector, whereas, in the service sector, the performance of DG technologies is slightly better

  7. Analysis and control of induction generator supplying stand-alone AC loads employing a Matrix Converter

    Sumedha Mahajan

    2017-04-01

    Full Text Available This paper proposes a Capacitor Excited Induction Generator (CEIG-Matrix Converter (MC system for feeding stand-alone AC loads. The variable output voltage magnitude and frequency from CEIG is converted into a constant voltage magnitude and frequency at the load terminals by controlling MC using Space Vector Modulation (SVM technique. This single-stage MC is turned up as a good alternative for the proposed system against commonly used AC/DC/AC two stage power converters. The configuration and implementation of the closed-loop control scheme employing dSPACE 1103 real time controller have been fully described in the paper. The proposed closed-loop controller regulates the AC load voltage irrespective of changes in the prime mover speed and load. A method for predetermining the steady-state performance of the proposed system has been developed and described with relevant analytical expressions. The effectiveness of the proposed system is exemplified through simulation results for various operating conditions. The proposed control technique is further validated using an experimental setup developed in the laboratory.

  8. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  9. Connected vehicles and cybersecurity.

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  10. Power supply controlled for plasma torch generation; Fuente de alimentacion controlada para la generacion de un plasma

    Diaz Z, S

    1997-12-31

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named `Destruction of hazard wastes by thermal plasma` actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR`s; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author).

  11. Neural network-based voltage regulator for an isolated asynchronous generator supplying three-phase four-wire loads

    Singh, Bhim; Kasal, Gaurav Kumar [Department of Electrical Engineering, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016 (India)

    2008-06-15

    This paper deals with a neural network-based solid state voltage controller for an isolated asynchronous generator (IAG) driven by constant speed prime mover like diesel engine, bio-gas or gasoline engine and supplying three-phase four-wire loads. The proposed control scheme uses an indirect current control and a fast adaptive linear element (adaline) based neural network reference current extractor, which extracts the real positive sequence current component without any phase shift. The neutral current of the source is also compensated by using three single-phase bridge configuration of IGBT (insulated gate bipolar junction transistor) based voltage source converter (VSC) along-with single-phase transformer having self-supported dc bus. The proposed controller provides the functions as a voltage regulator, a harmonic eliminator, a neutral current compensator, and a load balancer. The proposed isolated electrical system with its controller is modeled and simulated in MATLAB along with Simulink and PSB (Power System Block set) toolboxes. The simulated results are presented to demonstrate the capability of an isolated asynchronous generating system driven by a constant speed prime mover for feeding three-phase four-wire loads. (author)

  12. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  13. AR42J-B-13 cell: An expandable progenitor to generate an unlimited supply of functional hepatocytes

    Wallace, Karen; Fairhall, Emma A.; Charlton, Keith A.; Wright, Matthew C.

    2010-01-01

    Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.

  14. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  15. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  16. An Energy Dense-AI-NaBH4-PEMFC Based Power Generator for Unmanned Undersea Vehicles

    2016-03-01

    From- To) 03/01/2016 Final 01/28/2013-12/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER An Energy-Dense AI-NaBH4- PEMFC Based Power Generator for...combination of polymer electrolyte membrane fuel cell ( PEMFC ) with a compact hydrogen generator util izing AI-NaBH4 composite fuel. The conditions...ANSI Std. Z39.18 FLORIDA SOLAR ENERGY CENTER. Crl’nrmg EnPrgy lnrll’pendrnr£’ An Energy-Dense Al-NaBH4- PEMFC Based Power Generator for Unmanned

  17. Collision free path generation in 3D with turning and pitch radius constraints for aerial vehicles

    Schøler, F.; La Cour-Harbo, A.; Bisgaard, M.

    2009-01-01

    In this paper we consider the problem of trajectory generation in 3D for uninhabited aerial systems (UAS). The proposed algorithm for trajectory generation allows us to find a feasible collision-free 3D trajectory through a number of waypoints in an environment containing obstacles. Our approach...... assumes that most of the aircraft structural and dynamic limitations can be formulated as a turn radius constraint, and that any two consecutive waypoints have line-of-sight. The generated trajectories are collision free and also satisfy a constraint on the minimum admissible turning radius, while...

  18. Implementation of an unmanned aerial vehicle for new generation Peterbilt trucks

    Srinivasan K, Venkatesh

    As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.

  19. Evaluation of the Effect of Operating Parameters on Thermal Performance of an Integrated Starter Generator in Hybrid Electric Vehicles

    Moo-Yeon Lee

    2015-08-01

    Full Text Available The belt-driven-type integrated starter generator motor in a hybrid electric vehicle is vulnerable to thermal problems owing to its high output power and proximity to the engine. These problems may cause demagnetization and insulation breakdown, reducing the performance and durability of the motor. Hence, it is necessary to evaluate the thermal performance and enhance the cooling capacity of the belt-driven type Integrated Starter Generator. In this study, the internal temperature variations of the motor were investigated with respect to the operating parameters, particularly the rotation speed and environment temperature. At a maximum ambient temperature of 105 °C and rotation speed (motor design point of 4500 rpm, the coil of the motor was heated to approximately 189 °C in generating mode. The harsh conditions of the starting mode were analyzed by assuming that the motor operates during the start-up time at a maximum ambient temperature of 105 °C and rotation speed (motor design point of 800 rpm; the coil was heated to approximately 200 °C, which is close to the insulation temperature limit. The model for analyzing the thermal performance of the ISG was verified by comparing its results with those obtained through a generating-mode-based experiment

  20. The second generation turbosteamer.Vehicle integration as a key for an effective utilization of waste heat; Der Turbosteamer der 2. Generation. Fahrzeugintegration als Schluessel zur effizienten Abwaermenutzung

    Horst, Tilmann Abbe; Seifert, Marco; Schmidt, Christian [BMW Forschung und Technik GmbH, Muenchen (Germany); Zuck, Bernhard [BMW AG, Muenchen (Germany); Spliethoff, Hartmut [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2012-11-01

    Waste heat recovery is a promising approach for achieving further reductions in fuel consumption and, as a result, exhaust emissions. In 2005, the potential of a system based on the Rankine cycle was demonstrated for the first time with the BMW Turbosteamer. For the second generation, the system design has been thoroughly simplified. In the current setup, heat is taken in from the exhaust gas of the engine and the heat from condensation is transferred to the existing cooling system. Steam expansion is accomplished by an impulse turbine with high power density. Integration of this system into the thermal management of the engine poses a great challenge. Interactions between the exhaust system, the cooling system and the waste heat recovery system have to be considered to enable efficient operation in a passenger car. For example, the operation range is limited by the exhaust gas backpressure that is generated in the evaporator. Another consideration is that additional heat rejection to the cooling system may not affect the thermal safety of the engine. In this paper, the second generation Turbosteamer and the latest findings regarding system design, development of the key components and vehicle integration are presented. Analysis of the interactions with the engine thermal management leads to a recommendation for the optimal operating range and strategy of the waste heat recovery system. The influence of the integration effects on the system efficiency are evaluated on this basis. (orig.)

  1. Boycotting by paying only parts of the rate because the electricity supplied is generated by nuclear power plants

    Lueke, G.

    1979-01-01

    The Amtsgericht (lowest civil and criminal court) Stuttgart dismissed the action for payment filed by the public utility for being unfounded for the time being. In contrast to cases decided in Hamburg, an action has been filed to set aside the partial operating license granted for the nuclear power station, and a decision on the issue has not yet been made. Furthermore, the fuel cycle centre at Gorleben is not being built. Therefore, it is open to question whether the operating license can be maintained. Due to the monopoly of power supply, the only way to influence the decision of the plaintiff is to lay a lien on her. This does not apply if the operating license is maintained by a final decision. In the comment, the decision is said to be incorrect and riddled with errors. E.g., the obligation to generate electricity in a harmless way is a duty to public good, i.e., it is not an additional obligation under a contract allowing to lay a lien. Besides, the operating license is effective until it is perhaps revoked. Furthermore, it is examined how the error-containing decision may be abolished. (HSCH) [de

  2. Design and Implementation of a High Quality Power Supply Scheme for Distributed Generation in a Micro-Grid

    Mingchao Xia

    2013-09-01

    Full Text Available A low carbon, high efficiency and high quality power supply scheme for Distributed Generation (DG in a micro-grid is presented. A three-phase, four-leg DG grid-interfacing converter based on the improved structure of a Unified Power Quality Conditioner (UPQC, including a series converter and a parallel converter is adopted, and improved indirect and direct control strategies are proposed. It can be observed that these strategies effectively compensate for voltage sags, voltage swells and voltage distortion, as well as voltage power quality problems resulting from the nonlinear and unbalanced loads in a micro-grid. While solving the coupling interference from series–parallel, the grid-interfacing converter can achieve proper load power sharing in a micro-grid. In particular, an improved minimum-energy compensation method is proposed that can overcome the conventional compensation algorithm defects, ensure the load voltage’s phase angle stability, improve the voltage compensating ability and range, reduce the capacity and cost of converters, and reduce the shock of micro-grid switching between grid-connected mode and islanded mode. Moreover, the advantages/disadvantages and application situation of the two improved control strategies are analyzed. Finally, the performance of the proposed control strategies has been verified through a MATLAB/Simulink simulation under various operating conditions.

  3. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator

    Silvestre de Ferron, A; Reess, T; Pecastaing, L; Pignolet, P; Lemont, F

    2009-01-01

    The authors investigated and improved the filtration efficiency of an electrostatic precipitator (ESP). A laboratory-scale pilot unit was developed to allow experimentation under conditions approaching those of the industrial ESPs used by the CEA at Marcoule (France). After elucidating the electrical phenomena and optically analysing the physical processes occurring inside the precipitator, a specific electrode was developed for use with a hybrid power supply. The experiments were based on analysing the variation over time of the electric charge injected into the particle separator, the particle mass collected at the ground electrode and the charges quantity measured on a grid in the airstream after the electrode unit. Photos were also taken under different electrical discharge conditions. The results show that combining a multipoint electrode and a hybrid generator (30 kV dc and 30 kV, 1 kHz) improves the process efficiency and significantly extends the time frame (more than 10 h) during which the process operates at optimum efficiency.

  4. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator

    Silvestre de Ferron, A; Reess, T; Pecastaing, L; Pignolet, P [LGE, Universite de Pau, 2 avenue Angot, 64000 Pau (France); Lemont, F [CEA Marcoule, Centre de la Vallee du Rhone, 30200 Bagnols-sur-Ceze (France)

    2009-05-21

    The authors investigated and improved the filtration efficiency of an electrostatic precipitator (ESP). A laboratory-scale pilot unit was developed to allow experimentation under conditions approaching those of the industrial ESPs used by the CEA at Marcoule (France). After elucidating the electrical phenomena and optically analysing the physical processes occurring inside the precipitator, a specific electrode was developed for use with a hybrid power supply. The experiments were based on analysing the variation over time of the electric charge injected into the particle separator, the particle mass collected at the ground electrode and the charges quantity measured on a grid in the airstream after the electrode unit. Photos were also taken under different electrical discharge conditions. The results show that combining a multipoint electrode and a hybrid generator (30 kV dc and 30 kV, 1 kHz) improves the process efficiency and significantly extends the time frame (more than 10 h) during which the process operates at optimum efficiency.

  5. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  6. Convex modeling and optimization of a vehicle powertrain equipped with a generator-turbine throttle unit

    Marinkov, S.; Murgovski, N.; de Jager, A.G.

    2017-01-01

    This paper investigates an internal combustion (gasoline) engine throttled by a generator-turbine unit. Apart from throttling, the purpose of this device is to complement the operation of a conventional car alternator and support its downsizing by introducing an additional source of energy for the

  7. Automotive dual-mode hydrogen generation system

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  8. Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control

    Baroch, P; Potocky, S; Saito, N

    2011-01-01

    Presented work focuses on the investigation and characterization of plasma discharges generated in water by newly developed bipolar pulse power supply. The main aim of our work was to solve and overcome problems with intensive arc discharge transition when the discharge is ignited and maintained by a low output impedance pulse power supply. For this purpose a novel type of bipolar pulse power supply was developed and tested. It was found that two distinguished stable modes of discharges generated in the water can be realized. Effects of water conductivity, pulse frequency and initial water temperature on the discharge properties were investigated. Optical emission spectroscopy was employed to study plasma parameters of the discharge and the correlation between the data obtained from the optical emission spectroscopy and the chemical species measured in the water was carried out.

  9. Questionnaire survey of SPECT studies after the supply shortage of Tc-99m and model analysis concerning earnings and expenditure of generator use

    Kinoshita, Ryo; Kosuda, Shigeru; Koike, Katsumi; Arai, Takashi

    2012-01-01

    A questionnaire survey was conducted to evaluate decrease in SPECT studies and its causes after the cessation of long supply shortage of 99 Mo/ 99 mTc generators. Of the replies by the chief nuclear medicine technologists, no necessity for 99 Mo/ 99 mTc generator use or for domestic supply of 99 mTc unexpectedly accounted for 25% and 46%, respectively. Generator use leads to an additional profit by 8654 yen per patient, compared to purchase of commercially available 99 mTc-labeled kits. It is essential to install a 99 Mo/ 99 mTc generator to perform emergency SPECT studies, increase a profit in hospital management, reduction of financial issues in patients, and pediatric studies. This adverse circumstance, however, may provide a good opportunity to instruct nuclear medicine specialists to be aware of the importance mentioned above in medical meetings. (author)

  10. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  11. Modeling of plug-in electric vehicle travel patterns and charging load based on trip chain generation

    Wang, Dai; Gao, Junyu; Li, Pan; Wang, Bin; Zhang, Cong; Saxena, Samveg

    2017-08-01

    Modeling PEV travel and charging behavior is the key to estimate the charging demand and further explore the potential of providing grid services. This paper presents a stochastic simulation methodology to generate itineraries and charging load profiles for a population of PEVs based on real-world vehicle driving data. In order to describe the sequence of daily travel activities, we use the trip chain model which contains the detailed information of each trip, namely start time, end time, trip distance, start location and end location. A trip chain generation method is developed based on the Naive Bayes model to generate a large number of trips which are temporally and spatially coupled. We apply the proposed methodology to investigate the multi-location charging loads in three different scenarios. Simulation results show that home charging can meet the energy demand of the majority of PEVs in an average condition. In addition, we calculate the lower bound of charging load peak on the premise of lowest charging cost. The results are instructive for the design and construction of charging facilities to avoid excessive infrastructure.

  12. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ηprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ηprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons

  13. Research and development in the electricity supply industry conference

    1995-01-01

    This document summarizes the views expressed in the conference papers. These are grouped into fuels for the future, coal fired powers stations, renewables, use of heat as a by-product of electricity generation, fuel cells, electric vehicles, and environmental issues in the electricity supply industry. The points and ideas from the two workshops held in conjunction with the conference are also summarized

  14. A comprehensive study of economic unit commitment of power systems integrating various renewable generations and plug-in electric vehicles

    Yang, Zhile; Li, Kang; Niu, Qun; Xue, Yusheng

    2017-01-01

    Highlights: • A new UCsRP problem with flexible integrations is established. • A novel multi-zone sampling method is proposed for scenarios generation. • A meta-heuristic solving tool is introduced for solving the UCsRP problem. • A comprehensive study is conducted considering multiple weathers and seasons. • The economic effects of various scenarios are evaluated and compared. - Abstract: Significant penetration of renewable generations (RGs) and mass roll-out of plug-in electric vehicles (PEVs) will pay a vital role in delivering the low carbon energy future and low emissions of greenhouse gas (GHG) that are responsible for the global climate change. However, it is of considerable difficulties to precisely forecast the undispatchable and intermittent wind and solar power generations. The uncoordinated charging of PEVs imposes further challenges on the unit commitment in modern grid operations. In this paper, all these factors are comprehensively investigated for the first time within a novel hybrid unit commitment framework, namely UCsRP, which considers a wide range of scenarios in renewable generations and demand side management of dispatchable PEVs load. UCsRP is however an extremely challenging optimisation problem not only due to the large scale, mixed integer and nonlinearity, but also due to the double uncertainties relating to the renewable generations and PEV charging and discharging. In this paper, a meta-heuristic solving tool is introduced for solving the UCsRP problem. A key to improve the reliability of the unit commitment is to generate a range of scenarios based on multiple distributions of renewable generations under different prediction errors and extreme predicted value conditions. This is achieved by introducing a novel multi-zone sampling method. A comprehensive study considering four different cases of unit commitment problems with various weather and season scenarios using real power system data are conducted and solved, and smart

  15. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  16. Simulation and Design of Vehicle Exhaust Power Generation Systems: The Interaction Between the Heat Exchanger and the Thermoelectric Modules

    Tao, Cong; Chen, Gang; Mu, Yu; Liu, Lisheng; Zhai, Pengcheng

    2015-06-01

    Vehicle exhaust power generation systems (VEPGS), mainly consisting of a heat exchanger, cooling system, thermoelectric modules (TEMs), and clamping device, have attracted wide interest and attention for power generation from waste heat. In this work, systematical research was conducted to investigate the thermal performance, power output, and thermal stress of a VEPGS by using the multifield coupling method. Different from previous research, this work simulates a model that integrates the heat exchanger and TEMs, focusing on the effect of the TEMs on the thermal performance of the heat exchanger. It is found that the TEMs have a significant effect on the thermal performance of the heat exchanger. When not considering the effects of the TEMs, the hot-end temperature of the TEMs would be seriously underestimated, which would result in underestimation of the power output of the VEPGS and the level of thermal stress of the TEMs. Meanwhile, when considering the effect of the TEMs, the hot-end temperature distribution exhibits significant changes, and its temperature uniformity is significantly improved. The results suggest that, in VEPGS design and optimization, the interaction between the heat exchanger and TEMs should be considered. This study also contributes to a more accurate assessment method for VEPGS design and simulation.

  17. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  18. Development of a 400 kV 80 mA Cockcroft-Walton power supply and 12 kW isolation transformer systems for neutron generators

    Lu, X.; Chen, S.; Zhang, Y.; Huang, Z.; Ma, Z.; Yao, Z.

    2017-06-01

    A 400 kV 80 mA Cockcroft-Walton power supply driven by 2.5 kHz frequency, and 12 kW isolation transformer systems are developed for an intense DD/DT neutron generator. The design, construction, and testing of the high voltage (HV) power supply and isolation transformer systems are detailed reported. The structure of step-up transformers can make the potential distribution uniform, and auxiliary coils of the isolation transformers can improve the power transmission efficiency significantly. The testing results show that the HV power supply can reach 400 kV, and the isolation transformer systems can withstand 400 kV voltages and its power transmission efficiency is about 98.1%.

  19. On the legal nature of electricity supply contracts concluded by electricity companies and power stations generating electricity from renewable energy sources

    Herrmann, B.J.

    1998-01-01

    Section 2 of the German Act for enhanced use of electricity from renewable energy sources (StEG) defines the obligation to contract but not the contractual obligations, i.e. the conditions of performance of the contract (supply and purchase of electricity and the legal obligations of contractors). The analysis here shows that characterising this mandatory contract required by the act as an agreement of purchase and sale more appropriately describes the legal nature of the contract and the intent of the legislator than other contracts for supply and purchase of electricity, as for instance those concluded by electric utilities and their customers. One specific aspect elaborated by the author is that the StEG does not constitute an obligation to supply on the part of the renewable energy generating power station, so that the power station operator is not obliged to ensure availability of the electricity at any time or in terms of supplies that can be called off by the purchasing utility, whereas the electric utility is obliged by section 2 of the StEG to purchase the contractual amounts from the generating station. (orig./CB) [de

  20. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Sung Chul Kim

    2013-11-01

    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.

  1. Grid integration of electric-powered vehicles in existing and future energy supply structures. Advances in systems analyses 1. Final report; Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen. Advances in System Analyses 1. Endbericht

    Linssen, Jochen; Bickert, Stefan; Hennings, Wilfried [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE); and others

    2012-07-01

    The research project examines whether a fleet of vehicles with electric propulsion system (xEV) can be integrated into existing and future energy supply systems for effective integration of fluctuating power production as well as for energy storage. A multi-sectoral, system-wide scenario analysis is performed to evaluate the grid integration of electric vehicles. The effect of an xEV fleet and the impacts of various battery charging scenarios, including the option of feeding power back into the grid, are addressed by detailed technical and economic models and summarized by an energy system model. The suitability of different powertrain concepts is analysed, giving consideration to their individual applications by users. Based on the results of a German nationwide survey of mobility patterns and analyses of 47 test subjects, individual driving profiles for private cars are drawn up and stored in a database. They are used as input for the vehicle energy model. This model calculates the energy requirements of different xEV concepts and facilitates optimized powertrain design and battery sizing for the respective applications. The results show that if the batteries are charged overnight it is possible to cover a major fraction of daily driving distances by electric power. Additional charging during the day does not significantly improve this fraction. The auxiliaries have a greater influence on the vehicle's energy demand than individual driving patterns. Battery lifetime is extended by recharging the battery as required and preferably as late as possible before the next trip. In most cases, using the batteries for grid services reduces battery lifetime and leads to higher specific costs. Models of the transmission grid and typical distribution grids are developed. It is shown that charging one million xEV in 2020 and six million in 2030 (as envisaged by the German Federal Government) is technically feasible without major structural modifications of the transmission

  2. Grid integration of electric-powered vehicles in existing and future energy supply structures. Advances in systems analyses 1. Final report; Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukuenftige Energieversorgungsstrukturen. Advances in System Analyses 1. Endbericht

    Linssen, Jochen; Bickert, Stefan; Hennings, Wilfried [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie- und Klimaforschung, Systemforschung und Technologische Entwicklung (IEK-STE)] [and others

    2012-07-01

    The research project examines whether a fleet of vehicles with electric propulsion system (xEV) can be integrated into existing and future energy supply systems for effective integration of fluctuating power production as well as for energy storage. A multi-sectoral, system-wide scenario analysis is performed to evaluate the grid integration of electric vehicles. The effect of an xEV fleet and the impacts of various battery charging scenarios, including the option of feeding power back into the grid, are addressed by detailed technical and economic models and summarized by an energy system model. The suitability of different powertrain concepts is analysed, giving consideration to their individual applications by users. Based on the results of a German nationwide survey of mobility patterns and analyses of 47 test subjects, individual driving profiles for private cars are drawn up and stored in a database. They are used as input for the vehicle energy model. This model calculates the energy requirements of different xEV concepts and facilitates optimized powertrain design and battery sizing for the respective applications. The results show that if the batteries are charged overnight it is possible to cover a major fraction of daily driving distances by electric power. Additional charging during the day does not significantly improve this fraction. The auxiliaries have a greater influence on the vehicle's energy demand than individual driving patterns. Battery lifetime is extended by recharging the battery as required and preferably as late as possible before the next trip. In most cases, using the batteries for grid services reduces battery lifetime and leads to higher specific costs. Models of the transmission grid and typical distribution grids are developed. It is shown that charging one million xEV in 2020 and six million in 2030 (as envisaged by the German Federal Government) is technically feasible without major structural modifications of the

  3. Automated Generation of Geo-Referenced Mosaics From Video Data Collected by Deep-Submergence Vehicles: Preliminary Results

    Rhzanov, Y.; Beaulieu, S.; Soule, S. A.; Shank, T.; Fornari, D.; Mayer, L. A.

    2005-12-01

    Many advances in understanding geologic, tectonic, biologic, and sedimentologic processes in the deep ocean are facilitated by direct observation of the seafloor. However, making such observations is both difficult and expensive. Optical systems (e.g., video, still camera, or direct observation) will always be constrained by the severe attenuation of light in the deep ocean, limiting the field of view to distances that are typically less than 10 meters. Acoustic systems can 'see' much larger areas, but at the cost of spatial resolution. Ultimately, scientists want to study and observe deep-sea processes in the same way we do land-based phenomena so that the spatial distribution and juxtaposition of processes and features can be resolved. We have begun development of algorithms that will, in near real-time, generate mosaics from video collected by deep-submergence vehicles. Mosaics consist of >>10 video frames and can cover 100's of square-meters. This work builds on a publicly available still and video mosaicking software package developed by Rzhanov and Mayer. Here we present the results of initial tests of data collection methodologies (e.g., transects across the seafloor and panoramas across features of interest), algorithm application, and GIS integration conducted during a recent cruise to the Eastern Galapagos Spreading Center (0 deg N, 86 deg W). We have developed a GIS database for the region that will act as a means to access and display mosaics within a geospatially-referenced framework. We have constructed numerous mosaics using both video and still imagery and assessed the quality of the mosaics (including registration errors) under different lighting conditions and with different navigation procedures. We have begun to develop algorithms for efficient and timely mosaicking of collected video as well as integration with navigation data for georeferencing the mosaics. Initial results indicate that operators must be properly versed in the control of the

  4. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  5. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  6. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  7. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  8. A General Overview of Electric Road Vehicles

    Lamblin, Veronique

    2018-01-01

    In July 2017 Nicolas Hulot, the French Minister of Ecological and Inclusive Transition, presented a climate plan featuring an end to electricity generation from coal by 2022, a reduction in the nuclear component of electricity supply by one third, a total ban on the sale of petrol or diesel cars by 2040 and an incentive scheme designed gradually to remove polluting vehicles from the roads. Other European partners are following suit and promoting the spread of electric vehicles (Norway, Germany, Netherlands etc.). Yet is this the panacea that will meet the targets for greenhouse gas reduction in the battle against climate change? Futuribles examines the question in this issue with two articles: the first of these by Pierre Bonnaure, above, assesses the forces driving the spread of electric cars and the impediments to that process; this second article by Veronique Lamblin offers a general over - view of electric road vehicles (passenger cars, heavy good vehicles, bicycles etc.) throughout the world. (author)

  9. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  10. Lithium availability in the EU27 for battery-driven vehicles : The impact of recycling and substitution on the confrontation between supply and demand until 2050

    Miedema, Jan H.; Moll, Henri C.

    The adverse impacts of climate change are widely recognized as well as the importance of the mitigation of carbon dioxide (CO2). Battery driven vehicles are expected to have a bright future, since GHG emissions can be reduced. Lithium-ion (Li-ion) batteries appear to be the most promising, due to

  11. Factors affecting the potential of direct load control for non-generating utilities. Final report. [Distribution and wholesale power supply interaction

    None

    1979-04-01

    Several alternatives are available for achieving load management, including direct or voluntary control of customer loads, customer or utility energy storage systems for diurnal load shifting, and expanded interconnection and operation of electric power systems. All of these alternatives are available to the fully integrated (generating, transmitting and distributing) electric utility and the analysis of their effects encompasses the power supply and delivery system. However, the costs and benefits of the alternatives to the fully integrated electric utility are perhaps not so obvious. Therefore, by considering a non-generating utility, this analysis focuses upon the distribution system and wholesale power supply interaction as a step toward an analysis including the power supply and delivery system. This report develops an analysis procedure and discusses some of the relevant factors to be consdered in the application of direct load control for a non-generating utility system. The analysis concentrates on the distribution system only to determine the effect of rates and payback as a result of direct load control. Thus, the study is responsive to the specific needs of the non-generating utility. This analysis of direct load control encompasses the determination of those loads amenable to control, the selection of a suitable one-way communications system to rend control and the estimation of expected benefits and costs. The complementary functions to the application of direct load control such as automatic meter reading via the addition of a bi-directional communications system and voltage control are not included in the analysis but are detailed for future consideration.

  12. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  13. Modeling generation expansion in the context of a security of supply mechanism based on long-term auctions. Application to the Colombian case

    Rodilla, P.; Batlle, C.; Salazar, J.; Sanchez, J.J.

    2011-01-01

    In an attempt to provide electricity generation investors with appropriate economic incentives so as to maintain quality of supply at socially optimal levels, a growing number of electricity market regulators have opted for implementing a security of supply mechanism based on long-term auctions. In this context, the ability to analyze long-term investment dynamics is a key issue not only for market agents, but also for regulators. This paper describes a model developed to serve this purpose. A general system-dynamics-inspired methodology has been designed to be able to simulate these long-term auction mechanisms in the formats presently in place. A full-scale simulation based on the Colombian system was conducted to illustrate model capabilities. (author)

  14. Modeling generation expansion in the context of a security of supply mechanism based on long-term auctions. Application to the Colombian case

    Rodilla, P.; Batlle, C. [Institute for Research in Technology, University Pontificia Comillas, Sta. Cruz de Marcenado 26, 28015 Madrid (Spain); Salazar, J. [Empresas Publicas de Medellin, Carrera 58 No. 42-125 Edificio Inteligente, Medellin (Colombia); Sanchez, J.J. [Secretaria de Estado de Cambio Climatico, Ministerio de Medio Ambiente, Rural y Marino. Plaza San Juan de la Cruz, 28071 Madrid (Spain)

    2011-01-15

    In an attempt to provide electricity generation investors with appropriate economic incentives so as to maintain quality of supply at socially optimal levels, a growing number of electricity market regulators have opted for implementing a security of supply mechanism based on long-term auctions. In this context, the ability to analyze long-term investment dynamics is a key issue not only for market agents, but also for regulators. This paper describes a model developed to serve this purpose. A general system-dynamics-inspired methodology has been designed to be able to simulate these long-term auction mechanisms in the formats presently in place. A full-scale simulation based on the Colombian system was conducted to illustrate model capabilities. (author)

  15. Electric energy supply and non-utility generation: A comparative analysis of B.C. and Wisconsin

    Logan, J.A.

    1993-01-01

    The pricing policies and buyback rates (those concerned with purchase of non-utility generation, NUG) of British Columbia (BC) Hydro are examined along with their effectiveness in encouraging the efficient use and development of power. Specifically, the levels of self-generation within BC's pulp mills are examined as well as mill manager attitudes to increasing energy production. BC Hydro's encouragement of self-generation is determined by examining the ratio of the industrial rate for pulp mills to the utility's long-run marginal cost of power. BC Hydro's buyback policies are also examined to determine the level of encouragement they provide for increased self-generation. Comparisons are made with similar data, wherever possible, from utilities and pulp mills in Wisconsin. The comparison reveals similarities with respect to pulp mills' attitudes toward increasing self-generation capacity. A significant difference is noted in terms of the amount of pulp mill self-generation: Wisconsin mills generate substantially more of their own energy requirements than BC mills. Wisconsin utilities provided greater markup through their industrial rates, and also provided the greater encouragement for increased self-generation through their buyback policies. BC Hydro is the only utility that offered a load displacement policy, however. In summary, the policies and regulations of both BC and Wisconsin utilities have the potential to encourage greater industrial self-sufficiency and increased levels of self-generated power. Existing levels of encouragement are not determined solely by economic considerations but also reflect utility planning objectives. 97 refs., 3 figs., 20 tabs

  16. The market for electric vehicles. Political and economic boundary conditions of the supply and demand sides; Der Markt fuer Elektrofahrzeuge. Politisch-wirtschaftliche Rahmenbedingungen der Angebots- und Nachfrageseite

    Brunnert, Stefan; Steyer, Maria-Alexandra [Stadtwerke Muenchen GmbH (Germany); Hoberg, Patrick; Leimeister, Stefanie [Technischen Univ. Muenchen (Germany). fortiss An-Institut; Krcmar, Helmut [Technischen Univ. Muenchen (Germany). fortiss An-Institut; Technische Univ. Muenchen (Germany). Lehrstuhl fuer Wirtschaftsinformatik

    2010-11-15

    Electromobility is an issue of discussion currently, and the discussion is getting increasingly polarizing. As the petroleum resources worldwide are decreasing, road vehicles have come into focus as one of the biggest pollution sources. It is necessary to make mobility environmentally acceptable and also sustainable. So far, however, there are many challenges and a lack of information that make it difficult to assess the fitness for future of this mobility concept. (orig.)

  17. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  18. 2005 Generation Adequacy Report on the electricity supply-demand balance in France. Update of results up to 2010 - June 2006

    2006-06-01

    As part of the missions assigned to it by law, RTE has completed a partial update, looking ahead to 2010, of the Generation Adequacy Report on the balance between the supply and demand for electricity, originally published in October 2005. This update takes account of known developments in generation supply during the course of 2005, in particular the growth of wind farms and combined cycle projects. The basic hypotheses used to predict possible consumption levels remain the same as those employed in the previous report. The weak growth in electricity consumption observed in 2005 can be attributed to a depressed economic climate - GDP grew by only 1.2% in 2005 - mainly affecting energy intensive industries; Residential and Commercial sectors consumption went on a continuous upwards trend. A longer period of observation is required to confirm or refute any eventual change in the longer term. Whilst awaiting further information that can be used as confirmation, this update has been carried out based on scenarios R1-R2-R3 produced for the 2005 Generation Adequacy Report. On the generation side, an initial scenario referred to as 'base case supply' is designed to identify future changes in requirements compared with existing generating facilities. It only takes account of projects that are currently in the process of being built. These include mainly wind farms begun in 2005, and the re-entry into service of four fuel-oil plants. A second scenario, referred to as 'committed projects', is based on a plausible projection for the development of wind generating facilities, with 4 GW installed by 2010, and the entry into service of three combined cycle gas turbine plants by the same year, without specifying precisely which ones will be built from among the range of projects announced. Under the 'base case supply' scenario along with the 'median demand' scenario, the risk of a shortfall or loss of load occurring exceeds the acceptable

  19. Ultracapacitors for fuel saving in small size hybrid vehicles

    Solero, L.; Lidozzi, A.; Serrao, V. [University ROMA TRE, Dept. of Mechanical and Industrial Eng., Via della Vasca Navale, 79 - 00146 Roma (Italy); Martellucci, L. [University of Rome ' ' La Sapienza' ' , Dept. of Electrical Eng., Via Eudossiana, 18 - 00184 Roma (Italy); Rossi, E. [ENEA, Via Anguillarese, 301 - 00060 S. Maria Galeria, Roma (Italy)

    2011-01-01

    The main purpose of the paper is to describe a small size hybrid vehicle having ultracapacitors as on-board storage unit. The vehicle on-board main power supply is achieved by a genset being formed of a 250 cm{sup 3} internal combustion engine and a permanent magnet synchronous electric generator, whereas 4 16V-500F ultracapacitors modules are connected in series in order to supply as well as to store the power peaks during respectively acceleration and braking vehicle modes of operation. The traction power is provided by a permanent magnet synchronous electric motor, whereas a distributed power electronic interface is in charge of all the required electronic conversions as well of controlling the operating conditions for each power unit. The paper discusses the implemented control strategy and shows experimental results on the modes of operation of both generation unit and storage unit. (author)

  20. Survey for preparing the database for R and D of new engines. Waste power generation, solar heat system, geothermal power generation, clean energy vehicle, coal liquefaction/gasification, and combined systems; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki tema

    NONE

    1997-03-01

    The present developmental conditions and issues of new energies are systematically arranged for effective promotion of their diffusion. One hundred and forty six general waste power generation facilities of 558,000kW are in operation in 1995, and among them 89 facilities supplies 1,080 GWh to power companies. 50 industrial waste power facilities of 247,000kW are in operation. 20,000 solar systems and 180,000 hot water heaters are in operation in 1995. Commercial geothermal power generation facilities of 490,000kW and private ones of 36,000kW are in operation. Introduction of expensive clean energy vehicles is making very slow progress. The pilot study on bituminous coal liquefaction is in promotion mainly by NEDO. The experiment of entrained bed coal gasification in Nakoso was successfully completed, and development of a commercial plant is to be expected. Power rates of 10 power companies were reduced in 1996, and unit purchase prices of surplus power of photovoltaic and wind power generation were also revised. The new menu and unit purchase price were announced in 1996 for surplus power of waste power generation and fuel cell. 67 figs., 284 tabs.

  1. Smart use of storage potentials of electric vehicles for renewable energy generation in the built environment : A design scenario

    Van Timmeren, A.; Bauer, T.C.; Silvester, S.

    2011-01-01

    In this paper, results are reported of a technology assessment of use of electrical vehicles for energy storage (of renewable sources), their integration in the built environment and attached required power and charging systems for the Netherlands. This was done as part of the DIEMIGO project on

  2. The Potential of Combined Heat and Power Generation, Wind Power Generation and Load Management Techniques for Cost Reduction in Small Electricity Supply Systems.

    Bass, Jeremy Hugh

    Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.

  3. Electric generation situation through hybrid systems in Para state and perspectives in face of the global supply of electric power; Situacao da geracao eletrica atraves de sistemas hibridos no estado do Para e perspectivas frente a universalizacao da energia eletrica

    Barbosa, Claudomiro Fabio de Oliveira; Pinho, Joao Tavares; Pereira, Edinaldo Jose da Silva; Galhardo, Marcos Andre Barros; Vale, Silvio Bispo do; Maranhao, Wilson Monteiro de Albuquerque [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Grupo de Estudos e Desenvolvimento de Alternativas Energeticas], e-mail: gedae@ufpa.br

    2004-07-01

    This work presents an analysis of the hybrid systems for electricity generation installed in the State of Para, emphasizing the profile of the supplied localities, the conversion technologies in the several configurations used for electric power generation, the social, economic and environmental impacts caused by such systems, the management and sustainability of the systems, and their perspectives in face of the global supply of electric power in Brazil. (author)

  4. A Column-Generation Approach for a Short-Term Production Planning Problem in Closed-Loop Supply Chains

    Florian Sahling

    2013-05-01

    Full Text Available We present a new model formulation for a multi-product lot-sizing problem with product returns and remanufacturing subject to a capacity constraint. The given external demand of the products has to be satisfied by remanufactured or newly produced goods. The objective is to determine a feasible production plan, which minimizes production, holding, and setup costs. As the LP relaxation of a model formulation based on the well-known CLSP leads to very poor lower bounds, we propose a column-generation approach to determine tighter bounds. The lower bound obtained by column generation can be easily transferred into a feasible solution by a truncated branch-and-bound approach using CPLEX. The results of an extensive numerical study show the high solution quality of the proposed solution approach.

  5. New approach in electricity network regulation: an issue on effective integration of distributed generation in electricity supply systems

    Scheepers, Martin J.J.; Wals, Adrian F.

    2003-11-01

    Technological developments and EU targets for penetration of renewable energy sources (RES) and greenhouse gas (GHG) reduction are decentralising the electricity infrastructure and services. Although, the liberalisation and internationalisation of the European electricity market has resulted in efforts to harmonise transmission pricing and regulation, hardly any initiative exists to consider the opening up and regulation of distribution networks to ensure effective participation of RES and distributed generation (DG) in the internal market. The SUSTELNET project has been created in order to close this policy gap. Its main objective is to develop regulatory roadmaps for the transition to an electricity market and network structure that creates a level playing field between centralised and decentralised generation and that facilitates the integration of RES, within the framework of the liberalisation of the EU electricity market. By analysing the technical, socio-economic and institutional dynamics of the European electricity system and markets, the project identifies the underlying patterns that provide the boundary conditions and levers for policy development to reach long term RES and GHG targets (2020-2030 time frame). This paper presents results of this analytical phase of the SUSTELNET project. Furthermore, preliminary results of the current work in progress are presented. Principles and criteria for a regulatory framework for sustainable electricity systems are discussed, as well as the development of medium to long-term transition strategies/roadmaps for network regulation and market transformation to facilitate the integration of RES and decentralised electricity generating systems.

  6. The Water - Energy Nexus Of Hydropower. Are The Trade-Offs Between Electricity Generation And Water Supply Negligible?

    Scherer, L.; Pfister, S.

    2015-12-01

    Hydropower ranks first among renewable sources of power production and provides globally about 16% of electricity. While it is praised for its low greenhouse gas emissions, it is accused of its large water consumption which surpasses that of all conventional and most renewable energy sources (except for bioenergy) by far. Previous studies mostly applied a gross evaporation approach where all the current evaporation from the plant's reservoir is allocated to hydropower. In contrast, we only considered net evaporation as the difference between current evaporation and actual evapotranspiration before the construction of the reservoir. In addition, we take into account local water stress, its monthly fluctuations and storage effects of the reservoir in order to assess the impacts on water availability for other users. We apply the method to a large dataset of almost 1500 globally distributed hydropower plants (HPPs), covering ~43% of global annual electricity generation, by combining reservoir information from the Global Reservoir and Dam (GRanD) database with information on electricity generation from the CARMA database. While we can confirm that the gross water consumption of hydropower is generally large (production-weighted average of 97 m3/GJ), other users are not necessarily deprived of water. In contrast, they also benefit in many cases from the reservoir because water is rather stored in the wet season and released in the dry season, thereby alleviating water stress. The production-weighted water scarcity footprint of the analyzed HPPs amounts to -41 m3 H2Oe/GJ. It has to be noted that the impacts among individual plants vary a lot. Larger HPPs generally consume less water per unit of electricity generated, but also the benefits related to alleviating water scarcity are lower. Overall, reservoirs promote both, energy and water security. Other environmental impacts such as flow alterations and social impacts should, however, also be considered, as they can be

  7. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for

  8. Improving Multisensor Positioning of Land Vehicles with Integrated Visual Odometry for Next-Generation Self-Driving Cars

    Muhammed Tahsin Rahman

    2018-01-01

    Full Text Available For their complete realization, autonomous vehicles (AVs fundamentally rely on the Global Navigation Satellite System (GNSS to provide positioning and navigation information. However, in area such as urban cores, parking lots, and under dense foliage, which are all commonly frequented by AVs, GNSS signals suffer from blockage, interference, and multipath. These effects cause high levels of errors and long durations of service discontinuity that mar the performance of current systems. The prevalence of vision and low-cost inertial sensors provides an attractive opportunity to further increase the positioning and navigation accuracy in such GNSS-challenged environments. This paper presents enhancements to existing multisensor integration systems utilizing the inertial navigation system (INS to aid in Visual Odometry (VO outlier feature rejection. A scheme called Aided Visual Odometry (AVO is developed and integrated with a high performance mechanization architecture utilizing vehicle motion and orientation sensors. The resulting solution exhibits improved state covariance convergence and navigation accuracy, while reducing computational complexity. Experimental verification of the proposed solution is illustrated through three real road trajectories, over two different land vehicles, and using two low-cost inertial measurement units (IMUs.

  9. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Kubiak, H.; Papamichalis, A.; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1996-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  10. Gas generation from biomass for decentralized power supply systems; Gaserzeugung fuer dezentrale Energiesysteme auf der Basis von Biomasse

    Kubiak, H; Papamichalis, A; Heek, K.H. van [DMT-Inst. fuer Kokserzeugung und Brennstofftechnik, Essen (Germany)

    1997-12-31

    By a reaction with steam, bioresidues and plants can be converted into a gas consisting mainly of hydrogen, carbon monoxide and methane which can be used for electric power generation in gas engines, gas turbins and fuel cells. The conversion processes, especially the fuel cell process, are environment-friendly and efficient. For decentralized applications (i.e. for biomass volumes of 0.5 to 1 t/h), an allothermal process is recommended which is described in detail. (orig) [Deutsch] Durch Reaktion mit Wasserdampf lassen sich Bioreststoffe und Energiepflanzen zu einem Gas umsetzen, das im wesentlichen aus Wasserstoff, Kohlenmonoxid und Methan besteht und z.B. ueber Gasmotoren, Gasturbinen, vorzugsweise aber Brennstoffzellen zu Strom umgewandelt werden kann. Die Umwandlungsverfahren, insbesondere unter Benutzung von Brennstoffzellen, sind umweltfreundlich und haben einen hohen Wirkungsgrad. Als Vergasungsverfahren eignet sich fuer die dezentrale Anwendung. - d.h. fuer eine Biomassemenge von 0,5 bis 1 t/h - insbesondere das hier beschriebene allotherme Verfahren. (orig)

  11. Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk

    Parkhurst, MaryAnn; Guilmette, Raymond A.

    2009-01-01

    The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: (1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and (2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted

  12. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  13. Validation of battery-alternator model against experimental data - a first step towards developing a future power supply system

    Boulos, A.M.; Burnham, K.J.; Mahtani, J.L. [Coventry University (United Kingdom). Control Theory and Applications Centre; Pacaud, C. [Jaguar Cars Ltd., Coventry (United Kingdom). Engineering Centre

    2004-01-01

    The electric power system of a modern vehicle has to supply enough electrical energy to drive numerous electrical and electronic systems and components. The electric power system of a vehicle consists of two major components: an alternator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands and the operating environment, such as road conditions and vehicle laden weight, is required when the capacities of the generator and the battery are to be determined for a vehicle. In this study, a battery-alternator system has been developed and simulated in MATLAB/Simulink, and data obtained from vehicle tests have been used as a basis for validating the models. This is considered to be a necessary first step in the design and development of a new 42 V power supply system. (author)

  14. Quantitative Measures of Mineral Supply Risk

    Long, K. R.

    2009-12-01

    Almost all metals and many non-metallic minerals are traded internationally. An advantage of global mineral markets is that minerals can be obtained from the globally lowest-cost source. For example, one rare-earth element (REE) mine in China, Bayan Obo, is able to supply most of world demand for rare earth elements at a cost significantly less than its main competitors. Concentration of global supplies at a single mine raises significant political risks, illustrated by China’s recent decision to prohibit the export of some REEs and severely limit the export of others. The expected loss of REE supplies will have a significant impact on the cost and production of important national defense technologies and on alternative energy programs. Hybrid vehicles and wind-turbine generators, for example, require REEs for magnets and batteries. Compact fluorescent light bulbs use REE-based phosphors. These recent events raise the general issue of how to measure the degree of supply risk for internationally sourced minerals. Two factors, concentration of supply and political risk, must first be addressed. Concentration of supply can be measured with standard economic tools for measuring industry concentration, using countries rather than firms as the unit of analysis. There are many measures of political risk available. That of the OECD is a measure of a country’s commitment to rule-of-law and enforcement of contracts, as well as political stability. Combining these measures provides a comparative view of mineral supply risk across commodities and identifies several minerals other than REEs that could suddenly become less available. Combined with an assessment of the impact of a reduction in supply, decision makers can use these measures to prioritize risk reduction efforts.

  15. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery.

    Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu

    2010-02-02

    Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.

  16. The Concept of Limitation of the Vibration Generated by Rail-Vehicles at Railway Stations and Railway Crossings

    Adamczyk, Jan; Targosz, Jan

    2011-03-01

    One of the possibilities of limitation of effects of dynamic influence of the rail-vehicles is the application of the complex objects of vibroinsulation when the mass of the vibroinsulating element is significant, and that is the case of the transporting machines and devices, when the geometric dimensions of the elements of vibroinsulation system are similar to the slab, where the process of modelling of the vibroinsulation mechanism as a discrete system, creates extreme hazards. The article presents the concept of limitation of effects of dynamic influence of the rail-vehicles and tram-vehicles, mainly in the railway tracks located at the railway stations, tram-stops and other engineering structures. The digital model was developed for simulation regarding the propagation of the vibration to the environment. The results of simulation were the basis for development of the vibroinsulation system for the rail-tracks located at the engineering structures such as railway stations, viaducts. The second part of the article presents the approach for controlling of the tension as a function of load of the railway crossing, which was modelled as discrete-continous model. The continuous systems consist of two elements, that is of the support made of elastomer and of the tension members with controlled tension depending on the crossing load. Together with development and more popular application of tension member systems in engineering structures, among others in vibroinsulation systems, it is important to include into calculations and experiments the dynamic loads of the tension member with the mass attached to it. In case of complex objects of vibroinsulation when the mass of the vibroinsulator is significant, and that is the case of the transporting machines and devices, when the geometric dimensions of the elements of vibroinsulation system are similar to the slab, where the process of modelling of the vibroinsulation mechanism as a discrete system, creates extreme

  17. Plug-in electric vehicle (PEV) smart charging module

    Harper, Jason; Dobrzynski, Daniel S.

    2017-09-12

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. The smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.

  18. Economical and ecological benchmarking of biogas plant configurations for flexible power generation in future power supply systems; Oekonomisches und oekologisches Benchmarking von Biogasanlagenkonfigurationen zur flexiblen Verstromung in zukuenftigen Stromversorgungssystemen

    Hahn, Henning [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany). Bereich Energieverfahrenstechnik

    2016-08-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. This study comparatively assesses the environmental and economic performance of biogas plant configurations, supplying biogas on demand for flexible power generation. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8 hours per day range between 2 Euro to 11 Euro MWh{sup -1} and for a 72 hour period without biogas demand from 9 Euro to 19 Euro MWh{sup -1}. While biogas storage concepts were identified as favorable short-term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for longer periods without biogas demand [1, 2]. Flexible biogas plant configurations indicate an increased energy demand to operate the operational enhancements compared to conventional biogas plants supplying biogas for baseload power generation. However, findings show that in contrast to an alternative supply of power generators with natural gas, biogas supplied on demand by adapted biogas plant configurations saves greenhouse gas emissions by 54 to 65 g CO{sub 2-eq} MJ{sup -1} and primary energy by about 1.17 MJ MJ{sup -1}. In this regard, configurations with flexible biogas production profit from reduced biogas storage requirements and achieve higher savings compared to configurations with continuous biogas production [1, 3].

  19. Stochastic modeling of the energy supply system with uncertain fuel price – A case of emerging technologies for distributed power generation

    Mirkhani, Sh.; Saboohi, Y.

    2012-01-01

    Highlights: ► An existing bottom-up deterministic energy system model (ESM) has limited capability in handling the uncertainties. ► Uncertainty has been modeled based on GBM. Probabilistic scenarios are generated based on Cox–Ross method. ► A multistage stochastic model has been developed where scenarios are integrated in the energy system model. ► A distributed generation system has been introduced as a case study where fuel price is considered as an uncertain parameter. - Abstract: A deterministic energy supply model with bottom-up structure has limited capability in handling the uncertainties. To enhance the applicability of such a model in an uncertain environment two main issues have been investigated in the present paper. First, a binomial lattice is generated based on the stochastic nature of the source of uncertainty. Second, an energy system model (ESM) has been reformulated as a multistage stochastic problem. The result of the application of the modified energy model encompasses all uncertain outcomes together and enables optimal timing of capacity expansion. The performance of the model has been demonstrated with the help of a case study. The case study has been formulated on the assumption that a gas fired engine competes with renewable energy technologies in an uncertain environment where the price of natural gas is volatile. The result of stochastic model has then been compared with those of a deterministic model by studying the expected value of perfect information (EVPI) and the value of stochastic solution (VSS). Finally the results of the sensitivity analysis have been discussed where the characteristics of uncertainty of the price of fuel are varied.

  20. 光伏发电技术在轨道交通客车中的应用%Application of Photovoltaic Power Generation in Rail Transit Vehicle

    侯霄; 卢衍伟; 朱丽媛; 张明顺

    2017-01-01

    轨道交通客车在载客运行的过程中消耗大量的电能.采用光伏发电技术后,蓄电池组将太阳能电池发出的电能存储,并随时与客车充电机进行电耦合,共同为客车供电.客车光伏电系统主要由光伏发电系统充电机、升降压斩波器、直流负载及供电控制系统组成.其中,光伏发电系统主要由光伏电池组件、发电控制器、蓄电池组及升降压斩波器组成.详细介绍了客车光伏供电系统的工作原理.%Rail transit vehicle consumes a great deal of electric energy in operation.When photovoltaic power technology is adopted,the storage battery will absorbe the energy genenrated by solar battery and provide power for the train by coupling with the vehicle charger.The photovoltaic power generation system consists of power generation system charger,buck chopper,DC load and control system.Among which,the solar cell array,controller,storage battery,buck chopper and so on are main components,the working principle of the photovoltaic power generation system are introduced in detail.

  1. Ground Vehicle Convoying

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  2. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  3. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    Lena Ahmadi

    2015-05-01

    Full Text Available One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered to optimize the value of the cost of the electricity over sixteen years (2014–2030. The objective function consists of the fuel costs, fixed and variable operating and maintenance costs, capital costs for new power plants, and the retrofit costs of existing power plants. Five different case studies are performed with different PHEVs penetration rates, types of new power plants, and CO2 emission constraints. Among all the cases studied, the one requiring the most new capacity, (~8748 MW, is assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is the base case, plus considering doubled NG prices, PHEV medium penetration rate and no CO2 emissions reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power stations the CO2 emissions are the lowest: ~500 tonnes compared to ~900 tonnes when coal is permitted.

  4. Power control apparatus and methods for electric vehicles

    Gadh, Rajit; Chung, Ching-Yen; Chu, Chi-Cheng; Qiu, Li

    2016-03-22

    Electric vehicle (EV) charging apparatus and methods are described which allow the sharing of charge current between multiple vehicles connected to a single source of charging energy. In addition, this charge sharing can be performed in a grid-friendly manner by lowering current supplied to EVs when necessary in order to satisfy the needs of the grid, or building operator. The apparatus and methods can be integrated into charging stations or can be implemented with a middle-man approach in which a multiple EV charging box, which includes an EV emulator and multiple pilot signal generation circuits, is coupled to a single EV charge station.

  5. Control concepts for integration of alternative supply generation systems in local energy supply grids taking specially into account systems stability; Regelungstechnische Konzepte zur Integration alternativer Erzeugungsanlagen in lokale Energieversorgungsnetze unter besonderer Beruecksichtigung der Systemstabilitaet

    La Seta, P.

    2007-03-26

    Local alternative power supply plants will play a decisive role in the development of future power supply systems. The specific advantage of the use of renewable primary energy resources for electricity and heat generation is that it lowers or eliminates fuel costs and CO{sub 2} emission costs. However, due to the high specific investment costs involved, the price of a kilowatt hour of electricity from renewable resources is still very high. For this reason power production from renewable resources still cannot fully compete with that from conventional resources. This study presents the draft of a complete control system for a doubly fed asynchronous motor which improves its dynamic and transient stability. This system is based on machine equations and consists of a number of control circuits which steer the machine's operating conditions according to external characteristics. The control strategy is to generate the maximum permissible power from the wind at any moment rather than achieve the optimal operating point for the entire network. One focus of this study was on ensuring the transient stability of doubly fed asynchronous motors. This was accomplished by means of a new method which is presented in this dissertation. The method consists in supporting the voltage at the intermediate circuit of the rotor rectifier by means of an external voltage source during and briefly after the short circuit. A test based on the stationary-torque-slip characteristic prior to the error and after its resolution shows that machine's stable area shrinks drastically during reduced stator voltage when the rotor windings are shorted with a crowbar as is commonly done today. The proposed method (supporting the intermediate circuit voltage) provides a sufficient stability reserve also when stator voltage is reduced. Simulations with ATP-EMTP were performed on a single wind power plant in a fixed-load 110 kV transmission network as well as in a stand-alone network with two

  6. Next Generation Inverter

    Zhao, Zilai [General Motors LLC, Detroit, MI (United States); Gough, Charles [General Motors LLC, Detroit, MI (United States)

    2016-04-22

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  7. A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles

    Bracco, Stefano; Delfino, Federico; Pampararo, Fabio; Robba, Michela; Rossi, Mansueto

    2015-01-01

    Highlights: • We describe two national special projects on smart grid. • We developed dynamic decision model based on a MPC architecture. • We developed an optimization model for microgrids, for a specific case study. - Abstract: An overall architecture, or Energy Management System (EMS), based on a dynamic optimization model to minimize operating costs and CO 2 emissions is formalized and applied to the University of Genova Savona Campus test-bed facilities consisting of a Smart Polygeneration Microgrid (SPM) and a Sustainable Energy Building (SEB) connected to such microgrid. The electric grid is a three phase low voltage distribution system, connecting many different technologies: three cogeneration micro gas turbines fed by natural gas, a photovoltaic field, three cogeneration Concentrating Solar Powered (CSP) systems (equipped with Stirling engines), an absorption chiller equipped with a storage tank, two types of electrical storage based on batteries technology (long term Na–Ni and short term Li-Ion ion), two electric vehicles charging stations, other electrical devices (inverters and smart metering systems), etc. The EMS can be used both for microgrids approximated as single bus bar (or one node) and for microgrids in which all buses are taken into account. The optimal operation of the microgrid is based on a central controller that receives forecasts and data from a SCADA system and that can schedule all dispatchable plants in the day ahead or in real time through an approach based on Model Predictive Control (MPC). The architecture is tested and applied to the case study of the Savona Campus

  8. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  9. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Sung Chul Kim

    2013-01-01

    If the integrated starter generator (ISG) motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature in...

  10. Vehicle electrification. Quo vadis?

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  11. Vehicle to Vehicle Services

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... be evaluated. Service composition mechanisms for pervasive computing are categorized and we discuss how the characteristics of pervasive computing can be supported by service composition mechanisms. Finally, we investigate how to make pervasive computing systems capable of being noticed and understood...

  12. Electric vehicle energy impacts.

    2017-05-01

    The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...

  13. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  14. Testing of an underwater remotely-operated vehicle in the basins of the Cattenom nuclear power generation center

    Delfour, D.; Khakanski, M.; Nepveu, C.; Schmitt, J.

    1993-05-01

    An underwater robot was tested in the basins of the Cattenom Nuclear Power Generation Center fed with raw water from the Moselle River. The purpose was to inspect wall biofouling without interrupting water circulation. The ROV is a light, compact device, remotely controlled by cable and equipped with video cameras. The video recordings made were used to compare conditions in a basin cleaned the previous month by divers with those in a basin which had not been cleaned for a year. Manual cleaning by divers is an effective method, leaving Zebra Mussels on less than 5% of the wall surfaces. On the other hand, the floor of the basin was observed to be covered with fine sediment, vegetal matters and shells washed in with the Moselle River water. In the basin which had not been cleaned, the entire wall surface was covered with very dense tufts of tubular organisms (Hydrozoa Cordylophora) and zebra mussels. The tests have provided elements for definition of an inspection procedure and have given rise to suggestions for complementary equipment. (authors). 5 figs., 9 photos

  15. Sustainable electricity supply in the world by 2050 for economic growth and automotive fuel

    Kruger, P.

    2010-01-01

    Over the next 40 years, the combustion of fossil fuels for generation of electricity and vehicle transportation will be significantly reduced. In addition to the business-as-usual growth in electric energy demand for the growing world population, new electricity-intensive industries, such as battery electric vehicles and hydrogen fuel-cell vehicles will result in further growth in world consumption of electric energy. Planning for a sustainable supply of electric energy in the diverse economies of the world should be carried out with appropriate technology for selecting the appropriate large-scale energy resources based on their specific energy. Analysis of appropriate technology for the available large-scale energy resources with diminished use of fossil fuel combustion shows that sustainable electricity supply can be achieved with equal contributions of renewable energy resources for large numbers of small-scale distributed applications and nuclear energy resources for the smaller number of large-scale centralised applications. (author)

  16. Advanced Vehicle and Power Initiative

    2010-07-29

    optimize vehicle operation, and capture vehicle kinetic energy during braking ( regenerative energy). As much as two-thirds of this imported oil comes... categories . Figure 4 provides a visual representation of many of the HEV and BEV options available on the 2010 GSA Schedule. Figure 4 - GSA...gallon • Renewable energy generated 24 • Vehicle miles driven by vehicle category • Implementation costs – Infrastructure modifications required

  17. Electricity supply in India

    Abbott, H.J.

    1993-09-01

    This briefing deals with the electricity supply industry in India in two parts. In the first, the structure and organization of the industry is described under sections dealing with national government involvement, energy policy, state electricity boards, regional electricity boards, state corporations, the private sector and private investment in the power sector including foreign investment. Secondly, the power supply system is described covering generation, plant load factor, non-utility generation, nuclear power, transmission and distribution, system losses and electricity consumption. (8 tables) (UK)

  18. Strategic Supply

    Alexander, Kelly; Cole, Heather; Cural, Ahmet; Daugherty, Darryl; Howard, Russell; Keane, Thomas; Louie, K. Y; McNeely, Rosa; Mordente, Patrick; Petrillo, Robert

    2006-01-01

    ...; but rather, as an enabler across all industries. Therefore, this industry study looked at Strategic Supply as an integrated process performed by industries to obtain comparative and competitive advantage in the global marketplace...

  19. Strategic Supply

    Alexander, Kelly; Cole, Heather; Cural, Ahmet; Daugherty, Darryl; Howard, Russell; Keane, Thomas; Louie, K. Y; McNeely, Rosa; Mordente, Patrick; Petrillo, Robert

    2006-01-01

    .... The Council of Supply Chain Management Professionals (CSCMP) has defined SCM as,"...encompassing the planning and management of all activities involved in sourcing and procurement, conversion, and all Logistics Management activities...

  20. Water supply

    Peterson, F.L.

    1986-01-01

    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  1. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV Imagery, Based on Structure from Motion (SfM Point Clouds

    Christopher Watson

    2012-05-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.

  2. Line voltage distortions due to operation of the power supply devices required for plasma heating and magnetic field generation in the W7X thermonuclear fusion experiment

    Werner, F.

    1997-03-01

    The operation of the W7-X plasma heating devices requires high voltage DC power supplies with a total electrical power of 40 MVA. For this purpose twelve-pulse AC/DC converters are projected. These converters enforce a non sinusoidal line current, whose harmonics are causing corresponding line voltage distortions. To evaluate the extent of these distortions, the reaction of the harmonic currents on the AC line, is investigated by numerical network analysis. This is done for both, the 20 kV-junction point of the converters and the 110 kV-line terminal of the electricity supply company. Furthermore the design of LC series-resonant circuits, projected for power factor correction and damping of the harmonic content of the line voltage, has been verified. The additional operation of the 1.5 MVA magnet power supplies also contributes, even though to a much smaller extent, to the line voltage distortion. The influence of these twelve-pulse AC/DC converters was investigated too. The numerical calculations have been done with the aid of the network simulation program 'Pspice'. In an equivalent circuit the transmission line network and the transformers are represented by their inductances respectively equivalent inductances. The rectifier units are simulated by a number of current sources, producing the current harmonics in amplitude, frequency and phase. The harmonics amplitudes of the plasma heating power supplies are frequency and phase. The harmonics amplitudes of the plasma heating power supplies are measured values given by the manufacturer. For the magnet power supplies, the harmonics are derived from the theoretical step like I(t) current shape by Fourier series decomposition. Due to the action of the LC circuits the achieved characteristic voltage quality values are far below the permissible values corresponding to the recommendations of VDE 0160. (orig.) [de

  3. Exploration Supply Chain Simulation

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  4. National Plug-In Electric Vehicle Infrastructure Analysis

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  5. An essay pertaining to the supply and price of natural gas as fuel for electric utilities and independent power producers; and, the related growth of non-utility generators to meet capacity shortfalls in the next decade

    Clements, J.R.

    1990-01-01

    This paper addresses the impact natural gas and petroleum prices have on how the electric power industry decides to meet increasing demand for electric power. The topics of the paper include the pricing impact of the Iraq-Kuwait conflict, the BTU parity argument, electric utility capacity shortfalls in 1993, the growth of the non-utility generator and the independent power developer market, natural gas as the desired fuel of the decade, the financial strategy in acquiring natural gas reserves, the cost and availability of natural gas supplies for non-utility generators, and the reluctance of the gas producers to enter long term contracts

  6. Vehicle to grid: electric vehicles as an energy storage solution

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  7. Wind energy in a competitive electricity supply environment

    Strbac, G; Jenkins, N [Manchester Centre for Electrical Energy, Manchester (United Kingdom)

    1996-12-31

    In the UK, there has been an increasing interest in the commercial aspects of the impact of wind energy on transmission and distribution networks. In a competitive electricity supply environment, mechanisms for pricing network services are considered to be the main vehicle for evaluating that impact. This article reviews the major pricing strategies based on embedded costs, short and long run marginal costing theory as well as time-of-use pricing, and comments on the influence of each particular strategy on the calculated value of wind energy. Also, prospective tools for evaluating savings in capital and operating network costs due to wind generation, are identified. (author)

  8. Wind energy in a competitive electricity supply environment

    Strbac, G.; Jenkins, N. [Manchester Centre for Electrical Energy, Manchester (United Kingdom)

    1995-12-31

    In the UK, there has been an increasing interest in the commercial aspects of the impact of wind energy on transmission and distribution networks. In a competitive electricity supply environment, mechanisms for pricing network services are considered to be the main vehicle for evaluating that impact. This article reviews the major pricing strategies based on embedded costs, short and long run marginal costing theory as well as time-of-use pricing, and comments on the influence of each particular strategy on the calculated value of wind energy. Also, prospective tools for evaluating savings in capital and operating network costs due to wind generation, are identified. (author)

  9. Two-layer optimization methodology for wind distributed generation planning considering plug-in electric vehicles uncertainty: A flexible active-reactive power approach

    Ahmadian, Ali; Sedghi, Mahdi; Aliakbar-Golkar, Masoud; Fowler, Michael; Elkamel, Ali

    2016-01-01

    Highlights: • Flexible active-reactive power control of WDGs is proposed for WDGs planning. • The uncertainty of PEVs effect is considered in WDGs planning. • The wind data is classified in four separate seasons to reach more accurate results. • The PSO algorithm is modified to overcome the complexity of problem. - Abstract: With increasing the penetration of wind power, the voltage regulation becomes a more important problem in active distribution networks. In addition, as an uncertain load Plug-in Electric Vehicles (PEVs) will introduce a new concern in voltage adjustment of future distribution networks. Hence, this paper presents a flexible active-reactive power based Wind Distributed Generation (WDG) planning procedure to address the mentioned challenges. The uncertainties related to WDGs, load demand as well as PEVs load have been handled using the Point Estimate Method (PEM). The distribution network under study is equipped to on-load tap-changer and, as a conventional voltage control component, the Capacitor Banks (CBs) will be planned simultaneously with WDGs. The planning procedure has been considered as a two-loop optimization problem that is solved using Particle Swarm Optimization (PSO) and Tabu Search (TS) algorithms. The tap position and power factor of WDGs are taken into account as stochastic variables with practical limitations. The proposed methodology is applied to a typical distribution network and several scenarios are considered and analyzed. Simulation results show that the standard deviation of power factor depends on PEVs penetration that highlights the capability curve of WDGs. The optimal penetration of wind power increases nonlinearly versus increasing of PEVs connected to the distribution network, however the fixed CBs are required to increase the optimal penetration of WDGs. The proposed Modified PSO (MPSO) is compared with the conventional PSO in numerical studies that show MPSO is more efficient than the conventional

  10. Inspection vehicle

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  11. Simulation of ridesourcing using agent-based demand and supply regional models : potential market demand for first-mile transit travel and reduction in vehicle miles traveled in the San Francisco Bay Area.

    2016-01-01

    In this study, we use existing modeling tools and data from the San Francisco Bay Area : (California) to understand the potential market demand for a first mile transit access service : and possible reductions in vehicle miles traveled (VMT) (a...

  12. Vancouver Island gas supply

    Des Brisay, C.

    2005-01-01

    Terasen Gas is pursuing alternatives for the supply of additional natural gas capacity to Vancouver Island. Its subsidiary, Terasen Gas (Vancouver Island) Inc. (TGVI), is responding to the need for delivery of increased gas supply and, is supporting plans for new gas-fired power generation on Vancouver Island. TGVI's proposal for new natural gas capacity involves a combination of compression and pipeline loops as well as the addition of a storage facility for liquefied natural gas (LNG) at Mt. Hayes to help manage price volatility. This presentation outlined the objectives and components of the resource planning process, including demand forecast scenarios and the preferred infrastructure options. tabs., figs

  13. Energy economics and supply

    Anon.

    1977-01-01

    This section of the book, Part I, consists of four chapters (1--4). Chapter 1, Energy and the Economic Future, covers the following subjects: general economics of energy; predicting energy demand; a model of energy and the economy; and interpretations. Chapter 2, Uranium and Fossil Fuel Supplies, covers the following subjects: uranium resources; oil and gas supplies; coal resources. Chapter 3, Economics of Nuclear Power, covers information on sources of uncertainty; cost of nuclear power; cost of coal-generated electricity. Chapter 4, Alternative Energy Sources, sums information on solar energy, geothermal energy, fusion power, conservation, and transmission

  14. A sustainability assessment of electric vehicles as a personal mobility system

    Faria, Ricardo; Moura, Pedro; Delgado, Joaquim; Almeida, Anibal T. de

    2012-01-01

    Highlights: ► Ownership cost and CO 2 emissions for electric and internal combustion engine vehicles. ► Well-to-Wheel energy assessment in electric vehicles. ► Main factors that contribute to overall energy consumption. ► Real world experiments to characterize electric vehicles energy consumption. - Abstract: This paper presents a study of the economic and environmental balances for Electric Vehicles (EVs) versus Internal Combustion Engine Vehicle (ICEV). The analyses were based on the Well-to-Wheel (WTW) methodology, a specific type of Life Cycle Assessment (LCA). WTW balances were carried out taking into account different scenarios for the primary energy supply and different vehicle technologies. The primary energy supply includes non-renewable sources (fossil fuels and nuclear) and Renewable Energy Source (RES). Vehicle technologies include Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV). The generation scenarios considered in the study include the present European Union (EU) average mix and a planned increasing contribution from RESs. For the BEV, several real world driving cycle scenarios were investigated, using a custom built data acquisition system, in order to characterize the main factors that contribute to the overall energy consumption, associated cost and emissions. In terms of environmental impact, for the average EU electricity mix, BEVs have less than a half of the emissions than an ICEV. However, the ownership costs during its life cycle (about 10 y) are similar to an equivalent ICEV, despite the lower operational costs for BEVs. The likely battery price reduction, leading to a lower investment cost, will gradually tip the balance in favour of EVs.

  15. Danish electricity supply. Statistics 2003

    2004-01-01

    The Association of Danish Electric Utilities each year issues the statistical yearbook 'Danish electricity supply'. By means of brief text, figures, and tables a description is given of the electric supply sector. The report presents data for the year 2003 for consumption, prices of electric power, power generation and transmission, and trade. (ln)

  16. Danish electricity supply. Statistics 2000

    2001-07-01

    The Association of Danish Electric Utilities each year issues the statistical yearbook 'Danish electricity supply'. By means of brief text, figures, and tables a description is given of the electric supply sector. The report presents data for the year 2000 for consumption, prices of electric power; power generation and transmission, and trade. (ln)

  17. Danish electricity supply. Statistics 2002

    2003-01-01

    The Association of Danish Electric Utilities each year issues the statistical yearbook 'Danish electricity supply'. By means of brief text, figures, and tables a description is given of the electric supply sector. The report presents data for the year 2002 for consumption, prices of electric power; power generation and transmission, and trade. (ln)

  18. The future of electric power supply

    Anon.

    1981-01-01

    In this interview with a prominent expert of the electric power industry, problems of assuring electricity supply, the economics of nuclear electricity generation, the supply structure, and cogeneration are discussed. (UA) [de

  19. Selection of generation and supply alternatives in Brazilian isolated electric power systems; Selecao de formas de geracao/suprimento de energia eletrica em sistemas eletricos isolados do Brasil

    Santos, Robson S. Filadelfo dos [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Saliba, Aloysio Portugal M.; Martinez, Carlos B. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Hidraulica e Recursos Hidricos

    1997-12-31

    Electric energy is an essential component of economical integration of the regions of a country. The operation of an isolated electric system do not admit the adequate rearrangement of the energy flux, mainly in the rush time, which takes to deficit situations in some economical sectors, accentuated by generation options that are not totally compatible with the local reality. This work performs an comparison on the various electric generation options in isolated systems, specially in the Amazon region, based on their local characteristics and generation costs, according to the existent data obtained in the literature or from the electric generation companies. (author) 10 refs., 1 fig., 2 tabs.

  20. Strategic Supply

    2006-01-01

    leaders as Sears, Limited Brands, DHL, Circuit City, Cingular, Nestle and IKEA (Manugistics, 2006). The Strategic Supply Chain Industry Study Group...inventory turns have increased. Other global customers have also reaped the benefits of the Manugistics software. IKEA , Sweden’s retail icon...turned to Manugistics after a mid-1990s ERP implementation failed to fix their forecasting problems, which gave way to fluctuating inventory levels. IKEA

  1. Intelligent Vehicle Health Management

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    As a part of the overall goal of developing Integrated Vehicle Health Management systems for aerospace vehicles, the NASA Faculty Fellowship Program (NFFP) at Marshall Space Flight Center has performed a pilot study on IVHM principals which integrates researched IVHM technologies in support of Integrated Intelligent Vehicle Management (IIVM). IVHM is the process of assessing, preserving, and restoring system functionality across flight and ground systems (NASA NGLT 2004). The framework presented in this paper integrates advanced computational techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of INM. These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, the objective of this pilot program is to develop and integrate technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear the INM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition, to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission

  2. Solar energised transport solution and customer preferences and opinions about alternative fuel Vehicles – the case of slovenia

    Matjaž KNEZ

    2015-09-01

    Full Text Available Authorities in Slovenia and other EU member states are confronted with problems of city transportation. Fossil-fuel based transport poses two chief problems – local and global pollution, and dwindling supplies and ever increasing costs. An elegant solution is to gradually replace the present automobile fleet with low emission vehicles. This article first explores the economics and practical viability of the provision of solar electricity for the charging of electric vehicles by installation of economical available PV modules and secondly the customer preferences and opinions about alternative low emission vehicles. Present estimates indicate that for the prevailing solar climate of Celje – a medium-sized Slovenian town – the cost would be only 2.11€ cents/kWh of generated solar electricity. Other results have also revealed that the most relevant factor for purchasing low emission vehicle is total vehicle price.

  3. Supply chain quality management

    Hannan Amoozad Mahdiraji

    2012-10-01

    Full Text Available In recent years, there are several methods introduced for the improvement of operational performances. Total quality management and supply chain management are two methods recommended for this purpose. These two approaches have been studied in most researches separately, while they have objectives in common, and this makes them a strategic means, which can be used, simultaneously. Total quality management and supply chain management play significant roles to increase the organizational competitiveness power. Moreover, they have only one purpose that is customer satisfaction, and they are different only on their approaches to reach their objectives. In this research, we aim to study both approaches of quality management and supply chain, their positive increasing effects that may be generated after their integration. For this purpose, the concept and definitions of each approach is studied, independently, their similarities and differences are recognized, and finally, the advantages of their integration are introduced.

  4. Life-Cycle Cost Modeling to Determine Whether Vehicle-to-Grid (V2G) Integration and Ancillary Service Revenue Can Generate a Viable Case for Plug-In Electric Drive Vehicles

    2013-09-01

    assessment of value as it pertains to a large-scale valuation of V2G applications for federal vehicle fleets operating on federal installations. In 2007... valuation of a used traction battery on the second-use market. This estimate contrasts with NREL research that places the potential value as high as...Smithsonian Institution  Social Security Administration  Tennessee Valley Authority  Department of Defense All Agencies  U.S. Postal Service

  5. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    Resnick, A.M. [Oceaneering International, Inc., Upper Marlboro, MD (United States)

    1995-10-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. The cryogenesis subsystem performs the actual decontamination work and consists of the dry ice supply unit, the blasting nozzle, the remotely controlled electric and pneumatic valves, and the vacuum work-head. The COYOTEE subsystem positions the blasting work-head within a planar work space and the vacuum subsystem provides filtration and containment of the debris generated by the CO{sub 2} blasting. It employs a High Efficiency Particulate Air (HEPA) filtration unit to separate contaminants for disposal. All of the above systems are attached to the vehicle subsystem via the support structure.

  6. 2012 Vehicle Technologies Market Report

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  7. Rising energy prices - so what? Autonomy in power supply by independent power generation. Proceedings; Steigende Energiepreise - na und? Unabhaengige Energieversorgung durch Energieerzeugung. Tagungsbeitraege

    NONE

    2006-07-01

    Impending energy shortage and distribution conflicts have stimulated the discussion concerning natural energy sources in Germany. The conflicts indicate the dependence of the German industry on imported raw materials. Supply shortages show the vulnerability of central supply structures. This conference, held by EnergieAgentur.NRW in cooperation with Technische Akademie Wuppertal (TAW) on 16 November 2006, addressed industrial organisations, communities and utilities in an attempt to show how organisations may become independent by constructing their own power plants, and in what cases such solutions are acceptable and economically useful. The conference focused on projects in the planning and production stage, e.g. an office building at Aachen, the Gelsenkirchen Marienhospital building, the common power station projected by several municipal utilities in the Ruhr region, and the 100 MW refuse-fuelled power station of Norddeutsche Affinerie AG Hamburg, which was presented by Dr. Werner Marnette, chairman of the board and managing director of Europe's biggest producer of copper. (orig.)

  8. Proceedings of the Canadian Institute's 3. annual conference on generation adequacy in Ontario : strategies to increase capacity to ensure a reliable electricity supply in Ontario

    2006-01-01

    This conference provided a forum for the discussion of issues related to generation adequacy in Ontario. Members of the electricity industry as well as members from governmental and non-governmental agencies discussed a variety of recommendations for cost-effective reliable energy in Ontario. Issues related to the overhaul or replacement of nuclear power reactors and coal-fired generators in the province were reviewed. The status of various wind power projects in the province was examined along with issues related to interconnected power systems. Best practices for the planning and execution of electricity infrastructure projects were also reviewed, and issues related to stakeholder involvement in electricity generation projects were discussed. The discussions also described recent developments in electricity generation in various jurisdictions in Canada and the United States. The conference featured 19 presentations, of which 7 have been catalogued separately for inclusion in this database. tabs., figs

  9. Magnet power supply for ISABELLE

    Nawrocky, R.J.; Frankel, R.F.; Thomas, M.G.

    1979-01-01

    The power supply system which will energize the superconducting magnets in the ISABELLE machine consists of some 520 computer-programmable power supplies with outputs ranging from 50 A to 4500 A. Most of the power supplies will be used for the correction of field harmonics, orbit correction and adjustment of the machine working line. During acceleration, currents in various magnet correction coils will be controlled in real time to track the main field; all power supplies must be highly stable during the stacking and storage of the beam (in some cases current regulation must be in the order of 0.001%). PS reference programs will be stored in microprocessor based function generators embedded in each power supply. Due to the large amount of stored energy in the system, the magnets must be protected during quenches. Details of the power supply and of the magnet quench protection system are described

  10. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F.

    2010-01-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam 3 ). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  11. Vehicle regulations.

    2006-01-01

    In the Netherlands, all vehicles using public roads must meet so-called permanent requirements. This is enforced by the police and, for some categories, also during the MOT. In the Netherlands, most types of motor vehicle1 can only be introduced to the market if they meet the entry requirements. For

  12. Costs of lithium-ion batteries for vehicles

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  13. 48 CFR 908.7101 - Motor vehicles.

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles. ...

  14. Feasability of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphta

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Albertus B.M.

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  15. Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha

    Darwish, Naif A.; Hilal, Nidal; Versteeg, Geert; Heesink, Bert

    2004-01-01

    A process flow sheet for the production of hydrogen to run a 50 kW fuel-cell-powered-vehicle by steam reforming of naphtha is presented. The major units in the flow sheet involve a desulfurization unit, a steam reformer, a low temperature (LT) shift reactor, a methanation reactor, and a membrane

  16. Electromagnetic torques and forces due to misalignment effects and eddy currents in the homopolar generator, power supply for the Texas Experimental Tokamak (TEXT)

    Driga, M.D.; Bird, W.L.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Asymmetries in the applied magnetic field due to manufacturing tolerances and rotor-stator misalignments can cause significant forces and moments in a homopolar generator. Parasitic eddy-currents in the rotor, brushes and bearings are also important effects of such asymmetries. The finite element method is used to calculate the magnetic flux distributions in the TEXT homopolar generators. The axial magnetic thrust force and the magnetic tilt moment acting on the rotor are calculated. Eddy-current torques opposing rotor motion are determined using the theory for eddy-current brakes. The results have been used in the design of the TEXT homopolar generator which have been proposed to provide the energy store and conversion for the toroidal field and ohmic heating coils of the new Texas Experimental Tokamak

  17. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  18. Space Vehicle Reliability Modeling in DIORAMA

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  19. The technical, economic and commercial viability of the vehicle-to-grid concept

    Mullan, Jonathan; Harries, David; Bräunl, Thomas; Whitely, Stephen

    2012-01-01

    The idea that electric vehicles can be used to supply power to the grid for stabilisation and peak time supply is compelling, especially in regions where traditional forms of storage, back up or peaking supply are unavailable or expensive. A number of variants of the vehicle-to-grid theme have been proposed and prototypes have proven that the technological means to deliver many of these are available. This study reviews the most popular variants and investigates their viability using Western Australia, the smallest wholesale electricity market in the world, as an extreme test case. Geographical and electrical isolation prevents the trade of energy and ancillary services with neighbouring regions and the flat landscape prohibits hydroelectric storage. Hot summers and the widespread use of air-conditioning means that peak energy demand is a growing issue, and the ongoing addition to already underutilised generation and transmission capacity is unsustainable. The report concludes that most variants of vehicle-to-grid currently require too much additional infrastructure investment, carry significant risk and are currently too costly to implement in the light of alternative options. Charging electric vehicles can, however, be added to planned demand side management schemes without the need for additional capital investment. - Highlights: ► The Wholesale Electricity Market is used to evaluate variants of vehicle-to-grid. ► Arbitrage of the market is restricted to a few trading intervals each year. ► Implementing peak shaving through battery energy storage is cost prohibited. ► Supply of ancillary services is uncommercial when compared to conventional sources. ► Adding vehicle load to demand side management schemes is the most likely variant.

  20. Cleaner drive - Obstacles in the way of a market for a new generation of vehicles; Cleaner Drive. Hindernisse fuer die Markteinfuehrung von neuen Fahrzeug-Generationen. Bericht ueber die Beteiligung von e'mobile am EU-Projekt

    Schwegler, U. [e' mobile, der Schweizerische Verband fuer elektrische und effiziente Strassenfahrzeuge, Berne (Switzerland); Domeniconi, R. [AssoVEL2, Mendrisio (Switzerland); Kaufmann, J. [Kaufmann Consulting, Berne (Switzerland); Werfeli, A. [Verband der Schweizerischen Gasindustrie, Zuerich (Switzerland)

    2004-07-01

    This final report for the Association of Swiss Traffic Engineers describes work done within the framework of the fifth European Research Framework Programme involving the development of tools to speed up the introduction of a new generations of vehicles. This report lists the work done by the Swiss e'mobil organisation and discusses the limitations placed on the work by its international framework. The report presents the 'Cleaner Drive' environmental evaluation methods used for vehicles. This considers greenhouse-gas emissions and external costs. Factors not considered, noise and bio-fuels, are mentioned. A data-base based decision-support tool is introduced. The development of the 'Cleaner Drive' web site is described. A further chapter takes a look at efforts being made in the area of filling stations for gaseous fuels.

  1. Fuel cell vehicles: technological solution

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  2. Distributed Propulsion Vehicles

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  3. Secure information sharing in digital supply chains

    Bhargava, B.; Ranchal, R.; Ben Othmane, L.; Kalra, B.M.

    2013-01-01

    Modern organizations interact with their partners through digital supply chain business processes for producing and delivering products and services to consumers. A partner in this supply chain can be a sub-contractor to whom work is outsourced. Each partner in a supply chain uses data, generates

  4. Nuclear fusion power supply device

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  5. The 25 MW Super Near Boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces Base

    Bonin, H.W.; Paquette, S.; Boucher, P.J. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2014-12-15

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95 {sup o} C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100 {sup o} C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor's core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  6. The 25 MW super near boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces base

    Bonin, H.W.; Paquette, S.; Boucher, P.J., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2014-07-01

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95{sup o}C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100{sup o}C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor’s core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  7. The 25 MW super near boiling nuclear reactor (SNB25) for supplying co-generation energy to an Arctic Canadian Forces base

    Bonin, H.W.; Paquette, S.; Boucher, P.J.

    2014-01-01

    Nuclear energy represents a better alternative for the supply of heat and electricity to the Canadian Forces bases in the Arctic (CFS Alert and CFB Nanisivik). In this context, the Super Near-Boiling 25-MWth reactor (SNB25) has been designed as a small unpressurized LWR that displays inherent safety and is intended to run in automatic mode. The reactor employs TRISO fuel particles (20% enrichment) in zirconium-sheathed fuel rods, and is light water cooled and moderated with a normal output temperature is 95 o C at atmospheric pressure. Control is via 133 control rods and six adjustable radial reflector plates. The design work used the probabilistic simulation code MCNP 5 and the deterministic code WIMS-AECL Version 3.1, permitting a code-to-code comparison of the results. Inherent safety was confirmed and is mostly due to the large negative void reactivity coefficient of -5.17 mk per % void. A kinetic model that includes thermal-hydraulics calculations was developed to determine the reactor's behaviour in transient states, and the results further confirm the inherent safety. Large power excursions temperatures that could compromise structural integrity cannot be produced. If the coolant/moderator temperature exceeds the saturation temperature of 100 o C, the coolant begins to boil and the large negative void coefficient causes the reactor to become subcritical in 0.84 seconds. The SNB25 reactor’s core life exceeds 12 years between refuellings. A group of 4 SNB25 reactors meets both the heating and electricity requirements of a base like CFB Nanisivik via a hot water network and through an organic Rankine cycle conversion plant. (author)

  8. Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands

    Gils, Hans Christian; Simon, Sonja

    2017-01-01

    Highlights: • A pathway to a 100% renewable energy supply for the Canary Islands is presented. • Hourly system operation is analysed, considering flexibility options and sector linkage. • Results show feasibility of a carbon neutral energy supply with local resources. • High resolution power system model highlights importance of grid connections. - Abstract: As many other small islands and archipelagos, the Canary Islands depend to a high degree on energy imports. Despite its small surface, the archipelago has a high potential for renewable energy (RE) technologies. In this paper, we present a scenario pathway to a 100% RE supply in the Canary Islands by 2050. It relies on a back-casting approach linking the bottom-up accounting framework Mesap-PlaNet and the high resolution power system model REMix. Our analysis shows that locally available technology potentials are sufficient for a fully renewable supply of the islands’ power, heat, and land transport energy demands. To follow the pathway for achieving a carbon neutral supply, expansion of RE technology deployment needs to be accelerated in the short-term and efforts towards greater energy efficiency must be increased. According to our results, an extended linkage between energy sectors through electric vehicles as well as electric heating, and the usage of synthetic hydrogen can contribute notably to the integration of intermittent RE power generation. Furthermore, our results highlight the importance of power transmission in RE supply systems. Supply costs are found 15% lower in a scenario considering sea cable connections between all islands.

  9. Abandoned vehicles

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  10. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  11. Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength

    Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki

    2010-01-01

    Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 μF two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

  12. NGLs supply

    Richardson, I.

    1999-01-01

    This presentation dealt with the supply of natural gas liquids (NGLs) as a prelude to a review of the Alliance pipeline project. With all approvals having been received both in Canada and the United States, and complete financing secured, construction of the line will commence in the spring of 1999, with operation scheduled to begin Oct. 1, 2000. U.S. midwest and Alberta field gas prices, natural gas production in Alberta and British Columbia, current Alberta gas exports, the Aux Sable's NGL markets, market access for Western Canadian NGLs, historical disposition of Alberta ethane, propane and butyl ethane availability in Alberta, and historical and forecast NGL recovery in Alberta and British Columbia with and without the Alliance pipeline were reviewed. It was concluded that additional natural gas pipeline capacity is necessary to stimulate industry activity and monetize Western Canada Sedimentary Basin reserves. In turn, increased natural gas production will stimulate NGL exports. The Alliance Pipeline will provide additional NGL export capacity and potentially increase producer netbacks while minimizing capital expenditures. . 14 figs

  13. Cost of electricity generated and fuel saving of an optimized wind-diesel electricity supply for village in Tangier-area (Morocco)

    Nfaoui, H.; Buret, J.

    1996-01-01

    In several of the remote areas of Morocco, diesel generators are used to provide electrical power. Such systems are often characterized by poor efficiency and high maintenance costs. The integration of wind turbine with a diesel/battery hybrid system is becoming cost-effective in wind locations. In previous works (Nfaoul et al, 1990, 1994a, 1994b), the wind characteristics in Tangier-area were studied on the basis of 12 years (1978-1989) of hourly average wind speed data. A wind/diesel energy system with battery storage has been modelled using the Tangiers wind regime over a one year period (1989), and synthesized consumer load data based on the characteristics of typical usage of domestic appliances, along with the estimated working patterns of a local isolated community. In this work, we use a more realistic hourly consumer load, which is the result of an experiment realized in a Maroccan village using a diesel engine to provide electricity for lighting and audio-visual. The 1989 wind data were reworked for a large series of measurements (12 years). The optimum wind turbine size and the benefits of a storage system on fuel saving are also reviewed. This work is concerned with diesel fuel consumption: an optimum design of the considered system is to be found which minimises the cost energy generation over the equipments' lifetime. Given the economic assumption made (the most important being a fuel price of 4.5 Dh/litre and an interest rate of 5% net of inflation), the wind/diesel energy system has been shown to be competitive with diesel-only generation in the wind regime of the Tangier location for the cost per unit wind turbine swept area less than 3000 Dh/m 2 (8Dh=1$). (author)

  14. Gas in Europe: supply

    Anon.

    1994-01-01

    It is predicted that natural gas consumption in western Europe could rise by more than 55% over the next two decades, from 290bn cubic metres (cm) in 1991 to 450bn cm in 2010. This growth, projected by the consultants, Arthur D Little, reflects the environmental and economic attractions of natural gas, particularly in the power generation sector. Another consultant, Poten and Partners, predicts an even greater rise in gas consumption, from 301bn cm in 1992 to 482 bn cm in 2010. However, while demand is forecast to increase in all major European gas markets, indigenous production within Europe is expected to remain stable for the foreseeable future, with indigenous supplies projected to peak at approximately 350bn cubic metres per year (cm/y) in the late 1990s. This raises the prospect of significant supply constraints emerging in Europe. (author)

  15. Electricity supply in Denmark

    1995-08-01

    Electric power was introduced in Denmark in 1891. Recently, the development of the Danish electricity supply industry has been influenced by a number of political measures aiming at a cleaner environment. The booklet gives a general introduction to the industry in Denmark. It reflects the actual supply situation and looks at the future as well as giving a survey of the historical and political background. In addition to relevant statistics, brief information is given on national energy balance, consumption, costs and pricing, distribution and transmission, end-use efficiency, electric power generation, imports and exports, wind power, cogeneration and district heating, pollutive emission, planning and Danish energy policy. There is also a list of useful addresses. (AB)

  16. Connected vehicle applications : safety.

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  17. Accelerated Lane-Changing Trajectory Planning of Automated Vehicles with Vehicle-to-Vehicle Collaboration

    Haijian Bai

    2017-01-01

    Full Text Available Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC. Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.

  18. LINK2009 Phase 1: Development of 2. generation fuel cell vehicles and hydrogen refueling station. Final report; LINK2009 fase 1: Udvikling af 2. gen. braendselscelle koeretoejer og brinttankstation. Slutrapport

    2010-03-15

    LINK2009 project was to develop 2nd gen. technologies fuel cell systems for vehicles and 350bar hydrogen refueling stations. Also the LINK2009 project were to ensure a continuously positioning of Denmark and the Scandinavian Region within hydrogen for transport and continue to attract international car manufacturers to conduct demonstration and later market introduction in the region. The LINK2009 project is divided in two phases where this first phase only deals with the development of the 2nd generation technologies, whereas the following phase 2 will include the demonstration hereof as well as additional research activities. This Report describes the results of the phase 1 that was commenced in summer 2008 and ended in late 2009. Phase 1 has resulted in the development of new 2nd generation fuel cell technology for use in a city car and a service vehicle. Stated targets for price and efficiency have been reached and the following demonstration in Phase 2 is to confirm reaching of life time targets. The efficiency of the fuel cell system for the city car has been measured to be 42-48% at a power delivery of respectively 10kW and 2kW, which is significantly above the target of >40%. System simplifications and selection of new components have enabled a 50% reduction in the kW price for the fuel cell system, including 700bar hydrogen storage, now totalling Euro 4.500/kW. This creates sufficient basis for conducting demonstration of the system in vehicles. 9 vehicles are planned to be demonstrated in the following phase 2. Additional 8 vehicles were put in operation in Copenhagen in November 2009. Phase 1 has conducted development of 2nd gen. hydrogen refuelling technology that has resulted in concepts for both 350bar and 700bar refuelling as well as a concept for onsite hydrogen production at refuelling stations. In separate projects the developed 350bar technology has been brought to use in a newly established hydrogen station in Copenhagen, and the hydrogen

  19. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  20. The electric vehicle

    Sanchez duran, R.

    2010-01-01

    The decarbonization of transport is a key element in both energy and environmental European policies as well as one of the levers that will help us achieve the goals of improving energy efficiency, reducing CO 2 emissions and energy dependence. The use of electricity compared to other low-carbon fuels such as bio fuels and hydrogen has the advantage of its existing infrastructure (power generation plants, transmission and distribution networks), being only necessary to developed recharging infrastructures. We emphasize the role of electricity networks and their evolution, which will enable to manage demand and maximise the potential of renewable energies. The idea of an electric vehicle is not a recent one but dates back to the beginning of the last century, when first units appeared. Unfortunately, technological barriers were too high at the time to let them succeed. Namely those barriers limited the range of the electric vehicle due to problems with battery recharges. Nowadays, those difficulties have almost been solved and we can state that institutional support and coordination among all actors involved have made the electric vehicle a plausible reality. While the technological improvements needed for the electric vehicle to become cost competitive are carried out, the plug-in hybrid vehicle represents the intermediate step to reach a total decarbonization of transport. Endesa is committed to this revolution in transport mobility and believes that now is the right time to focus our efforts on it. Our goal is to contribute to a more balanced and sustainable world in the near future. (Author)

  1. Improved Re-Configurable Sliding Mode Controller for Reusable Launch Vehicle of Second Generation Addressing Aerodynamic Surface Failures and Thrust Deficiencies

    Shtessel, Yuri B.

    2002-01-01

    In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.

  2. Local and Global Path Generation for Autonomous Vehicles Using SplinesGeneración Local y Global de Trayectorias para Vehículo Autónomos Usando Splines

    Randerson Lemos

    2016-05-01

    Full Text Available Abstract Context: Before autonomous vehicles being a reality in daily situations, outstanding issues regarding the techniques of autonomous mobility must be solved. Hence, relevant aspects of a path planning for terrestrial vehicles are shown. Method: The approached path planning technique uses splines to generate the global route. For this goal, waypoints obtained from online map services are used. With the global route parametrized in the arc-length, candidate local paths are computed and the optimal one is selected by cost functions. Results: Different routes are used to show that the number and distribution of waypoints are highly correlated to a satisfactory arc-length parameterization of the global route, which is essential to the proper behavior of the path planning technique. Conclusions: The cubic splines approach to the path planning problem successfully generates the global and local paths. Nevertheless, the use of raw data from the online map services showed to be unfeasible due the consistency of the data. Hence, a preprocessing stage of the raw data is proposed to guarantee the well behavior and robustness of the technique.

  3. electric vehicle

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  4. Hybrid Turbine Electric Vehicle

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  5. Natural gas vehicles in Italy

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  6. Dual voltage power supply with 48 volt

    Froeschl, Joachim; Proebstle, Hartmut; Sirch, Ottmar [BMW Group, Muenchen (Germany)

    2012-11-01

    Automotive electrics/electronics have just reached a period of tremendous change. High voltage systems for Hybrid, Plug-In Hybrid or Battery Electric Vehicles with high power electric motors, high energy accumulators and electric climate compressors will be introduced in order to achieve the challenging targets for CO{sub 2} emissions and energy efficiency and to anticipate the mobility of the future. Additionally, innovations and the continuous increase of functionality for comfort, safety, driver assistance and infotainment systems require more and more electrical power of the vehicle power supply at all. On the one hand side electrified vehicles will certainly achieve a significant market share, on the other hand side they will increase the pressure to conventional vehicles with combustion engines for fuel consumption and CO{sub 2} emissions. These vehicles will be enabled to keep their competitiveness by new functions and the optimization of their electric systems. A dual voltage power supply with 48 Volt and 12 Volt will be one of the key technologies to realize these requirements. The power capability of the existing 12 Volt power supply has reached its limits. Further potentials can only be admitted by the introduction of 48 Volt. For this reason the car manufacturers Audi, BMW, Daimler, Porsche and Volkswagen started very early on this item and developed a common specification of the new voltage range. Now, it is necessary to identify the probable systems at this voltage range and to start the developments. (orig.)

  7. Electric-Drive Vehicles

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  8. Electric-Drive Vehicles

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  9. Modelling Load Shifing Using Electric Vehicles in a Smart Grid Environment

    NONE

    2010-07-01

    Electric vehicles (EVs) represent both a new demand for electricity and a possible storage medium that could supply power to utilities. The 'load shifting' and 'vehicle-to-grid' concepts could help cut electricity demand during peak periods and prove especially helpful in smoothing variations in power generation introduced to the grid by variable renewable resources such as wind and solar power. This paper proposes a method for simulating the potential benefits of using EVs in load shifting and 'vehicle-to-grid' applications for four different regions -- the United States, Western Europe, China and Japan -- that are expected to have large numbers of EVs by 2050.

  10. 2015 Vehicle Technologies Market Report

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States); Moore, Sheila [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This is the seventh edition of the Vehicle Technologies Market Report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 22 and 23 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 63 offer snapshots of major light-duty vehicle brands in the United States and Figures 70 through 81 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 90 through 94) and fuel use (Figures 97 through 100). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 105 through 118), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 130 through 137). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  11. Military Hybrid Vehicle Survey

    2011-08-03

    III Composite 4.3% Integrated starter generator for engine shut down, regenerative braking and avoidance of inefficient engine operation [28]. FMTV...eliminating the inefficiencies associated with idling, vehicle braking and low engine speed part load efficiency, many improvements can be realized...literature. They can be divided into the following two categories : (1) Time dependent speed profiles, shown in Figure 4, usually defined by the federal

  12. Analysis of the design and economics of molten carbonate fuel cell tri-generation systems providing heat and power for commercial buildings and H2 for FC vehicles

    Li, Xuping; Ogden, Joan; Yang, Christopher

    2013-11-01

    This study models the operation of molten carbonate fuel cell (MCFC) tri-generation systems for “big box” store businesses that combine grocery and retail business, and sometimes gasoline retail. Efficiency accounting methods and parameters for MCFC tri-generation systems have been developed. Interdisciplinary analysis and an engineering/economic model were applied for evaluating the technical, economic, and environmental performance of distributed MCFC tri-generation systems, and for exploring the optimal system design. Model results show that tri-generation is economically competitive with the conventional system, in which the stores purchase grid electricity and NG for heat, and sell gasoline fuel. The results are robust based on sensitivity analysis considering the uncertainty in energy prices and capital cost. Varying system sizes with base case engineering inputs, energy prices, and cost assumptions, it is found that there is a clear tradeoff between the portion of electricity demand covered and the capital cost increase of bigger system size. MCFC Tri-generation technology provides lower emission electricity, heat, and H2 fuel. With NG as feedstock the CO2 emission can be reduced by 10%-43.6%, depending on how the grid electricity is generated. With renewable methane as feedstock CO2 emission can be further reduced to near zero.

  13. Power supply design for Hadron Facility

    Karady, G.; Kansog, J.; Thiessen, H.A.; Schneider, E.

    1987-01-01

    Recently, a study investigated the feasibility of building a large 60 GeV, kaon factory accelerator. This paper presents the conceptual design of the magnet power supplies and energy storage system. In this study the following three systems were investigated: (a) power supply using storage generator; (b) power supply using inductive storage device; and (c) resonant power supplies. These systems were analyzed from both technical and economical points of view. It was found that all three systems are feasible and can be built using commercially available components. From a technical point of view, the system using inductive storage is the most advantageous. The resonant power supply is the most economical solution

  14. 76 FR 76481 - Denial of Motor Vehicle Defect Petition

    2011-12-07

    ... similarities incorporating regenerative braking (the electric motor is used as a generator to supplement..., using a scan tool in generic mode on your vehicle could cause damage to your vehicle's electric motor... whether a motor vehicle or item of replacement equipment does not comply with an applicable motor vehicle...

  15. Optimal charging scheduler for electric vehicles on the Florida turnpike : final research project report.

    2017-06-01

    This project developed a methodology to simulate and analyze roadway traffic patterns : and expected penetration and timing of electric vehicles (EVs) with application directed : toward the requirements for electric vehicle supply equipment (EVSE) si...

  16. State-of-the-art assessment of electric vehicles and hybrid vehicles

    1977-01-01

    The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.

  17. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Senjyu, Tomonobu

    2015-01-01

    Highlights: • Optimal operation of the thermal generation for the smart grid system. • Different distributed generations are considered as the power generation sources. • Forecast error of the renewable energy systems is considered. • Controllable loads of the smart houses are considered to achieve the optimal operation. • Economical benefits can be achieved for the smart grid system. - Abstract: This paper concentrates on the optimal operation of the conventional thermal generators with distributed generations for a smart grid considering forecast error. The distributed generations are considered as wind generators, photovoltaic generators, battery energy storage systems in the supply side and a large number of smart houses in the demand side. A smart house consists of the electric vehicle, heat pump, photovoltaic generator and solar collector. The electric vehicle and heat pump are considered as the controllable loads which can compensate the power for the forecast error of renewable energy sources. As a result, power generation cost of the smart grid can reduce through coordinated with distributed generations and thermal units scheduling process. The electric vehicles of the smart house are considered as the spinning reserve in the scheduling process which lead to lessen the additional operation of thermal units. Finally, obtained results of the proposed system have been compared with the conventional method. The conventional method does not consider the electric vehicle in the smart houses. The acquired results demonstrate that total power generation cost of the smart grid has been reduced by the proposed method considering forecast error. Effectiveness of the proposed method has been verified by the extensive simulation results using MATLAB® software

  18. 2014 Vehicle Technologies Market Report

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  19. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

    Yabe, Kuniaki; Shinoda, Yukio; Seki, Tomomichi; Tanaka, Hideo; Akisawa, Atsushi

    2012-01-01

    Abstarct: In order to reduce CO 2 emissions in the passenger vehicle sector, mass introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is required despite their high battery costs. This paper forecasts the rate at which EV/PHEV will penetrate into the market in the future and the effects of that spread on CO 2 reduction by using a learning curve for lithium-ion batteries, distribution of daily travel distance for each vehicle, and an optimal power generation planning model for charging vehicles. Taking into consideration each driver's economical viewpoint, the speed at which the EV/PHEV share of the new passenger vehicle market grows is fairly slow. The optimum calculation in our base case shows that the share of EV/PHEV is only a quarter even in 2050. However, the initial price and progress rate of batteries have a great effect on this share. Therefore, long-term economic support from the government and significant R and D innovation are required to reduce CO 2 drastically through cutting down battery price. The results also show how much the CO 2 emission intensity of power generation affects the CO 2 reduction rate by introducing EV/PHEV. - Highlights: ► Authors minimized the total cost of vehicle and power supply sectors until 2050. ► Simulation results show the penetration speed of PHEVs/EVs is not so fast. ► To accelerate it and reduce CO 2 , subsidies and innovations are required. ► The introduction of PHEVs/EVs is still reasonable even after the nuclear accident.

  20. ROMO - The Robotic Electric Vehicle

    Brembeck, Jonathan; Ho, Lok Man; Schaub, Alexander; Satzger, Clemens; Tobolar, Jakub; Bals, Johann; Hirzinger, Gerhard

    2011-01-01

    This paper outlines the development of the ROboMObil, an innovative electro-mobility concept based on intelligent central control of four Wheel Robots, which integrate the drivetrain, brakes, steering and dampers. The motivation behind the Wheel Robot concept, the implementation details together with the suspension design are described. The electric power system, consisting of a Li-Ion battery cluster to provide high-voltage power for propulsion and a low-voltage supply for vehicle control, i...

  1. Fleet management for autonomous vehicles

    Bsaybes, Sahar; Quilliot, Alain; Wagler, Annegret K.

    2016-01-01

    The VIPAFLEET project consists in developing models and algorithms for man- aging a fleet of Individual Public Autonomous Vehicles (VIPA). Hereby, we consider a fleet of cars distributed at specified stations in an industrial area to supply internal transportation, where the cars can be used in different modes of circulation (tram mode, elevator mode, taxi mode). One goal is to develop and implement suitable algorithms for each mode in order to satisfy all the requests under an economic point...

  2. Vehicle Controller

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  3. Engineering Supply Management System: The Next Generation

    1991-09-01

    010 Partia! receipts 0018 Automatic inventory update 0 048 Discrepant material 0 004 Order processing requirements Transaction reversal capability 0 012...August 1991. 2-5 sys.em’s modules that support the DEH’s needs are the Sales Order Processing , Register Sales, Purchase Order Processing , Inventory...modular system developed by PIC Business Systems, Incorporated. This system possesses Order Processing , Inventory Management, Purchase Orders, and

  4. 2016 Vehicle Technologies Market Report

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  5. 2013 Vehicle Technologies Market Report

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  6. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  7. Optimal design of a hybrid photovoltaic and fuel cell power generation system, to supply isolated communities in the Brazilian Amazon; Dimensionamento otimo de sistemas hibridos, com geracao fotovoltaica e celula a combustivel, para atendimento a comunidades isoladas na Amazonia

    Silva, Sergio Batista da

    2010-11-15

    The lack of electricity in isolated communities in the Brazilian Amazon has become one of the greatest barrier for the development of the region. Currently, the main technologies that provide electricity to these communities are diesel generators, batteries and dry cells. These non-renewable energy sources may pose serious problems to the environment and human health and have high maintenance and operational costs. Therefore, the search for renewable energy sources, such as water and sunlight, which are highly abundant in the region, has become a great challenge. This thesis presents the studies on application of solar photovoltaic (PV) and fuel cell (FC) technologies to supply electric power in an uninterrupted manner. Outlined are the technical and cost issues of a pilot project set up in an environmentally protected area, next to Bananal island, located in the Southwestern region of the state of Tocantins. The pilot project relies on PV solar power as the primary source of energy for the production of electricity. The surplus energy is stored in the form of hydrogen produced by electrolysis of the water supplied locally, which is reconverted into electric power by fuel cells during periods when there is little or no sunlight. In this context, the aim of the study was to propose a sizing of a hybrid distributed generation system (HDGS), comprised of a PV system, FC and batteries, that optimizes implementation and operational costs, as a potential source of energy for isolated communities in the Amazon. The work was carried out with the help of simulation software HOMER (Hybrid Optimization Model for Electric Renewable) developed by National Renewable Energy Laboratory (NREL). Simulations and a comparative study were carried out of the technologies and potential configurations that meet the needs of these isolated communities. The results showed an optimal solution of HGDS PV-FC batteries with a reduction in the initial cost of the project in about 60% compared to

  8. Upgrading the TFTR Transrex Power Supplies

    Lawson, J.E.; Marsala, R; Ramakrishnan, S.; Zhao, X.; Sichta, P.

    2009-01-01

    In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supply sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the 'Hardwired Control System' will be replaces with a Programmable Logic Controller (PLC)

  9. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  10. A robust predictive current controller for healthy and open-circuit faulty conditions of five-phase BLDC drives applicable for wind generators and electric vehicles

    Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent

    2015-01-01

    Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive

  11. Governance In Project Configured Supply Chains

    Koch, Christian; Larsen, Casper Schultz; Gottlieb, Stefan Christoffer

    2006-01-01

    are integrated knowledge, material, workforce and management subsystem deliveries (the building core produced of pre-cast concrete, the elevator supply and the kitchen supply). Further 17 deliveries draws on more than 50 materials and component suppliers. The case project generated 160 failures over three months......This case study covers a Danish architectural, engineering and construction supply network for a specific building project. Failures in supply are used as indicators of the governance forms employed. The following governance forms are present; internal integration and hierarchy, SCM......-efforts, subsystem deliveries and contracting per project. The case exhibits a very uneven integration upstream: Three engineering design areas are integrated with production and the client function. Amongst supplies, the architectural design is the most 'clean-cut' knowledge supply, whereas the supplies...

  12. Finding gold in the supply chain.

    Caudle, Allen

    2009-12-01

    To optimize supply chain performance and achieve savings that enhance the bottom line, hospitals should: Generate purchase orders for every item purchased. Ensure the organization is protected from undue vendor influence. Keep track of where supply chain dollars are going. Review contracts regularly to ensure competitiveness. Have a contract for each product category. Buy only what the organization is sure to use. Get rid of excess inventory. Develop a strategic plan for continued supply chain savings.

  13. 2011 Vehicle Technologies Market Report

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  14. The impact of electric vehicles on the outlook of future energy system

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  15. Supply and demand perspectives

    Trienekens, Pieter

    1999-01-01

    The outlook for the European gas market is one of steady growth. This growth will manifest itself in all regions and in all sectors of the market, but most strongly in the power generating sector. To meet future demand, it is necessary to bring gas to Western Europe from remote sources in Russia, North Africa and Norway. These new gas supplies require heavy investments in production and transportation, which can only be undertaken on the basis of long-term take-or-pay contracts. Famous examples of such contracts are the development of the Troll field, the Yamal-Europe pipeline connection, and the bringing on stream of Nigerian LNG for Europe. Tensions are likely to arise between the nature of these long-term gas contracts and the dynamic nature of demand in the gas market, and more specifically in the main growth market, the power sector. The presentation further elaborates on the tensions underlying supply and demand in the years to come

  16. Ninth wood energy symposium - Reduction of fine-dust emissions and power generation as part of a future power supply system; 9. Holzenergie-Symposium - Feinstaubminderung und Stromerzeugung im Rahmen der zukuenftigen Energieversorgung

    Nussbaumer, T. (ed.)

    2006-07-01

    This comprehensive report is published by the Swiss Federal Office of Energy (SFOE). A total of fourteen papers were presented at the symposium on the following subjects: Federal Action-Plan in the wood-firing area and emission limits, Fair-Firing - an Action Plan for the prevention of increased emissions and illegal incineration of wastes, fine-dust from wood-fired systems in comparison with diesel soot from the health point of view, practical experience with low-particle, pellets-fired systems, basics and technologies for the precipitation of fine-dust and the influence of particle characteristics and mode of operation as well as two papers on the development of electrical precipitators for wood-fired systems from 200 kW upwards and the practical experience gained with them. Further, papers are presented that deal with small-size electrostatic precipitators, flameless combustion for NO{sub x} reduction and modern pellets technology. The potential and economic viability of wood fuels for the generation of electricity are discussed and a 7 MW{sub e} wood-fired power station is looked at. Finally, the options open for providing a secure supply of energy in Europe are discussed and the role to be played by biomass is examined.

  17. Developing a Blended Type Course of Introduction to Hybrid Vehicles

    Na Zhu

    2016-01-01

    An innovative course of introduction to hybrid vehicles is developed for both associate and bachelor degree programs for engineering technology with automotive/mechanical concentration. The hybrid vehicle course content includes several topics, such as the rational of pure electric vehicle and hybrid vehicle, hybrid vehicle propulsion systems, fundamentals of motor/generator systems, fundamentals of battery and energy management system, and introduction to various configurations of hybrid veh...

  18. Emissions from US waste collection vehicles

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-01-01

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving

  19. Income generation in the supply chain of acai in the design of electric energy supply in isolated communities in the municipality of Manacapuru, AM; Geracao de renda na cadeia produtiva do acai em projeto de abastecimento de energia eletrica em comunidades isoladas no Municipio de Manacapuru-AM

    Bacellar, Atlas A; Souza, Rubem C.R.; Xavier, Diogo J.C.; Seye, Omar; Bacellar, Atlas A; Santos, Eyde C.S.; Freitas, Katriana T. [Universidade Federal do Amazonas (CDEAM/UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico], Email: abacellar@ufam.edu.br

    2006-07-01

    Efforts endeavored by the State aiming to universalize the electricity use in Brazil, PRODEEM and Programa Luz Para Todos are examples of it, had have as result high insolvency or interruption. The aim of this work is to analyze the potentialities of increasing incomes in communities at the city of Manacapuru - AM, assisted by the research project 'Model of electric power Businesses in Isolated Communities at the Amazon region'- NERAM, under the responsibility of CDEAM of Federal University of Amazonas - UFAM, starting from acai supply chain. The strategy is to implement an industry of acai's pulps with the objectives of adding value to the fruit and to use the pits as biomass to generate power. Cooperative as a legal model of enterprise was adopted in order to be responsible for the industry with the participation of the families that work with the fruit and the community in general. The cooperative plant idealized was based on the report of a socioeconomic research applied at the communities. Three methods were used to analyze the investment: Uniform Annual Value Equivalent, Liquid Present Value and Ratio of Internal Return. The results demonstrated the enterprise's viability since obeying the following premises: 50 tons of minimum production of acai per month; R$ 2.50 as a minimum pulp's sale price; and 0.60 kg of pulp for 1 kg of fruit as minimum productivity, which will create nine new puts of work, warranty of acai's fruit sale, income's increasing for the cooperative and incentive to catch the fruit. (author)

  20. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  1. JT-60SA power supply system

    Coletti, A.; Baulaigue, O.; Cara, P.; Coletti, R.; Ferro, A.; Gaio, E.; Matsukawa, M.; Novello, L.; Santinelli, M.; Shimada, K.; Starace, F.; Terakado, T.; Yamauchi, K.

    2011-01-01

    The paper describes the main features of the Superconducting Magnets Power Supply to generate the toroidal and poloidal magnetic fields in JT-60SA tokamak, with special regard to coil current regulation mode and magnets protection.

  2. Compressed natural gas vehicles motoring towards a green Beijing

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  3. Energy supply today and tomorrow

    Janssen, W.

    1980-01-01

    The paper is the synthesis of two lectures on the energy market in the FRG and the problems of the future energy supply. The main point of the explanations is nuclear energy and power supply the basic thoughts of which are explained in detail. A general view at the present situation on the individual energy sections shows that by using regenerative energy sources and energy savings only the increasing energy need cannot be met. Also in the case of coal, when having used it for a long time through the technologies of gasification and liquidation, its quantitative limits will be seen sooner than it would be the case otherwise. For long terms, nuclear energy is the only way to guarantee the mankind a relatively rishless supply of energy in the generation of power and process heat, especially when the fast breeders are used. (UA) [de

  4. Canadian gas supply : an update

    Rochefort, T.

    1998-01-01

    An overview of the daily production from the Western Canada Sedimentary Basin (WCSB) from 1986 to 1997 was presented. This presentation also outlined Canadian production trends, Canadian reserves and resources, and supply challenges. Ultimate conventional marketable gas from the WCSB, the Scotian Shelf, the Beaufort Sea and Canada's Arctic region was estimated at 591 TCF. Issues regarding supply and demand of natural gas such as the impact of electricity restructuring on pricing, generation fuel mix, the capacity of the U.S. market to absorb Canadian heavy oil production, and the influence of the rate of technological advances on supply and demand were outlined. The overall conclusion confirmed the health and competitiveness of the Canadian upstream sector and expressed confidence that the WCSB can support rising levels of production to meet the expected continued market growth. tabs., figs

  5. Feasible Path Planning for Autonomous Vehicles

    Vu Trieu Minh

    2014-01-01

    Full Text Available The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an automatic control for autonomous vehicles.

  6. Human Supervision of Multiple Autonomous Vehicles

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  7. Cyber threat impact assessment and analysis for space vehicle architectures

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  8. Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises

    Litvinova, N. A.

    2017-11-01

    The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.

  9. Connected vehicle application : safety.

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  10. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  11. A performance comparison of urban utility vehicles powered with IC engine and solid polymer fuel cell technologies

    Teachman, M.E.; Scott, D.S.

    1993-01-01

    Utility vehicles provide ground transportation for crew and electric power at work sites that lack grid supply. The performances of utility vehicles designed with conventional architectures (spark ignition engine for propulsion and a motor generator for electric power) and with a fuel cell/battery architectures, are compared over a range of vehicle missions. Results indicate that fuel cell/battery hybrid systems are lighter than conventional systems for missions requiring short driving distances and work site power levels exceeding 10 kW. Conventional spark ignition engine/gen-set power systems are lighter for missions requiring more than 1 hour of driving and less than 10 kW of work site power. Fuel cell/battery systems are more efficient than spark ignition engine/gen-set systems for all missions. 7 figs., 3 tabs., 20 refs

  12. Control of Multiple Robotic Sentry Vehicles

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  13. Vehicle routing with dynamic travel times : a queueing approach

    Woensel, van T.; Kerbache, L.; Peremans, H.; Vandaele, N.J.

    2008-01-01

    Transportation is an important component of supply chain competitiveness since it plays a major role in the inbound, inter-facility, and outbound logistics. In this context, assigning and scheduling vehicle routes is a crucial management problem. In this paper, a vehicle routing problem with dynamic

  14. Laser power supply

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  15. Alignment of global supply networks based on strategic groups of supply chains

    Nikos G. Moraitakis

    2017-09-01

    Full Text Available Background: From a supply chain perspective, often big differences exist between global raw material suppliers’ approaches to supply their respective local markets. The progressing complexity of large centrally managed global supply networks and their often-unknown upstream ramifications increase the likelihood of undetected bottlenecks and inefficiencies. It is therefore necessary to develop an approach to strategically master the upstream complexity of such networks from a holistic supply chain perspective in order to align regional competitive priorities and supply chain structures. The objective of this research is hence to develop an approach for the supply-chain-based alignment of complex global supply networks. Method: We review existing literature from the fields of supply chain and network management, strategic sourcing, and strategic management. Based on the literature review and theoretical and practical considerations we deduce a conceptual approach to consider upstream supply chain structures in supply network alignment initiatives. Results: On the basis of these considerations and current empirical literature we transfer strategic group theory to the supply network management context. The proposed approach introduces strategic groups of supply chains as a segmentation criterion for complex global supply networks which enables the network-wide alignment of competitive priorities. Conclusion: Supply-chain-based segmentation of global supply network structures can effectively reduce the complexity, firms face when aiming to strategically align their supply chains on a holistic level. The results of this research are applicable for certain types of global supply networks and can be used for network alignment and strategy development. The approach can furthermore generate insights useable for negotiation support with suppliers.

  16. Supply Cain Risk Management

    Goodwin, Les

    2011-01-01

    “The management of supply chain risk is crucial to any business, more so to Rolls Royce who face an almost doubling of load within the next 10 years. So what is supply chain risk management and how well is it deployed within an operational business of Rolls Royce? What are the tools and techniques available and what are the key issues around implementing world class supply chain risk management with a Supply Chain Unit within Rolls Royce?”

  17. Online energy management for hybrid electric vehicles

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  18. Situational analysis for the current status of the electric vehicle industry : a report for presentation to the Electric Vehicle Industry Steering Committee of Natural Resources Canada

    Fleet, B.; Li, J.K.; Gilbert, R.

    2008-01-01

    This paper outlined the status of the electric vehicle industry in Canada. While the low energy density of electric batteries has prevented the widespread adoption of electric-powered vehicles, new developments in nickel metal hydride (Ni-MH) batteries have provided a 3- to 4-fold increase in energy density than lead-acid batteries. The Ni-MH batteries have enabled the emergence of hybrid automobiles that use electric motors to supplement or provide traction with internal combustion engine (ICE) generators that power the motors or charge batteries. Plug-in hybrids use batteries that can be charged from the electricity grid or by on-board generators. Lithium-based batteries contain twice the amount of energy density as Ni-MH batteries, and are now being upscaled for use in plug-in hybrids. Canada has many assets that favour the development of electric vehicle technology as it has a high degree of urbanization, and a widely diversified electric supply. Canada is also a major player in EV technology, and a world leader in renewable electricity generation. However, considerable investment and leadership is needed in order to foster EV technology in Canada. It was concluded that an EV industry can be developed by facilitating collaboration among organizations currently promoting sustainable transportation, identifying potential centres of engineering and technological excellence, and defining markets relevant to a Canadian EV industry. 32 refs., 6 tabs., 4 figs

  19. Energy supply. Energieversorgung

    Eickhof, N.

    1983-01-01

    This anthology presents nine papers dealing with the following subjects: 1) international and national aspects of energy supply, 2) regional and local energy supply concepts, and 3) issues of district-heat supply. Each of the nine papers was entered separately.

  20. Trim coil power supplies

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  1. Income generation in the supply chain of acai in the design of electric energy supply in isolated communities in the municipality of Manacapuru, AM; Geracao de renda na cadeia produtiva do acai em projeto de abastecimento de energia eletrica em comunidades isoladas no Municipio de Manacapuru-AM

    Bacellar, Atlas A.; Souza, Rubem C.R.; Xavier, Diogo J.C.; Seye, Omar; Bacellar, Atlas A.; Santos, Eyde C.S.; Freitas, Katriana T. [Universidade Federal do Amazonas (CDEAM/UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico], Email: abacellar@ufam.edu.br

    2006-07-01

    Efforts endeavored by the State aiming to universalize the electricity use in Brazil, PRODEEM and Programa Luz Para Todos are examples of it, had have as result high insolvency or interruption. The aim of this work is to analyze the potentialities of increasing incomes in communities at the city of Manacapuru - AM, assisted by the research project 'Model of electric power Businesses in Isolated Communities at the Amazon region'- NERAM, under the responsibility of CDEAM of Federal University of Amazonas - UFAM, starting from acai supply chain. The strategy is to implement an industry of acai's pulps with the objectives of adding value to the fruit and to use the pits as biomass to generate power. Cooperative as a legal model of enterprise was adopted in order to be responsible for the industry with the participation of the families that work with the fruit and the community in general. The cooperative plant idealized was based on the report of a socioeconomic research applied at the communities. Three methods were used to analyze the investment: Uniform Annual Value Equivalent, Liquid Present Value and Ratio of Internal Return. The results demonstrated the enterprise's viability since obeying the following premises: 50 tons of minimum production of acai per month; R$ 2.50 as a minimum pulp's sale price; and 0.60 kg of pulp for 1 kg of fruit as minimum productivity, which will create nine new puts of work, warranty of acai's fruit sale, income's increasing for the cooperative and incentive to catch the fruit. (author)

  2. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  3. Energy supply - a global problem

    Barthelt, K.

    1990-01-01

    The text of a speech celebrating the 10 years operation of the nuclear power plant in Goesgen. The author expresses his opinion on the future of nuclear energy, on the responsibility towards the next generation and on the energy supply for the Third World. He draws attention to the gap between north and south and to the limited amount of resources and mention the CO2-problem and the potential of nuclear energy

  4. Electric vehicles in imperfect electricity markets: The case of Germany

    Schill, Wolf-Peter

    2011-01-01

    We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power market. If excess vehicle batteries can be used for storage, welfare results are reversed: generating firms suffer from the price-smoothing effect of additional storage, whereas power consumers benefit despite increasing overall demand. Strategic players tend to under-utilize the storage capacity of the vehicle fleet, which may have negative welfare implications. In contrast, we find a market power-mitigating effect of electric vehicle recharging on oligopolistic generators. Overall, electric vehicles are unlikely to be a relevant source of market power in Germany in the foreseeable future. - Highlights: → We study the effect of electric vehicles on an imperfectly competitive electricity market. → We apply a game-theoretic model to the German market. → There is a market power-mitigating effect of vehicle loading on oligopolistic generating firms. → Consumers benefit from electric vehicles if excess battery capacity can be used for grid storage. → Electric vehicles are unlikely to be a source of market power in Germany in the near future.

  5. Modelling energy demand for a fleet of hydrogen-electric vehicles interacting with a clean energy hub

    Syed, F.; Fowler, M.; Wan, D.; Maniyali, Y.

    2009-01-01

    This paper details the development of an energy demand model for a hydrogen-electric vehicle fleet and the modelling of the fleet interactions with a clean energy hub. The approach taken is to model the architecture and daily operation of every individual vehicle in the fleet. A generic architecture was developed based on understanding gained from existing detailed models used in vehicle powertrain design, with daily operation divided into two periods: charging and travelling. During the charging period, the vehicle charges its Electricity Storage System (ESS) and refills its Hydrogen Storage System (HSS), and during the travelling period, the vehicle depletes the ESS and HSS based on distance travelled. Daily travel distance is generated by a stochastic model and is considered an input to the fleet model. The modelling of a clean energy hub is also presented. The clean energy hub functions as an interface between electricity supply and the energy demand (i.e. hydrogen and electricity) of the vehicle fleet. Finally, a sample case is presented to demonstrate the use of the fleet model and its implications on clean energy hub sizing. (author)

  6. Power supply and stabilization of the supply system on board using decentralized voltage rectifiers

    Grueb, W; Wegerer, K

    1987-04-01

    The functionally redundant power supply system of the Transrapid 06 II maglev train is described; it comprises four independent, battery-buffered networks and 30 linear generators per train section. Voltage rectifiers adapt the velocity- and load-dependent linear generator voltage to the 440 V d.c. networks and assure dynamic stabilisation as well as buffer battery loading. The result is a high-reliability power supply system on board with optimum utilisation of the power supplied by the linear generators while the train is running.

  7. Vehicle Development Laboratory

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  8. Supply regimes in fisheries

    Nielsen, Max

    2006-01-01

    Supply in fisheries is traditionally known for its backward bending nature, owing to externalities in production. Such a supply regime, however, exist only for pure open access fisheries. Since most fisheries worldwide are neither pure open access, nor optimally managed, rather between the extremes......, the traditional understanding of supply regimes in fisheries needs modification. This paper identifies through a case study of the East Baltic cod fishery supply regimes in fisheries, taking alternative fisheries management schemes and mesh size limitations into account. An age-structured Beverton-Holt based bio......-economic supply model with mesh sizes is developed. It is found that in the presence of realistic management schemes, the supply curves are close to vertical in the relevant range. Also, the supply curve under open access with mesh size limitations is almost vertical in the relevant range, owing to constant...

  9. Storage and security of supply

    Svensson, B.R.

    1990-01-01

    The paper considers the relationship between energy security and the consumption, supply and storage of natural gas, as agreed between the IEA Member countries. Additional supplies of natural gas should be obtained from as diverse sources as possible with emphasis on indigenous OECD sources. Instruments for coping with supply disruptions, such as underground storage of gas, interruptible gas sales, and dual-fired capabilities should be strengthened. These instruments, however, in combination with contractual swing factors, are also used to cope with fluctuations in demand for natural gas. The future demand and supply of natural gas in OECD Europe and North America is discussed. In OECD Europe the growth in residential and commercial demand is expected to be sustained, and, in both OECD Europe and North America, there is a further potential demand for gas for electricity generation. As residential and commercial demand (which is very temperature-dependent) grows, the need for storage facilities, interruptible sales contracts, dual-fired capabilities and swing factors in contracts will increase in order to balance the load. An expansion of gas demand for baseload electricity generation could, however, increase the load factor. Figures for the size of the storage capacity in 1987 and plans for future increases show that storage capacity is increasing. It is concluded that new underground storage represents an important contribution to the strengthening of each country's ability both to balance loads and to deal with supply disruptions. The IEA countries rely on the gas utilities to provide storage and other instruments for both purposes. (author). 2 figs, 3 tabs

  10. Meeting the power supply challenge

    Boland, B.

    2003-01-01

    A review of activities at Ontario Power Generation since deregulation was presented. Since May 1, 2002, Ontario business and residential users have been able to choose to buy electricity from local utilities at the market price or from fixed-term, fixed-price contracts with retailers. A major heat wave in the summer of 2002 forced electricity prices to rise as supply was strained by record energy demands. On November 11, 2002, Bill 210 placed the retail market on temporary hold as the price of electricity was capped at 4.3 cents per kWh for low-volume consumers. On March 21, 2003, the fixed price was extended to users up to 250,000 kWh. It is expected that energy demand in Ontario will grow 1 per cent each year for the next 10 years. Electricity supply, transmission and distribution in the Greater Toronto area must be addressed to ensure safe, reliable and affordable power. Another issue that must be addressed is that 20 per cent of Ontario's aging generating facilities will have be overhauled or replaced by 2013. Environmental issues and the pending retirement of coal as a fuel source must also be addressed. Possible solutions include returning the Pickering 'A' nuclear facility to service, additional nuclear generation, hydroelectric upgrades, and new green generation initiatives such as wind or gas-fired combined cycle generation. Maintaining the fossil option is possible by reducing emissions. 8 figs

  11. Cost of Oil and Biomass Supply Shocks under Different Biofuel Supply Chain Configurations

    Uria Martinez, Rocio [ORNL; Leiby, Paul Newsome [ORNL; Brown, Maxwell L. [National Renewable Energy Laboratory (NREL)

    2018-04-01

    This analysis estimates the cost of selected oil and biomass supply shocks for producers and consumers in the light-duty vehicle fuel market under various supply chain configurations using a mathematical programing model, BioTrans. The supply chain configurations differ by whether they include selected flexibility levers: multi-feedstock biorefineries; advanced biomass logistics; and the ability to adjust ethanol content of low-ethanol fuel blends, from E10 to E15 or E05. The simulated scenarios explore market responses to supply shocks including substitution between gasoline and ethanol, substitution between different sources of ethanol supply, biorefinery capacity additions or idling, and price adjustments. Welfare effects for the various market participants represented in BioTrans are summarized into a net shock cost measure. As oil accounts for a larger fraction of fuel by volume, its supply shocks are costlier than biomass supply shocks. Corn availability and the high cost of adding biorefinery capacity limit increases in ethanol use during gasoline price spikes. During shocks that imply sudden decreases in the price of gasoline, the renewable fuel standard (RFS) biofuel blending mandate limits the extent to which flexibility can be exercised to reduce ethanol use. The selected flexibility levers are most useful in response to cellulosic biomass supply shocks.

  12. Leading a supply chain turnaround.

    Slone, Reuben E

    2004-10-01

    Just five years ago, salespeople at Whirlpool were in the habit of referring to their supply chain organization as the "sales disablers." Now the company excels at getting products to the right place at the right time--while managing to keep inventories low. How did that happen? In this first-person account, Reuben Slone, Whirlpool's vice president of Global Supply Chain, describes how he and his colleagues devised the right supply chain strategy, sold it internally, and implemented it. Slone insisted that the right focal point for the strategy was the satisfaction of consumers at the end of the supply chain. Most supply chain initiatives do the opposite: They start with the realities of a company's manufacturing base and proceed from there. Through a series of interviews with trade customers large and small, his team identified 27 different capabilities that drove industry perceptions of Whirlpool's performance. Knowing it was infeasible to aim for world-class performance across all of them, Slone weighed the costs of excelling at each and found the combination of initiatives that would provide overall competitive advantage. A highly disciplined project management office and broad training in project management were key to keeping work on budget and on benefit. Slone set an intense pace--three "releases" of new capabilities every month--that the group maintains to this day. Lest this seem like a technology story, however, Slone insists it is just as much a "talent renaissance." People are proud today to be part of Whirlpool's supply chain organization, and its new generation of talent will give the company a competitive advantage for years to come.

  13. Assessment of future natural gas vehicle concepts

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  14. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  15. 49 CFR 583.11 - Allied suppliers of passenger motor vehicle equipment.

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Allied suppliers of passenger motor vehicle... CONTENT LABELING § 583.11 Allied suppliers of passenger motor vehicle equipment. (a) For each unique type of passenger motor vehicle equipment which an allied supplier supplies to the manufacturer with which...

  16. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  17. Control strategies for power distribution networks with electric vehicles integration

    Hu, Junjie

    of electrical energy. A smart grid can also be dened as an electricity network that can intelligently integrate the actions of all users connected to it - generators, consumers and those that do both - in order to eciently deliver sustainable, economic and secure electricity supplies. This thesis focuses...... of the ii market. To build a complete solution for integration of EVs into the distribution network, a price coordinated hierarchical scheduling system is proposed which can well characterize the involved actors in the smart grid. With this system, we demonstrate that it is possible to schedule the charging......Demand side resources, like electric vehicles (EVs), can become integral parts of a smart grids because instead of just consuming power they are capable of providing valuable services to power systems. EVs can be used to balance the intermittent renewable energy resources such as wind and solar...

  18. Supply chain reliability modelling

    Eugen Zaitsev

    2012-03-01

    Full Text Available Background: Today it is virtually impossible to operate alone on the international level in the logistics business. This promotes the establishment and development of new integrated business entities - logistic operators. However, such cooperation within a supply chain creates also many problems related to the supply chain reliability as well as the optimization of the supplies planning. The aim of this paper was to develop and formulate the mathematical model and algorithms to find the optimum plan of supplies by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Methods: The mathematical model and algorithms to find the optimum plan of supplies were developed and formulated by using economic criterion and the model for the probability evaluating of non-failure operation of supply chain. Results and conclusions: The problem of ensuring failure-free performance of goods supply channel analyzed in the paper is characteristic of distributed network systems that make active use of business process outsourcing technologies. The complex planning problem occurring in such systems that requires taking into account the consumer's requirements for failure-free performance in terms of supply volumes and correctness can be reduced to a relatively simple linear programming problem through logical analysis of the structures. The sequence of the operations, which should be taken into account during the process of the supply planning with the supplier's functional reliability, was presented.

  19. Automated Announcements of Approaching Emergency Vehicles

    Bachelder, Aaron; Foster, Conrad

    2006-01-01

    Street intersections that are equipped with traffic lights would also be equipped with means for generating audible announcements of approaching emergency vehicles, according to a proposal. The means to generate the announcements would be implemented in the intersection- based subsystems of emergency traffic-light-preemption systems like those described in the two immediately preceding articles and in "Systems Would Preempt Traffic Lights for Emergency Vehicles" (NPO-30573), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 36. Preempting traffic lights is not, by itself, sufficient to warn pedestrians at affected intersections that emergency vehicles are approaching. Automated visual displays that warn of approaching emergency vehicles can be helpful as a supplement to preemption of traffic lights, but experience teaches that for a variety of reasons, pedestrians often do not see such displays. Moreover, in noisy and crowded urban settings, the lights and sirens on emergency vehicles are often not noticed until a few seconds before the vehicles arrive. According to the proposal, the traffic-light preemption subsystem at each intersection would generate an audible announcement for example, emergency vehicle approaching, please clear intersection whenever a preemption was triggered. The subsystem would estimate the time of arrival of an approaching emergency vehicle by use of vehicle identity, position, and time data from one or more sources that could include units connected to traffic loops and/or transponders connected to diagnostic and navigation systems in participating emergency vehicles. The intersection-based subsystem would then start the announcement far enough in advance to enable pedestrians to leave the roadway before any emergency vehicles arrive.

  20. Instability of a vehicle moving on an elastic structure

    Veritchev, S.N.

    2002-01-01

    Vibrations of a vehicle that moves on a long elastic structure can become unstable because of elastic waves that the vehicle generates in the structure. A typical example of the vehicle that can experience such instability is a high-speed train. Moving with a sufficiently high speed, this train