WorldWideScience

Sample records for generation real time

  1. Real-Time Trajectory Generation for Autonomous Nonlinear Flight Systems

    Larsen, Michael; Beard, Randal W; McLain, Timothy W

    2006-01-01

    ... to mobile threats such as radar, jammers, and unfriendly aircraft. In Phase 1 of this STTR project, real-time path planning and trajectory generation techniques for two dimensional flight were developed and demonstrated in software simulation...

  2. Real Time Engineering Analysis Based on a Generative Component Implementation

    Kirkegaard, Poul Henning; Klitgaard, Jens

    2007-01-01

    The present paper outlines the idea of a conceptual design tool with real time engineering analysis which can be used in the early conceptual design phase. The tool is based on a parametric approach using Generative Components with embedded structural analysis. Each of these components uses the g...

  3. Graphics processing unit (GPU) real-time infrared scene generation

    Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.

    2007-04-01

    VIRSuite, the GPU-based suite of software tools developed at DSTO for real-time infrared scene generation, is described. The tools include the painting of scene objects with radiometrically-associated colours, translucent object generation, polar plot validation and versatile scene generation. Special features include radiometric scaling within the GPU and the presence of zoom anti-aliasing at the core of VIRSuite. Extension of the zoom anti-aliasing construct to cover target embedding and the treatment of translucent objects is described.

  4. RT-Syn: A real-time software system generator

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  5. Real Time Face Quality Assessment for Face Log Generation

    Kamal, Nasrollahi; Moeslund, Thomas B.

    2009-01-01

    Summarizing a long surveillance video to just a few best quality face images of each subject, a face-log, is of great importance in surveillance systems. Face quality assessment is the back-bone for face log generation and improving the quality assessment makes the face logs more reliable....... Developing a real time face quality assessment system using the most important facial features and employing it for face logs generation are the concerns of this paper. Extensive tests using four databases are carried out to validate the usability of the system....

  6. Real-time Image Generation for Compressive Light Field Displays

    Wetzstein, G; Lanman, D; Hirsch, M; Raskar, R

    2013-01-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  7. Variable slip wind generator modeling for real-time simulation

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  8. Dynamic thermal signature prediction for real-time scene generation

    Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.; Swierkowski, Leszek

    2013-05-01

    At DSTO, a real-time scene generation framework, VIRSuite, has been developed in recent years, within which trials data are predominantly used for modelling the radiometric properties of the simulated objects. Since in many cases the data are insufficient, a physics-based simulator capable of predicting the infrared signatures of objects and their backgrounds has been developed as a new VIRSuite module. It includes transient heat conduction within the materials, and boundary conditions that take into account the heat fluxes due to solar radiation, wind convection and radiative transfer. In this paper, an overview is presented, covering both the steady-state and transient performance.

  9. Procedural Content Generation for Real-Time Strategy Games

    Raúl Lara-Cabrera

    2015-03-01

    Full Text Available Videogames are one of the most important and profitable sectors in the industry of entertainment. Nowadays, the creation of a videogame is often a large-scale endeavor and bears many similarities with, e.g., movie production. On the central tasks in the development of a videogame is content generation, namely the definition of maps, terrains, non-player characters (NPCs and other graphical, musical and AI-related components of the game. Such generation is costly due to its complexity, the great amount of work required and the need of specialized manpower. Hence the relevance of optimizing the process and alleviating costs. In this sense, procedural content generation (PCG comes in handy as a means of reducing costs by using algorithmic techniques to automatically generate some game contents. PCG also provides advantages in terms of player experience since the contents generated are typically not fixed but can vary in different playing sessions, and can even adapt to the player herself. For this purpose, the underlying algorithmic technique used for PCG must be also flexible and adaptable. This is the case of computational intelligence in general and evolutionary algorithms in particular. In this work we shall provide an overview of the use of evolutionary intelligence for PCG, with special emphasis on its use within the context of real-time strategy games. We shall show how these techniques can address both playability and aesthetics, as well as improving the game AI.

  10. Time-Optimal Real-Time Test Case Generation using UPPAAL

    Hessel, Anders; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    Testing is the primary software validation technique used by industry today, but remains ad hoc, error prone, and very expensive. A promising improvement is to automatically generate test cases from formal models of the system under test. We demonstrate how to automatically generate real...... test purposes or generated automatically from various coverage criteria of the model.......-time conformance test cases from timed automata specifications. Specifically we demonstrate how to fficiently generate real-time test cases with optimal execution time i.e test cases that are the fastest possible to execute. Our technique allows time optimal test cases to be generated using manually formulated...

  11. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; hide

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  12. Generate stepper motor linear speed profile in real time

    Stoychitch, M. Y.

    2018-01-01

    In this paper we consider the problem of realization of linear speed profile of stepper motors in real time. We considered the general case when changes of speed in the phases of acceleration and deceleration are different. The new and practical algorithm of the trajectory planning is given. The algorithms of the real time speed control which are suitable for realization to the microcontroller and FPGA circuits are proposed. The practical realization one of these algorithms, using Arduino platform, is given also.

  13. Real-Time Optimization and Control of Next-Generation Distribution

    -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution developing a system-theoretic distribution network management framework that unifies real-time voltage and Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next

  14. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun; Pan, Jian-Wei; Zhou, Hongyi; Ma, Xiongfeng

    2016-01-01

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  15. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Hongyi; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.

  16. Gene-Auto: Automatic Software Code Generation for Real-Time Embedded Systems

    Rugina, A.-E.; Thomas, D.; Olive, X.; Veran, G.

    2008-08-01

    This paper gives an overview of the Gene-Auto ITEA European project, which aims at building a qualified C code generator from mathematical models under Matlab-Simulink and Scilab-Scicos. The project is driven by major European industry partners, active in the real-time embedded systems domains. The Gene- Auto code generator will significantly improve the current development processes in such domains by shortening the time to market and by guaranteeing the quality of the generated code through the use of formal methods. The first version of the Gene-Auto code generator has already been released and has gone thought a validation phase on real-life case studies defined by each project partner. The validation results are taken into account in the implementation of the second version of the code generator. The partners aim at introducing the Gene-Auto results into industrial development by 2010.

  17. Towards provably correct code generation for a hard real-time programming language

    Fränzle, Martin; Müller-Olm, Markus

    1994-01-01

    This paper sketches a hard real-time programming language featuring operators for expressing timeliness requirements in an abstract, implementation-independent way and presents parts of the design and verification of a provably correct code generator for that language. The notion of implementation...

  18. Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation

    Siohansi, Ramteen

    2010-01-01

    One of the costs associated with integrating wind generation into a power system is the cost of redispatching the system in real-time due to day-ahead wind resource forecast errors. One possible way of reducing these redispatch costs is to introduce demand response in the form of real-time pricing (RTP), which could allow electricity demand to respond to actual real-time wind resource availability using price signals. A day-ahead unit commitment model with day-ahead wind forecasts and a real-time dispatch model with actual wind resource availability is used to estimate system operations in a high wind penetration scenario. System operations are compared to a perfect foresight benchmark, in which actual wind resource availability is known day-ahead. The results show that wind integration costs with fixed demands can be high, both due to real-time redispatch costs and lost load. It is demonstrated that introducing RTP can reduce redispatch costs and eliminate loss of load events. Finally, social surplus with wind generation and RTP is compared to a system with neither and the results demonstrate that introducing wind and RTP into a market can result in superadditive surplus gains.

  19. Real-time Trading Strategies for Proactive Distribution Company with Distributed Generation and Demand Response

    Wang, Qi

    Distributed energy resources (DERs), such as distributed generation (DG) and demand response (DR), have been recognized worldwide as valuable resources. High integration of DG and DR in the distribution network inspires a potential deregulated environment for the distribution company (DISCO...... in the presented DL market and transact with TL real-time market. A one-leader multi-follower-type bi-level model is proposed to indicate the PDISCO's trading strategies. To participate in the TL real-time market, a methodology is presented to derive continuous bidding/offering strategies for a PDISCO. A bi...

  20. Power in the loop real time simulation platform for renewable energy generation

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  1. Demo: Distributed Real-Time Generative 3D Hand Tracking using Edge GPGPU Acceleration

    Qammaz, Ammar; Kosta, Sokol; Kyriazis, Nikolaos

    2018-01-01

    computations locally. The network connection takes the place of a GPGPU accelerator and sharing resources with a larger workstation becomes the acceleration mechanism. The unique properties of a generative optimizer are examined and constitute a challenging use-case, since the requirement for real......This work demonstrates a real-time 3D hand tracking application that runs via computation offloading. The proposed framework enables the application to run on low-end mobile devices such as laptops and tablets, despite the fact that they lack the sufficient hardware to perform the required...

  2. Computer Tool for Automatically Generated 3D Illustration in Real Time from Archaeological Scanned Pieces

    Luis López; Germán Arroyo; Domingo Martín

    2012-01-01

    The graphical documentation process of archaeological pieces requires the active involvement of a professional artist to recreate beautiful illustrations using a wide variety of expressive techniques. Frequently, the artist’s work is limited by the inconvenience of working only with the photographs of the pieces he is going to illustrate. This paper presents a software tool that allows the easy generation of illustrations in real time from 3D scanned models. The developed interface allows the...

  3. Real time testing of intelligent relays for synchronous distributed generation islanding detection

    Zhuang, Davy

    As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.

  4. Tailored motivational message generation: A model and practical framework for real-time physical activity coaching.

    Op den Akker, Harm; Cabrita, Miriam; Op den Akker, Rieks; Jones, Valerie M; Hermens, Hermie J

    2015-06-01

    This paper presents a comprehensive and practical framework for automatic generation of real-time tailored messages in behavior change applications. Basic aspects of motivational messages are time, intention, content and presentation. Tailoring of messages to the individual user may involve all aspects of communication. A linear modular system is presented for generating such messages. It is explained how properties of user and context are taken into account in each of the modules of the system and how they affect the linguistic presentation of the generated messages. The model of motivational messages presented is based on an analysis of existing literature as well as the analysis of a corpus of motivational messages used in previous studies. The model extends existing 'ontology-based' approaches to message generation for real-time coaching systems found in the literature. Practical examples are given on how simple tailoring rules can be implemented throughout the various stages of the framework. Such examples can guide further research by clarifying what it means to use e.g. user targeting to tailor a message. As primary example we look at the issue of promoting daily physical activity. Future work is pointed out in applying the present model and framework, defining efficient ways of evaluating individual tailoring components, and improving effectiveness through the creation of accurate and complete user- and context models. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Real-Time Extended Interface Automata for Software Testing Cases Generation

    Shunkun Yang

    2014-01-01

    Full Text Available Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system.

  6. Real-Time Extended Interface Automata for Software Testing Cases Generation

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  7. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  8. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  9. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  10. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  11. V-Man Generation for 3-D Real Time Animation. Chapter 5

    Nebel, Jean-Christophe; Sibiryakov, Alexander; Ju, Xiangyang

    2007-01-01

    The V-Man project has developed an intuitive authoring and intelligent system to create, animate, control and interact in real-time with a new generation of 3D virtual characters: The V-Men. It combines several innovative algorithms coming from Virtual Reality, Physical Simulation, Computer Vision, Robotics and Artificial Intelligence. Given a high-level task like "walk to that spot" or "get that object", a V-Man generates the complete animation required to accomplish the task. V-Men synthesise motion at runtime according to their environment, their task and their physical parameters, drawing upon its unique set of skills manufactured during the character creation. The key to the system is the automated creation of realistic V-Men, not requiring the expertise of an animator. It is based on real human data captured by 3D static and dynamic body scanners, which is then processed to generate firstly animatable body meshes, secondly 3D garments and finally skinned body meshes.

  12. Self-motion perception: assessment by real-time computer-generated animations

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  13. A Preliminary Examination of the Second Generation CMORPH Real-time Production

    Joyce, R.; Xie, P.; Wu, S.

    2017-12-01

    The second generation CMORPH (CMORPH2) has started test real-time production of 30-minute precipitation estimates on a 0.05olat/lon grid over the entire globe, from pole-to-pole. The CMORPH2 is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) and LEO platforms, and precipitation simulations from the NCEP operational global forecast system (GFS). Inputs from the various sources are first inter-calibrated to ensure quantitative consistencies in representing precipitation events of different intensities through PDF calibration against a common reference standard. The inter-calibrated PMW retrievals and IR-based precipitation estimates are then propagated from their respective observation times to the target analysis time along the motion vectors of the precipitating clouds. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the GFS precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. The propagated PMW and IR based precipitation estimates are finally integrated into a single field of global precipitation through the Kalman Filter framework. A set of procedures have been established to examine the performance of the CMORPH2 real-time production. CMORPH2 satellite precipitation estimates are compared against the CPC daily gauge analysis, Stage IV radar precipitation over the CONUS, and numerical model forecasts to discover potential shortcomings and quantify improvements against the first generation CMORPH. Special attention has been focused on the CMORPH behavior over high-latitude areas beyond the coverage of the first

  14. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  15. A New Generation of Real-Time Systems in the JET Tokamak

    Alves, Diogo; Neto, Andre C.; Valcarcel, Daniel F.; Felton, Robert; Lopez, Juan M.; Barbalace, Antonio; Boncagni, Luca; Card, Peter; De Tommasi, Gianmaria; Goodyear, Alex; Jachmich, Stefan; Lomas, Peter J.; Maviglia, Francesco; McCullen, Paul; Murari, Andrea; Rainford, Mark; Reux, Cedric; Rimini, Fernanda; Sartori, Filippo; Stephen, Adam V.; Vega, Jesus; Vitelli, Riccardo; Zabeo, Luca; Zastrow, Klaus-Dieter

    2014-04-01

    Recently, a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of JET's well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real-time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities together with the kernel's CPU isolation mechanism allows one to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multi-core architectures. In the past year, four new systems based on this philosophy have been installed and are now part of JET's routine operation. The focus of the present work is on the configuration aspects that enable these new systems' real-time capability. Details are given about the common real-time configuration of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronizing over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.

  16. Real-time LMR control parameter generation using advanced adaptive synthesis

    King, R.W.; Mott, J.E.

    1990-01-01

    The reactor ''delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups. A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to +/-1%. 5 refs., 7 figs

  17. LCFM - LIVING COLOR FRAME MAKER: PC GRAPHICS GENERATION AND MANAGEMENT TOOL FOR REAL-TIME APPLICATIONS

    Truong, L. V.

    1994-01-01

    Computer graphics are often applied for better understanding and interpretation of data under observation. These graphics become more complicated when animation is required during "run-time", as found in many typical modern artificial intelligence and expert systems. Living Color Frame Maker is a solution to many of these real-time graphics problems. Living Color Frame Maker (LCFM) is a graphics generation and management tool for IBM or IBM compatible personal computers. To eliminate graphics programming, the graphic designer can use LCFM to generate computer graphics frames. The graphical frames are then saved as text files, in a readable and disclosed format, which can be easily accessed and manipulated by user programs for a wide range of "real-time" visual information applications. For example, LCFM can be implemented in a frame-based expert system for visual aids in management of systems. For monitoring, diagnosis, and/or controlling purposes, circuit or systems diagrams can be brought to "life" by using designated video colors and intensities to symbolize the status of hardware components (via real-time feedback from sensors). Thus status of the system itself can be displayed. The Living Color Frame Maker is user friendly with graphical interfaces, and provides on-line help instructions. All options are executed using mouse commands and are displayed on a single menu for fast and easy operation. LCFM is written in C++ using the Borland C++ 2.0 compiler for IBM PC series computers and compatible computers running MS-DOS. The program requires a mouse and an EGA/VGA display. A minimum of 77K of RAM is also required for execution. The documentation is provided in electronic form on the distribution medium in WordPerfect format. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools

  18. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    Arndt, S.A.

    1997-07-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.

  19. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    Arndt, S.A.

    1997-01-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities

  20. Computer Tool for Automatically Generated 3D Illustration in Real Time from Archaeological Scanned Pieces

    Luis López

    2012-11-01

    Full Text Available The graphical documentation process of archaeological pieces requires the active involvement of a professional artist to recreate beautiful illustrations using a wide variety of expressive techniques. Frequently, the artist’s work is limited by the inconvenience of working only with the photographs of the pieces he is going to illustrate. This paper presents a software tool that allows the easy generation of illustrations in real time from 3D scanned models. The developed interface allows the user to simulate very elaborate artistic styles through the creation of diagrams by using the available virtual lights. The software processes the diagrams to render an illustration from any given angle or position. Among the available virtual lights, there are well known techniques as silhouettes enhancement, hatching or toon shading.

  1. Real-time generation of the Wigner distribution of complex functions using phase conjugation in photorefractive materials.

    Sun, P C; Fainman, Y

    1990-09-01

    An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.

  2. Real-time shadows

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  3. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting

    László Szécsi

    2017-12-01

    Full Text Available Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software, which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

  4. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  5. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  6. Interactive Light Stimulus Generation with High Performance Real-Time Image Processing and Simple Scripting.

    Szécsi, László; Kacsó, Ágota; Zeck, Günther; Hantz, Péter

    2017-01-01

    Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

  7. Real-time systems

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  8. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  9. Cooperating Expert Systems for the Next Generation of Real-time Monitoring Applications

    Schwuttke, U.; Veregge, J.; Quan, A.

    1995-01-01

    A distributed monitoring and diagnosis system has been developed and successfully applied to real-time monitoring of interplanetary spacecraft at NASA's Jet Propulsion Laboratory. This system uses a combination of conventional processing and artificial intelligence.

  10. Patterns for automatic generation of soft real-time system models

    Florescu, O.; Voeten, J.P.M.; Theelen, B.D.; Corporaal, H.

    2009-01-01

    Worst-case assumptions about the timing of systems are often too conservative when analyzing distributed soft real-time systems as they lead to over-dimensioned and expensive products. For these systems, a certain percentage of deadline misses is often affordable. Instead of a binary answer

  11. Chemical luminescence measurement of singlet oxygen generated by photodynamic therapy in solutions in real time

    Luo, Shiming; Xing, Da; Zhou, Jing; Qin, Yanfang; Chen, Qun

    2005-04-01

    Photodynamic therapy (PDT) is a cancer therapy that utilizes optical energy to activate a photosensitizer drug in a target tissue. Reactive oxygen species (ROS), such as 1O2 and superoxide, are believed to be the major cytotoxic agents involved in PDT. Although current PDT dosimetry mostly involves measurements of light and photosensitizer doses delivered to a patient, the quantification of ROS production during a treatment would be the ultimate dosimetry of PDT. Technically, it is very difficult and expensive to directly measure the fluorescence from 1O2, due to its extreme short lifetime and weak signal strength. In this paper, Photofrin(R) and 635nm laser were used to generate 1O2 and superoxide in a PDT in solution. Compound 3,7- dihydro-6-{4-[2-(N"-(5-fluoresceinyl) thioureido) ethoxy] phenyl}-2- methylimidazo{1,2-a} pyrazin-3-one sodium salt,an Cyp- ridina luciferin analog commonly referred as FCLA, was used as a chemical reporter of ROS. The 532nm chemiluminescence (CL) from the reaction of the FCLA and ROS was detected with a photon multiplier tube (PMT) system operating at single photon counting mode. With the setup, we have made detections of ROS generated by PDT in real time. By varying the amount of conventional PDT dosage (photosensitizer concentration, light irradiation fluence and its delivery rate) and the amount of FCLA, the intensity of CL and its consumption rate were investigated. The results show that the intensity and temporal profile of CL are highly related to the PDT treatment parameters. This suggests that FCLA CL may provide a highly potential alternative for ROS detection during PDT.

  12. PC graphics generation and management tool for real-time applications

    Truong, Long V.

    1992-01-01

    A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.

  13. Generation of real-time global ionospheric map based on the global GNSS stations with only a sparse distribution

    Li, Zishen; Wang, Ningbo; Li, Min; Zhou, Kai; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    The Earth's ionosphere is part of the atmosphere stretching from an altitude of about 50 km to more than 1000 km. When the Global Navigation Satellite System (GNSS) signal emitted from a satellite travels through the ionosphere before reaches a receiver on or near the Earth surface, the GNSS signal is significantly delayed by the ionosphere and this delay bas been considered as one of the major errors in the GNSS measurement. The real-time global ionospheric map calculated from the real-time data obtained by global stations is an essential method for mitigating the ionospheric delay for real-time positioning. The generation of an accurate global ionospheric map generally depends on the global stations with dense distribution; however, the number of global stations that can produce the real-time data is very limited at present, which results that the generation of global ionospheric map with a high accuracy is very different when only using the current stations with real-time data. In view of this, a new approach is proposed for calculating the real-time global ionospheric map only based on the current stations with real-time data. This new approach is developed on the basis of the post-processing and the one-day predicted global ionospheric map from our research group. The performance of the proposed approach is tested by the current global stations with the real-time data and the test results are also compared with the IGS-released final global ionospheric map products.

  14. Inspiring the Next Generation through Real Time Access to Ocean Exploration

    Bell, K. L.; Ballard, R. D.; Witten, A. B.; O'Neal, A.; Argenta, J.

    2011-12-01

    Using live-access exposure to actual shipboard research activities where exciting discoveries are made can be a key contributor to engaging students and their families in learning about earth science and STEM subjects. The number of bachelor's degrees awarded annually in the Earth sciences peaked at nearly 8000 in 1984, and has since declined more than 50%; for the last several years, the number of bachelor's degrees issued in U.S. schools in the geosciences has hovered around 2500 (AGI, 2009). In 2008, the last year for which the data are published, only 533 Ph.D.s were awarded in Earth, Atmospheric and Ocean sciences (NSF, 2009). By 2030, the supply of geoscientists for the petroleum industry is expected to fall short of the demand by 30,000 scientists (AGI, 2009). The National Science Foundation (NSF) reports that minority students earn approximately 15% of all bachelor's degrees in science and engineering, but only 4.6% of degrees in the geosciences. Both of these percentages are very low in comparison to national and state populations, where Hispanics and African-Americans make up 29% of the U.S. overall. The Ocean Exploration Trust (OET) is a non-profit organization whose mission is to explore the world's ocean, and to capture the excitement of that exploration for audiences of all ages, but primarily to inspire and motivate the next generation of explorers. The flagship of OET's exploratory programs is the Exploration Vessel Nautilus, on which annual expeditions are carried out to support our mission. The ship is equipped with state of the art satellite telecommunications "telepresence" technology that enables 24/7 world-wide real time access to the data being collected by the ships remotely operated vehicles. It is this "live" access that affords OET and its partners the opportunity to engage and inspire audiences across the United States and abroad. OET has formed partnerships with a wide-range of educational organizations that collectively offer life-time

  15. A new generation of real-time DOS technology for mission-oriented system integration and operation

    Jensen, E. Douglas

    1988-01-01

    Information is given on system integration and operation (SIO) requirements and a new generation of technical approaches for SIO. Real-time, distribution, survivability, and adaptability requirements and technical approaches are covered. An Alpha operating system program management overview is outlined.

  16. Forecast generation for real-time control of urban drainage systems using greybox modelling and radar rainfall

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik

    2012-01-01

    We present stochastic flow forecasts to be used in a real-time control setup for urban drainage systems. The forecasts are generated using greybox models with rain gauge and radar rainfall observations as input. Predictions are evaluated as intervals rather than just mean values. We obtain...

  17. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  18. Real time hardware implementation of power converters for grid integration of distributed generation and STATCOM systems

    Jaithwa, Ishan

    Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.

  19. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration.

    Sato, Hirochika; Kakue, Takashi; Ichihashi, Yasuyuki; Endo, Yutaka; Wakunami, Koki; Oi, Ryutaro; Yamamoto, Kenji; Nakayama, Hirotaka; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2018-01-24

    Although electro-holography can reconstruct three-dimensional (3D) motion pictures, its computational cost is too heavy to allow for real-time reconstruction of 3D motion pictures. This study explores accelerating colour hologram generation using light-ray information on a ray-sampling (RS) plane with a graphics processing unit (GPU) to realise a real-time holographic display system. We refer to an image corresponding to light-ray information as an RS image. Colour holograms were generated from three RS images with resolutions of 2,048 × 2,048; 3,072 × 3,072 and 4,096 × 4,096 pixels. The computational results indicate that the generation of the colour holograms using multiple GPUs (NVIDIA Geforce GTX 1080) was approximately 300-500 times faster than those generated using a central processing unit. In addition, the results demonstrate that 3D motion pictures were successfully reconstructed from RS images of 3,072 × 3,072 pixels at approximately 15 frames per second using an electro-holographic reconstruction system in which colour holograms were generated from RS images in real time.

  20. Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform

    Ouhrouche, Mohand [Department of Applied Sciences, University of Quebec at Chicoutimi, Quebec, G7H2B1 (Canada)

    2009-03-15

    Due to its simple construction, ruggedness and low cost, the induction generator driven by a wind turbine and feeding power to the grid appears to be an attractive solution to the problem of growing energy demand in the context of environmental issues. This paper investigates the integration of such a system into the main utility using RT-Lab trademark (Trademark of Opal-RT Technologies) software package running on a simple off-the-shelf PC. This real-time simulation platform is now adopted by many high-tech industries as a real-time laboratory package for rapid control prototyping and for Hardware-in-the-Loop applications. Real-time digital simulation results obtained during contingencies, such as islanding and unbalanced faults are presented and analysed. (author)

  1. A method for real-time generation of augmented reality work instructions via expert movements

    Bhattacharya, Bhaskar; Winer, Eliot

    2015-03-01

    Augmented Reality (AR) offers tremendous potential for a wide range of fields including entertainment, medicine, and engineering. AR allows digital models to be integrated with a real scene (typically viewed through a video camera) to provide useful information in a variety of contexts. The difficulty in authoring and modifying scenes is one of the biggest obstacles to widespread adoption of AR. 3D models must be created, textured, oriented and positioned to create the complex overlays viewed by a user. This often requires using multiple software packages in addition to performing model format conversions. In this paper, a new authoring tool is presented which uses a novel method to capture product assembly steps performed by a user with a depth+RGB camera. Through a combination of computer vision and imaging process techniques, each individual step is decomposed into objects and actions. The objects are matched to those in a predetermined geometry library and the actions turned into animated assembly steps. The subsequent instruction set is then generated with minimal user input. A proof of concept is presented to establish the method's viability.

  2. COMDES-II: A Component-Based Framework for Generative Development of Distributed Real-Time Control Systems

    Ke, Xu; Sierszecki, Krzysztof; Angelov, Christo K.

    2007-01-01

    The paper presents a generative development methodology and component models of COMDES-II, a component-based software framework for distributed embedded control systems with real-time constraints. The adopted methodology allows for rapid modeling and validation of control software at a higher lev...... methodology for COMDES-II from a general perspective, describes the component models in details and demonstrates their application through a DC-Motor control system case study.......The paper presents a generative development methodology and component models of COMDES-II, a component-based software framework for distributed embedded control systems with real-time constraints. The adopted methodology allows for rapid modeling and validation of control software at a higher level...

  3. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  4. Real-time generation of kd-trees for ray tracing using DirectX 11

    Säll, Martin; Cronqvist, Fredrik

    2017-01-01

    Context. Ray tracing has always been a simple but effective way to create a photorealistic scene but at a greater cost when expanding the scene. Recent improvements in GPU and CPU hardware have made ray tracing faster, making more complex scenes possible with the same amount of time needed to process the scene. Despite the improvements in hardware ray tracing is still rarely run at a interactive speed. Objectives. The aim of this experiment was to implement a new kdtree generation algorithm us...

  5. Real Time Revisited

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  6. Performance comparison of next generation controller and MPC in real time for a SISO process with low cost DAQ unit

    V. Bagyaveereswaran

    2016-09-01

    Full Text Available In this paper, a brief overview of real time implementation of next generation Robust, Tracking, Disturbance rejecting, Aggressive (RTDA controller and Model Predictive Control (MPC is provided. The control algorithm is implemented through MATLAB. The plant model used in controller design is obtained using system identification tool and integral response method. The controller model is developed in Simulink using jMPC tool, which will be executed in real time. The outputs obtained are tested for various constraint values to obtain the desirable results. The implementation of Hardware in Loop is done by interfacing it with MATLAB using Arduino as data acquisition unit. The performance of RTDA is compared with those of MPC and Proportional Integral controller.

  7. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Harvesting Social Media for Generation of Near Real-time Flood Maps

    Eilander, Dirk; Trambauer, Patricia; Wagemaker, Jurjen; Van Loenen, Arnejan

    2016-01-01

    Social media are a new, big and exciting source of data. Rather than from traditional sensors and models, this data is from local people experiencing real-world phenomena, such as flood events. During floods, disaster managers often have trouble getting an accurate overview of the current situation.

  9. Project of Near-Real-Time Generation of ShakeMaps and a New Hazard Map in Austria

    Jia, Yan; Weginger, Stefan; Horn, Nikolaus; Hausmann, Helmut; Lenhardt, Wolfgang

    2016-04-01

    Target-orientated prevention and effective crisis management can reduce or avoid damage and save lives in case of a strong earthquake. To achieve this goal, a project for automatic generated ShakeMaps (maps of ground motion and shaking intensity) and updating the Austrian hazard map was started at ZAMG (Zentralanstalt für Meteorologie und Geodynamik) in 2015. The first goal of the project is set for a near-real-time generation of ShakeMaps following strong earthquakes in Austria to provide rapid, accurate and official information to support the governmental crisis management. Using newly developed methods and software by SHARE (Seismic Hazard Harmonization in Europe) and GEM (Global Earthquake Model), which allows a transnational analysis at European level, a new generation of Austrian hazard maps will be ultimately calculated. More information and a status of our project will be given by this presentation.

  10. Real Time Synchronization of Live Broadcast Streams with User Generated Content and Social Network Streams

    Stokking, H.M.; Kaptein, A.M.; Veenhuizen, A.T.; Spitters4, M.M.; Niamut, O.A.

    2013-01-01

    This paper describes the work in the FP7 STEER project on augmenting a live broadcast with live user generated content. This user generated content consists of both video content, captured with mobile devices, and social network content, such as Facebook or Twitter messages. To enable multi-source

  11. Real Time Systems

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  12. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets

    Hudson, C.R.

    2001-10-24

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.

  13. Real Time Monitoring and Test Vector Generation for Improved Flight Safety, Phase II

    National Aeronautics and Space Administration — As the complexity of flight controllers grows so does the cost associated with verification and validation (V&V). Current-generation controllers are reaching...

  14. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets; TOPICAL

    Hudson, C.R.

    2001-01-01

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects

  15. Real-time Distributed Economic Dispatch forDistributed Generation Based on Multi-Agent System

    Luo, Kui; Wu, Qiuwei; Nielsen, Arne Hejde

    2015-01-01

    The distributed economic dispatch for distributed generation is formulated as a optimization problem with equality and inequality constraints. An effective distributed approach based on multi-agent system is proposed for solving the economic dispatch problem in this paper. The proposed approach...... consists of two stages. In the first stage, an adjacency average allocation algorithm is proposed to ensure the generation-demand equality. In the second stage, a local replicator dynamics algorithm is applied to achieve nash equilibrium for the power dispatch game. The approach is implemented in a fully...

  16. Real-time UAV trajectory generation using feature points matching between video image sequences

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  17. Real-time scene and signature generation for ladar and imaging sensors

    Swierkowski, Leszek; Christie, Chad L.; Antanovskii, Leonid; Gouthas, Efthimios

    2014-05-01

    This paper describes development of two key functionalities within the VIRSuite scene simulation program, broadening its scene generation capabilities and increasing accuracy of thermal signatures. Firstly, a new LADAR scene generation module has been designed. It is capable of simulating range imagery for Geiger mode LADAR, in addition to the already existing functionality for linear mode systems. Furthermore, a new 3D heat diffusion solver has been developed within the VIRSuite signature prediction module. It is capable of calculating the temperature distribution in complex three-dimensional objects for enhanced dynamic prediction of thermal signatures. With these enhancements, VIRSuite is now a robust tool for conducting dynamic simulation for missiles with multi-mode seekers.

  18. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  19. Mood Expression in Real-Time Computer Generated Music using Pure Data

    Scirea, Marco; Nelson, Mark; Cheong, Yun-Gyung

    2014-01-01

    This paper presents an empirical study that investigated if procedurally generated music based on a set of musical features can elicit a target mood in the music listener. Drawn from the two-dimensional affect model proposed by Russell, the musical features that we have chosen to express moods...... are intensity, timbre, rhythm, and dissonances. The eight types of mood investigated in this study are being bored, content, happy, miserable, tired, fearful, peaceful, and alarmed. We created 8 short music clips using PD (Pure Data) programming language, each of them represents a particular mood. We carried...

  20. Real time expert systems

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  1. Wind farms generation limits and its impact in real-time voltage stability assessment

    Perez, Angel; Jóhannsson, Hjörtur; Østergaard, Jacob

    2015-01-01

    . Thismethodology is tested in a platform that produces synthesizedPMU measurements from time-domain simulations and criticalboundary for the wind-farm limits are shown. The methodology isalso tested for synchronous machines and its parallel structure isexploited when implemented in a High Performance...

  2. VME-Real-Time Data Acquisition for the Ultracryogenic Gravitational Antenna of the Third Generation

    Mazzitelli, G. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-05-01

    It is described a new design of the front-end electronics for the data acquisition of NAUTILUS, the first ultra cryogenic resonant gravitational wave detector, operating in the INFN National Laboratories of Frascati. The improved sensitivity of this kind of detector poses new requirements on the data acquisition, as more speed, amplitude and timing accuracy are needed. In this work it is discussed the result obtained with a new front-end configuration based on VME standard for a data acquisition rate of 5kHz (present rate 220 Hz). Is it also described the data acquisition system for the cosmic ray telescope assembled around NAUTILUS and the timing system of both the components.

  3. PREDICT: A next generation platform for near real-time prediction of cholera

    Jutla, A.; Aziz, S.; Akanda, A. S.; Alam, M.; Ahsan, G. U.; Huq, A.; Colwell, R. R.

    2017-12-01

    Data on disease prevalence and infectious pathogens is sparingly collected/available in region(s) where climatic variability and extreme natural events intersect with population vulnerability (such as lack of access to water and sanitation infrastructure). Therefore, traditional time series modeling approach of calibration and validation of a model is inadequate. Hence, prediction of diarrheal infections (such as cholera, Shigella etc) remain a challenge even though disease causing pathogens are strongly associated with modalities of regional climate and weather system. Here we present an algorithm that integrates satellite derived data on several hydroclimatic and ecological processes into a framework that can determine high resolution cholera risk on global scales. Cholera outbreaks can be classified in three forms- epidemic (sudden or seasonal outbreaks), endemic (recurrence and persistence of the disease for several consecutive years) and mixed-mode endemic (combination of certain epidemic and endemic conditions) with significant spatial and temporal heterogeneity. Using data from multiple satellites (AVHRR, TRMM, GPM, MODIS, VIIRS, GRACE), we will show examples from Haiti, Yemen, Nepal and several other regions where our algorithm has been successful in capturing risk of outbreak of infection in human population. A spatial model validation algorithm will also be presented that has capabilities to self-calibrate as new hydroclimatic and disease data become available.

  4. Evaluation of multiple hydraulic models in generating design/near-real time flood inundation extents under various geophysical settings

    Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.

    2015-12-01

    Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.

  5. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).

  6. ALL-ELECTRONIC DROPLET GENERATION ON-CHIP WITH REAL-TIME FEEDBACK CONTROL FOR EWOD DIGITIAL MICROFLUIDICS

    Gong, Jian; Kim, Chang-Jin “CJ”

    2009-01-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabricaion and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1:x (x < 1) mixing, in comparison to the previously considered n:m mixing (i.e., n and m unit droplets). PMID:18497909

  7. Real-time radiography

    Bossi, R.H.; Oien, C.T.

    1981-01-01

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  8. Property Analysis of the Real-Time Uncalibrated Phase Delay Product Generated by Regional Reference Stations and Its Influence on Precise Point Positioning Ambiguity Resolution

    Yong Zhang

    2017-05-01

    Full Text Available The real-time estimation of the wide-lane and narrow-lane Uncalibrated Phase Delay (UPD of satellites is realized by real-time data received from regional reference station networks; The properties of the real-time UPD product and its influence on real-time precise point positioning ambiguity resolution (RTPPP-AR are experimentally analyzed according to real-time data obtained from the regional Continuously Operating Reference Stations (CORS network located in Tianjin, Shanghai, Hong Kong, etc. The results show that the real-time wide-lane and narrow-lane UPD products differ significantly from each other in time-domain characteristics; the wide-lane UPDs have daily stability, with a change rate of less than 0.1 cycle/day, while the narrow-lane UPDs have short-term stability, with significant change in one day. The UPD products generated by different regional networks have obvious spatial characteristics, thus significantly influencing RTPPP-AR: the adoption of real-time UPD products employing the sparse stations in the regional network for estimation is favorable for improving the regional RTPPP-AR up to 99%; the real-time UPD products of different regional networks slightly influence PPP-AR positioning accuracy. After ambiguities are successfully fixed, the real-time dynamic RTPPP-AR positioning accuracy is better than 3 cm in the plane and 8 cm in the upward direction.

  9. Towards a Cloud Computing Environment: Near Real-time Cloud Product Processing and Distribution for Next Generation Satellites

    Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.

    2016-12-01

    The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.

  10. ertCPN: The adaptations of the coloured Petri-Net theory for real-time embedded system modeling and automatic code generation

    Wattanapong Kurdthongmee

    2003-05-01

    Full Text Available A real-time system is a computer system that monitors or controls an external environment. The system must meet various timing and other constraints that are imposed on it by the real-time behaviour of the external world. One of the differences between a real-time and a conventional software is that a real-time program must be both logically and temporally correct. To successfully design and implement a real-time system, some analysis is typically done to assure that requirements or designs are consistent and that they satisfy certain desirable properties that may not be immediately obvious from specification. Executable specifications, prototypes and simulation are particularly useful in real-time systems for debugging specifications. In this paper, we propose the adaptations to the coloured Petri-net theory to ease the modeling, simulation and code generation process of an embedded, microcontroller-based, real-time system. The benefits of the proposed approach are demonstrated by use of our prototype software tool called ENVisAge (an Extended Coloured Petri-Net Based Visual Application Generator Tool.

  11. Real-time specifications

    David, A.; Larsen, K.G.; Legay, A.

    2015-01-01

    A specification theory combines notions of specifications and implementations with a satisfaction relation, a refinement relation, and a set of operators supporting stepwise design. We develop a specification framework for real-time systems using Timed I/O Automata as the specification formalism......, with the semantics expressed in terms of Timed I/O Transition Systems. We provide constructs for refinement, consistency checking, logical and structural composition, and quotient of specifications-all indispensable ingredients of a compositional design methodology. The theory is implemented in the new tool Ecdar...

  12. Route around real time

    Terrier, Francois

    1996-01-01

    The greater and greater autonomy and complexity asked to the control and command systems lead to work on introducing techniques such as Artificial Intelligence or concurrent object programming in industrial applications. However, while the critical feature of these systems impose to control the dynamics of the proposed solutions, their complexity often imposes a high adaptability to a partially modelled environment. The studies presented start from low level control and command systems to more complex applications at higher levels, such as 'supervision systems'. Techniques such as temporal reasoning and uncertainty management are proposed for the first studies, while the second are tackled with programming techniques based on the real time object paradigm. The outcomes of this itinerary crystallize on the ACCORD project which targets to manage - on the whole life cycle of a real time application - these two problematics, sometimes antagonistic: control of the dynamics and adaptivity. (author) [fr

  13. Real time falling leaves

    Vázquez Alcocer, Pere Pau; Balsa, Marcos

    2007-01-01

    There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount...

  14. Real Time Strategy Language

    Hayes, Roy; Beling, Peter; Scherer, William

    2014-01-01

    Real Time Strategy (RTS) games provide complex domain to test the latest artificial intelligence (AI) research. In much of the literature, AI systems have been limited to playing one game. Although, this specialization has resulted in stronger AI gaming systems it does not address the key concerns of AI researcher. AI researchers seek the development of AI agents that can autonomously interpret learn, and apply new knowledge. To achieve human level performance, current AI systems rely on game...

  15. Real Time Processing

    CERN. Geneva; ANDERSON, Dustin James; DOGLIONI, Caterina

    2015-01-01

    The LHC provides experiments with an unprecedented amount of data. Experimental collaborations need to meet storage and computing requirements for the analysis of this data: this is often a limiting factor in the physics program that would be achievable if the whole dataset could be analysed. In this talk, I will describe the strategies adopted by the LHCb, CMS and ATLAS collaborations to overcome these limitations and make the most of LHC data: data parking, data scouting, and real-time analysis.

  16. Hard Real-Time Networking on Firewire

    Zhang, Yuchen; Orlic, Bojan; Visser, Peter; Broenink, Jan

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  17. Real-time and encryption efficiency improvements of simultaneous fusion, compression and encryption method based on chaotic generators

    Jridi, Maher; Alfalou, Ayman

    2018-03-01

    In this paper, enhancement of an existing optical simultaneous fusion, compression and encryption (SFCE) scheme in terms of real-time requirements, bandwidth occupation and encryption robustness is proposed. We have used and approximate form of the DCT to decrease the computational resources. Then, a novel chaos-based encryption algorithm is introduced in order to achieve the confusion and diffusion effects. In the confusion phase, Henon map is used for row and column permutations, where the initial condition is related to the original image. Furthermore, the Skew Tent map is employed to generate another random matrix in order to carry out pixel scrambling. Finally, an adaptation of a classical diffusion process scheme is employed to strengthen security of the cryptosystem against statistical, differential, and chosen plaintext attacks. Analyses of key space, histogram, adjacent pixel correlation, sensitivity, and encryption speed of the encryption scheme are provided, and favorably compared to those of the existing crypto-compression system. The proposed method has been found to be digital/optical implementation-friendly which facilitates the integration of the crypto-compression system on a very broad range of scenarios.

  18. Real Time Text Analysis

    Senthilkumar, K.; Ruchika Mehra Vijayan, E.

    2017-11-01

    This paper aims to illustrate real time analysis of large scale data. For practical implementation we are performing sentiment analysis on live Twitter feeds for each individual tweet. To analyze sentiments we will train our data model on sentiWordNet, a polarity assigned wordNet sample by Princeton University. Our main objective will be to efficiency analyze large scale data on the fly using distributed computation. Apache Spark and Apache Hadoop eco system is used as distributed computation platform with Java as development language

  19. Real time Faraday spectrometer

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  20. Real time Faraday spectrometer

    Smith, T.E.; Struve, K.W.; Colella, N.J.

    1991-01-01

    This patent describes an invention which uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements

  1. First Demonstration of Real-Time End-to-End 40 Gb/s PAM-4 System using 10-G Transmitter for Next Generation Access Applications

    Wei, Jinlong; Eiselt, Nicklas; Griesser, Helmut

    We demonstrate the first known experiment of a real-time end-to-end 40-Gb/s PAM-4 system for next generation access applications using 10G class transmitters only. Up to 25-dB upstream link budget for 20 km SMF is achieved.......We demonstrate the first known experiment of a real-time end-to-end 40-Gb/s PAM-4 system for next generation access applications using 10G class transmitters only. Up to 25-dB upstream link budget for 20 km SMF is achieved....

  2. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  3. UNAVCO Geodetic HIgh-Rate and Real-Time Products and Services: A next generation geodetic network

    Mattioli, G. S.; Mencin, D.; Meertens, C. M.; Feaux, K.; Looney, S.

    2012-12-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1 Hz) and low latency (transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in our data center. In addition, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time GPS data over the next decade. Additionally, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. As part of this upgrade UNAVCO is also exploring making the 75 PBO borehole strainmeter sites, whose data are now collected with a latency of 24 hours, available in SEED format in real-time in the near future, providing an opportunity to combine high-rate surface positioning and strain data together.

  4. Real time production optimization

    Saputelli, Luigi; Otavio, Joao; Araujo, Turiassu; Escorcia, Alvaro [Halliburton, Houston, TX (United States). Landmark Division

    2004-07-01

    Production optimization encompasses various activities of measuring, analyzing, modeling, prioritizing and implementing actions to enhance productivity of a field. We present a state-of-the-art framework for optimizing production on a continuous basis as new sensor data is acquired in real time. Permanently acquired data is modeled and analyzed in order to create predictive models. A model based control strategy is used to regulate well and field instrumentation. The optimum field operating point, which changes with time, satisfies the maximum economic return. This work is a starting point for further development in automatic, intelligent reservoir technologies which get the most out of the abilities of permanent, instrumented wells and remotely activated downhole completions. The strategy, tested with history-matched data from a compartmentalised giant field, proved to reduce operating costs while increasing oil recovery by 27% in this field. (author)

  5. Real time urbanism

    Ana Ruiz Varona

    2012-12-01

    Full Text Available Nowadays, given the technological revolution of the society of information, the administrative management of the cities faces a new problem not as related to the projection of the urban space as to the capacity of controlling and measuring the process of direct and centralized production of the cities by part of some non-homogeneous social multitudes, in a hyper-accelerated time towards instantaneity. Against libertarian apologies of the new “participative urbanisms”, the article puts forward a discourse that shows the lost associated to the new problem of temporal instantaneity. In this regard we claim new process of mediation that allow administrations and urbanist monitoring the production of the city. To that end, a previous and necessary step will be the redefinition of the role of a new real time urbanist.

  6. ROSMOD: A Toolsuite for Modeling, Generating, Deploying, and Managing Distributed Real-time Component-based Software using ROS

    Pranav Srinivas Kumar

    2016-09-01

    Full Text Available This paper presents the Robot Operating System Model-driven development tool suite, (ROSMOD an integrated development environment for rapid prototyping component-based software for the Robot Operating System (ROS middleware. ROSMOD is well suited for the design, development and deployment of large-scale distributed applications on embedded devices. We present the various features of ROSMOD including the modeling language, the graphical user interface, code generators, and deployment infrastructure. We demonstrate the utility of this tool with a real-world case study: an Autonomous Ground Support Equipment (AGSE robot that was designed and prototyped using ROSMOD for the NASA Student Launch competition, 2014–2015.

  7. Real time spectrum analysis

    Blunden, A.; O'Prey, D.G.; Tait, W.H.

    1983-01-01

    A method is described for the separation of a composite pulse-height spectrum into its unresolved component parts, which belong to a set of measured library spectra. The method allows real-time estimation giving running estimates during acquisition of the spectrum, minimises computation space, especially for a number of parallel calculations, estimates in advance the rms errors, and produces a significance measure for the hypothesis that the composite contains only the library spectra. Least squares curve-fitting, and other methods, can be compared, with the formalism developed, allowing analytical comparison of the effect of detector energy resolution and detection efficiency. A rational basis for the choice between the various methods of spectrum analysis follows from the theory, minimising rms estimation errors. The method described is applicable for very low numbers of counts and poor resolution. (orig.)

  8. ISTTOK real-time architecture

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  9. ISTTOK real-time architecture

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-01-01

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel ® Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  10. Navigating New Worlds: A Real-Time Look at How Successful and Non-Successful First-Generation College Students Negotiate Their First Semesters

    Morales, Erik E.

    2012-01-01

    This study of fifteen first generation American college freshmen documents their initial semester with a focus on factors and dispositions contributing to eventual success or failure. Students were identified prior to campus arrival, allowing for immediate and real-time data collection as they were experiencing the beginning of their college…

  11. Using MathWorks' Simulink® and Real-Time Workshop® Code Generator to Produce Attitude Control Test and Flight Code

    Salada, Mark; Dellinger, Wayne

    1998-01-01

    This paper describes the use of a commercial product, MathWorks' RealTime Workshop® (RTW), to generate actual flight code for NASA's Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) mission. The Johns Hopkins University Applied Physics Laboratory is handling the design and construction of this satellite for NASA. As TIMED is scheduled to launch in May of the year 2000, software development for both ground and flight systems are well on their way. However, based on experien...

  12. Quantitative (real-time) PCR

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  13. Ovation Prime Real-Time

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  14. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  15. A Real Time Electronics Emulator with Realistic Data Generation for Reception Tests of the CMS ECAL Front-End Boards

    Romanteau, T; Collard, Caroline; Debraine, A; Decotigny, D; Dobrzynski, L; Karar, A; Regnault, N

    2005-01-01

    The CMS [1] electromagnetic calorimeter (ECAL) [2] uses 3 132 Front-End boards (FE) performing both trigger and data readout functions. Prior to their integration at CERN, the FE boards have to be validated by dedicated test bench systems. The final one, called "XFEST" (eXtended Front-End System Test) and for which the present developments have been performed, is located at Laboratoire Leprince-Ringuet. In this contribution, a solution is described to efficiently test a large set of complex electronics boards characterized by a large number of input ports and a high throughput data rate. To perform it, an algorithm to simulate the Very Front End signals has been emulated. The project firmwares use VHDL embedded into XILINX Field Programmable Gate Array circuits (FPGA). This contribution describes the solutions developed in order to create a realistic digital input patterns real-time emul ator working at 40 MHz. The implementation of a real time comparison of the FE output streams as well as the test bench wil...

  16. Real-time Pricing in Power Markets

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  17. Real-time Pricing in Power Markets

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  18. Dependable Real-Time Systems

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  19. Technical study of real-time simulation system for digital I and C system of steam generator in nuclear power plant

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2004-01-01

    The real-time simulation system, which forms a interactive closed circle together with the steam generator control system, has been developed using a dynamic mathematical model of steam generator in this paper. It can provide a simulation target for upgrades of digital Instrument and Control system in Nuclear Power Plant (NPP) and is applicable for further research of control schemes. With this program, the authors have studied and analyzed the response of transient parameters to some different disturbance, the calculated results are in good agreement with those calculated by NPP simulator program. This will give a theoretical analysis for upgrades of digital I and C system in nuclear power plant

  20. Generating Multispectral VIIRS Imagery in Near Real-Time for Use by the National Weather Service in Alaska

    Broderson, D.; Dierking, C.; Stevens, E.; Heinrichs, T. A.; Cherry, J. E.

    2016-12-01

    The Geographic Information Network of Alaska (GINA) at the University of Alaska Fairbanks (UAF) uses two direct broadcast antennas to receive data from a number of polar-orbiting weather satellites, including the Suomi National Polar Partnership (S-NPP) satellite. GINA uses data from S-NPP's Visible Infrared Imaging Radiometer Suite (VIIRS) to generate a variety of multispectral imagery products developed with the needs of the National Weather Service operational meteorologist in mind. Multispectral products have two primary advantages over single-channel products. First, they can more clearly highlight some terrain and meteorological features which are less evident in the component single channels. Second, multispectral present the information from several bands through just one image, thereby sparing the meteorologist unnecessary time interrogating the component single bands individually. With 22 channels available from the VIIRS instrument, the number of possible multispectral products is theoretically huge. A small number of products will be emphasized in this presentation, with the products chosen based on their proven utility in the forecasting environment. Multispectral products can be generated upstream of the end user or by the end user at their own workstation. The advantage and disadvantages of both approaches will be outlined. Lastly, the technique of improving the appearance of multispectral imagery by correcting for atmospheric reflectance at the shorter wavelengths will be described.

  1. Real time analysis under EDS

    Schneberk, D.

    1985-07-01

    This paper describes the analysis component of the Enrichment Diagnostic System (EDS) developed for the Atomic Vapor Laser Isotope Separation Program (AVLIS) at Lawrence Livermore National Laboratory (LLNL). Four different types of analysis are performed on data acquired through EDS: (1) absorption spectroscopy on laser-generated spectral lines, (2) mass spectrometer analysis, (3) general purpose waveform analysis, and (4) separation performance calculations. The information produced from this data includes: measures of particle density and velocity, partial pressures of residual gases, and overall measures of isotope enrichment. The analysis component supports a variety of real-time modeling tasks, a means for broadcasting data to other nodes, and a great degree of flexibility for tailoring computations to the exact needs of the process. A particular data base structure and program flow is common to all types of analysis. Key elements of the analysis component are: (1) a fast access data base which can configure all types of analysis, (2) a selected set of analysis routines, (3) a general purpose data manipulation and graphics package for the results of real time analysis. Each of these components are described with an emphasis upon how each contributes to overall system capability. 3 figs

  2. Detecting position using ARKit II: generating position-time graphs in real-time and further information on limitations of ARKit

    Dilek, Ufuk; Erol, Mustafa

    2018-05-01

    ARKit is a framework which allows developers to create augmented reality apps for the iPhone and iPad. In a previous study, we had shown that it could be used to detect position in educational physics experiments and emphasized that the ability to provide position data in real-time was one of the prominent features of this newly emerging technology. In this study, we demonstrate an example of how real-time data acquisition can be employed in educational settings, report some of the limitations of ARKit and how we have overcome these limitations. By means of ARKit or a similar framework, ordinary mobile devices can be adapted for use in microcomputer-based lab activities.

  3. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  4. Real Time Baseball Database

    Fukue, Yasuhiro

    The author describes the system outline, features and operations of "Nikkan Sports Realtime Basaball Database" which was developed and operated by Nikkan Sports Shimbun, K. K. The system enables to input numerical data of professional baseball games as they proceed simultaneously, and execute data updating at realtime, just-in-time. Other than serving as supporting tool for prepareing newspapers it is also available for broadcasting media, general users through NTT dial Q2 and others.

  5. Real-time vision systems

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  6. Technologies, Development Tools, and Patterns for Automatic Generation and Customization of Adaptable Distributed Real-Time and Embedded (DRE) Middleware

    Hatcliff, John; Dwyer, Matthew; Mizuno, Masaaki; Singh, Gurdip; Daugherty, Gary

    2005-01-01

    .... PCES work has shown how model-integrated computing and adaptive and flexible middleware frameworks can be applied for defining, analyzing, generating, and customizing large-scale high-assurance, high...

  7. Real-Time Parameter Identification

    National Aeronautics and Space Administration — Armstrong researchers have implemented in the control room a technique for estimating in real time the aerodynamic parameters that describe the stability and control...

  8. Prototyping real-time systems

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  9. Towards Real-Time Argumentation

    Vicente JULIÁN

    2016-07-01

    Full Text Available In this paper, we deal with the problem of real-time coordination with the more general approach of reaching real-time agreements in MAS. Concretely, this work proposes a real-time argumentation framework in an attempt to provide agents with the ability of engaging in argumentative dialogues and come with a solution for their underlying agreement process within a bounded period of time. The framework has been implemented and evaluated in the domain of a customer support application. Concretely, we consider a society of agents that act on behalf of a group of technicians that must solve problems in a Technology Management Centre (TMC within a bounded time. This centre controls every process implicated in the provision of technological and customer support services to private or public organisations by means of a call centre. The contract signed between the TCM and the customer establishes penalties if the specified time is exceeded.

  10. Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG-Based Wind Energy Conversion System

    Aman Abdulla Tanvir

    2015-09-01

    Full Text Available This paper presents the modeling, rapid control prototyping, and hardware-in-the-loop testing for real-time simulation and control of a grid-connected doubly fed induction generator (DFIG in a laboratory-size wind turbine emulator for wind energy conversation systems. The generator is modeled using the direct-quadrature rotating reference frame circuit along with the aligned stator flux, and the field-oriented control approach is applied for independent control of the active and reactive power and the DC-link voltage at the grid side. The control of the active, reactive power and the DC-link voltage are performed using a back-to-back converter at sub- and super-synchronous as well as at variable speeds. The control strategy is experimentally validated on an emulated wind turbine driven by the Opal-RT real-time simulator (OP5600 for simultaneous control of the DC-link voltage, active and reactive power.

  11. Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms.

    Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori; Yamamoto, Kenji; Kurita, Taiichiro

    2012-09-10

    We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

  12. Automated real-time software development

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  13. Augmented Reality for Real-Time Detection and Interpretation of Colorimetric Signals Generated by Paper-Based Biosensors.

    Russell, Steven M; Doménech-Sánchez, Antonio; de la Rica, Roberto

    2017-06-23

    Colorimetric tests are becoming increasingly popular in point-of-need analyses due to the possibility of detecting the signal with the naked eye, which eliminates the utilization of bulky and costly instruments only available in laboratories. However, colorimetric tests may be interpreted incorrectly by nonspecialists due to disparities in color perception or a lack of training. Here we solve this issue with a method that not only detects colorimetric signals but also interprets them so that the test outcome is understandable for anyone. It consists of an augmented reality (AR) app that uses a camera to detect the colored signals generated by a nanoparticle-based immunoassay, and that yields a warning symbol or message when the concentration of analyte is higher than a certain threshold. The proposed method detected the model analyte mouse IgG with a limit of detection of 0.3 μg mL -1 , which was comparable to the limit of detection afforded by classical densitometry performed with a nonportable device. When adapted to the detection of E. coli, the app always yielded a "hazard" warning symbol when the concentration of E. coli in the sample was above the infective dose (10 6 cfu mL -1 or higher). The proposed method could help nonspecialists make a decision about drinking from a potentially contaminated water source by yielding an unambiguous message that is easily understood by anyone. The widespread availability of smartphones along with the inexpensive paper test that requires no enzymes to generate the signal makes the proposed assay promising for analyses in remote locations and developing countries.

  14. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.

  15. Mobile real time radiography system

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  16. Mobile real time radiography system

    Vigil, J.; Taggart, D.; Betts, S.

    1997-01-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights ∼38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility

  17. Real-time wavefront processors for the next generation of adaptive optics systems: a design and analysis

    Truong, Tuan; Brack, Gary L.; Troy, Mitchell; Trinh, Thang; Shi, Fang; Dekany, Richard G.

    2003-02-01

    Adaptive optics (AO) systems currently under investigation will require at least two orders of magitude increase in the number of actuators, which in turn translates to effectively a 104 increase in compute latency. Since the performance of an AO system invariably improves as the compute latency decreases, it is important to study how today's computer systems will scale to address this expected increase in actuator utilization. This paper answers this question by characterizing the performance of a single deformable mirror (DM) Shack-Hartmann natural guide star AO system implemented on the present-generation digital signal processor (DSP) TMS320C6701 from Texas Instruments. We derive the compute latency of such a system in terms of a few basic parameters, such as the number of DM actuators, the number of data channels used to read out the camera pixels, the number of DSPs, the available memory bandwidth, as well as the inter-processor communication (IPC) bandwidth and the pixel transfer rate. We show how the results would scale for future systems that utilizes multiple DMs and guide stars. We demonstrate that the principal performance bottleneck of such a system is the available memory bandwidth of the processors and to lesser extent the IPC bandwidth. This paper concludes with suggestions for mitigating this bottleneck.

  18. Process algebra with timing : real time and discrete time

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  19. Process algebra with timing: Real time and discrete time

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  20. Demonstration of the First Real-Time End-to-End 40-Gb/s PAM-4 for Next-Generation Access Applications using 10-Gb/s Transmitter

    Wei, J. L.; Eiselt, Nicklas; Griesser, Helmut

    2016-01-01

    We demonstrate the first known experiment of a real-time end-to-end 40-Gb/s PAM-4 system for next-generation access applications using 10-Gb/s class transmitters only. Based on the measurement of a real-time 40-Gb/s PAM system, low-cost upstream and downstream link power budgets are estimated. Up...

  1. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    Wallin, Erik [Department of Physics, Umeå University, SE–901 87 Umeå (Sweden); Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Gonoskov, Arkady [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Marklund, Mattias [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden)

    2015-03-15

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  2. Real-time holographic endoscopy

    Smigielski, Paul; Albe, Felix; Dischli, Bernard

    1992-08-01

    Some new experiments concerning holographic endoscopy are presented. The quantitative measurements of deformations of objects are obtained by the double-exposure and double- reference beam method, using either a cw-laser or a pulsed laser. Qualitative experiments using an argon laser with time-average holographic endoscopy are also presented. A video film on real-time endoscopic holographic interferometry was recorded with the help of a frequency-doubled YAG-laser working at 25 Hz for the first time.

  3. Making the Grid "Smart" Through "Smart" Microgrids: Real-Time Power Management of Microgrids with Multiple Distributed Generation Sources Using Intelligent Control

    Nehrir, M. Hashem [Montana State Univ., Bozeman, MT (United States)

    2016-10-20

    investigated the following: • Intelligent load control - demand response (DR) - for frequency stabilization in islanded MGs (partially supported by PNNL). • The impact of high penetration of solar photovoltaic (PV)-generated power at the distribution level (partially supported by PNNL). • The application of AI approaches to renewable (wind, PV) power forecasting (proposed by the reviewers of our proposal). • Application of AI approaches and DR for real-time MG power management (partially supported by NEC Labs-America) • Application of DR in dealing with the variability of wind power • Real-time MG power management using DR and storage (partially supported by NEC Labs-America) • Application of DR in enhancing the performance of load-frequency controller • MAS-based whole-sale and retail power market design for smart grid A

  4. Real time automatic scene classification

    Verbrugge, R.; Israël, Menno; Taatgen, N.; van den Broek, Egon; van der Putten, Peter; Schomaker, L.; den Uyl, Marten J.

    2004-01-01

    This work has been done as part of the EU VICAR (IST) project and the EU SCOFI project (IAP). The aim of the first project was to develop a real time video indexing classification annotation and retrieval system. For our systems, we have adapted the approach of Picard and Minka [3], who categorized

  5. Real time freeway incident detection.

    2014-04-01

    The US Department of Transportation (US-DOT) estimates that over half of all congestion : events are caused by highway incidents rather than by rush-hour traffic in big cities. Real-time : incident detection on freeways is an important part of any mo...

  6. Real Time Conference 2016 Overview

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  7. Designing Real Time Assistive Technologies

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    2015-01-01

    activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2...

  8. Robust Co-Optimization to Energy and Reserve Joint Dispatch Considering Wind Power Generation and Zonal Reserve Constraints in Real-Time Electricity Markets

    Chunlai Li

    2017-07-01

    Full Text Available This paper proposes an energy and reserve joint dispatch model based on a robust optimization approach in real-time electricity markets, considering wind power generation uncertainties as well as zonal reserve constraints under both normal and N-1 contingency conditions. In the proposed model, the operating reserves are classified as regulating reserve and spinning reserve according to the response performance. More specifically, the regulating reserve is usually utilized to reduce the gap due to forecasting errors, while the spinning reserve is commonly adopted to enhance the ability for N-1 contingencies. Since the transmission bottlenecks may inhibit the deliverability of reserve, the zonal placement of spinning reserve is considered in this paper to improve the reserve deliverability under the contingencies. Numerical results on the IEEE 118-bus test system show the effectiveness of the proposed model.

  9. Advanced real-time manipulation of video streams

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  10. Compilation and synthesis for real-time embedded controllers

    Fränzle, Martin; Müller-Olm, Markus

    1999-01-01

    This article provides an overview over two constructive approaches to provably correct hard real-time code generation where hard real-time code is generated from abstract requirements rather than verified against the timing requirements a posteriori. The first, more pragmatic approach is concerne......-time systems at a very high level of abstraction....

  11. RISMA: A Rule-based Interval State Machine Algorithm for Alerts Generation, Performance Analysis and Monitoring Real-Time Data Processing

    Laban, Shaban; El-Desouky, Aly

    2013-04-01

    The monitoring of real-time systems is a challenging and complicated process. So, there is a continuous need to improve the monitoring process through the use of new intelligent techniques and algorithms for detecting exceptions, anomalous behaviours and generating the necessary alerts during the workflow monitoring of such systems. The interval-based or period-based theorems have been discussed, analysed, and used by many researches in Artificial Intelligence (AI), philosophy, and linguistics. As explained by Allen, there are 13 relations between any two intervals. Also, there have also been many studies of interval-based temporal reasoning and logics over the past decades. Interval-based theorems can be used for monitoring real-time interval-based data processing. However, increasing the number of processed intervals makes the implementation of such theorems a complex and time consuming process as the relationships between such intervals are increasing exponentially. To overcome the previous problem, this paper presents a Rule-based Interval State Machine Algorithm (RISMA) for processing, monitoring, and analysing the behaviour of interval-based data, received from real-time sensors. The proposed intelligent algorithm uses the Interval State Machine (ISM) approach to model any number of interval-based data into well-defined states as well as inferring them. An interval-based state transition model and methodology are presented to identify the relationships between the different states of the proposed algorithm. By using such model, the unlimited number of relationships between similar large numbers of intervals can be reduced to only 18 direct relationships using the proposed well-defined states. For testing the proposed algorithm, necessary inference rules and code have been designed and applied to the continuous data received in near real-time from the stations of International Monitoring System (IMS) by the International Data Centre (IDC) of the Preparatory

  12. [Real time 3D echocardiography

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  13. Mobile waste inspection real time radiography system

    Vigil, J.; Taggart, D.; Betts, S.; Rael, C.; Martinez, F.; Mendez, J.

    1995-01-01

    The 450-KeV Mobile Real Time Radiography System was designed and purchased to inspect containers of radioactive waste produced at Los Alamos National Laboratory (LANL). The Mobile Real Time Radiography System has the capability of inspecting waste containers of various sizes from 5-gal. buckets to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). The fact that this unit is mobile makes it an attractive alternative to the costly road closures associated with moving waste from the waste generator to storage or disposal facilities

  14. Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid

    Petrollese, Mario; Valverde, Luis; Cocco, Daniele; Cau, Giorgio; Guerra, José

    2016-01-01

    Highlights: • Energy management strategy for a renewable hydrogen-based microgrid. • Integration of optimal generation scheduling with a model predictive control. • Experimental tests are carried out simulating typical summer and winter days. • Effective improvement in performance and reduction in microgrid operating cost are achieved. - Abstract: This paper presents a novel control strategy for the optimal management of microgrids with high penetration of renewable energy sources and different energy storage systems. The control strategy is based on the integration of optimal generation scheduling with a model predictive control in order to achieve both long and short-term optimal planning. In particular, long-term optimization of the various microgrid components is obtained by the adoption of an optimal generation scheduling, in which a statistical approach is used to take into account weather and load forecasting uncertainties. The real-time management of the microgrid is instead entrusted to a model predictive controller, which has the important feature of using the results obtained by the optimal generation scheduling. The proposed control strategy was tested in a laboratory-scale microgrid present at the University of Seville, which is composed of an electronic power source that emulates a photovoltaic system, a battery bank and a hydrogen production and storage system. Two different experimental tests that simulate a summer and a winter day were carried out over a 24-h period to verify the reliability and performance enhancement of the control system. Results show an effective improvement in performance in terms of reduction of the microgrid operating cost and greater involvement of the hydrogen storage system for the maintenance of a spinning reserve in batteries.

  15. Real time psychrometric data collection

    McDaniel, K.H.

    1996-01-01

    Eight Mine Weather Stations (MWS) installed at the Waste Isolation Pilot Plant (WIPP) to monitor the underground ventilation system are helping to simulate real-time ventilation scenarios. Seasonal weather extremes can result in variations of Natural Ventilation Pressure (NVP) which can significantly effect the ventilation system. The eight MWS(s) (which previously collected and stored temperature, barometric pressure and relative humidity data for subsequent NVP calculations) were upgraded to provide continuous real-time data to the site wide Central monitoring System. This data can now be utilized by the ventilation engineer to create realtime ventilation simulations and trends which assist in the prediction and mitigation of NVP and psychrometric related events

  16. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  17. Identification of Eusynstyelamide B as a Potent Cell Cycle Inhibitor Following the Generation and Screening of an Ascidian-Derived Extract Library Using a Real Time Cell Analyzer

    Michelle S. Liberio

    2014-10-01

    Full Text Available Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA. This resulted in 143 time-dependent cell response profiles (TCRP, which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1. This bis-indole alkaloid was shown to display an IC50 of 5 µM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.

  18. Real time imaging of infrared scene data generated by the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) system

    Baca, Michael J.

    1990-09-01

    A system to display images generated by the Naval Postgraduate School Infrared Search and Target Designation (a modified AN/SAR-8 Advanced Development Model) in near real time was developed using a 33 MHz NIC computer as the central controller. This computer was enhanced with a Data Translation DT2861 Frame Grabber for image processing and an interface board designed and constructed at NPS to provide synchronization between the IRSTD and Frame Grabber. Images are displayed in false color in a video raster format on a 512 by 480 pixel resolution monitor. Using FORTRAN, programs have been written to acquire, unscramble, expand and display a 3 deg sector of data. The time line for acquisition, processing and display has been analyzed and repetition periods of less than four seconds for successive screen displays have been achieved. This represents a marked improvement over previous methods necessitating slower Direct Memory Access transfers of data into the Frame Grabber. Recommendations are made for further improvements to enhance the speed and utility of images produced.

  19. Equipamento microprocessado para geração de sinal de correção diferencial, em tempo real, para GPS Microprocessor-based equipment for real time generation of differential GPS correction signal

    Thales C. B. Lima

    2006-08-01

    Full Text Available Este trabalho apresenta o desenvolvimento de um equipamento microprocessado, de baixo custo, para geração de sinal de correção diferencial para GPS, em tempo real, e configuração e supervisão do receptor GPS base. O equipamento desenvolvido possui um microcontrolador dedicado, display alfanumérico, teclado multifunção para configuração e operação do sistema e interfaces de comunicação. O circuito eletrônico do equipamento tem a função de receber as informações do GPS base e interpretá-las, transformando-as numa sentença no protocolo RTCM SC-104. O software do microcontrolador é responsável pela conversão do sinal recebido pelo GPS base, do formato proprietário para o protocolo RTCM SC-104. A placa processadora principal possui duas interfaces seriais padrão RS-232C. Uma delas tem a função de configuração e leitura das informações geradas pelo receptor GPS base. A outra atua somente como saída, enviando o sinal de correção diferencial. O projeto do equipamento microprocessado mostrou que é possível a construção de uma estação privada para a geração do sinal de correção diferencial, de baixo custo.This work presents the development of low cost microprocessor-based equipment for generation of differential GPS correction signal, in real time, and configuration and supervision of the GPS base. The developed equipment contains a dedicated microcontroller connected to the GPS receiver, alphanumeric display and multifunction keyboard for configuration and operation of the system and communication interfaces. The electronic circuit has the function of receiving the information from GPS base; interpret them, converting the sentence in the RTCM SC-104 protocol. The microcontroller software makes the conversion of the signal received by the GPS base from the specific format to RTCM SC-104 protocol. The processing main board has two serials RS-232C standard interfaces. One of them is used for configuration and

  20. Real Time Linux - The RTOS for Astronomy?

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  1. The effect of real-time pricing on load shifting in a highly renewable power system dominated by generation from the renewable sources of wind and photovoltaics

    Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan

    2017-04-01

    The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on

  2. The real time rolling shutter

    Monaghan, David; O'Connor, Noel E.; Cleary, Anne; Connolly, Denis

    2015-01-01

    From an early age children are often told either, you are creative you should do art but stay away from science and maths. Or that you are mathematical you should do science but you're not that creative. Compounding this there also exist some traditional barriers of artistic rhetoric that say, "don't touch, don't think and don't be creative, we've already done that for you, you can just look...". The Real Time Rolling Shutter is part of a collaborative Art/Science partnership whose core tenet...

  3. Real time animation of space plasma phenomena

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  4. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Herrmann, Daniel

    2011-11-11

    this thesis for the first time succeeded to resolve the photoinduced charge-transfer in the conjugate polymer polythiophene and in hybrid polythiophene/silicon solar cells in real time. Thereby a controverse debate about the nature of the primary photoexcitation in organic semiconductors is resolved: Excitons dissociate with 140 fs time constant to polarons (charge carriers). Deciding parameters (for instance structural order, charge-carrier mobility) for the efficiency of the generation and extraction of free charge carriers can be determined. Further ultrashort-time experiments at novel organic solar cells have here been begun and indicated.

  5. A real time monitoring system

    Fontanini, Horacio; Galdoz, Erwin

    1989-01-01

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author) [es

  6. Autonomous Real Time Requirements Tracing

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  7. Real time 3D photometry

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; García-Botella, A.; Romo, J.; Serrano, Ana

    2017-09-01

    The photometry and radiometry measurement is a well-developed field. The necessity of measuring optical systems performance involves the use of several techniques like Gonio-photometry. The Gonio photometers are a precise measurement tool that is used in the lighting area like office, luminaire head car lighting, concentrator /collimator measurement and all the designed and fabricated optical systems that works with light. There is one disadvantage in this kind of measurements that obtain the intensity polar curves and the total flux of the optical system. In the industry, there are good Gonio photometers that are precise and reliable but they are very expensive and the measurement time is long. In industry the cost can be of minor importance but measuring time that is around 30 minutes is of major importance due to trained staff cost. We have designed a system to measure photometry in real time; it consists in a curved screen to get a huge measurement angle and a CCD. The system to be measured projects light onto the screen and the CCD records a video of the screen obtaining an image of the projected profile. A complex calibration permits to trace screen data (x,y,z) to intensity polar curve (I,αγ). This intensity is obtained in candels (cd) with an image + processing time below one second.

  8. Compiling models into real-time systems

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-based monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  9. Real Time Grid Reliability Management 2005

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  10. Compiling models into real-time systems

    Dormoy, J.L.; Cherriaux, F.; Ancelin, J.

    1992-08-01

    This paper presents an architecture for building real-time systems from models, and model-compiling techniques. This has been applied for building a real-time model-base monitoring system for nuclear plants, called KSE, which is currently being used in two plants in France. We describe how we used various artificial intelligence techniques for building it: a model-based approach, a logical model of its operation, a declarative implementation of these models, and original knowledge-compiling techniques for automatically generating the real-time expert system from those models. Some of those techniques have just been borrowed from the literature, but we had to modify or invent other techniques which simply did not exist. We also discuss two important problems, which are often underestimated in the artificial intelligence literature: size, and errors. Our architecture, which could be used in other applications, combines the advantages of the model-based approach with the efficiency requirements of real-time applications, while in general model-based approaches present serious drawbacks on this point

  11. Prediction of acrylamide formation in biscuits based on fingerprint data generated by ambient ionization mass spectrometry employing direct analysis in real time (DART) ion source

    Vaclavik, Lukas; Capuano, Edoardo; Gökmen, Vural; Hajslova, Jana

    2015-01-01

    The objective of this study is the evaluation of the potential of high-throughput direct analysis in real time-high resolution mass spectrometry (DART-HRMS) fingerprinting and multivariate regression analysis in prediction of the extent of acrylamide formation in biscuit samples prepared by

  12. Scalable Real-Time Negotiation Toolkit

    Lesser, Victor

    2004-01-01

    ... to implement an adaptive distributed sensor network. These activities involved the development of a distributed soft, real-time heuristic resource allocation protocol, the development of a domain-independent soft, real time agent architecture...

  13. Modular specification of real-time systems

    Inal, Recep

    1994-01-01

    Duration Calculus, a real-time interval logic, has been embedded in the Z specification language to provide a notation for real-time systems that combines the modularisation and abstraction facilities of Z with a logic suitable for reasoning about real-time properties. In this article the notation...

  14. Boat, wake, and wave real-time simulation

    Świerkowski, Leszek; Gouthas, Efthimios; Christie, Chad L.; Williams, Owen M.

    2009-05-01

    We describe the extension of our real-time scene generation software VIRSuite to include the dynamic simulation of small boats and their wakes within an ocean environment. Extensive use has been made of the programmabilty available in the current generation of GPUs. We have demonstrated that real-time simulation is feasible, even including such complexities as dynamical calculation of the boat motion, wake generation and calculation of an FFTgenerated sea state.

  15. Students Collecting Real time Data

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  16. VERSE - Virtual Equivalent Real-time Simulation

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  17. Risk-based technical specifications: Development and application of an approach to the generation of a plant specific real-time risk model

    Puglia, B.; Gallagher, D.; Amico, P.; Atefi, B.

    1992-10-01

    This report describes a process developed to convert an existing PRA into a model amenable to real time, risk-based technical specification calculations. In earlier studies (culminating in NUREG/CR-5742), several risk-based approaches to technical specification were evaluated. A real-time approach using a plant specific PRA capable of modeling plant configurations as they change was identified as the most comprehensive approach to control plant risk. A master fault tree logic model representative of-all of the core damage sequences was developed. Portions of the system fault trees were modularized and supercomponents comprised of component failures with similar effects were developed to reduce the size of the model and, quantification times. Modifications to the master fault tree logic were made to properly model the effect of maintenance and recovery actions. Fault trees representing several actuation systems not modeled in detail in the existing PRA were added to the master fault tree logic. This process was applied to the Surry NUREG-1150 Level 1 PRA. The master logic mode was confirmed. The model was then used to evaluate frequency associated with several plant configurations using the IRRAS code. For all cases analyzed computational time was less than three minutes. This document Volume 2, contains appendices A, B, and C. These provide, respectively: Surry Technical Specifications Model Database, Surry Technical Specifications Model, and a list of supercomponents used in the Surry Technical Specifications Model

  18. Real-Time Plasma Control Tools for Advanced Tokamak Operation

    Varandas, C. A. F.; Sousa, J.; Rodrigues, A. P.; Carvalho, B. B.; Fernandes, H.; Batista, A. J.; Cruz, N.; Combo, A.; Pereira, R. C.

    2006-01-01

    Real-time control will play an important role in the operation and scientific exploitation of the new generation fusion devices. This paper summarizes the real-time systems and diagnostics developed by the Portuguese Fusion Euratom Association based on digital signal processors and field programmable gate arrays

  19. Real Time Pricing and the Real Live Firm

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  20. Real time incorporation of random events in the reasoning of an on-line expert system. Application to the acoustic surveillance of vapor generators

    Launay, T.

    1989-03-01

    A study for improving an expert system applied in diagnostic assistance is presented. The results will be implemented in the vapor generators surveillance system. The aim of the work is to improve performances by reducing the time spent on reasoning and to strengthen the vigilance system. The investigation consists of four parts. In the first part, the state of the art of the different logics used in the artificial intelligence techniques is discussed, and the TMS and ATMS systems are presented. The second part of this thesis deals with problematics. Each point of the problem is studied and answered by applying the basic concepts used in the generation of on-line expert systems. In the third part, the on-line expert system generator ACTE is described. The ACTE aspects concerning the user, the inner structure and the functionality are considered. In the fourth part, an application to the surveillance of vapor generators and concluding remarks are presented [fr

  1. Coordinating Transit Transfers in Real Time

    2016-05-06

    Transfers are a major source of travel time variability for transit passengers. Coordinating transfers between transit routes in real time can reduce passenger waiting times and travel time variability, but these benefits need to be contrasted with t...

  2. Real-Time Optical Antimicrobial Susceptibility Testing

    Fredborg, Marlene; Andersen, Klaus R; Jørgensen, Erik

    2013-01-01

    Rapid antibiotic susceptibility testing is in highly demand in health-care fields as antimicrobial resistant bacterial strains emerge and spread. Here we describe an optical screening system (oCelloScope), which based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time......, introduces real-time detection of bacterial growth and antimicrobial susceptibility, with imaging material to support the automatically generated graphs. Automated antibiotic susceptibility tests of a monoculture showed statistically significant antibiotic effect within 6 minutes and within 30 minutes...... from multidrug-resistant pathogenic bacteria. The oCelloScope system can be employed for a broad range of applications within bacteriology and may present new vistas as a point-of-care instrument in both clinical and veterinarian settings....

  3. The RHIC real time data link system

    Hartmann, H.

    1997-01-01

    The RHIC Real Time Data Link (RTDL) System distributes to all locations around the RHIC ring machine parameters of general interest to accelerator systems and users. The system, along with supporting host interface, is centrally located. The RTDL System is comprised of two module types: the Encoder Module (V105) and the Input Module (V106). There is only one V105 module, but many (up to 128) Input Modules. Multiple buffered outputs are provided for use locally or for retransmission to other RHIC equipment locations. Machine parameters are generated from the V115 Waveform Generator Module (WFG) or from machine hardware and coupled directly through a fiber optic serial link to one of the V106 input channels

  4. Space Weather and Real-Time Monitoring

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  5. Archtecture of distributed real-time systems

    Wing Leung, Cheuk

    2013-01-01

    CRAFTERS (Constraint and Application Driven Framework for Tailoring Embedded Real-time System) project aims to address the problem of uncertainty and heterogeneity in a distributed system by providing seamless, portable connectivity and middleware. This thesis contributes to the project by investigating the techniques that can be used in a distributed real-time embedded system. The conclusion is that, there is a list of specifications to be meet in order to provide a transparent and real-time...

  6. Research Directions in Real-Time Systems.

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  7. A Real-Time Systems Symposium Preprint.

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  8. Model Checking Real-Time Systems

    Bouyer, Patricia; Fahrenberg, Uli; Larsen, Kim Guldstrand

    2018-01-01

    This chapter surveys timed automata as a formalism for model checking real-time systems. We begin with introducing the model, as an extension of finite-state automata with real-valued variables for measuring time. We then present the main model-checking results in this framework, and give a hint...

  9. Essays in real-time forecasting

    Liebermann, Joelle

    2012-01-01

    This thesis contains three essays in the field of real-time econometrics, and more particularlyforecasting.The issue of using data as available in real-time to forecasters, policymakers or financialmarkets is an important one which has only recently been taken on board in the empiricalliterature. Data available and used in real-time are preliminary and differ from ex-postrevised data, and given that data revisions may be quite substantial, the use of latestavailable instead of real-time can s...

  10. Research in Distributed Real-Time Systems

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  11. Real time ray tracing based on shader

    Gui, JiangHeng; Li, Min

    2017-07-01

    Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.

  12. Embedded and real-time operating systems

    Wang, K C

    2017-01-01

    This book covers the basic concepts and principles of operating systems, showing how to apply them to the design and implementation of complete operating systems for embedded and real-time systems. It includes all the foundational and background information on ARM architecture, ARM instructions and programming, toolchain for developing programs, virtual machines for software implementation and testing, program execution image, function call conventions, run-time stack usage and link C programs with assembly code. It describes the design and implementation of a complete OS for embedded systems in incremental steps, explaining the design principles and implementation techniques. For Symmetric Multiprocessing (SMP) embedded systems, the author examines the ARM MPcore processors, which include the SCU and GIC for interrupts routing and interprocessor communication and synchronization by Software Generated Interrupts (SGIs). Throughout the book, complete working sample systems demonstrate the design principles and...

  13. Real-time Avatar Animation from a Single Image.

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  14. Real-Time MENTAT programming language and architecture

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  15. Multiplexing real-time timed events

    Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.

    2009-01-01

    This paper presents the design and implementation of RELTEQ, a timed event management algorithm based on relative event times, supporting long event interarrival time, long lifetime of the event queue, no drift and low overhead. It is targeted at embedded operating systems. RELTEQ has been conceived

  16. Real-time generation of images with pixel-by-pixel spectra for a coded aperture imager with high spectral resolution

    Ziock, K.P.; Burks, M.T.; Craig, W.; Fabris, L.; Hull, E.L.; Madden, N.W.

    2003-01-01

    The capabilities of a coded aperture imager are significantly enhanced when a detector with excellent energy resolution is used. We are constructing such an imager with a 1.1 cm thick, crossed-strip, planar detector which has 38 strips of 2 mm pitch in each dimension followed by a large coaxial detector. Full value from this system is obtained only when the images are 'fully deconvolved' meaning that the energy spectrum is available from each pixel in the image. The large number of energy bins associated with the spectral resolution of the detector, and the fixed pixel size, present significant computational challenges in generating an image in a timely manner at the conclusion of a data acquisition. The long computation times currently preclude the generation of intermediate images during the acquisition itself. We have solved this problem by building the images on-line as each event comes in using pre-imaged arrays of the system response. The generation of these arrays and the use of fractional mask-to-detector pixel sampling is discussed

  17. Multiprocessor scheduling for real-time systems

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  18. LabVIEW Real-Time

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  19. Real-time communication protocols: an overview

    Hanssen, F.T.Y.; Jansen, P.G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  20. Towards exascale real-time RFI mitigation

    van Nieuwpoort, R.V.

    2016-01-01

    We describe the design and implementation of an extremely scalable real-time RFI mitigation method, based on the offline AOFlagger. All algorithms scale linearly in the number of samples. We describe how we implemented the flagger in the LOFAR real-time pipeline, on both CPUs and GPUs. Additionally,

  1. Real time refractive index measurement by ESPI

    Torroba, R.; Joenathan, C.

    1991-01-01

    In this paper a method to measure refractive index variations in real time is reported. A technique to introduce reference fringes in real time is discussed. Both the theoretical and experimental results are presented and an example with phase shifting is given. (author). 8 refs, 5 figs

  2. De toekomst van Real Time Intelligence

    Broek, J. van den; Berg, C.H. van den

    2013-01-01

    Al direct vanaf de start van de Nationale Politie is gewerkt aan het opzetten van tien real-time intelligence centra in Nederland. Van daaruit worden 24 uur per dag en zeven dagen in de week agenten op straat actief ondersteund met real-time informatie bij de melding waar ze op af gaan. In de visie

  3. Heterogeneous Embedded Real-Time Systems Environment

    2003-12-01

    AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259

  4. Validation of RNAi by real time PCR

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  5. Real time programming environment for Windows

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  6. Storm real-time processing cookbook

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  7. MARTe: A Multiplatform Real-Time Framework

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  8. Research of real-time communication software

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  9. Making real-time reactive systems reliable

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  10. Dense time discretization technique for verification of real time systems

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  11. Formal Verification and Implementation of Real-Time Applications

    Liviu Haţegan

    2009-12-01

    Full Text Available This paper presents a method for the formal description, verification and automatic source code generation of embedded real-time multitasking applications, based on a model consisting of networks of timed automata. The model describes a real-time operating system kernel and application tasks, taking into consideration both non-preemptive and preemptive scheduling. The timing properties of theproposed model can be verified using a modelchecking tool. We also provide a solution for C source code generation based on the application’s model. For this purpose a unified resource access interface was implemented.

  12. Real time sensor for therapeutic radiation delivery

    Bliss, M.; Craig, R.A.; Reeder, P.L.

    1998-01-01

    The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs

  13. Real time detecting system for turning force

    Xiaobin, Yue [China Academy of Engineering Physics, Mianyang (China). Inst. of Machinery Manufacturing Technology

    2001-07-01

    How to get the real-time value of forces dropped on the tool in the course of processing by piezoelectric sensors is introduced. First, the analog signals of the cutting force were achieved by these sensors, amplified and transferred into digital signals by A/D transferring card. Then real-time software reads the information, put it into its own coordinate, drew the curve of forces, displayed it on the screen by the real time and saved it for the technicians to analyze the situation of the tool. So the cutting parameter can be optimized to improve surface quality of the pieces.

  14. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  15. Documentation Driven Development for Complex Real-Time Systems

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  16. Benefits of real-time gas management

    Nolty, R.; Dolezalek, D. Jr.

    1994-01-01

    In today's competitive gas gathering, processing, storage and transportation business environment, the requirements to do business are continually changing. These changes arise from government regulations such as the amendments to the Clean Air Act concerning the environment and FERC Order 636 concerning business practices. Other changes are due to advances in technology such as electronic flow measurement (EFM) and real-time communications capabilities within the gas industry. Gas gathering, processing, storage and transportation companies must be flexible in adapting to these changes to remain competitive. These dynamic requirements can be met with an open, real-time gas management computer information system. Such a system provides flexible services with a variety of software applications. Allocations, nominations management and gas dispatching are examples of applications that are provided on a real-time basis. By providing real-time services, the gas management system enables operations personnel to make timely adjustments within the current accounting period. Benefits realized from implementing a real-time gas management system include reduced unaccountable gas, reduced imbalance penalties, reduced regulatory violations, improved facility operations and better service to customers. These benefits give a company the competitive edge. This article discusses the applications provided, the benefits from implementing a real-time gas management system, and the definition of such a system

  17. Real-Time Penetrating Particle Analyzer (PAN)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  18. Scala for Real-Time Systems?

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional language...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  19. Real time monitoring of electron processors

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  20. Real Time Seismic Prediction while Drilling

    Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

    2009-12-01

    Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling

  1. REAL TIME SYSTEM OPERATIONS 2006-2007

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  2. Real-time PCR in virology.

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  3. Financial and technical feasibility of dynamic congestion pricing as a revenue generation source in Indiana : exploiting the availability of real-time information and dynamic pricing technologies.

    2011-10-19

    "Highway stakeholders continue to support research studies that address critical issues of the current era, including congestion mitigation and revenue generation. A mechanism that addresses both concerns is congestion pricing which establishes a dir...

  4. Real-time systems scheduling 2 focuses

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  5. Real-time systems scheduling fundamentals

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  6. Refactoring Real-Time Java Profiles

    Søndergaard, Hans; Thomsen, Bent; Ravn, Anders Peter

    2011-01-01

    Just like other software, Java profiles benefits from refactoring when they have been used and have evolved for some time. This paper presents a refactoring of the Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile (JSR-302). It highlights core concepts and makes...

  7. Feedback as Real-Time Constructions

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  8. Testing Real-Time Systems Using UPPAAL

    Hessel, Anders; Larsen, Kim Guldstrand; Mikucionis, Marius

    2008-01-01

    This chapter presents principles and techniques for model-based black-box conformance testing of real-time systems using the Uppaal model-checking tool-suite. The basis for testing is given as a network of concurrent timed automata specified by the test engineer. Relativized input...

  9. Real-Time 3D Visualization

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  10. Real-time control of fusion reactors

    Goncalves, B.; Sousa, J.; Varandas, C.A.F.

    2010-01-01

    The next generation fusion experiments, e.g. ITER, will be highly complex and raise new challenges in the field of control and data acquisition systems. The more advanced operation scenarios have to be capable of sustaining long pulse steady-state plasma and to suppress plasma instabilities almost completely. Such scenarios will heavily rely on Multiple-Input-Multiple-Output (MIMO) fast control systems. To ensure safety for the operation these systems have to be robust and resilient to faults while ensuring high availability. Mindful of the importance of such features for future fusion experiments ATCA based systems have been successfully used in fusion experiment as MIMO fast controller. This is the most promising architecture to substantially enhance the performance and capability of existing standard systems delivering well high throughput as well as high availability. The real-time control needs of a fusion experiment, the rational for the presently pursued solutions, the existing problems and the broad scientific and technical questions that need to be addressed on the path to a fusion power plant will be discussed.

  11. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    -time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation...... in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality......Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real...

  12. A real-time architecture for time-aware agents.

    Prouskas, Konstantinos-Vassileios; Pitt, Jeremy V

    2004-06-01

    This paper describes the specification and implementation of a new three-layer time-aware agent architecture. This architecture is designed for applications and environments where societies of humans and agents play equally active roles, but interact and operate in completely different time frames. The architecture consists of three layers: the April real-time run-time (ART) layer, the time aware layer (TAL), and the application agents layer (AAL). The ART layer forms the underlying real-time agent platform. An original online, real-time, dynamic priority-based scheduling algorithm is described for scheduling the computation time of agent processes, and it is shown that the algorithm's O(n) complexity and scalable performance are sufficient for application in real-time domains. The TAL layer forms an abstraction layer through which human and agent interactions are temporally unified, that is, handled in a common way irrespective of their temporal representation and scale. A novel O(n2) interaction scheduling algorithm is described for predicting and guaranteeing interactions' initiation and completion times. The time-aware predicting component of a workflow management system is also presented as an instance of the AAL layer. The described time-aware architecture addresses two key challenges in enabling agents to be effectively configured and applied in environments where humans and agents play equally active roles. It provides flexibility and adaptability in its real-time mechanisms while placing them under direct agent control, and it temporally unifies human and agent interactions.

  13. Testing of real-time-software

    Friesland, G.; Ovenhausen, H.

    1975-05-01

    The situation in the area of testing real-time-software is unsatisfactory. During the first phase of the project PROMOTE (prozessorientiertes Modul- und Gesamttestsystem) an analysis of the momentary situation took place, results of which are summarized in the following study about some user interviews and an analysis of relevant literature. 22 users (industry, software-houses, hardware-manufacturers, and institutes) have been interviewed. Discussions were held about reliability of real-time software with special interest to error avoidance, testing, and debugging. Main aims of the analysis of the literature were elaboration of standard terms, comparison of existing test methods and -systems, and the definition of boundaries to related areas. During the further steps of this project some means and techniques will be worked out to systematically test real-time software. (orig.) [de

  14. Failure analysis of real-time systems

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  15. Axial Tomography from Digitized Real Time Radiography

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  16. Replacing OSE with Real Time capable Linux

    Boman, Simon; Rutgersson, Olof

    2009-01-01

    For many years OSE has been a common used operating system, with real time extensions enhancements, in embed-ded systems. But in the last decades, Linux has grown and became a competitor to common operating systems and, in recent years, even as an operating system with real time extensions. With this in mind, ÅF was interested in replacing the quite expensive OSE with some distribution of the open source based Linux on a PowerPC MPC8360. Therefore, our purpose with thesis is to implement Linu...

  17. SignalR real time application development

    Ingebrigtsen, Einar

    2013-01-01

    This step-by-step guide gives you practical advice, tips, and tricks that will have you writing real-time apps quickly and easily.If you are a .NET developer who wants to be at the cutting edge of development, then this book is for you. Real-time application development is made simple in this guide, so as long as you have basic knowledge of .NET, a copy of Visual Studio, and NuGet installed, you are ready to go.

  18. Real-time ISEE data system

    Tsurutani, B. T.; Baker, D. N.

    1979-01-01

    A real-time ISEE data system directed toward predicting geomagnetic substorms and storms is discussed. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution.

  19. True Time API Link (real time arrival info)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This link will take you to the site where you can create an account to access Port Authority's real time arrival information. To request access to Port Authority's...

  20. Evaluation of Real-time operating systems for FGC controls

    Chalas, Konstantinos

    2015-01-01

    Power Converter Control for various experiments at CERN, is con- ducted using a machine called Function Generator Controller. The cur- rent generation of FGCs being deployed is FGC3. A certain number of FGCs require very fast and precise control, and for these systems, there is uncertainty of whether the existing hardware will be able to provide the level of determinism required. I have worked in the CCS section as a summer student on a project to study the potential of ARM-based CPUs to provide a real time behaviour fit for a future high-performance FGC4. In this paper, i will present the results of my research into real-time vari- ants of Linux and other real-time operating systems on two different ARM CPUs.

  1. Real time automatic discriminating of ultrasonic flaws

    Suhairy Sani; Mohd Hanif Md Saad; Marzuki Mustafa; Mohd Redzwan Rosli

    2009-01-01

    This paper is concerned with the real time automatic discriminating of flaws from two categories; i. cracks (planar defect) and ii. Non-cracks (volumetric defect such as cluster porosity and slag) using pulse-echo ultrasound. The raw ultrasonic flaws signal were collected from a computerized robotic plane scanning system over the whole of each reflector as the primary source of data. The signal is then filtered and the analysis in both time and frequency domain were executed to obtain the selected feature. The real time feature analysis techniques measured the number of peaks, maximum index, pulse duration, rise time and fall time. The obtained features could be used to distinguish between quantitatively classified flaws by using various tools in artificial intelligence such as neural networks. The proposed algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0 (author)

  2. Real-Time Operating System/360

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  3. Advances in Real-Time Systems

    Chakraborty, Samarjit

    2012-01-01

    This volume contains the lectures given in honor to Georg Farber as tribute to his contributions in the area of real-time and embedded systems. The chapters of many leading scientists cover a wide range of aspects, like robot or automotive vision systems or medical aspects.

  4. Collecting data in real time with postcards

    Yee, Kwang Chien; Kanstrup, Anne Marie; Bertelsen, Pernille

    2013-01-01

    Systems. These methods often involve cross-sectional, retrospective data collection. This paper describes the postcard method for prospective real-time data collection, both in paper format and electronic format. This paper then describes the results obtained using postcard techniques in Denmark...

  5. Studying Complex Interactions in Real Time

    Mønster, Dan

    2017-01-01

    The study of human behavior must take into account the social context, and real-time, networked experiments with multiple participants is one increasingly popular way to achieve this. In this paper a framework based on Python and XMPP is presented that aims to make it easy to develop...

  6. Interactive Real-time Magnetic Resonance Imaging

    Brix, Lau

    seeks to implement and assess existing reconstruction algorithms using multi-processors of modern graphics cards and many-core computer processors and to cover some of the potential clinical applications which might benefit from using an interactive real-time MRI system. First an off...

  7. Real-time PCR gene expression profiling

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  8. Real-time systems design and analysis

    Laplante, Phillip A

    2004-01-01

    "Real-Time Systems Design and Analysis, Third Edition is essential for students and practicing software engineers who want improved designs, faster computation, and ultimate cost savings. Chapters discuss hardware considerations and software requirements, software systems design, the software production process, performance estimation and optimization, and engineering considerations."--Jacket.

  9. Temporal logics and real time expert systems

    Blom, J.A.

    1996-01-01

    This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert

  10. Ray Tracing for Real-time Games

    Bikker, J.

    2012-01-01

    This thesis describes efficient rendering algorithms based on ray tracing, and the application of these algorithms to real-time games. Compared to rasterizationbased approaches, rendering based on ray tracing allows elegant and correct simulation of important global effects, such as shadows,

  11. Scene independent real-time indirect illumination

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    A novel method for real-time simulation of indirect illumination is presented in this paper. The method, which we call Direct Radiance Mapping (DRM), is based on basal radiance calculations and does not impose any restrictions on scene geometry or dynamics. This makes the method tractable for rea...

  12. Composing Synchronisation and Real-Time Constraints

    Bergmans, Lodewijk; Aksit, Mehmet

    There have been a number of publications illustrating the successes of object-oriented techniques in creating highly reusable software systems. Several concurrent languages have been proposed for specifying reusable synchronization specifications. Recently, a number of real-time object-oriented

  13. Concepts of real time and semi-real time material control

    Lovett, J.E.

    1975-01-01

    After a brief consideration of the traditional material balance accounting on an MBA basis, this paper explores the basic concepts of real time and semi-real time material control, together with some of the major problems to be solved. Three types of short-term material control are discussed: storage, batch processing, and continuous processing. (DLC)

  14. Real Time Radiation Monitoring Using Nanotechnology

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  15. Short range forecasting of sea breeze generated thunderstorms at the Kennedy Space Center: A real-time experiment using a primitive equation mesoscale numerical model

    Lyons, Walter A.; Schuh, Jerome A.; Moon, Dennis; Pielke, Roger A.; Cotton, William; Arritt, Raymond

    1987-01-01

    The operational efficiency of using guidance from a mesoscale numerical model to improve sea breeze thunderstorm forecasts at and around the Shuttle landing strip was assessed. The Prognostic Three-Dimensional Mesoscale (P3DM) model, developed as a sea breeze model, reveals a strong correlation between regions of mesoscale convergence and the triggering of sea breeze convection thunderstorms. The P3DM was modified to generate stability parameters familiar to the operational forecaster. In addition to the mesoscale fields of wind, vertical motion, moisture, temperature, a stability indicator, a combination of model-predicted K and Lifted Indices and the maximum grid cell vertical motion, were proposed and tested. Results of blind tests indicate that a forecaster, provided with guidance derived from model output, could improve local thunderstorm forecasts.

  16. Real time process algebra with time-dependent conditions

    Baeten, J.C.M.; Middelburg, C.A.

    We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier

  17. Real-time computational photon-counting LiDAR

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  18. Real-time video quality monitoring

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  19. Marriage timing over the generations

    van Poppel, F.W.A.; Monden, C.; Mandemakers, K.

    2008-01-01

    Strong relationships have been hypothesized between the timing of marriage and the familial environment of the couple. Sociologists have identified various mechanisms via which the age at marriage in the parental generation might be related to the age at marriage of the children. In our paper we

  20. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

    Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J

    2014-04-01

    The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.

  1. Specification and Test of Real-Time Systems

    Nielsen, Brian

    of the system, and a set of constraint patterns which describes and enforces the timing and synchronization constraints among components. We propose new techniques for automated black box conformance testing of real-time systems against densely timed speci cations. A test generator tool examines a specification......Distributed real-time computer based systems are very complex and intrinsically difficult to specify and implement correctly; in part this is caused by the overwhelming number of possible interactions between system components, but especially by a lack of adequate methods and tools to deal...... of the desired system behavior and generates the necessary test cases. A main problem is to construct a reasonably small test suite that can be executed within allotted resources, while having a high likelihood of detecting unknown errors. Our goal has been to treat the time dimension of this problem thoroughly...

  2. Real time gamma-ray signature identifier

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  3. Real time processor for array speckle interferometry

    Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.

    1989-01-01

    With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods

  4. Real time processor for array speckle interferometry

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  5. Real Time Structured Light and Applications

    Wilm, Jakob

    Structured light scanning is a versatile method for 3D shape acquisition. While much faster than most competing measurement techniques, most high-end structured light scans still take in the order of seconds to complete. Low-cost sensors such as Microsoft Kinect and time of flight cameras have made......, increased processing power, and methods presented in this thesis, it is possible to perform structured light scans in real time with 20 depth measurements per second. This offers new opportunities for studying dynamic scenes, quality control, human-computer interaction and more. This thesis discusses...... several aspects of real time structured light systems and presents contributions within calibration, scene coding and motion correction aspects. The problem of reliable and fast calibration of such systems is addressed with a novel calibration scheme utilising radial basis functions [Contribution B...

  6. Timing organization of a real-time multicore processor

    Schoeberl, Martin; Sparsø, Jens

    2017-01-01

    Real-time systems need a time-predictable computing platform. Computation, communication, and access to shared resources needs to be time-predictable. We use time division multiplexing to statically schedule all computation and communication resources, such as access to main memory or message...... passing over a network-on-chip. We use time-driven communication over an asynchronous network-on-chip to enable time division multiplexing even in a globally asynchronous, locally synchronous multicore architecture. Using time division multiplexing at all levels of the architecture yields in a time...

  7. Real-time interactive treatment planning

    Otto, Karl

    2014-01-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient’s treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ∼2–20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. ‘drag’ a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ∼1–5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT. (paper)

  8. Real time ultrasonography in obstructive jaundice

    Cho, Kyung Sik; Kim, Ho Kyun; Sung, Nak Kwan; Kim, Soon Yong

    1982-01-01

    Ultrasonography is a predominantly accurate, relatively simple unique diagnostic method of obstructive jaundice. The ultrasonographic findings of obstructive jaundice are dilated intra- and extrahepatic duct with intraluminal hyper reflective echo or mass in and/ or around the bile duct. The superiority of high resolution real time ultrasonography for the diagnosis of obstructive jaundice is bases on the easy detectability of extra- and intrahepatic bile ducts by its multiple sectional images in a short time, the flexibility of probe and small crystal size. Author evaluated real time sonographic findings 46 obstructive jaundice patients confirmed by surgery or radiographical examinations. The results were: 1. Diameter of extrahepatic duct in obstructive jaundice were varied from normal to 4.0 Cm, mostly 8 to 10 mm in diameter (26%). Degree of dilatation of biliary duct appeared more prominent in cancer patients than other causes of obstruction. 2. The site of obstruction was detected in 85% (39/46) and its common site was common bile duct in 63% (29/46). 3. The diagnostic accuracy of choledocholithiasis and cancer was 82% (22/27) and 44% (4/9), respectively. Diagnostic accuracy of the real time ultrasonography in obstructive jaundice was over all 75% (34/46)

  9. Real-time earthquake data feasible

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  10. Tuning Linux to meet real time requirements

    Herbel, Richard S.; Le, Dang N.

    2007-04-01

    There is a desire to use Linux in military systems. Customers are requesting contractors to use open source to the maximal possible extent in contracts. Linux is probably the best operating system of choice to meet this need. It is widely used. It is free. It is royalty free, and, best of all, it is completely open source. However, there is a problem. Linux was not originally built to be a real time operating system. There are many places where interrupts can and will be blocked for an indeterminate amount of time. There have been several attempts to bridge this gap. One of them is from RTLinux, which attempts to build a microkernel underneath Linux. The microkernel will handle all interrupts and then pass it up to the Linux operating system. This does insure good interrupt latency; however, it is not free [1]. Another is RTAI, which provides a similar typed interface; however, the PowerPC platform, which is used widely in real time embedded community, was stated as "recovering" [2]. Thus this is not suited for military usage. This paper provides a method for tuning a standard Linux kernel so it can meet the real time requirement of an embedded system.

  11. A Contribution to Real-Time Experiments in Remote Laboratories

    Zoltán Janík

    2013-02-01

    Full Text Available The paper is focused on realization of hard real-time control of experiments in on-line laboratories. The presented solution utilizes already developed on-line laboratory portal that is based on open-source Scilab environment. The customized solution is based on Linux RTAI platform with RTAI-XML server, Comedi and jRTAILab with support of ScicosLab environment. It generates real-time executable code that is used to operate student experiments performed on Humusoft CE152 Magnetic Levitation plant.

  12. Temporal logics and real time expert systems.

    Blom, J A

    1996-10-01

    This paper introduces temporal logics. Due to the eternal compromise between expressive adequacy and reasoning efficiency that must decided upon in any application, full (first order logic or modal logic based) temporal logics are frequently not suitable. This is especially true in real time expert systems, where a fixed (and usually small) response time must be guaranteed. One such expert system, Fagan's VM, is reviewed, and a delineation is given of how to formally describe and reason with time in medical protocols. It is shown that Petri net theory is a useful tool to check the correctness of formalised protocols.

  13. CUDA-based real time surgery simulation.

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  14. Real-time ISEE data system

    Tsurutani, B.T.; Baker, D.N.

    1979-01-01

    Prediction of geomagnetic substorms and storms would be of great scientific and commercial interest. A real-time ISEE data system directed toward this purpose is discussed in detail. Such a system may allow up to 60+ minutes advance warning of magnetospheric substorms and up to 30 minute warnings of geomagnetic storms (and other disturbances) induced by high-speed streams and solar flares. The proposed system utilizes existing capabilities of several agencies (NASA, NOAA, USAF), and thereby minimizes costs. This same concept may be applicable to data from other spacecraft, and other NASA centers; thus, each individual experimenter can receive quick-look data in real time at his or her base institution. 6 figures, 1 table

  15. Real-time sonography in obstetrics.

    Anderson, S G

    1978-03-01

    Three hundred fifty real-time scans were performed on pregnant women for various indications. Placental localization was satisfactorily obtained in 173 of 174 studies. Estimates of fetal gestation from directly measured biparietal diameter were +/-2 weeks of actual gestation in 153 of 172 (88.9%) measurements. The presence or absence of fetal motion and cardiac activity established a diagnosis of fetal viability or fetal death in 32 patients after the first trimester. Accurate diagnosis was made in 52 of 57 patients with threatened abortions, and two of these errors occurred in scans performed before completion of the eighth postmenstrual week. Because of the ability to demonstrate fetal motion, real-time sonography should have many applications in obstetrics.

  16. Real-time imaging of quantum entanglement.

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  17. Real time simulator for material testing reactor

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  18. Probabilistic real-time contingency ranking method

    Mijuskovic, N.A.; Stojnic, D.

    2000-01-01

    This paper describes a real-time contingency method based on a probabilistic index-expected energy not supplied. This way it is possible to take into account the stochastic nature of the electric power system equipment outages. This approach enables more comprehensive ranking of contingencies and it is possible to form reliability cost values that can form the basis for hourly spot price calculations. The electric power system of Serbia is used as an example for the method proposed. (author)

  19. Advanced real time radioscopy and computed tomography

    Sauerwein, Ch.; Nuding, W.; Grimm, R.; Wiacker, H.

    1996-01-01

    The paper describes three x-ray inspection systems. One radioscopic system is designed for the inspection of castings. The next integrates a radioscopic and a tomographic mode. The radioscopy has a high resolution camera and real time image processor. Radiation sources are a 450 kV industrial and a 200 kV microfocus tube. The third system is a tomographic system with 30 scintillation detectors for the inspection of nuclear waste containers. (author)

  20. Real time computer controlled weld skate

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  1. Real-time controller for hydrostatic transmission

    2014-01-01

    M. Ing. (Electrical and Electronic Engineering) This dissertation describes the development of a modular real-time controller implemented on a personal computer for a hydrostatically driven vehicle. In such a vehicle the conventional mechanical transmission is replaced with a hydrostatic pump and two hydrostatic motors, making use of the secondary control principle. The infinitely variable transmission and wheel pair controller gives the vehicle superior traction and mobility over conventi...

  2. Telepositional portable real time radiation monitoring system

    Talpalariu, Jeni; Matei, Corina; Popescu, Oana

    2010-01-01

    Technology development for complex portable networks is on going to meet the area dosimetry challenge, improving the basic design using new telepositional GPS satellite methods and GSM terrestrial civil radio transmission networks. The system and devices proposed overcome the limitations of fixed and portable dosimeters, providing wireless real time radiations data and geospatial information's means, using many portable dosimeter stations and a mobile dosimeter computerised central console. (authors)

  3. Real time simulator for material testing reactor

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  4. Boundary Correct Real-Time Soft Shadows

    Jacobsen, Bjarke; Christensen, Niels Jørgen; Larsen, Bent Dalgaard

    2004-01-01

    This paper describes a method to determine correct shadow boundaries from an area light source using umbra and penumbra volumes. The light source is approximated by a circular disk as this gives a fast way to extrude the volumes. The method also gives a crude estimate of the visibility of the are...... for implementation on most programmable hardware. Though some crude approximations are used in the visibility function, the method can be used to produce soft shadows with correct boundaries in real time....

  5. Real-time Astrometry Using Phase Congruency

    Lambert, A.; Polo, M.; Tang, Y.

    Phase congruency is a computer vision technique that proves to perform well for determining the tracks of optical objects (Flewelling, AMOS 2014). We report on a real-time implementation of this using an FPGA and CMOS Image Sensor, with on-sky data. The lightweight instrument can provide tracking update signals to the mount of the telescope, as well as determine abnormal objects in the scene.

  6. Real-time multiple image manipulations

    Arenson, J.S.; Shalev, S.; Legris, J.; Goertzen, Y.

    1984-01-01

    There are many situations in which it is desired to manipulate two or more images under real-time operator control. The authors have investigated a number of such cases in order to determine their value and applicability in clinical medicine and laboratory research. Several examples are presented in detail. The DICOM-8 video image computer system was used due to its capability of storing two 512 x 512 x 8 bit images and operating on them, and/or an incoming video frame, with any of a number of real time operations including addition, subtraction, inversion, averaging, logical AND, NAND, OR, NOR, NOT, XOR and XNOR, as well as combinations of these. Some applications involve manipulations of or among the stored images. In others, a stored image is used as a mask or template for positioning or adjusting a second image to be grabbed via a video camera. The accuracy of radiotherapy treatment is verified by comparing port films with the original radiographic planning film, which is previously digitized and stored. Moving the port film on the light box while viewing the real-time subtraction image allows for adjustments of zoom, translation and rotation, together with contrast and edge enhancement

  7. The Raptor Real-Time Processing Architecture

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  8. Real-Time Wireless Data Acquisition System

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time

  9. Real-Time Thevenin Impedance Computation

    Sommer, Stefan Horst; Jóhannsson, Hjörtur

    2013-01-01

    operating state, and strict time constraints are difficult to adhere to as the complexity of the grid increases. Several suggested approaches for real-time stability assessment require Thevenin impedances to be determined for the observed system conditions. By combining matrix factorization, graph reduction......, and parallelization, we develop an algorithm for computing Thevenin impedances an order of magnitude faster than previous approaches. We test the factor-and-solve algorithm with data from several power grids of varying complexity, and we show how the algorithm allows realtime stability assessment of complex power...

  10. Real Time Wide Area Radiation Surveillance System

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  11. automatic generation of root locus plots for linear time invariant

    user

    peak time, its real power is its ability to solve problems with higher order systems. ... implementation of a computer program for the automatic generation of root loci using .... the concepts of complex variables, the angle condition can be ...

  12. Can producer currency pricing models generate volatile real exchange rates?

    Povoledo, L.

    2012-01-01

    If the elasticities of substitution between traded and nontraded and between Home and Foreign traded goods are sufficiently low, then the real exchange rate generated by a model with full producer currency pricing is as volatile as in the data.

  13. Analyzer of neutron flux in real time

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G.

    1999-01-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  14. Modelling and analysis of real-time and hybrid systems

    Olivero, A

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  15. Exploring Earthquakes in Real-Time

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  16. Resource-Parameterized Timing Analysis of Real-Time Systems

    Kim, Jin Hyun; Legay, Axel; Larsen, Kim Guldstrand

    2015-01-01

    on a specic platform. For the same reason, a configuration of platforms cannot be independent from applications in most cases. This paper proposes a new analysis framework of real-time systems where an application and a platform can be analyzed in a fully independent way such that not only the application...

  17. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  18. Realistic real-time outdoor rendering in augmented reality.

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  19. Software Design Methods for Real-Time Systems

    1989-12-01

    This module describes the concepts and methods used in the software design of real time systems . It outlines the characteristics of real time systems , describes...the role of software design in real time system development, surveys and compares some software design methods for real - time systems , and

  20. Real-time inextensible surgical thread simulation.

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  1. Real-time applications of neural nets

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs

  2. Real-time applications of neural nets

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  3. Real-time applications of neural nets

    Spencer, J.E.

    1989-01-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed

  4. Simultaneous real-time data collection methods

    Klincsek, Thomas

    1992-01-01

    This paper describes the development of electronic test equipment which executes, supervises, and reports on various tests. This validation process uses computers to analyze test results and report conclusions. The test equipment consists of an electronics component and the data collection and reporting unit. The PC software, display screens, and real-time data-base are described. Pass-fail procedures and data replay are discussed. The OS2 operating system and Presentation Manager user interface system were used to create a highly interactive automated system. The system outputs are hardcopy printouts and MS DOS format files which may be used as input for other PC programs.

  5. Real-time PCR in virology

    Mackay, Ian M.; Arden, Katherine E.; Nitsche, Andreas

    2002-01-01

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of P...

  6. Systems Analyze Water Quality in Real Time

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  7. Real-time modeling of heat distributions

    Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas

    2018-01-02

    Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.

  8. Linear Regression Based Real-Time Filtering

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  9. A real-time Global Warming Index.

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  10. General purpose computers in real time

    Biel, J.R.

    1989-01-01

    I see three main trends in the use of general purpose computers in real time. The first is more processing power. The second is the use of higher speed interconnects between computers (allowing more data to be delivered to the processors). The third is the use of larger programs running in the computers. Although there is still work that needs to be done, I believe that all indications are that the online need for general purpose computers should be available for the SCC and LHC machines. 2 figs

  11. Robust synthesis for real-time systems

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Luois-Marie

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract...... of introducing small perturbations into formal models. We address this problem of robust implementations in timed specification theories. We first consider a fixed perturbation and study the robustness of timed specifications with respect to the operators of the theory. To this end we synthesize robust...... specification to an implementation, we need to reason about the possibility to effectively implement the theoretical specifications on physical systems, despite their limited precision. In the literature, this implementation problem has been linked to the robustness problem that analyzes the consequences...

  12. CONSIDERATIONS ON REAL TIME DATA WAREHOUSING (RTDW

    Marius Bogdan DINU

    2014-05-01

    Full Text Available The RTDW concept originated in the early 2000s. By that time, computing power had increased to a level that was allowing extraction of data collections for reporting purposes. Such collections were used almost in real time and at speeds nearly comparable to what an operation system was capable to deliver. The main idea will be to eliminate some of the components of the classic extraction process which is basically the most costly factor less time - consuming. We anticipate that the following factors will be decisive: elimination of batch-type processes [1], data compression techniques, data capture techniques, ability to keep in cache a large volume of data, parallel processing, and data mining algorithms that can adapt to such applications.

  13. A real-time radiation mapping system

    Scoggins, W.A.; VanEtten, D.M.

    1988-01-01

    A prototype of a real-time radiation mapping system, Ranger, was developed to respond to an accident involving the release of plutonium for the Department of Energy's Accident Response Group. In 1987 Ranger demonstrated that it can provide an efficient method of monitoring large areas of land for radioactive contamination. With the experience gained from the operation of the prototype, the external computer and software are being upgraded in order to obtain a fully operational system. The new system uses the prototype's commercially available line-of-sight microwave system for determining position and the same radiation detection instruments. The data obtained from the radiation detection instrument(s) are linked back to the external computer along with the relative position of the measurement through the ranging system. The data are displayed on a gridded map as colored circles and permanently stored in real-time. The different colors represent different contamination levels. Contours can be drawn using the permanently stored data. 4 figs

  14. Real time water chemistry monitoring and diagnostics

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  15. Interfacing real-time information with OILMAP

    Howlett, E.; Jayko, K.; Spaulding, M.

    1993-01-01

    OILMAP is a state-of-the-art, microcomputer-based oil spill response system applicable to oil spill contingency planning and real-time response for any location in the world. OILMAP has a graphic user interface and was designed in a modular framework so that different spill models could be incorporated into the system, as well as a suite of sophisticated data management tools, without increasing the complexity of the user interface. The basic OILMAP configuration contains a surface trajectory model intended for rapid, first-order estimates of spill movement. A variety of additional models are available within the OILMAP shell to address issues such as weathering, cleanup activities, and probabilities of oiling. A simplified geographic information system (GIS) allows display and manipulation of point, line, and area data geographically referenced to the spill domain. The GIS can import raster data so that images collected by satellite and aerial photography may be displayed. Several new capabilities have been implemented for OILMAP that allow real-time data to be integrated. These features include linking with the OILTRACKER free-floating buoys via a global positioning system, linking of hydrodynamic data from the Ocean Data and Information Network, the Harvard ocean forecasting system, and SeaSonde radar, and the capability of importing spill observations from any remotely sensed data. A further link between OILMAP's GIS and spill models has been developed which allows model predictions to be corrected to observed oil locations while the model runs. 13 refs., 6 figs

  16. Memory controllers for real-time embedded systems predictable and composable real-time systems

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  17. Operational and real-time Business Intelligence

    Daniela Ioana SANDU

    2008-01-01

    Full Text Available A key component of a company’s IT framework is a business intelligence (BI system. BI enables business users to report on, analyze and optimize business operations to reduce costs and increase revenues. Organizations use BI for strategic and tactical decision making where the decision-making cycle may span a time period of several weeks (e.g., campaign management or months (e.g., improving customer satisfaction.Competitive pressures coming from a very dynamic business environment are forcing companies to react faster to changing business conditions and customer requirements. As a result, there is now a need to use BI to help drive and optimize business operations on a daily basis, and, in some cases, even for intraday decision making. This type of BI is usually called operational business intelligence and real-time business intelligence.

  18. Kalman Filtering with Real-Time Applications

    Chui, Charles K

    2009-01-01

    Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.

  19. Real-time rockmass response from microseismics

    Andrew King; Michael Lofgren; Matt van de Werken [CSIRO Exploration and Mining (Australia)

    2009-06-15

    The primary objective of this project was to develop a prototype real-time microseismic monitoring system for strata control management and forewarning of geotechnical hazards. Power and communications problems have been addressed by developing a wirelessly connected network of solar-powered acquisition nodes, one at the top of each instrumented borehole. The open-source 'earthworm' earthquake acquisition software, which can run on different hardware platforms and use different acquisition cards, was modified for use in a coal environment by developing special new arrival-picking and event-location procedures. The system was field-trialled at Moranbah North mine. The acquisition software performed well, as did wireless communications and solar power. There were issues with the acquisition hardware selected, including problems with timing synchronisation, which is essential for seismic event location. Although these were fixed during the test, different hardware is likely to be used in future installations.

  20. Simultaneous real-time monitoring of multiple cortical systems.

    Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin

    2014-10-01

    Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our

  1. Real Time Monitor of Grid job executions

    Colling, D J; Martyniak, J; McGough, A S; Krenek, A; Sitera, J; Mulac, M; Dvorak, F

    2010-01-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  2. Real-time statistical quality control and ARM

    Blough, D.K.

    1992-05-01

    An important component of the Atmospheric Radiation Measurement (ARM) Program is real-time quality control of data obtained from meteorological instruments. It is the goal of the ARM program to enhance the predictive capabilities of global circulation models by incorporating in them more detailed information on the radiative characteristics of the earth's atmosphere. To this end, a number of Cloud and Radiation Testbeds (CART's) will be built at various locations worldwide. Each CART will consist of an array of instruments designed to collect radiative data. The large amount of data obtained from these instruments necessitates real-time processing in order to flag outliers and possible instrument malfunction. The Bayesian dynamic linear model (DLM) proves to be an effective way of monitoring the time series data which each instrument generates. It provides a flexible yet powerful approach to detecting in real-time sudden shifts in a non-stationary multivariate time series. An application of these techniques to data arising from a remote sensing instrument to be used in the CART is provided. Using real data from a wind profiler, the ability of the DLM to detect outliers is studied. 5 refs

  3. Implementing Run-Time Evaluation of Distributed Timing Constraints in a Real-Time Environment

    Kristensen, C. H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments......In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments...

  4. REAL TIME SPEED ESTIMATION FROM MONOCULAR VIDEO

    M. S. Temiz

    2012-07-01

    Full Text Available In this paper, detailed studies have been performed for developing a real time system to be used for surveillance of the traffic flow by using monocular video cameras to find speeds of the vehicles for secure travelling are presented. We assume that the studied road segment is planar and straight, the camera is tilted downward a bridge and the length of one line segment in the image is known. In order to estimate the speed of a moving vehicle from a video camera, rectification of video images is performed to eliminate the perspective effects and then the interest region namely the ROI is determined for tracking the vehicles. Velocity vectors of a sufficient number of reference points are identified on the image of the vehicle from each video frame. For this purpose sufficient number of points from the vehicle is selected, and these points must be accurately tracked on at least two successive video frames. In the second step, by using the displacement vectors of the tracked points and passed time, the velocity vectors of those points are computed. Computed velocity vectors are defined in the video image coordinate system and displacement vectors are measured by the means of pixel units. Then the magnitudes of the computed vectors in the image space are transformed to the object space to find the absolute values of these magnitudes. The accuracy of the estimated speed is approximately ±1 – 2 km/h. In order to solve the real time speed estimation problem, the authors have written a software system in C++ programming language. This software system has been used for all of the computations and test applications.

  5. Real-time visualization of joint cavitation.

    Gregory N Kawchuk

    Full Text Available Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  6. Real time biometric surveillance with gait recognition

    Mohapatra, Subasish; Swain, Anisha; Das, Manaswini; Mohanty, Subhadarshini

    2018-04-01

    Bio metric surveillance has become indispensable for every system in the recent years. The contribution of bio metric authentication, identification, and screening purposes are widely used in various domains for preventing unauthorized access. A large amount of data needs to be updated, segregated and safeguarded from malicious software and misuse. Bio metrics is the intrinsic characteristics of each individual. Recently fingerprints, iris, passwords, unique keys, and cards are commonly used for authentication purposes. These methods have various issues related to security and confidentiality. These systems are not yet automated to provide the safety and security. The gait recognition system is the alternative for overcoming the drawbacks of the recent bio metric based authentication systems. Gait recognition is newer as it hasn't been implemented in the real-world scenario so far. This is an un-intrusive system that requires no knowledge or co-operation of the subject. Gait is a unique behavioral characteristic of every human being which is hard to imitate. The walking style of an individual teamed with the orientation of joints in the skeletal structure and inclinations between them imparts the unique characteristic. A person can alter one's own external appearance but not skeletal structure. These are real-time, automatic systems that can even process low-resolution images and video frames. In this paper, we have proposed a gait recognition system and compared the performance with conventional bio metric identification systems.

  7. Spying on real-time computers to improve performance

    Taff, L.M.

    1975-01-01

    The sampled program-counter histogram, an established technique for shortening the execution times of programs, is described for a real-time computer. The use of a real-time clock allows particularly easy implementation. (Auth.)

  8. RTMOD: Real-Time MODel evaluation

    Graziani, G; Galmarini, S.; Mikkelsen, T.

    2000-01-01

    The 1998 - 1999 RTMOD project is a system based on an automated statistical evaluation for the inter-comparison of real-time forecasts produced by long-range atmospheric dispersion models for national nuclear emergency predictions of cross-boundary consequences. The background of RTMOD was the 1994 ETEX project that involved about 50 models run in several Institutes around the world to simulate two real tracer releases involving a large part of the European territory. In the preliminary phase of ETEX, three dry runs (i.e. simulations in real-time of fictitious releases) were carried out. At that time, the World Wide Web was not available to all the exercise participants, and plume predictions were therefore submitted to JRC-Ispra by fax and regular mail for subsequent processing. The rapid development of the World Wide Web in the second half of the nineties, together with the experience gained during the ETEX exercises suggested the development of this project. RTMOD featured a web-based user-friendly interface for data submission and an interactive program module for displaying, intercomparison and analysis of the forecasts. RTMOD has focussed on model intercomparison of concentration predictions at the nodes of a regular grid with 0.5 degrees of resolution both in latitude and in longitude, the domain grid extending from 5W to 40E and 40N to 65N. Hypothetical releases were notified around the world to the 28 model forecasters via the web on a one-day warning in advance. They then accessed the RTMOD web page for detailed information on the actual release, and as soon as possible they then uploaded their predictions to the RTMOD server and could soon after start their inter-comparison analysis with other modelers. When additional forecast data arrived, already existing statistical results would be recalculated to include the influence by all available predictions. The new web-based RTMOD concept has proven useful as a practical decision-making tool for realtime

  9. Biomass Power Generation Investment in China: A Real Options Evaluation

    Mingming Zhang

    2016-06-01

    Full Text Available This paper proposes a real options model for evaluating the biomass power generation investment in China. The uncertainties in the market price of electricity, CO2 price and straw price are considered. Meanwhile the dynamic relationship between installed capacity and fuel cost, as well as the long-term reduction of subsidy are described. Two scenarios, i.e., with the carbon emission trading scheme existent and non-existent, respectively, is built to empirically analyze the investment of a 25-MW straw-based power generation project. The results show that investors should undertake the investment in 2030 under two scenarios. Investment values are 14,869,254.8 and 37,608,727 Chinese Yuan (RMB, respectively. The implementation of the carbon emission trading scheme theoretically helps improve investment value and advance the most likely optimal investment time. However, the current CO2 price is not sufficient to advance the most likely optimal investment time. The impacts of several factors, including subsidy policy, CO2 price, straw price, installed capacity, correlation structure and the validity period of investment, on the optimal investment strategy are also examined. It is suggested that governments take some measures, including increasing subsidy, setting the growth pattern of subsidy and establishing and perfecting a nationwide carbon trading market, to improve the investment environment and attract more investments.

  10. Real-time ultrasonic weld evaluation system

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  11. Real-time photorealistic stereoscopic rendering of fire

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  12. Real-time optoacoustic monitoring of temperature in tissues

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  13. A Real-Time Simulation Platform for Power System Operation

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... phenomena like single-phase faults in the two-area network and to observe their effects on a larger time scale. Also, the case study of 11 bus system with 5 generators has been also used and the results are presented....

  14. Real time speech formant analyzer and display

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  15. Performance evaluation of real time radiographic systems

    Venkatraman, B.; Saravanan, S.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    The Real Time Radiography (RTR) system can be studied completely by knowing the modulation transfer function (MTF) of the whole system. The MTF curve is a special form of contrast/detail-size diagram in which the image contrast is plotted against the spatial frequency of a test object measured in line-pairs per millimetre (lp/mm). MTF curves are widely used to measure the characteristics of optical equipment, particularly for assessing the contribution of individual items in a complex imaging transfer system. Codes of practice indicate that the image intensifier systems should be checked periodically to assess its performance through the use of MTF curves and step wedges for contrast ratio. Authors, instead, suggest the use of performance curves which are simple to obtain and can be easily interpreted by radiographers. (author)

  16. Optimal, real-time control--colliders

    Spencer, J.E.

    1991-05-01

    With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs

  17. Development of the real time monitor system

    Kato, Katsumi [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan); Watanabe, Tadashi; Kaburaki, Hideo

    1996-10-01

    Large-scale simulation technique is studied at the Center for Promotion of Computational Science and Engineering (CCSE) for the computational science research in nuclear fields. Visualization and animation processing technique are studied and developed for efficient understanding of simulation results. The real time monitor system, in which on-going simulation results are transferred from a supercomputer or workstation to a graphic workstation and are visualized and recorded, is described in this report. This system is composed of the graphic workstation and the video equipment connected to the network. The control shell programs are the job-execution shell for simulations on supercomputers, the file-transfer shell for output files for visualization, and the shell for starting visualization tools. Special image processing technique and hardware are not necessary in this system and the standard visualization tool AVS and the UNIX commands are used, so that this system can be implemented and applied in various computer environments. (author)

  18. Real-time Human Activity Recognition

    Albukhary, N.; Mustafah, Y. M.

    2017-11-01

    The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.

  19. REAL TIME DATA FOR REMEDIATION ACTIVITIES (11505)

    Brock, C.T.

    2011-01-01

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  20. A distributed real-time operating system

    Tuynman, F.; Hertzberger, L.O.

    1984-07-01

    A distributed real-time operating system, Fados, has been developed for an embedded multi-processor system. The operating system is based on a host target approach and provides for communication between arbitrary processes on host and target machine. The facilities offered are, apart from process communication, access to the file system on the host by programs on the target machine and monitoring and debugging of programs on the target machine from the host. The process communication has been designed in such a way that the possibilities are the same as those offered by the Ada programming language. The operating system is implemented on a MC 68000 based multiprocessor system in combination with a Unix host. (orig.)

  1. Real Time Earthquake Information System in Japan

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  2. Application of XML in real-time data warehouse

    Zhao, Yanhong; Wang, Beizhan; Liu, Lizhao; Ye, Su

    2009-07-01

    At present, XML is one of the most widely-used technologies of data-describing and data-exchanging, and the needs for real-time data make real-time data warehouse a popular area in the research of data warehouse. What effects can we have if we apply XML technology to the research of real-time data warehouse? XML technology solves many technologic problems which are impossible to be addressed in traditional real-time data warehouse, and realize the integration of OLAP (On-line Analytical Processing) and OLTP (Online transaction processing) environment. Then real-time data warehouse can truly be called "real time".

  3. The Fast Tracker Real Time Processor

    Annovi, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the SLHC Phase I level and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting massive parallelism of associative memories [2] that ...

  4. Real-time scheduling of software tasks

    Hoff, L.T.

    1995-01-01

    When designing real-time systems, it is often desirable to schedule execution of software tasks based on the occurrence of events. The events may be clock ticks, interrupts from a hardware device, or software signals from other software tasks. If the nature of the events, is well understood, this scheduling is normally a static part of the system design. If the nature of the events is not completely understood, or is expected to change over time, it may be necessary to provide a mechanism for adjusting the scheduling of the software tasks. RHIC front-end computers (FECs) provide such a mechanism. The goals in designing this mechanism were to be as independent as possible of the underlying operating system, to allow for future expansion of the mechanism to handle new types of events, and to allow easy configuration. Some considerations which steered the design were programming paradigm (object oriented vs. procedural), programming language, and whether events are merely interesting moments in time, or whether they intrinsically have data associated with them. The design also needed to address performance and robustness tradeoffs involving shared task contexts, task priorities, and use of interrupt service routine (ISR) contexts vs. task contexts. This paper will explore these considerations and tradeoffs

  5. Generator of an exponential function with respect to time

    Janin, Paul; Puyal, Claude.

    1981-01-01

    This invention deals with an exponential function generator, and an application of this generator to simulating the criticality of a nuclear reactor for reactimeter calibration purposes. This generator, which is particularly suitable for simulating the criticality of a nuclear reactor to calibrate a reactimeter, can also be used in any field of application necessitating the generation of an exponential function in real time. In certain fields of thermodynamics, it is necessary to represent temperature gradients as a function of time. The generator might find applications here. Another application is nuclear physics where it is necessary to represent the attenuation of a neutron flux density with respect to time [fr

  6. The INGV Real Time Strong Motion Database

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  7. On Real-Time Systems Using Local Area Networks.

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  8. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Real-Time Implementation of Islanded Microgrid for Remote Areas

    Monika Jain

    2016-01-01

    Full Text Available Islanding is a condition in which a microgrid or a portion of power grid, consisting of distributed generation (DG sources, converter, and load, gets disconnected from the utility grid. Under this condition the DG sources in a microgrid must switch to a voltage control mode, in order to provide constant voltage to local loads. In grid connected mode, the microgrid works as current controller and injects power to the main grid, depending on the power generation and local load with suitable market policies. Providing constant voltage at a stable frequency with proper synchronization amongst each DG in a microgrid is a challenge. The complexity of such grid requires careful study and analysis before actual implementation. These challenges of microgrid are addressed using real time OPAL-RT simulation technology. Thus the paper describes an islanded microgrid with master slave controller for power balance, voltage/frequency regulation, and synchronization. Based on an advanced real-time platform named Real-Time Laboratory (RT-LAB, the impacts of the micro sources, load, and converters in an islanded microgrid is studied in this paper. The effectiveness of the proposed controller is analyzed through experimental results under balanced/unbalanced nonlinear loads condition.

  10. Quality assurance test of a real time radiography system

    Yadav, R.K.; Rama, R.; Sharma, A.; Kannan, R.

    2005-01-01

    Any radiation generating equipment can be used and marketed in India only after obtaining specific type approval certificate from the Competent Authority i.e. Chairman, Atomic Energy Regulatory Board (AERB), Mumbai. Recently AERB has enforced a directive that the Industrial X-ray machines should also be permitted to use only after getting NOC or type approval. Type approval is granted based upon the satisfactory QA test report of the radiation generating equipment. X-ray machines with Real Time Radiography (RTR) facility are used in industrial radiography for faster inspection of equipment's and products online. A standard test protocol was developed for QA tests of a real time radiography system. This will be helpful for evaluation of an industrial X-ray machine. Also above procedure can be used to check a RTR system each day or a system-qualification can be done when the image quality diminishes as recommended by American Society of Testing Material (ASTM). Various tests carried out on a constant potential 450 kV, 10 mA industrial X-ray machine having real time radiography facility to monitor the products online, is described in this paper. (author)

  11. New GOES satellite synchronized time code generation

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  12. Business Hypervisors for Real-time Applications

    L. Perneel

    2015-08-01

    Full Text Available System virtualization is one of the hottest trends in information technology today. It is not just another nice to use technology but has become fundamental across the business world. It is successfully used with many business application classes where cloud computing is the most visual one. Recently, it started to be used for soft Real-Time (RT applications such as IP telephony, media servers, audio and video streaming servers, automotive and communication systems in general. Running these applications on a traditional system (Hardware + Operating System guarantee their Quality of Service (QoS; virtualizing them means inserting a new layer between the hardware and the (virtual Operating System (OS, and thus adding extra overhead. Although these applications’ areas do not always demand hard time guarantees, they require the underlying virtualization layer supports low latency and provide adequate computational resources for completion within a reasonable or predictable timeframe. These aspects are intimately intertwined with the logic of the hypervisor scheduler. In this paper, a series of tests are conducted on three hypervisors (VMware ESXi, Hyper-V server and Xen to provide a benchmark of the latencies added to the applications running on top of them. These tests are conducted for different scenarios (use cases to take into consideration all the parameters and configurations of the hypervisors’ schedulers. Finally, this benchmark can be used as a reference for choosing the best hypervisor-application combination.

  13. Early experience in centralized real time energy market

    Alaywan, Z.; Hernandez, L.; Martin, M.

    2005-01-01

    The current structure of the California Independent System Operator (ISO) was described. The study provided an outline of California's transition from a decentralized pool operation to a forward bilateral market through the implementation of a centralized real time market. Details of the institutional, economic and technological history of the power system were provided. Although the California real time market was implemented in order to simplify the power system, a number of operational challenges were observed. Discontinuities in the energy curve resulted in the implementation of a target price process, which aimed to resolve the overlap in energy bids. The design of the ISO's real time market did not provide a mechanism for bidders to execute real time energy trades. Regulation bidders also internalized energy in their regulation capacity bids. The real time market application (RTMA) provided the ISO with a substantial computer program to determine and account for nearly all aspects of generation unit scheduling and physical characteristics with a multiple ramp rate. The program combined optimal power flow (OPF) logic for energy flows in addition to mixed-integer nonlinear optimization of trading schedules, and system and security constraints. The RTMA used a multi-period security constrained economic dispatch (SCED) function to optimize energy dispatch schedules. Other features of the RTMA included security constrained unit commitment, security constrained economic dispatch, and dispatch schedule post processes. It was concluded that implementation of the RTMA has increased the efficiency of the ISO. A case study of the RTMA during an outage in November 2004 was provided. 5 refs., 1 tab., 2 figs

  14. Wide-area, real-time monitoring and visualization system

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. GSM based real time remote radiation monitoring and mapping system

    Dodiya, Kamal; Gupta, Ashutosh; Padmanabhan, N.; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Mobile Radiological Impact Assessment Laboratory (M-RIAL) has been developed in Radiation Safety Systems Division, Bhabha Atomic Research Centre for carrying out assessment of radioactive contamination following a nuclear or radiological emergency in a nuclear facility or in public domain. During such situations a large area is to be monitored for radiological impact assessment and availability of the monitored data in real-time to a control centre is a great advantage for the decision makers. Development and application of such a system has been described in this paper. The system can transmit real-time radiological data, acquired by the universal counting system of M-RIAL and tagged with positional information, wirelessly to an Emergency Response Centre (ERC) using Global System for Mobile (GSM) communication. The radiological profile of the affected area is then superimposed on Geographical Information System (GIS) at the ERC and which can be used for the generation of radiological impact maps for use as decision support

  16. Real-time performance monitoring and management system

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  17. Main real time software for high-energy physics experiments

    Tikhonov, A.N.

    1985-01-01

    The general problems of organization of software complexes, as well as development of typical algorithms and packages of applied programs for real time systems used in experiments with charged particle accelerators are discussed. It is noted that numerous qualitatively different real time tasks are solved by parallel programming of the processes of data acquisition, equipment control, data exchange with remote terminals, data express processing and accumulation, operator's instruction interpretation, generation and buffering of resulting files for data output and information processing which is realized on the basis of multicomputer system utilization. Further development of software for experiments is associated with improving the algorithms for automatic recognition and analysis of events with complex topology and standardization of applied program packages

  18. Real-time Energy Resource Scheduling considering a Real Portuguese Scenario

    Silva, Marco; Sousa, Tiago; Morais, Hugo

    2014-01-01

    The development in power systems and the introduction of decentralized gen eration and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which...... scheduling in smart grids, considering day - ahead, hour - ahead and real - time scheduling. The case study considers a 33 - bus distribution network with high penetration of distributed energy resources . The wind generation profile is base d o n a rea l Portuguese wind farm . Four scenarios are presented...... taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour - ahead and real - time scheduling...

  19. Real time measurement of air radioactivity

    Galeriu, D.; Craciunescu, T.; Teles, S.

    1998-01-01

    A Local Meteorological and Radiological Monitoring System was developed in our institute for several purposes: local monitoring, extending our experience in other location such as Cernavoda NPP and research. This system has meteorological sensors for wind speed and direction, air temperature, solar radiation, relative humidity, rainfall, dose ratemeter (Geiger-Muller counter - TIEX), Alpha-Beta Activity-in-Air Monitor (AB96), Iodine Monitor and Eberline Intelligent Ionization Chamber (FHT 6010). All data are collected by a programmable interface Delta-T Logger that is controlled by a software (ODAS - 'On-line Data Acquisition Software'). ODAS was developed in IFIN-HH. It has the capability to acquire, calculate and transmit real meteorological and radiological data through local network. The developed software controls the interface, the flux of input data through the serial port RS232 and after some processing (system, configuration, input data, connection to the network checking, etc) it creates data files. These files are transmitted on-line to our workstation or in any other place connected to Internet. Data can be collected from the logger at any time during logging. There is no need to stop logging. Data output from the logger can be controlled either from the logger's keypad or from other user terminals. ODAS is operated as follows: - First, the last written file and the date-time of acquired readings are checked. For establishing communication with logger a RS232 level signal must be sent to it. The logger wakes if asleep and sends back RDY signal. Powering the logger may take up to 100 ms to establish a correct RS232 level. Noise on the output lines occurs during this period and communication software may need to take into account such spurious signals. A command must be sent to the logger within 2 s to confirm that the last signal received is real and not spurious. Otherwise, the logger interprets the signal as noise and sleeps. The software sends further

  20. Automated Real-Time Clearance Analyzer (ARCA), Phase I

    National Aeronautics and Space Administration — The Automated Real-Time Clearance Analyzer (ARCA) addresses the future safety need for Real-Time System-Wide Safety Assurance (RSSA) in aviation and progressively...

  1. Specification and Automated Verification of Real-Time Behaviour

    Kristensen, C.H.; Andersen, J.H.; Skou, A.

    1995-01-01

    In this paper we sketch a method for specification and automatic verification of real-time software properties.......In this paper we sketch a method for specification and automatic verification of real-time software properties....

  2. Specification and Automated Verification of Real-Time Behaviour

    Andersen, J.H.; Kristensen, C.H.; Skou, A.

    1996-01-01

    In this paper we sketch a method for specification and automatic verification of real-time software properties.......In this paper we sketch a method for specification and automatic verification of real-time software properties....

  3. Internet-accessible real-time weather information system

    Desai, R.G.P.; Joseph, A.; Desa, E.; Mehra, P.; Desa, E.; Gouveia, A.D.

    An internet-accessible real-time weather information system has been developed. This system provides real-time accessibility to weather information from a multitude of spatially distributed weather stations. The Internet connectivity also offers...

  4. An integrated technique for developing real-time systems

    Hooman, J.J.M.; Vain, J.

    1995-01-01

    The integration of conceptual modeling techniques, formal specification, and compositional verification is considered for real time systems within the knowledge engineering context. We define constructive transformations from a conceptual meta model to a real time specification language and give

  5. Virtual timers in hierarchical real-time systems

    Heuvel, van den M.M.H.P.; Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.; Zhu, D.

    2009-01-01

    Hierarchical scheduling frameworks (HSFs) provide means for composing complex real-time systems from welldefined subsystems. This paper describes an approach to provide hierarchically scheduled real-time applications with virtual event timers, motivated by the need for integrating priority

  6. Real-time subway information for improving transit ridership.

    2016-08-01

    In recent years, the standardization of transit schedule information has yielded a dramatic increase in the accessibility of computerized transit schedules and given rise to real-time service schedules. Two such real-time service schedules are the Ge...

  7. Improving Timeliness in Real-Time Secure Database Systems

    Son, Sang H; David, Rasikan; Thuraisingham, Bhavani

    2006-01-01

    .... In addition to real-time requirements, security is usually required in many applications. Multilevel security requirements introduce a new dimension to transaction processing in real-time database systems...

  8. Managing high-bandwidth real-time data storage

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  9. Real balance effects, timing, and equilibrium determination

    Stoltenberg, C.A.

    2012-01-01

    By assuming that money balances at the beginning instead of at the end of the period provide transaction services, standard results on nominal and real determinacy in monetary models are overturned. The key is that predetermined real money balances can be a state variable. Whereas the determination

  10. Large holographic displays for real-time applications

    Schwerdtner, A.; Häussler, R.; Leister, N.

    2008-02-01

    Holography is generally accepted as the ultimate approach to display three-dimensional scenes or objects. Principally, the reconstruction of an object from a perfect hologram would appear indistinguishable from viewing the corresponding real-world object. Up to now two main obstacles have prevented large-screen Computer-Generated Holograms (CGH) from achieving a satisfactory laboratory prototype not to mention a marketable one. The reason is a small cell pitch CGH resulting in a huge number of hologram cells and a very high computational load for encoding the CGH. These seemingly inevitable technological hurdles for a long time have not been cleared limiting the use of holography to special applications, such as optical filtering, interference, beam forming, digital holography for capturing the 3-D shape of objects, and others. SeeReal Technologies has developed a new approach for real-time capable CGH using the socalled Tracked Viewing Windows technology to overcome these problems. The paper will show that today's state of the art reconfigurable Spatial Light Modulators (SLM), especially today's feasible LCD panels are suited for reconstructing large 3-D scenes which can be observed from large viewing angles. For this to achieve the original holographic concept of containing information from the entire scene in each part of the CGH has been abandoned. This substantially reduces the hologram resolution and thus the computational load by several orders of magnitude making thus real-time computation possible. A monochrome real-time prototype measuring 20 inches has been built and demonstrated at last year's SID conference and exhibition 2007 and at several other events.

  11. Energy efficient approach for transient fault recovery in real time ...

    DR OKE

    Keywords: DVS, Fault tolerance, Real Time System, Transient Fault. ... in which missing the deadline may cause a failure and soft real time system, ..... Pillai, P., Shin, K., Real-time dynamic voltage scaling for low-power embedded operating ...

  12. ClockWork: a Real-Time Feasibility Analysis Tool

    Jansen, P.G.; Hanssen, F.T.Y.; Mullender, Sape J.

    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not

  13. The real-time price elasticity of electricity

    Lijesen, M.G.

    2007-01-01

    The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time

  14. Temporal Specification and Verification of Real-Time Systems.

    1991-08-30

    of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .

  15. The Colliderscope: a real-time show

    Francesco Poppi

    2010-01-01

    Ninety-six LED lights distributed over the facade of the Niels Bohr Institute (NBI) in Blegdamsvej (Denmark) reproduce the actual signals coming from the Transition Radiation Detector (TRT) in ATLAS. Thanks to the Colliderscope, when a collision occurs below the ground in Geneva, people passing by in Blegdamsvej will be aware of it almost in real-time.   Niels Bohr Institute facade lit up to reflect the latest data from ATLAS-TRT . The pattern, intensity and duration of the Colliderscope’s flashes of light depend on the physical parameters of particles crossing the ATLAS TRT detector. “At the Colliderscope very little happens randomly”, explains Troels Petersen, a physicist at NBI and one of the people who conceived it. “Particularly interesting events, such as electrons, are shown by a bright light that remains on the facade for several seconds”. The Niels Bohr Institute has participated in the development of the TRT detector, and this is why t...

  16. Real-time petroleum spill detection system

    Dakin, D.T.

    2001-01-01

    A real-time autonomous oil and fuel spill detection system has been developed to rapidly detect of a wide range of petroleum products floating on, or suspended in water. The system consists of an array of spill detection buoys distributed within the area to be monitored. The buoys are composed of a float and a multispectral fluorometer, which looks up through the top 5 cm of water to detect floating and suspended petroleum products. The buoys communicate to a base station computer that controls the sampling of the buoys and analyses the data from each buoy to determine if a spill has occurred. If statistically significant background petroleum levels are detected, the system raises an oil spill alarm. The system is useful because early detection of a marine oil spill allows for faster containment, thereby minimizing the contaminated area and reducing cleanup costs. This paper also provided test results for biofouling, various petroleum product detection, water turbidity and wave tolerance. The technology has been successfully demonstrated. The UV light source keeps the optic window free from biofouling, and the electronics are fully submerged so there is no risk that the unit could ignite the vapours of a potential oil spill. The system can also tolerate moderately turbid waters and can therefore be used in many rivers, harbours, water intakes and sumps. The system can detect petroleum products with an average thickness of less than 3 micrometers floating on the water surface. 3 refs., 15 figs

  17. Real-Time Accumulative Computation Motion Detectors

    Saturnino Maldonado-Bascón

    2009-12-01

    Full Text Available The neurally inspired accumulative computation (AC method and its application to motion detection have been introduced in the past years. This paper revisits the fact that many researchers have explored the relationship between neural networks and finite state machines. Indeed, finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. The article shows how to reach real-time performance after using a model described as a finite state machine. This paper introduces two steps towards that direction: (a A simplification of the general AC method is performed by formally transforming it into a finite state machine. (b A hardware implementation in FPGA of such a designed AC module, as well as an 8-AC motion detector, providing promising performance results. We also offer two case studies of the use of AC motion detectors in surveillance applications, namely infrared-based people segmentation and color-based people tracking, respectively.

  18. Mobility and language change in real time

    Monka, Malene

    Diachronic studies of the interrelationship between mobility and language change leave us with some unanswered questions of causation. The most important question is whether language change is caused by mobility, or if mobile informants mark themselves linguistically different than their non-mobi...... mobile and non-mobile informants. I also suggest a human geographic approach to place to explain the differences between the language change of the mobile informants (e.g. Britain 2009; Johnstone 2004).......Diachronic studies of the interrelationship between mobility and language change leave us with some unanswered questions of causation. The most important question is whether language change is caused by mobility, or if mobile informants mark themselves linguistically different than their non......-mobile peers prior to being geographically and socially mobile (e.g. Andersson & Thelander 1994). In the presentation I discuss this question by presenting a real time panel-study of language change in 23 speakers from three municipalities in distinct dialect areas in Denmark. The language change of six mobile...

  19. Near Real Time Ship Detection Experiments

    Brusch, S.; Lehner, S.; Schwarz, E.; Fritz, T.

    2010-04-01

    A new Near Real Time (NRT) ship detection processor SAINT (SAR AIS Integrated Toolbox) was developed in the framework of the ESA project MARISS. Data are received at DLRs ground segment DLR-BN (Neustrelitz, Germany). Results of the ship detection are available on ftp server within 30 min after the acquisition started. The detectability of ships on Synthetic Aperture Radar (SAR) ERS-2, ENVISAT ASAR and TerraSAR-X (TS-X) images is validated by coastal (live) AIS and space AIS. The monitoring areas chosen for surveillance are the North-, Baltic Sea, and Cape Town. The detectability in respect to environmental parameters like wind field, sea state, currents and changing coastlines due to tidal effects is investigated. In the South Atlantic a tracking experiment of the German research vessel Polarstern has been performed. Issues of piracy in particular in respect to ships hijacked at the Somali coast are discussed. Some examples using high resolution images from TerraSAR-X are given.

  20. An improved real time superresolution FPGA system

    Lakshmi Narasimha, Pramod; Mudigoudar, Basavaraj; Yue, Zhanfeng; Topiwala, Pankaj

    2009-05-01

    In numerous computer vision applications, enhancing the quality and resolution of captured video can be critical. Acquired video is often grainy and low quality due to motion, transmission bottlenecks, etc. Postprocessing can enhance it. Superresolution greatly decreases camera jitter to deliver a smooth, stabilized, high quality video. In this paper, we extend previous work on a real-time superresolution application implemented in ASIC/FPGA hardware. A gradient based technique is used to register the frames at the sub-pixel level. Once we get the high resolution grid, we use an improved regularization technique in which the image is iteratively modified by applying back-projection to get a sharp and undistorted image. The algorithm was first tested in software and migrated to hardware, to achieve 320x240 -> 1280x960, about 30 fps, a stunning superresolution by 16X in total pixels. Various input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as in FPGA hardware, which gives us a fine balance between the number of bits and performance. The proposed system is robust and highly efficient. We have shown the performance improvement of the hardware superresolution over the software version (C code).

  1. Optimizing near real time accountability for reprocessing

    Cipiti, Benjamin B.

    2010-01-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  2. Mixed - mode Operating System for Real - time Performance

    Hasan M. M.; Sultana S.; Foo C.K.

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUI)operating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time e...

  3. Real-time maritime scene simulation for ladar sensors

    Christie, Chad L.; Gouthas, Efthimios; Swierkowski, Leszek; Williams, Owen M.

    2011-06-01

    Continuing interest exists in the development of cost-effective synthetic environments for testing Laser Detection and Ranging (ladar) sensors. In this paper we describe a PC-based system for real-time ladar scene simulation of ships and small boats in a dynamic maritime environment. In particular, we describe the techniques employed to generate range imagery accompanied by passive radiance imagery. Our ladar scene generation system is an evolutionary extension of the VIRSuite infrared scene simulation program and includes all previous features such as ocean wave simulation, the physically-realistic representation of boat and ship dynamics, wake generation and simulation of whitecaps, spray, wake trails and foam. A terrain simulation extension is also under development. In this paper we outline the development, capabilities and limitations of the VIRSuite extensions.

  4. Real-time {sup 90}Sr Counter

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi; Kobayashi, Atsushi; Tabata, Makoto; Ito, Hiroshi [Graduate School of Science, Chiba University, Chiba, (Japan); Han, Soorim [Graduate School of Science, Chiba University, Chiba, (Japan); National Institute of Radiological Science, Chiba, (Japan)

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  5. Real-time data processing and inflow forecasting

    Olason, T.; Lafreniere, M.

    1998-01-01

    One of the key inputs into the short-term scheduling of hydroelectric generation is inflow forecasting which is needed for natural or unregulated inflows into various lakes, reservoirs and river sections. The forecast time step and time horizon are determined by the time step and the scheduling horizon. Acres International Ltd. has developed the Vista Decision Support System (DSS) in which the time step is one hour and the scheduling can be done up to two weeks into the future. This paper presents the basis of the operational flow-forecasting module of the Vista DSS software and its application to flow forecasting for 16 basins within Nova Scotia Power's hydroelectric system. Among the tasks performed by the software are collection and treatment of data (in real time) regarding meteorological forecasts, reviews and monitoring of hydro-meteorological data, updating of the state variables in the module, and the review and adjustment of sub-watershed forecasts

  6. Integration of MDSplus in real-time systems

    Luchetta, A.; Manduchi, G.; Taliercio, C.

    2006-01-01

    RFX-mod makes extensive usage of real-time systems for feedback control and uses MDSplus to interface them to the main Data Acquisition system. For this purpose, the core of MDSplus has been ported to VxWorks, the operating system used for real-time control in RFX. Using this approach, it is possible to integrate real-time systems, but MDSplus is used only for non-real-time tasks, i.e. those tasks which are executed before and after the pulse and whose performance does not affect the system time constraints. More extensive use of MDSplus in real-time systems is foreseen, and a real-time layer for MDSplus is under development, which will provide access to memory-mapped pulse files, shared by the tasks running on the same CPU. Real-time communication will also be integrated in the MDSplus core to provide support for distributed memory-mapped pulse files

  7. Mixed - mode Operating System for Real - time Performance

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  8. Real-Time ECG Simulation for Hybrid Mock Circulatory Loops.

    Korn, Leonie; Rüschen, Daniel; Zander, Niklas; Leonhardt, Steffen; Walter, Marian

    2018-02-01

    Classically, mock circulatory loops only simulate mechanical properties of the circulation. To connect the hydraulic world with electrophysiology, we present a real-time electrical activity model of the heart and show how to integrate this model into a real-time mock loop simulation. The model incorporates a predefined conduction pathway and a simplified volume conductor to solve the bidomain equations and the forward problem of electrocardiography, resulting in a physiological simulation of the electrocardiogram (ECG) at arbitrary electrode positions. A complete physiological simulation of the heart's excitation would be too CPU intensive. Thus, in our model, complexity was reduced to allow real-time simulation of ECG-triggered medical systems in vitro; this decreases time and cost in the development process. Conversely, the presented model can still be adapted to various pathologies by locally changing the properties of the heart's conduction pathway. To simulate the ECG, the heart is divided into suitable areas, which are innervated by the hierarchically structured conduction system. To distinguish different cardiac regions, a segmentation of the heart was performed. In these regions, Prim's algorithm was applied to identify the directed minimal spanning trees for conduction orientation. Each node of the tree was assigned to a cardiac action potential generated by its hybrid automaton to represent the heart's conduction system by the spatial distribution of action potentials. To generate the ECG output, the bidomain equations were implemented and a simple model of the volume conductor of the body was used to solve the forward problem of electrocardiography. As a result, the model simulates potentials at arbitrary electrode positions in real-time. To verify the developed real-time ECG model, measurements were made within a hybrid mock circulatory loop, including a simple ECG-triggered ventricular assist device control. The model's potential value is to simulate

  9. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

    Durandau, Guillaume; Farina, Dario; Sartori, Massimo

    2018-03-01

    Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

  10. Real-time volumetric scintillation dosimetry

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  11. Real time PV manufacturing diagnostic system

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  12. Gliding and Saccadic Gaze Gesture Recognition in Real Time

    Rozado, David; San Agustin, Javier; Rodriguez, Francisco

    2012-01-01

    , and their corresponding real-time recognition algorithms, Hierarchical Temporal Memory networks and the Needleman-Wunsch algorithm for sequence alignment. Our results show how a specific combination of gaze gesture modality, namely saccadic gaze gestures, and recognition algorithm, Needleman-Wunsch, allows for reliable...... usage of intentional gaze gestures to interact with a computer with accuracy rates of up to 98% and acceptable completion speed. Furthermore, the gesture recognition engine does not interfere with otherwise standard human-machine gaze interaction generating therefore, very low false positive rates...

  13. Meteorological data assimilation for real-time emergency response

    Sugiyama, G.; Chan, S.T.

    1996-11-01

    The US Department of Energy's Atmospheric Release Advisory Capability (ARAC) provides real-time dose assessments of airborne pollutant releases. Diverse data assimilation techniques are required to meet the needs of a new generation of ARAC models and to take advantage of the rapidly expanding availability of meteorological data. We are developing a hierarchy of algorithms to provide gridded meteorological fields which can be used to drive dispersion codes or to provide initial fields for mesoscale models. Data to be processed include winds, temperature, moisture, and turbulence

  14. System Integration for Real-Time Mobile Manipulation

    Reza Oftadeh

    2014-03-01

    Full Text Available Mobile manipulators are one of the most complicated types of mechatronics systems. The performance of these robots in performing complex manipulation tasks is highly correlated with the synchronization and integration of their low-level components. This paper discusses in detail the mechatronics design of a four wheel steered mobile manipulator. It presents the manipulator's mechanical structure and electrical interfaces, designs low-level software architecture based on embedded PC-based controls, and proposes a systematic solution based on code generation products of MATLAB and Simulink. The remote development environment described here is used to develop real-time controller software and modules for the mobile manipulator under a POSIX-compliant, real-time Linux operating system. Our approach enables developers to reliably design controller modules that meet the hard real-time constraints of the entire low-level system architecture. Moreover, it provides a systematic framework for the development and integration of hardware devices with various communication mediums and protocols, which facilitates the development and integration process of the software controller.

  15. Real-time estimation of wildfire perimeters from curated crowdsourcing

    Zhong, Xu; Duckham, Matt; Chong, Derek; Tolhurst, Kevin

    2016-04-01

    Real-time information about the spatial extents of evolving natural disasters, such as wildfire or flood perimeters, can assist both emergency responders and the general public during an emergency. However, authoritative information sources can suffer from bottlenecks and delays, while user-generated social media data usually lacks the necessary structure and trustworthiness for reliable automated processing. This paper describes and evaluates an automated technique for real-time tracking of wildfire perimeters based on publicly available “curated” crowdsourced data about telephone calls to the emergency services. Our technique is based on established data mining tools, and can be adjusted using a small number of intuitive parameters. Experiments using data from the devastating Black Saturday wildfires (2009) in Victoria, Australia, demonstrate the potential for the technique to detect and track wildfire perimeters automatically, in real time, and with moderate accuracy. Accuracy can be further increased through combination with other authoritative demographic and environmental information, such as population density and dynamic wind fields. These results are also independently validated against data from the more recent 2014 Mickleham-Dalrymple wildfires.

  16. Real-time data access layer for MDSplus

    Manduchi, G.; Luchetta, A.; Taliercio, C.; Fredian, T.; Stillerman, J.

    2008-01-01

    Recent extensions to MDSplus allow data handling in long discharges and provide a real-time data access and communication layer. The real-time data access layer is an additional component of MDSplus: it is possible to use the traditional MDSplus API during normal operation, and to select a subset of data items to be used in real time. Real-time notification is provided by a communication layer using a publish-subscribe pattern. The notification covers processes sharing the same data items even running on different machines, thus allowing the implementation of distributed control systems. The real-time data access layer has been developed for Windows, Linux, and VxWorks; it is currently being ported to Linux RTAI. In order to quantify the fingerprint of the presented system, the performance of the real-time access layer approach is compared with that of an ad hoc, manually optimized program in a sample real-time application

  17. Temporal Proof Methodologies for Real-Time Systems,

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  18. Optimized Scheduling of Smart Meter Data Access for Real-time Voltage Quality Monitoring

    Kemal, Mohammed Seifu; Olsen, Rasmus Løvenstein; Schwefel, Hans-Peter

    2018-01-01

    Abstract—Active low-voltage distribution grids that support high integration of distributed generation such as photovoltaics and wind turbines require real-time voltage monitoring. At the same time, countries in Europe such as Denmark have close to 100% rollout of smart metering infrastructure....... The metering infrastructure has limitations to provide real-time measurements with small-time granularity. This paper presents an algorithm for optimized scheduling of smart meter data access to provide real-time voltage quality monitoring. The algorithm is analyzed using a real distribution grid in Denmark...

  19. Satellite on-board real-time SAR processor prototype

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  20. Neuromorphic VLSI vision system for real-time texture segregation.

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  1. MINIX4RT: Real-Time Semaphores

    Pessolani, Pablo Andrés

    2007-01-01

    MINIX4RT es una extensión del conocido Sistema Operativo MINIX que incorpora servicios de Tiempo Real Estricto en un nuevo microkernel pero manteniendo compatibilidad con las versiones anteriores del MINIX estándar. Los semáforos son el mecanismo primitivo para la sincronización y exclusion mutua en varios sistemas operativos, pero MINIX no brinda esa facilidad. Se adicionaron semáforos a MINIX4RT y, como éste es un Sistema Operativo de Tiempo Real, deben reunir ciertos requisitos de procesam...

  2. Real Time Seismic Loss Estimation in Italy

    Goretti, A.; Sabetta, F.

    2009-04-01

    By more than 15 years the Seismic Risk Office is able to perform a real-time evaluation of the earthquake potential loss in any part of Italy. Once the epicentre and the magnitude of the earthquake are made available by the National Institute for Geophysiscs and Volca-nology, the model, based on the Italian Geographic Information Sys-tems, is able to evaluate the extent of the damaged area and the consequences on the built environment. In recent years the model has been significantly improved with new methodologies able to conditioning the uncertainties using observa-tions coming from the fields during the first days after the event. However it is reputed that the main challenges in loss analysis are related to the input data, more than to methodologies. Unlike the ur-ban scenario, where the missing data can be collected with enough accuracy, the country-wise analysis requires the use of existing data bases, often collected for other purposed than seismic scenario evaluation, and hence in some way lacking of completeness and homogeneity. Soil properties, building inventory and population dis-tribution are the main input data that are to be known in any site of the whole Italian territory. To this end the National Census on Popu-lation and Dwellings has provided information on the residential building types and the population that lives in that building types. The critical buildings, such as Hospital, Fire Brigade Stations, Schools, are not included in the inventory, since the national plan for seismic risk assessment of critical buildings is still under way. The choice of a proper soil motion parameter, its attenuation with distance and the building type fragility are important ingredients of the model as well. The presentation will focus on the above mentioned issues, highlight-ing the different data sets used and their accuracy, and comparing the model, input data and results when geographical areas with dif-ferent extent are considered: from the urban scenarios

  3. Instrumentation development for real time brainwave monitoring.

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could

  4. Real-time Forensic Disaster Analysis

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  5. Mixed-mode Operating System for Real-time Performance

    M.M. Hasan; S. Sultana; C.K. Foo

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI) operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time...

  6. Hardware locks for a real-time Java chip multiprocessor

    Strøm, Torur Biskopstø; Puffitsch, Wolfgang; Schoeberl, Martin

    2016-01-01

    A software locking mechanism commonly protects shared resources for multithreaded applications. This mechanism can, especially in chip-multiprocessor systems, result in a large synchronization overhead. For real-time systems in particular, this overhead increases the worst-case execution time....... This improvement can allow a larger number of real-time tasks to be reliably scheduled on a multiprocessor real-time platform....

  7. PERTS: A Prototyping Environment for Real-Time Systems

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1993-01-01

    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.

  8. An algorithm for learning real-time automata

    Verwer, S.E.; De Weerdt, M.M.; Witteveen, C.

    2007-01-01

    We describe an algorithm for learning simple timed automata, known as real-time automata. The transitions of real-time automata can have a temporal constraint on the time of occurrence of the current symbol relative to the previous symbol. The learning algorithm is similar to the redblue fringe

  9. Real time simulation of large systems on mini-computer

    Nakhle, Michel; Roux, Pierre.

    1979-01-01

    Most simulation languages will only accept an explicit formulation of differential equations, and logical variables hold no special status therein. The pace of the suggested methods of integration is limited by the smallest time constant of the model submitted. The NEPTUNIX 2 simulation software has a language that will take implicit equations and an integration method of which the variable pace is not limited by the time constants of the model. This, together with high time and memory ressources optimization of the code generated, makes NEPTUNIX 2 a basic tool for simulation on mini-computers. Since the logical variables are specific entities under centralized control, correct processing of discontinuities and synchronization with a real process are feasible. The NEPTUNIX 2 is the industrial version of NEPTUNIX 1 [fr

  10. Real-time global illumination on mobile device

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  11. Aggregated channels network for real-time pedestrian detection

    Ghorban, Farzin; Marín, Javier; Su, Yu; Colombo, Alessandro; Kummert, Anton

    2018-04-01

    Convolutional neural networks (CNNs) have demonstrated their superiority in numerous computer vision tasks, yet their computational cost results prohibitive for many real-time applications such as pedestrian detection which is usually performed on low-consumption hardware. In order to alleviate this drawback, most strategies focus on using a two-stage cascade approach. Essentially, in the first stage a fast method generates a significant but reduced amount of high quality proposals that later, in the second stage, are evaluated by the CNN. In this work, we propose a novel detection pipeline that further benefits from the two-stage cascade strategy. More concretely, the enriched and subsequently compressed features used in the first stage are reused as the CNN input. As a consequence, a simpler network architecture, adapted for such small input sizes, allows to achieve real-time performance and obtain results close to the state-of-the-art while running significantly faster without the use of GPU. In particular, considering that the proposed pipeline runs in frame rate, the achieved performance is highly competitive. We furthermore demonstrate that the proposed pipeline on itself can serve as an effective proposal generator.

  12. A real time sorting algorithm to time sort any deterministic time disordered data stream

    Saini, J.; Mandal, S.; Chakrabarti, A.; Chattopadhyay, S.

    2017-12-01

    In new generation high intensity high energy physics experiments, millions of free streaming high rate data sources are to be readout. Free streaming data with associated time-stamp can only be controlled by thresholds as there is no trigger information available for the readout. Therefore, these readouts are prone to collect large amount of noise and unwanted data. For this reason, these experiments can have output data rate of several orders of magnitude higher than the useful signal data rate. It is therefore necessary to perform online processing of the data to extract useful information from the full data set. Without trigger information, pre-processing on the free streaming data can only be done with time based correlation among the data set. Multiple data sources have different path delays and bandwidth utilizations and therefore the unsorted merged data requires significant computational efforts for real time manifestation of sorting before analysis. Present work reports a new high speed scalable data stream sorting algorithm with its architectural design, verified through Field programmable Gate Array (FPGA) based hardware simulation. Realistic time based simulated data likely to be collected in an high energy physics experiment have been used to study the performance of the algorithm. The proposed algorithm uses parallel read-write blocks with added memory management and zero suppression features to make it efficient for high rate data-streams. This algorithm is best suited for online data streams with deterministic time disorder/unsorting on FPGA like hardware.

  13. Verifying real-time systems against scenario-based requirements

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

    2009-01-01

    We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...... subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  14. Real-Time Smart Tools for Processing Spectroscopy Data, Phase I

    National Aeronautics and Space Administration — We propose novel and real-time smart software tools to process spectroscopy data. Material abundance or compositional maps will be generated for rover guidance,...

  15. Evaluating effectiveness of real-time advanced traveler information systems using a small test vehicle fleet

    1997-01-01

    ADVANCE was an in-vehicle advanced traveler information system (ATIS) providing route guidance in real time that operated in the northwestern portion and northwest suburbs of Chicago, Illinois. It used probe vehicles to generate dynamically travel ti...

  16. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    Fernandes, A.; Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J.; Kiptily, V.; Correia, C.M.B.A.; Gonçalves, B.

    2014-01-01

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented

  17. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    Fernandes, A., E-mail: anaf@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Kiptily, V. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Correia, C.M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2014-03-15

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented.

  18. A Programmable Microkernel for Real-Time Systems

    2003-06-01

    A Programmable Microkernel for Real - Time Systems Christoph M. Kirsch Thomas A. Henzinger Marco A.A. Sanvido Report No. UCB/CSD-3-1250 June 2003...TITLE AND SUBTITLE A Programmable Microkernel for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A Programmable Microkernel for Real - Time Systems ∗ Christoph M

  19. Design Specifications for Adaptive Real-Time Systems

    1991-12-01

    TICfl \\ E CT E Design Specifications for JAN’\\ 1992 Adaptive Real - Time Systems fl Randall W. Lichota U, Alice H. Muntz - December 1991 \\ \\\\/ 0 / r...268-2056 Technical Report CMU/SEI-91-TR-20 ESD-91-TR-20 December 1991 Design Specifications for Adaptive Real - Time Systems Randall W. Lichota Hughes...Design Specifications for Adaptive Real - Time Systems Abstract: The design specification method described in this report treats a software

  20. Proceedings of the Real-Time Systems Engineering Workshop

    2001-08-01

    real - time systems engineering. The workshop was held as part of the SEI Symposium in...Washington, DC, during September 2000. The objective of the workshop was to identify key issues and obtain feedback from attendees concerning real - time systems engineering...and interoperability. This report summarizes the workshop in terms of foundation, management, and technical topics, and it contains a discussion related to developing a community of interest for real - time systems

  1. Static Schedulers for Embedded Real-Time Systems

    1989-12-01

    Because of the need for having efficient scheduling algorithms in large scale real time systems , software engineers put a lot of effort on developing...provide static schedulers for he Embedded Real Time Systems with single processor using Ada programming language. The independent nonpreemptable...support the Computer Aided Rapid Prototyping for Embedded Real Time Systems so that we determine whether the system, as designed, meets the required

  2. Design Recovery Technology for Real-Time Systems.

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  3. Frequency Based Real-time Pricing for Residential Prosumers

    Hambridge, Sarah Mabel

    This work is the first to explore frequency based pricing for secondary frequency control as a price-reactive control mechanism for residential prosumers. A frequency based real-time electricity rate is designed as an autonomous market control mechanism for residential prosumers to provide frequency support as an ancillary service. In addition, prosumers are empowered to participate in dynamic energy transactions, therefore integrating Distributed Energy Resources (DERs), and increasing distributed energy storage onto the distributed grid. As the grid transitions towards DERs, a new market based control system will take the place of the legacy distributed system and possibly the legacy bulk power system. DERs provide many benefits such as energy independence, clean generation, efficiency, and reliability to prosumers during blackouts. However, the variable nature of renewable energy and current lack of installed energy storage on the grid will create imbalances in supply and demand as uptake increases, affecting the grid frequency and system operation. Through a frequency-based electricity rate, prosumers will be encouraged to purchase energy storage systems (ESS) to offset their neighbor's distributed generation (DG) such as solar. Chapter 1 explains the deregulation of the power system and move towards Distributed System Operators (DSOs), as prosumers become owners of microgrids and energy cells connected to the distributed system. Dynamic pricing has been proposed as a benefit to prosumers, giving them the ability to make decisions in the energy market, while also providing a way to influence and control their behavior. Frequency based real-time pricing is a type of dynamic pricing which falls between price-reactive control and transactive control. Prosumer-to-prosumer transactions may take the place of prosumer-to-utility transactions, building The Energy Internet. Frequency based pricing could be a mechanism for determining prosumer prices and supporting

  4. The First Real-Time Tsunami Animation

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  5. Real-time Pedestrian Crossing Recognition for Assistive Outdoor Navigation.

    Fontanesi, Simone; Frigerio, Alessandro; Fanucci, Luca; Li, William

    2015-01-01

    Navigation in urban environments can be difficult for people who are blind or visually impaired. In this project, we present a system and algorithms for recognizing pedestrian crossings in outdoor environments. Our goal is to provide navigation cues for crossing the street and reaching an island or sidewalk safely. Using a state-of-the-art Multisense S7S sensor, we collected 3D pointcloud data for real-time detection of pedestrian crossing and generation of directional guidance. We demonstrate improvements to a baseline, monocular-camera-based system by integrating 3D spatial prior information extracted from the pointcloud. Our system's parameters can be set to the actual dimensions of real-world settings, which enables robustness of occlusion and perspective transformation. The system works especially well in non-occlusion situations, and is reasonably accurate under different kind of conditions. As well, our large dataset of pedestrian crossings, organized by different types and situations of pedestrian crossings in order to reflect real-word environments, is publicly available in a commonly used format (ROS bagfiles) for further research.

  6. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    Jardak, Seifallah

    2012-11-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  7. Generating Correlated QPSK Waveforms By Exploiting Real Gaussian Random Variables

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    The design of waveforms with specified auto- and cross-correlation properties has a number of applications in multiple-input multiple-output (MIMO) radar, one of them is the desired transmit beampattern design. In this work, an algorithm is proposed to generate quadrature phase shift- keying (QPSK) waveforms with required cross-correlation properties using real Gaussian random-variables (RV’s). This work can be considered as the extension of what was presented in [1] to generate BPSK waveforms. This work will be extended for the generation of correlated higher-order phase shift-keying (PSK) and quadrature amplitude modulation (QAM) schemes that can better approximate the desired beampattern.

  8. Flexible Scheduling by Deadline Inheritance in Soft Real Time Kernels

    Jansen, P.G.; Wygerink, Emiel

    1996-01-01

    Current Hard Real Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes HRT scheduling techniques inadequate for use in Soft Real Time (SRT) environment where we can make a considerable profit by a better and more

  9. 76 FR 42536 - Real-Time System Management Information Program

    2011-07-19

    ...-Time System Management Information Program AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... Real-Time System Management Information Program and general information about current and planned... establishing requirements for the Real-Time System Management Information Program on November 8, 2010, at 75 FR...

  10. 75 FR 68418 - Real-Time System Management Information Program

    2010-11-08

    ...-Time System Management Information Program AGENCY: Federal Highway Administration (FHWA), DOT. ACTION...) to establish a Real-Time System Management Information Program that provides, in all States, the... traveler information. The purposes of the Real-Time System Management Information Program are to: (1...

  11. Quo vadis? : persuasive computing using real time queue information

    Meys, Wouter; Groen, Maarten

    2014-01-01

    By presenting tourists with real-time information an increase in efficiency and satisfaction of their day planning can be achieved. At the same time, real-time information services can offer the municipality the opportunity to spread the tourists throughout the city centre. An important factor for

  12. Timeliness and Predictability in Real-Time Database Systems

    Son, Sang H

    1998-01-01

    The confluence of computers, communications, and databases is quickly creating a globally distributed database where many applications require real time access to both temporally accurate and multimedia data...

  13. Building Real-Time Collaborative Applications with a Federated Architecture

    Pablo Ojanguren-Menendez

    2015-12-01

    Full Text Available Real-time collaboration is being offered by multiple libraries and APIs (Google Drive Real-time API, Microsoft Real-Time Communications API, TogetherJS, ShareJS, rapidly becoming a mainstream option for webservices developers. However, they are offered as centralised services running in a single server, regardless if they are free/open source or proprietary software. After re-engineering Apache Wave (former Google Wave, we can now provide the first decentralised and federated free/open source alternative. The new API allows to develop new real-time collaborative web applications in both JavaScript and Java environments.

  14. Real Time Investments with Adequate Portfolio Theory

    Alina Kvietkauskienė

    2015-02-01

    Full Text Available The objective of this paper is to identify investment decision makingschemes using the adequate portfolio model. This approach can be employed to project investment in stocks, using the opportunities offered by the markets and investor intelligence. It was decided to use adequate portfolio theory for investment decision making, simulation of financial markets, and optimisation of utility function. The main conclusion of article suggests investigating return on individual portfolio level. Real investment is a way to make sure of the soundness of applicable strategies.

  15. Performance evaluation of near-real-time accounting systems

    Anon.

    1981-01-01

    Examples are given illustrating the application of near-real-time accounting concepts and principles to actual nuclear facilities. Experience with prototypical systems at the AGNS reprocessing plant and the Los Alamos plutonium facility is described using examples of actual data to illustrate the performance and effectiveness of near-real-time systems. The purpose of the session is to enable participants to: (1) identify the major components of near-real-time accounting systems; (2) describe qualitatively the advantages, limitations, and performance of such systems in real nuclear facilities; (3) identify process and facility design characteristics that affect the performance of near-real-time systems; and (4) describe qualitatively the steps necessary to implement a near-real-time accounting and control system in a nuclear facility

  16. Real-time driver fatigue detection based on face alignment

    Tao, Huanhuan; Zhang, Guiying; Zhao, Yong; Zhou, Yi

    2017-07-01

    The performance and robustness of fatigue detection largely decrease if the driver with glasses. To address this issue, this paper proposes a practical driver fatigue detection method based on face alignment at 3000 FPS algorithm. Firstly, the eye regions of the driver are localized by exploiting 6 landmarks surrounding each eye. Secondly, the HOG features of the extracted eye regions are calculated and put into SVM classifier to recognize the eye state. Finally, the value of PERCLOS is calculated to determine whether the driver is drowsy or not. An alarm will be generated if the eye is closed for a specified period of time. The accuracy and real-time on testing videos with different drivers demonstrate that the proposed algorithm is robust and obtain better accuracy for driver fatigue detection compared with some previous method.

  17. Near Real Time MISR Wind Observations for Numerical Weather Prediction

    Mueller, K. J.; Protack, S.; Rheingans, B. E.; Hansen, E. G.; Jovanovic, V. M.; Baker, N.; Liu, J.; Val, S.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) project, in association with the NASA Langley Atmospheric Science Data Center (ASDC), has this year adapted its original production software to generate near-real time (NRT) cloud-motion winds as well as radiance imagery from all nine MISR cameras. These products are made publicly available at the ASDC with a latency of less than 3 hours. Launched aboard the sun-synchronous Terra platform in 1999, the MISR instrument continues to acquire near-global, 275 m resolution, multi-angle imagery. During a single 7 minute overpass of any given area, MISR retrieves the stereoscopic height and horizontal motion of clouds from the multi-angle data, yielding meso-scale near-instantaneous wind vectors. The ongoing 15-year record of MISR height-resolved winds at 17.6 km resolution has been validated against independent data sources. Low-level winds dominate the sampling, and agree to within ±3 ms-1 of collocated GOES and other observations. Low-level wind observations are of particular interest to weather forecasting, where there is a dearth of observations suitable for assimilation, in part due to reliability concerns associated with winds whose heights are assigned by the infrared brightness temperature technique. MISR cloud heights, on the other hand, are generated from stereophotogrammetric pattern matching of visible radiances. MISR winds also address data gaps in the latitude bands between geostationary satellite coverage and polar orbiting instruments that obtain winds from multiple overpasses (e.g. MODIS). Observational impact studies conducted by the Naval Research Laboratory (NRL) and by the German Weather Service (Deutscher Wetterdienst) have both demonstrated forecast improvements when assimilating MISR winds. An impact assessment using the GEOS-5 system is currently in progress. To benefit air quality forecasts, the MISR project is currently investigating the feasibility of generating near-real time aerosol products.

  18. Multiple output timing and trigger generator

    Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  19. Real-time software for the COMPASS tokamak plasma control

    Valcarcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Sartori, F.; Janky, F.; Cahyna, P.; Hron, M.; Panek, R.

    2010-01-01

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 μs. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  20. Mixed-mode Operating System for Real-time Performance

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  1. Real-time software for the COMPASS tokamak plasma control

    Valcarcel, D.F., E-mail: danielv@ipfn.ist.utl.p [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sartori, F. [Euratom-UKAEA, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Janky, F.; Cahyna, P.; Hron, M.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2010-07-15

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 {mu}s. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  2. Real time control engineering systems and automation

    Ng, Tian Seng

    2016-01-01

    This book covers the two broad areas of the electronics and electrical aspects of control applications, highlighting the many different types of control systems of relevance to real-life control system design. The control techniques presented are state-of-the-art. In the electronics section, readers will find essential information on microprocessor, microcontroller, mechatronics and electronics control. The low-level assembly programming language performs basic input/output control techniques as well as controlling the stepper motor and PWM dc motor. In the electrical section, the book addresses the complete elevator PLC system design, neural network plant control, load flow analysis, and process control, as well as machine vision topics. Illustrative diagrams, circuits and programming examples and algorithms help to explain the details of the system function design. Readers will find a wealth of computer control and industrial automation practices and applications for modern industries, as well as the educat...

  3. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  4. Real-time display of flow-pressure-volume loops.

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Towards real-time remote processing of laparoscopic video

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  6. A PEMFC hybrid electric vehicle real time control system

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  7. Advanced integrated real-time clinical displays.

    Kruger, Grant H; Tremper, Kevin K

    2011-09-01

    Intelligent medical displays have the potential to improve patient outcomes by integrating multiple physiologic signals, exhibiting high sensitivity and specificity, and reducing information overload for physicians. Research findings have suggested that information overload and distractions caused by patient care activities and alarms generated by multiple monitors in acute care situations, such as the operating room and the intensive care unit, may produce situations that negatively impact the outcomes of patients under anesthesia. This can be attributed to shortcomings of human-in-the-loop monitoring and the poor specificity of existing physiologic alarms. Modern artificial intelligence techniques (ie, intelligent software agents) are demonstrating the potential to meet the challenges of next-generation patient monitoring and alerting. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Academic Training: Real Time Process Control - Lecture series

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 7, 8 and 9 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Real Time Process Control T. Riesco / CERN-TS What exactly is meant by Real-time? There are several definitions of real-time, most of them contradictory. Unfortunately the topic is controversial, and there does not seem to be 100% agreement over the terminology. Real-time applications are becoming increasingly important in our daily lives and can be found in diverse environments such as the automatic braking system on an automobile, a lottery ticket system, or robotic environmental samplers on a space station. These lectures will introduce concepts and theory like basic concepts timing constraints, task scheduling, periodic server mechanisms, hard and soft real-time.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  9. A real-time photogrammetry system based on embedded architecture

    S. Y. Zheng

    2014-06-01

    Full Text Available In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  10. Survey of real-time processing systems for big data

    Liu, Xiufeng; Lftikhar, Nadeem; Xie, Xike

    2014-01-01

    In recent years, real-time processing and analytics systems for big data–in the context of Business Intelligence (BI)–have received a growing attention. The traditional BI platforms that perform regular updates on daily, weekly or monthly basis are no longer adequate to satisfy the fast......-changing business environments. However, due to the nature of big data, it has become a challenge to achieve the real-time capability using the traditional technologies. The recent distributed computing technology, MapReduce, provides off-the-shelf high scalability that can significantly shorten the processing time...... for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...

  11. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-05-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. We plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the ''non-real-time'' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response. 6 refs., 2 tabs

  12. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-01-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such Sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. The authors plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the 'non-real-time' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response

  13. Real-time implementation of an interactive jazz accompaniment system

    Deshpande, Nikhil

    Modern computational algorithms and digital signal processing (DSP) are able to combine with human performers without forced or predetermined structure in order to create dynamic and real-time accompaniment systems. With modern computing power and intelligent algorithm layout and design, it is possible to achieve more detailed auditory analysis of live music. Using this information, computer code can follow and predict how a human's musical performance evolves, and use this to react in a musical manner. This project builds a real-time accompaniment system to perform together with live musicians, with a focus on live jazz performance and improvisation. The system utilizes a new polyphonic pitch detector and embeds it in an Ableton Live system - combined with Max for Live - to perform elements of audio analysis, generation, and triggering. The system also relies on tension curves and information rate calculations from the Creative Artificially Intuitive and Reasoning Agent (CAIRA) system to help understand and predict human improvisation. These metrics are vital to the core system and allow for extrapolated audio analysis. The system is able to react dynamically to a human performer, and can successfully accompany the human as an entire rhythm section.

  14. Monitoring external beam radiotherapy using real-time beam visualization

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  15. Real Time Decoding of Color Symbol for Optical Positioning System

    Abdul Waheed Malik

    2015-01-01

    Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex backgrounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.

  16. Real-time individualized training vectors for experiential learning.

    Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie; Glickman, Matthew R.; Fabian, Nathan

    2011-01-01

    Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD) project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.

  17. Progress in real-time feedback control systems in RFX

    Barana, O.; Luchetta, A. E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C

    2004-06-01

    Major modifications of the RFX load assembly and power supplies are in progress to allow extensive active control schemes, such as equilibrium and plasma position control and innovative control of the MHD modes. The digital control system is implemented in VME64 using a distributed architecture. The use of a 'stable' operating system that is likely to survive some generations of processors can help coping with evolution of technology. PowerPC and Pentium processors were thus considered as candidates and tested and the first one has been selected due to the better performance in floating point computation. Wind River VxWorks has been chosen as real-time operating system. 100 Mbit switched Ethernet has been evaluated for real-time communication by using the user datagram protocol (UDP). Measurements have been executed on a prototype system to assess data transfer latency, jitter and reliability and the results confirm that the solution is suitable for the application. The paper describes in detail the reasons for the choice in the hardware components. Results from several tests comparing the performance of different solutions are also provided.

  18. Real-Time Adaptation of Influence Strategies in Online Selling

    Kaptein, M.C.; Parvinen, P.

    2014-01-01

    Real-time adjustments in online selling are becoming increasingly common. In this paper we describe a novel method of real-time adaptation, and introduce influence strategies as a useful level of analysis for personalization of online selling. The proposed method incorporates three perspectives on

  19. Real-Time Engagement Area Development Program (READ-Pro)

    Burger, Joseph

    2002-01-01

    The Real Time Engagement Area Development Program (READ-Pro) is a PC-based prototype system which provides company-level commanders with real-time operational analysis tools to develop ENGAGEMENT AREAS(EA) for direct fire (DF) systems...

  20. Real-time centre detection of an OLED structure

    Pieters, R.S.; Jonker, P.P.; Nijmeijer, H.

    2009-01-01

    The research presented in this paper focuses on real-time image processing for visual servoing, i.e. the positioning of a x-y table by using a camera only instead of encoders. A camera image stream plus real-time image processing determines the position in the next iteration of the table controller.

  1. Real-Time Center Detection of an OLED Structure

    Pieters, R.S.; Jonker, P.P.; Nijmeijer, H.; Blanc-Talon, J.; Philips, W.; Popescu, D.; Scheunders, P.

    2009-01-01

    The research presented in this paper focuses on real-time image processing for visual servoing, i.e. the positioning of a x-y table by using a camera only instead of encoders. A camera image stream plus real-time image processing determines the position in the next iteration of the table controller.

  2. Real-Time PCR for Universal Phytoplasma Detection and Quantification

    Christensen, Nynne Meyn; Nyskjold, Henriette; Nicolaisen, Mogens

    2013-01-01

    Currently, the most efficient detection and precise quantification of phytoplasmas is by real-time PCR. Compared to nested PCR, this method is less sensitive to contamination and is less work intensive. Therefore, a universal real-time PCR method will be valuable in screening programs and in other...

  3. Real-Time Operating Systems for Multicore Embedded Systems

    Tomiyama, Hiroyuki; Honda, Shinya; Takada, Hiroaki

    2008-01-01

    Multicore systems-on-chip have become popular inthe design of embedded systems in order to simultaneously achieve high performance and low power consumption. On the software side, real-time operating systems are necessary in orderto handle growing complexity of embedded software. This paper describes requirements, design principles and implementation techniques for real-time operating systems to be used inasymmetric multicore systems.

  4. Parametric Room Acoustic workflows with real-time acoustic simulation

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  5. Issues Involved in Developing Ada Real-Time Systems

    1989-02-15

    expensive modifications to the compiler or Ada runtime system to fit a particular application. Whether we can solve the problems of programming real - time systems in...lock in solutions to problems that are not yet well understood in standards as rigorous as the Ada language. Moreover, real - time systems typically have

  6. The Synthesis of Intelligent Real-Time Systems

    1990-11-09

    Synthesis of Intelligent Real - Time Systems . The purpose of the effort was to develop and extend theories and techniques that facilitate the design and...implementation of intelligent real - time systems . In particular, Teleos has extended situated-automata theory to apply to situations in which the system has

  7. Real time control of plasmas and ECRH systems on TCV

    Paley, J.I.; Felici, F.; Berrino, J.; Coda, S.; Cruz, N.; Duval, B.P.; Goodman, T.P.; Martin, Y.; Moret, J.-M.; Piras, F.; Rodrigues, A.P.; Santos, B.; Varandas, C.A.F.

    2008-01-01

    Developments in the real time control hardware on TCV paired with the flexibility of plasma shaping and ECRH actuators are opening many opportunities to perform real time experiments and develop algorithms and methods for fusion applications. The ability to control MHD instabilities is particularly

  8. Real time control of plasmas and ECRH systems on TCV

    Paley, J.I.; Berrino, J.; Coda, S.; Cruz, N.; Duval, B.P.; Felici, F.; Goodman, T.P.; Martin, Y.; Moret, J.-M.; Piras, F.; Rodriques, A.P.; Santos, B.; Varandas, C.A.F.

    2009-01-01

    Developments in the real time control hardware on Tokamak Configuration Variable (TCV) coupled with the flexibility of plasma shaping and electron cyclotron (EC) heating and current drive actuators are opening many opportunities to perform real time experiments and develop algorithms and methods for

  9. Real Time Synchronization for Creativity in Distributed Innovation Teams

    Peitersen, Dennis Kjaersgaard; Dolog, Peter; Pedersen, Esben Staunsbjerg

    2009-01-01

    In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings....

  10. Distributed, Embedded and Real-time Java Systems

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  11. Real time ray tracing of skeletal implicit surfaces

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  12. Real-time communication for distributed plasma control systems

    Luchetta, A. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)], E-mail: adriano.luchetta@igi.cnr.it; Barbalace, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)

    2008-04-15

    Real-time control applications will benefit in the near future from the enhanced performance provided by multi-core processor architectures. Nevertheless real-time communication will continue to be critical in distributed plasma control systems where the plant under control typically is distributed over a wide area. At RFX-mod real-time communication is crucial for hard real-time plasma control, due to the distributed architecture of the system, which consists of several VMEbus stations. The system runs under VxWorks and uses Gigabit Ethernet for sub-millisecond real-time communication. To optimize communication in the system, a set of detailed measurements has been carried out on the target platforms (Motorola MVME5100 and MVME5500) using either the VxWorks User Datagram Protocol (UDP) stack or raw communication based on the data link layer. Measurements have been carried out also under Linux, using its UDP stack or, in alternative, RTnet, an open source hard real-time network protocol stack. RTnet runs under Xenomai or RTAI, two popular real-time extensions based on the Linux kernel. The paper reports on the measurements carried out and compares the results, showing that the performance obtained by using open source code is suitable for sub-millisecond real-time communication in plasma control.

  13. Innovative tools for real-time simulation of dynamic systems

    Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio

    2008-01-01

    In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the

  14. Real-time operation without a real-time operating system for instrument control and data acquisition

    Klein, Randolf; Poglitsch, Albrecht; Fumi, Fabio; Geis, Norbert; Hamidouche, Murad; Hoenle, Rainer; Looney, Leslie; Raab, Walfried; Viehhauser, Werner

    2004-09-01

    We are building the Field-Imaging Far-Infrared Line Spectrometer (FIFI LS) for the US-German airborne observatory SOFIA. The detector read-out system is driven by a clock signal at a certain frequency. This signal has to be provided and all other sub-systems have to work synchronously to this clock. The data generated by the instrument has to be received by a computer in a timely manner. Usually these requirements are met with a real-time operating system (RTOS). In this presentation we want to show how we meet these demands differently avoiding the stiffness of an RTOS. Digital I/O-cards with a large buffer separate the asynchronous working computers and the synchronous working instrument. The advantage is that the data processing computers do not need to process the data in real-time. It is sufficient that the computer can process the incoming data stream on average. But since the data is read-in synchronously, problems of relating commands and responses (data) have to be solved: The data is arriving at a fixed rate. The receiving I/O-card buffers the data in its buffer until the computer can access it. To relate the data to commands sent previously, the data is tagged by counters in the read-out electronics. These counters count the system's heartbeat and signals derived from that. The heartbeat and control signals synchronous with the heartbeat are sent by an I/O-card working as pattern generator. Its buffer gets continously programmed with a pattern which is clocked out on the control lines. A counter in the I/O-card keeps track of the amount of pattern words clocked out. By reading this counter, the computer knows the state of the instrument or knows the meaning of the data that will arrive with a certain time-tag.

  15. The Fast Tracker Real Time Processor: high quality real-time tracking at ATLAS

    Stabile, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the design level of 1x1034 cm−2 s−1 and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the most important physics and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], [2] is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK is a dedicated Super Computer based on a mixture of advanced technologies. The architecture broadly employs powerf...

  16. Real-time wideband holographic surveillance system

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  17. Recent achievements in real-time computational seismology in Taiwan

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information ROS completes a 3D simulation real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  18. The FERMI-Elettra distributed real-time framework

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  19. Self-Organization in Embedded Real-Time Systems

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  20. Real-Time Fault Tolerant Networking Protocols

    Henzinger, Thomas A

    2004-01-01

    We made significant progress in the areas of video streaming, wireless protocols, mobile ad-hoc and sensor networks, peer-to-peer systems, fault tolerant algorithms, dependability and timing analysis...

  1. Real Energy Payback Time and Carbon Footprint of a GCPVS

    Miguel de Simón-Martín

    2017-01-01

    Full Text Available Grid connected PV systems, or GCPVS, produce clean and renewable energy through the photovoltaic effect in the operation stage of the power plant. However, this is the penultimate stage of the facilities before its dismantlement. Before starting generating electricity with zero CO2 emissions, a negative energy balance exists mainly because of the embodied energy costs of the PV components manufacturing, transport and late dismantlement. First, a review of existing studies about energy life cycle assessment (LCA and Carbon Footprint of PV systems has been carried out in this paper. Then, a new method to evaluate the Real Energy Payback Time (REPBT, which includes power looses due to PV panels degradation is proposed and differences with traditional Energy Payback Time are analysed. Finally, a typical PV grid connected plant (100 kW nominal power located in Northern Spain is studied in these sustainability terms. This facility has been firstly completely modelled, including PV modules, inverters, structures and wiring. It has been also considerated the energy involved in the replacement of those components with shorter lifespan. The PV panels degradation has been analysed through the comparison of normalised flash test reports on a significant sample of the installed modules before and 5 years after installation. Results show that real PV degradation affect significantly to the Energy Payback Time of the installation increasing slightly a 4:2% more the EPBT value for the case study. However, along a lifespan of 30 years, the GCPVS under analysis will return only 5:6 times the inverted energy on components manufacturing, transport and installation, rather than the expected 9:1 times with the classical estimation.

  2. Reduced computational cost in the calculation of worst case response time for real time systems

    Urriza, José M.; Schorb, Lucas; Orozco, Javier D.; Cayssials, Ricardo

    2009-01-01

    Modern Real Time Operating Systems require reducing computational costs even though the microprocessors become more powerful each day. It is usual that Real Time Operating Systems for embedded systems have advance features to administrate the resources of the applications that they support. In order to guarantee either the schedulability of the system or the schedulability of a new task in a dynamic Real Time System, it is necessary to know the Worst Case Response Time of the Real Time tasks ...

  3. Near-real-time material accountancy - A technical status report

    Lovett, J.; Ikawa, K.; Sellinschegg, D.; Shipley, J.

    1983-01-01

    Near-Real-time materials accountancy as applied to reprocessing plants involves two major elements, measurement of the in-process physical inventory at frequent intervals, and statistical evaluation of the resulting sequential material balance data. For most reprocessing plants the bulk of the in-process inventory is in measurable intermediate ''buffer'' tanks. The plutonium inventory in the solvent extraction system, which does not appear to be directly measureable, could cause a reduction in sensitivity of the sequential data analysis. Studies are in progress, and it is hoped that an acceptable means for accounting for these variations can be found. Consultants at a meeting in January 1982 agreed that statistical tests for evaluating sequential material balance data will increase both detection timeliness and detection sensitivity. IAEA verification of operator-generated measurement data is an area requiring significantly increased effort, but here too studies are in progress which should help to reduce inspection effort in increased effectiveness

  4. Optical sensor for real-time weld defect detection

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  5. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  6. An Experimental Evaluation of Real-Time DVFS Scheduling Algorithms

    Saha, Sonal

    2011-01-01

    Dynamic voltage and frequency scaling (DVFS) is an extensively studied energy manage- ment technique, which aims to reduce the energy consumption of computing platforms by dynamically scaling the CPU frequency. Real-Time DVFS (RT-DVFS) is a branch of DVFS, which reduces CPU energy consumption through DVFS, while at the same time ensures that task time constraints are satisfied by constructing appropriate real-time task schedules. The literature presents numerous RT-DVFS schedul...

  7. Real time natural object modeling framework

    Rana, H.A.; Shamsuddin, S.M.; Sunar, M.H.

    2008-01-01

    CG (Computer Graphics) is a key technology for producing visual contents. Currently computer generated imagery techniques are being developed and applied, particularly in the field of virtual reality applications, film production, training and flight simulators, to provide total composition of realistic computer graphic images. Natural objects like clouds are an integral feature of the sky without them synthetic outdoor scenes seem unrealistic. Modeling and animating such objects is a difficult task. Most systems are difficult to use, as they require adjustment of numerous, complex parameters and are non-interactive. This paper presents an intuitive, interactive system to artistically model, animate, and render visually convincing clouds using modern graphics hardware. A high-level interface models clouds through the visual use of cubes. Clouds are rendered by making use of hardware accelerated API -OpenGL. The resulting interactive design and rendering system produces perceptually convincing cloud models that can be used in any interactive system. (author)

  8. On Real-Time Operating Systems.

    1987-04-01

    1Ri2 193 ONREAL-TIME OPERATING SYS EMS(U MAYLAN UN V COLLG PARK DEPT OF COMPUTER SCIENCE S LEVI ET AL APR 87 CS-TR-1838 NOSO14-87-K-9124 UNCLASSIFIED...and processes. In each instance the abstraction takes the form of some non- physical resource and benefits both the system and the user. ...The...service, which is important as an inter-process service (for physical synchronization) as well as an internal service for a process. A time service in a

  9. A Process For Performance Evaluation Of Real-Time Systems

    Andrew J. Kornecki

    2003-12-01

    Full Text Available Real-time developers and engineers must not only meet the system functional requirements, but also the stringent timing requirements. One of the critical decisions leading to meeting these timing requirements is the selection of an operating system under which the software will be developed and run. Although there is ample documentation on real-time systems performance and evaluation, little can be found that combines such information into an efficient process for use by developers. As the software industry moves towards clearly defined processes, creation of appropriate guidelines describing a process for performance evaluation of real-time system would greatly benefit real-time developers. This technology transition research focuses on developing such a process. PROPERT (PROcess for Performance Evaluation of Real Time systems - the process described in this paper - is based upon established techniques for evaluating real-time systems. It organizes already existing real-time performance criteria and assessment techniques in a manner consistent with a well-formed process, based on the Personal Software Process concepts.

  10. Reviewing real-time performance of nuclear reactor safety systems

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  11. Reviewing real-time performance of nuclear reactor safety systems

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  12. Data distribution architecture based on standard real time protocol

    Castro, R.; Vega, J.; Pereira, A.; Portas, A.

    2009-01-01

    Data distribution architecture (DDAR) has been designed conforming to new requirements, taking into account the type of data that is going to be generated from experiments in International Thermonuclear Experimental Reactor (ITER). The main goal of this architecture is to implement a system that is able to manage on line all data that is being generated by an experiment, supporting its distribution for: processing, storing, analysing or visualizing. The first objective is to have a distribution architecture that supports long pulse experiments (even hours). The described system is able to distribute, using real time protocol (RTP), stored data or live data generated while the experiment is running. It enables researchers to access data on line instead of waiting for the end of the experiment. Other important objective is scalability, so the presented architecture can easily grow based on actual necessities, simplifying estimation and design tasks. A third important objective is security. In this sense, the architecture is based on standards, so complete security mechanisms can be applied, from secure transmission solutions until elaborated access control policies, and it is full compatible with multi-organization federation systems as PAPI or Shibboleth.

  13. Data distribution architecture based on standard real time protocol

    Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense No. 22, 28040 Madrid (Spain)], E-mail: rodrigo.castro@ciemat.es; Vega, J.; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense No. 22, 28040 Madrid (Spain)

    2009-06-15

    Data distribution architecture (DDAR) has been designed conforming to new requirements, taking into account the type of data that is going to be generated from experiments in International Thermonuclear Experimental Reactor (ITER). The main goal of this architecture is to implement a system that is able to manage on line all data that is being generated by an experiment, supporting its distribution for: processing, storing, analysing or visualizing. The first objective is to have a distribution architecture that supports long pulse experiments (even hours). The described system is able to distribute, using real time protocol (RTP), stored data or live data generated while the experiment is running. It enables researchers to access data on line instead of waiting for the end of the experiment. Other important objective is scalability, so the presented architecture can easily grow based on actual necessities, simplifying estimation and design tasks. A third important objective is security. In this sense, the architecture is based on standards, so complete security mechanisms can be applied, from secure transmission solutions until elaborated access control policies, and it is full compatible with multi-organization federation systems as PAPI or Shibboleth.

  14. Power/performance trade-offs in real-time SDRAM command scheduling

    Goossens, S.L.M.; Chandrasekar, K.; Akesson, K.B.; Goossens, K.G.W.

    2016-01-01

    Real-time safety-critical systems should provide hard bounds on an applications’ performance. SDRAM controllers used in this domain should therefore have a bounded worst-case bandwidth, response time, and power consumption. Existing works on real-time SDRAM controllers only consider a narrow range of memory devices, and do not evaluate how their schedulers’ performance varies across memory generations, nor how the scheduling algorithm influences power usage. The extent to which the number of ...

  15. Distributed digital real-time control system for TCV tokamak

    Le, H.B. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland); Felici, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Paley, J.I.; Duval, B.P.; Moret, J.-M.; Coda, S.; Sauter, O.; Fasel, D.; Marmillod, P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland)

    2014-03-15

    Highlights: • A new distributed digital control system for the TCV tokamak has been commissioned. • Data is shared in real-time between all nodes using the reflective memory. • The customised Linux OS allows achieving deterministic and low latency behaviour. • The control algorithm design in Simulink together with the automatic code generation using Embedded Coder allow rapid algorithm development. • Controllers designed outside the TCV environment can be ported easily. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: A new digital feedback control system (named the SCD “Système de Contrôle Distribué”) has been developed, integrated and used successfully to control TCV (Tokamak à Configuration Variable) plasmas. The system is designed to be modular, distributed, and scalable, accommodating hundreds of diagnostic inputs and actuator outputs. With many more inputs and outputs available than previously possible, it offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field (PF) coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system (ECRH/ECCD) together with diagnostic triggering signals. The system consists of multiple nodes; each is a customised Linux desktop or embedded PC which may have local ADC and DAC cards. Each node is also connected to a memory network (reflective memory) providing a reliable, deterministic method of sharing memory between all nodes. Control algorithms are programmed as block diagrams in Matlab-Simulink providing a powerful environment for modelling and control design. The C code is generated automatically from the Simulink block diagram and compiled, with the Simulink Embedded Coder (SEC, formerly Real-Time Workshop Embedded

  16. Portable real-time color night vision

    Toet, A.; Hogervorst, M.A.

    2008-01-01

    We developed a simple and fast lookup-table based method to derive and apply natural daylight colors to multi-band night-time images. The method deploys an optimal color transformation derived from a set of samples taken from a daytime color reference image. The colors in the resulting colorized

  17. Fault Tolerant Real-Time Networks

    2007-05-30

    Alberto Sangiovanni-Vincentelli, editors Hybrid Systems: Computation and Control. Fourth International Workshop (HSCC󈧅, Rome, Italy, March 2001...average dwell time by solving optimization problems. In Ashish Tiwari and Joao P. Hespanha, editors, Hybrid Systems: Computation and Control (HSCC 06

  18. Feedback as real-time constructions

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal...

  19. Games and Scenarios for Real-Time System Validation

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from....... By linking our prototype translators with existing model checker Uppaal and game solver Uppaal-Tiga, we show that these methods contribute to the interaction correctness and timeliness of early system designs. The thesis also shows that testing a real-time reactive system can be viewed as playing a timed...... communicating real-time systems can be modeled and specified with LSC. By translating LSC to timed automata (TAs), we reduce scenario-based model consistency checking and property verification to CTL real-time model checking problems, and reduce scenario-based synthesis to a timed game solving problem...

  20. Distributed Issues for Ada Real-Time Systems

    1990-07-23

    NUMBERS Distributed Issues for Ada Real - Time Systems MDA 903-87- C- 0056 S. AUTHOR(S) Thomas E. Griest 7. PERFORMING ORGANiZATION NAME(S) AND ADORESS(ES) 8...considerations. I Adding to the problem of distributed real - time systems is the issue of maintaining a common sense of time among all of the processors...because -omeone is waiting for the final output of a very large set of computations. However in real - time systems , consistent meeting of short-term