WorldWideScience

Sample records for generation pressurized water

  1. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  2. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  3. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  4. A viscoelastic spring-block model for investigating subglacial water pressure pulse generation

    Science.gov (United States)

    Kavanaugh, J. L.

    2009-12-01

    A viscoelastic spring-block model of glacier motion has been developed to investigate the mechanisms responsible for generating brief pulses in subglacial water pressure recorded at Trapridge Glacier, Yukon. In this model, the glacier is treated as an array of ice blocks, each of which is connected to its nearest neighbors by spring-and-dashpot linkages. The model glacier is gravitationally driven, and down-slope flow is resisted by a basal shear stress determined by the Mohr-Coulomb failure criterion. This model is forced with realistic basal water pressure conditions. With prescribed summer-mode, diurnally-varying pressures, the model produces elevated slip activity at times of rising (rather than peak) water pressures; with steady, elevated winter-mode pressures, slip events occur at non-uniform intervals due to the effects of elastic loading and the (nonlinear) viscous relaxation of stresses. Magnitude and interevent time statistics for model slip events and basal water pressure pulses are compared.

  5. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  6. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  7. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  8. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  9. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  10. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  11. Water Pressure. Water in Africa.

    Science.gov (United States)

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water Pressure,"…

  12. Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A.; Streit, R.D.; Scott, R.G.

    1980-06-25

    Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

  13. Simultaneous visualization of oxygen partial pressure, current density, and water droplets in serpentine fuel cell during power generation for understanding reaction distributions

    Science.gov (United States)

    Takanohashi, Kazuhiro; Suga, Takeo; Uchida, Makoto; Ueda, Toshihide; Nagumo, Yuzo; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2017-03-01

    Understanding the reaction distributions inside a polymer electrolyte fuel cell (PEFC) is essential for the higher performance and durability. We have developed a new see-through cell and visualized the distributions of oxygen partial pressure and current density inside a running PEFC at the temperature of 40 and 80 °C and the relative humidity of 53%. The oxygen utilization was changed from 0% to 80% by changing the current density. At higher oxygen utilizations, the current density was higher and therefore the water generation. Generated water droplets in the flow channel were also visualized, allowing for the simultaneous visualization of the distribution of the oxygen partial pressure, current density, and water droplets. By combining the observations of all three parameters, the reactions inside a membrane-electrode assembly were discussed.

  14. Numerical simulation of the generation of reactive oxygen and nitrogen species (RONS) in water by atmospheric-pressure plasmas and their effects on Escherichia coli (E. coli)

    Science.gov (United States)

    Ikuse, Kazumasa; Hamaguchi, Satoshi

    2016-09-01

    We have used two types of numerical simulations to examine biological effects of reactive oxygen and nitrogen species (RONS) generated in water by an atmospheric-pressure plasma (APP) that irradiates the water surface. One is numerical simulation for the generation and transport of RONS in water based on the reaction-diffusion-advection equations coupled with Poisson equation. The rate constants, mobilities, and diffusion coefficients used in the equations are obtained from the literature. The gaseous species are given as boundary conditions and time evolution of the concentrations of chemical species in pure water is solved numerically as functions of the depth in one dimension. Although it is not clear how living organisms respond to such exogenous RONS, we also use numerical simulation for metabolic reactions of Escherichia coli (E. coli) and examine possible effects of such RONS on an in-silico model organism. The computation model is based on the flux balance analysis (FBA), where the fluxes of the metabolites in a biological system are evaluated in steady state, i.e., under the assumption that the fluxes do not change in time. The fluxes are determined with liner programming to maximize the growth rate of the bacteria under the given conditions. Although FBA cannot be directly applied to dynamical responses of metabolic reactions, the simulation still gives insight into the biological reactions to exogenous chemical species generated by an APP. Partially supported by JSPS Grants-in-Aid for Scientific Research.

  15. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature.

    Science.gov (United States)

    Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi

    2012-01-11

    Regioselective hydrogenation of the oxidized form of β-nicotinamide adenine dinucleotide (NAD(+)) to the reduced form (NADH) with hydrogen (H(2)) has successfully been achieved in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2) SO(4) [1](2)·SO(4) under an atmospheric pressure of H(2) at room temperature in weakly basic water. The structure of the corresponding benzoate complex Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))(H(2)O) 2 has been revealed by X-ray single-crystal structure analysis. The corresponding iridium hydride complex formed under an atmospheric pressure of H(2) undergoes the 1,4-selective hydrogenation of NAD(+) to form 1,4-NADH. On the other hand, in weakly acidic water the complex 1 was found to catalyze the hydrogen evolution from NADH to produce NAD(+) without photoirradiation at room temperature. NAD(+) exhibited an inhibitory behavior in both catalytic hydrogenation of NAD(+) with H(2) and H(2) evolution from NADH due to the binding of NAD(+) to the catalyst. The overall catalytic mechanism of interconversion between NADH and NAD(+) accompanied by generation and consumption of H(2) was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates.

  16. Onset behavior of standing wave thermoacoustic pressure wave generator

    Science.gov (United States)

    Mehta, Shreya; Desai, Keyur; Naik, Hemant Bhimbhai; Atrey, Milind

    2012-06-01

    A standing wave type thermoacoustic pressure wave generator for 300 Hz operating frequency is designed and developed for helium as a working fluid. The device is designed as a half wave length resonator. A parallel plate type SS 304 stack is designed and fabricated. An electric heater is used for heat supply to the hot end heat exchanger while a water cooled heat exchanger is used to maintain the other end of the stack near ambient temperature. An acoustic amplifier is used to amplify the pressure ratio generated. Experiments are conducted to study the onset behavior of pressure wave generator in terms of temperature range. Observations are recorded using piezoelectric pressure transducer. The results are obtained with different charging pressure and heat inputs. A pressure ratio of around 1.1 to 1.15 has been obtained using Nitrogen as a working fluid. The onset of thermoacoustic oscillations are studied for different filling pressure and for a range of hot end temperature.

  17. Osmosis-based pressure generation: dynamics and application.

    Science.gov (United States)

    Bruhn, Brandon R; Schroeder, Thomas B H; Li, Suyi; Billeh, Yazan N; Wang, K W; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  18. Osmosis-based pressure generation: dynamics and application.

    Directory of Open Access Journals (Sweden)

    Brandon R Bruhn

    Full Text Available This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  19. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  20. RPV steam generator pressure boundary

    Energy Technology Data Exchange (ETDEWEB)

    Strosnider, J.

    1996-03-01

    As the types of SG tube degradation affecting PWR SGs has changed, and improvements in tube inspection and repair technology have occurred, current SG regulatory requirements and guidance have become increasingly out of date. This regulatory situation has been dealt with on a plant-specific basis, however to resolve this problem in the long term, the NRC has begun development of a performance-based rule. As currently structured, the proposed steam generator rule would require licensees to implement SG programs that monitor the condition of the steam generator tubes against accepted performance criteria to provide reasonable assurance that the steam generator tubes remain capable of performing their intended safety functions. Currently the staff is developing three performance criteria that will ensure the tubes can continue to perform their safety function and therefore satisfy the SG rule requirements. The staff, in developing the criteria, is striving to ensure that the performance criteria have the two key attributes of being (1) measurable (enabling the tube condition to be {open_quotes}measured{close_quotes} against the criteria) and (2) tolerable (ensuring that failures to meet the criteria do not result in unacceptable consequences). A general description of the criteria are: (1) Structural integrity criteria: Ensures that the structural integrity of the SG tubes is maintained for the operating cycle consistent with the margins intended by the ASME Code. (2) Leakage integrity criteria: Ensures that postulated accident leakages and the associated dose releases are limited relative to 10 CFR Part 50 guidelines and 10 CFR Part 50 Appendix A GDC 19. (3) Operational leakage criteria: Ensures that the operating unit will be shut down as a defense-in depth measure when operational SG tube leakage exceeds established leakage limits.

  1. Tongue pressure patterns during water swallowing.

    Science.gov (United States)

    Kennedy, Daniel; Kieser, Jules; Bolter, Chris; Swain, Michael; Singh, Bhavia; Waddell, J Neil

    2010-03-01

    Bolus propulsion during the normal oral phase of swallowing is thought to be characterised by the sequential elevation of the front, middle, and posterior regions of the dorsum of the tongue. However, the coordinated orchestration of lingual movement is still poorly understood. This study examined how pressures generated by the tongue against the hard palate differed between three points along the midline of the tongue. Specifically, we tested three hypotheses: (1) that there are defined individual patterns of pressure change within the mouth during liquid swallowing; (2) that there are significant negative pressures generated at defined moments during normal swallowing; and, (3) that liquid swallowing is governed by the interplay of pressures generated in an anteroposterior direction in the mouth. Using a metal appliance described previously, we measured absolute pressures during water swallows in six healthy volunteers (4 male, 2 female) with an age range of 25-35 years. Participants performed three 10-ml water swallows from a small cup on five separate days, thus providing data for a total of 15 separate water swallows. There was a distinct pattern to the each of the pressure signals, and this pattern was preserved in the mean obtained when the data were pooled. Furthermore, raw signals from the same subjects presented consistent patterns at each of the five testing sessions. In all subjects, pressure at the anterior and hind palate tended to be negative relative to the preswallow value; at mid-palate, however, pressure changes were less consistent between individuals. When the pressure differences between the sites were calculated, we found that during the swallow a net negative pressure difference developed between anterior and mid-palate and a net positive pressure difference developed between mid-palate and hind palate. Large, rapid fluctuations in pressure occurred at all sites and these varied several-fold between subjects. When the brief sharp reduction

  2. Swim pressure: stress generation in active matter.

    Science.gov (United States)

    Takatori, S C; Yan, W; Brady, J F

    2014-07-11

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  3. Swim Pressure: Stress Generation in Active Matter

    Science.gov (United States)

    Takatori, S. C.; Yan, W.; Brady, J. F.

    2014-07-01

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries—this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  4. Low-Pressure Generator Makes Cleanrooms Cleaner

    Science.gov (United States)

    2005-01-01

    Scientists at NASA's Kennedy Space Center work in cleanrooms: laboratories with high degrees of cleanliness provided by strict control of particles such as dust, lint, or human skin. They are contaminant-free facilities, where the air is repeatedly filtered, and surfaces are smooth to prevent particles from getting lodged. Technicians working in these environments wear specially designed cleanroom "bunny suits" and booties over their street clothes, as well as gloves and face masks to avoid any contamination that may be imparted from the outside world. Even normal paper is not allowed in cleanrooms, only cleanroom low-particulate paper. These are sensitive environments where precision work, like the production of silicon chips or hard disk drives, is performed. Often in cleanrooms, positive air pressure is used to force particles outside of the isolated area. The air pressure in the Kennedy cleanrooms is monitored using high-accuracy, low-differential pressure transducers that require periodic calibration. Calibration of the transducers is a tricky business. In prior years, the analysis was performed by sending the transducers to the Kennedy Standards Laboratory, where a very expensive cross-floated, labor- intensive, dead-weight test was conducted. In the early 1990s, scientists at Kennedy determined to develop a technique and find equipment to perform qualification testing on new low-differential pressure transducers in an accurate, cost-effective manner onsite, without requiring an environmentally controlled room. They decided to use the highly accurate, cost-effective Setra Model C264 as the test transducer. For qualification testing of the Setra, though, a portable, lower-cost calibrator was needed that could control the differential pressure to a high degree of resolution and transfer the accuracy of the Standards Laboratory testing to the qualification testing. The researchers decided that, to generate the low-differential pressure setpoints needed for

  5. Rupture pressure of wear degraded alloy 600 steam generator tubings

    Science.gov (United States)

    Hwang, Seong Sik; Namgung, Chan; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2008-02-01

    Fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall thickness (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0° showed a fish mouth fracture, whereas the tube with a 45° wrap angle showed a three way fracture.

  6. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... ment of water distribution systems based on the water balance and performance .... The first comprehensive concept of real loss components and influenc- ...... residual pressure as design criterion for South African water distri-.

  7. Peer Pressure: An Issue That Crosses Generations.

    Science.gov (United States)

    Kittredge, Karen; McCarthy, Alice R.

    2000-01-01

    Recent research on peer pressure shows that: parents are important to teens, today's teens face unique challenges, and teaching teens to say no does not mean losing friends. The paper presents parenting tips for countering peer pressure, noting the influence of adult peer pressure on children. A sidebar examines the right age to start talking to…

  8. Experimental investigation of heat transfer during severe accident of a Pressurized Heavy Water Reactor with simulated decay heat generation in molten pool inside calandria vessel

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Sumit Vishnu, E-mail: svprasad@barc.gov.in; Nayak, Arun Kumar, E-mail: arunths@barc.gov.in

    2016-07-15

    Highlights: • Scaled test facility simulating the calandria vessel and calandria vault water of PHWR with simulated decay heat was built. • Experiments conducted with simulant material at about 1200 °C. • Experimental result shows that melt coolability and growth rate of crust thickness are affected by presence of decay heat. • No gap was observed between the crust and vessel on opening. • Result shows that vessel integrity is intact with presence of water inside water tank in both cases. - Abstract: The present study focuses on experimental investigation in a scaled facility of an Indian PHWR to investigate the coolability of molten corium with simulated decay heat in the simulated calandria vessel. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics similar to prototypic material. About 60 kg of the molten material was poured into the test section at about 1200 °C. Decay heat in the melt pool was simulated using four high watt heaters cartridges, each having 9.2 kW. The temperature distributions inside the molten pool, across the vessel wall thickness and vault water were measured. Experimental results obtained are compared with the results obtained previously for no decay heat case. The results indicated that presence of decay heat seriously affects the coolability behaviour and formation of crust in the melt pool. The location and magnitude of maximum heat flux and surface temperature of the vessel also are affected in the presence of decay heat.

  9. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China,

  10. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China, coal-fire

  11. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  12. Chloride Ingress into Concrete under Water Pressure

    OpenAIRE

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent; Hansen, Kurt Kielsgaard

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 kPa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly infl...

  13. Continuous positive airway pressure therapy: new generations.

    LENUS (Irish Health Repository)

    Garvey, John F

    2012-02-01

    Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnoea syndrome (OSAS). However, CPAP is not tolerated by all patients with OSAS and alternative modes of pressure delivery have been developed to overcome pressure intolerance, thereby improving patient comfort and adherence. Auto-adjustable positive airway pressure (APAP) devices may be utilised for the long-term management of OSAS and may also assist in the initial diagnosis of OSAS and titration of conventional CPAP therapy. Newer modalities such as C-Flex and A-Flex also show promise as treatment options in the future. However, the evidence supporting the use of these alternative modalities remains scant, in particular with regard to long-term cardiovascular outcomes. In addition, not all APAP devices use the same technological algorithms and data supporting individual APAP devices cannot be extrapolated to support all. Further studies are required to validate the roles of APAP, C-Flex and A-Flex. In the interim, standard CPAP therapy should continue as the mainstay of OSAS management.

  14. Continuous positive airway pressure therapy: new generations.

    LENUS (Irish Health Repository)

    Garvey, John F

    2010-02-01

    Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnoea syndrome (OSAS). However, CPAP is not tolerated by all patients with OSAS and alternative modes of pressure delivery have been developed to overcome pressure intolerance, thereby improving patient comfort and adherence. Auto-adjustable positive airway pressure (APAP) devices may be utilised for the long-term management of OSAS and may also assist in the initial diagnosis of OSAS and titration of conventional CPAP therapy. Newer modalities such as C-Flex and A-Flex also show promise as treatment options in the future. However, the evidence supporting the use of these alternative modalities remains scant, in particular with regard to long-term cardiovascular outcomes. In addition, not all APAP devices use the same technological algorithms and data supporting individual APAP devices cannot be extrapolated to support all. Further studies are required to validate the roles of APAP, C-Flex and A-Flex. In the interim, standard CPAP therapy should continue as the mainstay of OSAS management.

  15. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  16. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  17. Pressures and Oscillation Frequencies Generated by Bubble-Positive Expiratory Pressure Devices.

    Science.gov (United States)

    Santos, Mary D; Milross, Maree A; Eisenhuth, John P; Alison, Jennifer A

    2017-04-01

    Positive expiratory pressure (PEP) devices are used to assist with airway clearance. Little is known about the therapist-made or commercially available bubble-PEP devices. The aim of this study was to determine the end-expiratory pressures (cm H2O) and oscillation frequencies (Hz) generated when a range of flows were applied to the therapist-made bubble-PEP devices (Bubble-PEP-3cm and Bubble-PEP-0cm) and commercial bubble-PEP devices (AguaPEP, Hydrapep, and Therabubble). This was a bench-top experimental study using a compressed air source, flow rotameter (flows of 5, 10, 15, 20, and 25 L/min), and pressure transducer. Data were collected using a data acquisition device with PhysioDAQxs software and analyzed with Breathalyser software to determine the pressures and oscillation frequencies generated by 5 bubble-PEP devices. Each flow was constant for a 30-s measurement period, and measurements were repeated in triplicate. The 5 devices were: a therapist-made Bubble-PEP-3cm device (filled with 13 cm of water, tubing resting 3 cm from the base of the container); the therapist-made Bubble-PEP-0cm (filled with 10 cm of water, tubing resting at the base of the container); and the AguaPEP, Hydrapep, and Therabubble devices with water to the 10 cm mark on the containers. Flows of 5-25 L/min produced the following mean ± SD PEP and oscillation frequencies (Hz): the Bubble-PEP-3cm produced PEP of 10.4 ± 0.14 to 10.8 ± 0.24 cm H2O, oscillations between 13 and 17 Hz; the Bubble-PEP-0cm produced PEP of 10.9 ± 0.01 to 12.9 ± 0.08 cm H2O, oscillations between 12 and 14 Hz; the AguaPEP produced PEP from 9.7 ± 0.02 to 11.5 ± 0.02 cm H2O, oscillations between 11 and 17 Hz; the Hydrapep produced PEP of 9.6 ± 0.35 to 10.7 ± 0.39 cm H2O, oscillations between 14 and 17 Hz; and the Therabubble produced PEP from 8.6 ± 0.01 to 12.8 ± 0.03 cm H2O, oscillations between 14 and 17 Hz. Bubble-PEP-3cm maintained the most stable pressure throughout the range of flows tested. All

  18. Couple Resilience to Economic Pressure Over Time and Across Generations.

    Science.gov (United States)

    Masarik, April S; Martin, Monica J; Ferrer, Emilio; Lorenz, Frederick O; Conger, Katherine J; Conger, Rand D

    2016-04-01

    Research suggests that economic stress disrupts perceived romantic relationship quality; yet less is known regarding the direct influence of economic stress on negative behavioral exchanges between partners over time. Another intriguing question concerns the degree to which effective problem-solving might protect against this hypothesized association. To address these issues, the authors studied two generations of couples who were assessed approximately 13 years apart (Generation 1: N = 367, Generation 2: N = 311). On average and for both generations, economic pressure predicted relative increases in couples' hostile, contemptuous, and angry behaviors; however, couples who were highly effective problem solvers experienced no increases in these behaviors in response to economic pressure. Less effective problem solvers experienced the steepest increases in hostile behaviors in response to economic pressure. Because these predictive pathways were replicated in both generations of couples it appears that these stress and resilience processes unfold over time and across generations.

  19. Water waves generated by underwater explosion

    CERN Document Server

    Mehaute, Bernard Le

    1996-01-01

    This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries to

  20. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  1. Pressure-induced polyamorphism in salty water.

    Science.gov (United States)

    Bove, L E; Klotz, S; Philippe, J; Saitta, A M

    2011-03-25

    We investigated the metastable phase diagram of an ionic salt aqueous solution, LiCl:6D₂O, at high pressure and low temperature by neutron diffraction measurements and computer simulations. We show that the presence of salt triggers a stepwise transformation, under annealing at high pressure, to a new very high-density amorphous form. The transition occurs abruptly at 120 K and 2 GPa, is reversible, and is characterized by a sizeable enthalpy release. Simulations suggest that the polyamorphic transition is linked to a local structural reorganization of water molecules around the Li ions.

  2. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  3. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...

  4. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  5. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures.......The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k...

  6. The condensation of steam from steam-water mixture on water jets at high pressure

    Science.gov (United States)

    Somova, E. V.; Kisina, V. I.; Shvarts, A. L.; Kolbasnikov, A. V.; Kanishchev, V. P.

    2009-01-01

    A physical model for condensation of steam in water flow at high pressure is developed, and analytical dependences for calculating heat transfer are obtained, in particular as applied to the operation of a direct-contact feedwater heater for a new-generation reactor plant with lead coolant.

  7. Terapascal static pressure generation with ultrahigh yield strength nanodiamond

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-01-01

    Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944

  8. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  9. STUDY ON OPERATING CHARACTERISTECS OF WATER HAMMER GENERATING DEVICE FOR TREATMENT OF MICROORGANISM

    Science.gov (United States)

    Hamada, Tatsuhisa; Endo, Shigekatsu; Oda, Akira; Shimizu, Yasushi

    The phenomenon that has been actualized due to the water quality deterioration because of the inflow of drainage and the industrial wastewater includes the phenomenon that is called water-bloom generated in the freshwater environment made a eutrophic. This is becoming a serious problem to secure the water.Mixing with the drinking water has already been confirmed, and the generation of water-bloom is becoming a big social problem, and fundamental measures have not been established yet.On the other hand, authors are proving the pressure to be a fast the pressure speed of the impact pressure by the water hammer and effective in the destruction of the blue-green algae.In this studies, the hydraulics flow characteristics of an effective water hammer pressure generator to the shredding of the water-bloom cell were examined.As a result, there was a boundary in the region where the water hammer was generated by length and the water supply head of conduit, and the water hammer pressure was able to be understood to be influenced according to the angle of the valve that generated the water hammer in addition in the water hammer generator.The demonstration in the locale was confirmed based on these and the scale etc. of an effective device to the doing water-bloom processing were able to be confirmed by continuous running.

  10. Pore Water Pressure Contribution to Debris Flow Mobility

    Directory of Open Access Journals (Sweden)

    Chiara Deangeli

    2009-01-01

    Full Text Available Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In particular the role of pore water pressure on debris flow mobility in both types was debated. Approach: Laboratory flume experiments were set up in order to analyze the behavior of debris flows generated by model sand slope failures. Failures were induced in sand slopes by raising the water level by seepage from a drain located at the top end of the flume, and by rainfall supplied by a set of pierced plastic pipes placed above the flume. Video recordings of the tests were performed to analyze debris flow characteristics. Results: In all the tests the sand water mixture flows were unsteady and non uniform and sand deposition along the channel bed was a relevant phenomenon. The flows were characterized by a behavioral stratification of the sand water mixture along the flow depth. Back analyzed pore water pressure were just in excess to the hydrostatic condition. The reliability of the experimental results was checked by comparison with other flume experiment data. Conclusion: Debris flow behavior was influenced by the mode of initiation, the inclination of the channel and grain size of the soils. These factors affected the attained velocities and the pore water pressure values. The mobility of debris flows was not always enhanced by high excess pore water pressure values.

  11. Numerical simulation of high pressure water jet impacting concrete

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    High pressure water jet technology is an unconventional concrete crushing technology. In order to reveal the mechanism of high pressure water jet impacting concrete, it built a three-dimensional numerical model of high pressure water jet impacting concrete based on fluid mechanics and damage mechanics. And the numerical model was verified by theoretical analysis and experiments. Based on this model, it studied the stress characteristics in concrete under high pressure water jet impacting at different time, and quantified the damage evolution rules in concrete along the water jet radial direction. The results can provide theoretical basis and guidance for the high pressure water jet crushing concrete technology.

  12. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  13. Water oxygenation by fluidic microbubble generator

    Directory of Open Access Journals (Sweden)

    Tesař V

    2014-03-01

    Full Text Available Oxygenation of water by standard means in waste water processing, in particular to improve the conditions for the micro-organisms that decompose organic wastes is rather ineffective. The classical approach to improvements – decreasing the size of the aerator exits - have already reached their limits. A recent new idea is to decrease the size of the generated air bubbles by oscillating the supplied air flow using fluidic oscillators. Authors made extensive performance measurements with an unusual high-frequency fluidic oscillator, designed to operate within the submersed aerator body. The performance was evaluated by the dynamic method of recording the oxygen concentration increase to saturation in the aerated water. Experiments proved the fluidic generator can demonstrably increase the aeration efficiency 4.22-times compared with the aeration from a plain end of a submerged air supply tube. Despite this significant improvement, the behaviour of the generator still provides an opportunity for further improvements.

  14. Quadratic controller syntheses for the steam generator water level

    Energy Technology Data Exchange (ETDEWEB)

    Arzelier, D.; Daafouz, J.; Bernussou, J.; Garcia, G

    1998-06-01

    The steam generator water level, (SGWL), control problem in the pressurized water reactor of a nuclear power plant is considered from robust control techniques point of view. The plant is a time-varying system with a non minimum phase behavior and an unstable open-loop response. The time-varying nature of the plant due to change in operating power is taken into account by including slowly time-varying uncertainty in the model. A linear Time-Invariant, (LTI) guaranteed cost quadratic stabilizing controller is designed in order to address some of the particular issues arising for such a control problem. (author) 17 refs.

  15. Lower limb intracast pressures generated by different types of immobilisation casts

    Science.gov (United States)

    Chaudhury, Salma; Hazlerigg, Alexandra; Vusirikala, Anuhya; Nguyen, Joseph; Matthews, Stuart

    2017-01-01

    AIM To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. METHODS Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs were applied. Twenty-five milliliter aliquots of saline were injected into the system and the generated intracast pressures were measured using a sphygmomanometer. The subject was blinded to the pressure scores to avoid bias. All casts were applied to the same right limb on the same subject to avoid the effects of variations in anatomy or physiology on intracast pressures. Pain levels were evaluated using the Visual Analogue Score after each sequential saline injection. Each type of cast was reapplied four times and the measurements were repeated on four separate occasions. Sample sizes were determined by a pre-study 90% power calculation to detect a 20% difference in intracast pressures between cast groups. RESULTS A significant difference between the various types of casts was noted when the saline volume was greater than 100 mL (P = 0.009). The greatest intracast pressure was generated by complete fiberglass casts, which were significantly higher than complete POP casts or backslabs (P = 0.018 and P = 0.008 respectively) at intracast saline volumes of 100 mL and higher. Backslabs produced a significantly lower intracast pressure compared to complete POP only once the saline volume within casts exceeded 225 mL (P = 0.009). Intracast pressures were significantly lower in split casts (P = 0.003). Split POP and fiberglass casts produced the lowest intracast pressures, even compared to backslabs (P = 0.009). Complete fiberglass casts generated the highest pain levels at manometer pressures of 75 mmHg and greater (P = 0.001). Split fiberglass casts had significantly reduced pain

  16. Linear servo-controlled pressure generator for forced oscillation measurements.

    Science.gov (United States)

    de Melo, P L; Werneck, M M; Giannella-Neto, A

    1998-01-01

    In respiratory input impedance measurements, the low-frequency range contains important clinical and physiological information. However, the patient's spontaneous ventilation can contaminate the data in this range, leading to unreliable results. Unbiased estimators are a good alternative to overcome this problem, provided that the generator is considered linear. This condition is not fulfilled by most existing generators as they are based on loudspeakers, which have strong nonlinearities. The present work aims to contribute to the solution of this problem, and describes a pressure generator that minimises the nonlinearities by an optical sensor placed in a position feedback loop. The static evaluation shows a high linearity for the optical system. The well known frequency response of pressure transducers is used in the dynamic evaluation of the instrument. The analysis of the generator shows that the use of position feedback improved the frequency response. The total harmonic distortion (THD) measurement shows that closed loop resulted in an effective decrease in the nonlinearities. The reduction of THD achieved by the servo-controlled generator can contribute to the practical implementation of the unbiased estimators, increasing the reliability of the impedance data, especially in the low-frequency range. This system is compared with conventional generators and with another servo-controlled system.

  17. Water Pressure Distribution on a Flying Boat Hull

    Science.gov (United States)

    Thompson, F L

    1931-01-01

    This is the third in a series of investigations of the water pressures on seaplane floats and hulls, and completes the present program. It consisted of determining the water pressures and accelerations on a Curtiss H-16 flying boat during landing and taxiing maneuvers in smooth and rough water.

  18. Experimental study on pore water pressure dissipation of mucky soil

    Institute of Scientific and Technical Information of China (English)

    Xianwei ZHANG; Changming WANG; Junxia LI; Bin WANG

    2008-01-01

    Pore water pressure has an important influence on mechanical properties of soil. The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure. The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading. What is more, the pore water pressure coefficient of mucky soil is less than 1. As the compactness of soil increases and moisture content reduces, the value of B reduces. There is a staggered dissipating in the process of consolidation, in which it is a mutate point when U/P is 80%. It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.

  19. Mathematical Modeling of the Pressure Field Generated by Ocean Wave at the Bottom of the Ocean

    Institute of Scientific and Technical Information of China (English)

    龚沈光; 唐劲飞; 颜冰

    2002-01-01

    This paper develops a new method for calculating the pressure-tirme processof the pressure field generated by ocean wave at sea bottom based on the surface wavespectrum of the ocean wave. The basic assumptions of modeling are that the surfaceocean wave pressure equals to the atmospheric pressure and that the viscidity of seawater is neglected. The steps of modeling are described below. First the power spectraldensity of ocean wave is discretized and the amplitude spectra of harmonic ocean waveare obtained. Then the amplitude spectra of harmonic pressure are obtained accordingto the amplitude spectrum of surface wave and the depth of the sea. Finally, based onthe oceanographic theory of representing a fixed wave surface by summing up random-phase sinusoids, the pressure-time process of pressure field at sea bottom is obtained bysumming up the amplitude spectrum of pressure. The paper also develops a method ofdetermining the relationship between mean wave period and wave heights undershallow water condition, thus the pressure-time process of pressure field produced bynon-well-developed ocean wave can be directly calculated once the mean wave heightand period are known.

  20. Radiation pressure induced difference-sideband generation beyond linearized description

    CERN Document Server

    Xiong, Hao; Yang, X; Wu, Y

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  1. High pressure generation by hot electrons driven ablation

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A. R. [E.T.S.I. Industriales, CYTEMA, and Instituto de Investigaciones Energéticas, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Piriz, S. A. [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-11-15

    A previous model [Piriz et al. Phys. Plasmas 19, 122705 (2012)] for the ablation driven by the hot electrons generated in collisionless laser-plasma interactions in the framework of shock ignition is revisited. The impact of recent results indicating that for a laser wavelength λ = 0.35 μm the hot electron temperature θ{sub H} would be independent of the laser intensity I, on the resulting ablation pressure is considered. In comparison with the case when the scaling law θ{sub H}∼(Iλ{sup 2}){sup 1/3} is assumed, the generation of the high pressures needed for driving the ignitor shock may be more demanding. Intensities above 10{sup 17} W/cm{sup 2} would be required for θ{sub H}=25−30 keV.

  2. A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip.

    Science.gov (United States)

    Hong, Chien-Chong; Murugesan, Suresh; Kim, Sanghyo; Beaucage, Gregory; Choi, Jin-Woo; Ahn, Chong H

    2003-11-01

    This paper presents a functional on-chip pressure generator that utilizes chemical energy from a solid chemical propellant to perform fluidic delivery in applications of plastic-based disposable biochips or lab-on-a-chip systems. In this functional on-chip pressure generator, azobis-isobutyronitrile (AIBN) as the solid chemical propellant is deposited on a microheater using a screen-printing technique, which can heat the AIBN at 70 degrees C to produce nitrogen gas. The output pressure of nitrogen gas, generated from the solid chemical propellant, is adjustable to a desired pressure by controlling the input power of the heater. Using this chemical energy source, the generated pressure depends on the deposited amount of the solid chemical propellant and the temperature of the microheater. Experimental measurements show that this functional on-chip pressure generator can achieve around 3 000 Pa pressure when 189 mJ of energy is applied to heat the 100 microg of AIBN. This pressure can drive 50 nl of water through a microfluidic channel of 70 mm and cross-sectional area of 100 microm x 50 microm. Due to its compact size, ease of fabrication and integration, high reliability (no moving parts), biologically inert gas output along with functionality of gas generation, this pressure generator will be an excellent pressure source for handling the fluids of disposable lab-on-a-chip, biochemical analysis systems or drug delivery systems.

  3. Generation of High Pressure and Temperature by Converging Detonation Waves

    Directory of Open Access Journals (Sweden)

    V. P. Singh

    1987-07-01

    Full Text Available Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  4. Generation of High Pressure and Temperature by Converging Detonation Waves

    OpenAIRE

    Singh, V. P.; Shukla, S K

    1987-01-01

    Generation of high pressure and temperature has various applications in defence. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In the present paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, is studied, by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  5. Generation of high pressure and temperature by converging detonation waves

    Science.gov (United States)

    Singh, V. P.; Shukla, S. K.

    1987-07-01

    Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  6. On the Wind Generation of Water Waves

    Science.gov (United States)

    Bühler, Oliver; Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun

    2016-11-01

    In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of the linearized evolution equations about an arbitrary steady solution, and, using this, we give a complete proof of the instability criterion of M iles [16]. Our analysis is valid even in the presence of surface tension and a vortex sheet (discontinuity in the tangential velocity across the air-sea interface). We are thus able to give a unified equation connecting the Kelvin-Helmholtz and quasi-laminar models of wave generation.

  7. Electrokinetic Power Generation from Liquid Water Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  8. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  9. Photocatalysis in Generation of Hydrogen from Water

    KAUST Repository

    Takanabe, Kazuhiro

    2015-04-18

    Solar energy can be converted by utilizing the thermal or photoelectric effects of photons. Concentrated solar power systems utilize thermal energy from the sun by either making steam and then generating power or shifting the chemical equilibrium of a reaction (e.g., water splitting or CO2 reduction) that occurs at extremely high temperatures. The photocatalytic system contains powder photocatalysts. Each photocatalyst particle should collect sufficient photons from the solar flux to cause the required multielectron reactions to occur. The band gap and band edge positions of semiconductors are the most critical parameters for assessing the suitability of photocatalysts for overall water splitting. The most important requirement when selecting photocatalyst materials is the band positions relative to hydrogen and oxygen evolution potentials. For most photocatalysts, surface modification by cocatalysts was found to be essential to achieve overall water splitting.

  10. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  11. Studies on advanced water-cooled reactors beyond generation Ⅲ for power generation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu

    2007-01-01

    China's ambitious nuclear power program motivates the country's nuclear community to develop advanced reactor concepts beyond generation Ⅲ to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics,sustainability and technology availability. It is a logical extension of the generation Ⅲ PWR technology in China.The status of international R&D work is reviewed. A new supercritieal water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydranlics method is carded out. It shows good feasibility for the new design proposal.

  12. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2011-12-01

    Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena in pressure retarded osmosis--external concentration polarization, internal concentration polarization, and reverse draw salt flux--and offer insights on the design criteria of a high performance pressure retarded osmosis power generation system. Thin-film composite polyamide membranes were chemically modified to produce a range of membrane transport properties, and the water and salt permeabilities were characterized to determine the underlying permeability-selectivity trade-off relationship. We show that power density is constrained by the trade-off between permeability and selectivity of the membrane active layer. This behavior is attributed to the opposing influence of the beneficial effect of membrane water permeability and the detrimental impact of reverse salt flux coupled with internal concentration polarization. Our analysis reveals the intricate influence of active and support layer properties on power density and demonstrates that membrane performance is maximized by tailoring the water and salt permeabilities to the structural parameters. An analytical parameter that quantifies the relative influence of each performance limiting phenomena is employed to identify the dominant effect restricting productivity. External concentration polarization is shown to be the main factor limiting performance at high power densities. Enhancement of the hydrodynamic flow conditions in the membrane feed channel reduces external concentration polarization and thus, yields improved power density. However, doing so will also incur additional operating costs due to the accompanying hydraulic pressure loss. This study demonstrates that by thoughtful selection of the membrane properties and hydrodynamic conditions, the detrimental

  13. Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis

    KAUST Repository

    Yip, Ngai Yin

    2011-12-01

    Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena in pressure retarded osmosis-external concentration polarization, internal concentration polarization, and reverse draw salt flux-and offer insights on the design criteria of a high performance pressure retarded osmosis power generation system. Thin-film composite polyamide membranes were chemically modified to produce a range of membrane transport properties, and the water and salt permeabilities were characterized to determine the underlying permeability-selectivity trade-off relationship. We show that power density is constrained by the trade-off between permeability and selectivity of the membrane active layer. This behavior is attributed to the opposing influence of the beneficial effect of membrane water permeability and the detrimental impact of reverse salt flux coupled with internal concentration polarization. Our analysis reveals the intricate influence of active and support layer properties on power density and demonstrates that membrane performance is maximized by tailoring the water and salt permeabilities to the structural parameters. An analytical parameter that quantifies the relative influence of each performance limiting phenomena is employed to identify the dominant effect restricting productivity. External concentration polarization is shown to be the main factor limiting performance at high power densities. Enhancement of the hydrodynamic flow conditions in the membrane feed channel reduces external concentration polarization and thus, yields improved power density. However, doing so will also incur additional operating costs due to the accompanying hydraulic pressure loss. This study demonstrates that by thoughtful selection of the membrane properties and hydrodynamic conditions, the detrimental

  14. The transpiration of water at negative pressures in a synthetic tree.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2008-09-11

    Plant scientists believe that transpiration-the motion of water from the soil, through a vascular plant, and into the air-occurs by a passive, wicking mechanism. This mechanism is described by the cohesion-tension theory: loss of water by evaporation reduces the pressure of the liquid water within the leaf relative to atmospheric pressure; this reduced pressure pulls liquid water out of the soil and up the xylem to maintain hydration. Strikingly, the absolute pressure of the water within the xylem is often negative, such that the liquid is under tension and is thermodynamically metastable with respect to the vapour phase. Qualitatively, this mechanism is the same as that which drives fluid through the synthetic wicks that are key elements in technologies for heat transfer, fuel cells and portable chemical systems. Quantitatively, the differences in pressure generated in plants to drive flow can be more than a hundredfold larger than those generated in synthetic wicks. Here we present the design and operation of a microfluidic system formed in a synthetic hydrogel. This synthetic 'tree' captures the main attributes of transpiration in plants: transduction of subsaturation in the vapour phase of water into negative pressures in the liquid phase, stabilization and flow of liquid water at large negative pressures (-1.0 MPa or lower), continuous heat transfer with the evaporation of liquid water at negative pressure, and continuous extraction of liquid water from subsaturated sources. This development opens the opportunity for technological uses of water under tension and for new experimental studies of the liquid state of water.

  15. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    It is well known that pressurization for an extended period of time increases the tensile strength of water, but little information is available on the effect of pressure pulses of short duration. This is addressed in the present paper where we first measure the tensile strength of water...

  16. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  17. Correcting for response lag in unsteady pressure measurements in water

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.N. [John Graham Associates, Seattle, WA (United States); Ramaprian, B.R. [Washington State Univ., Pullman, WA (United States). Dept. of Mechanical and Materials Engineering

    1993-12-01

    There is not much information available on the use of diaphragm-type pressure transducers for the measurements of unsteady pressures in liquids. A procedure for measuring the dynamic response of a pressure transducer in such applications and correcting for its inadequate response is discussed in this report. An example of the successful use of this method to determine unsteady surface pressures on a pitching airfoil in a water channel is presented.

  18. Volume analysis of supercooled water under high pressure

    OpenAIRE

    Duki, Solomon F.; Tsige, Mesfin

    2016-01-01

    Motivated by recent experimental findings on the volume of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from...

  19. Hydrogen Generation by Solar Photolysis of Water

    Science.gov (United States)

    Graetzel, Michael

    2004-03-01

    Prospects of near term fuel cell applications for transportation and communication have stimulated recently great interest in systems that can generate hydrogen through water cleavage by sunlight. A device that appears very promising to accomplish this goal is a tandem cell based on two superimposed photoactive layers [1]. The top layer consists of nanocrystalline oxide film absorbing the blue part of the solar spectrum and producing oxygen from water under light excitation. This is placed directly on top of a dye-sensitized nanocrystalline TiO2 film (DSC) capturing the green and red part of the solar spectrum. The voltage generated by this second photosystem enables hydrogen production to proceed without application of an external electric bias. The overall reaction corresponds to the splitting of water into hydrogen and oxygen by visible light. The maximum conversion efficiency achieved so far with these systems is about 6-7 electrode a nanocrystalline WO3 film. The use of nanoparticles for the top layer has several great advantages. They are translucent avoiding losses by light scattering and their small size is within the minority carrier diffusion length, allowing the valence band hole reaction with water at the particle surface to proceed with high efficiency. Recent work has focused on replacing the WO3 by semiconductor oxide absorbing a larger fraction of visible light than tungsten trioxide, e.g. Fe2O3.The principles and current state of this research will be briefly reviewed. Literature 1. M. Graetzel, "Photoelectrochemical Cells" Nature, 414, 332-344 (2001)

  20. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several...... consumers are considered. Under mild assumptions on the consumption pattern and hydraulic resistances of pipes we use properties of the network graph and Kirchhoffs node and mesh laws to show that simple relations exist between the actuator pressure and critical point pressures inside the network....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  1. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    Science.gov (United States)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  2. Evaluation of pressure transducers under turbid natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    Pressure measurements made in two turbid natural waters have led to the inference that the effective depthmean in situ density values, rho sub(eff), of these waters are less than (approx equal to 0.4%-4.5%) that of the density of the same water...

  3. Generation of Focused Shock Waves in Water for Biomedical Applications

    Science.gov (United States)

    Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Beneš, Jiří; Poučková, Pavla; Zadinová, Marie; Zeman, Jan

    The physical characteristics of focused two-successive (tandem) shock waves (FTSW) in water and their biological effects are presented. FTSW were ­generated by underwater multichannel electrical discharges in a highly conductive saline solution using two porous ceramic-coated cylindrical electrodes of different diameter and surface area. The primary cylindrical pressure wave generated at each composite electrode was focused by a metallic parabolic reflector to a common focal point to form two strong shock waves with a variable time delay between the waves. The pressure field and interaction between the first and the second shock waves at the focus were investigated using schlieren photography and polyvinylidene fluoride (PVDF) shock gauge sensors. The largest interaction was obtained for a time delay of 8-15 μs between the waves, producing an amplitude of the negative pressure phase of the second shock wave down to -80 MPa and a large number of cavitations at the focus. The biological effects of FTSW were demonstrated in vitro on damage to B16 melanoma cells, in vivo on targeted lesions in the thigh muscles of rabbits and on the growth delay of sarcoma tumors in Lewis rats treated in vivo by FTSW, compared to untreated controls.

  4. Importance of pressure reducing valves (PRVs) in water supply networks.

    Science.gov (United States)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  5. 43 CFR 418.16 - Using water for power generation.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to releases charged against Project diversions, precautionary drawdown...

  6. Combined Cycle Power Generation Employing Pressure Gain Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holley, Adam [United Technologies Corporation, East Hartford, CT (United States). Research Center

    2017-05-15

    The Phase I program assessed the potential benefit of applying pressure gain combustion (PGC) technology to a natural gas combined cycle power plant. A conceptual design of the PGC integrated gas turbine was generated which was simulated in a detailed system modeling tool. The PGC integrated system was 1.93% more efficient, produced 3.09% more power, and reduced COE by 0.58%. Since the PGC system used had the same fuel flow rate as the baseline system, it also reduced CO2 emissions by 3.09%. The PGC system did produce more NOx than standard systems, but even with the performanceand cost penalties associated with the cleanup system it is better in every measure. This technology benefits all of DOE’s stated program goals to improve plant efficiency, reduce CO2 production, and reduce COE.

  7. Development of second-generation pressurized fluidized bed combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages-namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects-brief descriptions of these are also included.

  8. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  9. Capital Cost: Pressurized Water Reactor Plant Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate.

  10. Water Processor and Oxygen Generation Assembly

    Science.gov (United States)

    Bedard, John

    1997-01-01

    This report documents the results of the tasks which initiated efforts on design issues relating to the Water Processor (WP) and the Oxygen Generation Assembly (OGA) Flight Hardware for the International Space Station. This report fulfills the Statement of Work deliverables requirement for contract H-29387D. The following lists the tasks required by contract H-29387D: (1) HSSSI shall coordinate a detailed review of WP/OGA Flight Hardware program requirements with personnel from MSFC to identify requirements that can be eliminated without affecting the technical integrity of the WP/OGA Hardware; (2) HSSSI shall conduct the technical interchanges with personnel from MSFC to resolve design issues related to WP/OGA Flight Hardware; (3) HSSSI will initiate discussions with Zellwegger Analytics, Inc. to address design issues related to WP and PCWQM interfaces.

  11. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    Science.gov (United States)

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  12. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  13. Pressure-induced gelatinization of starch in excess water.

    Science.gov (United States)

    Vallons, Katleen J R; Ryan, Liam A M; Arendt, Elke K

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently high, they both induce gelatinization of starch in excess water, resulting in a transition of the native granular structure to a starch paste or gel. However, there are significant differences in the structural and rheological properties between heated and pressurized starches. These differences offer benefits with respect to new product development. However, in order to implement high-pressure technology to starch and starch-containing products, a good understanding of the mechanism of pressure-induced gelatinization is necessary. Studies that are published in this area are reviewed, and the similarities and differences between starches gelatinized by pressure and by temperature are summarized.

  14. Pressurized-water reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  15. Integrity of high-velocity water slug generated by an impacting technique

    Science.gov (United States)

    Dehkhoda, Sevda; Bourne, Neil

    2013-06-01

    A pulsed water jet is a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at the stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the integrity of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence of the generated water pulse was of concern in this study. If repeated shock reflections within the chamber were transmitted or were carried into the internal geometry of nozzle, the emerging jet could pulsate. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to study the quality and endurance of the water pulse stream as it travelled through air.

  16. Generation of highly symmetric, cylindrically convergent shockwaves in water

    Science.gov (United States)

    Bland, S. N.; Krasik, Ya. E.; Yanuka, D.; Gardner, R.; MacDonald, J.; Virozub, A.; Efimov, S.; Gleizer, S.; Chaturvedi, N.

    2017-08-01

    We report on pulsed power driven, exploding copper wire array experiments conducted to generate cylindrical convergent shockwaves in water employing μs risetime currents >550 kA in amplitude and with stored energies of >15 kJ—a substantial increase over previous results. The experiments were carried out on the recently constructed Mega-Ampere-Compression-and-Hydrodynamics facility at Imperial College London in collaboration with colleagues of Technion, Israel. 10 mm diameter arrays consisting of 60 × 130 μm wires were utilized, and the current and voltage diagnostics of the load region suggested that ˜8 kJ of energy was deposited in the wires (and the load region close to the wires) during the experiments, resulting in the formation of dense, highly resistive plasmas that rapidly expanded driving the shockwaves in water. Laser-backlit framing images of the shockfront were obtained at radii 50:1. Framing images and streak photographs showed that the velocity of the shockwave reached ˜7.5 km s-1 at 0.1 mm from the axis. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest that pressures >1 Mbar are produced within 10 μm of the axis along with water densities of 3gcm-3 and temperatures of many 1000 s of Kelvin. Under these conditions, Quotidian Equation of State suggests that a strongly coupled plasma with an ionization fraction of ˜0.7 would be formed. The results represent a "stepping stone" in the application of the technique to drive different material samples into high pressure, warm dense matter regimes with compact, university scale generators, and provide support in scaling the technique to multi-mega ampere currents.

  17. Attenuating water hammer pressure by means of gas storage tank

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid-liquid two-phase flow, the gas storage tank, pressure-relief valves and slow-closure reverse-control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated.

  18. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  19. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    Science.gov (United States)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  20. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  1. Cavitation nuclei in water exposed to transient pressures

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2015-01-01

    A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure and ...

  2. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  3. Is high-pressure water the cradle of life?

    Energy Technology Data Exchange (ETDEWEB)

    Bassez, Marie-Paule [Universite de Strasbourg-3, Departement Chimie, 72 route du Rhin, 67400 Illkirch (France)

    2003-06-25

    Several theories have been proposed for the synthesis of prebiotic molecules. This letter shows that the structure of supercritical water, or high-pressure water, could trigger prebiotic synthesis and the origin of life deep in the oceans, in hydrothermal vent systems. Dimer geometries of high-pressure water may have a point of symmetry and a zero dipole moment. Consequently, simple apolar molecules found in submarine hydrothermal vent systems will dissolve in the apolar environment provided by the apolar form of the water dimer. Apolar water could be the medium which helps precursor molecules to concentrate and react more efficiently. The formation of prebiotic molecules could thus be linked to the structure of the water inside chimney nanochannels and cavities where hydrothermal piezochemistry and shock wave chemistry could occur. (letter to the editor)

  4. Climate change and the vulnerability of electricity generation to water stress in the European Union

    Science.gov (United States)

    Behrens, Paul; van Vliet, Michelle T. H.; Nanninga, Tijmen; Walsh, Brid; Rodrigues, João F. D.

    2017-08-01

    Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

  5. Dynamic Pressure of Seabed around Buried Pipelines in Shallow Water

    OpenAIRE

    Changjing Fu; Guoying Li; Tianlong Zhao; Donghai Guan

    2015-01-01

    Due to the obvious nonlinear effect caused by the shallow waves, the nonlinear wave loads have a great influence on the buried pipelines in shallow water. In order to ensure their stability, the forces on the pipelines that resulted from nonlinear waves should be considered thoroughly. Based on the Biot consolidation theory and the first-order approximate cnoidal wave theory, analytical solutions of the pore water pressure around the buried pipelines in shallow water caused by waves are first...

  6. Generational Differences in Resistance to Peer Pressure among Mexican-Origin Adolescents.

    Science.gov (United States)

    Umana-Taylor, Adriana J.; Bamaca-Gomez, Mayra Y.

    2003-01-01

    Examined whether Mexican origin adolescents who varied by generational status would differ in their resistance to peer pressure. After controlling for gender, resistance to peer pressure varied significantly by generational status. Adolescents with no familial births in the United States were significantly more resistant to peer pressure than…

  7. a Low Cost Pressure Wave Generator Using Diaphragms

    Science.gov (United States)

    Caughley, A. J.; Haywood, D. J.; Wang, C.

    2008-03-01

    The high cost of Pressure Wave Generators (PWGs) is a major barrier to the more widespread use of high-efficiency pulse tube and Stirling cryocoolers. This paper describes the development and testing of a low-cost industrial-style PWG which employs metal diaphragms. The use of diaphragms removes the need for rubbing or clearance seals, and eliminates contamination problems by hermetically separating the gas circuit and the lubricated driving mechanism. A conventional low-cost electric motor is used for power input, via a novel high-efficiency kinematic linkage. A first prototype of the diaphragm PWG produced 3.2 kW of PV power with a measured electro-acoustic efficiency of 72%. Accelerated testing predicts a diaphragm life time in excess of 40,000 hours. An additional advantage of the use of diaphragms is the ability to directly cool the gas in the compression space. This eliminates or significantly reduces the requirement for an after cooler, and further decreases the cost of the whole cryocooler system. A pulse tube cryocooler has been successfully run at Industrial Research Ltd to 59K with the diaphragm PWG and no aftercooler. Another pulse tube cryocooler with the diaphragm PWG is undergoing development at Cryomech, the results of which will be given in another presentation.

  8. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    Science.gov (United States)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  9. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    Science.gov (United States)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  10. Design of virtual SCADA simulation system for pressurized water reactor

    Science.gov (United States)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  11. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  12. Dynamic Simulations of Primary Frequency Regulation for Pressurized Water Reactor Nuclear Power Generation Units%压水堆核电机组一次调频动态仿真

    Institute of Scientific and Technical Information of China (English)

    唐贞鹏; 陈世和; 伍宇忠; 王鹏飞; 方华伟; 赵福宇

    2013-01-01

    Along with rapid development of nuclear power in China, installed capacity of nuclear power units is increased unceasingly. Due to various reasons at present the nuclear power units in China are operated in basic-load running mode and do not participate in power grid frequency regulation, and it greatly affects the control of grid frequency. In allusion to this phenomenon, taking the Daya Bay nuclear power plant as research object, the feasibility of nuclear power units participating primary frequency regulation (PFR) of power grid is researched. A nonlinear time-varying dynamic model of overall nuclear power plant composed of pressurized water reactor (PWR) nuclear power units is established, and using FORTRAN language a dynamic calculation software is programmed. Then the dynamic calculation program is compiled as dynamic link library (DLL) files and embedded into Matlab/Simulink simulation platform in the form of S-function, and then in Matlab/Simulink environment a PFR simulation platform of PWR nuclear power units is built, and dynamic simulation of PFR is performed. Simulation results show that under current design of PWR nuclear power units it is feasible for PWR nuclear power units to participate PFR in the viewpoint of economy and security.%随着我国核电的快速发展,核电装机不断增加。但是目前我国核电机组由于各种原因,始终是以基本负荷模式运行,不参与电网调频,这对电网频率的控制带来了巨大冲击。针对此问题,以大亚湾核电站为研究对象,对核电机组参与电网一次调频的可行性进行了研究。建立了压水堆核电机组全电厂的非线性时变动态模型,用 FORTRAN 语言编写了动态计算程序。然后把动态计算程序编译为动态链接库文件,并通过以S函数的方式接入Matlab/Simulink仿真平台,在 Matlab/Simulink 中进行了核电机组一次调频仿真平台搭建和一次调频动态仿真。仿真结果表明,在

  13. Efficient Electrochemical Hydrogen Peroxide Generation in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical cell is proposed for the efficient generation of 3% hydrogen peroxide (H2O2) in pure water using only power, oxygen and water. H2O2 is an...

  14. The inner containment of an EPR trademark pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Dirk; Krumb, Christian; Wienand, Burkhard [AREVA GmbH, Offenbach (Germany)

    2014-08-15

    On February 12, 2014 the containment pressure and subsequent leak tightness tests on the containment of the Finnish Olkiluoto 3 EPR trademark reactor building were completed successfully. The containment of an EPR trademark pressurized water reactor consists of an outer containment to protect the reactor building against external hazards (such as airplane crash) and of an inner containment that is subjected to internal overpressure and high temperature in case of internal accidents. The current paper gives an overview of the containment structure, the design criteria, the validation by analyses and experiments and the containment pressure test.

  15. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  16. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  17. Water pressure and ground vibrations induced by water guns at a backwater pond on the Illinois River near Morris, Illinois

    Science.gov (United States)

    Koebel, Carolyn M.; Egly, Rachel M.

    2016-09-27

    Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth

  18. Virtual industrial water usage and wastewater generation in the Middle East/North African region

    Directory of Open Access Journals (Sweden)

    S. R. Sakhel

    2013-01-01

    Full Text Available This study deals with the quantification of volumes of water usage, wastewater generation, virtual water export, and wastewater generation from export for eight export relevant industries present in the Middle East/North Africa (MENA. It shows that about 3400 million m3 of water is used per annum while around 793 million m3 of wastewater is generated from products that are meant for domestic consumption and export. The difference between volumes of water usage and wastewater generation is due to water evaporation or injecting underground (oil wells pressure maintenance. The wastewater volume generated from production represents a population equivalent of 15.5 million in terms of wastewater quantity and 30.4 million in terms of BOD. About 409 million m3 of virtual water flows from MENA to EU27 (resulting from export of eight commodities which is equivalent to 12.1% of the water usage of those industries and Libya is the largest virtual water exporter (about 87 million m3. Crude oil and refined petroleum products represent about 89% of the total virtual water flow, fertilizers represent around 10% and 1% remaining industries. EU27 poses the greatest indirect pressure on the Kuwaiti hydrological system where the virtual water export represents about 96% of the actual renewable water resources in this country. The Kuwaiti crude oil water use in relation to domestic water withdrawal is about 89% which is highest among MENA countries. Pollution of water bodies, in terms of BOD, due to production is very relevant for crude oil, slaughterhouses, refineries, olive oil, and tanneries while pollution due to export to EU27 is most relevant for crude oil industry and olive oil mills.

  19. Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles

    Science.gov (United States)

    2016-06-01

    presents the steps to run the programs for generation of height- and pressure -based soundings of level and layer values of meteorological variables. The...ARL-TR-7701• JUNE 2016 US Army Research Laboratory Code Description for Generation of Meteo- rological Height and Pressure Level and Layer Profiles...7701• JUNE 2016 US Army Research Laboratory Code Description for Generation of Meteo- rological Height and Pressure Level and Layer Profiles by J L

  20. Analytical and computational methodology to assess the over pressures generated by a potential catastrophic failure of a cryogenic pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, I.; Fradera, J.; Jaskiewicz, F.; Lopez, D.; Hermosa, B.; Aleman, A.; Izquierdo, J.; Buskop, J.

    2014-07-01

    Idom has participated in the risk evaluation of Safety Important Class (SIC) structures due to over pressures generated by a catastrophic failure of a cryogenic pressure vessel at ITER plant site. The evaluation implements both analytical and computational methodologies achieving consistent and robust results. (Author)

  1. Experimental study on steam-water two-phase flow frictional pressure drops in helical coils

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.

  2. Nonlinear vibration of a hemispherical dome under external water pressure

    Science.gov (United States)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  3. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  4. Iodine generator for reclaimed water purification

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H. (Inventor)

    1977-01-01

    The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser.

  5. Alkali free hydrolysis of sodium borohydride for hydrogen generation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.J.F.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Gales, L. [Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto and Instituto de Ciencias Biomedicas Abel Salazar, Largo Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Fernandes, V.R.; Rangel, C.M. [Laboratorio Nacional de Energia e Geologia - LNEG, Fuel Cells and Hydrogen Unit Estrada do Paco do Lumiar 22, 1649-038 Lisboa (Portugal)

    2010-09-15

    The present study is related with the production of hydrogen gas (H{sub 2}), at elevated pressures and with high gravimetric storage density, to supply a PEM fuel cell on-demand. To achieve this goal, solid sodium borohydride (NaBH{sub 4}) was mixed with a proper amount of a powder reused nickel-ruthenium based catalyst (Ni-Ru based/NaBH{sub 4}: 0.2 and 0.4 g/g; {approx}150 times reused) inside the bottom of a batch reactor. Then, a stoichiometric amount of pure liquid water (H{sub 2}O/NaBH{sub 4}: 2-8 mol/mol) was added and the catalyzed NaBH{sub 4} hydrolysis evolved, in the absence of an alkali inhibitor. In this way, this research work is designated alkali free hydrolysis of NaBH{sub 4} for H{sub 2} generation. This type of hydrolysis is excellent from an environmental point of view because it does not involve strongly caustic solutions. Experiments were performed in three batch reactors with internal volumes 646, 369 and 229 cm{sup 3}, and having different bottom geometries (flat and conical shapes). The H{sub 2} generated was a function of the added water and completion was achieved with H{sub 2}O/NaBH{sub 4} = 8 mol/mol. The results show that hydrogen yields and rates increase remarkably increasing both system temperature and pressure. Reactor bottom shape influences deeply H{sub 2} generation: the conical bottom shape greatly enhances the rate and practically eliminates the reaction induction time. Our system of compressed hydrogen generation up to 1.26 MPa shows 6.3 wt% and 70 kg m{sup -3}, respectively, for gravimetric and volumetric hydrogen storage capacities (materials-only basis) and therefore is a viable hydrogen storage candidate for portable applications. (author)

  6. Research on pressure control of pressurizer in pressurized water reactor nuclear power plant

    Science.gov (United States)

    Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang

    2010-07-01

    Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.

  7. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  8. Major vascular injury from high-pressure water jet.

    Science.gov (United States)

    Harvey, R L; Ashley, D A; Yates, L; Dalton, M L; Solis, M M

    1996-01-01

    High-pressure water jets are used in industry as a cleaning and cutting tool. Penetrating injuries by these devices can produce minimal external evidence of extensive internal damage. We report a literature review and the case of a limb-threatening injury to the lower extremity caused by such a device.

  9. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  10. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    Science.gov (United States)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  11. A Study on Development of Variable High Pressurizer Pressure Trip Function to Mitigate System Peak Pressure during Transients for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ung Soo; Park, Min Soo; Huh, Jae Young; Lee, Gyu Cheon [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    According to intensified regulation environment such as separate safety analysis for the reactor coolant system (RCS) and the main steam system peak pressure, strict consideration of a control system malfunction as a single failure for the safety analysis and so on, the safety margin with respect to system pressure of pressurized water reactors (PWRs) has been decreased. Also, the possibility for that the main steam system pressure may violate the acceptance criteria during the LOCV event has been raised and relevant design modifications for the main steam safety valve (MSSV) have ever been performed as a solution. In order to overcome this problem, in this work, the variable high pressurizer pressure trip (VHPPT) function has been developed and a feasibility study on the application of this trip function has been performed. The VHPPT function has been devised to trip the reactor beforehand when a sharply pressurizing transient such as the LOCV occurs and to cutoff system pressure increase, resulting in reducing the system peak pressure. In this work, the VHPPT function has been suggested and developed to trip the reactor beforehand and to cutoff system pressure increase mitigating the system peak pressure of PWRs when a sharply pressurizing transient like the LOCV occurs. The VHPPT function uses the rate-limited variable setpoint and includes the existing HPPT function.

  12. How water contributes to pressure and cold denaturation of proteins

    CERN Document Server

    Bianco, Valentino

    2015-01-01

    The mechanisms of cold- and pressure-denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  13. Next generation sequencing of oomycete communities in nursery irrigation water

    Science.gov (United States)

    Joyce Eberhart; Fumiaki Funahashi; Zachary S.L. Foster; Jennifer Parke

    2017-01-01

    Horticultural nurseries are under increasing pressure to reduce, remediate, and recycle irrigation water. A major constraint for reusing irrigation water is contamination by waterborne plant pathogenic Phytophthora and Pythium species. Current research is focused on helping plant nurseries monitor oomycete pathogens in...

  14. Study of Scaling Development on Tube Surfaces of Water Steam Loop in Steam Generator of CEFR

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lu; LIU; Fu-chen; LUO; De-kang; WU; Qiang; ZHANG; Huan-qi

    2012-01-01

    <正>The steam generator worked as pressure boundary of Na-H2O loop in China Experimental FastReactor (CEFR), which was quite important for nuclear reactor safety. Once the tubes separating the water from steam leak because of corrosion by scaling, Na-H2O reaction would lead to severe accident. So it’s critically important to study how the scaling develops on the water-steam sides.

  15. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    Science.gov (United States)

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    Three different geophysical sensor types were used to characterize the underwater pressure waves generated by the underwater firing of a seismic water gun and their suitability for establishing a pressure barrier to potentially direct or prevent the movement of the Asian carps. The sensors used to collect the seismic information were blast rated hydrophones and underwater blast sensors. Specific location information for the water guns and the sensors was obtained using either laser rangefinders or differentially corrected global positioning systems (GPS).

  16. Effect of water injection on hydrogen generation during severe accident in PWR

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; CAO Xuewu

    2009-01-01

    Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied.The analyses were carried out with different water injection rates at different core damage stages.The core can be quenched and accident progression can be terminated by water injection at the time before cohesive core debris is formed at lower core region.Hydrogen generation rate decreases with water injection into the core at the peak core temperature of 1700 K,because the core is quenched and reflooded quickly.The water injection at the peak core temperature of 1900 K,the hydrogen generation rate increases at low injection rates of the water,as the core is quenched slowly and the core remains in uncovered condition at high temperatures for a longer time than the situation of high injection rate.At peak core temperature of 2100-2300 K,the Hydrogen generation rate increases by water injection because of the steam serving to the high temperature steam-starved core.Hydrogen generation rate increases significantly after water injection into the core at peak core temperature of 2500 K because of the steam serving to the relocating Zr-U-O mixture.Almost no hydrogen generation can be seen in base case after formation of the molten pool at the lower core region.However,hydrogen is generated if water is injected into the molten pool,because steam serves to the crust supporting the molten pool.Reactor coolant system (RCS) depressurization by opening power operated relief valves has important effect on hydrogen generation.Special attention should be paid to hydrogen generation enhancement caused by RCS depressurization.

  17. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  18. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  19. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  20. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, H.; Tsuji, H.; Hirano, N.; Ishihara, H.; Katoh, Y.; Yamada, H. (Toyama Medical and Pharmaceutical Univ. (Japan))

    1989-11-01

    The behavior of water in the intervertebral disc of pig tail and its physiologic and biomechanical properties were investigated in relation to compression load. The water content, chemical composition, and swelling pressure in the intervertebral disc were measured, and the mechanism of the generation of the swelling pressure in relation to compression load stress was studied. The swelling pressure, through regulation of the water content of the disc and the resistance of the external load, differs with the region of the intervertebral disc. In the nucleus pulposus and the inner layer of the anulus fibrosus, the swelling pressure rises in proportion to the load, but few changes occur in the outer layer of the anulus fibrosus, and the constant pressure environment is thus maintained. The tritiated water (3H2O) uptake of the disc under various loads was measured. The molar partition coefficient of tritiated water is almost equal to 1 even under a compression load, which suggests that water is freely exchangeable. The diffusion of 3H2O in the intervertebral disc was traced using two pathway models: the perianular route and the end-plate route. The diffusion of water in the unloaded disc for both uptake and washout was about 2 to 3 times larger in the perianular route than in the end-plate route. Under load, the water diffusion was inhibited in both pathways. The relation between the load and displacement revealed viscoelastic properties indicating creep and stress relaxation. Young's modulus and the stiffness increased with a rise in load speed.

  1. Fatal Penetrating Injuries Sustained by High-pressure Water Jet Unit.

    Science.gov (United States)

    Radojevic, Nemanja; Radnic, Bojana; Curovic, Ivana

    2015-11-01

    The high-pressure water jet unit is a generator of frequent burst of water jets. The water jet reaches very high speeds and is able to cause wounds similar to those of high-velocity projectiles. In the presented case, unusual fatal injuries sustained by water jet are presented. Operating with the unit, an untrained worker accidentally activated a high-pressure water jet unit, and the extremely high pressure of water liberated the jet unit from his hand and whirled it around him. A jet stream of water ran across his body and caused fatal penetrating injuries in the femoral region. The edges of the wound were mainly sharp with contusion rings on the skin beyond the edges. Exploring the inside of the canals during the autopsy, the left femoral artery and vein were found to be completely transected. The resemblance to a firearm entry wound and the severity of the internal injury make it a noteworthy entity. © 2015 American Academy of Forensic Sciences.

  2. Vibration pore water pressure characteristics of saturated fine sand under partially drained condition

    Institute of Scientific and Technical Information of China (English)

    王炳辉; 陈国兴

    2008-01-01

    Vibration pore water pressure characteristics of saturated fine sand under partially drained condition were investigated through stress-controlled cyclic triaxial tests employed varied fine content of samples and loading frequency. In order to simulate the partially drained condition, one-way drainage for sample was implemented when cyclic loading was applied. The results show that the vibration pore water pressure’s response leads the axial stress and axial strain responses, and is lagged behind or simultaneous with axial strain-rate’s response for all samples in this research. In addition, the satisfactory linear relationship between vibration pore water pressure amplitude and axial strain-rate amplitude is also obtained. It means that the direct cause of vibration pore water pressure generation under partially drained conditions is not the axial stress or axial strain but the axial strain-rate. The lag-phase between pore water pressure and axial strain-rate increases with the increase of the fine content or the loading frequency.

  3. Experimental study of water effects on gas desorption during high-pressure water injection

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hua; LIU Xian-xin; BI Ye-wu; PU Wen-long

    2011-01-01

    For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action,an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion.The law of water effect on gas desorption was obtained after water invasion through experiment for the first time.The results show that water's later invasion not only can make the quantity of gas desorption greatly reduced,but also can make gas desorption end early.Therefore,when evaluating the applications of high-pressure water injection to increase gas extraction efficiency,we should take water damaging effects on gas desorption into account.

  4. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    OpenAIRE

    2009-01-01

    A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS), which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (S...

  5. High Pressure Oxygen Generation for Future Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is the development of a cathode feed electrolysis cell stack capable of generating 3600 psia oxygen at a relevant scale for future...

  6. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    Energy Technology Data Exchange (ETDEWEB)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    2001-07-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 {approx} 10{sup -V} at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  7. System for water level measurement based on pressure transducer

    Science.gov (United States)

    Paczesny, Daniel; Marzecki, Michał; Woyke, Michał; Tarapata, Grzegorz

    2016-09-01

    The paper reports system for water level measurement, which is designed to be used for measuring liquid levels in the tanks of an autonomous industrial cleaning robot. The selected method of measurement utilized by the designed system is based on pressure measurement. Such system is insensitive on vibrations, foams presence and liquid impurities. The influences of variable pressure on the measurements were eliminated by utilizing the differential method and as well as the system design. The system is capable of measuring water level in tanks up to 400 mm of height with accuracy of about 2,5%. The system was tested in a container during filling and emptying with various liquids. Performed tests exhibited the linearity of the sensor characteristic and the lack of hysteresis. Obtained sensitivity of the sensor prototype was approximately 6,2 mV/mm H2O.

  8. The effects of pulse pressure from seismic water gun technology on Northern Pike

    Science.gov (United States)

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  9. Molecular dynamics of water at high temperatures and pressures

    Science.gov (United States)

    Brodholt, John; Wood, Bernard

    1990-09-01

    There are currently no precise P-V-T data for water at pressures above 8.9 kbars and temperatures above 900°C. Many petrological processes in the lower crust and upper mantle take place under more extreme conditions, however and petrologists commonly rely on empirical equations of state such as the modified Redlich-Kwong equation (MRK) to extrapolate the low pressure data. In this study we have taken an alternative approach and attempted to simulate the P-V-T properties of water using molecular dynamics. The TIP4P intermolecular potential for H 2O ( JORGENSEN et al., 1983) has had considerable success predicting the properties of water at low temperatures and pressures up to 10 kbar ( MADURA et al., 1988). We have extended its application by making molecular dynamics (MD) simulations at a density of 1.0 g/cc from 300 to 2300 K and 0.5 to 40 kbars. The results agree with the P-V-T data of BURNHAM et al. (1969) (up to 10 kbars) with an average error of under 2%. This is a much better concordance than is obtained with any of the currently used versions of MRK. At 300 kbars and 2000 K the MD simulations predict densities within 8% of those obtained in the shock wave experiments of KORMER (1968). This is a very good agreement given the fact that water ionizes to some extent at high pressures ( MITCHELL and NELLIS, 1982) and we have made no provisions for this effect. We conclude that molecular dynamics simulations provide the possibility of estimating P-V-T properties in the upper mantle P-T regime with very good accuracy.

  10. Molecular cobalt pentapyridine catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Sun, Yujie

    2013-11-05

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition including the moiety of the general formula. [(PY5Me.sub.2)CoL].sup.2+, where L can be H.sub.2O, OH.sup.-, a halide, alcohol, ether, amine, and the like. In embodiments of the invention, water, such as tap water or sea water can be subject to low electric potentials, with the result being, among other things, the generation of hydrogen.

  11. Entropy and Exergy Analysis of a Heat Recovery Vapor Generator for Ammonia-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Kyoung Hoon Kim

    2014-04-01

    Full Text Available Recently power generation systems using ammonia-water binary mixtures as a working fluid have been attracting much attention for their efficient conversion of low-grade heat sources into useful energy forms. This paper presents the First and Second Law thermodynamic analysis for a heat recovery vapor generator (HRVG of ammonia-water mixtures when the heat source is low-temperature energy in the form of sensible heat. In the analysis, key parameters such as ammonia mass concentration and pressure of the binary mixture are studied to investigate their effects on the system performance, including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the pressure of the mixture have significant effects on the system performance of the HRVG.

  12. Exploring glacier dynamics with subglacial water pressure pulses: Evidence for self-organized criticality?

    Science.gov (United States)

    Kavanaugh, J. L.

    2009-03-01

    In order to determine whether brief excursions, or "pulses," in subglacial water pressure inferred by Kavanaugh and Clarke (2000, 2001) occur, water pressures at the bed of Trapridge Glacier, Yukon, Canada, were recorded using an interface board that continuously monitored a pressure transducer. During the 231 day period between 16 July 2005 and 4 March 2006, more than 7000 pressure pulses were recorded, with magnitudes reaching nearly 3 times the flotation value. Comparison of the pressure pulse record with those from a number of other instruments installed in this soft-bedded glacier indicates that these pulses are generated by stress transients that compress the water within the borehole; calculations suggest that these transients are as large as 75 times the nominal driving stress. Both the magnitudes and interevent times for these pulses are well fitted by power law distributions that are remarkably similar to those exhibited by earthquakes. These similarities suggest that the ice-bed interface of a soft-bedded glacier behaves much like an earthquake fault and raises the possibility that such glaciers self-organize to a critical state. Further evidence for self-organized criticality (SOC) of soft-bedded glaciers is suggested by an examination of well-known ice dynamical properties and the rheological properties of subglacial sediments, which suggests that SOC might be a natural consequence of the rate-independent behavior of subglacial sediments.

  13. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  14. Nanoporous Membrane for Medical Grade Water Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA exploration missions to the Moon and Mars, medical grade water generation is a necessity. Adsorption filter technology has shown some promise, but requires...

  15. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    Science.gov (United States)

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-06-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.

  16. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  17. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  18. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  19. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu

    2016-10-21

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  20. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  1. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  2. Vessel-Generated Ballast Water: Gray Water Investigation

    Science.gov (United States)

    2015-09-01

    polyethylene media are placed in the aeration tank in order for bacteria to attach to them, which leads to a larger biomass concentration and greater biomass ...is lost with this method, as most ships exchange ballast water en route to their destination (Chase et al., undated). A major disadvantage is that...filtration system are a minimal footprint and relatively low use of power (RWO, 2015). Disadvantages include the cost of installation, especially if

  3. Pressure measurements on a pitching airfoil in a water channel

    Science.gov (United States)

    Conger, Rand N.; Ramaprian, B. R.

    1994-01-01

    Measurements of unsteady pressures over a symmetric NACA 0015 airfoil performing pitching maneuvers are reported. The tests were performed in an open-surface water channel specially constructed for this purpose. The design of the apparatus allowed the pressure measurements to be made to a very high degree of spatial and temporal resolution. Reynolds numbers in the range of 5.2 x 10(exp 4) to 2.2 x 10(exp 5) were studied. Although the results qualitatively agreed with earlier studies performed at similar Reynolds numbers, the magnitudes of pressure and aerodynamic forces measured were observed to be much larger than those measured in ealier pitchup studies. They were found, in fact, to be closer to those obtained in some recent high-Reynolds-number experiments. This interesting behavior, which was suspected to be caused by the relatively high freestream turbulence level in the water channel, was explored in some detail. In addition, several issues like the quasisteady and dynamic effects of the pitching process are discussed. The experimental data are all archived and are available for use as a database.

  4. Satellites and solid state electronics test concrete pressure water pipelines

    Science.gov (United States)

    Fumo, John; Worthington, Will

    2000-06-01

    Like all structures, water pressure pipelines have a finite life. Pipelines will eventually begin to fail, leaving the pipeline owner to deal with the quandary: what caused this to happen, can we prevent future failures, must we replace this structure now? The causes for pipeline failure include defects and anomalies which may occur in any phase of a pipeline's life: during the engineering, the manufacture, the construction, or the operation. Failure may simply be the result of environmental conditions or old age. In the past five years, passive acoustic emission detection technology has been adapted to concrete pressure pipelines. This method of inspection is based on the caustic emissions made by the prestressed reinforcing wire as it releases its energy. A recently patented method of using this technology relies on a series of remote, independent test stations to detect, record and time-stamp these acoustic emissions. A low-powered, high- performance embedded processor system makes use of global positioning system time signals to synchronize multiple stations. These methods are re-defining the standard of care of water pressure pipelines. This paper describes pipeline failure mechanisms and a state-of-the-art data sampling system which has been developed to evaluate pipeline structural integrity.

  5. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  6. 78 FR 56752 - Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors...

    Science.gov (United States)

    2013-09-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors... and operate integral pressurized water reactors (iPWR). This guidance applies to environmental reviews...

  7. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  8. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Matjaž Leskovar

    2016-02-01

    Full Text Available A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

  9. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  10. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  11. Lingual Propulsive Pressures across Consistencies Generated by the Anteromedian and Posteromedian Tongue by Healthy Young Adults

    Science.gov (United States)

    Gingrich, Laura L.; Stierwalt, Julie A. G.; Hageman, Carlin F.; LaPointe, Leonard L.

    2012-01-01

    Purpose: In the present study, the authors investigated lingual propulsive pressures generated in the normal swallow by the anterior and posterior lingual segments for various consistencies and maximum isometric tasks. Method: Lingual pressures for saliva, thin, and honey-thick liquid boluses were measured via the Iowa Oral Performance Instrument…

  12. Analysis of spiritual pressure of the Beat Generation in On the Road

    Institute of Scientific and Technical Information of China (English)

    刘英波

    2015-01-01

    This paper aims to make an analysis of the double spiritual pressure of the Beat Generation in On the Road. Through the analysis, it shows the readers an actual American society after the World War II, and spiritual pressures that American young people meet.

  13. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Matthew [Structural Integrity Associates, Inc.; Yin, Shengjun [ORNL; Stevens, Gary [U.S. Nuclear Regulatory Commission; Sommerville, Daniel [Structural Integrity Associates, Inc.; Palm, Nathan [Westinghouse Electric Company, Cranberry Township, PA; Heinecke, Carol [Westinghouse Electric Company, Cranberry Township, PA

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  14. Pressure-dependent water absorption cross sections for exoplanets and other atmospheres

    Science.gov (United States)

    Barton, Emma J.; Hill, C.; Yurchenko, Sergei N.; Tennyson, Jonathan; Dudaryonok, Anna S.; Lavrentieva, Nina N.

    2017-01-01

    Many atmospheres (cool stars, brown dwarfs, giant planets, extrasolar planets) are predominately composed of molecular hydrogen and helium. H216O is one of the best measured molecules in extrasolar planetary atmospheres to date and a major compound in the atmospheres of brown-dwarfs and oxygen-rich cool stars, yet the scope of experimental and theoretical studies on the pressure broadening of water vapour lines by collision with hydrogen and helium remains limited. Theoretical H2- and He-broadening parameters of water vapour lines (rotational quantum number J up to 50) are obtained for temperatures in the range 300-2000 K. Two approaches for calculation of line widths were used: (i) the averaged energy difference method and (ii) the empirical expression for J ‧ J ″ -dependence. Voigt profiles based on these widths and the BT2 line list are used to generate high resolution (Δ ν ˜ = 0.01cm-1) pressure broadened cross sections for a fixed range of temperatures and pressures between 300 and 2000 K and 0.001-10 bar. An interpolation procedure which can be used to determine cross sections at intermediate temperature and pressure is described. Pressure broadening parameters and cross sections are presented in new ExoMol format.

  15. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  16. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  17. Shielding designs for pressurized water reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Forestier, J.; Vergnaud, T.

    1986-07-01

    The efforts made by Electricite de France to reduce exposure from the two-component neutron-gamma radiation fields inside the pressurized water reactor (PWR) building are described. Most of the attention had been focused on the problem of neutron exposure relative to the problem of achieving a highly efficient confinement within the reactor cavity and the state of the art of personnel neutron dosimetry. A description of the general neutron calculation scheme that links the characteristics of the neutron fields escaping from the reactor vessel to the dose equivalent rate cartographies inside the reactor building is provided.

  18. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1980-08-01

    tests of reference steels of the NRC light water reactor, pressure vessel irradiation dosimetry program. SECURITY CLAS5IICATION 0PHiS PA6GMbn" Dfat ...multiple specimen R- curve approach; NRL emphasis was on the SSC procedure as it is being developed for hot- cell testing of irradiated materials. MULTIPLE...a second autoclave, capable of testing 50 or 100 mm (2T or 4T) thick CT or WOL specimens, was installed in a hot cell and a test was started on 2T-CT

  19. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer

    Directory of Open Access Journals (Sweden)

    Erik eBraudeau

    2014-10-01

    Full Text Available The pressure plate method is a standard method for measuring the pF curves, also called soil water retention curves, in a large soil moisture range from saturation to a dry state corresponding to a tension pressure of near 1500 kPa. However, the pressure plate can only provide discrete water retention curves represented by a dozen measured points. In contrast, the measurement of the soil water retention curves by tensiometer is direct and continuous, but limited to the range of the tensiometer reading: from saturation to near 70-80 kPa. The two methods stem from two very different concepts of measurement and the compatibility of both methods has never been demonstrated. The recently established thermodynamic formulation of the pedostructure water retention curve, will allow the compatibility of the two curves to be studied, both theoretically and experimentally. This constitutes the object of the present article. We found that the pressure plate method provides accurate measurement points of the pedostructure water retention curve h(W, conceptually the same as that accurately measured by the tensiometer. However, contrarily to what is usually thought, h is not equal to the applied air pressure on the sample, but rather, is proportional to its logarithm, in agreement with the thermodynamic theory developed in the article. The pF curve and soil water retention curve, as well as their methods of measurement are unified in a same physical theory. It is the theory of the soil medium organization (pedostructure and its interaction with water. We show also how the hydrostructural parameters of the theoretical curve equation can be estimated from any measured curve, whatever the method of measurement. An application example using published pF curves is given.

  20. Laser-driven shock experiments in pre-compressed water: Implications for magnetic field generation in Icy Giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K; Benedetti, L R; Jeanloz, R; Celliers, P M; Eggert, J H; Hicks, D G; Moon, S J; Mackinnon, A; Henry, E; Koenig, M; Benuzzi-Mounaix, A; Collins, G W

    2005-11-10

    Laser-driven shock compression of pre-compressed water (up to 1 GPa precompression) produces high-pressure, -temperature conditions in the water inducing two optical phenomena: opacity and reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semi-conductor to electronic conductor transition in water and is found at pressures above {approx}130 GPa for single-shocked samples pre-compressed to 1 GPa. This electronic conduction provides an additional contribution to the conductivity required for magnetic field generation in Icy Giant planets like Uranus and Neptune.

  1. Temporal Evolution of Water Use for Thermoelectric Generation

    Science.gov (United States)

    Reedy, R. C.; Scanlon, B. R.

    2013-12-01

    The long lifespan of power plants (30 - 50 yr) results in the current power plant fleet representing a legacy of past variations in fuel availability and costs, water availability and water rights, and advances in technologies, such as combined cycle plants, which impact trends in water consumption. The objective of this study was to reconstruct past water consumption and withdrawal of thermoelectric generation based on data on controls, including fuel types, generator technologies, and cooling systems, using Texas as a case study and comparing with the US. Fuel sources in Texas varied over time, from predominantly natural gas in the 1960s and early 1970s to coal and nuclear sources following the 1973 oil embargo and more recently to large increases in natural gas generation (85% increase 1998 - 2004) in response to hydraulic fracturing and low natural gas prices. The dominant generator technology in Texas was steam turbines until the early 1990s; however, combined cycle plants markedly increased in the late 1990s (400% increase 1998 - 2004). Proliferation of cooling ponds in Texas, mostly in the 1970s and 1980s (340% increase) reflects availability of large quantities of unappropriated surface water and increases in water rights permitting during this time and lower cost and higher cooling efficiency of ponds relative to wet cooling towers. Water consumption for thermoelectricity in Texas in 2010 totaled ~0.53 km3 (0.43 million acre feet, maf), accounting for ~4% of total state water consumption. High water withdrawals (32.3 km3, 26.2 maf) mostly reflect circulation between cooling ponds and power plants. About a third of the water withdrawals is not required for cooling and reflects circulation by idling plants being used as peaking plants. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system resulting in statewide consumption for natural gas combined cycle generators with mostly cooling towers being 60% lower

  2. High-Pressure Oxygen Generation for Outpost EVA

    Science.gov (United States)

    Jeng, Frank; Conger, Bruce; Anderson, Molly

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor, storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 meltfreeze cycles will be performed and reported in the current document.

  3. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    Science.gov (United States)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  4. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  5. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  6. Subtarget Effect on Laser Plasma Generated by Transversely Excited Atmospheric CO2 Laser at Atmospheric Gas Pressure

    Science.gov (United States)

    Kagawa, Kiichiro; Lie, Tjung Jie; Hedwig, Rinda; Abdulmajid, Syahrun Nur; Suliyanti, Maria Margaretha; Kurniawan, Hendrik

    2000-05-01

    An experimental study has been carried out on the dynamical process taking place in the laser plasma generated by Transversely Excited Atmospheric CO2 laser (100 mJ, 50 ns) irradiation of a soft sample at surrounding helium pressure of 1 atm. It is shown that the presence of a copper subtarget behind the soft sample is crucial in raising the gushing speed of the atoms to the level adequate for the generation of shock wave laser plasma even at atmospheric pressure. It is also found that the time profiles of spatially integrated emission intensity of the target’s atoms and gas atoms exhibit a characteristic dynamical process that consists of successive excitation and cooling stages even at such a high pressure, which is typical of shock wave laser plasma. It is therefore suggested that the generation of the laser plasma at atmospheric pressure is more likely due to the shock wave mechanism than to the widely known breakdown mechanism. Initial spectrochemical analysis of water from the blow off of a boiler system was also carried out, showing a detection limit of as low as 5 ppm for calcium.

  7. Second-harmonic-generation measurements on ZnSe under high pressure

    CERN Document Server

    Jin Ming Xing; Mukhtar, E; Ding Da Jun

    2002-01-01

    Second-harmonic-generation (SHG) measurements on ZnSe at high pressure, up to 7 GPa, have been reported. The zinc-blende-rock-salt transition pressure has been determined at room temperature from the SHG in ZnSe using a femtosecond laser. The pressure required to induce transformation from a zinc-blende to a rock-salt structure decreases from 11.5 to 1.07 GPa in a femtosecond laser field. SHG can be used to monitor structural changes under pressure of some materials with nonlinear optical properties.

  8. Effect of Stand-Off Distance on Impact Pressure of High Speed Water Jets

    Science.gov (United States)

    Sittiwong, Wuttichai; Seehanam, Wirapan; Pianthong, Kulachate; Matthujak, Anirut

    2010-06-01

    High speed liquid jets may be applied to jet cutting, drilling and cleaning. Recently, in the automotive industries, the spray injection pressure becomes higher and higher to enhance the fuel mixing for the improved combustion efficiency. However, the ultra high injection pressure may cause the damage to the nozzle and also the combustion chamber. In the medical application, the high speed liquid injection might be applied for the drug delivery through the skin where the needle is not required anymore. From the above mentioned application, the investigation on the impact pressure of the high speed liquid jet relative to the stand-off distant is significant. The high speed liquid jets are generated by the projectile impact driven method. The high speed projectile is launched by the horizontal single stage powder gun. The experimental study focuses on the stand-off between 1.5 cm to 6.0 cm, while the nozzle contains approximately 1.5cm3 of water in its cavity. The nozzle conical angles are 30° and 60° with the orifice diameter of 0.7 mm. The jet velocities are measured by laser beam interruptions method. The target material is the Polymethyl Methacrylate (PMMA) which the impact pressure is measured by using a piezoelectric Polyvinylidene Fluoride (PVDF) film. From the experiments, the maximum water jet velocity of 2290 m/s can be obtained from the 30° conical angle nozzle. The maximum impact pressures of nozzle conical angle of 30° and 60° are 3.4 GPa and 2.6 GPa respectively, at stand-off distance 3 cm. However, at the stand-off distance more than 3 cm, the impact pressure significantly decreases, because of aerodynamic drag, jets core break-up, and atomization of the water.

  9. Intra-abdominal pressure correlates with extracellular water content.

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    Full Text Available Secondary increase in intra-abdominal pressure (IAP may result from extra-abdominal pathology, such as massive fluid resuscitation, capillary leak or sepsis. All these conditions increase the extravascular water content. The aim of this study was to analyze the relationship between IAP and body water volume.Adult patients treated for sepsis or septic shock with acute kidney injury (AKI and patients undergoing elective pharyngolaryngeal or orthopedic surgery were enrolled. IAP was measured in the urinary bladder. Total body water (TBW, extracellular water content (ECW and volume excess (VE were measured by whole body bioimpedance. Among critically ill patients, all parameters were analyzed over three consecutive days, and parameters were evaluated perioperatively in surgical patients.One hundred twenty patients were studied. Taken together, the correlations between IAP and VE, TBW, and ECW were measured at 408 time points. In all participants, IAP strongly correlated with ECW and VE. In critically ill patients, IAP correlated with ECW and VE. In surgical patients, IAP correlated with ECW and TBW. IAP strongly correlated with ECW and VE in the mixed population. IAP also correlated with VE in critically ill patients. ROC curve analysis showed that ECW and VE might be discriminative parameters of risk for increased IAP.IAP strongly correlates with ECW.

  10. Flying blind: designing and maintaining jointed concrete pavement without monitoring pavement pressure generation

    Science.gov (United States)

    Burke, Martin P., Jr.

    2001-08-01

    The generation of longitudinal pavement pressures or growth of jointed-rigid pavement have been recognized by many engineers for at least a century. The manifestations of this pressure/growth phenomenon, in the form of progressive pavement and bridge damage, are vivid examples of its destructive potential. Yet, only a few researchers have attempted to measure the pressures generated by this phenomenon. None, to the author's knowledge, have attempted to periodically monitor pressure generation for the purpose of either determining and describing pressure generation characteristics or predicting the probability of its abrupt final and destructive manifestations. Because the pavement/growth phenomenon occurs over such a long period of time (a decade or more), it is generally unrecognized, or if recognized, it is poorly understood. Consequently, design and maintenance of jointed rigid pavement continues to be guided more by intuition and personal judgement rather than be replicated research and professional consensus. This paper provides a speculative description of the pavement pressure/growth phenomenon. It also contains an appeal to research professionals to develop instrumentation suitable to monitor generating pavement pressures. The results of such research should finally enable the transportation profession to establish suitable background so that future pavement design and maintenance will be guided so that pressure generation will be minimized and pavement and bridge function and durability will be improved. Otherwise, transportation systems will continue to experience progressive and substantial pavement and bridge damage, commensurate repair costs, and the traveling public will continue to be exposed to occasional but abrupt manifestations of its destructive potential.

  11. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  12. The Interface Conditions for Pressures at Oil-water Flood Front in the Porous Media Considering Capillary Pressure

    CERN Document Server

    Peng, Xiaolong; Du, Zhimin

    2016-01-01

    Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CPVCM). This paper has inspected it via the studying the water-oil displacement in one dimensional reservoir with considering capillary pressure but ignoring the compressibility and gravity. It is proved theoretically that the total Darcy velocity and total pressure (defined by Antoncev etc.), instead of the Darcy velocities and pressures of water and oil, are continuous at the flood front without considering the compressibility of fluid and porous media. After that, new interface conditions for the pressures and Darcy velocity of each fluid are established, which are collectively named as Jump Pressures and Velocities Conditions Model (JPVCM) because the model has shown the jump pressures and...

  13. Water generation and transport below Europa's strike-slip faults

    Science.gov (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej

    2016-12-01

    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  14. New BEV/E+E Elektronik Low-Frost-Point/High-Pressure Generator

    Science.gov (United States)

    Mitter, H.

    2015-08-01

    Currently, the humidity standard at BEV/E+E is limited in the lower frost-point range to at pressures up to 1 MPa and to at ambient pressure. The system is also mainly designed for use with pure nitrogen as the carrier gas. In recent years, there has been a demand for humidity measurements in non-air gases (NAG) in contrast to "air gases" such as nitrogen, synthetic air, and -free standard air, even at pressures up to 10 MPa and in the frost-point range down to . NAGs can be gases such as , , and gas mixtures such as natural gas. To fulfill the requirements for humidity standards—especially in the high-pressure range—and to give the opportunity to determine thermodynamic properties such as enhancement factors in different carrier gases, a new "low-frost-point/high-pressure humidity generator" has been designed and verified at BEV/E+E Elektronik. The new humidity generator is designed as a single-pass generator with a maximum standard flow of and can be operated in the two-pressure mode as well as in the single-pressure mode at pressures up to 10 MPa. The design of the saturator focussed on reliability at high pressures and on achieving sufficient saturation efficiency at temperatures down to at least . First results of verification are presented in the range of saturator temperatures from to and at pressures up to 10 MPa. High-pressure data are presented for nitrogen and methane as carrier gases.

  15. Influence of the pressure holding time on strain generation in fuel injection lines

    Energy Technology Data Exchange (ETDEWEB)

    Basara, Adis, E-mail: adis.basara@evonik.com [Process Technology and Engineering, Evonik Degussa GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang (Germany); Alt, Nicolas; Schluecker, Eberhard [Institute for Process Technology and Machinery, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstrasse 4, 91058 Erlangen (Germany)

    2011-04-15

    An influence of the pressure holding time on residual strain generation during the autofrettage process was studied experimentally for the first time in the present work. It is the state of the art that fuel injection lines are held at the autofrettage pressure for only a few seconds in an industrial production. In doing so, it is assumed that a desirable residual stress-strain pattern is generated. However, the results of the experimental investigations outlined in this work indicated that completion of the plastic deformation caused by the autofrettage process and generation of the desirable stress-strain pattern require a much longer period. As shown, a third-order polynomial equation best described the interdependence between the time required for the completion of the process, the corresponding autofrettage pressure and the generated strain state. The method presented can be used as a tool for the determination of the optimal autofrettage process parameters in industrial production of fuel injection lines.

  16. Energy generation from mixing salt water and fresh water: smart flow strategies for reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David

    2014-01-01

    Renewable energy can be generated from mixing salt water and fresh water, e.g., seawater and river water. This energy is captured in reverse electrodialysis (RED), using ion exchange membranes that are selective for positive or negative ions. This PhD thesis evaluates the current limitations and fut

  17. Analog modeling of pressurized subglacial water flow: Implications for tunnel valley formation and ice flow dynamics

    Science.gov (United States)

    Lelandais, Thomas; Ravier, Edouard; Mourgues, Régis; Pochat, Stéphane; Strzerzynski, Pierre; Bourgeois, Olivier

    2017-04-01

    Tunnel valleys are elongated and overdeepened depressions up to hundreds of kilometers long, several kilometers wide and hundreds of meters deep, found in formerly glaciated areas. These drainage features are interpreted as the result of subglacial meltwater erosion beneath ice sheets and constitute a major component of the subglacial drainage system. Although tunnel valleys have been described worldwide in the past decades, their formation is still a matter of debate. Here, we present an innovative experimental approach simulating pressurized water flow in a subglacial environment in order to study the erosional processes occurring at the ice-bed interface. We use a sandbox partially covered by a circular, viscous and transparent lid (silicon putty), simulating an impermeable ice cap. Punctual injection of pressurized water in the substratum at the center of the lid simulates meltwater production beneath the ice cap. Surface images collected by six synchronized cameras allow to monitor the evolution of the experiment through time, using photogrammetry methods and DEM generation. UV markers placed in the silicon are used to follow the silicon flow during the drainage of water at the substratum-lid interface, and give the unique opportunity to simultaneously follow the formation of tunnel valleys and the evolution of ice dynamics. When the water pressure is low, groundwater circulates within the substratum only and no drainage landforms appear at the lid-substratum interface. By contrast, when the water pressure exceeds a threshold that is larger than the sum of glaciostatic and lithostatic pressures, additional water circulation occurs at the lid-substratum interface and drainage landforms develop from the lid margin. These landforms share numerous morphological criteria with tunnel valleys such as undulating longitudinal profiles, U-shaped cross-sectional profiles with flat floors, constant widths and abrupt flanks. Continuous generation of DEMs and flow velocity

  18. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure.

    Science.gov (United States)

    Noel, Stéphanie; Billo Bah, Boubacar

    2009-01-01

    Pollution of water resources (surface waters and ground waters) by pesticide uses is one of the key point of the European policy with the implementation of the Water Frame Work Directive (2000/60/EC) and the thematic Strategy on the Sustainable use of pesticides. According to this legislation, the Member States must initiate measures to limit environmental and toxicological effects caused by pesticide uses. The Agricultural Research Centre of Wallonia (CRA-W) emphasized the need of a tool for spatial risk analysis and develOPs it within the framework of PESTEAUX project. The originality of the approach proposed by the CRA-W is to generate maps to identify the risk of pollution at locale scale (agricultural parcel). The risk will be assessed according to the study of different factors, grouped under 3 data's layers: polluting pressure, vulnerability of the physical environment (soil) and meteorological data. This approach is directly based on the risk's definition which takes into account the polluting pressure, linked to the human activities, and the vulnerability of the soil, defined by factors of physical environment which characterize the water flow in the parcel. Moreover, meteorological data influence the intensity and likelihood flow of water, and indirectly pesticide by leaching or runoff. The PESTEAUX's approach to study the pollution is based on the model "source-vector-target". The source is the polluting pressure, in other words, the pesticides which could reach the targets. The main vector is the water which vehicles the pesticide on and trough the soil until the target which are the surface waters or ground waters. In this paper we introduce the factors contributing to the polluting pressure. These factors are linking to the human activities and more precisely, to the pesticide uses. The factors considered have an influence on pesticide's transport by water (in its solid state or in dissolved state by leaching, run-off, or erosion) but also on a set of

  19. An approach to determine pressure profile generated by compression bandage using quasi-linear viscoelastic model.

    Science.gov (United States)

    Kumar, Bipin; Das, Apurba; Alagirusamy, R

    2012-09-01

    Understanding the stress relaxation behavior of the compression bandage could be very useful in determining the behavior of the interface pressure exerted by the bandage on a limb during the course of the compression treatment. There has been no comprehensive study in the literature to investigate the pressure profile (interface pressure with time) generated by a compression bandage when applied at different levels of strain. The present study attempts to describe the pressure profile, with the use of a quasi-linear viscoelastic model, generated by a compression bandage during compression therapy. The quasi-linear viscoelastic (QLV) theory proposed by Fung (Fung, 1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker, eds., Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207). was used to model the nonlinear time- and history-dependent relaxation behavior of the bandage using the ramp strain approach. The regression analysis was done to find the correlation between the pressure profile and the relaxation behavior of the bandage. The parameters of the QLV model, describing the relaxation behavior of the bandage, were used to determine the pressure profile generated by the bandage at different levels of strain. The relaxation behaviors of the bandage at different levels of strain were well described by the QLV model parameters. A high correlation coefficient (nearly 0.98) shows a good correlation of the pressure profile with the stress relaxation behavior of the bandage.The prediction of the pressure profile using the QLV model parameters were in agreement with the experimental data. The pressure profile generated by a compression bandage could be predicted using the QLV model describing the nonlinear relaxation behavior of the bandage. This new application of the QLV theory helps in evaluating the bandage performance during compression therapy as scientific wound

  20. Influence of water conductivity on the efficiency and the reproducibility of electrohydraulic shock wave generation.

    Science.gov (United States)

    Cathignol, D; Mestas, J L; Gomez, F; Lenz, P

    1991-01-01

    In an electrohydraulic generator, two underwater metal electrodes are connected with a capacitor charged to a high voltage. When the circuit is switched on, a plasma is generated reaching temperatures of thousands of K, resulting in a compressive pressure pulse. The formation of the plasma is a nonreproducible phenomenon inducing great variations of the pressure pulse. When the electrodes are immersed in an electrolyte instead of degassed water, the conditions of electrical discharge are dramatically modified. The latency time and the amplitude of the oscillations of the discharge current decrease as the conductivity of the electrolyte increases. For a conductivity of 7 omega.cm, there is no latency, and the critically damped discharge is achieved. The expanding pressure wave is increased by 10%, and the mean peak pressure value over 120 shocks at the second focus after focalization is increased by 50%. The relative standard deviation of the pressure value at the second focus is only 5%, while it is about 30% in ordinary water. The fragmentation efficiency is considerably increased because total fragmentation is obtained in 220 shocks instead of 450 shocks in ordinary water when standard stones are used, and in 131 shocks instead of 304 shocks when gallstones are used. Last, we show that the wear of the electrodes is reduced by a factor 8 when electrolyte is used. The improvement is supposed to have two causes: First, the energy is delivered into the medium in a shorter time, and, second, the center of the shock wave is always located at the same place. The decreased wear should make it possible to treat a much greater number of patients without changing electrodes, and the enhancement of the pressure should increase the efficiency of the fragmentation of the gallstones without aggravating the patient's pain.

  1. The generation of oxygen radicals after drinking of oxygenated water.

    Science.gov (United States)

    Schoenberg, M H; Hierl, T C; Zhao, J; Wohlgemuth, N; Nilsson, U A

    2002-03-28

    It has been speculated whether ingestion of oxygenated water can lead to an enhanced generation of oxygen radicals. The purpose of three prospective randomized blinded clinical studies was therefore to measure if, when and at which oxygen content in the water,drinking of oxygenated water induces the generation of radicals. Moreover in the fourth prospective,randomized, blinded study possible longterm effects of drinking oxygenated water were examined. Altogether 66 volunteers were drinking 300 ml oxygenated or tap water within 15 minutes. Before drinking, altogether 15 ml of blood from the antecubital vein was collected for determination of ascorbyl radicals with ESR, routine laboratory data (hemoglobin, erythrocytes, hematocrit, leukocytes, thrombocytes, uric acid) and the vitamins A,C,E by HPLC. After drinking the ascorbyl radical measurements were repeated from blood of the antecubital vein. In the longterm study ( fourth study) the volunteers had to undergo the same procedure, as described above, at day 1 and day 21. In the meantime they were drinking per day three times 300 ml either oxygenated water or tap water. All subjects exhibited normal vitamin levels in all three studies. Concommitantly in the fourth study there was no statistically relevant alteration of vitamin concentrations during the observation period of three weeks in the verum and placebo-group. 30 minutes after drinking oxygenated water the concentration of ascorbyl radicals increased significantly by median 42 % from median 48 to 65 nmol/l. This increase of ascorbyl radicals after 30 minutes was reproducible in all studies. The levels of ascorbyl radicals remained elevated for 60 minutes after drinking and returned to normal after 120 minutes. This increase was independent of the oxygen concentration in the water, beginning at 30 mg oxygen/l. Water containing 15 mg oxygen/l did not lead to an enhanced radical formation. Longterm consumption of oxygenated water attenuated the ascorbyl radical

  2. Low pressure water vapour discharge as a light source: II. Electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Artamonova, E; Artamonova, T; Beliaeva, A; Khodorkovskii, M; Melnikov, A; Milenin, V; Murashov, S; Rakcheeva, L; Timofeev, N [Saint Petersburg State University, Ulyanovskaya 3, Petrodvoretz, Saint Petersburg 198504 (Russian Federation); Michael, D [General Electric Global Research Center, One Research Circle (Bldg K1 Rm 4B31A), Niskayuna, NY 12309 (United States); Zissis, G, E-mail: timofeev@pobox.spbu.r, E-mail: michael@crd.ge.co, E-mail: georges.zissis@laplace.univ-tlse.f [Universite Toulouse 3-Paul Sabatier, LAPLACE Building 3R2, 118 rte de Narbonne, F-31062 Toulouse Cedex 9 (France)

    2009-09-07

    The electric field strength, electrode fall voltage, light emission characteristics and efficiency of a (Ar + H{sub 2}O) dc discharge as functions of water vapour content, argon pressure and electric current are presented. The data show that the main processes of 306.4 nm OH band generation are (1) a collision between an excited argon atom and a water molecule with simultaneous excitation of OH into the A {sup 2}{Sigma}{sup +} state and (2) electron excitation of a ground state hydroxyl molecule produced by a quenching process from a water molecule. Electric field strength measurements make it possible to conclude that the light production efficiency of the plasma under study can reach 35 lm W{sup -1}. It is possible, with these data, to propose a model of the plasma in question having reasonable accordance with the experiment and show the way to further increase the efficiency.

  3. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-06-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in the GAMS language from a hydraulic model in the EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in the EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for a variety of requirements.

  4. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-02-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in GAMS language from a hydraulic model in EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for variety of requirements.

  5. Materials for next-generation desalination and water purification membranes

    Science.gov (United States)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  6. A Test Model of Water Pressures within a Fault in Rock Slope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function, which is similar to the theoretical model suggested by Hoek. Factors affecting water pressures are water level in tension crack, dip angle of fault, the height of filling materials and thickness of fault zone in sequence.

  7. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  8. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    Energy Technology Data Exchange (ETDEWEB)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  9. Upper internals arrangement for a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Norman R; Altman, David A; Yu, Ching; Rex, James A; Forsyth, David R

    2013-07-09

    In a pressurized water reactor with all of the in-core instrumentation gaining access to the core through the reactor head, each fuel assembly in which the instrumentation is introduced is aligned with an upper internals instrumentation guide-way. In the elevations above the upper internals upper support assembly, the instrumentation is protected and aligned by upper mounted instrumentation columns that are part of the instrumentation guide-way and extend from the upper support assembly towards the reactor head in hue with a corresponding head penetration. The upper mounted instrumentation columns are supported laterally at one end by an upper guide tube and at the other end by the upper support plate.

  10. Experimental study of critical flow of water at supercritical pressure

    Institute of Scientific and Technical Information of China (English)

    Yuzhou CHEN; Chunsheng YANG; Shuming ZHANG; Minfu ZHAO; Kaiwen DU; Xu CHENG

    2009-01-01

    Experimental studies of the critical flow of water were conducted under steady-state conditions with a nozzle 1.41mm in diameter and 4.35 mm in length, covering the inlet pressure range of 22.1-26.8 MPa and inlet temperature range of 38^74°C. The parametric trend of the flow rate was investigated, and the experimental data were compared with the predictions of the homogeneous equilibrium model, the Bernoulli correlation, and the models used in the reactor safety analysis code RELAP5/ MOD3.3. It is concluded that in the near or beyond pseudo-critical region, thermal-dynamic equilibrium is dominant, and at a lower temperature, choking does not occur. The onset of the choking condition is not predicted reasonably by the RELAP5 code.

  11. Aging assessment of PWR (Pressurized Water Reactor) Auxiliary Feedwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D.A.

    1988-01-01

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab.

  12. A numerical study on high-pressure water-spray cleaning for CSP reflectors

    Science.gov (United States)

    Anglani, Francesco; Barry, John; Dekkers, Willem

    2016-05-01

    Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of

  13. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    Science.gov (United States)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  14. Major influencing factors of water flooding in abnormally high-pressure carbonate reservoir

    Science.gov (United States)

    Qingying, Hou; Kaiyuan, Chen; Zifei, Fan; Libing, Fu; Yefei, Chen

    2017-01-01

    The higher pressure coefficient is the major characteristics of the abnormal high pressure carbonate reservoirs, which the pressure coefficient generally exceeds 1.2 and the initial formation pressure is higher than normal sandstone reservoirs. Due to the large pressure difference between initial formation and saturated pressure, oil wells are capable to production with high flow rate by the natural energy at early production stage. When the formation pressure drops to the saturation pressure, the water or gas is usually injected to stabilize the well productivity and sustain the formation pressure. Based on the characteristics of Kenkiak oilfield, a typical abnormal high pressure carbonate reservoir, a well group model is designed to simulate and analyze the influence factors on water flooding. The conclusion is that permeability, interlayer difference and reserve abundance are the main three factors on the water flooding development in these reservoirs.

  15. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Poznań, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was

  16. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Poznań, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was develope

  17. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  18. Effects of flow amplitudes on intraprong pressures during bubble versus ventilator-generated nasal continuous positive airway pressure in premature infants.

    Science.gov (United States)

    Kahn, Doron J; Habib, Robert H; Courtney, Sherry E

    2008-11-01

    The goal were to characterize the flow dependence of bubble nasal continuous positive airway pressure delivery in a cohort of preterm infants and to compare the actual (delivered) intraprong continuous positive airway pressure with the intended (set) nasal continuous positive airway pressure for both ventilator-generated nasal continuous positive airway pressure and bubble nasal continuous positive airway pressure delivery. A range of set values and constant flow rates were studied in the same preterm infants. For 12 premature infants of pressures were measured at 3 increasing flow settings, repeated for set nasal continuous positive airway pressures (or desired immersion depths) of 4 and 6 cm H(2)O. Next, intraprong pressures were measured at bubble nasal continuous positive airway pressure expiratory tubing submersion depths and ventilator-generated nasal continuous positive airway pressure set expiratory pressures of 2, 3, 4, 5, and 7 cm H(2)O while the flow rate was held constant. Actual (delivered) intraprong pressure during bubble nasal continuous positive airway pressure delivery was highly flow dependent and increased as the flow rate increased. During ventilator-generated nasal continuous positive airway pressure delivery, actual pressure at the nasal prongs closely approximated the pressure set at the ventilator. During bubble nasal continuous positive airway pressure delivery at constant flow rate, the average delivered prong pressure was 1.3 cm H(2)O (range: 0.5-2.2 cm H(2)O) higher than that set through submersion of the expiratory tubing, and the relative difference between the set and actual pressures increased at lesser immersion depths. Prong pressure during bubble nasal continuous positive airway pressure delivery is highly variable and depends on the interaction of submersion depth and flow amplitudes.

  19. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Institute of Scientific and Technical Information of China (English)

    Yong-liang ZHANG; Ming-fei MIAO; Ji-ming MA

    2010-01-01

    This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock,and a valve positioned at the downstream end of the penstock.Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure.The analytical results were then compared with numerical ones obtained using the method of characteristics.There is agreement between them.The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  20. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Directory of Open Access Journals (Sweden)

    Yong-liang ZHANG

    2010-06-01

    Full Text Available This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  1. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.

    Science.gov (United States)

    Christoforidis, Theodore; Werner, Erik M; Hui, Elliot E; Eddington, David T

    2016-08-01

    Microfluidic devices with integrated pneumatic logic enable automated fluid handling without requiring external control instruments. These chips offer the additional advantage that they may be powered by vacuum and do not require an electricity source. This work describes a microfluidic converging-diverging (CD) nozzle optimized to generate vacuum at low input pressures, making it suitable for microfluidic applications including powering integrated pneumatic logic. It was found that efficient vacuum pressure was generated for high aspect ratios of the CD nozzle constriction (or throat) width to height and diverging angle of 3.6(o). In specific, for an inlet pressure of 42.2 psia (290.8 kPa) and a volumetric flow rate of approximately 1700 sccm, a vacuum pressure of 8.03 psia (55.3 kPa) was generated. To demonstrate the capabilities of our converging - diverging nozzle device, we connected it to a vacuum powered peristaltic pump driven by integrated pneumatic logic and obtained tunable flow rates from 0 to 130 μL/min. Finally, we demonstrate a proof of concept system for use where electricity and vacuum pressure are not readily available by powering a CD nozzle with a bicycle tire pump and pressure regulator. This system is able to produce a stable vacuum sufficient to drive pneumatic logic, and could be applied to power automated microfluidics in limited resource settings.

  2. Modified femoral pressuriser generates a longer lasting high pressure during cement pressurisation

    Directory of Open Access Journals (Sweden)

    Kjellson Fred

    2011-10-01

    Full Text Available Abstract Background The strength of the cement-bone interface in hip arthroplasty is strongly related to cement penetration into the bone. A modified femoral pressuriser has been investigated, designed for closer fitting into the femoral opening to generate higher and more constant cement pressure compared to a commercial (conventional design. Methods Femoral cementation was performed in 10 Sawbones® models, five using the modified pressuriser and five using a current commercial pressuriser as a control. Pressure during the cementation was recorded at the proximal and distal regions of the femoral implant. The peak pressure and the pressure-time curves were analysed by student's t-test and Two way ANOVA. Results The modified pressuriser showed significantly and substantially longer durations at higher cementation pressures and slightly, although not statistically, higher peak pressures compared to the conventional pressuriser. The modified pressuriser also produced more controlled cement leakage. Conclusion The modified pressuriser generates longer higher pressure durations in the femoral model. This design modification may enhance cement penetration into cancellous bone and could improve femoral cementation.

  3. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  4. Simulations of dissociation constants in low pressure supercritical water

    Science.gov (United States)

    Halstead, S. J.; An, P.; Zhang, S.

    2014-09-01

    This article reports molecular dynamics simulations of the dissociation of hydrochloric acid and sodium hydroxide in water from ambient to supercritical temperatures at a fixed pressure of 250 atm. Corrosion of reaction vessels is known to be a serious problem of supercritical water, and acid/base dissociation can be a significant contributing factor to this. The SPC/e model was used in conjunction with solute models determined from density functional calculations and OPLSAA Lennard-Jones parameters. Radial distribution functions were calculated, and these show a significant increase in solute-solvent ordering upon forming the product ions at all temperatures. For both dissociations, rapidly decreasing entropy of reaction was found to be the controlling thermodynamic factor, and this is thought to arise due to the ions produced from dissociation maintaining a relatively high density and ordered solvation shell compared to the reactants. The change in entropy of reaction reaches a minimum at the critical temperature. The values of pKa and pKb were calculated and both increased with temperature, in qualitative agreement with other work, until a maximum value at 748 K, after which there was a slight decrease.

  5. Using Water Energy for Electrical Energy Conservation by Building of Micro hydroelectric Generators on The Water Pipelines That Depend on The Difference in Elevation

    Directory of Open Access Journals (Sweden)

    Mohammed Taih Gatte

    2011-12-01

    Full Text Available In this research we study the elevations of cities and the water resources specially at the dams reservoirs and the distance between them(dams & cities, we use the Google Earth program to determine these elevations and calculate the difference between the average level (elevation of water at the dam and the average level of cities, which we want to supply it by water, in order to save electrical power by using the energy of supplied water through pipe line from dams to the cities, the pressure of supplied water must be calculated from the difference in elevations(head. The saving of energy can be achieved by two ways. The first is the energy saving by reduce the consumed power in the pumping water from river, which is used for different purposes. The second is the hydroelectric power generated by establishing a micro hydroelectric generator on the pipe line of the water supplied.

  6. An Analytic Solution to Well-water Level Changes under Barometric Pressure

    Institute of Scientific and Technical Information of China (English)

    Liu Chunping; Deng Liang; Liao Xin; Wan Fei; Shi Yun

    2011-01-01

    Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside and outside the borehole wall under

  7. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    Science.gov (United States)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  8. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    OpenAIRE

    Colas, Dorian,; Ferret, Antoine; Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience; A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focuse...

  9. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  10. Gas-temperature-dependent generation of cryoplasma jet under atmospheric pressure

    Science.gov (United States)

    Noma, Yuri; Choi, Jai Hyuk; Tomai, Takaaki; Terashima, Kazuo

    2008-09-01

    Plasma with a gas temperature below room temperature is not yet fully understood although it is expected to be an attractive tool for applications to material processing. In the present work, gas-temperature-dependent generation of a cryoplasma jet was studied. So far, we have generated a helium cryoplasma jet (296-5K) under atmospheric pressure. At gas temperatures below 20K, the helium excimer, He2, was observed clearly from by optical emission spectroscopy.

  11. Recent developments in solar H2 generation from water splitting

    Indian Academy of Sciences (India)

    Sivaraman Rajaambal; Kumarsrinivasan Sivaranjani; Chinnakonda S Gopinath

    2015-01-01

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the ‘Holy Grail’ problem of science. In the present mini-review, some of the critical strategies of semiconductor photocatalysis are focused with the aim of enumerating underlying critical factors such as visible light harvesting, charge carrier separation, conduction and their utilization that determine the quantum efficiency. We attempted to bring out the essential requirements expected in a material for facile water splitting by explaining important and new designs contributed in the last decade. The newly emerged designs in semiconductor architecture employing nanoscience towards meeting the critical factors of facile photocatalysis are elucidated. The importance of band gap engineering is emphasized to utilize potential wide band gap semiconductors. Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency by its multiple exciton generation features. A list of drawbacks and issues that hamper the much needed breakthrough in photocatalysis of water splitting is provided to invite attention to address them and move towards sustainable water splitting.

  12. Water pumps generate power efficiently; Wasserpumpen erzeugen wirtschaftlich Strom

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, Bryan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2010-09-15

    The water supply utility of Baden-Wuerttemberg and Bavaria (Zweckverband Landeswasserversorgung - ZV-LW) intended to construct another power generation stage in the Geislingen station. A longitudinally divided, single-stage spiral casing pump with a capacity of 600 kW was used as turbine; the investment cost and installation cost was only one fourth of the cost of a Francis turbine. Further, it is an advantage that the pump can also be used conventionally, i.e. in pump operation, to support drinking water transport. (orig.)

  13. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  14. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...

  15. Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils

    Directory of Open Access Journals (Sweden)

    Shuangmeng Zhai

    2011-01-01

    Full Text Available The tried and tested multianvil apparatus has been widely used for high-pressure and high-temperature experimental studies in Earth science. As a result, many important results have been obtained for a better understanding of the components, structure and evolution of the Earth. Due to the strength limitation of materials, the attainable multianvil pressure is generally limited to about 30 GPa (corresponding to about 900 km of the depth in the Earth when tungsten carbide cubes are adopted as second-stage anvils. Compared with tungsten carbide, the sintered diamond is a much harder material. The sintered diamond cubes were introduced as second-stage anvils in a 6–8 type multianvil apparatus in the 1980s, which largely enhanced the capacity of pressure generation in a large volume press. With the development of material synthesis and processing techniques, a large sintered diamond cube (14 mm is now available. Recently, maximum attainable pressures reaching higher than 90 GPa (corresponding to about 2700 km of the depth in the Earth have been generated at room temperature by adopting 14-mm sintered diamond anvils. Using this technique, a few researches have been carried out by the quenched method or combined with synchrotron radiation in situ observation. In this paper we review the properties of sintered diamond and the evolution of pressure generation using sintered diamond anvils. As-yet unsolved problems and perspectives for uses in Earth Science are also discussed.

  16. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  17. A case of quinsy following high-pressure water jet injury.

    Science.gov (United States)

    Fitzgerald, C; Oosthuizen, J C; O'Dwyer, T

    2014-06-01

    High-pressure water injuries of the oropharynx are uncommon but can cause significant injury and airway compromise when they occur. A small number of cases of high-pressure water injury of the oropharynx have been presented in the literature, detailing a range of effects and outcomes. We describe the first reported case of high-pressure water injury of the oropharynx associated with peritonsillar abscess (quinsy) requiring surgical drainage.

  18. Generation of hydrogen from photocatalytic cleavage of water

    Energy Technology Data Exchange (ETDEWEB)

    Mallinson, R.G.; Resasco, D.E.; Lobban, L.L.; Nicholas, K.M. [Univ. of Oklahoma, Norman, OK (United States)

    1998-08-01

    This paper describes the objectives, methods and early results on the US Department of Energy sponsored project to generate hydrogen from splitting of water using photocatalysts. The approach uses organometallic photosensitizers adsorbed onto platinated titania. Platinized titania is a photocatalyst for water splitting, but does not absorb sunlight in the visible range, where most of the sun`s energy is contained. Organometallic photosensitizers are synthesized, attached to platinized titania and characterized by UV-Vis spectroscopy, cyclic voltammetry, action spectra and hydrogen generation ability. Thus far, Copper, Iron and Ruthenium catalyst systems have been produced and characterized in this manner. Suitable sensitized systems that have the desirable properties have not yet been found.

  19. Water resources management in soft drink industry-water use and wastewater generation.

    Science.gov (United States)

    Ait Hsine, E; Benhammou, A; Pons, M N

    2005-12-01

    Water is used in most process industries for a wide range of applications. Processes and systems using water today are being subjected to increasingly stringent environmental regulations on effluents and there is growing demand for fresh water. These changes have increased the need for better water management and wastewater minimisation. In Morocco, water use in the food and drink industry is extensive at approximately 24 million m3 per year including 14% of drinking water in 1994. This study was conducted in a carbonate soft drink industry plant, during two years, 2001 and 2002. We have investigated the state of consumption and use of fresh water and the generation of the effluent in the factory. The aim of the study is to identify potential opportunities for reducing fresh water intake and minimising wastewater production by studying the posibility of reuse, recycling and treatment.

  20. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ...)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as required otherwise by paragraph (b) of this section. Unfired steam boilers must be fitted with an efficient... § 54.15-15. Unfired steam boilers must be constructed in accordance with this part other than when...

  1. Pharyngeal Pressure Generation during Tongue-Hold Swallows across Age Groups

    Science.gov (United States)

    Doeltgen, Sebastian H.; Macrae, Phoebe; Huckabee, Maggie-Lee

    2011-01-01

    Purpose: To compare the effects of the tongue-hold swallowing maneuver on pharyngeal pressure generation in healthy young and elderly research volunteers. Method: Sixty-eight healthy research volunteers (young, n = 34, mean age = 26.8 years, SD = 5.5; elderly, n = 34, mean age = 72.6 years, SD = 4.8; sex equally represented) performed 5…

  2. On the combined effect of moisture diffusion and cyclic pore pressure generation in asphalt concrete

    NARCIS (Netherlands)

    Varveri, A.; Scarpas, A.; Collop, A.; Erkens, S.M.J.G.

    2014-01-01

    In this paper, a new moisture conditioning protocol which attempts to distinguish the contributions of long- and short-term moisture damage, i.e. moisture diffusion and cyclic pore pressure generation, in asphalt mixtures is presented. The capability of the proposed protocol to rank various aspha

  3. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    2011-01-01

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  4. Parameter-less remote real-time control for the adjustment of pressure in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-09-01

    Full Text Available Reducing pressure in a water distribution system leads to a decrease in water leakage, decreased cracks in pipes, and consumption decreases. Pressure management includes an advanced type called remote real-time control. Here pressure control valves...

  5. Influence of temperature and pressure on quartz-water-CO₂ contact angle and CO₂-water interfacial tension.

    Science.gov (United States)

    Sarmadivaleh, Mohammad; Al-Yaseri, Ahmed Z; Iglauer, Stefan

    2015-03-01

    We measured water-CO2 contact angles on a smooth quartz surface (RMS surface roughness ∼40 nm) as a function of pressure and temperature. The advancing water contact angle θ was 0° at 0.1 MPa CO2 pressure and all temperatures tested (296-343 K); θ increased significantly with increasing pressure and temperature (θ=35° at 296 K and θ=56° at 343 K at 20 MPa). A larger θ implies less structural and residual trapping and thus lower CO2 storage capacities at higher pressures and temperatures. Furthermore we did not identify any significant influence of CO2-water equilibration on θ. Moreover, we measured the CO2-water interfacial tension γ and found that γ strongly decreased with increasing pressure up to ∼10 MPa, and then decreased with a smaller slope with further increasing pressure. γ also increased with increasing temperature.

  6. A technical learning on the Pressurized Water Nuclear Power Plants using animation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hajime [Kansai Electric Power Co., Inc., Osaka (Japan); Tomohara, Yasutaka; Kubo, Setsuo; Ninomiya, Toshiaki

    2002-01-01

    The pressurized water nuclear power generation plants tends to reduce construction of its new plant from viewpoints of recent stabilization in power demand/supply balance, development of new siting points, and so on. And, together with reducing any opportunity to experience at site, generation alternation to younger engineers without such experiences is progressing. In order to carry out technical tradition with high quality , as it is important to understand experiences of troubles and so on as valuable inheritance to apply them to actual use, it can be thought, in doubt, to be one of solving measures to prepare some learning tools applying the newest technology. The Kansai Electric Co., Ltd. Developed a CAD software using animation and 3D pictures using a personal computer which is edited some processes of technical transition on nuclear energy as a reference on a shape of CD ROM as an object from initial period of nuclear power station to present APWR. (G.K.)

  7. A Flooding Induced Station Blackout Analysis for a Pressurized Water Reactor Using the RISMC Toolkit

    Directory of Open Access Journals (Sweden)

    Diego Mandelli

    2015-01-01

    Full Text Available In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. In addition, the impact of power uprate is determined in terms of both core damage probability and safety margins.

  8. Pressure-dependent water absorption cross sections for exoplanets and other atmospheres

    CERN Document Server

    Barton, Emma J; Yurchenko, Sergei N; Tennyson, Jonathan; Dudaryonok, Anna S; Lavrentieva, Nina N

    2016-01-01

    Many atmospheres (cool stars, brown dwarfs, giant planets, extrasolar planets) are predominately composed of molecular hydrogen and helium. H$_2{}^{16}$O is one of the best measured molecules in extrasolar planetary atmospheres to date and a major compound in the atmospheres of brown-dwarfs and oxygen-rich cool stars, yet the scope of experimental and theoretical studies on the pressure broadening of water vapour lines by collision with hydrogen and helium remains limited. Theoretical H$_2$- and He-broadening parameters of water vapour lines (rotational quantum number $J$ up to 50) are obtained for temperatures in the range 300 - 2000 K. Two approaches for calculation of line widths were used: (i) the averaged energy difference method and (ii) the empirical expression for $J$\\p $J$\\pp-dependence. Voigt profiles based on these widths and the BT2 line list are used to generate high resolution ($\\Delta \\tilde{\

  9. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  10. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.

    Science.gov (United States)

    Petrie, Ryan J; Koo, Hyun; Yamada, Kenneth M

    2014-08-29

    Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.

  11. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  12. Molecular metal-Oxo catalysts for generating hydrogen from water

    Science.gov (United States)

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  13. Performance of materials in the component cooling water systems of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S.

    1993-06-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed.

  14. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    Science.gov (United States)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  15. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Soo-Yong Park

    2015-10-01

    Full Text Available Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  16. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  17. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation.

  18. Bridge Pressure Flow Scour at Clear Water Threshold Condition

    Institute of Scientific and Technical Information of China (English)

    GUO Junke; KERENYI Kornel; PAGAN-ORTIZ Jorge E; FLORA Kevin

    2009-01-01

    Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally. The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional; all the measured scour profiles can be described by two similarity equations, where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth; the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge; the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge; and the maximum scour depth decreases with increas-ing sediment size, but increases with deck inundation. The theoretical analysis shows that: bridge scour can be divided into three cases, i.e. downstream unsubmerged, partially submerged, and totally submerged. For downstream unsubmerged flows, the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied; for partially and totally submerged flows, the equilibrium maximum scour depth can be described by a scour and an inundation similarity number, which has been confirmed by experiments with two decks and two sediment sizes. For application, a design and field evaluation procedure with examples is presented, including the maximum scour depth and scour profile.

  19. Pressure-induced gelatinization of starch in excess water

    NARCIS (Netherlands)

    Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K.

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently high

  20. Pressure-induced gelatinization of starch in excess water

    NARCIS (Netherlands)

    Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K.

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently

  1. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  2. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    Science.gov (United States)

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-09-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  3. Reaction of aluminous perovskite and water at high pressure and temperature and water transport into the lower mantle

    Science.gov (United States)

    Ohira, I.; Ohtani, E.; Sakai, T.; Miyahara, M.; Hirao, N.; Ohishi, Y.; Nishijima, M.

    2012-12-01

    Water cycle is an important issue in earth science, because water can affect rheological properties and melting temperature of the mantle. It has been clarified that water can be transported to at least deep upper mantle and the transition zone (e.g., Ono, 1998). The transition zone is believed to be a water reservoir in the earth, because wadsleyite and ringwoodite which compose the transition zone can contain 1 to 3 wt.% water (Inoue et al., 1995; Kohlstedt et al., 1996). However, it has been a debated matter whether water can be transported into the lower mantle and the core. Here we report the phase relation and mineral chemistry of MgSiO3-perovskite and delta-AlOOH obtained from a combination of in-situ X-ray diffraction measurements at high-pressure and high-temperature, and chemical analyses using scanning transmission electron microscope with an EDS detector (STEM-EDS). We used MgSiO3-Al2O3-H2O gel-samples for high-temperature and high-pressure experiments at the SPring-8 BL10XU. The bulk composition of the starting gel sample was 70 mol% MgSiO3 - 30 mol% Al2O3. H2O contents of the starting gel samples were 1.5 wt.%, 6.0wt.% and 7.0 wt.%. A double sided laser heating diamond anvil cell was used for generation of high pressure and temperature. The YAG (Nd) or fiber laser was used for heating the sample. A Pt foil or powder was mixed with the sample for the absorber of the laser. In situ X-ray diffraction was conducted in the pressure and temperature ranges of 55~87 GPa and 1700~2400 K. We observed a clear coexistence of perovskite and delta-AlOOH at 68 GPa and 2000 K. The chemical analysis of the recovered sample revealed that MgSiO3-perovskite coexisting with delta-AlOOH contains 6.6±2.2 mol.% Al2O3 and delta-AlOOH phase contains about 50 mol.% MgSiO3. Our results revealed a new reaction of aluminous perovskite and water to form a mixture of alumina-depleted perovskite and Mg, Si-bearing delta-AlOOH along the mantle geotherm under the lower mantle

  4. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.

    Science.gov (United States)

    Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H

    2015-06-07

    We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

  5. Generation of shock-free pressure waves in shaped resonators by boundary driving.

    Science.gov (United States)

    Luo, C; Huang, X Y; Nguyen, N T

    2007-05-01

    Investigation of high amplitude pressure oscillations generated by boundary driving in shaped resonators has been carried out both theoretically and experimentally. In the theoretical modeling, the acoustic resonance in an axisymmetric resonator is studied by the Galerkin method. The resonator is exponentially expanded and the boundary driving is provided by a piston at one end. The pressure wave forms, amplitudes, resonance frequencies, and ratio of pressures at the two ends of the resonator are calculated for various expansion flare constants and driving strengths. These results are partially compared with those generated by shaking the resonator. They are also verified in the experiment, in which an exponentially expanded resonator is connected to a speaker box functioning as the piston. The experiment is further extended to a horn-shaped resonator with a rectangular cross section. The boundary driving in this case is generated by a circular piezoelectric disk, which forms one sidewall of the resonator cavity. The characteristics of axisymmetric resonators, such as the resonance frequency and amplitude ratio of pressures at the two ends, are observed in this low aspect ratio rectangular resonator with the sidewall driving.

  6. Active flow control of the vortex rope and pressure pulsations in a swirl generator

    Directory of Open Access Journals (Sweden)

    Ardalan Javadi

    2017-01-01

    Full Text Available The vortex rope and pressure pulsations caused by a radial pressure gradient in the conical diffuser of a swirl generator is controlled using continuous slot jets with different momentum fluxes and angles injected from the runner crown. The swirl apparatus is designed to generate flows similar to those in the different operating conditions of a Francis turbine. The study is done with numerical modelling using the hybrid URANS-LES (Unsteady Reynolds-Averaged Navier–Stokes–Large Eddy Simulation method with the rotor–stator interaction. The comprehensive studies of Javadi and Nilsson [Time-accurate numerical simulations of swirling flow with rotor–stator interaction. Flow, Turbulence and Combustion, Vol. 95, pp. 755–774], and Javadi, Bosioc, Nilsson, Muntean and Susan-Resiga [Experimental and numerical investigation of the precessing helical vortex in a conical diffuser, with rotor–stator interaction. ASME Journal of Fluids Engineering, doi:10.1115/1.4033416] are considered as the bench mark, and the capabilities of the technique is studied in the present work with the validated numerical results presented in those studies. The pressure pulsations caused by the pressure gradient generated by the swirl, present at off-design conditions, are cumbersome for hydropower structures. The investigation shows that the pressure pulsation, velocity fluctuations and the size of the vortex rope decrease when the jet is injected from the runner crown. The flow rate of the jet is less than 3% of the flow rate of the swirl generator. The momentum flux, angle of injection of the jet and the position of the slot are important factors for the effectiveness of the flow control technique.

  7. Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C; Salomon, K; Stegmann, C

    2005-01-01

    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.

  8. In vitro influence of stem surface finish and mantle conformity on pressure generation in cemented hip arthroplasty

    Science.gov (United States)

    Bartlett, Gavin E; Murray, David W; Beard, David J

    2009-01-01

    Background and purpose Under physiological loads, debonded cemented femoral stems have been shown to move within their cement mantle and generate a fluid pump that may facilitate peri-prosthetic osteolysis by pressurizing fluid and circulating wear debris. The long-term physiological loading of rough and polished tapered stems in vitro has shown differences in performance, with greater interface pressures generated by the rough stems. In this study we investigated the individual effects of stem surface finish, degree of mantle wear, and mode of loading on the stem pump mechanism. Method Rough and polished stems were loaded under different regimes in artificially worn cement mantles that permitted either 2 or 5 degrees of rotational stem movement, and the interface pressures were compared. Results The pressures generated by the rough and polished stems were similar in either type of mantle. The pattern of pressure generation in the 2-degree mantles was similar to the pressures generated by rough stems after long-term loading, but the high posterior wall pressures fell and the tip pressures increased in the 5-degree mantles. The torsional loads were principal drivers of pressure generation in all areas of the interface other than the implant tip, where axial loading predominated. Interpretation Femoral stems with rotational instability under cyclic torsional loads generate elevated interface fluid pressures and flows independently of stem surface finish. The rough surface finish is only important in creating this instability in tapered stems. PMID:19404792

  9. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Science.gov (United States)

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  10. Development of a Robust Model-Based Water Level Controller for U-Tube Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Basher, A.M.H.

    2001-09-04

    Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for the water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.

  11. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  12. Experimental study on pore pressure in rock-soil slope during reservoir water level fluctuation

    Institute of Scientific and Technical Information of China (English)

    LIU; Yuewu; CHEN; Huixin; LIU; Qingquan; GONG; Xin; ZHANG

    2005-01-01

    A test system was developed for measuring the pore pressure in porous media, and a new model was devised for the pore pressure testing in both saturated and unsaturated rock-soil. Laboratory experiments were carried out to determine the pore pressure during water level fluctuation. The variations of transient pore pressure vs. time at different locations of the simulated rock-soil system were acquired and processed, and meanwhile the deformation and failure of the model are observed. The experiment results show that whether the porous media are saturated or not, the transient pore pressure is mainly dependent on the water level fluctuation, and coupled with the variation of the stress field.

  13. Research on Properties of Woven Fabrics Treated by High Pressure Water Jet

    Institute of Scientific and Technical Information of China (English)

    黄故

    2001-01-01

    The paper introduces a new technique for the treatment of the woven fabrics. Sprayed by high pressure water jet, the appearance, handle and stiffness of the fabric are improved. Other properties of the high pressure water treated fabrics like drape coefficient, air permeability, tenacity are also presented.

  14. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  15. Study and application of a high-pressure water jet multi-functional flow test system

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  16. Experimental investigation and numerical simulation on the effect of fissure water pressure in vertical sliding surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lei; LI; Shihai; LIAN; Zhenzhong; WANG; Yuannian

    2005-01-01

    This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists.Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.

  17. A New Method for Generating Hydrogen from Water

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-Bo; LI Ke-Xin; LI Hong; FAN Yu-Zun; YU Zhe-Xun; LI Dong-Mei; LUO Yan-Hong; CHEN Li-Quan

    2008-01-01

    A new method for generating hydrogen by the reaction of A1 powder with water using iodine as additive is developed. 12 can penetrate through the surface oxide layer on atuminium to form AlI3. High solubility of AlI3 in water is benefited to activate Al surface. It is found that the production of hydrogen becomes significant above 60℃ and obeys a logarithm rule. The pH value varies from 5 to 3 then back to 4.5 during the reaction,which is determined mainly by the kinetics of hydration reaction of AlI3 and the reaction of Al and HI produced spontaneously.

  18. Initial excess pore water pressures induced by tunnelling in soft ground

    Institute of Scientific and Technical Information of China (English)

    梁荣柱; 夏唐代; 林存刚; 俞峰; 吴世明

    2015-01-01

    Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects on the long-term consolidation settlement. A simple and reliable method for predicting the tunnel-induced initial excess pore water pressure calculation in soft clay is proposed. This method is based on the theory of elasticity and SKEMPTON’s excess pore water pressure theory. Compared with the previously published field measurements and the finite-element modelling results, it is found that the suggested initial excess pore water pressure theory is in a good agreement with the measurements and the FE results. A series of parametric analyses are also carried out to investigate the influences of different factors on the distribution and magnitude of the initial excess pore water pressure in soft ground.

  19. The influence of rowing-related postures upon respiratory muscle pressure and flow generating capacity.

    Science.gov (United States)

    Griffiths, Lisa A; McConnell, Alison K

    2012-12-01

    During the rowing stroke, the respiratory muscles are responsible for postural control, trunk stabilisation, generation/transmission of propulsive forces and ventilation (Bierstacker et al. in Int J Sports Med 7:73-79, 1986; Mahler et al. in Med Sci Sports Exerc 23:186-193, 1991). The challenge of these potentially competing requirements is exacerbated in certain parts of the rowing stroke due to flexed (stroke 'catch') and extended postures (stroke 'finish'). The purpose of this study was to assess the influence of the postural role of the trunk muscles upon pressure and flow generating capacity, by measuring maximal respiratory pressures, flows, and volumes in various seated postures relevant to rowing. Eleven male and five female participants took part in the study. Participants performed two separate testing sessions using two different testing protocols. Participants performed either maximal inspiratory or expiratory mouth pressure manoeuvres (Protocol 1), or maximal flow volume loops (MFVLs) (Protocol 2), whilst maintaining a variety of specified supported or unsupported static rowing-related postures. Starting lung volume was controlled by initiating the test breath in the upright position. Respiratory mouth pressures tended to be lower with recumbency, with a significant decrease in P (Emax) in unsupported recumbent postures (3-9 % compared to upright seated; P = 0.036). There was a significant decrease in function during dynamic manoeuvres, including PIF (5-9 %), FVC (4-7 %) and FEV(1) (4-6 %), in unsupported recumbent postures (p < 0.0125; Bonferroni corrected). Thus, respiratory pressure and flow generating capacity tended to decrease with recumbency; since lung volumes were standardised, this may have been, at least in part, influenced by the postural co-contraction of the trunk muscles.

  20. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  1. Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target

    CERN Document Server

    Lahmann, R; Graf, K; Hößl, J; Kappes, A; Katz, U; Mecke, K; Schwemmer, S

    2015-01-01

    The generation of hydrodynamic radiation in interactions of pulsed proton and laser beams with matter is explored. The beams were directed into a water target and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed with varying pulse energies, sensor positions, beam diameters and temperatures. The obtained data are matched by simulation results based on the thermo-acoustic model with uncertainties at a level of 10%. The results imply that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the medium. The heating results in a fast expansion or contraction and a pressure pulse of bipolar shape is emitted into the surrounding medium. An interesting, widely discussed application of this effect could be the detection of ultra-high energetic cosmic neutrinos in future large-scale acoustic neutrino detectors. For this application a validation of the sound generation mechanism to high accur...

  2. Direct measurement of the capillary pressure characteristics of water-air-gas diffusion layer systems for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gostick, Jeff T.; Ioannidis, Marios A.; Fowler, Michael W.; Pritzker, Mark D. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON (Canada)

    2008-10-15

    A method and apparatus for measuring the relationship between air-water capillary pressure and water saturation in PEMFC gas diffusion layers (GDL) is described. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrate permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies. (author)

  3. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils.

    Science.gov (United States)

    Ishii, T; Shi, L; Huang, R; Tsujino, N; Druzhbin, D; Myhill, R; Li, Y; Wang, L; Yamamoto, T; Miyajima, N; Kawazoe, T; Nishiyama, N; Higo, Y; Tange, Y; Katsura, T

    2016-02-01

    We have generated over 40 GPa pressures, namely, 43 and 44 GPa, at ambient temperature and 2000 K, respectively, using Kawai-type multi-anvil presses (KMAP) with tungsten carbide anvils for the first time. These high-pressure generations were achieved by combining the following pressure-generation techniques: (1) precisely aligned guide block systems, (2) high hardness of tungsten carbide, (3) tapering of second-stage anvil faces, (4) materials with high bulk modulus in a high-pressure cell, and (5) high heating efficiency.

  4. Pressure oscillation induced by composite fluid flow - Physical picture generating low frequency earthquake -

    Science.gov (United States)

    Takashima, S.; Kurita, K.

    2006-12-01

    Recently low frequency (LF) earthquakes have been found to occur in various geophysical settings. Structural inspection of the source region and analysis of focal mechanism suggest the possible role of fluid in the generation process. The nature of fluid expected in the source region should be characterized by multiphase system such as magma and gas bubble, magma and crystal and aqueous fluid and gas bubble, for example. In this system the physical properties of this composite depends on the mutual volume fraction. The volume fraction is variable depending on the flow situation. We consider the link between the flow situation and the volume fraction is an essential part of the composite flow. Here based on the concept that nature of the composite flow plays a central role in the generation of pressure oscillation, we report a simple laboratory model to demonstrate LF earthquakes. The multiphase system in the source region of the LF earthquakes is modeled here as a composite of viscous fluid and incompressible granular phase. plastic particles made of polystyrene (0.5 mm in diameter) and glycerol solution is packed into a cylindrical case (60 mm in diameter). The packing state of the solid phase is near random closed packing state. The glycerol solution flows into the case from the pressure reservoir and it goes out from exit tube with 60 mm in length and 3 mm in diameter. The pressure is measured using a pressure sensor. The control parameter is fluid pressure (1 atm plus 300 Pa to 1500 Pa) and its viscosity (30 mPas to 100 mPas) in this experiment. When the pressure difference between the case is low, the flow is characterized as a permeable flow. Only the interstitial fluid of the glycerol solution flows out depending on the pressure difference. When the pressure difference is above the critical value, both fluid and particles flow out as a composite flow. In this state the output pressure was observed to oscillate. In the diagram of power spectrum of the

  5. Evaluation of electrochemically generated ozone for the disinfection of water and wastewater.

    Science.gov (United States)

    Tanner, B D; Kuwahara, S; Gerba, C P; Reynolds, K A

    2004-01-01

    Effective wastewater treatment is critical to public health and well-being. This is especially true in developing countries, where disinfection of wastewater is frequently inadequate. People who live in these areas may benefit from wastewater disinfection using ozone. This study evaluated the ability of a new electrochemical process of ozone generation, which produced ozone continuously at high pressure and concentration by the electrolysis of water, to disinfect tap water and secondarily treated wastewater. Inactivation of Klebsiella terrigena, Escherichia coli, MS2 bacteriophage and poliovirus 1 was evaluated first in reverse osmosis (RO) treated water. Inactivation of K. terrigena (6-log), E. coli (6-log), MS2 (6-log) and poliovirus 1 (>3-log) was observed after 1 min of ozonation in a 1 L batch reactor. Experiments were then performed to assess the microbiological impact of disinfection using ozone on secondarily treated municipal wastewater. The effect of ozonation on wastewater was determined for total and faecal coliforms, bacteriophages and heterotrophic plate count (HPC) bacteria. Electrochemical ozone generators provided an effective, rapid and low-cost method of wastewater disinfection. Based on the results of this research, electrochemically generated ozone would be well suited to remote, small-scale, disinfection operations and may provide a feasible means of wastewater disinfection in developing countries.

  6. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P....... The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...

  7. The DPSIR Framework and a Pressure-Oriented Water Quality Monitoring Approach to Ecological River Restoration

    Directory of Open Access Journals (Sweden)

    Björn Frostell

    2012-09-01

    Full Text Available Without monitoring anthropogenic pressures on the water environment, it is difficult to set realistic river restoration targets in relation to water quality. Therefore a more holistic approach is needed to systematically explore the links between socio-economic drivers and observed water quality-related impacts on river ecosystems. Using the DPSIR (Drivers-Pressures-State of the Environment-Impacts-Responses framework, this study linked ecological river restoration with the socio-economic sector, with the focus on promoting a pressure-oriented water quality monitoring system. Based on the European Water Framework Directive (WFD and relevant literature, it was found that most water quality-related indicators employed today are state/impacts-oriented, while very few are pressure-oriented. As a response, we call for more attention to a DPR (Drivers-Pressures-Responses framework in developing an industrial ecology-based pressure-oriented water quality monitoring system for aiding ecological river restoration planning. This approach is characterized in general by accounting for material-related flows throughout the socio-economic sector in relation to river ecosystem degradation. Then the obtained information would help decision makers take appropriate measures to alleviate various significant human-induced wastes and emissions at their sources. We believe that such a pressure-oriented monitoring system will substantially complement traditional state/impacts-oriented environmental and ecological monitoring and help develop more proactive planning and decision-making processes for specific river restoration projects and general water quality management.

  8. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    Science.gov (United States)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will

  9. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  10. Numerical study of surface water waves generated by mass movement

    Energy Technology Data Exchange (ETDEWEB)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity

  11. Numerical study of surface water waves generated by mass movement

    Science.gov (United States)

    Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa

    2013-10-01

    In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\

  12. Gasification Mechanism of Carbon with Supercritical Water at Very High Pressures: Effects on H2 Production.

    Science.gov (United States)

    Martin-Sanchez, Nicolas; Salvador, Francisco; Sanchez-Montero, M Jesus; Izquierdo, Carmen

    2014-08-07

    The scarce data concerning the gasification of carbonaceous solids with supercritical water (SCW) suggest the great potential of this method to produce a valuable green fuel such as H2. However, the extraordinary properties of SCW have not been properly applied to H2 production because the mechanism that governs gasification under these conditions remains unclear. Here, we present a study in which this reaction is explored within the largest pressure range ever assayed in this field, from 1 to 1000 bar. The amplitude of the experimental conditions investigated highlights the various pathways that govern gasification with steam and SCW. Under supercritical conditions, the clusters formed around the superficial groups of the solid reduce the energetic requirements for gasification and generate CO2 as a primary product of the reaction. Consequently, gasification with SCW is significantly faster than that using steam, and the produced gases are richer and more appropriate to obtain pure H2.

  13. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; ZHOU Dong-ping; LU Yi-yu; KANG Yong; ZHAO Yu; WANG Xiao-chuan

    2009-01-01

    Mine gas extraction in China is difficult due to the characteristics such as mi-cro-porosity, low-permeability and high adsorption of coal seams. The pulsed mechanism of a high-pressure pulsed water jet was studied through theoretical analysis, experiment and field measurement. The results show that high-pressure pulsed water jet has three dynamic properties. What's more, the three dynamic effects can be found in low-perme-ability coal seams. A new pulsed water jet with 200-1 000 Hz oscillation frequency and peak pressure 2.5 times than average pressure was introduced. During bubble collapsing, sound vibration and instantaneous high pressures over 100 MPa enhanced the cutting ability of the high-pressure jet. Through high-pressure pulsed water jet drilling and slotting, the exposure area of coal bodies was greatly enlarged and pressure of the coal seams rapidly decreased. Therefore, the permeability of coal seams was improved and gas ab-sorption rate also decreased. Application results show that gas adsorption rate decreased by 30%-40% and the penetrability coefficient increased 100 times. This proves that high-pressure pulsed water is more efficient than other conventional methods.

  14. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    Science.gov (United States)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  15. Pressure suppression containment system for boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  16. An innovative approach for Steam Generator Pressure Control of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Avinash J., E-mail: avinashg@barc.gov.in [Reactor Safety Division, BARC, Trombay, Mumbai 400094 (India); Vijayan, P.K. [Reactor Engineering Divisions, BARC, Trombay, Mumbai 400094 (India); Bhartiya, Sharad [Chemical Engineering Departments, IIT, Powai, Mumbai (India); Kumar, Rajesh; Lele, H.G.; Vaze, K.K. [Reactor Safety Division, BARC, Trombay, Mumbai 400094 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Most of the transients/accidents have their origin in the mismatch among the heat generated in the reactor core and the heat removal in the SGs. Black-Right-Pointing-Pointer The main objective of balancing the heat generation, transfer and removal gets lost due to simplification of SGPC leading to reduced availability. Black-Right-Pointing-Pointer A new Advanced Process Control (APC) is proposed to ride over the existing SGPC to achieve the goal of prompt removal of the heat transfer mismatch. Black-Right-Pointing-Pointer The APC logic will lead to overall performance improvements and plant availability for all other transients also. - Abstract: The main function of the Steam Generator Pressure Control (SGPC) Program is to match the power (heat) generation in the reactor core with the heat removal in the steam generators (SGs). For most of the designs these programs have been over simplified to cater to the limitation of the instrumentation and control, hardware and software. The main objective of balancing the heat generation, transfer and removal gets lost in the process, which leads to reduction in the availability of the nuclear power plant. This is reflected in under utilization of the process and control system provisions to avoid reactor trips on low/high pressure. Most of the transients/accidents have their origin in the mismatch among the heat generated in the reactor core and the heat removal in the SGs. A new Advanced Process Control (APC) based supervisory controller is proposed to ride over the existing SGPC to achieve the goal. This APC makes use of the estimated/measured heat generation-removal error to alter the SGPC set point to tide over the transients after detection. The transients are detected based on the magnitude of this error to activate the APC. After tiding over the transient successfully the control switches back to the existing SGPC. For evaluation of this error additional instrumentation is

  17. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    Science.gov (United States)

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  18. Evaluation of the Dynamic Velocity Effect for Steam Generator Wide Range Water Level

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Soo; Nam, Ki Haeng; Kim, Jeong Hoon; Yun, Jae Hee [Korea Power Engineering Company, Daejeon (Korea, Republic of)

    2010-05-15

    The measurement of Steam Generator (SG) water level is based upon pressure differential of the level transmitter. As shown in Fig. 1, if the location of a lower tap is in the downcomer region, a deviation between the indicated level and the actual level occurs. This phenomenon is called 'velocity effect' or 'dynamic effect.' This effect needs to be addressed to obtain a more accurate SG water level. Korean Utility Requirements Document (KURD) requires Downcomer Velocity Effect (DVE) to be quantified and to be considered in the instrument requirements. In this paper, DVE occurred through downcomer will be evaluated for SG wide range (WR) level for OPR1000

  19. Probabilistic integrity assessment of CANDU pressure tube for the consideration of flaw generation time

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sang Log; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Lee, Joon Seong [Kyonggi Univ., Seoul (Korea, Republic of); Park, Youn Won [KINS, Taejon (Korea, Republic of)

    2001-07-01

    This paper describes a Probabilistic Fracture Mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, Delayed Hydride Cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  20. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  1. Temperature, pressure, and isotope effects on the structure and properties of liquid water: a lattice approach.

    Science.gov (United States)

    Hakem, Ilhem F; Boussaid, Abdelhak; Benchouk-Taleb, Hafida; Bockstaller, Michael R

    2007-12-14

    We present a lattice model to describe the effect of isotopic replacement, temperature, and pressure changes on the formation of hydrogen bonds in liquid water. The approach builds upon a previously established generalized lattice theory for hydrogen bonded liquids [B. A. Veytsman, J. Phys. Chem. 94, 8499 (1990)], accounts for the binding order of 1/2 in water-water association complexes, and introduces the pressure dependence of the degree of hydrogen bonding (that arises due to differences between the molar volumes of bonded and free water) by considering the number of effective binding sites to be a function of pressure. The predictions are validated using experimental data on the temperature and pressure dependence of the static dielectric constant of liquid water. The model is found to correctly reproduce the experimentally observed decrease of the dielectric constant with increasing temperature without any adjustable parameters and by assuming values for the enthalpy and entropy of hydrogen bond formation as they are determined from the respective experiments. The pressure dependence of the dielectric constant of water is quantitatively predicted up to pressures of 2 kbars and exhibits qualitative agreement at higher pressures. Furthermore, the model suggests a--temperature dependent--decrease of hydrogen bond formation at high pressures. The sensitive dependence of the structure of water on temperature and pressure that is described by the model rationalizes the different solubilization characteristics that have been observed in aqueous systems upon change of temperature and pressure conditions. The simplicity of the presented lattice model might render the approach attractive for designing optimized processing conditions in water-based solutions or the simulation of more complex multicomponent systems.

  2. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Science.gov (United States)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  3. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  4. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Science.gov (United States)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  5. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  6. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Junli Gou

    2009-01-01

    Full Text Available A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS, which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (SCPRHRS, the transient behaviors of the PRHRS as well as the effects of the height difference between the steam generator and the heat exchanger and the heat transfer area of the heat exchanger are studied in detail. Through the calculation analysis, it is found that the calculated parameter variation trends are reasonable. The higher height difference between the steam generator and the residual heat exchanger and the larger heat transfer area of the residual heat exchanger are favorable to the passive residual heat removal system.

  7. Pressure generation at the junction of two microchannels with different depths.

    Science.gov (United States)

    Yanagisawa, Naoki; Dutta, Debashis

    2010-06-01

    In this study, we report the design of a microchip-based hydraulic pump that comprises three glass conduits arranged in a T-geometry, one of which has a 2 mm long segment shallower (0.5-3 microm in depth) than the remaining 15 microm deep microfluidic network. Upon application of an electric field across this microchannel junction, a mismatch in EOF rate is introduced due to a differential in the fluid conductivity across the deep and shallow segments. Using the reported micropump, pressure-driven velocities up to 3.2 mm/s have been generated in a 15 microm deep separation channel for an applied voltage of 1.75 kV allowing us to operate under separation conditions that yield the minimum plate height. Moreover, we have shown that this flow velocity can be maximized by optimizing the depth in the shallow region of the T-geometry. Interestingly however, a simple theory accounting for fluid conductivity differences across microchannels of different depths significantly underestimates the pressure-driven velocities observed in our experiments. The Taylor dispersion coefficient in our system on the other hand compares well with the theoretical predictions reported in the literature. Finally, the functionality of our device has been demonstrated by implementing a reverse-phase chromatographic separation that was driven by the pressure-driven flow generated on-chip.

  8. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Charton A

    2014-08-01

    the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions: In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. Keywords: transcutaneous oxygen partial pressure determination, tissue oxygenation, oxygenated water, water clathrate 

  9. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  10. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  11. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  12. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    Science.gov (United States)

    Inoue, K.; Deguchi, K.; Okude, K.; Fujimoto, R.

    2012-11-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  13. Preliminary Design of In-Pile Supercritical Pressurized Water Test Loop

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Based on two proven technologies, current light water reactors (LWRs) and the supercritical coal-fired power plants, the supercritical water-cooled reactor (SCWR) is one of the six Generation-Ⅳ

  14. Development of a new atmospheric pressure cold plasma jet generator and application in sterilization

    Institute of Scientific and Technical Information of China (English)

    Cheng Cheng; Liu Peng; Xu Lei; Zhang Li-Ye; Zhan Ru-Juan; Zhang Wen-Rui

    2006-01-01

    This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground,the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30 ℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0 × 1016cm-3 which is acquired by using the ultraviolet absorption spectroscopy.

  15. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  16. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    Science.gov (United States)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  17. Pore Water Pressure Response of a Soil Subjected to Traffic Loading under Saturated and Unsaturated Conditions

    Science.gov (United States)

    Cary, Carlos

    This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further

  18. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  19. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  20. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2013-01-01

    Full Text Available The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm, these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD of the spray droplets was also measured by using Phase Doppler Anemometry (PDA at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  1. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Science.gov (United States)

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  2. Impingement capability of high-pressure submerged water jet:Numerical prediction and experimental verification

    Institute of Scientific and Technical Information of China (English)

    刘海霞; 邵启明; 康灿; 龚辰

    2015-01-01

    At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.

  3. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  4. Volume and structural analysis of super-cooled water under high pressure

    Science.gov (United States)

    Duki, Solomon F.; Tsige, Mesfin

    2012-02-01

    Motivated by recent experimental study of super-cooled water at high pressure [1], we performed atomistic molecular dynamic simulations study on bulk water molecules at isothermal-isobaric ensemble. These simulations are performed at temperatures that range from 40 K to 380 K using two different cooling rates, 10K/ns and 10K/5ns, and pressure that ranges from 1atm to 10000 atm. Our analysis for the variation of the volume of the bulk sample against temperature indicates a downward concave shape for pressures above certain values, as reported in [1]. The same downward concave behavior is observed at high pressure on the mean-squared-displacements (MSD) of the water molecules when the MSD is plotted against time. To get further insight on the effect of the pressure on the sample we have also performed a structural analysis of the sample.[4pt] [1] O. Mishima, J. Chem. Phys. 133, 144503 (2010);

  5. Study of pressure in water wells using analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, S.

    1979-01-01

    According to the data of studying wells, an examination is made of the possibility of determining the deep pressure. As applied to wells with gas influx, a method of correction is proposed which is based on laws regarding gas or laws of its solubility.

  6. Plasma electron source for the generation of wide-aperture pulsed beam at forevacuum pressures

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E.; Burdovitsin, V.; Medovnik, A.; Yushkov, Yu. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2013-02-15

    This article reports on design and application of wide-aperture pulsed beam source, based on hollow cathode discharge. The source is intended for electron beam generation in pressure range 2-15 Pa. Multi-aperture extraction system, used in a source, provided beam cross-section uniformity of 10% on diameter 40 mm. The limiting values of the current density, pulse duration, and accelerating voltage are 350 mA/cm{sup 2}, 250 {mu}s, and 10 kV, respectively. These parameters are sufficient for surface modification of various materials, including non-conducting matters.

  7. Generation X arrives at medical school to find changing expectations, growing pressures.

    Science.gov (United States)

    OReilly, M

    1995-01-15

    Students entering medical school today face a health care system that is vastly different from the one new students experienced in the 1970s and 1980s. Michael OReilly interviewed five first-year students from the University of Western Ontario to learn about the hopes and dreams of medicine's next generation and the pressures facing these students. The Class of '98 doesn't appear intimidated by the cutbacks practising physicians are facing. As one student put it, these students won't be yearning for the "good old days" because "we don't have any good old days to remember."

  8. Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1968-01-01

    Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.

  9. Conversion of urodynamic pressures measured simultaneously by air-charged and water-filled catheter systems.

    Science.gov (United States)

    Awada, Hassan K; Fletter, Paul C; Zaszczurynski, Paul J; Cooper, Mitchell A; Damaser, Margot S

    2015-08-01

    The objective of this study was to compare the simultaneous responses of water-filled (WFC) and air-charged (ACC) catheters during simulated urodynamic pressures and develop an algorithm to convert peak pressures measured using an ACC to those measured by a WFC. Examples of cough leak point pressure and valsalva leak point pressure data (n = 4) were obtained from the literature, digitized, and modified in amplitude and duration to create a set of simulated data that ranged in amplitude from 15 to 220 cm H2 O (n = 25) and duration from 0.1 to 3.0 sec (n = 25) for each original signal. Simulated pressure signals were recorded simultaneously by WFCs, ACCs, and a reference transducer in a specially designed pressure chamber. Peak pressure and time to peak pressure were calculated for each simulated pressure signal and were used to develop an algorithm to convert peak pressures recorded with ACCs to corresponding peak pressures recorded with WFCs. The algorithm was validated with additional simulated urodynamic pressure signals and additional catheters that had not been utilized to develop the algorithm. ACCs significantly underestimated peak pressures of more rapidly changing pressures, as in coughs, compared to those measured by WFCs. The algorithm corrected 90% of peak pressures measured by ACCs to within 5% of those measured by WFCs when simultaneously exposed to the same pressure signals. The developed algorithm can be used to convert rapidly changing urodynamic pressures, such as cough leak point pressure, obtained using ACC systems to corresponding values expected from WFC systems. © 2014 Wiley Periodicals, Inc.

  10. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  11. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  12. Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

    Directory of Open Access Journals (Sweden)

    Venkatesh Kumar

    2016-01-01

    Full Text Available The variation of pore water pressure in earthen dams plays an important role in maintaining its stability. The pore water pressure within the dam are altered by the external loading conditions like rapid drawdown of reservoir water, earthquake loading and raise of water table caused by infiltration of rainfall. The seepage through an earthen dam involves saturated and unsaturated flows but to avoid complexity in solving the non-linear partial differential equations, the flow in unsaturated zone is neglected and seepage analysis is carried by constructing the flow net in which the pore water pressures beyond the free surface is taken as zero. In actual conditions negative pore water pressure develops beyond the free surface due to the capillarity which leads development to the matrix suction of the soil. In this paper a comparative study on distribution of pore pressure in a zoned earthen dam under steady state and transient conditions had been carried out considering unsaturated-saturated seepage theory. To solve the non-linear partial differential equations, finite element method has been adopted in the present study. The earthen dam has been modeled in different stages. At each stage a new parameter was added and parametric analysis was carried out. The results indicate that negative pore water pressure developed at the downstream side and the pore pressures at the mid-levels of the core are high. This specifies that, soils with low permeability have higher pore pressure. The pore pressures appeared to be higher in upstream side during rapid drawdown compared to steady state.

  13. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  14. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    Science.gov (United States)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  15. Application of a Reliability Model Generator to a Pressure Tank System

    Institute of Scientific and Technical Information of China (English)

    Kathryn Stockwell; Sarah Dunnett

    2013-01-01

    A number of mathematical modelling techniques exist which are used to measure the performance of a given system,by assessing each individual component within the system.This can be used to determine the failure frequency or probability of the system.Software is available to undertake the task of analysing these mathematical models after an individual or group of individuals manually create the models.The process of generating these models is time consuming and reduces the impact of the model on the system design.One way to improve this would be to generate the model automatically.In this work,the procedure to automatically construct a model,based on Petri nets,for systems undergoing a phased-mission is applied to a pressure tank system,undertaking a four phase mission.

  16. BAGE genes generated by juxtacentromeric reshuffling in the Hominidae lineage are under selective pressure.

    Science.gov (United States)

    Ruault, Myriam; Ventura, Mario; Galtier, Nicolas; Brun, Marie-Elisabeth; Archidiacono, Nicoletta; Roizès, Gérard; De Sario, Albertina

    2003-04-01

    In this paper, we show that the BAGE (B melanoma antigen) gene family was generated by chromosome rearrangements that occurred during the evolution of hominoids. An 84-kb DNA fragment derived from the phylogenetic 7q36 region was duplicated in the juxtacentromeric region of either chromosome 13 or chromosome 21. The duplicated region contained a fragment of the MLL3 gene, which, after juxtacentromeric reshuffling, generated the ancestral BAGE gene. Then, this ancestral gene gave rise to several independent genes through successive rounds of inter- and intrachromosome duplications. Comparison of synonymous and nonsynonymous mutations in putative coding regions shows that BAGE genes, but not the BAGE gene fragments, are under selective pressure. Our data strongly suggest that BAGE proteins have a function and that juxtacentromeric regions, whose plasticity is now largely proved, are not a simple junkyard of gene fragments, but may be the birth site of novel genes.

  17. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    Science.gov (United States)

    Whalley, Richard D; Walsh, James L

    2016-08-26

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  18. Model test of the tunnel subjected to high water pressure in Jinping Second Cascade Hydropower Station,China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the area with high groundwater pressure,grout curtain is often adopted to reduce the water pressure on tunnel lining.A series of model tests for the diversion tunnel of the Jinping Second Cascade Hydropower Station,China,is designed to study the effect of grout curtain.The impact of the thickness of grout curtain,permeability of grout curtain,internal water pressure and drainage inflow on the distribution of water pressure are discussed.The results indicates that under un-drained condition,water pressure is equal to hydrostatic one no matter grout curtain is selected or not,water pressure under drained condition is far less than that of un-drained condition,drainage in tunnel can reduce tunnel water pressure effectively.For same inflow,both increasing of thickness and decrease of hydraulic conductivity of grout curtain can reduce water pressure effectively.For the same water pressure,the smaller inflow of grout curtain,the less volume of water to be discharged.The impact of hydraulic conductivity of grout curtain is more obvious than that of thickness.With increasing of internal water pressure,the water pressure of grout curtain increases too,and the water pressure increases nearly linearly.The proposed thickness of grout curtain for the diversion tunnels is 16 m.

  19. Review of Water Resource Exploitation and Landuse Pressure in ...

    African Journals Online (AJOL)

    In addition, changes in climate regime, due to increasing temperature and reduced rainfall conditions, contribute to the reduced water supply. This coupled with the land degradation problems, has multiple effects on the coastal environments.

  20. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  1. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    soybeans or rapeseed, but research is being conducted that would have non-food plants produce oils with which to make biodiesel. Microalgae is seen as...fraction of solar energy (89, 98). Microalgae can be grown almost anywhere and require only sunlight, water and simple nutrients, although higher yields...are obtained under more controlled conditions (99, 100). Microalgae can be grown in water unfit for human consumption, such as wastewater or

  2. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures

    Institute of Scientific and Technical Information of China (English)

    YIN Bing; DONG Shun-Le

    2009-01-01

    A molecular dynamics simulation is performed for water confined within carbon nanotubes with diameters 11.00 (A) and 12.38 (A).Under pressures from 0.1 MPa to 500MPa the simulations are carried out by cooling from 300K to 240 K.Water molecules tend to transform from disordered to ordered with different configurations (square,pentagonal,hexagonal and hexagonal plus a chain).It is concluded that denser structures may appear under high pressures.

  3. Corrosion behavior of F82H exposed to high temperature pressurized water with a rotating apparatus

    Science.gov (United States)

    Kanai, A.; Kasada, R.; Nakajima, M.; Hirose, T.; Tanigawa, H.; Enoeda, M.; Konishi, S.

    2014-12-01

    The present study reports the corrosion behavior of a reduced-activation ferritic martensitic steel F82H exposed to high temperature pressurized water for 28 and 100 h using a rotating disk apparatus at rotation speeds of 500 and 1000 rpm at a temperature of 573 K under a water pressure of 15 MPa with corrosion and/or flow-accelerated corrosion of F82H under the rotating condition.

  4. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  5. Prediction of gas pressurization and hydrogen generation for shipping hazard analysis : Six unstabilized PU 02 samples

    Energy Technology Data Exchange (ETDEWEB)

    Moody, E. W. (Eddie W.); Veirs, D. K. (Douglas Kirk); Lyman, J. L. (John L.)

    2001-01-01

    Radiolysis of water to form hydrogen gas is a safety concern for safe storage and transport of plutonium-bearing materials. Hydrogen gas is considered a safety hazard if its concentration in the container exceeds five percent hydrogen by volume, DOE Docket No. 00-1 1-9965. Unfortunately, water cannot be entirely avoided in a processing environment and these samples contain a range of water inherently. Thermodynamic, chemical, and radiolysis modeling was used to predict gas generation and changes in gas composition as a function of time within sealed containers containing plutonium bearing materials. The results are used in support of safety analysis for shipping six unstabilized (i.e. uncalcined) samples from Rocky Flats Environmental Technology Sits (RFETS) to the Material Identification and Surveillance (MIS) program at Los Alamos National Lab (LANL). The intent of this work is to establish a time window in which safe shipping can occur.

  6. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    Science.gov (United States)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  7. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  8. Reparameterization techniques for generating reservoir descriptions conditioned to variograms and well-test pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A.C.; He, N.; Chu, L. [Univ. of Tulsa, OK (United States)] [and others

    1995-12-31

    Recently, we have shown that reservoir descriptions conditioned to multiwell pressure data and univariate and bivariate statistics for permeability and porosity can be obtained by techniques developed from inverse problem theory. The techniques yield estimates of well skin factors and porosity and permeability fields which honor both the spatial statistics and the pressure data. Imbedded in the methodology is the application of the Gauss-Newton method to construct the maximum a posteriori estimate of the reservoir parameters. If one wishes to determine permeability and porosity values at thousands of grid-blocks for use in a reservoir simulator, then inversion of the Hessian matrix at each iteration of the Gauss-Newton procedure becomes computationally expensive. In this work, we present two methods to reparameterize the reservoir model to improve the computational efficiency. The first method uses spectral (eigenvalue/eigenvector) decomposition of the prior model. The second method uses a subspace method to reduce the size of the matrix problem that must be solved at each iteration of the Gauss-Newton method. It is shown that proper implementation of the reparameterization techniques significantly decreases the computational time required to generate realizations of the reservoir model, i.e., the porosity and permeability fields and well skin factors, conditioned to prior information on porosity and permeability and multiwell pressure data.

  9. Solvated electrons at the atmospheric pressure plasma-water anodic interface

    Science.gov (United States)

    Gopalakrishnan, R.; Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Graves, D. B.

    2016-07-01

    We present results from a particle-in-cell/Monte Carlo model of a dc discharge in argon at atmospheric pressure coupled with a fluid model of an aqueous electrolyte acting as anode to the plasma. The coupled models reveal the structure of the plasma-electrolyte interface and near-surface region, with a special emphasis on solvated or hydrated electrons. Results from the coupled models are in generally good agreement with the experimental results of Rumbach et al (2016 Nat. Commun. 6 7248). Electrons injected from the plasma into the water are solvated, then lost by reaction with water within about 10-20 nm from the surface. The major reaction products are OH- and H2. The solvated electron density profile is controlled by the injected electron current density and subsequent reactions with water, and is relatively independent of the external plasma electric field and the salt concentration in the aqueous electrolyte. Simulations of the effects of added scavenger compounds (H2O2, \\text{NO}2- , \\text{NO}2- and H+) on near-surface solvated electron density generally match the experimental results. The generation of near-surface OH- following electron-water decomposition in the presence of bulk acid creates a highly basic region (pH ~ 11) very near the surface. In the presence of bulk solution acidity, pH can vary from a very acidic pH 2 away from the surface to a very basic pH 11 over a distance of ~200 nm. High near-surface gradients in aqueous solution properties could strongly affect plasma-liquid applications and challenge theoretical understanding of this complex region.

  10. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation

    Science.gov (United States)

    Valdez, Luis F.; Gutiérrez, Juan Manuel

    2016-01-01

    In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS) array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status). The data analysis tools used were Principal Components Analysis (PCA) and Artificial Neural Networks (ANNs). The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc), 0.86 precision (Prc), 0.84 sensitivity (Sen) and 0.99 specificity (Spe) for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies. PMID:27775628

  11. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  12. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation.

    Science.gov (United States)

    Valdez, Luis F; Gutiérrez, Juan Manuel

    2016-10-20

    In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS) array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status). The data analysis tools used were Principal Components Analysis (PCA) and Artificial Neural Networks (ANNs). The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc), 0.86 precision (Prc), 0.84 sensitivity (Sen) and 0.99 specificity (Spe) for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies.

  13. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation

    Directory of Open Access Journals (Sweden)

    Luis F. Valdez

    2016-10-01

    Full Text Available In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status. The data analysis tools used were Principal Components Analysis (PCA and Artificial Neural Networks (ANNs. The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc, 0.86 precision (Prc, 0.84 sensitivity (Sen and 0.99 specificity (Spe for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies.

  14. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    Science.gov (United States)

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  15. Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water

    Institute of Scientific and Technical Information of China (English)

    YAN JunJie; WU XinZhuang; CHONG DaoTong

    2009-01-01

    A low mass flux steam jet in subcooled water was experimentally investigated. The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature. The axial total pressures, the axial and radial temperature distributions were measured in the jet region. The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature. The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region, the results showed s good agreement between the predictions and experiments. Moreover, the self-similarity property of the radial temperature was obtained, which agreed well with Gauss distribution. In present work, all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.

  16. A process for generating power from the oxidation of coal in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    M.D. Bermejo; M.J. Cocero; F. Fernandez-Polanco [Universidad de Valladolid, Valladolid (Spain). Departamento de Ingenieria Quimica

    2004-01-01

    A theoretical study of power generation from oxidation of coal by supercritical water oxidation (SCWO) is presented. Two versions of SCWO power plant are compared to two of the most efficient conventional power plant processes: pulverised coal power plants and pressurised fluidised bed power plant. The effects of steam pressure and temperature on produced (W{sub p}), consumed (W{sub c}) and net work (W{sub N}) are calculated in order to compare the efficiency of these power plants for the same steam conditions. Enthalpies have been calculated using residual enthalpies by Peng Robinson equation of state. Calculated results show that net work in SCWO power plant is 5% higher than in other power plants, due to the fact that no air surplus is necessary for complete combustion and because steam is produced by direct heating. Energetic efficiency of SCWO increases more quickly with temperature than for the other power plants. The effect of steam pressure is different: until 30 MPa power plant efficiencies increase more quickly in SCWO power plants than in conventional plants, but when steam pressures increases beyond 30 MPa, efficiencies decrease in SCWO power plants. 21 refs., 12 figs., 7 tabs.

  17. Ice-melt rates during volcanic eruptions within water-drained, low-pressure subglacial cavities

    Science.gov (United States)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2016-02-01

    Subglacial volcanism generates proximal and distal hazards including large-scale flooding and increased levels of explosivity. Direct observation of subglacial volcanic processes is infeasible; therefore, we model heat transfer mechanisms during subglacial eruptions under conditions where cavities have become depressurized by connection to the atmosphere. We consider basaltic eruptions in a water-drained, low-pressure subglacial cavity, including the case when an eruption jet develops. Such drained cavities may develop on sloping terrain, where ice may be relatively shallow and where gravity drainage of meltwater will be promoted. We quantify, for the first time, the heat fluxes to the ice cavity surface that result from steam condensation during free convection at atmospheric pressure and from direct and indirect radiative heat transfer from an eruption jet. Our calculations indicate that the direct radiative heat flux from a lava fountain (a "dry" end-member eruption jet) to ice is c. 25 kW m-2 and is a minor component. The dominant heat transfer mechanism involves free convection of steam within the cavity; we estimate the resulting condensation heat flux to be c. 250 kW m-2. Absorption of radiation from a lava fountain by steam enhances convection, but the increase in condensing heat flux is modest at c. 25 kW m-2. Overall, heat fluxes to the ice cavity surface are likely to be no greater than c. 300 kW m-2. These are comparable with heat fluxes obtained by single phase convection of water in a subglacial cavity but much less than those obtained by two-phase convection.

  18. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  19. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  20. Gas Shale Capillary Pressure - Saturation Relations Determined using a Water Activity Meter

    Science.gov (United States)

    Perfect, E.; Donnelly, B.; McKay, L. D.; Lemiszki, P. J.; DiStefano, V. H.; Anovitz, L. M.; McFarlane, J.; Hale, R. E.; Cheng, C. L.

    2016-12-01

    Capillary pressure is the pressure difference across the interface between two immiscible fluids in a porous medium. It is related to properties of the fluids, properties of the solid matrix, and the history of wetting and drying (hysteresis). Capillary pressure increases as the degree of wetting fluid saturation decreases. The petroleum industry commonly employs parameters describing the air - water capillary pressure - saturation relationship in numerical reservoir models. Traditional methods of measuring this relationship are unsuitable for the characterization of gas shales due to their inability to measure the high capillary pressures associated with small pores. A possible alternative method is the water activity meter which is widely used in the soil sciences. However, its application to lithified material has been limited. This study utilized a water activity meter to measure air - water capillary pressures (ranging from 1.3 - 219.6 MPa) at several water saturation levels (measured gravimetrically) in both the wetting and drying directions. Seven types of gas producing shale with different porosities (2.5 - 13.6%) and total organic carbon contents (0.4 - 13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure - water saturation data pairs for each shale type to the Brooks and Corey (BC) equation. This equation successfully fitted data for 6 of the 7 shale types investigated (median R2 = 0.93) indicating the water activity meter is a viable method for characterizing capillary pressure - saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different BC parameters. However, there were no significant differences between the BC parameters for the wetting versus drying data sets suggesting hysteresis was negligible and can be ignored when simulating production and leakoff in gas shales.

  1. Limitations On The Creation of Continuously Surfable Waves Generated By A Pressure Source Moving In A Circular Path

    NARCIS (Netherlands)

    Schmied, S.A.

    2014-01-01

    The aim of the research presented in this work was to investigate the novel idea to produce continuous breaking waves, whereby a pressure source was rotated within an annular wave pool. The concept was that the pressure source generates non-breaking waves that propagate inward to the inner ring of t

  2. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  3. Water withdrawal and consumption reduction analysis for electrical energy generation system

    Science.gov (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  4. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Science.gov (United States)

    Dong, Xin; Lu, Hao; Huang, Houxu; Hao, Yiqing; Xia, Yuanpu

    2017-06-01

    Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  5. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Xin

    2017-06-01

    Full Text Available Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  6. Development and application of an analysis methodology for interpreting ambiguous historical pressure data in the WIPP gas-generation experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Felicione, F. S.

    2006-01-23

    The potential for generation of gases in transuranic (TRU) waste by microbial activity, chemical interactions, corrosion, and radiolysis was addressed in the Argonne National Laboratory-West (ANL-West) Gas-Generation Experiments (GGE). Data was collected over several years by simulating the conditions in the Waste Isolation Pilot Plant (WIPP) after the eventual intrusion of brine into the repository. Fourteen test containers with various actual TRU waste immersed in representative brine were inoculated with WIPP-relevant microbes, pressurized with inert gases, and kept in an inert-atmosphere environment for several years to provide estimates of the gas-generation rates that will be used in computer models for future WIPP Performance Assessments. Modest temperature variations occurred during the long-term ANL-West experiments. Although the experiment temperatures always remained well within the experiment specifications, the small temperature variation was observed to affect the test container pressure far more than had been anticipated. In fact, the pressure variations were so large, and seemingly erratic, that it was impossible to discern whether the data was even valid and whether the long-term pressure trend was increasing, decreasing, or constant. The result was that no useful estimates of gas-generation rates could be deduced from the pressure data. Several initial attempts were made to quantify the pressure fluctuations by relating these to the measured temperature variation, but none was successful. The work reported here carefully analyzed the pressure measurements to determine if these were valid or erroneous data. It was found that a thorough consideration of the physical phenomena that were occurring can, in conjunction with suitable gas laws, account quite accurately for the pressure changes that were observed. Failure of the earlier attempts to validate the data was traced to the omission of several phenomena, the most important being the variation in

  7. Effect of pressure on mass absorption in an ammonia-water absorption system

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Hatem; Monde, Masanori [Saga University, Department of Mechanical Engineering, Saga (Japan)

    2007-11-15

    Absorption phenomenon of ammonia vapor into ammonia water solution has been investigated experimentally, by inserting superheated ammonia vapor into a test cell containing a stagnant pool of ammonia water solution. Before commencing the experiment, the pressure in the test cell corresponds to the equilibrium vapor of the ammonia-water system at room temperature. When the valve is opened, mechanical equilibrium is established quickly and the pressure in the test cell becomes equal to that of the ammonia vapor cylinder. The difference between the initial pressure in the vapor cylinder and the initial pressure in the test cell is found to have a major influence on the absorption rate. The main objective of this study is to investigate the effect of this initial pressure difference on the absorption rate of ammonia vapor. A correlation which gives the total absorbed mass of ammonia as a function of the initial concentration, the initial pressure difference and time is derived. In addition the absorbed mass at no pressure difference could be estimated from the absorbed mass at initial pressure difference. (orig.)

  8. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    Science.gov (United States)

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  9. Conversion of Dynamic High Pressures from Air to Water for a Spherical TNT Charge

    Directory of Open Access Journals (Sweden)

    A. K. Sharma

    1996-01-01

    Full Text Available A numerical method has been applied to convert the dynamic high pressures from air-to-water for a spherical TNT charge. Standard equation of scaling law in air for TNT has been utilised to make the necessary conversions. The investigations have been made by taking into consideration the ambient pressure values for the two media. The calculations have been performed under the scaled distances to get better results. Experimental measurements using indigenous blast pressure gauge have been undertaken by detonating spherical charges of TNT under the same scaled distances in water to check the correctness of results and direct application of this method. A fairly close agreement between the theoretically computed and the experimental values of the dynamic high pressures shows the practical utility of this approach in that it enables an estimate of the experimental shock wave pressures, without conducting underwater experiments.

  10. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions

    CERN Document Server

    Darvishzadeh, Tohid

    2012-01-01

    This study addresses the issue of oil removal from water using hydrophilic porous membranes. The effective separation of oil-in-water dispersions involves high flux of water through the membrane and, at the same time, high rejection rate of the oil phase. The effects of transmembrane pressure and crossflow velocity on rejection of oil droplets and thin oil films by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure, which is required for the oil droplet entry into a circular pore of a given surface hydrophilicity, agrees well with analytical predictions based on the Young-Laplace equation. With increasing crossflow velocity, the shape of the oil droplet is strongly deformed near the pore entrance and the critical pressure of permeation increases. We determined numerically the phase diagram for the droplet rejection, permeation, and breakup depending of the transmembrane pressure and...

  11. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  12. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    Science.gov (United States)

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  13. Data quality assurance in pressure transducer-based automatic water level monitoring

    Science.gov (United States)

    Submersible pressure transducers integrated with data loggers have become relatively common water-level measuring devices used in flow or well water elevation measurements. However, drift, linearity, hysteresis and other problems can lead to erroneous data. Researchers at the USDA-ARS in Watkinsvill...

  14. Power-generation system vulnerability and adaptation to changes in climate and water resources

    NARCIS (Netherlands)

    Vliet, Van Michelle T.H.; Wiberg, David; Leduc, Sylvain; Riahi, Keywan

    2016-01-01

    Hydropower and thermoelectric power together contribute 98% of the worldâ €™ s electricity generation at present. These power-generating technologies both strongly depend on water availability, and water temperature for cooling also plays a critical role for thermoelectric power generation. Clima

  15. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  16. Two-Phase Instability Characteristics of Printed Circuit Steam Generator for the Low Pressure Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study.

  17. Generation of extreme state of water by spherical wire array underwater electrical explosion

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, O.; Gilburd, L.; Efimov, S.; Bazalitski, G.; Gurovich, V. Tz.; Krasik, Ya. E. [Physics Department, Technion, Haifa 3200 (Israel)

    2012-10-15

    The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parameters of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.

  18. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    Science.gov (United States)

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.

  19. Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well.

    Science.gov (United States)

    Kadambala, Ravi; Townsend, Timothy G; Jain, Pradeep; Singh, Karamjit

    2011-05-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth.

  20. Prediction of Pressure Drop in Chilled Water Piping System Using Theoretical and CFD Analysis

    Directory of Open Access Journals (Sweden)

    Shirish P. Patil

    2013-08-01

    Full Text Available In the present study, three dimensional models of chilled water piping system is created using design modeler of Ansys-13. Ansys-13 fluent is used to analyses flow through chilled water pipe for pressure drop prediction. Karman-Prandtl equation is used for defining velocity profile of turbulent flow with the help of user defined function. Result obtained from CFD analysis is compared with results of 3K, 2K, ISHARE and Carrier equivalent length methods. Statistical analysis of performance based relative error has been carried out and based on that optimum analytical method for pressure drop prediction in chilled water piping is suggested.

  1. The Analysis of the Water-Expanded Rock Bolts Ruptures During Pressure Test

    Science.gov (United States)

    Pawłowski, Bogdan; Krawczyk, Janusz; Bała, Piotr; Cios, Grzegorz; Tokarski, Tomasz

    2017-06-01

    This paper describe the investigation of a water-expanded rock bolts failed during pressure test (inner water pressure of 330 bar). A main objective of this work was to determine the cracks nucleation and propagation mechanism. It was found that the rock bolts failure was promoted by presence of non-metallic inclusions (mainly long sulphide inclusions) but the primary cause of cracking is strain ageing of steel. Suggestions for improving the behaviour of steel used for water-expanded rock belts by the modification of its chemical composition are proposed finally.

  2. Generation of spherical and cylindrical shock acoustic waves from optical breakdown in water, stimulated with femtosecond pulse

    CERN Document Server

    Potemkin, F V; Podshivalov, A A; Gordienko, V M

    2014-01-01

    Using shadow photography technique we have observed shock acoustic wave from optical breakdown, excited in water by tightly focused Cr:Forsterite femtosecond laser beam, and have found two different regimes of shock wave generation by varying only the energy of laser pulse. At low energies a single spherical shock wave is generated from laser beam waist, and its radius tends to saturation with energy increasing. At higher energies long laser filament in water is fired, that leads to the cylindrical shock wave generation, which longitude increases logarithmically with laser pulse energy. From shadow pictures we estimated maximal velocity in front or shock wave of 2300+/-150m/s and pressure of 1.0+/-0.1 GPa

  3. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    DEFF Research Database (Denmark)

    Modi, Anish; Knudsen, Thomas; Haglind, Fredrik

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance...... temperatures without corroding the equipment by using suitable additives with the mixture. This paper assesses the thermodynamic feasibility of using ammonia-water mixture in high temperature (450 °C) and high pressure (over 100 bar) concentrated solar power plants with direct vapour generation. The following...... is to use direct vapour generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables to operate the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixture at high...

  4. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.;

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...... predictive (i.e. all binary interaction parameters are set equal to 0), while GERG-water uses a temperature dependent interaction parameter fitted to published data. The GERG-water model is proposed as an ISO standard for determining the water content of natural gas. The data sets for nitrogen cover...... they have large scatter. The data sets that have been measured at low pressures extrapolate well towards the ideal equilibrium values. The two models show similar results, but differ at high pressure and/or temperature. CPA is shown to extrapolate well for methane-water to 1000 bar and 573 K, and our...

  5. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tanugi, David; Grossman, Jeffrey C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-08-21

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.

  6. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  7. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Science.gov (United States)

    Cohen-Tanugi, David; Grossman, Jeffrey C.

    2014-08-01

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000-2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m2-h-bar assuming a nanopore density of 1.7 × 1013 cm-2.

  8. Experimental Investigation on the Basic Law of Hydraulic Fracturing After Water Pressure Control Blasting

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng; Ma, Jian; Chen, Shuliang

    2014-07-01

    Because of the advantages of integrating water pressure blasting and hydraulic fracturing, the use of hydraulic fracturing after water pressure control blasting is a method that is used to fully transform the structure of a coal-rock mass by increasing the number and range of hydraulic cracks. An experiment to study hydraulic fracturing after water pressure blasting on cement mortar samples (300 × 300 × 300 mm3) was conducted using a large-sized true triaxial hydraulic fracturing experimental system. A traditional hydraulic fracturing experiment was also performed for comparison. The experimental results show that water pressure blasting produces many blasting cracks, and follow-up hydraulic fracturing forces blasting cracks to propagate further and to form numerous multidirectional hydraulic cracks. Four macroscopic main hydraulic cracks in total were noted along the borehole axial and radial directions on the sample surfaces. Axial and radial main failure planes induced by macroscopic main hydraulic cracks split the sample into three big parts. Meanwhile, numerous local hydraulic cracks were formed on the main failure planes, in different directions and of different types. Local hydraulic cracks are mainly of three types: local hydraulic crack bands, local branched hydraulic cracks, and axial layered cracks. Because local hydraulic cracks produce multiple local layered failure planes and lamellar ruptures inside the sample, the integrity of the sample decreases greatly. The formation and propagation process of many multidirectional hydraulic cracks is affected by a combination of water pressure blasting, water pressure of fracturing, and the stress field of the surrounding rock. To a certain degree, the stress field of surrounding rock guides the formation and propagation process of the blasting crack and the follow-up hydraulic crack. Following hydraulic fracturing that has been conducted after water pressure blasting, the integrity of the sample is found to

  9. Effect of low pressure generator temperature on the performance of double effect vapour absorption heat transformer

    Energy Technology Data Exchange (ETDEWEB)

    Gomri, Rabah [Faculty of Engineering, Department of Genie Climatique, University of Constantine (Algeria)], E-mail: rabahgomri@yahoo.fr

    2011-07-01

    Energy consumption in the industrial sector is high and a significant part of this energy is lost in the form of waste heat. Methods can be used to recover a part of this heat and to improve energetic efficiency, one of them being the absorption heat transformer. This technology uses waste heat, solar energy or geothermal energy to generate heat at a higher temperature than that of the fluid feeding it. The aim of this paper is to determine the exergy performance of a double-effect lithium bromide/water absorption heat transformer system. An exergy analysis was conducted on each of its components. Results showed that the exergy performance increases when the condenser temperature increases but that the absorber temperature interval for which the heat transformer can operate diminishes when the condenser temperature increases. This paper provided useful information on the exergy performance of a double-effect lithium bromide/water absorption heat transformer system.

  10. Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.

    1998-07-01

    Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and

  11. Experimental Investigation on the Basic Law of the Fracture Spatial Morphology for Water Pressure Blasting in a Drillhole Under True Triaxial Stress

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng

    2015-07-01

    The present literature on the morphology of water pressure blasting fractures in drillholes is not sufficient and does not take triaxial confining stress into account. Because the spatial morphology of water pressure blasting fractures in drillholes is not clear, the operations lack an exact basis. Using a large true triaxial water pressure blasting experimental system and an acoustic emission 3-D positioning system, water pressure blasting experiments on cement mortar test blocks (300 mm × 300 mm × 300 mm) were conducted to study the associated basic law of the fracture spatial morphology. The experimental results show that water pressure blasting does not always generate bubble pulsation. After water pressure blasting under true triaxial stress, a crushed compressive zone and a blasting fracture zone are formed from the inside, with the blasting section of the naked drillhole as the center, to the outside. The shape of the outer edges of the two zones is ellipsoidal. The range of the blasting fracture is large in the radial direction of the drillhole, where the surrounding pressure is large, i.e., the range of the blasting fracture in the drillhole radial cross-section is approximately ellipsoidal. The rock near the drillhole wall is affected by a tensile stress wave caused by the test block boundary reflection, resulting in more flake fractures appearing in the fracturing crack surface in the drillhole axial direction and parallel to the boundary surface. The flake fracture is thin, presenting a small-range flake fracture. The spatial morphology of the water pressure blasting fracture in the drillhole along the axial direction is similar to a wide-mouth Chinese bottle: the crack extent is large near the drillhole orifice, gradually narrows inward along the drillhole axial direction, and then increases into an approximate ellipsoid in the internal naked blasting section. Based on the causes of the crack generation, the blasting cracks are divided into three

  12. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  13. Inspecting the surface of implanted Si(111) during annealing by reflective second harmonic generation: The influence of chamber pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chung-Wei; Chang, Shoou-Jinn [Institute of Microelectronics and Department of Electrical Engineering and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Chun-Chu [Department of Electrophysics, National Chia Yi University, Chia Yi 600, Taiwan (China); Lo, Kuang-Yao, E-mail: kuanglo@mail.ncyu.edu.tw [Department of Electrophysics, National Chia Yi University, Chia Yi 600, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-02-01

    The present study used the reflective second harmonic generation (RSHG) method to analyze the quality of the surface layer of implanted Si(111) and to discuss the influence of chamber pressure during rapid thermal annealing. Under a lower chamber pressure, the recrystallization is better, and the defects are eliminated for a higher implanted dose because dopant phosphorus (P) atoms on the surface region more easily out-diffuse at lower chamber pressures. Thus, the occurrence of less out-diffusion makes more P atoms remain on the surface layer and causes larger defects, especially for higher implanted doses. Defects on the surface region are influenced by chamber pressure. In the current work, the RSHG results showed more detailed information by linking secondary ion mass spectrometry and sheet resistance measurement. - Highlights: ► Rapid thermal annealing (RTA) with different chamber pressures was performed. ► The quality of implanted Si was analyzed by reflective second harmonic generation. ► High-dose implanted Si is obviously influenced by the pressure in the RTA chamber. ► Pressure in the RTA chamber affects the generation of defects. ► Defect suppression is obvious at relatively low chamber pressure.

  14. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.

  15. Component failures at pressurized water reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, M.F.

    1980-10-01

    Objectives of this study were to identify those systems having major impact on safety and availability (i.e. to identify those systems and components whose failures have historically caused the greatest number of challenges to the reactor protective systems and which have resulted in greatest loss of electric generation time). These problems were identified for engineering solutions and recommendations made for areas and programs where research and development should be concentrated. The program was conducted in three major phases: Data Analysis, Engineering Evaluation, Cost Benefit Analysis.

  16. Capillary pressure-saturation relationships for diluted bitumen and water in gravel

    Science.gov (United States)

    Hossain, S. Zubair; Mumford, Kevin G.

    2017-08-01

    Spills of diluted bitumen (dilbit) to rivers by rail or pipeline accidents can have serious long-term impacts on environment and ecology due to the submergence and trapping of oil within the river bed sediment. The extent of this problem is dictated by the amount of immobile oil available for mass transfer into the water flowing through the sediment pores. An understanding of multiphase (oil and water) flow in the sediment, including oil trapping by hysteretic drainage and imbibition, is important for the development of spill response and risk assessment strategies. Therefore, the objective of this study was to measure capillary pressure-saturation (Pc-Sw) relationships for dilbit and water, and air and water in gravel using a custom-made pressure cell. The Pc-Sw relationships obtained using standard procedures in coarse porous media are height-averaged and often require correction. By developing and comparing air-water and dilbit-water Pc-Sw curves, it was found that correction was less important in dilbit-water systems due to the smaller difference in density between the fluids. In both systems, small displacement pressures were needed for the entry of non-wetting fluid in gravel. Approximately 14% of the pore space was occupied by trapped dilbit after imbibition, which can serve as a source of long-term contamination. While air-water data can be scaled to reasonably predict dilbit-water behaviour, it cannot be used to determine the trapped amount.

  17. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1981-02-20

    RES-79-103 UNCLASSIFIED NRL--- 400 NURE-CR-17B3 NL mnmmnuunin -’El-.--. IIIIIIINI ., *q. - - ,aM T? * NUREG /CI 73 NIL Iteof AW, SOIituA 1 nert of Water...Progress Report for July-September 1979," NUREG /CR-1197, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1978. 2. F. J. Loss, Ed., "Structural...Progress Report for April-June 1976," ORNL/ NUREG /TM-49, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1976, pp. 27-38. 5. R. G. Berggren

  18. Development of a pressurized bipolar alkaline water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da; Rapelli, Rubia; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], Email: nevesjr@unicamp.br; Marin Neto, Antonio Jose; Lopes, Daniel Gabriel; Camargo, Joao Carlos; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil); Furlan, Andre Luis [Universidade Estadual de Campinas (DE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This paper reports the actual development status of a bipolar alkaline water electrolyzer with maximum production capacity of 1 m3/h of hydrogen and controlled by a PLC (Programmable Logic Controller), which also interfaces the electrolytic system with operators and other equipment, such as gas storage tanks, fuel cells and photovoltaic panels. The project also includes the construction of an electrolysis test bench to record electrical parameters (cathode, anode, separator and electrolyte potentials), the amount of produced gases and gas quality determined by gas chromatography. (author)

  19. Generation and characterization of OH and O radicals by atmospheric pressure steam/oxygen plasma

    CERN Document Server

    Roy, N C; Alam, M K; Talukder, M R

    2016-01-01

    Atmospheric pressure steam/oxygen plasma is generated by a 88 Hz, 6kV AC power supply. The properties of the produced plasma are investigated by optical emission spectroscopy (OES). The relative intensity, rotational, vibrational, excitation temperatures and electron density are studied as function of applied voltage, electrode spacing and oxygen flow rate. The rotational and vibrational temperatures are determined simulating the bands with the aid of LIFBASE simulation software. The excitation temperature is obtained from the CuI transition taking non-thermal equilibrium condition into account employing intensity ratio method. The electron density is approximated from the H_{\\alpha} Stark broadening using the Voigt profile fitting method. It is observed that the rotational and vibrational temperatures are decreased with increasing electrode spacing and O2 flow rate, but increased with the applied voltage. The excitation temperature is found to increase with increasing applied voltage and O2 flow rate, but de...

  20. Generation of homogeneous granular packings: Contact dynamics method with coupling to an external pressure bath

    CERN Document Server

    Shaebani, M Reza; Kertesz, Janos

    2008-01-01

    The contact dynamics method (CD) is an efficient simulation technique of dense granular media where unilateral and frictional contact problems for a large number of rigid bodies have to be solved. In this paper we present a modified version of the contact dynamics to generate homogeneous random packings of rigid grains. CD is coupled to an external pressure bath, which allows the variation of the size of a periodically repeated cell. We follow the concept of the Andersen dynamics and show how it can be applied within the framework of the contact dynamics method. The main challenge here is to handle the interparticle interactions properly, which are based on constraint forces in CD. We implement the proposed algorithm, perform test simulations and investigate the properties of the final packings.

  1. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  2. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  3. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    Energy Technology Data Exchange (ETDEWEB)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to

  4. Propagation speed of a pressure spike during the water-liquid nitrogen interaction

    Directory of Open Access Journals (Sweden)

    Tatchai Sumitra

    2004-05-01

    Full Text Available The experiments on the interaction between the liquid nitrogen and the water were conducted in order to confirm its similarity with the interaction between the molten metal and the volatile liquid coolant,the Fuel-Coolant Interaction (FCI. For the experiments, the water was injected from a pressurized water bottle into a cylindrical interaction chamber to interact with the saturated liquid nitrogen that was filled from the bottom. From the experiments, some of the obtained pressure profiles showed relatively strong and sharp pressure spikes. This suggested the possibility of vapor explosion during the experiments. The propagation speeds of these pressure spikes could be calculated based on the time differences recorded by the transducers at the top and at the bottom of the interaction chamber. Based on the results from an experiment with the injection pressure of 4 bars and the volume ratio for the water and the liquid nitrogen of 0.10, the propagation speed was calculated to be between 22 m/s to 50 m/s. This speed was found to be comparable with the theoretical value for the sound speed in a mixture of liquid nitrogen and nitrogen gas. It was concluded that the observed pressure spikes were actually the movement of the shock wave and that vapor explosion had actually occurred in this particular experiment.

  5. Topping combustor status for second-generation pressurized fluidized bed cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Domeracki, W.F.; Dowdy, T.E. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-01-01

    Second-generation Pressurized Fluidized (PFB) combined cycle employ topping combustion to raise the turbine inlet temperature for enhanced cycle efficiency. This concept creates special combustion system requirements that are very different from requirements of conventional gas turbine systems. The topping combustor provides the means for achieving state-of-the-art turbine inlet temperatures and is the main contributor to enhanced plant performance. The objective of this program is to develop a topping combustor that provides low emissions, and is a durable, efficient device exhibiting stable combustion and manageable wall temperature. The combustor will be required to burn a low-Btu syngas under normal coal-fired conditions. However, for start-up and/or carbonizer outage, it may be necessary to fire a clean fuel, such as oil or natural gas. Prior testing has shown the Westinghouse Multi-Annular Swirl Burner (MASB) to have excellent potential for this application. Metal wall temperatures can be maintained at acceptable levels, even though most cooling is done by 1,600 F vitiated air. Good pattern factors and combustion efficiencies have been obtained. Additionally, low conversion rates of fuel bound nitrogen to NO{sub x} have been demonstrated. This paper presents an update of the status of an ongoing topping combustor development and test program for application to Second-Generation Pressurized Fluidized Bed Combined Cycles (PFBCC). The program is sponsored by the Department of Energy`s Morgantown Energy Technology Center (DOE/METC) and will first be applied commercially into the Clean Coal Technology Round V Four Rivers Energy Modernization Project. Phase 1 of the program involved a conceptual and economic study (Robertson et al., 1988); Phase 2 addresses design and subscale testing of components; and Phase 3 will cover pilot plant testing of components integrated into one system.

  6. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  7. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  8. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  9. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)

    1997-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  10. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  11. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa.

    Science.gov (United States)

    Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  12. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newmark, Robin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hallett, K. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  13. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  14. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  15. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  16. Study of an Atmospheric Pressure Plasma Jet of Argon Generated by Column Dielectric Barrier Discharge

    Science.gov (United States)

    Nur, M.; Kinandana, A. W.; Winarto, P.; Muhlisin, Z.; Nasrudin

    2016-11-01

    An atmospheric of argon plasma jet was generated by using column dielectric barrier discharge has been investigated. In this study, argon gas was passed through the capillary column by regulating the flow rate of gas. This atmospheric pressure plasma jet (APPJ) was generated by a sinusoidal AC high voltage in the range of 0.4 kV to 10 kV and at frequencies of 15 kHz and 26 kHz. APPJ has been produced with flow rate of argon gas from 1 litter/min - 10 litters/min. The electric current has been taken with variation of voltage and each interval argon gas flow rate of 1 litter/min. The results show that electric current increase linearly and then it trends to saturation condition by the increasing of applied voltage. We found also that the length of the plasma jet increase by augmenting of applied voltage both for frequencies of 15 kHz and 26 kHz. Furthermore, our results show that length of plasma jet optimum for flow rate of argon gas of 2 litters/minute. In addition, we obtained that the larger applied voltage, the greater the temperature of the plasma jet.

  17. We’re all in this together! : examining the effect of peer pressure on eco-fashion consumption between Generation Z and Generation Y

    OpenAIRE

    Wang, Nanxi

    2017-01-01

    While Generation Y has already given up the stage to a new consumer hype, Generation Z, both consumer groups remain the most avid fashion fans today. In the light of fashion consumption, it is essential to understand some of the consumption behavior motivations of these similar, yet distinct consumer groups. The present dissertation aims to examine the role of peer pressure as positive drive to purchase eco-fashion that is promoted in social media channels like Instagram and Fa...

  18. Numerical Simulation for Roadways in Swelling Rock Under Coupling Function of Water and Ground Pressure

    Institute of Scientific and Technical Information of China (English)

    缪协兴; 卢爱红; 茅献彪; 张东升

    2002-01-01

    According to the analogical relation in the governing differential equations of the humidity stress field theory and the temperature stress field theory, the problem of solving the humidity stress field was transformed into that of solving the temperature stress field by the change of parameters. As a result, th e problem of roadways in swelling rock under the coupling function of water and ground pressure can be solved by the analytical module of temperature stress fie ld in software ANSYS. In the numerical simulation mentioned above, three kinds of supporting, I.e. Steel support, bolting support and non-support, were taken I nto account, the pressure distribution and deformation state of roadways with a swelling rock floor under the coupling function of water and ground pressure were analyzed and compared with those in the action of only ground pressure. The rese arch results provides a scientific basis for the deformation control of roadways in swelling rock.

  19. Fluctuations of ice cover and sea water pressure nearby the Tunabreen Glacier front at Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. V. Muzylev

    2013-01-01

    Full Text Available Results of oceanographic measurements carried out in February, 2011, from the sea ice surface in the Tempelfjorden near the Tunabreen front in Svalbard are presented. Two temperature and pressure recorders SBE-39 were deployed on a wire from the ice approximately 300 m from the glacier front. The sampling time interval was 1 s. A pressure recorder SBE-37 was located under them on the bottom with a sampling interval of 6 s. Pressure oscillations on the bottom with a period of 90 s and ice cover oscillations with periods of 10 s and 14 s were recorded. The conclusion is made that the recorded oscillations of pressure in the sea water are related to the glacier microsurges, and the observed profiles of temperature, density, and salinity show the absence or insignificant inflow of fresh water from the glacier in the fjord during the winter season. The measurements allowed us to estimate the Young's modulus of the ice.

  20. Partial molar volume of L-Valine in water under high pressure

    Science.gov (United States)

    Sawamura, Seiji

    2013-06-01

    Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.

  1. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate.

    Science.gov (United States)

    Moras, Benjamin; Rey, Stéphane; Vilarem, Gérard; Pontalier, Pierre-Yves

    2017-01-01

    A Doehlert experimental design was conducted and surface response methodology was used to determine the effect of temperature, contact time and solid liquid ratio on isoflavone extraction from soybean flour or Soybean Protein Isolate in pressurized water system. The optimal conditions conducted gave an extraction yield of 85% from soybean flour. For Soybean Protein Isolate compared to soybean flour, the isoflavone extraction yield is 61%. This difference could be explained by higher aglycon content, while aglycon appears to be the least extracted isoflavone by pressurized water. The solid liquid ratio in the ASE cell was the overriding factor in obtaining high yields with both soybean products, while temperature has less influence. A high temperature causes conversion of the malonyls-glucosides and glucosides isoflavone derivatives into glucosides or aglycons forms. pressurized water extraction showed a high solubilization of protein material up to 95% of inserted Soybean Protein Isolate.

  2. Analysis and numerical simulation of dynamic effect on rock under high pressure water jet

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; SI Hu; WANG Dan-dan

    2008-01-01

    Based on continuum mechanics and rock dynamics, analyzed the micro-structure damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on nonlinear finite element and Arbitrary Lagrangian-Eulerian(ALE) method. The dynamic effect impacted on rock under high pressure water jet was simulated by the dynamic contact method. The propagation of stress wave in rock was numerically simulated at different impacting velocity. The results show that the propagation velocity of stress wave is proportional to the impacting velocity of high pressure water jet. The faster the impacting velocity is, the quicker the comedown of stress wave.

  3. Spray Formation of a Liquid Carbon Dioxide-Water Mixture at Elevated Pressures

    Directory of Open Access Journals (Sweden)

    Hakduck Kim

    2016-11-01

    Full Text Available Liquid carbon dioxide-assisted (LCO2-assisted atomization can be used in coal-water slurry gasification plants to prevent the agglomeration of coal particles. It is essential to understand the atomization behavior of the water-LCO2 mixture leaving the injector nozzle under various conditions, including the CO2 blending ratio, injection pressure, and chamber pressure. In this study, the flash-atomization behavior of a water-LCO2 mixture was evaluated with regard to the spray angle and penetration length during a throttling process. The injector nozzle was mounted downstream of a high-pressure spray-visualization system. Based on the results, the optimal condition for the effective transport of coal particles was proposed.

  4. The effect of KZK pressure equation on the sonoluminescence in water and fat tissues

    Energy Technology Data Exchange (ETDEWEB)

    Gheshlaghi, M. [Payame Noor University, P.O.B. 19395-3697, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, 11365-91, Tehran (Iran, Islamic Republic of); Ghadirifar, A. [Islamic Azad University, Faculty of Mechanical Engineering, Mashhad (Iran, Islamic Republic of)

    2015-09-25

    The effect of the produced light flashes from sonoluminescence (SL) on the fat tissue and water is studied. By using KZK equation as an essential equation for calculating the thermal source in bio-liquids, the effective bubble parameters in quasi-adiabatic model are calculated and compared in these systems. It is noticed that the temperature and the intensity for fat tissue are about 30% and 38% less than the ones for water respectively. These results are almost in good agreement with the only experimental measurement denoting less SL temperature in bio-liquids which present more suitable condition for using SL in such applications. - Highlights: • Coupling of acoustic pressure and the pressure's KZK equation for using Sonoluminescence equations. • The Sonoluminescence parameters (temperature, pressure and intensity) are calculated and Compared for water and fat tissue. • The high-intensity radiation of Sonoluminescence bubble is used in medical applications.

  5. Performance of water and hybrid stabilized electric arcs: the impact of dependence of radiation losses and plasma density on pressure

    Science.gov (United States)

    Jeništa, J.; Bartlová, M.; Aubrecht, V.

    2006-10-01

    Processes in the worldwide unique type of thermal plasma generator with water vortex stabilization and combined stabilization of arc by argon flow and water vortex have been numerically studied. Two-dimensional axisymmetric numerical model assumes laminar and compressible plasma flow in the state of local thermodynamic equilibrium. The calculation domain includes the arc discharge area between the near-cathode region and the outlet nozzle of the plasma torch. Radiation losses from the arc are calculated by the partial characteristics method for atmospheric pressure water and argon-water discharges. Thermal, electrical and fluid-dynamic characteristics of such arcs have been studied for the range of currents 150÷600 A under the assumption that radiation losses and plasma density depend linearly on pressure. It was proved that, taking this dependence into account, plasma velocity decrease while power losses from the arc by radiation and radial conduction increase with current. Outlet plasma temperature as well as electric potential drop remain practically unchanged.

  6. Determining the terrain characteristics related to the surface expression of subsurface water pressurization in permafrost landscapes using susceptibility modelling

    Science.gov (United States)

    Holloway, Jean E.; Rudy, Ashley C. A.; Lamoureux, Scott F.; Treitz, Paul M.

    2017-06-01

    Warming of the Arctic in recent years has led to changes in the active layer and uppermost permafrost. In particular, thick active layer formation results in more frequent thaw of the ice-rich transient layer. This addition of moisture, as well as infiltration from late season precipitation, results in high pore-water pressures (PWPs) at the base of the active layer and can potentially result in landscape degradation. To predict areas that have the potential for subsurface pressurization, we use susceptibility maps generated using a generalized additive model (GAM). As model response variables, we used active layer detachments (ALDs) and mud ejections (MEs), both formed by high PWP conditions at the Cape Bounty Arctic Watershed Observatory, Melville Island, Canada. As explanatory variables, we used the terrain characteristics elevation, slope, distance to water, topographic position index (TPI), potential incoming solar radiation (PISR), distance to water, normalized difference vegetation index (NDVI; ME model only), geology, and topographic wetness index (TWI). ALDs and MEs were accurately modelled in terms of susceptibility to disturbance across the study area. The susceptibility models demonstrate that ALDs are most probable on hill slopes with gradual to steep slopes and relatively low PISR, whereas MEs are associated with higher elevation areas, lower slope angles, and areas relatively far from water. Based on these results, this method identifies areas that may be sensitive to high PWPs and helps improve our understanding of geomorphic sensitivity to permafrost degradation.

  7. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes.

    Science.gov (United States)

    Zhou, Haibin; Zhang, Yongmin; Han, Ruoyu; Jing, Yan; Wu, Jiawei; Liu, Qiaojue; Ding, Weidong; Qiu, Aici

    2016-04-22

    Underwater shock waves (SWs) generated by underwater electrical wire explosions (UEWEs) have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs). This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  8. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  9. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  10. Prediction of pore-water pressure response to rainfall using support vector regression

    Science.gov (United States)

    Babangida, Nuraddeen Muhammad; Mustafa, Muhammad Raza Ul; Yusuf, Khamaruzaman Wan; Isa, Mohamed Hasnain

    2016-11-01

    Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.

  11. Prediction of pore-water pressure response to rainfall using support vector regression

    Science.gov (United States)

    Babangida, Nuraddeen Muhammad; Mustafa, Muhammad Raza Ul; Yusuf, Khamaruzaman Wan; Isa, Mohamed Hasnain

    2016-05-01

    Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.

  12. Pressure of drinking water network on the Meyrin site to be boosted

    CERN Multimedia

    2004-01-01

    In the framework of the refurbishment of CERN's drinking water supply system, the final part of the network on the Meyrin site is to be connected to the pumping station operated by Services Industriels de Genève, bringing about a significant increase in the network pressure of up to 5 bar. This means that from January 2005 onwards, the water pressure in buildings will be increased from 2 - 4 bar to 7 - 9 bar. The TS Department will be checking and upgrading the drinking water supply equipment in toilets and washrooms. All users with devices connected to the water supply system are kindly requested to check that these are compatible with the new pressure levels. More information on the buildings affected, the new pressure levels and the dates on which the changes will come into effect can be found at: https://edms.cern.ch/document/525717/1 Should any equipment under your responsibility be incompatible with the future pressure levels, please contact the Technical Control Room on 72201.

  13. Managing risks from virus intrusion into water distribution systems due to pressure transients.

    Science.gov (United States)

    Yang, Jian; LeChevallier, Mark W; Teunis, Peter F M; Xu, Minhua

    2011-06-01

    Low or negative pressure transients in water distribution systems, caused by unexpected events (e.g. power outages) or routine operation/maintenance activities, are usually brief and thus are rarely monitored or alarmed. Previous studies have shown connections between negative pressure events in water distribution systems and potential public health consequences. Using a quantitative microbial risk assessment (QMRA) model previously developed, various factors driving the risk of viral infection from intrusion were evaluated, including virus concentrations external to the distribution system, maintenance of a disinfectant residual, leak orifice sizes, the duration and the number of nodes drawing negative pressures. The most sensitive factors were the duration and the number of nodes drawing negative pressures, indicating that mitigation practices should be targeted to alleviate the severity of low/negative pressure transients. Maintaining a free chlorine residual of 0.2 mg/L or above is the last defense against the risk of viral infection due to negative pressure transients. Maintaining a chloramine residual did not appear to significantly reduce the risk. The effectiveness of ensuring separation distances from sewer mains to reduce the risk of infection may be system-specific. Leak detection/repair and cross-connection control should be prioritized in areas vulnerable to negative pressure transients.

  14. Prolonged water immersion. Effects on blood pressure maturation in normotensive rats.

    Science.gov (United States)

    Magrini, F; Reggiani, P; Ciulla, M; Meazza, R; Branzi, G

    1992-05-01

    The purpose of this experiment was to study the impact of simulated microgravity and of chronic removal of hydrostatic pressure gradients on blood pressure maturation and body growth in rats. A special device was developed in our laboratory to transfer prolonged "dry" water immersion (a technique that has been used for training astronauts under hypogravic conditions) to six Sprague-Dawley test rats (immersion-G group). The time course of heart rate, systolic blood pressure, urinary output, and body weight was monitored from weaning to maturity and then compared with those responses from six sex- and age-matched Sprague-Dawley rats grown in a gravity environment (group G). A downward shift in systolic blood pressure and body weight maturation curves was observed in immersion-G rats from the age of 60 days. Cessation of dry water immersion produced a gradual, significant rise in systolic blood pressure but not in body weight to control values. No marked changes in heart rate and urinary output between G and immersion-G rats were noticed throughout the investigation. Our results provide indirect evidence that an interference in the natural history of blood pressure maturation was introduced by immersion, which dissociated the effects of body weight increase during growth from the effects of ageing per se. It is concluded that the physiological increase in systolic blood pressure during growth is partly gravity-dependent.

  15. Methodology for Calculation of Pressure Impulse Distribution at Gas-Impulse Regeneration of Water Well Filters

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2010-01-01

    Full Text Available The paper considers a mathematical model for process of pressure impulse distribution in a water well which appear as a result of underwater gas explosions in cylindrical and spherical explosive chambers with elastic shells and in a rigid cylindrical chamber which is open from the bottom. The proposed calculation methodology developed on the basis of the mathematical model makes it possible to determine pressure in the impulse on a filter wall and at any point of a water well pre-filter zone. 

  16. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    Science.gov (United States)

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...Engineer Center Tyndall Air Force Base, FL 32403-5319 ERDC/GSL TR-14-11 ii Abstract Runway rubber removal is a maintenance function employed to

  17. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    Science.gov (United States)

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  18. Formation and properties of water from quartz and hydrogen at high pressure and temperature

    Science.gov (United States)

    Futera, Zdenek; Yong, Xue; Pan, Yuanming; Tse, John S.; English, Niall J.

    2017-03-01

    Quartz, as the most stable low-pressure polymorph of silica (SiO2), is widely abundant in Earth's crust and mantle, exhibiting relatively high chemical stability. Although silica is only slightly soluble in water at ambient conditions, producing silicon-based weakly acidic compounds, Shinozaki et al. (2014) have shown recently that water itself can be formed by dissolution of SiO2 in H2 fluid under high- temperature and pressure conditions. Here, we have simulated this process via molecular-dynamics techniques based on a reactive force-field description of the Si O2 /H2 interface. Diffusion of the H2 fluid into the quartz crystal lattice was observed upon increasing temperature and pressure, followed by interaction of dissociated, atomic hydrogen with oxygen atoms in the SiO2 lattice, disrupting the lattice and leading to the formation of water. Interestingly, water is evolved in the subsurface region of the silica, and it remains confined there, isolated from the hydrogen fluid, which corresponds precisely to the ice-like spectroscopic patterns observed experimentally. The over-pressured water formed from quartz and H2 is a possible trigger for nucleating enigmatic deep earthquakes in the continental mantle lithosphere.

  19. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    Science.gov (United States)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  20. Embolized Stems Recover Overnight in Zea mays: The Role of Soil Water, Root Pressure, and Nighttime Transpiration

    Science.gov (United States)

    Gleason, Sean M.; Wiggans, Dustin R.; Bliss, Clayton A.; Young, Jason S.; Cooper, Mitchell; Willi, Katie R.; Comas, Louise H.

    2017-01-01

    It is not currently well-understood how much xylem conductance is lost in maize plants during the day, if conductance is recovered during the night, or what soil water conditions are required for recovery to take place. To answer these questions we designed a greenhouse experiment whereby two genetically dissimilar maize genotypes were subjected to a level of water stress commonly experienced in the field (Ψxylem ∼-2 MPa). We then measured the loss of stem-specific conductivity associated with this level of stress, as well as the overnight recovery following three re-watering treatments: Ψsoil ∼ 0 MPa, Ψsoil ∼-0.40 MPa, and Ψsoil ∼-1.70 MPa. Mid-day leaf water potentials of -1.98 MPa resulted in stem-specific conductivity (KS) values that were 31.5% of maximal (i.e., 68% loss). Returning soils to field capacity (Ψsoil ∼ 0 MPa) overnight allowed for the significant recovery of KS (76% of maximal), whereas partial watering (Ψsoil ∼-0.40 MPa) resulted KS values that were 51.7% of maximal values, whereas not watering resulted in no recovery (35.4% of maximal; Ψsoil ∼-1.7 MPa). Recovery of KS was facilitated by the generation of root pressure and low rates of nighttime transpiration. PMID:28503183

  1. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  2. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  3. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    Science.gov (United States)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  4. Selective electrochemical generation of hydrogen peroxide from water oxidation

    CERN Document Server

    Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet, over a billion people lack access to clean drinking water. Present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH$^*$ can be used as a descriptor to screen for selectivity trends between the 2e$^-$ water oxidation to H$_2$O$_2$ and the 4e$^-$ oxidation to O$_2$. We show that materials that bind oxygen intermediates sufficiently weakly, such as SnO$_2$, can activate hydrogen peroxide evolution. We present a rati...

  5. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... not been reached. Contact angle measurements of droplets on solid surfaces offer useful quantitative measurements of the physiochemical properties of the solid-liquid interface. For hydrophobic systems the properties the solid- liquid interface are now known to be strongly influenced by the presence of air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...

  6. Water surface elevations recorded by submerged pressure transducers along the upper Willamette River, Oregon, Spring, 2015

    Science.gov (United States)

    Lind, Greg D.; Wellman, Roy E.; Mangano, Joseph F.

    2017-01-01

    Water-surface elevations were recorded by submerged pressure transducers in Spring, 2015 along the upper Willamette River, Oregon, between Eugene and Corvallis. The water-surface elevations were surveyed by using a real-time kinematic global positioning system (RTK-GPS) at each pressure sensor location. These water-surface elevations were logged over a small range of discharges, from 4,600 cubic feet per second to 10,800 cubic feet per second at Harrisburg, OR. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple datasets that will be released for this effort.

  7. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  8. A narrow amide I vibrational band observed by sum frequency generation spectroscopy reveals highly ordered structures of a biofilm protein at the air/water interface.

    Science.gov (United States)

    Wang, Zhuguang; Morales-Acosta, M Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J; Ahn, Charles H; Leblanc, Roger M; Yan, Elsa C Y

    2016-02-18

    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I bands ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface.

  9. Radiolytic hydrogen generation at silicon carbide–water interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Jennifer [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Westlakes Science & Technology Park, Moor Row CA24 3HA (United Kingdom); Reiff, Sarah C. [Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Pimblott, Simon M. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Westlakes Science & Technology Park, Moor Row CA24 3HA (United Kingdom); LaVerne, Jay A., E-mail: laverne.1@nd.edu [Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-02-15

    While many of the proposed uses of SiC in the nuclear industry involve systems that are assumed to be dry, almost all materials have dissociated chemisorbed water associated with their surface, which can undergo chemistry in radiation fields. Silicon carbide α-phase and β-phase nanoparticles with water were irradiated with γ-rays and 5 MeV {sup 4}He ions followed by the determination of the production of molecular hydrogen, H{sub 2}, and characterization of changes in the particle surface. The yields of H{sub 2} from SiC–water slurries were always greater than expected from a simple mixture rule indicating that the presence of SiC was influencing the production of H{sub 2} from water, probably through an energy transfer from the solid to liquid phase. Although the increase in H{sub 2} yields was modest, a decrease in the water mass percentage led to an increase in H{sub 2} yields, especially for very low amounts of water. Surface analysis techniques included diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer – Emmett – Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Little change in the SiC surface was observed following radiolysis except for some conversion of β-phase SiC to the α-phase and the formation of SiO{sub 2} with He ion radiolysis. - Highlights: • SiC–water interfaces were irradiated with γ-rays and 5 MeV He ions. • Hydrogen production from SiC–water slurries was greater than that for pure water. • Raman spectroscopy shows conversion of the α-phase SiC to the β-phase. • He ion radiolysis resulted in the formation of SiO{sub 2} on the surface.

  10. The influence of chemicals on water quality in a high pressure separation rig

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Einar E.; Hemmingsen, Paal V.; Mediaas, Heidi; Svarstad, May Britt E.; Westvik, Arild

    2006-03-15

    In the research laboratory of Statoil at Rotvoll, Trondheim, a high pressure experimental rig used for separation and foaming studies has been developed. There have been several studies to ensure that the high pressure separation rig produces reliable and consistent results with regard to the water-in-oil and oil-in-water contents. The results are consistent with available field data and, just as important, consistent when changing variables like temperature, pressure drop and water cut. The results are also consistent when changing hydrodynamic variables like flow velocity and mixing point (using different choke valves) and when using oil with and without gas saturation. At equal experimental conditions, the high pressure separation rig is able to differentiate between separation characteristics of oil and water from different fields and from different wells at the same field. The high pressure separation and foam rig can be used from -10 deg C to 175 deg C and at pressures up to 200 bar. Crude oil and water are studied under relevant process conditions with respect to temperature, pressure, shear, water cut and separation time. In the present work the influence of chemicals on the oil and water quality has been studied. Chemicals have been mixed into the oil and/or water beforehand or added in situ (on-stream; simulated well stream). The amount of oil in the water after a given residence time in the separation cell has been measured. The results from the high pressure rig show that some demulsifiers, with their primary purpose of giving less water in oil, also have influence on the water quality. Improvement of water quality has been observed as well as no effect or aggravation. The experimental results have been compared to results from bottle tests at the field. The results from the bottle tests and from the laboratory are not corresponding, and only a full-scale field test can tell which of them are the correct results, if any. (Experience from corresponding

  11. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source

    Science.gov (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.

    2002-07-01

    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  12. Long term evolution of the subglacial water pressure on Russell glacier, a modelling approach.

    Science.gov (United States)

    de Fleurian, Basile; Mouginot, Jeremie; Nisancioglu, Kerim H.

    2017-04-01

    Basal sliding is the main control on land terminating outlet glaciers velocity. This sliding is mainly driven by the water pressure at the base of the glaciers. The ongoing increase in surface melt of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here, we examine the case of Russell glacier, West Greenland, where a remarkably extensive set of observations have been gathered. Our recently published study (de Fleurian et. al. 2016) is pointing to the fact that two different hydrological regimes exist under this glacier. Near the front of the glacier, the development of an efficient drainage system allows the water pressure to drop quickly at the end of summer and yields a stagnation of its annual-mean value. Conversely, further upglacier, the lack of an efficient drainage system leads to an increase of the mean annual water pressure throughout the years. This study left the question of the long term evolution of the subglacial hydrological system under a warmer climate. To answer this question we present here the results of longer simulations where runoff forcing is derived from a simple Positive Degree Day scheme scaled on the IPCC climatic scenarios. To get further insight from our subglacial hydrological model, we investigate the impact of the varying water pressure on modelled surface velocities. Reference: de Fleurian, B., M. Morlighem, H. Seroussi, E. Rignot, M. R. van den Broecke, P. Kuipers Munneke, J. Mouginot, C. J. P. P. Smeets, and A. J. Tedstone (2016), A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland, J. Geophys. Res. Earth Surf., 121, 1834-1848, doi:10.1002/2016JF003842.

  13. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  14. Hydrogen generation from polyvinyl alcohol-contaminated wastewater by a process of supercritical water gasification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gasification of polyvinyl alcohol (PVA)-contaminated wastewater in supercritical water (SCW) was investigated in a continuous flow reactor at 723-873 K, 20-36 MPa and residence time of 20-60 s. The gas and liquid products were analyzed by GC/TCD, TOC analyzer and GC/MS. The main gas products were H2, CH4, CO and CO2. Pressure change had no significant influence on gasification efficiency. Higher temperature and longer residence time enhanced gasification efficiency, and lower temperature favored the production of H2. The effects of KOH catalyst on gas product composition were studied, and gasification efficiency were analyzed. The TOC removal efficiency (TOCR), carbon gasification ratio (CGR) and hydrogen gasification ratio (HGR) were up to 96.00%, 95.92% and 126.40% at 873 K and 60 s, respectively, which suggests PVA can be completely gasified in SCW. The results indicate supercritical water gasification for hydrogen generation is a promising process for the treatment of PVA wastewater.

  15. Game theory competition analysis of reservoir water supply and hydropower generation

    Science.gov (United States)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  16. Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-mao; ZHONG Hai-quan; LI Ying-chuan; LIU Zhong-neng; WANG Qi

    2014-01-01

    A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation windows, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil go(B-B), and the bubble gas-intermittent heavy oilgo(B-I). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oilgo(I-B)and the intermittent gas-intermittent heavy oilgo(I-I). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.

  17. Median Nerve Injury Due to High-Pressure Water Jet Injection: A Case Report and Review of Literature.

    Science.gov (United States)

    Emre, Ufuk; Unal, Aysun

    2009-08-01

    High-pressure injuries that occur accidentally are potentially destructive injuries that often affect the nondominant hands of young men. A variety of products such as paint, gasoline, grease, fuel oil, cement, thinner and solvents have been reported as destructive agents. High-pressure water jet injection injuries to soft tissues have rarely been reported. In this study, we present the first case of median nerve injury due to high-pressure water jet injection by a water spray gun.

  18. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen...... evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  19. Microwave Powered Gravitationally Independent Medical Grade Water Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative microwave system is proposed for the continuous production of medical grade water. This system will utilize direct absorption of microwave radiation to...

  20. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    Science.gov (United States)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  1. Local Entropy Generation in Compressible Flow through a High Pressure Turbine with Delayed Detached Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Dun Lin

    2017-01-01

    Full Text Available Gas turbines are important energy-converting equipment in many industries. The flow inside gas turbines is very complicated and the knowledge about the flow loss mechanism is critical to the advanced design. The current design system heavily relies on empirical formulas or Reynolds Averaged Navier–Stokes (RANS, which faces big challenges in dealing with highly unsteady complex flow and accurately predicting flow losses. Further improving the efficiency needs more insights into the loss generation in gas turbines. Conventional Unsteady Reynolds Averaged Simulation (URANS methods have defects in modeling multi-frequency, multi-length, highly unsteady flow, especially when mixing or separation occurs, while Direct Numerical Simulation (DNS and Large Eddy Simulation (LES are too costly for the high-Reynolds number flow. In this work, the Delayed Detached Eddy Simulation (DDES method is used with a low-dissipation numerical scheme to capture the detailed flow structures of the complicated flow in a high pressure turbine guide vane. DDES accurately predicts the wake vortex behavior and produces much more details than RANS and URANS. The experimental findings of the wake vortex length characteristics, which RANS and URANS fail to predict, are successfully captured by DDES. Accurate flow simulation builds up a solid foundation for accurate losses prediction. Based on the detailed DDES results, loss analysis in terms of entropy generation rate is conducted from two aspects. The first aspect is to apportion losses by its physical resources: viscous irreversibility and heat transfer irreversibility. The viscous irreversibility is found to be much stronger than the heat transfer irreversibility in the flow. The second aspect is weighing the contributions of steady effects and unsteady effects. Losses due to unsteady effects account for a large part of total losses. Effects of unsteadiness should not be neglected in the flow physics study and design

  2. Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure

    Science.gov (United States)

    Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.

    2005-01-01

    There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.

  3. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  4. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Directory of Open Access Journals (Sweden)

    Shigeaki Ueno

    2015-05-01

    Full Text Available The effect of high hydrostatic pressure (HHP treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa.

  5. Negative Pressures and the First Water Siphon Taller than 10.33 Meters

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Romero-Maltrana, Diego; Villanueva, Jaime

    2016-01-01

    A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid’s cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli’s ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant) to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures. PMID:27054847

  6. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  7. Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils

    Science.gov (United States)

    Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.

    2014-05-01

    Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.

  8. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuan S. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Shao, Xi [Univ. of Maryland, College Park, MD (United States)

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  9. Generation of rotationally dominated galaxies by mergers of pressure-supported progenitors

    CERN Document Server

    Di Matteo, P; Lehnert, M D; Combes, F; Semelin, B

    2009-01-01

    Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with v/sigma > 1 outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depend on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on a orbit with high angular momentum. Systems with these hybrid properties have been recently observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitat...

  10. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  11. Dynamical Generation of a Repulsive Vector Contribution to the Quark Pressure

    CERN Document Server

    Restrepo, Tulio E; Pinto, Marcus Benghi; Ferrari, Gabriel N

    2014-01-01

    Lattice QCD results for the coefficient $c_2$ appearing in the Taylor expansion of the pressure show that this quantity raises with the temperature towards the Stefan-Boltzmann limit. On the other hand, model approximations predict that when a vector repulsion, parametrized by $G_V$, is present this coefficient reaches a maximum just after $T_c$ and then deviates from the lattice predictions. Recently, this discrepancy has been used as a guide to constrain the (presently unknown) value of $G_V$ within the framework of effective models at large-$N_c$ (LN). In the present investigation we show that, due to finite $N_c$ effects, $c_2$ may also develop a maximum even when $G_V=0$ since a vector repulsive term can be dynamically generated by exchange type of radiative corrections. Here we apply the the Optimized Perturbation Theory (OPT) method to the two flavor Polyakov--Nambu--Jona-Lasinio model (at $G_V=0$) and compare the results with those furnished by lattice simulations an by the LN approximation at $G_V=0$...

  12. Use of inexpensive pressure transducers for measuring water levels in wells

    Science.gov (United States)

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  13. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  14. Effect Of Pressure On The Temperature Dependence Of Water Solubility In Forsterite

    Science.gov (United States)

    Bali, E.; Bolfan-Casanova, N.; Koga, K.

    2005-12-01

    Water storage capacity of the upper mantle largely depends on water solubility in mantle olivine. Realistic models must take into account the simultaneous effects of variables such as pressure, temperature, iron content and silica activity. Previous experimental studies have shown that the water solubility in olivine increases with increasing water fugacity up to 12 GPa at 1100°C. Water incorporation in olivine was also observed to increase with increasing temperature and increasing iron content at 0.3 GPa, however the temperature dependence was not studied at higher pressures. Interestingly, the only high-pressure data available, that is for wadsleyite and ringwoodite, show that their water solubility decreases with increasing temperature. The goal of this study is to determine the dependence of water maximum concentration on temperature at pressures higher than 0.3 GPa. We performed experiments at 3 and 6 GPa, and temperatures ranging from 1000 to 1400°C in the MgO-SiO2-H2O system using a multi-anvil apparatus. The olivine and orthopyroxene molar ratio was 1 to 1 in the starting material with 5 wt% H2O. The samples were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The mineralogical assemblage consisted of olivine+orthopyroxene+fluid at temperatures below 1250°C both at 3 and 6 GPa and olivine+melt+/-orthopyroxene at higher temperatures. At 3 GPa, above 1325°C orthopyroxene was missing from the assemblage, whereas in case of the 6 GPa experiments it was present even at higher temperatures. This indicates a change in fluid composition from 3 to 6 GPa. Preliminary data using unpolarized FTIR measurements, but comparing same orientations, indicate that water solubility in olivine at 6 GPa decreases with increasing temperature. This observation agrees with the results on wadsleyite and ringwoodite, but contradict the results of the existing low-pressure data. The explaination we propose for the change in temperature

  15. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-04-19

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... Management Criteria for PWR Reactor Vessel Internal Components.'' The original notice provided the ADAMS... published a notice requesting public comments on draft LR-ISG-2011-04, ``Updated Aging Management...

  16. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-03-20

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... license renewal interim staff guidance (LR-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for... Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures...

  17. Creep and stick-slip in subglacial granular beds forced by variations in water pressure

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    of grain and fluid dynamics to show that rapid rearrangements of load-bearing force chains within the granular sediments drive mechanical transitions between stability and failure. Cyclic variations in driving stresses or pore-water pressure give rise to strain-rate dependent creeping motion at stress...

  18. Formation of genotoxic compounds by medium pressure ultra violet treatment of nitrate rich water

    NARCIS (Netherlands)

    Martijn, A.J.; Boersma, M.G.; Vervoort, Jacques; Rietjens, I.; Kruithof, J.C.

    2014-01-01

    Genotoxic compounds were produced by full-scale medium pressure (MP) ultraviolet hydrogen peroxide (UV/H2O2) treatment of nitrate-rich pretreated surface water. It was hypothesized that this formation was caused by the reaction of nitrate photolysis intermediates with natural organic matter (NOM). A

  19. Identifying the effects on fish of changes in water pressure during turbine passage

    Energy Technology Data Exchange (ETDEWEB)

    Becker, James M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernathy, C. Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-09-01

    This article discusses experiments conducted by the Pacific Northwest National Laboratory to determine how water pressure and dissolved gas levels associated with hydroelectric facilities may affect the survival of fish. The results of the experiments are discussed as well as how these results can be applied to turbine designs and plant operation.

  20. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  1. Mark I 1/5-scale boiling water reactor pressure suppression experiment facility report

    Energy Technology Data Exchange (ETDEWEB)

    Altes, R.G.; Pitts, J.H.; Ingraham, R.F.; Collins, E.K.; McCauley, E.W.

    1977-10-11

    An accurate Mark I /sup 1///sub 5/-scale, boiling water reactor (BWR), pressure suppression facility was designed and constructed at Lawrence Livermore Laboratory (LLL) in 11 months. Twenty-seven air tests using the facility are described. Cost was minimized by utilizing equipment borrowed from other LLL programs. The total value of borrowed equipment exceeded the program's budget of $2,020,000. Substantial flexibility in the facility was used to permit independent variation in the drywell pressure-time history, initial pressure in the drywell and toroidal wetwells, initial toroidal wetwell water level and downcomer length, vent line flow resistance, and vent line flow asymmetry. The two- and three-dimensional sectors of the toroidal wetwell provided significant data.

  2. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    Science.gov (United States)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  3. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    Science.gov (United States)

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune

    2015-12-01

    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  4. Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets.

    Science.gov (United States)

    Dang, Van Bac; Kim, Sung-Jin

    2017-01-17

    Generating periodic flows with an oscillator driven only by water-head pressure has potential for the operation of microfluidic systems without any dynamic off-chip controllers. However, its operational characteristic is not well understood due to complex dynamic interactions of the microfluidic components. Here, we focus on the mechanism of a water-head-driven oscillator and analyze the functions of its flow-switching period (T) and flow rate (Q) in a wide range (0.1 s-5.9 h and 2 μL min(-1)-2 mL min(-1)). We show linear control of T and Q by their corresponding fluidic resistors even with the complex and nonlinear relation of the microfluidic components. This allows independent regulation of T and Q within their operational ranges but we found the two parameters mutually constrain their ranges via fluidic resistance. Also, we characterize the control of T by water-head pressure and present operational ranges of input water-head pressure decrease with increasing output water-head pressure. To show its utility, we apply the oscillator to generate droplets with low interfacial tension aqueous two-phase systems. Our study would be useful and provide the foundation for various functions of water-head-driven microfluidic circuits.

  5. Once-through steam generator (OTSG) materials and water chemistry. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Pocock, F.J.; Levstek, D.F.

    1974-01-01

    Materials and water chemistry research results associated with the development of the Oconee-1 Reactor steam generator are presented. A summary of water chemistry data acquired during preoperational testing and power operation to date is also included. These data confirm the operational practicality of the nuclear once-through concept using volatile water treatment and high purity condensate demineralized feedwater.

  6. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  7. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  8. Analysis of pressure oscillations and safety relief valve vibrations in the main steam system of a Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Galbally, David, E-mail: dgalbally@innomerics.com [Innomerics, Calle San Juan de la Cruz 2, 28223 Madrid (Spain); García, Gonzalo [Alava Ingenieros, Calle Albasanz 16, 28037 Madrid (Spain); Hernando, Jesús; Sánchez, Juan de Dios [Iberdrola, Calle Tomás Redondo 1, 28033 Madrid (Spain); Barral, Marcos [Alava Ingenieros, Calle Albasanz 16, 28037 Madrid (Spain)

    2015-11-15

    Highlights: • We analyze the vibratory response of safety relief valves in the main steam system of a Boiling Water Reactor. • We show that valve internals experience acceleration spikes of more than 20 g. • Spikes are caused by impacts between the valve disc and the seating surface of the valve nozzle. • Resonances occur at higher Strouhal numbers than those reported in the literature for tandem side branches. • Valves experience high vibration levels even for resonances caused by second order hydrodynamic modes. - Abstract: Steam flow inside the main steam lines of a Boiling Water Reactor can generate high-amplitude pressure oscillations due to coupling between the separated shear layer at the mouth of the safety relief valves (SRVs) and the acoustic modes of the side branches where the SRVs are mounted. It is known that certain combinations of flow velocities and main steam line geometries are capable of generating self-excited pressure oscillations with very high amplitudes, which can endanger the structural integrity of main steam system components, such as safety valves, or reactor internals such as steam dryers. However, main steam systems may also experience lower amplitude pressure oscillations due, for example, to coupling of higher order hydrodynamic modes with acoustic cavity modes, or to incipient resonances where the free stream velocity is slightly lower than the critical flow velocity required to develop a stable locked-on acoustic resonance. The amplitude of these pressure oscillations is typically insufficient to cause readily observable structural damage to main steam system components, but may still have subtle effects on safety relief valves. The investigation presented in this article focuses on the characterization of the response of SRVs under the effects of pressure oscillations associated with acoustic excitations that are insufficient to cause structural damage to the valves or associated equipment. It is shown that valve

  9. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    Science.gov (United States)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  10. Study of distribution and characteristics of the time average of pressure of a water cushion pool

    Science.gov (United States)

    Guo, Y. H.; Fu, J. F.

    2016-08-01

    When a dam discharges flood water, the plunging flow with greater kinetic energy, will scour the riverbed, resulting in erosion damage. In order to improve the anti-erosion capacity of a riverbed, the cushion pool created. This paper is based on turbulent jet theoryto deduce the semi-empirical formula of the time average of pressure in the impinging portion of the cushion pool. Additionally, MATLAB numerical is used to conduct a simulation analysis according to turbulent jet energy and watercushion depth when water floods into the water cushion pool, to determine the regularities of distribution and related characteristics.

  11. Low pressure water vapour discharge as a light source: I. Spectroscopic characteristics and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Artamonova, E; Artamonova, T; Beliaeva, A; Gorbov, D; Khodorkovskii, M; Melnikov, A; Milenin, V; Murashov, S; Rakcheeva, L; Timofeev, N [Saint-Petersburg State University, Ulyanovskaya 3, 198504 (Russian Federation); Michael, D [General Electric Global Research Center, One Research Circle (Bldg K1 Rm 4B31), Niskayuna, NY, 12309 (United States)], E-mail: timofeev@pobox.spbu.ru, E-mail: michael@crd.ge.com

    2008-08-07

    Spectral and electrical characteristics of a low pressure dc discharge formed from a mixture of one of the rare gases Ne, Ar or Kr plus water vapour are studied. Water vapour is only a minor additive to the rare gas. It has been shown that enhanced emission of the OH 306.4 nm band is registered from the discharge of Ar mixed with water vapour. Plasmas from the other investigated rare gases yielded considerably less OH 306.4 nm emission. Data about consumed electric power, spectra and relative efficiencies are presente000.

  12. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site.

  13. Investigation of the pressure generated in the mould cavity during polyurethane integral skin foam moulding

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available An industrial scale measuring system was set up to investigate the pressure arising in the mould cavity during polyurethane integral skin foaming. The system is able to measure the pressure arising in the mould cavity and the pressure distribution using a piezoresistive pressure sensor. The pressure distribution was measured at 18 points along the mould surface at constant production parameters. Then six production parameters, which affect the pressure, were investigated in detail with the Taguchi method of experimental design. The results of the design were processed by ANOVA (analysis of variance. Three major influencing parameters were estimated by regression analysis. Finally an equation was developed to give a good estimation to the pressure arising in the mould cavity.

  14. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  15. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    Science.gov (United States)

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  16. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...

  17. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2015-03-01

    Full Text Available Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogenesis/methanogenesis. The fermentation liquid of the pressurized anaerobic filter was circulated periodically via a flash tank, operating at atmospheric pressure. Due to the pressure drop, part of dissolved carbon dioxide was released from the liquid phase into the flash tank. The depressurized fermentation liquid was then recycled to the pressurized reactor. Three different flow rates (0 L·day−1, 20 L·day−1 and 40 L·day−1 were tested with three repetitions. As the daily recycled flashed liquid flow was increased from 0 to 40 L, six times as much as the daily feeding, the methane content in the biogas increased from 75 molar percent (mol% to 87 mol%. The pH value of the substrate in the methane reactor rose simultaneously from 6.5 to 6.7. The experimental data were verified by calculation.

  18. Improvements in tongue strength and pressure-generation precision following a tongue-pressure training protocol in older individuals with dysphagia: Three case reports

    Directory of Open Access Journals (Sweden)

    Erin M Yeates

    2008-12-01

    Full Text Available Erin M Yeates1, Sonja M Molfenter1, Catriona M Steele1,2,3,41Toronto Rehabilitation Institute, Toronto, Canada; 2Department of Speech-Language Pathology, University of Toronto, Toronto, Canada; 3Canadian Institutes of Health Research New Investigator in Aging; 4Bloorview Kids Rehab, Toronto, CanadaAbstract: Dysphagia, or difficulty swallowing, often occurs secondary to conditions such as stroke, head injury or progressive disease, many of which increase in frequency with advancing age. Sarcopenia, the gradual loss of muscle bulk and strength, can place older individuals at greater risk for dysphagia. Data are reported for three older participants in a pilot trial of a tongue-pressure training therapy. During the experimental therapy protocol, participants performed isometric strength exercises for the tongue as well as tongue pressure accuracy tasks. Biofeedback was provided using the Iowa Oral Performance Instrument (IOPI, an instrument that measures tongue pressure. Treatment outcome measures show increased isometric tongue strength, improved tongue pressure generation accuracy, improved bolus control on videofluoroscopy, and improved functional dietary intake by mouth. These preliminary results indicate that, for these three adults with dysphagia, tongue-pressure training was beneficial for improving both instrumental and functional aspects of swallowing. The experimental treatment protocol holds promise as a rehabilitative tool for various dysphagia populations.Keywords: speech-language pathology, dysphagia, rehabilitation, aging, strength, accuracy

  19. Investigating movement of heat and water generators at work underground

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2016-02-01

    Full Text Available The problems of coal excavation and environement protection are priority for Ukraine. Underground coal gasification (UCG and underground coal incineration (UCI are combining excavation with simultaneous underground processing in entire technological process, capable to solve this problem. Using an intermediate heat carrier - ground water may optimisating of these processes.

  20. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)