WorldWideScience

Sample records for generation plant solar-tep

  1. Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP

    Directory of Open Access Journals (Sweden)

    Susana Agustí

    2017-04-01

    Full Text Available Transparent exopolymer particles (TEP, usually associated with phytoplankton blooms, promote the formation of marine aggregates. Their exportation to deep waters is considered a key component of the biological carbon pump. Here, we explored the role of solar radiation and picocyanobacteria in the formation of TEP in oligotrophic surface waters of the Atlantic and Pacific Oceans in ten on-deck incubation experiments during the Malaspina 2010 Expedition. TEP concentrations were low on the ocean’s surface although these concentrations were significantly higher on the surface of the Pacific (24.45 ± 2.3 μg XG Eq. L-1 than on the surface of the Atlantic Ocean (8.18 ± 4.56 μg XG Eq. L-1. Solar radiation induced a significant production of TEP in the on-deck experiments from the surface water of the Pacific Ocean, reaching values up to 187.3 μg XG Eq. L-1 compared with the low production observed in the dark controls. By contrast, TEP production in the Atlantic Ocean experiments was lower, and its formation was not related to the light treatments. Prochlorococcus sp. from the surface ocean was very sensitive to solar radiation and experienced a high cell decay in the Pacific Ocean experiments. TEP production in the on-deck incubation experiments was closely related to the observed cell decay rates of Prochlorococcus sp., suggesting that this picocyanobacteria genus is a potential source of TEP. The evidence to propose such potential role was derived experimentally, using natural communities including the presence of several species and a variety of processes. Laboratory experiments with cultures of a non-axenic strain of Prochlorococcus marinus were then used to test TEP production by this genus. TEP concentrations in the culture increased with increasing cell abundance during the exponential phase, reaching the highest TEP concentration at the beginning of the stationary phase. The average TEP concentration of 1474 ± 226 μg XG Eq. L-1 (mean

  2. Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP)

    KAUST Repository

    Agusti, Susana; Iuculano, Francesca; Mazuecos, Ignacio P.; Reche, Isabel

    2017-01-01

    Transparent exopolymer particles (TEP), usually associated with phytoplankton blooms, promote the formation of marine aggregates. Their exportation to deep waters is considered a key component of the biological carbon pump. Here, we explored the role of solar radiation and picocyanobacteria in the formation of TEP in oligotrophic surface waters of the Atlantic and Pacific Oceans in ten on-deck incubation experiments during the Malaspina 2010 Expedition. TEP concentrations were low on the ocean’s surface although these concentrations were significantly higher on the surface of the Pacific (24.45 ± 2.3 μg XG Eq. L-1) than on the surface of the Atlantic Ocean (8.18 ± 4.56 μg XG Eq. L-1). Solar radiation induced a significant production of TEP in the on-deck experiments from the surface water of the Pacific Ocean, reaching values up to 187.3 μg XG Eq. L-1 compared with the low production observed in the dark controls. By contrast, TEP production in the Atlantic Ocean experiments was lower, and its formation was not related to the light treatments. Prochlorococcus sp. from the surface ocean was very sensitive to solar radiation and experienced a high cell decay in the Pacific Ocean experiments. TEP production in the on-deck incubation experiments was closely related to the observed cell decay rates of Prochlorococcus sp., suggesting that this picocyanobacteria genus is a potential source of TEP. The evidence to propose such potential role was derived experimentally, using natural communities including the presence of several species and a variety of processes. Laboratory experiments with cultures of a non-axenic strain of Prochlorococcus marinus were then used to test TEP production by this genus. TEP concentrations in the culture increased with increasing cell abundance during the exponential phase, reaching the highest TEP concentration at the beginning of the stationary phase. The average TEP concentration of 1474 ± 226 μg XG Eq. L-1 (mean ± SE) observed at

  3. Prochlorococcus as a Possible Source for Transparent Exopolymer Particles (TEP)

    KAUST Repository

    Agusti, Susana

    2017-04-26

    Transparent exopolymer particles (TEP), usually associated with phytoplankton blooms, promote the formation of marine aggregates. Their exportation to deep waters is considered a key component of the biological carbon pump. Here, we explored the role of solar radiation and picocyanobacteria in the formation of TEP in oligotrophic surface waters of the Atlantic and Pacific Oceans in ten on-deck incubation experiments during the Malaspina 2010 Expedition. TEP concentrations were low on the ocean’s surface although these concentrations were significantly higher on the surface of the Pacific (24.45 ± 2.3 μg XG Eq. L-1) than on the surface of the Atlantic Ocean (8.18 ± 4.56 μg XG Eq. L-1). Solar radiation induced a significant production of TEP in the on-deck experiments from the surface water of the Pacific Ocean, reaching values up to 187.3 μg XG Eq. L-1 compared with the low production observed in the dark controls. By contrast, TEP production in the Atlantic Ocean experiments was lower, and its formation was not related to the light treatments. Prochlorococcus sp. from the surface ocean was very sensitive to solar radiation and experienced a high cell decay in the Pacific Ocean experiments. TEP production in the on-deck incubation experiments was closely related to the observed cell decay rates of Prochlorococcus sp., suggesting that this picocyanobacteria genus is a potential source of TEP. The evidence to propose such potential role was derived experimentally, using natural communities including the presence of several species and a variety of processes. Laboratory experiments with cultures of a non-axenic strain of Prochlorococcus marinus were then used to test TEP production by this genus. TEP concentrations in the culture increased with increasing cell abundance during the exponential phase, reaching the highest TEP concentration at the beginning of the stationary phase. The average TEP concentration of 1474 ± 226 μg XG Eq. L-1 (mean ± SE) observed at

  4. Computation code TEP 1 for automated evaluation of technical and economic parameters of operation of WWER-440 nuclear power plant units

    International Nuclear Information System (INIS)

    Zadrazil, J.; Cvan, M.; Strimelsky, V.

    1987-01-01

    The TEP 1 program is used for automated evaluation of the technical and economic parameters of nuclear power plant units with WWER-440 reactors. This is an application program developed by the Research Institute for Nuclear Power Plants in Jaslovske Bohunice for the KOMPLEX-URAN 2M information system, delivered by the USSR to the V-2 nuclear power plants in Jaslovske Bohunice and in Dukovany. The TEP 1 program is written in FORTRAN IV and its operation has two parts. First the evaluation of technical and economic parameters of operation for a calculation interval of 10 mins and second, the control of the calculation procedure, follow-up on input data, determination of technical and economic parameters for a lengthy time interval, and data printout and storage. The TEP 1 program was tested at the first unit of the V-2 power plant and no serious faults appeared in the process of the evaluation of technical and economic parameters. A modification of the TEP 1 programme for the Dukovany nuclear power plant is now being tested on the first unit of the plant. (Z.M.)

  5. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  6. Marine bacterial transparent exopolymer particles (TEP) and TEP precursors: Characterization and RO fouling potential

    KAUST Repository

    Li, Sheng

    2015-10-31

    This paper investigated the characteristics and membrane fouling potential of bacterial transparent exopolymer particles (TEP)/TEP precursors released from two marine bacteria, Pseudidiomarina homiensis (P. homiensis) and Pseudoalteromonas atlantica (P. atlantica), isolated from the Red Sea. Results showed that both bacteria grew at the similar rate, but the production of TEP/TEP precursors from P. atlantica was higher than that from P. homiensis. During the 168. h of incubation time, production rates of TEP/TEP precursors from P. atlantica and P. homiensis were 0.30 and 0.08 xanthan gum eq. mg/L-h, respectively. Isolated bacterial TEP precursors were mainly biopolymer, and P. atlantica produced a significantly higher concentration of biopolymer than that produced by P. homiensis. TEP/TEP precursors from both marine bacteria possessed protein-like material and were very similar in composition to previously reported foulants isolated from a fouled reverse osmosis (RO) membrane. Bacterial TEP/TEP precursors mostly consisted of aliphatic hydrocarbon from amino acids and amide group carbon of proteins (around 55%). Bacterial TEP precursors caused obvious fouling on RO membranes, which may create an ideal environment for bacteria attachment and promote to biofouling.

  7. Automation of solar plants

    Energy Technology Data Exchange (ETDEWEB)

    Yebra, L.J.; Romero, M.; Martinez, D.; Valverde, A. [CIEMAT - Plataforma Solar de Almeria, Tabernas (Spain); Berenguel, M. [Almeria Univ. (Spain). Departamento de Lenguajes y Computacion

    2004-07-01

    This work overviews some of the main activities and research lines that are being carried out within the scope of the specific collaboration agreement between the Plataforma Solar de Almeria-CIEMAT (PSA-CIEMAT) and the Automatic Control, Electronics and Robotics research group of the Universidad de Almeria (TEP197) titled ''Development of control systems and tools for thermosolar plants'' and the projects financed by the MCYT DPI2001-2380-C02-02 and DPI2002-04375-C03. The research is directed by the need of improving the efficiency of the process through which the energy provided by the sun is totally or partially used as energy source, as far as diminishing the costs associated to the operation and maintenance of the installations that use this energy source. The final objective is to develop different automatic control systems and techniques aimed at improving the competitiveness of solar plants. The paper summarizes different objectives and automatic control approaches that are being implemented in different facilities at the PSA-CIEMAT: central receiver systems and solar furnace. For each one of these facilities, a systematic procedure is being followed, composed of several steps: (i) development of dynamic models using the newest modeling technologies (both for simulation and control purposes), (ii) development of fully automated data acquisition and control systems including software tools facilitating the analysis of data and the application of knowledge to the controlled plants and (iii) synthesis of advanced controllers using techniques successfully used in the process industry and development of new and optimized control algorithms for solar plants. These aspects are summarized in this work. (orig.)

  8. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  9. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  10. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  11. Data acquisition and PV module power production in upgraded TEP/AzRISE solar test yard

    Science.gov (United States)

    Bennett, Whit E.; Fishgold, Asher D.; Lai, Teh; Potter, Barrett G.; Simmons-Potter, Kelly

    2017-08-01

    The Tucson Electric Power (TEP)/University of Arizona AzRISE (Arizona Research Institute for Solar Energy) solar test yard is continuing efforts to improve standardization and data acquisition reliability throughout the facility. Data reliability is ensured through temperature-insensitive data acquisition devices with battery backups in the upgraded test yard. Software improvements allow for real-time analysis of collected data, while uploading to a web server. Sample data illustrates high fidelity monitoring of the burn-in period of a polycrystalline silicon photovoltaic module test string with no data failures over 365 days of data collection. In addition to improved DAQ systems, precision temperature monitoring has been implemented so that PV module backside temperatures are routinely obtained. Weather station data acquired at the test yard provides local ambient temperature, humidity, wind speed, and irradiance measurements that have been utilized to enable characterization of PV module performance over an extended test period

  12. The performance of a Solar Aided Power Generation plant with diverse “configuration-operation” combinations

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • Four configurations of solar preheaters have been proposed. • Three typical operation strategies of solar preheaters have been identified. • 12 “configuration-operation” combinations has been proposed. • There are superior combinations to achieve the highest solar thermal performance. - Abstract: Solar Aided Power Generation is an efficient way to integrate solar thermal energy into a fossil fuel fired power plant for solar power generation purposes. In this particular power plant, the solar heat is used to displace the extraction steam to preheat the feedwater to the boiler. The heat exchanger, which facilitates the heat exchange between the solar heat carried by the heat transfer fluid and the feedwater, is termed a solar preheater. Four possible configurations of the solar preheater, namely Parallel 1, Parallel 2, Series 1 and Series 2, are proposed in this paper. In this type of plant, the extraction steam flow rates must be adjusted according to the solar input. The ways to control the extraction steam flow rates are termed solar preheater operation strategies. Three typical strategies: the Constant Temperature control, Variable Temperature control with high to low temperature feedwater heater displacement and Variable Temperature control with low to high temperature feedwater heater displacement have been identified. Each configuration can be operated with one of the three strategies, resulting in twelve “configuration-operation” combinations/scenarios (shown in Table 1). Previous assessments and modelling of such a plant have only been based on a single combination. In this paper, a Solar Aided Power Generation plant, modified from a typical 300 MW power plant, is used to understand the plant’s performance for all twelve of the available combinations. The results show that the instantaneous and annual technical performances of such a plant are dependent on the combinations used. The scenario 10 (Table 1) is superior to the

  13. Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McTigue, Joshua Dominic P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turchi, Craig S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Castro, Jose [Coso Operating Co.; Mungas, Greg [Hyperlight Energy; Kramer, Nick [Hyperlight Energy; King, John [Hyperlight Energy

    2017-10-04

    Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine is recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.

  14. Improved method for measuring transparent exopolymer particles (TEP) and their precursors infresh and saline water

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    Transparent exopolymer particles (TEP) and their precursors produced by phyto-/bacterio-planktons in fresh and marine aquatic environments are increasingly considered as a major contributor to organic/particulate and biological fouling in micro-/ultra-filtration and reverse osmosis membrane (RO) systems. However, currently established methods which are based on Alcian blue (AB) staining and spectrophotometric techniques do not measure TEP-precursors and have the tendency to overestimate concentration in brackish/saline water samples due to interference of salinity on AB staining. Here we propose a new semi-quantitative method which allows measurement of both TEP and their colloidal precursors without the interference of salinity. TEP and their precursors are first retained on 10kDa membrane, rinsed with ultra-pure water, and re-suspended in ultra-pure water by sonication and stained with AB, followed by exclusion of TEP-AB precipitates by filtration and absorbance measurement of residual AB. The concentration is then determined based on the reduction of AB absorbance due to reaction with acidic polysaccharides, blank correction and calibration with Xanthan gum standard. The extraction procedure allows concentration of TEP and their pre-cursors which makes it possible to analyse samples with a wide range of concentrations (down to <0.1mg Xeq/L). This was demonstrated through application of the method for monitoring these compounds in algal cultures and a full-scale RO plant. The monitoring also revealed that concentrations of the colloidal precursors were substantially higher than the concentration of TEP themselves. In the RO plant, complete TEP removal was observed over the pre-treatment processes (coagulation-sedimentation-filtration and ultrafiltration) but the TEP precursors were not completely removed, emphasising the importance of measuring this colloidal component to better understand the role of TEP and acidic polysaccharides in RO membrane fouling.

  15. Marine bacterial transparent exopolymer particles (TEP) and TEP precursors: Characterization and RO fouling potential

    KAUST Repository

    Li, Sheng; Winters, Harvey; Jeong, Sanghyun; Emwas, Abdul-Hamid M.; Vigneswaran, Saravanamuthu; Amy, Gary L.

    2015-01-01

    This paper investigated the characteristics and membrane fouling potential of bacterial transparent exopolymer particles (TEP)/TEP precursors released from two marine bacteria, Pseudidiomarina homiensis (P. homiensis) and Pseudoalteromonas atlantica

  16. 40 CFR 158.660 - Nontarget plant protection data requirements table.

    Science.gov (United States)

    2010-07-01

    ... vigor R R R TEP 1, 2, 3, 7 850.4400850.5400 Aquatic plant growth (algal and aquatic vascular plant... CR CR TEP 1, 4, 5, 7 850.4150 Vegetative vigor CR CR CR TEP 1, 3, 4, 5, 7 850.4400850.5400 Aquatic... methods used to generate data must include the results of a successful confirmatory method trial by an...

  17. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Tomislav M.

    2011-01-01

    Full Text Available This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia. Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown that fixed PV solar plant power of 1 MW, solar modules of monocrystalline silicon yield 1130000 kWh power output, one-axis tracking PV solar plant yields 1420000 kWh, and dual-axis tracking PV solar plant yields 1450000 kWh of electricity. Electricity generated by the fixed PV solar plant could satisfy 86% of the annual needs for the electricity of the „Zdravljak“ hotel and the special „Novi stacionar“ hospital in Soko banja.

  18. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Gloria Volohonsky

    2017-01-01

    Full Text Available Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1 is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

  19. Model validation of solar PV plant with hybrid data dynamic simulation based on fast-responding generator method

    Directory of Open Access Journals (Sweden)

    Zhao Dawei

    2016-01-01

    Full Text Available In recent years, a significant number of large-scale solar photovoltaic (PV plants have been put into operation or been under planning around the world. The model accuracy of solar PV plant is the key factor to investigate the mutual influences between solar PV plants and a power grid. However, this problem has not been well solved, especially in how to apply the real measurements to validate the models of the solar PV plants. Taking fast-responding generator method as an example, this paper presents a model validation methodology for solar PV plant via the hybrid data dynamic simulation. First, the implementation scheme of hybrid data dynamic simulation suitable for DIgSILENT PowerFactory software is proposed, and then an analysis model of solar PV plant integration based on IEEE 9 system is established. At last, model validation of solar PV plant is achieved by employing hybrid data dynamic simulation. The results illustrate the effectiveness of the proposed method in solar PV plant model validation.

  20. El tromboembolismo pulmonar (TEP)

    OpenAIRE

    Álvarez Alonso, Elena

    2015-01-01

    El trombo-embolismo pulmonar (TEP) consiste en la obstrucción de la arteria pulmonar o de una de sus ramas, normalmente por un trombo, aunque también puede existir una obstrucción por otras sustancias que impiden la circulación. El objetivo principal de este trabajo es dar conocer los síntomas del TEP para poder prevenir posibles complicaciones, comenzar a tratarlo desde sus inicios e informar a la población de cuáles son los principales factores de riesgo que pueden causar esta enfermed...

  1. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata

    Directory of Open Access Journals (Sweden)

    Anaïs Portet

    2018-05-01

    Full Text Available Insect thioester-containing protein (iTEP is the most recently defined group among the thioester-containing protein (TEP superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins and schistosome parasite mucins (SmPoMuc. To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first

  2. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  3. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  4. Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants

    International Nuclear Information System (INIS)

    Qin, Jiyun; Hu, Eric; Nathan, Graham J.

    2017-01-01

    Highlights: • Impact of non-displaced feedwater heater on plant’s performance has been evaluated. • Two operation strategies for non-displaced feedwater heater has been proposed. • Constant temperature strategy is generally better. • Constant mass flow rate strategy is suit for rich solar thermal input. - Abstract: Solar Aided Power Generation is a technology in which low grade solar thermal energy is used to displace the high grade heat of the extraction steam in a regenerative Rankine cycle power plant for feedwater preheating purpose. The displaced extraction steam can then expand further in the steam turbine to generate power. In such a power plant, using the (concentrated) solar thermal energy to displace the extraction steam to high pressure/temperature feedwater heaters (i.e. displaced feedwater heaters) is the most popular arrangement. Namely the extraction steam to low pressure/temperature feedwater heaters (i.e. non-displaced feedwater heaters) is not displaced by the solar thermal energy. In a Solar Aided Power Generation plants, when solar radiation/input changes, the extraction steam to the displaced feedwater heaters requires to be adjusted according to the solar radiation. However, for the extraction steams to the non-displaced feedwater heaters, it can be either adjusted accordingly following so-called constant temperature strategy or unadjusted i.e. following so-called constant mass flow rate strategy, when solar radiation/input changes. The previous studies overlooked the operation of non-displaced feedwater heaters, which has also impact on the whole plant’s performance. This paper aims to understand/reveal the impact of the two different operation strategies for non-displaced feedwater heaters on the plant’s performance. In this paper, a 300 MW Rankine cycle power plant, in which the extraction steam to high pressure/temperature feedwater heaters is displaced by the solar thermal energy, is used as study case for this purpose. It

  5. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  6. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    Science.gov (United States)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  7. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  8. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.

    Science.gov (United States)

    Cho, S; Dong, S; Parent, K N; Chen, M

    2016-01-01

    Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.

  9. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    OpenAIRE

    Pavlović Tomislav M.; Milosavljević Dragana D.; Radivojević Aleksandar R.; Pavlović Mila A.

    2011-01-01

    This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia). Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown ...

  10. OUT Success Stories: Solar Trough Power Plants

    Science.gov (United States)

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  11. Steam generator design for solar towers using solar salt as heat transfer fluid

    Science.gov (United States)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  12. Effectiveness of seawater reverse osmosis (SWRO) pretreatment systems in removing transparent exopolymer particles (TEP) substances

    KAUST Repository

    Lee, Shang-Tse

    2015-05-01

    Transparent exopolymer particles (TEP) have been reported as one of the main factors of membrane fouling in seawater reverse osmosis (SWRO) process. Research has been focused on algal TEP so far, overlooking bacterial TEP. This thesis investigated the effects of coagulation on removal of bacterial TEP/TEP precursors in seawater and subsequent reduction on TEP fouling in ultrafiltration (UF), as a pretreatment of SWRO. Furthermore, the performance of pretreatment (coagulation + UF) has been investigated on a bench-scale SWRO system. TEP/TEP precursors were harvested from a strain of marine bacteria, Pseudoalteromonas atlantica, isolated from the Red Sea. Isolated bacterial organic matter (BOM), containing 1.5 mg xanthan gum eq./L TEP/TEP precursors, were dosed in Red Sea water to mimic a high TEP concentration event. Bacterial TEP/TEP precursors added to seawater were coagulated with ferric chloride and aluminum sulfate at different dosages and pH. Results showed that ferric chloride had a better removal efficiency on TEP/TEP precursors. Afterwards, the non-coagulated/coagulated seawater were tested on a UF system at a constant flux of 130 L/m2h, using two types of commercially available membranes, with pore sizes of 50 kDa and 100 kDa, respectively. The fouling potential of coagulated water was determined by the Modified Fouling Index (MFI-UF). Transmembrane pressure (TMP) was also continuously monitored to investigate the fouling development on UF membranes. TEP concentrations in samples were determined by the alcian blue staining assay. Liquid chromatography-organic carbon detection (LC-OCD) was used to determine the removal of TEP precursors with particular emphasis on biopolymers. Finally, SWRO tests showed that TEP/TEP precursors had a high fouling potential as indicated by MFI-UF, corresponding to the TMP measurements. Coagulation could substantially reduce TEP/TEP precursors fouling in UF when its dosage was equal or higher than 0.2 mg Fe/L. The flux decline

  13. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  14. The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Yan Guiyun

    2008-10-01

    Full Text Available Abstract Background Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815 may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient balanced polymorphism in an animal immune system. Results We found evidence that the high divergence between TEP1 alleles is the product of genetic exchange between TEP1 and other TEP loci, i.e. gene conversion. Additionally, some TEP1 alleles showed unexpectedly low variability. Conclusion The TEP1 gene appears to be a chimera produced from at least two other TEP loci, and the divergence between TEP1 alleles is probably not caused by long-term balancing selection, but is instead due to two independent gene conversion events from one of these other genes. Nevertheless, TEP1 still shows evidence of natural selection, in particular there appears to have been recent changes in the frequency of alleles that has diminished polymorphism within each allelic class. Although the selective force driving this dynamic was not identified, given that susceptibility to Plasmodium parasites is known to be associated with allelic variation in TEP1, these changes in allele frequencies could alter the vectoring capacity of populations.

  15. Automatic control of plants of direct steam generation with cylinder-parabolic solar collectors; Control automatico de plantas de generacion directa de vapor con colectores solares cilindro-parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela Gutierrez, L.

    2008-07-01

    The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)

  16. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.; Ekowati, Yuli; Winters, Harvey; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, D.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems

  17. Steam generation from solar energy

    International Nuclear Information System (INIS)

    Gozzi, M.

    2001-01-01

    The vapor for thermoelectric use is one of the most promoted methods for electric power generation from solar energy. The new plants are becoming more and more safe, and anyway in some cases the natural gas makes easy the production of electricity [it

  18. Evaluation of potential particulate/colloidal TEP foulants on a pilot scale SWRO desalination study

    KAUST Repository

    Li, Sheng

    2016-01-21

    This pilot study investigated the variation of potential foulants and different fractions of transparent exopolymer particles (TEP), along the treatment scheme under different conditions. The objectives are to provide a comprehensive understanding on which fraction of TEP is more problematic in seawater reverse osmosis (SWRO) fouling, and which pretreatment can better reduce the concentration of TEP. Results showed that TEP deposited on the RO membranes, and the extent of RO fouling increased with the increase of TEP concentration in RO feed water. More TEP was produced in water after chlorination, probably because of the breakdown of bacterial cells and thus the release of internal exopolymers. Moreover, the cartridge filters could behave as an incubator for the regrowth of bacteria deactivated by chlorination and a spot for potential foulant (bacterial TEP) production, and thus enhance the RO membranes fouling. The presence of residual iron and addition of phosphate based antiscalant may also contribute to the higher biofouling of RO membranes. This pilot study provided an opportunity to identify the TEP related issues under different operational conditions in RO desalination of Red Sea water.

  19. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems. The goal of this study is to understand the production, composition and membrane rejection of these organic materials using different characterisation techniques. Two common species of bloom-forming freshwater and marine algae were cultivated in batch cultures for 30days and the productions of TEP and other organic matter were monitored at different growth phases. TEP production of the marine diatom, Chaetoceros affinis, produced 6-9 times more TEP than the freshwater blue-green algae, Microcystis. The organic substances produced by both algal species were dominated by biopolymeric substances such as polysaccharides (45-64%) and proteins (2-17%) while the remaining fraction comprises of low molecular weight refractory (humic-like) and/ or biogenic organic substances. MF/UF membranes mainly rejected the biopolymers but not the low molecular weight organic materials. MF membranes (0.1-0.4 lm) rejected 42-56% of biopolymers, while UF membranes (10-100 kDa) rejected 65-95% of these materials. Further analysis of rejected organic materials on the surface of the membranes revealed that polysac-charides and proteins are likely responsible for the fouling of MF/UF systems during an algal bloom situation. © 2013 Desalination Publications.

  20. Totally extraperitoneal (TEP) bilateral hernioplasty using the Single Site® robotic da Vinci platform (DV-SS TEP): description of the technique and preliminary results.

    Science.gov (United States)

    Cestari, A; Galli, A C; Sangalli, M N; Zanoni, M; Ferrari, M; Roviaro, G

    2017-06-01

    Laparoendoscopic single site totally extraperitoneal (TEP) hernia repair showed to be a feasible alternative to conventional laparoscopic hernia repair; nevertheless single site surgery, with the loss of instruments triangulation can be a demanding procedure. To overcome those hurdles, the Single Site® (SS) platform of the da Vinci (DV) Si robotic system enables to perform surgical procedures through a 25-mm skin incision, with a stable 3D vision and restoring an adequate triangulation of the surgical instruments. We present in details the technique and the preliminary results of DV-SS TEP, to our knowledge the first cases reported in literature. In March 2016, three consecutive male patients (mean age 46.6 years-mean BMI 25.3) with bilateral symptomatic inguinal hernia were submitted to DV-SS TEP in our institutions. Feasibility, codification of the technique, operative time and perioperative outcomes were recorded. All the procedures were completed as scheduled, with no conversion to other techniques. Mean operative time was 98.6 min, ranging between 155 and 55 min, reflecting the learning curve of the operating room team on this new procedure. No intraoperative or postoperative complications were experienced and all the patients were discharged within 24 h after surgery. Patients reported satisfactory postoperative course, with no recurrence of inguinal hernia and satisfaction in cosmetic result at 6-month follow-up. DV-SS TEP inguinal hernia repair showed to be feasible and effective surgical option for bilateral groin hernia repair. Patients' outcome was uneventful, with optimal cosmetic results. Further studies comparing this innovative technique to TEP or LESS TEP should be promoted.

  1. Solar-TEP - Development of materials for thermo-electric power generators; SOLAR-TEP - Materialentwicklung fuer solarthermoelektrische Stromerzeuger - Schlussbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R.; Weidenkaff, A.

    2008-06-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the development of materials for thermo-electric power generators. Cobaltate phases are discussed as being suitable materials for thermoelectric applications at high temperatures. These potential thermoelectric materials are characterised with respect to their crystal structure, microstructure, composition, and thermal stability. The Seebeck coefficient, thermal conductivity and electrical resistivity of polycrystalline cobaltates with perovskite-type and layered-cobaltite structure are evaluated for a wide temperature range. The large Seebeck coefficient exhibited by both perovskite-type and layered cobaltite phases is analysed using the Heikes formula. The work is illustrated with results obtained for various materials in graphical form.

  2. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... evaporation and condensation takes place over a temperature range, the efficiency of the heat exchange processes can be improved, possibly resulting also in improved overall performance of the system. This paper is aimed at evaluating the prospect of using the Kalina cycle for concentrated solar power plants...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0...

  3. Design of a small scale stand-alone solar thermal co-generation plant for an isolated region in Egypt

    International Nuclear Information System (INIS)

    Abdelhady, Suzan; Borello, Domenico; Tortora, Eileen

    2014-01-01

    Highlights: • In the selected area, connection to the grid is very difficult and expensive. • The integrated unsteady CSP/ORC system, was modeled TRNSYS. • Assuming a CSP of 200,000 m 2 , 6 MW e and 21.5 MW th can be obtained. • The energy is sufficient to feed more than 3,300 rural users and two big factories. • PER = 1.43, LCOE = 1.25 USD/kW h and the GHG emissions are reduced of 7300 toe/year. - Abstract: Most of Egypt’s population is concentrated in the Nile Valley (5% of Egypt’s area), while the western desert occupies an area of 50% of the total area of Egypt with a small number of inhabitants. The New Valley is the largest governorates in Egypt which occupies 45.8% of the total area of the Country and 65% of the Western Desert and it is the least densely populated governorate in Egypt. However, New Valley has started to receive the migrated people from the Nile valley and Delta region and the demand for the energy is continuously increasing. However, the rural area in New Valley still suffers from lack of access to energy services. The very high transmission losses and costs are the main challenges for electrification in this area. Then, it is worth to investigate the opportunities for distributed energy generation. This area of Egypt receives some of the highest solar radiation in the world (up to 3000 kW h per square meters per year), making it a prime location for use of this resource. In this study, performance and economic assessment of a small scale stand-alone solar thermal co-generation plant using diathermic oil is presented. This configuration is considered as a promising and sustainable solution to provide electricity and heat to an isolated area satisfying the local loads. Parabolic trough plant has been modeled in TRNSYS simulation environment integrated with the Solar Thermal Electric Components (STEC) model library. Both solar and power cycle performances have been modeled based on the solar energy data of the plant site. The

  4. Monitoring the aging of pressure vessel steels by TEP measurements: Advantages and current limitations of the method

    International Nuclear Information System (INIS)

    Kleber, X.; Saillet, S.

    2011-01-01

    The TEP (Thermoelectric Power or Seebeck coefficient) characterizes the ability of a material to generate an electrical potential difference when the material is subjected to a heat flux. It can be defined from the Seebeck effect, which manifests itself in a circuit formed by two different metals subjected to a temperature gradient. The origin of the thermoelectric power is, as the resistivity, due to electronic phenomena occurring at the atomic scale in relation to the crystallographic structure of the material. TEP measurements are used to characterize small microstructural changes at the scale of crystal defects. The high sensitivity of TEP makes it an excellent probe able of detecting small changes in the microstructural state, including precipitation, dissolution of alloying elements, hardening and recovery after deformation. It has been shown recently that the TEP of pressure vessels steels was sensitive to irradiation, making this measurement technique a potential candidate for monitoring the aging of the pressure vessel steel. However, the first measurements on Charpy specimens of the EDF monitoring program (Pressure Vessel Surveillance Program) showed a strong negative effect of specimen geometry on the accuracy that can be achieved. In this paper we show what the origins of these inaccuracies are. From numerical simulation and finite element model, we describe the roles of the thermal contact resistance as well as the influence of the geometry of the blocks device. A model is proposed to overcome these negative effects. We also show the effect of the presence of heterogeneities in the material on the TEP measurement, and the importance of their localization. Finally, solutions are proposed to improve the device for measuring TEP on PVSP Charpy specimens. (authors)

  5. Facing technological challenges of Solar Updraft Power Plants

    Science.gov (United States)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  6. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  7. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  8. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat

    DEFF Research Database (Denmark)

    Mari, X.; Kiørboe, Thomas

    1996-01-01

    of beta differed significantly from three, probably because TEP are fractal. All TEP were colonized by bacteria, and bacteria were both attached to the surface of and embedded in TEP. Yet the number of attached bacteria per TEP was related neither to the surface area nor the volume, but rather scaled.......p.m.; they were most abundant in the surface waters subsequent to the spring phytoplankton bloom. The range of TEP (encased) volume concentration was similar to that of the phytoplankton, although at times TEP volume concentration exceeded that of the phytoplankton by two orders of magnitude. The TEP size...... to be formed from colloidal organic material exuded by phytoplankton and bacteria, and may have significant implications for pelagic flux processes. During this study, the number concentration of TEP (>1 mu m) ranged from 3 x 10(3) to 6 x 10(4) ml(-1) and the volume concentration between 0.3 and 9.0 p...

  9. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  10. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  11. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  12. Financing Solar Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, Rainer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Price, Henry W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1999-04-14

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier’s perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  13. Effectiveness of seawater reverse osmosis (SWRO) pretreatment systems in removing transparent exopolymer particles (TEP) substances

    KAUST Repository

    Lee, Shang-Tse

    2015-01-01

    Transparent exopolymer particles (TEP) have been reported as one of the main factors of membrane fouling in seawater reverse osmosis (SWRO) process. Research has been focused on algal TEP so far, overlooking bacterial TEP. This thesis investigated

  14. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  15. Compositional Similarities and Differences between Transparent Exopolymer Particles (TEP) from two Marine Bacteria and two Marine Algae: Significance to Surface Biofouling

    KAUST Repository

    Li, Sheng

    2015-06-12

    Transparent-exopolymer-particles (TEP) have been recently identified as a significant contributor to surface biofouling, such as on reverse osmosis (RO) membranes. TEP research has mainly focused on algal TEP/TEP precursors while limited investigations have been conducted on those released by bacteria. In this study, TEP/TEP precursors derived from both algae and bacteria were isolated and then characterized to investigate their similarities and/or differences using various advanced analytical techniques, thus providing a better understanding of their potential effect on biofouling. Bacterial TEP/TEP precursors were isolated from two species of marine bacteria (Pseudidiomarina homiensis and Pseudoalteromonas atlantica) while algal TEP/TEP precursors were isolated from two marine algae species (Alexandrium tamarense and Chaetoceros affinis). Results indicated that both isolated bacterial and algal TEP/TEP precursors were associated with protein-like materials, and most TEP precursors were high-molecular-weight biopolymers. Furthermore all investigated algal and bacterial TEP/TEP precursors showed a lectin-like property, which can enable them to act as a chemical conditioning layer and to agglutinate bacteria. This property may enhance surface biofouling. However, both proton nuclear magnetic resonance (NMR) spectra and the nitrogen/carbon (N/C) ratios suggested that the algal TEP/TEP precursors contained much less protein content than the bacterial TEP/TEP precursors. This difference may influence their initial deposition and further development of surface biofouling.

  16. On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions

    Directory of Open Access Journals (Sweden)

    Saule Baurzhan

    2017-03-01

    Full Text Available Many power utilities in sub-Saharan Africa (SSA have inadequate generation capacity, unreliable services, and high costs. They also face capital constraints that restrict them from making the investments necessary for capacity expansion. Capacity shortages have compelled power utilities to use leased emergency power-generating units, mainly oil-fired diesel generators, as a short-term solution. An economic analysis is carried out to compare the economic net present value (ENPV of fuel savings, as well as the greenhouse gas (GHG savings, from investing capital in a solar PV power-generation plant with those from investing the same amount of funds into a diesel power plant. The results show that ENPV is negative for the solar PV plant, whereas it has a large positive value for the diesel plant. In addition, the diesel plant would be almost three times as effective in reducing GHG emissions as the same value of investment in the solar PV plant. Even with solar investment costs falling, it will take 12 to 24 years of continuous decline before solar PV becomes cost-effective for SSA. The capital cost of solar PV would need to drop to US$1058.4 per kW to yield the same level of ENPV as the diesel plant.

  17. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  18. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  19. Comparison of Alcian blue and total carbohydrate assays for quantitation of transparent exopolymer particles (TEP) in biofouling studies.

    Science.gov (United States)

    Li, Xu; Skillman, Lucy; Li, Dan; Ela, Wendell P

    2018-04-15

    Transparent exopolymer particles (TEP) and their precursors are gel-like acidic polysaccharide particles. Both TEP precursors and TEP have been identified as causal factors in fouling of desalination and water treatment systems. For comparison between studies, it is important to accurately measure the amount and fouling capacity of both components. However, the accuracy and recovery of the currently used Alcian blue based TEP measurement of different surrogates and different size fractions are not well understood. In this study, we compared Alcian blue based TEP measurements with a total carbohydrate assay method. Three surrogates; xanthan gum, pectin and alginic acid; were evaluated at different salinities. Total carbohydrate concentrations of particulates (>0.4 μm) and their precursors (10 kDa) varied depending on water salinity and method of recovery. As xanthan gum is the most frequently used surrogate in fouling studies, TEP concentration is expressed as xanthan gum equivalents (mg XG eq /L) in this study. At a salinity of 35 mg/L sea salt, total carbohydrate assays showed a much higher particulate TEP fraction for alginic acid (38%) compared to xanthan gum (9%) and pectin (12%). The concentrations of particulate TEP therefore may only represent ∼10% of the total mass; while precursor TEP represents ∼80% of the total TEP. This highlights the importance of reporting both particulate and precursor TEP for membrane biofouling studies. The calculated concentrations of TEP and their precursors in seawater samples are also highly dependent on type of surrogate and resulting calibration factor. A linear correlation between TEP recovery and calibration factor was demonstrated in this study for all three surrogates. The relative importance and accuracy of measurement method, particulate size, surrogate type, and recovery are described in detail in this study. Copyright © 2017. Published by Elsevier Ltd.

  20. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  1. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  2. Compositional Similarities and Differences between Transparent Exopolymer Particles (TEP) from two Marine Bacteria and two Marine Algae: Significance to Surface Biofouling

    KAUST Repository

    Li, Sheng; Winters, Harvey; Villacorte, L.O.; Ekowati, Y.; Emwas, Abdul-Hamid M.; Kennedy, M.D.; Amy, Gary L.

    2015-01-01

    indicated that both isolated bacterial and algal TEP/TEP precursors were associated with protein-like materials, and most TEP precursors were high-molecular-weight biopolymers. Furthermore all investigated algal and bacterial TEP/TEP precursors showed a lectin-like property, which can enable them to act as a chemical conditioning layer and to agglutinate bacteria. This property may enhance surface biofouling. However, both proton nuclear magnetic resonance (NMR) spectra and the nitrogen/carbon (N/C) ratios suggested that the algal TEP/TEP precursors contained much less protein content than the bacterial TEP/TEP precursors. This difference may influence their initial deposition and further development of surface biofouling.

  3. Solar thermal electric power generation - an attractive option for Pakistan

    International Nuclear Information System (INIS)

    Khan, N.A

    1999-01-01

    Solar Thermal Energy is being successfully used for production of electricity in few developed countries for more than 10 years. In solar Electric Generating Systems high temperature is generated by concentrating solar energy on black absorber pipe in evacuated glass tubes. This heat is absorbed and transported with the help of high temperature oil in to highly insulated heat exchanger storage tanks. They are subsequently used to produce steam that generates power through steam turbines as in standard thermal power plants. Various components involved in Solar thermal field have been developed at the Solar Systems Laboratory of College of EME, NUST Rawalpindi. It is considered as a cost effective alternate for power generation. The research has been partially sponsored by Ministry of Science and Technology under its Public Sector Development Program (PSDP) in (1996-1998). Parabolic mirror design, fabrication, polishing, installation, solar tracking, absorber pipe, glass tubes, steam generation al have been developed. This paper will cover the details of indigenous technological break through made in this direction. (author)

  4. TEP process flow diagram

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, R Scott [Los Alamos National Laboratory; Carlson, Bryan [Los Alamos National Laboratory; Coons, James [Los Alamos National Laboratory; Kubic, William [Los Alamos National Laboratory

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  5. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  6. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  7. Realistic generation cost of solar photovoltaic electricity

    International Nuclear Information System (INIS)

    Singh, Parm Pal; Singh, Sukhmeet

    2010-01-01

    Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 cents /kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 cents /kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 cents /kWh in base year to 88.63 cents /kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 cents /kWh and not 28.92 cents /kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required

  8. Marine aggregates and transparent exopolymeric particles (TEPs) as substrates for the stramenopilan fungi, the thraustochytrids: Roller table experimental approach.

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, V.S.; Raghukumar, S.

    In order to understand the kind of organic substrates utilized by thraustochytrids in the coastal water column, their growth in the presence of Transparent Exopolymeric Substances (TEPS) and aggregates generated in roller table experiments...

  9. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  10. Cost-effective and reliable design of a solar thermal power plant

    International Nuclear Information System (INIS)

    Aliabadi, A.A.; Wallace, J.S.

    2009-01-01

    A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer. (author)

  11. Carbon content and C:N ratio of transparent exopolymeric particles (TEP) produced by bubbling exudates of diatoms

    DEFF Research Database (Denmark)

    Mari, Xavier

    1999-01-01

    The carbon content of transparent exopolymeric particles (TEP) was measured in the laboratory in particles produced by bubbling exudates of the diatom Thalassiosira weissflogii, grown under nitrogen non-limited conditions (N:P = 7). The carbon content of these particles (TEP-C) appears to vary...... a coastal area (Kattegat, Denmark), TEP carbon concentration in the surface mixed layer was on the order of 230 ± 150 µg C l-1. This is high relative to other sources of particulate organic carbon (e.g. phytoplankton) and depending on TEP turnover rates, suggests that TEP is an important pathway...... for dissolved organic carbon in coastal seas. The carbon to nitrogen ratio of TEP was measured from particles formed by bubbling exudates of the diatoms T. weissflogii, Skeletonema costatum, Chaetoceros neogracile and C. affinis. Each of these diatom species was grown under various N:P ratios, from N...

  12. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  13. Exploiting Earth observation data pools for urban analysis: the TEP URBAN project

    Science.gov (United States)

    Heldens, W.; Esch, T.; Asamer, H.; Boettcher, M.; Brito, F.; Hirner, A.; Marconcini, M.; Mathot, E.; Metz, A.; Permana, H.; Zeidler, J.; Balhar, J.; Soukop, T.; Stankek, F.

    2017-10-01

    Large amounts of Earth observation (EO) data have been collected to date, to increase even more rapidly with the upcoming Sentinel data. All this data contains unprecedented information, yet it is hard to retrieve, especially for nonremote sensing specialists. As we live in an urban era, with more than 50% of the world population living in cities, urban studies can especially benefit from the EO data. Information is needed for sustainable development of cities, for the understanding of urban growth patterns or for studying the threats of natural hazards or climate change. Bridging this gap between the technology-driven EO sector and the information needs of environmental science, planning, and policy is the driver behind the TEP-Urban project. Modern information technology functionalities and services are tested and implemented in the Urban Thematic Exploitation Platform (U-TEP). The platform enables interested users to easily exploit and generate thematic information on the status and development of the environment based on EO data and technologies. The beta version of the web platform contains value added basic earth observation data, global thematic data sets, and tools to derive user specific indicators and metrics. The code is open source and the architecture of the platform allows adding of new data sets and tools. These functionalities and concepts support the four basic use scenarios of the U-TEP platform: explore existing thematic content; task individual on-demand analyses; develop, deploy and offer your own content or application; and, learn more about innovative data sets and methods.

  14. Economic aspects of grid connected solar electricity generation

    International Nuclear Information System (INIS)

    Pharabod, F.

    1993-01-01

    Experience gained with available solar thermal technologies enlighten on options for research and development on solar electricity generation. The proposed analysis of new solar technologies concerns market, costs and profit viewpoint: - Systems under development have to fit with consumers' needs and utilities' specifications, technology is not the only item to study. - Expense headings depend on technological options and operation procedures such as size of the plant, solar only or hybrid concept. - Anticipation of revenues highly depends on direct insolation quality and on local conditions for introducing the electric power generated into the network: daily direct insolation measurements and annual local load curve are prerequisite data. Strategic advantages regarding environment and sustainable development are to be pointed out, specially in industrialized countries or for projects including financing institutions. As far as generating electric power on the grid is a major challenge in the development of a number of countries in the sun belt, cooperation between industrialized and developing countries, under the auspices of international organization, has to be promoted. (Author) 12 refs

  15. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  16. Earth Observation-Supported Service Platform for the Development and Provision of Thematic Information on the Built Environment - the Tep-Urban Project

    Science.gov (United States)

    Esch, T.; Asamer, H.; Boettcher, M.; Brito, F.; Hirner, A.; Marconcini, M.; Mathot, E.; Metz, A.; Permana, H.; Soukop, T.; Stanek, F.; Kuchar, S.; Zeidler, J.; Balhar, J.

    2016-06-01

    The Sentinel fleet will provide a so-far unique coverage with Earth observation data and therewith new opportunities for the implementation of methodologies to generate innovative geo-information products and services. It is here where the TEP Urban project is supposed to initiate a step change by providing an open and participatory platform based on modern ICT technologies and services that enables any interested user to easily exploit Earth observation data pools, in particular those of the Sentinel missions, and derive thematic information on the status and development of the built environment from these data. Key component of TEP Urban project is the implementation of a web-based platform employing distributed high-level computing infrastructures and providing key functionalities for i) high-performance access to satellite imagery and derived thematic data, ii) modular and generic state-of-the art pre-processing, analysis, and visualization techniques, iii) customized development and dissemination of algorithms, products and services, and iv) networking and communication. This contribution introduces the main facts about the TEP Urban project, including a description of the general objectives, the platform systems design and functionalities, and the preliminary portfolio products and services available at the TEP Urban platform.

  17. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  18. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region. A case study for the island of Cyprus

    International Nuclear Information System (INIS)

    Poullikkas, Andreas

    2009-01-01

    In this work a feasibility study is carried out in order to investigate whether the installation of a parabolic trough solar thermal technology for power generation in the Mediterranean region is economically feasible. The case study takes into account the available solar potential for Cyprus, as well as all available data concerning current renewable energy sources policy of the Cyprus Government, including the relevant feed-in tariff. In order to identify the least cost feasible option for the installation of the parabolic trough solar thermal plant a parametric cost-benefit analysis is carried out by varying parameters, such as, parabolic trough solar thermal plant capacity, parabolic trough solar thermal capital investment, operating hours, carbon dioxide emission trading system price, etc. For all above cases the electricity unit cost or benefit before tax, as well as after tax cash flow, net present value, internal rate of return and payback period are calculated. The results indicate that under certain conditions such projects can be profitable. (author)

  19. Solar power generation in the US: Too expensive, or a bargain?

    International Nuclear Information System (INIS)

    Perez, Richard; Zweibel, Ken; Hoff, Thomas E.

    2011-01-01

    This article identifies the combined value that solar electric power plants deliver to utilities' rate payers and society's tax payers. Benefits that are relevant to utilities and their rate payers include traditional, measures of energy and capacity. Benefits that are tangible to tax payers include environmental, fuel price mitigation, outage risk protection, and long-term economic growth components. Results for the state of New York suggest that solar electric installations deliver between 15 and 40 cents /kWh to ratepayers and tax payers. These results provide economic justification for the existence of payment structures (often referred to as incentives) that transfer value from those who benefit from solar electric generation to those who invest in solar electric generation. - Highlights: → The article presents a valuation of the energy produced by solar generators. → Valuation accounts for physical, socio economic, and environmental attributes. → Value depends upon solar penetration and location and is likely to exceed cost. → The article shows that incentives for solar deployment are justified. → Incentives should be a function of solar energy's site and penetration dependent value.

  20. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling

    KAUST Repository

    Li, Sheng; Lee, Shang-Tse; Sinha, Shahnawaz; Leiknes, TorOve; Amy, Gary L.; Ghaffour, NorEddine

    2016-01-01

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1–0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency. © 2016 Elsevier Ltd

  1. Transparent exopolymer particles (TEP) removal efficiency by a combination of coagulation and ultrafiltration to minimize SWRO membrane fouling

    KAUST Repository

    Li, Sheng

    2016-07-02

    This study investigated the impact of coagulation on the transformation between colloidal and particulate transparent exopolymer particles (TEP) in seawater; and the effectiveness of a combined pretreatment consisting of coagulation and UF on minimizing TEP fouling of seawater reverse osmosis (SWRO) membranes. Coagulation with ferric chloride at pH 5 substantially transformed colloidal TEP (0.1–0.4) into particulate TEP (>0.4) leading to a better membrane fouling control. Both 50 and 100 kDa molecular weight cut-off (MWCO) UF membranes removed most of particulate and colloidal TEP without the assistance of coagulation, but coagulation is still necessary for better UF fouling control. The improvement of combined SWRO pretreatment with coagulation and 50 kDa UF membranes was not that much significant compared to UF pretreatment with 50 KDa alone. Therefore, the minimal coagulant dosage for seawater containing TEP should be based on the UF fouling control requirements rather than removal efficiency. © 2016 Elsevier Ltd

  2. Transmission expansion in an oligopoly considering generation investment equilibrium

    DEFF Research Database (Denmark)

    Taheri, S. Saeid; Kazempour, Jalal; Seyedshenava, Seyedjalal

    2017-01-01

    the future generation investment actions. However, in such an oligopolistic market, each producer makes its own strategic generation investment decisions. This motivates the transmission system planner to consider the generation investment decision-making problem of all producers within its TEP model......Transmission expansion planning (TEP) is a sophisticated decision-making problem, especially in an oligopolistic electricity market in which a number of strategic (price-maker) producers compete together. A transmission system planner, who is in charge of making TEP decisions, requires considering....... This paper proposes a tri-level TEP decision-making model to be solved by the transmission system planner, whose objective is to maximize the social welfare of the market minus the expansion costs, and whose constraints are the transmission expansion limits as well as the generation investment equilibrium...

  3. Design and simulation of a geothermal–solar combined chimney power plant

    International Nuclear Information System (INIS)

    Cao, Fei; Li, Huashan; Ma, Qiuming; Zhao, Liang

    2014-01-01

    Highlights: • A geothermal–solar chimney power plant (GSCPP) is designed and analyzed. • Three different models, viz. full solar model, full geothermal model and geothermal–solar mode are compared. • Power generation under GSM is larger than the sum of FSM and FGM. • GSCPP can effectively solve the continuous operation problem of the SCPP. - Abstract: The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity

  4. Review of avian mortality studies at concentrating solar power plants

    Science.gov (United States)

    Ho, Clifford K.

    2016-05-01

    This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.

  5. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  6. Solar fuels generator

    Science.gov (United States)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  7. Design of a solar updraft tower power plant for pakistan and its simulation in transys

    International Nuclear Information System (INIS)

    Khan, T.; Chaudhry, I.A.; Rehman, A.

    2014-01-01

    Solar updraft tower is a distinct and novel combination of three old concepts that are green house effect, chimney effect and wind turbine. It can be employed, with almost negligible maintenance cost, in electricity generation. Given the different climatic and economical conditions for different places, every region demands a specific design. As solar chimney power plant is a relatively new technology, much effort has not been done in evaluating the performances of the various plants. In this context, a solar updraft tower has been designed for the conditions of Pakistan (Lahore) and is simulated in TRNSYS to analyze the plant performance through different seasons and time of the year. The study reveals important results about the factors involved in determining the final output power produced. It is observed that the solar irradiance plays a more significant role in power generation than ambient temperature. The more the capacity of a plant to produce power, the more economical it would be. TRNSYS based program is presumed to be a handy mode of examining solar chimney power plants. (author)

  8. Solar energy for steam generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, Jr, A V; Orlando, A DeF; Magnoli, D

    1979-05-01

    Steam generation is a solar energy application that has not been frequently studied in Brazil, even though for example, about 10% of the national primary energy demand is utilized for processing heat generation in the range of 100 to 125/sup 0/C. On the other hand, substitution of automotive gasoline by ethanol, for instance, has received much greater attention even though primary energy demand for process heat generation in the range of 100 to 125/sup 0/C is of the same order of magnitude than for total automotive gasoline production. Generation of low-temperature steam is analyzed in this article using distributed systems of solar collectors. Main results of daily performance simulation of single flat-plate collectors and concentrating collectors are presented for 20/sup 0/S latitude, equinox, in clear days. Flat plate collectors considered are of the aluminum roll-bond absorber type, selective surface single or double glazing. Considering feedwater at 20/sup 0/C, saturated steam at 120/sup 0/C and an annual solar utilization factor of 50%, a total collector area of about 3,000 m/sup 2/ is necessary for the 10 ton/day plant, without energy storage. A fuel-oil back-up system is employed to complement the solar steam production, when necessary. Preliminary economic evaluation indicates that, although the case-study shows today a long payback period relative to subsidized fuel oil in the domestic market (over 20 years in the city of Rio de Janeiro), solar steam systems may be feasible in the medium term due to projected increase of fuel oil price in Brazil.

  9. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  10. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    Science.gov (United States)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  11. Towards prioritizing flexibility in the design and construction of concentrating solar power plants

    DEFF Research Database (Denmark)

    Topel, Monika; Lundqvist, Mårten; Haglind, Fredrik

    2017-01-01

    In the operation and maintenance of concentrating solar power plants, high operational flexibility is required in order to withstand the variability from the inherent solar fluctuations. However, during the development phases of a solar thermal plant, this important objective is overlooked...... as a relevant factor for cost reduction in the long term. This paper will show the value of including flexibility aspects in the design of a concentrating solar power plant by breaking down their potential favorable impact on the levelized cost of electricity (LCOE) calculations. For this, three scenarios...... to include flexibility as a design objective are analyzed and their potential impact on the LCOE is quantified. The scenarios were modeled and analyzed using a techno-economic model of a direct steam generation solar tower power plant. Sensitivity studies were carried out for each scenario, in which...

  12. Numerical analysis on the performance of solar chimney power plant system

    International Nuclear Information System (INIS)

    Xu Guoliang; Ming Tingzhen; Pan Yuan; Meng Fanlong; Zhou Cheng

    2011-01-01

    Power generating technology based on renewable energy resources will definitely become a new trend of future energy utilization. Numerical simulations on air flow, heat transfer and power output characteristics of a solar chimney power plant model with energy storage layer and turbine similar to the Spanish prototype were carried out in this paper, and mathematical model of flow and heat transfer for the solar chimney power plant system was established. The influences of solar radiation and pressure drop across the turbine on the flow and heat transfer, output power and energy loss of the solar chimney power plant system were analyzed. The numerical simulation results reveal that: when the solar radiation and the turbine efficiency are 600 W/m 2 and 80%, respectively, the output power of the system can reach 120 kW. In addition, large mass flow rate of air flowing through the chimney outlet become the main cause of energy loss in the system, and the collector canopy also results in large energy loss.

  13. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  14. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  15. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  16. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  17. Athletes with inguinal disruption benefit from endoscopic totally extraperitoneal (TEP) repair.

    Science.gov (United States)

    Roos, M M; Bakker, W J; Goedhart, E A; Verleisdonk, E J M M; Clevers, G J; Voorbrood, C E H; Sanders, F B M; Naafs, D B; Burgmans, J P J

    2018-06-01

    Inguinal disruption, a common condition in athletes, is a diagnostic and therapeutic challenge. The aim of this study was to evaluate the effect of endoscopic totally extraperitoneal (TEP) repair in athletes with inguinal disruption, selected through a multidisciplinary, systematic work-up. An observational, prospective cohort study was conducted in 32 athletes with inguinal disruption. Athletes were assessed by a sports medicine physician, radiologist and hernia surgeon and underwent subsequent endoscopic TEP repair with placement of polypropylene mesh. The primary outcome was pain reduction during exercise on the numeric rating scale (NRS) 3 months postoperatively. Secondary outcomes were sports resumption, physical functioning and long-term pain intensity. Patients were assessed preoperatively, 3 months postoperatively and after a median follow-up of 19 months. Follow-up was completed in 30 patients (94%). The median pain score decreased from 8 [interquartile range (IQR) 7-8] preoperatively to 2 (IQR 0-5) 3 months postoperatively (p disruption, selected through a multidisciplinary, systematic work-up, benefit from TEP repair.

  18. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  19. TEP Power Partners Project [Tucson Electric Power

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-06

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013; 1,390 Home Area Networks (HANs) were registered; 797 new participants installed a HAN; Survey respondents’ are satisfied with the program and found value with a variety of specific program components; Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program; On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly; and An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  20. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.

  1. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  2. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile

    International Nuclear Information System (INIS)

    Cardemil, José Miguel; Cortés, Felipe; Díaz, Andrés; Escobar, Rodrigo

    2016-01-01

    Highlights: • Thermodynamic evaluation of geothermal-solar hybrid systems. • A multi-parameter analysis for different cycle configurations. • Performance comparison between two operation modes. • Overview of the technical applicability of the hybridization. - Abstract: A thermodynamic model was developed using Engineering Equation Solver (EES) to evaluate the performance of single and double-flash geothermal power plants assisted by a parabolic trough solar concentrating collector field, considering four different geothermal reservoir conditions. The benefits of delivering solar thermal energy for either the superheating or evaporating processes were analyzed in order to achieve the maximum 2"n"d law efficiency for the hybrid schemes and reduce the geothermal resource consumption for a constant power production. The results of the hybrid single-flash demonstrate that the superheating process generates additional 0.23 kWe/kWth, while supplying solar heat to evaporate the geothermal brine only delivers 0.16 kWe/kWth. The double-flash hybrid plant simulation results allow obtaining 0.29 kWe/kWth and 0.17 kW/kWth by integrating solar energy at the superheater and evaporator, respectively. In this context, the hybrid single-flash power plant is able to produce at least 20% additional power output, depending on the characteristics of the geothermal resource. Moreover, all of the cases analyzed herein increased the exergy efficiency of the process by at least 3%. The developed model also allowed assessing the reduction on the consumption of the geothermal fluid from the reservoir when the plant power output stays constant, up to 16% for the hybrid single-flash, and 19% for the hybrid double-flash. Based on the results obtained in this study, the solar-geothermal hybrid scheme increases the power generation compared with geothermal-only power plants, being an attractive solution for improved management of the geothermal reservoir depletion rates. The study shows

  3. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  4. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Zaag, P. van der; Munch, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  5. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  6. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  7. Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.; Turney, Damon

    2011-04-23

    Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

  8. MEMS Solar Generators

    OpenAIRE

    Grbovic, Dragoslav; Osswald, Sebastian

    2011-01-01

    Approved for public release; distribution is unlimited Using MEMS bimaterial structures to build highly efficient solar energy generators. This is a novel approach that utilizes developments in the area of bimaterial sensors and applies them in the field of solar energy harvesting.

  9. Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus.

    Science.gov (United States)

    Wang, Yanyan; Wang, Ying; Zhang, Jingru; Xu, Wenyue; Zhang, Jian; Huang, Fu Sheng

    2013-08-01

    Blocking transmission of malaria is a reliable way to control and eliminate infection. However, in-depth knowledge of the interaction between Plasmodium and mosquito is needed. Studies suggest that innate immunity is the main mechanism inhibiting development of malaria parasites in the mosquito. Recent studies have found that use of antibiotics that inhibit the mosquito gut flora can reduce the immune response of Anopheles gambiae, thereby contributing to the development of malaria parasites. In our study, we used the non susceptible model of Anopheles dirus-Plasmodium yoelii to explore the effect of Anopheles intestinal flora on the natural resistance of A. dirus to P. yoelii. We found that in mosquitoes infected with Plasmodium, the intestinal flora can regulate expression of thioester-containing protein (TEP1) via an RNAi gene-silencing approach. Our results suggest that in the absence of TEP1, the natural microbiota cannot suppress the development of P. yoelii in A. dirus. This suggests that AdTEP1 plays an important role in the resistance of A. dirus to P. yoelii. The intestinal flora may modulate the development of P. yoelii in A. dirus by regulating TEP1 expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory

    DEFF Research Database (Denmark)

    Mari, Xavier; Burd, A

    1998-01-01

    The abundance and size distribution of transparent exopolymeric particles (TEP) were monitored in the Kattegat (Denmark) during 1 yr. TEP number concentration ranged from 0.5 x 10(5) to 3.8 x 10(5) ml(-1) and the volume concentration between 3 and 310 ppm. TEP volume concentration peaked during...

  11. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    Science.gov (United States)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  12. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  13. Experimental validation of a method for performance monitoring of the impurity processing stage in the TEP system of ITER

    International Nuclear Information System (INIS)

    Bornschein, B.; Corneli, D.; Glugla, M.; Guenther, K.; Le, T.L.; Simon, K.H.

    2007-01-01

    The Tokamak Exhaust Processing (TEP) system within the Tritium Plant of ITER needs to be designed such that tritium is recovered from all exhaust gases produced during different modes and operational conditions of the vacuum vessel. The reference process for the TEP system of ITER is called CAPER and comprises three different, consecutive steps to recover hydrogen isotopes at highest purity for direct transfer to the cryogenic Isotope Separation system. The second step ('impurity processing', IP) is carried out in a closed loop involving heterogeneously catalyzed cracking or conversion reactions to liberate tritium from tritiated hydrocarbons or tritiated water combined with permeation of hydrogen isotopes through a Pd/Ag permeator. This combination shifts chemical equilibria towards dehydrogenation and, therefore, enables detritiation factors higher than 1000 in the IP stage. Such a high decontamination factor requires the optimal performance of the permeator, which on the other hand is operated under conditions which provoke coking of the permeator membrane by hydrocarbon cracking. For this reason the permeator in the impurity processing loop needs to be repeatedly regenerated in order to sustain decontamination factors higher/in the order of 1000. At the Tritium Laboratory Karlsruhe (TLK) a method to measure the actual performance of the second stage of the CAPER process has been developed. This method has been successfully tested with the CAPER facility and appears feasible for the TEP system of ITER

  14. Thermic solar plants for the production of electricity in Mexico: present and future

    International Nuclear Information System (INIS)

    Almanza, R.

    1990-01-01

    During the last decade, there are have been some important achievements in generating electricity using solar concentrators. The Instituto de Ingenieria, of the Universidad Nacional Autonoma de Mexico (UNAM), has started the design and construction of solar thermic plants for generating electricity , capable of reaching 1 Kw and 10 Kw. The Instituto continues developing the research and testing of new materials, because this way of generating electricity has become economically feasible: besides, it constitutes a non polluting alternative. (Author)

  15. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area

    International Nuclear Information System (INIS)

    Rachchh, Ravi; Kumar, Manoj; Tripathi, Brijesh

    2016-01-01

    Highlights: • Scheme to maximize total number of solar panels in a given area. • Enhanced energy output from a fixed area without compromising the efficiency. • Capacity and generated energy are enhanced by more than 25%. - Abstract: In the urban areas the demand of solar power is increasing due to better awareness about the emission of green house gases from conventional thermal power plants and significant decrease in the installation cost of residential solar power plants. But the land cost and the under utilization of available space is hindering its further growth. Under these circumstances, solar photovoltaic system installation needs to accommodate the maximum number of solar panels in either roof-top or land-mounted category. In this article a new approach is suggested to maximize the total number of solar panels in a given area with enhanced energy output without compromising the overall efficiency of the system. The number of solar panels can be maximized in a solar photovoltaic energy generation system by optimizing installation parameters such as tilt angle, pitch, gain factor, altitude angle and shading to improve the energy yield. In this paper mathematical analysis is done to show that the capacity and generated energy can be enhanced by more than 25% for a given land area by optimization various parameters.

  16. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  17. NOM and TEP fouling of a forward osmosis (FO) membrane: Foulant identification and cleaning

    KAUST Repository

    Valladares Linares, Rodrigo

    2012-12-01

    The study of forward osmosis (FO) membranes has increased due to the already demonstrated advantages compared to high-energy membrane processes such as reverse osmosis (RO). This research focuses on characterization of the natural organic matter (NOM) fraction causing fouling on the active layer (AL) of a FO membrane in a novel plate and frame module configuration, facing secondary wastewater effluent as a feed solution (FS) and seawater used as a draw solution (DS). In addition, transparent exopolymer particles (TEP) were observed on the support layer (SL) of the membrane in contact with the DS. The NOM fouling layer, after characterizing the water samples and membranes used, was found to be composed of biopolymers and protein-like substances, which adversely affect the flux of water through the FO membrane. However, NOM fouling showed high reversibility, up to 90% when air scouring for 15. min is used as a cleaning technique. The irreversible fouling in this work was found to be 8.2% after chemical cleaning. On the support layer of the membrane, TEP formed clusters clearly identifiable with an optical microscope and a TEP-specific dye. Chemical cleaning with 1% NaOCl for 10. min proved to be the most effective method to remove TEP. © 2012.

  18. NOM and TEP fouling of a forward osmosis (FO) membrane: Foulant identification and cleaning

    KAUST Repository

    Valladares Linares, Rodrigo; Yangali-Quintanilla, Victor; Li, Zhenyu; Amy, Gary L.

    2012-01-01

    The study of forward osmosis (FO) membranes has increased due to the already demonstrated advantages compared to high-energy membrane processes such as reverse osmosis (RO). This research focuses on characterization of the natural organic matter (NOM) fraction causing fouling on the active layer (AL) of a FO membrane in a novel plate and frame module configuration, facing secondary wastewater effluent as a feed solution (FS) and seawater used as a draw solution (DS). In addition, transparent exopolymer particles (TEP) were observed on the support layer (SL) of the membrane in contact with the DS. The NOM fouling layer, after characterizing the water samples and membranes used, was found to be composed of biopolymers and protein-like substances, which adversely affect the flux of water through the FO membrane. However, NOM fouling showed high reversibility, up to 90% when air scouring for 15. min is used as a cleaning technique. The irreversible fouling in this work was found to be 8.2% after chemical cleaning. On the support layer of the membrane, TEP formed clusters clearly identifiable with an optical microscope and a TEP-specific dye. Chemical cleaning with 1% NaOCl for 10. min proved to be the most effective method to remove TEP. © 2012.

  19. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  20. Dynamics of transparent exopolymer particle (TEP) production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi.

    Science.gov (United States)

    Nissimov, Jozef I; Vandzura, Rebecca; Johns, Christopher T; Natale, Frank; Haramaty, Liti; Bidle, Kay D

    2018-06-19

    Emiliania huxleyi produces calcium carbonate (CaCO 3 ) coccoliths and transparent exopolymer particles (TEP), sticky, acidic carbohydrates that facilitate aggregation. E. huxleyi's extensive oceanic blooms are often terminated by coccolithoviruses (EhVs) with the transport of cellular debris and associated particulate organic carbon (POC) to depth being facilitated by TEP-bound "marine snow" aggregates. The dynamics of TEP production and particle aggregation in response to EhV infection are poorly understood. Using flow cytometry, spectrophotometry, and FlowCam visualization of alcian blue (AB)-stained aggregates, we assessed TEP production and the size spectrum of aggregates for E. huxleyi possessing different degrees of calcification and cellular CaCO 3 :POC mass ratios, when challenged with two EhVs (EhV207 and EhV99B1). FlowCam imaging also qualitatively assessed the relative amount of AB-stainable TEP (i.e. blue:red ratio of each particle). We show significant increases in TEP during early phase EhV207-infection (∼24 hours) of calcifying strains and a shift towards large aggregates following EhV99B1-infection. We also observed the formation of large aggregates with low blue:red ratios, suggesting that other exopolymer substances contribute towards aggregation. Our findings show the potential for virus infection and the associated response of their hosts to impact carbon flux dynamics and provide incentive to explore these dynamics in natural populations. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process

    International Nuclear Information System (INIS)

    Qadir, Abdul; Sharma, Manish; Parvareh, Forough; Khalilpour, Rajab; Abbas, Ali

    2015-01-01

    Highlights: • Flexible operation of power and PCC plant may significantly increase operational revenue. • Higher optimal carbon capture rates observed with solar thermal energy input. • Solar thermal repowering of the power plant provides highest net revenue. • Constant optimal capture rate observed for one of the flexible operation cases. • Up to 42% higher revenue generation observed between two cases with solar input. - Abstract: This paper examines flexible operation of solvent-based post-combustion carbon capture (PCC) for the reduction of power plant carbon emissions while minimizing revenue loss due to the reduced power plant electricity output. The study is conducted using a model superstructure enveloping three plants; a power plant, a PCC plant and a solar thermal field where the power plant and PCC plant are operated flexibly under the influence of hourly electricity market and weather conditions. Reduced (surrogate) models for the reboiler duty and auxiliary power requirement for the carbon capture plant are generated and applied to simulate and compare four cases, (A) power plant with PCC, (B) power plant with solar assisted PCC, (C) power plant with PCC and solar repowering – variable net electricity output and (D) power plant with PCC and solar repowering – fixed net electricity output. Such analyses are conducted under dynamic conditions including power plant part-load operation while varying the capture rate to optimize the revenue of the power plant. Each case was simulated with a lower carbon price of $25/tonne-CO 2 and a higher price of $50/tonne-CO 2 . The comparison of cases B–D found that optimal revenue generation for case C can be up to 42% higher than that of solar-assisted PCC (case B). Case C is found to be the most profitable with the lowest carbon emissions intensity and is found to exhibit a constant capture rate for both carbon prices. The optimal revenue for case D is slightly lower than case C for the lower carbon

  2. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.

  3. Optical study of solar tower power plants

    International Nuclear Information System (INIS)

    Eddhibi, F; Amara, M Ben; Balghouthi, M; Guizani, A

    2015-01-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature

  4. Performance analysis of conventional and sloped solar chimney power plants in China

    International Nuclear Information System (INIS)

    Cao Fei; Zhao Liang; Li Huashan; Guo Liejin

    2013-01-01

    The solar chimney power plant (SCPP) has been accepted as one of the most promising approaches for future large-scale solar energy applications. This paper reports on a heat transfer model that is used to compare the performance of a conventional solar chimney power plant (CSCPP) and two sloped solar chimney power plants (SSCPPs) with the collector oriented at 30° and 60°, respectively. The power generation from SCPPs at different latitudes in China is also analyzed. Results indicate that the larger solar collector angle leads to improved performance in winter but results in lower performance in summer. It is found that the optimal collector angle to achieve the maximum power in Lanzhou, China, is around 60°. Main factors that influence the performance of SCPPs also include the system height and the air thermophysical characteristics. The ground energy loss, reflected solar radiation, and kinetic loss at the chimney outlet are the main energy losses in SCPPs. The studies also show SSCPPs are more suitable for high latitude regions in Northwest China, but CSCPPs are suggested to be built in southeastern and eastern parts of China with the combination to the local agriculture. - Highlights: ► The optimum collector angle for maximum power generation is 60° in Lanzhou. ► Main parameters influencing performances are the system height and air property. ► Ground loss, reflected loss and outlet kinetic loss are the main energy losses. ► The sloped styles are suitable for Northwest China. ► The conventional styles are suitable for Southeast and East China.

  5. Economic aspects of Solar Thermal Technologies for electricity generation

    International Nuclear Information System (INIS)

    Meinecke, W.

    1993-01-01

    Economic results of German studies are presented, which compare the four solar thermal technologies for electricity generation (parabolic trough collector system, central receiver system, parabolic dish/Stirling system, solar chimney plant). These studies were carried out by Interatom (today Siemens/KWU) in Bergisch Gladbach, Flachglas Solartechnik in Koln and Schlaich Bergermann and Partner in Stuggart under contract of DLR in Koln. Funds were made available by the German Ministry of Research and Development (BMFT). The results indicate that all of the investigated technologies have the potential to reduce the generating costs and that in the future costs of below 0.30 DM/kWh could be expected under excellent insolation conditions (e.G. 2850 kWh/m''2 a direct insolation as in California/USA). (Author) 25 refs

  6. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  7. Solar Pilot Plant project review No. 9, May 4--5, 1977. CDRL item 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Drawings and illustrations for the project review are presented. These are included for the 10 MW(e) solar pilot plant, the collector subsystem, the receiver subsystem, the electrical power generation system and balance of plant, plant controls and transient analysis, availability and safety, pilot and commercial plant designs, and summary and recommendations. (MHR)

  8. Co-existence of electricity, TEP, and TGC markets in the Baltic Sea Region

    International Nuclear Information System (INIS)

    Hindsberger, Magnus; Nybroe, Malene Hein; Ravn, Hans F.; Schmidt, Rune

    2003-01-01

    This paper analyses the application of two policy instruments, tradable emission permits (TEPs) and tradable green certificates (TGCs) to the electricity sector in an international context. The paper contains an explicit modelling at two levels of abstraction, one suitable for defining and analysing basic functionalities and one suitable for numerical analysis in relation to countries in the Baltic Sea Region. Emphasis is on estimating implications in quantitative terms for countries in the Baltic Sea Region in 2010 when the TEP market in the analysis extends to four Nordic countries (Denmark, Finland, Norway, Sweden), and the TGC market extends to North European EU countries (Denmark, Finland, Sweden, Germany). The study concludes that within the range of goals stipulated in the EU draft directive (23.6% renewable energy) and the Kyoto targets for emissions, the following prices are affected significantly: from -2 to +10 Euro/MWh for electricity spot prices, TGC prices up to 50 Euro/MWh, TEP prices up to 18 Euro/t CO 2 and up to +15 Euro/MWh on the consumer cost. It is shown that such price changes have important consequences for the production and investment patterns in the electricity sector, and the resulting patterns will be clearly different according to the specific numerical targets for the two goals. An immediate consequence is increased pressure on transmission lines. Further, the introduction of TEP and TGC markets will imply a restructuring of the electricity sector, e.g. (depending on the specific combination of targets) by a significant increase in wind power capacities. However, this will have to be counterbalanced by access to production technologies that have fast regulation properties and/or that may maintain voltage stability. However, the price signals of TGCs (and to some extent also TEPs) that will enhance wind power investments will simultaneously hamper investments in technologies that are a precondition for extensive use of wind power

  9. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  10. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  11. Design and analysis of a hybrid renewable energy plant with solar and wind power

    International Nuclear Information System (INIS)

    Kabalci, Ersan

    2013-01-01

    Highlights: • A distributed generation system is developed with separate solar plant and wind turbine. • The solar plant is controlled with MPPT infrastructure of Perturb and Observe algorithm. • Power generation of source sites are converted to DC with PI controlled buck converters and collected on a DC busbar. • Harvested DC power is converted to AC with a full bridge inverter and SPWM control is performed in inverter. • The total harmonic distortion (THD) ratio of the generated 3-phase line is obtained in the limit of standards. - Abstract: A hybrid renewable energy plant that is based on solar and wind energy conversion systems is designed and analysed in this paper. Each separate energy conversion system is controlled either using regular PI controller or extended PI controller with an auxiliary controller containing Perturb and Observe algorithm. The solar plant model is constituted by connecting 170 W photovoltaic (PV) panels serially and energy conversion is performed with maximum power point tracking (MPPT) algorithm that controls the modulator of buck converter. The MPPT algorithm utilized in the control step of converter is developed using Perturb and Observe (P and O) that is extended with PI controller. The wind energy plant is designed with a permanent magnet synchronous generator (PMSG), and the AC–DC conversion stage is constituted with an uncontrolled full-bridge rectifier. All the converter outputs are connected to a busbar over interphase transformers (IPTs). The DC bus-bar voltage is supplied to a full bridge inverter to generate three-phase AC voltages at the output of inverter. The three-phase inverter is controlled with sinusoidal pulse width modulation (SPWM) scheme, which is developed with phase shifted carrier signals. The total harmonic distortion (THD) ratios are obtained at proper values according to international standards such as IEC61000 and IEEE 519-1992. Measurement results and obtained three phase voltage are analysed

  12. Impact of onsite solar generation on system load demand forecast

    International Nuclear Information System (INIS)

    Kaur, Amanpreet; Pedro, Hugo T.C.; Coimbra, Carlos F.M.

    2013-01-01

    Highlights: • We showed the impact onsite solar generation on system demand load forecast. • Forecast performance degrades by 9% and 3% for 1 h and 15 min forecast horizons. • Error distribution for onsite case is best characterized as t-distribution. • Relation between error, solar penetration and solar variability is characterized. - Abstract: Net energy metering tariffs have encouraged the growth of solar PV in the distribution grid. The additional variability associated with weather-dependent renewable energy creates new challenges for power system operators that must maintain and operate ancillary services to balance the grid. To deal with these issues power operators mostly rely on demand load forecasts. Electric load forecast has been used in power industry for a long time and there are several well established load forecasting models. But the performance of these models for future scenario of high renewable energy penetration is unclear. In this work, the impact of onsite solar power generation on the demand load forecast is analyzed for a community that meets between 10% and 15% of its annual power demand and 3–54% of its daily power demand from a solar power plant. Short-Term Load Forecasts (STLF) using persistence, machine learning and regression-based forecasting models are presented for two cases: (1) high solar penetration and (2) no penetration. Results show that for 1-h and 15-min forecasts the accuracy of the models drops by 9% and 3% with high solar penetration. Statistical analysis of the forecast errors demonstrate that the error distribution is best characterized as a t-distribution for the high penetration scenario. Analysis of the error distribution as a function of daily solar penetration for different levels of variability revealed that the solar power variability drives the forecast error magnitude whereas increasing penetration level has a much smaller contribution. This work concludes that the demand forecast error distribution

  13. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    DEFF Research Database (Denmark)

    Modi, Anish; Knudsen, Thomas; Haglind, Fredrik

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance is to...

  14. Modeling and optimization of a novel solar chimney cogeneration power plant combined with solid oxide electrolysis/fuel cell

    International Nuclear Information System (INIS)

    Joneydi Shariatzadeh, O.; Refahi, A.H.; Abolhassani, S.S.; Rahmani, M.

    2015-01-01

    Highlights: • Proposed a solar chimney cogeneration power plant combined with solid oxide fuel cell. • Conducted single-objective economic optimization of cycle by genetic algorithm. • Stored surplus hydrogen in season solarium to supply electricity in winter by SOFC. - Abstract: Using solar chimney in desert areas like El Paso city in Texas, USA, with high intensity solar radiation is efficient and environmental friendly. However, one of the main challenges in terms of using solar chimneys is poor electricity generation at night. In this paper, a new power plant plan is proposed which simultaneously generates heat and electricity using a solar chimney with solid oxide fuel cells and solid oxide electrolysis cells. In one hand, the solar chimney generates electricity by sunlight and supplies a part of demand. Then, additional electricity is generated through the high temperature electrolysis which produces hydrogen that is stored in tanks and converted into electricity by solid oxide fuel cells. After designing and modeling the cycle components, the economic aspect of this power plant is considered numerically by means of genetic algorithm. The results indicate that, 0.28 kg/s hydrogen is produced at the peak of the radiation. With such a hydrogen production rate, this system supplies 79.26% and 37.04% of the demand in summer and winter respectively in a district of El Paso city.

  15. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  16. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

  17. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India

    Directory of Open Access Journals (Sweden)

    Deepak Bishoyi

    2017-09-01

    Full Text Available Solar energy is a key renewable energy source and the most abundant energy source on the globe. Solar energy can be converted into electric energy by using two different processes: by means of photovoltaic (PV conversion and the thermodynamic cycles. Concentrated solar power (CSP is viewed as one of the most promising alternatives in the field of solar energy utilization. Lifetime and efficiency of PV system are very less compared to the CSP technology. A 100 MW parabolic trough solar thermal power plant with 6 h of thermal energy storage has been evaluated in terms of design and thermal performance, based on the System Advisor Model (SAM. A location receiving an annual DNI of 2248.17 kW h/m2 in Rajasthan is chosen for the technical feasibility of hypothetical CSP plant. The plant design consists of 194 solar collector loops with each loop comprising of 8 parabolic trough collectors. HITEC solar salt is chosen as an HTF due to its excellent thermodynamic properties. The designed plant can generate annual electricity of 285,288,352 kW h with the plant efficiency of 21%. The proposed design of PTC based solar thermal power plant and its performance analysis encourages further innovation and development of solar thermal power plants in India.

  18. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  19. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

    Science.gov (United States)

    Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol

    2017-10-01

    Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

  20. Dispatchable Solar Power Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Price, Henry [Solar Dynamics LLC, Broomfield, CO (United States)

    2018-01-31

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant can provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion turbines

  1. Solar hybrid power plants: Solar energy contribution in reaching full dispatchability and firmness

    Science.gov (United States)

    Servert, Jorge F.; López, Diego; Cerrajero, Eduardo; Rocha, Alberto R.; Pereira, Daniel; Gonzalez, Lucía

    2016-05-01

    Renewable energies for electricity generation have always been considered as a risk for the electricity system due to its lack of dispatchability and firmness. Renewable energies penetration is constrained to strong grids or else its production must be limited to ensure grid stability, which is kept by the usage of hydropower energy or fossil-fueled power plants. CSP technology has an opportunity to arise not only as a dispatchable and firm technology, but also as an alternative that improves grid stability. To achieve that objective, solar hybrid configurations are being developed, being the most representative three different solutions: SAPG, ISCC and HYSOL. A reference scenario in Kingdom of Saudi Arabia (KSA) has been defined to compare these solutions, which have been modelled, simulated and evaluated in terms of dispatchability and firmness using ratios defined by the authors. The results show that: a) SAPG obtains the highest firmness KPI values, but no operation constraints have been considered for the coal boiler and the solar energy contribution is limited to 1.7%, b) ISCC provides dispatchable and firm electricity production but its solar energy contribution is limited to a 6.4%, and c) HYSOL presents the higher solar energy contribution of all the technologies considered: 66.0% while providing dispatchable and firm generation in similar conditions as SAPG and ISCC.

  2. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  3. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    Science.gov (United States)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  4. Solar generators in terrestrial communication technology. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, E

    1978-01-01

    To begin with, the basic terms solar cell, solar cell module, solar generator, and solar generator system are defined and illustrated by examples. After this, the advantages and disadvantages of solar generators in power supply for terrestrial communications as compared to dry cell batteries, diesel generators and mains operation are discussed with a view to technical, economic, and ecological aspects. After some hints for an optimum design of systems, a comprehensive, general list of possible applications is given. The second part will give a detailed description of typical and exemplary applications.

  5. A new economic feasibility approach for solar chimney power plant design

    International Nuclear Information System (INIS)

    Okoye, Chiemeka Onyeka; Solyalı, Oğuz; Taylan, Onur

    2016-01-01

    Highlights: • A two-stage economic feasibility approach is proposed for the SCPP design. • The optimal size of the SCPP is determined by solving a nonlinear optimization model. • Energy demand and stochasticity of solar radiation and temperature are considered. • The proposed approach is evaluated on locations in Nigeria. • The proposed approach is an effective decision-making tool for the SCPP design. - Abstract: Solar chimney power plants have been accepted as one of the promising technologies for solar energy utilization. The objective of this study is to propose an effective approach to simultaneously determine the optimal dimensions of the solar chimney power plant and the economic feasibility of the proposed plant. For this purpose, a two-stage economic feasibility approach is proposed based on a new nonlinear programming model. In the first stage, the proposed optimization model which determines the optimal plant dimensions that not only minimize the discounted total cost of the system, but also satisfy the energy demand within a specified reliability taking into account the stochasticity of solar radiation and ambient temperature is solved using a commercial optimization solver that guarantees finding the global optimum. In the second stage, the net present value of building the plant is computed by deducting the discounted total cost found in the first stage from the present value of revenues obtained due to selling the electricity generated by the plant. The proposed approach is novel because it determines the optimal dimensions of the plant together with its economic feasibility by taking into account the energy demand and uncertainty in solar radiation and ambient temperature. The proposed approach is applied on a study in Potiskum, Nigeria, which reveals that building a plant with a collector diameter of 1128 m and chimney height of 715 m to Potiskum would be profitable for investors at an annual rate of return of 3% and would provide

  6. Questionnaire Study for The Use of Solar Energy and Wind Energy for The Generation of Electricity in Kuwait

    International Nuclear Information System (INIS)

    Tarawneh, Sultan; Rireh, Mohmd; Al-Razzi, Met'eb

    2015-01-01

    This research aims to study the acceptance of real management of designing electrical generation plants that work using solar energy and wind energy, to explain the benefits for the decision makers of the use of the solar energy and wind energy, and to define the most important obstacles that hinder the use of solar energy in generating electricity in spite of fulfilling the environmental conditions as clean energy and renewing energy contribute to sustainability of natural resources. The descriptive methodology was used by going back to reference material including books, and scientific journals and periodicals as well as scientific researches to identify the real management and design of electrical plant generation using solar energy and wind energy. A questionnaire was distributed among the study sample that was composed of the engineers working in energy field and electrical generation plants, the general institute for environment, Kuwait Institute for Scientific Research, and Kuwait Society of Engineers. 203 responses were received from the study sample. Results of the study showed the presence of obstacles and special problems related to the use of solar energy that face the decision makers with regard to the ability for acquiring important advanced technology and the huge financial support and the partnership of the private sector and training of unskilled human resources. And it was declared that there is a huge focus and attention in generation electrical energy from fossil fuel because of its presence and sustainability in investment in this field and the ability to fulfill the needs of the local market from energy.(author)

  7. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (solar heat power generation); 1974 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report summarizes the fiscal 1974 research result on solar heat power generation. The following are promising as solar heat power plant sites in Japan: Large-scale sites such as the foot of volcanos, riverbed, railway site and road, medium-scale sites such as isolated island, saltpan site and industrial park, and small-scale sites such as factory site, factory roof floor, housing complex, warehouse and school. Based on the primary concept design of both curved reflector type and tower type 1,000kW class solar heat power plants, various requirements were clarified roughly. It was clarified that food, fiber and non-ferrous metal factories can cover 80-90% of their thermal energy requirements with high- temperature solar heat, while factories related to food and fiber can cover even nearly 100% of their electric power requirements with solar heat. Study was also made on specifications of a solar simulator as common use facility necessary for characteristic evaluation of equipment and materials for solar heat power generation systems. (NEDO)

  8. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (solar heat power generation); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Research was made on solar heat power generation following last fiscal year, as a part of solar energy utilization technologies. In this fiscal year, in particular, research was made on the following: selection of suitable sites for solar heat power plants in Japan, estimation of expected power supply, positioning of a solar heat power system among future power systems, operation policy of solar heat power systems, survey on suitable sites for the 1,000kW pilot power plant, operation characteristics of the small test plant, design of the 1,000kW pilot power plant, test methods and facilities for every element equipment of solar heat power systems, an environmental test method for mostly solar collectors, and the profitability of solar heat power systems. Optimum operation temperature levels were nearly 350 degrees C for distributed systems and nearly 400 degrees C for centralized ones. The distributed system is profitable in a unit capacity range less than 5-10MWe, while the centralized system is profitable in a range over 10MWe. Under some assumptions, the power cost of solar heat power systems was estimated to be 20-30yen/kWH. (NEDO)

  9. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  10. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  11. Solar thermal power stations for activities implemented jointly. The Theseus 50 MWe solar thermal power plant for the island of Crete, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Brakmann, Georg [Fichtner, Stuttgart (Germany); Aringhoff, Rainer [Pilkington Solar International (United Kingdom); Cobi, Arend [PreussenElektra (Germany)

    1998-09-01

    THESEUS, the proposed commercial 50 MWe (net) Thermal Solar European Power Station for the Island of Crete is a solar hybrid plant with parabolic trough collectors and an advanced high efficiency Rankine reheat steam cycle. At the end of 1996 the DG XVII (Energy) of the European Commission has accepted the THERMIE application of the THESEUS consortium for the design phase. THESEUS reduces the required oil imports by 28 000 t/a, thereby saving the Greek economy every year 4 million ECU in foreign currency. During its 25 years technical lifetime 2.2 million tons of CO{sub 2} emissions will be avoided. Supply, construction, erection and operation of THESEUS creates 2 000 qualified employments (man-years). Because of the high manpower intensity of solar plants and their larger capital income from interest payments in contrast to the high fuel import intensity of fossil plants, THESEUS will generate larger tax revenues for Greece and for the supplier`s countries. The investment cost of THESEUS is some 135 million ECU. Even without any subsidies this would result in electricity generation cost of some 0.085 ECY/kWh, which is lower than the current average cost from the existing power plants of Crete. (author)

  12. Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes

    Science.gov (United States)

    Kananda, Kiki; Nazir, Refdinal

    2017-12-01

    One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.

  13. Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Jorge M. Llamas

    2017-08-01

    Full Text Available Currently, operating parabolic trough (PT solar thermal power plants, either solar-only or with thermal storage block, use the solar field as a heat transfer fluid (HTF thermal storage system to provide extra thermal capacity when it is needed. This is done by circulating heat transfer fluid into the solar field piping in order to create a heat fluid buffer. In the same way, by oversizing the solar field, it can work as an alternative thermal energy storage (TES system to the traditionally applied methods. This paper presents a solar field TES model for a standard solar field from a 50-MWe solar power plant. An oversized solar model is analyzed to increase the capacity storage system (HTF buffering. A mathematical model has been developed and different simulations have been carried out over a cycle of one year with six different solar multiples considered to represent the different oversized solar field configurations. Annual electricity generation and levelized cost of energy (LCOE are calculated to find the solar multiple (SM which makes the highest solar field thermal storage capacity possible within the minimum LCOE.

  14. Land-Use Requirements for Solar Power Plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  15. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use ...

  16. A novel small dynamic solar thermal desalination plant with a fluid piston converter

    International Nuclear Information System (INIS)

    Mahkamov, Khamid; Orda, Eugene; Belgasim, Basim; Makhkamova, Irina

    2015-01-01

    Highlights: • A dynamic solar desalination plant was developed which works cyclically. • It integrates an evacuated tube solar collector and fluid piston converter. • Pressure during desalination process varies with frequency of 2–4 Hz. • The system has a small increase in fresh water yield and provides pumping capacity. • Mathematical modelling provides accurate description of experimental performance. - Abstract: An innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the

  17. An assessment of the regional potential for solar power generation in EU-28

    International Nuclear Information System (INIS)

    Perpiña Castillo, Carolina; Batista e Silva, Filipe; Lavalle, Carlo

    2016-01-01

    In this study we aim at assessing the potential of European regions to solar power generation and its comparison with recent European Union (EU) incentives for the development of this renewable energy source. In this study we use a multi-criteria assessment (MCA) supported by Geographical Information System (GIS) to combine already existing information on solar radiation with other geographical factors such as slope, land use, urban extent and population distribution, as well as proximity to the power grid to generate a suitability map for photovoltaic (PV) power plants across the EU at high spatial resolution. A validation exercise showed that the resulting suitability map is a good predictor of appropriate locations for the deployment of PV power plants. The suitability map was in addition compared to the regional distribution of European funds for development of solar energy from the EU Cohesion policy (2007–2013 programme). Regions were classified according their overall suitability for solar energy power systems and the allocated solar investments by the EU Cohesion policy. This analysis allowed to identify potential mismatches between fund allocations and actual regional suitability for solar energy. It is recommended that future fund allocations take into account suitability criteria for solar energy for optimised results of public policies. - Highlights: • A European suitability map for the solar energy (PV) systems deployment is created. • PV systems can contribute in a sustainable energy production in many regions in EU. • There is no correlation among the EU investment and the suitability in solar energy. • Using marginal lands to place PV systems might avoid the uptake of agricultural land. • Validation of the EU suitability map demonstrated a satisfactory degree of accuracy.

  18. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    Science.gov (United States)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  19. Solar pilot plant, phase I. Quarterly report No. 1, July--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-02-20

    Honeywell Inc. is investigating the technical and economic feasibility of generating electricity from solar energy. During the first 6 months of the program (1 July--31 December 1975), a preliminary design baseline for a 10-MW(e) solar pilot plant was generated and analyzed. Subsequently, several changes were made to improve performance and/or reduce cost. Conceptual designs and research experiments were generated for three key subsystems--collector, steam generator, and thermal storage. Limited testing was done to study the problem of removing eutectic salts from vaporizer tubes in the thermal storage subsystem. The program was on schedule at the end of 1975. Plans for the first quarter of 1976 include ordering long-leadtime items for the subsystem research experiments, continuing analysis of the conceptual designs preparatory to detailing them, and continuing engineering model experiments.

  20. Mushrooms as Efficient Solar Steam-Generation Devices.

    Science.gov (United States)

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  2. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  3. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  4. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  5. Motivation for the European Union to support large solar power plants

    International Nuclear Information System (INIS)

    Brakmann, Georg

    1997-01-01

    An invited article discusses the opportunities for large, electricity generating solar thermal plants in the European Union. It is claimed that although it is currently not competitive with current oil prices, it is cheaper than photovoltaics. Topics covered include CO 2 emission reduction, likely subsidies required, job creation and taxation. (UK)

  6. Solar thermal power plants for heat and electricity generation; Presentacion de plantas termosolares para generacion de calor y energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Cajigal, V [Solartronic S. A. de C. V., Cuernavaca (Mexico); Manzini, F; Sanchez, A [Laboratorio de Energia Solar (IIM-UNAM), Temixco (Mexico)

    1993-12-31

    Solar thermal technology is presented for concentration into a point for the production of heat and energy in small and large scale, emphasis is made on the capacity for the combination with current technologies using fossil fuels for electricity generation and process steam, increasing the global efficiency of the power plants and notably reducing the pollutants emission to the air during the insolation hours. It is successfully compared with other solar-thermal technologies. [Espanol] Se presenta la tecnologia termosolar de concentracion puntual para produccion de calor y de energia en pequena y gran escala, se enfatiza su capacidad de combinacion con las tecnologias actuales que utilizan combustibles fosiles para produccion de electricidad y vapor de proceso, aumentando la eficiencia global de las plantas y reduciendo notablemente sus emisiones contaminantes a la atmosfera durante las horas de insolacion. Se le compara exitosamente con otras tecnologias termosolares.

  7. Solar thermal power plants for heat and electricity generation; Presentacion de plantas termosolares para generacion de calor y energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Cajigal, V. [Solartronic S. A. de C. V., Cuernavaca (Mexico); Manzini, F.; Sanchez, A. [Laboratorio de Energia Solar (IIM-UNAM), Temixco (Mexico)

    1992-12-31

    Solar thermal technology is presented for concentration into a point for the production of heat and energy in small and large scale, emphasis is made on the capacity for the combination with current technologies using fossil fuels for electricity generation and process steam, increasing the global efficiency of the power plants and notably reducing the pollutants emission to the air during the insolation hours. It is successfully compared with other solar-thermal technologies. [Espanol] Se presenta la tecnologia termosolar de concentracion puntual para produccion de calor y de energia en pequena y gran escala, se enfatiza su capacidad de combinacion con las tecnologias actuales que utilizan combustibles fosiles para produccion de electricidad y vapor de proceso, aumentando la eficiencia global de las plantas y reduciendo notablemente sus emisiones contaminantes a la atmosfera durante las horas de insolacion. Se le compara exitosamente con otras tecnologias termosolares.

  8. Transparent Exopolymeric Particles (TEP Selectively Increase Biogenic Silica Dissolution From Fossil Diatoms as Compared to Fresh Diatoms

    Directory of Open Access Journals (Sweden)

    Jordan Toullec

    2018-03-01

    Full Text Available Diatom production is mainly supported by the dissolution of biogenic silica (bSiO2 within the first 200 m of the water column. The upper oceanic layer is enriched in dissolved and/or colloidal organic matter, such as exopolymeric polysaccharides (EPS and transparent exopolymeric particles (TEP excreted by phytoplankton in large amounts, especially at the end of a bloom. In this study we explored for the first time the direct influence of TEP-enriched diatom excretions on bSiO2 dissolution. Twelve dissolution experiments on fresh and fossil diatom frustules were carried out on seawater containing different concentrations of TEP extracted from diatom cultures. Fresh diatom frustules were cleaned from the organic matter by low ash temperature, and fossil diatoms were made from diatomite powder. Results confirm that newly formed bSiO2 dissolved at a faster rate than fossil diatoms due to a lower aluminum (Al content. Diatom excretions have no effect on the dissolution of the newly formed bSiO2 from Chaetoceros muelleri. Reversely, the diatomite specific dissolution rate constant and solubility of the bSiO2 were positively correlated to TEP concentrations, suggesting that diatom excretion may provide an alternative source of dSi when limitations arise.

  9. Optimal year-round operation of a concentrated solar energy plant in the south of Europe

    International Nuclear Information System (INIS)

    Martín, Lidia; Martín, Mariano

    2013-01-01

    We present the year-round optimization of the operation of a concentrated solar power facility evaluating the molten salts storage, the power block and cooling. We locate the plant in the south of Europe, Almería (Spain), where high solar radiation is available. The operation of the plant is a function of the solar incidence as well as the climate and atmospheric conditions. The optimization of the system is formulated as a multiperiod Non-linear Programming problem (NLP) that is solved for the optimal production of electricity over a year defining the main operating variables of the thermal and cooling cycles. For a maximum of 25 MW in summer and a minimum of 9.5 MW in winter the annual production cost of electricity is 0.15 €/kWh consuming an average of 2.1 L water /kWh. The investment for the plant is 260 M€. Scale-up studies reveal that the production cost can decrease by half while the investment per unit of power should become competitive with current coal based power plants if solar and coal facilities present similar production capacities. -- Highlights: • Plant design so far relies on process simulation and only partial optimization studies. • We optimize the operation of a concentrated solar power plant. • The facility involves solar field, molten salts, steam and electricity generation and cooling. • The results are promising and validate literature sensitive studies

  10. The Marstal Central Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Jochen, Dahm

    1999-01-01

    The central solar heating plant in Marstal is running since 1996 and has been monitored since. The resulting data from the plant is analysed and the plant performance evaluated. A TRNSYS-model (computersimulation) id prepared and validated based on the measured data from the plant. Acceptable good...

  11. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  12. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Highlights: • Evaluation of solar resources in the absence of measured data. • Optimization of 2 PTSTPPs integrated with TES and FBS and using oil and salt as HTFs. • 4E comparative study of the two optimized plants alongside the Andasol 1 plant. • The salt plant resulting as the best one and has been chosen for the viability study. • Tamanrasset is the best location for construction of PTSTPPs. - Abstract: In the present study, optimization of two parabolic trough solar thermal power plants integrated with thermal energy storage (TES), and fuel backup system (FBS) has been performed. The first plant uses Therminol VP-1 as heat transfer fluid in the solar field and the second plant uses molten salt. The optimization is carried out with solar multiple (SM) and full load hours of TES as the parameters, with an objective of minimizing the levelized cost of electricity (LCOE) and maximizing the annual energy yield. A 4E (energy–exergy–environment–economic) comparison of the optimized plants alongside the Andasol 1 as reference plant is studied. The molten salt plant resulting as the best technology, from the optimization and 4E comparative study has been chosen for the viability analysis of ten locations in Algeria with semi-arid and arid climatic conditions. The results indicate that Andasol 1 reference plant has the highest mean annual energy efficiency (17.25%) and exergy efficiency (23.30%). Whereas, the highest capacity factor (54.60%) and power generation (236.90 GW h) are exhibited by the molten salt plant. The molten salt plant has least annual water usage of about 800,482 m 3 , but demands more land for the operation. Nevertheless the oil plant emits the lowest amount of CO 2 gas (less than 40.3 kilo tonnes). From the economic viewpoint, molten salt seems to be the best technology compared to other plants due to its lowest investment cost (less than 360 million dollars) and lower levelized cost of electricity (LCOE) (8.48 ¢/kW h). The

  13. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...

  14. A framework for investigating the interactions between climate, dust, solar power generation and water desalination processes in Desert Climate

    Science.gov (United States)

    Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.

    2016-12-01

    Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.

  15. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  16. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  17. Possibilities of electricity generation from solar and other renewable resources in Turkey

    International Nuclear Information System (INIS)

    Tasdemiroglu, E.

    1993-01-01

    The paper begins by reviewing the conventional power generation in the country. Increasing power demand due to rapid industrialization as well as the environmental consequences of power generation will be discussed. The potential of renewable energy resources including solar, biomass, wind, and wave and their role in the power generation will be pointed out. Among the strong alternatives are thermal power plants, and rural electricity production by photovoltaic and by small wind machines. Finally, the technical economic difficulties in adapting renewable electricity generation systems for the conditions of the country will be discussed. (Author) 22 refs

  18. Reports on 1979 result of Sunshine Project. Investigation and research on solar energy utilization system (solar thermal power generation system); 1979 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyonetsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    An investigation and research were conducted on the operation method of various solar thermal power generation systems and on the evaluation of the rating and cost performance; in the environmental test method for the equipment, the examination was continued for the test method and evaluation method concerning the absorbing surface and transmitting film; in the heat storing technology, an investigative research was done on the optimum heat storing method and energy conversion method suitable for the operation of the thermal power generation system, as well as performing, as an objective, a computer simulation on the total system with the purpose of clarifying the heat storing capacity. The results in the year were as follows. The operation method for solar thermal power generation was examined, as were the energy analysis, evaluation method of 1 MW pilot plant, the optimum utilization system of solar energy in the long run including its application, and technological economical problems to be solved for the next large solar thermal power generating plant. A discussion was carried out on the endurance test of the selective absorbing surface and transmitting film and on the durability of the reflection mirror. Evaluation and examination were made on the various materials of the 1 MW pilot plant. A review was done on various heat accumulating devices for solar thermal generation, mathematical thermal characteristics of heat accumulating devices, and future energy storing methods and problems. (NEDO)

  19. Solar power generating device. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, E

    1990-02-06

    Concerning the existing solar power generating device using the analogue sequential partial shunt system, the number of interface line between the solar cell panel and the shunt dissipater is enormous and complicated in addition to the increased temperature rise of the shunt transistor in its working condition. Furthermore, concerning the digital sequential full shunt system, the above temperature rise becomes less, but the above number of interface line is likewise enormous. In order to remove the above defects, the solar power generating device which this invention concerns has the features that, in each row of solar cells connected to shunt transistors which are controlled respectively in a manner of on (saturation)/off independently in accordance with the amount of surplus electric power, the number of parallel connection of the unit cell circuits composing the each row above is made to be the different number respectively. Besides, it is proposed to have the feature in particular that such a number is made to be the number of 2 {sup n} (n is from zero to any integer, m) where n is increased by one progressively. 5 figs.

  20. Solar field control for desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Roca, Lidia [Convenio Universidad de Almeria, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120 Almeria (Spain); Yebra, Luis; Alarcon-Padilla, Diego C. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain)

    2008-09-15

    This paper presents the development and application of a feedback linearization control strategy for a solar collector field supplying process heat to a multi-effect seawater distillation plant. Since one objective is to use as much as possible the solar resource, control techniques can be used to produce the maximum heat process in the solar field. The main purpose of the controller presented in this paper is to manipulate the water flow rate to maintain an outlet-inlet temperature gradient in the collectors, thereby ensuring continuous process heating, or in other words, continuous production of fresh water in spite of disturbances. The dynamic behaviour of this solar field was approximated by a simplified lumped-parameters nonlinear model based on differential equations, validated with real data and used in the feedback linearization control design. Experimental results in the seawater desalination plant at the Plataforma Solar de Almeria (Spain) show good agreement of the model and real data despite the approximations included. Moreover, by using feedback linearization control it is possible to track a constant gradient temperature reference in the solar field with good results. (author)

  1. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil

    International Nuclear Information System (INIS)

    Soria, Rafael; Portugal-Pereira, Joana; Szklo, Alexandre; Milani, Rodrigo; Schaeffer, Roberto

    2015-01-01

    The production of electricity using concentrated solar power (CSP) technology is not yet possible in Brazil due to the technology’s high capital costs and the lack of a local industry. However, this study introduces a low-cost approach to CSP in Brazil by describing and simulating the operation of hybrid CSP plants that use sustainably managed biomass in Brazil’s semiarid northeast. Biomass hybridisation of a CSP plant with a solar multiple (SM) of 1.2 and a biomass fill fraction (BFF) of 30% can generate electricity at 110 USD/MWh. The high direct normal irradiation (DNI) and the availability of local low-cost biomass in Brazil’s semiarid northeast suggest the possibility of developing a CSP industry capable of supplying low-cost components under a national program framework, with the co-benefits of local job and income generation. For example, the deployment of 10 CSP plants of 30 MWe each would generate 760 direct and indirect jobs during the 24 months of plant construction and approximately 2100 annual jobs associated with the operation and maintenance (O&M) of the generating units. These 10 new units would generate additional local income on the order of USD 57 million. - Highlights: • CSP plant with supplementary biomass hybridisation is a strategic option for Brazil. • DNI and biomass availability in Brazil's semiarid can foster local CSP industry. • LCOE of CSP would cost 11 cent USD/kWh becoming competitive at solar auctions. • Co-benefits of local job and income generation due to CSP in Brazil are high.

  3. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  4. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  5. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct

  6. Performance of Generating Plant: Managing the Changes. Part 3: Renewable energy plant: reports on wind, photovoltaics and biomas energies

    Energy Technology Data Exchange (ETDEWEB)

    Manoha, Bruno; Cohen, Martin [Electricite de France (France)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 3 (WG3). WG3 will promote the introduction of performance indicators for renewable energy generating plant (wind, geothermal, solar and biomass) developed by the Committee. It will also assess selected transitional technology issues and environmental factors related to non-conventional technologies. The WG3 report includes sections on Wind Energy Today, Photovoltaics Energy Today, Biomass Electricity Today and appendices.

  7. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    Energy Technology Data Exchange (ETDEWEB)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  8. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  9. Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system

    International Nuclear Information System (INIS)

    Greijer, Helena; Karlson, Lennart; Lindquist, Sten-Eric; Hagfeldt, Anders

    2001-01-01

    A Life Cycle Assessment, LCA, of a nanocrystalline dye sensitised solar cell (ncDSC) system has been performed, according to the ISO14040 standard. In brief, LCA is a tool to analyse the total environment impact of a product or system from cradle to grave. Six different weighing methods were used to rank and select the significant environmental aspects to study further. The most significant environmental aspects according to the weighing methods are emission of sulphur dioxide and carbon dioxide. Carbon dioxide emission was selected as the environmental indicator depending on the growing attention on the global warming effect. In an environmental comparison of electricity generation from a ncDSC system and a natural gas/combined cycle power plant, the gas power plant would result in 450 g CO 2 /kWh and the ncDSC system in between 19-47 g CO 2 /wWh. The latter can be compared with 42 g CO 2 /kWh, according to van Brummelen et al. 'Life Cycle Assessment of Roof Integrated Solar Cell Systems, (Report: Department of Science, Technology and Society, Utrecht University, The Netherlands, 1994)' for another thin film solar cell system made of amorphous silicon. The most significant activity/component contributing to environmental impact over the life cycle of the ncDSC system is the process energy for producing the solar cell module. Secondly comes the components; glass substrate, frame and junction box. The main improvement from an environmental point of view of the current technology would be an increase in the conversion efficiency from solar radiation to electricity generation and still use low energy demanding production technologies. Also the amount of material in the solar cell system should be minimised and designed to maximise recycling. (Author)

  10. Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower

    Science.gov (United States)

    Elfikky, Niazi

    Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and Nuclear Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all Nuclear, Fossil and Biofuel power plants to avoide the nuclear hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output

  11. Cloud Monitoring for Solar Plants with Support Vector Machine Based Fault Detection System

    Directory of Open Access Journals (Sweden)

    Hong-Chan Chang

    2014-01-01

    Full Text Available This study endeavors to develop a cloud monitoring system for solar plants. This system incorporates numerous subsystems, such as a geographic information system, an instantaneous power-consumption information system, a reporting system, and a failure diagnosis system. Visual C# was integrated with ASP.NET and SQL technologies for the proposed monitoring system. A user interface for database management system was developed to enable users to access solar power information and management systems. In addition, by using peer-to-peer (P2P streaming technology and audio/video encoding/decoding technology, real-time video data can be transmitted to the client end, providing instantaneous and direct information. Regarding smart failure diagnosis, the proposed system employs the support vector machine (SVM theory to train failure mathematical models. The solar power data are provided to the SVM for analysis in order to determine the failure types and subsequently eliminate failures at an early stage. The cloud energy-management platform developed in this study not only enhances the management and maintenance efficiency of solar power plants but also increases the market competitiveness of solar power generation and renewable energy.

  12. A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant

    International Nuclear Information System (INIS)

    Li, Weibing; Wei, Ping; Zhou, Xinping

    2014-01-01

    Highlights: • We develop an economic model different from related models. • We evaluate the initial investment cost of a plant built in northwest China. • We analyze the cost and benefit of a plant built in northwest China. • By the sensitivity analysis, we examine the sensitivity of TNPV to many parameters. - Abstract: This paper develops a model different from existing models to analyze the cost and benefit of a reinforced concrete solar chimney power plant (RCSCPP) built in northwest China. Based on the model and some assumptions for values of parameters, this work calculates total net present value (TNPV) and the minimum electricity price in each phase by dividing the whole service period into four phases. The results show that the minimum electricity price in the first phase is higher than the current market price of electricity, but the minimum prices in the other phases are far less than the current market price. The analysis indicates that huge advantages of the RCSCPP over coal-fired power plants can be embodied in phases 2–4. In addition, the sensitivity analysis performed in this paper discovers TNPV is very sensitive to changes in the solar electricity price and inflation rate, but responds only slightly to changes in carbon credits price, income tax rate and interest rate of loans. Our analysis predicts that RCSCPPs have very good application prospect. To encourage the development of RCSCPPs, the government should provide subsidy by setting higher electricity price in the first phase, then lower electricity price in the other phases

  13. Is unilateral laparoscopic TEP inguinal hernia repair a job half done? The case for bilateral repair.

    Science.gov (United States)

    Pawanindra Lal; Philips, Prejesh; Chander, Jagdish; Ramteke, Vinod K

    2010-07-01

    Bilateral laparoscopic totally extraperitoneal (TEP) repair of unilateral hernia is conspicuous in published literature by its absence. There are no studies or data on the feasibility, advantages or disadvantages of bilateral repair in all cases or in any subset of patients with unilateral primary inguinal hernia. The objective of this study is to investigate the feasibility of bilateral laparoscopic exploration for all unilateral cases followed by laparoscopic TEP in all cases and to compare complications, recurrence rates, postoperative pain, patient satisfaction, and return to work retrospectively with a similar number of age-matched retrospective controls. One hundred fifty TEP operations were performed in 75 patients (group A) prospectively and were compared with 75 unilateral TEP operations (group B) in age-matched controls done previously by the same surgeon. All cases were performed under general anesthesia, and TEP repair was performed using three midline ports. All uncomplicated patients were discharged at 24 h, in keeping with departmental policy. Of 75 patients (group A), 25 (33.3%) were clinically diagnosed with bilateral hernia and the rest (50, 66.66%) with unilateral hernia. The distribution of the 25 bilateral cases was 11 bilateral direct and 14 bilateral indirect inguinal hernias. The distribution of the 75 age-matched controls (group B) was all unilateral hernia, of which 47 were right-sided and 28 were left-sided. There were 23 direct hernias and 52 indirect hernias among the control group. The mean operative time for all 150 cases was 76.66 +/- 15.92 min. The operative time in the control group (unilateral hernias) was 66.16 +/- 12.44 min, whereas the operative time in the test group (bilateral repair) was 87.2 +/- 11.32 min. The operative time in the bilateral group was significantly higher, by 21.04 min or 31.88% (p = 0.000). The operative time in the true unilateral group was 82.45 +/- 9.38 min, whereas the operative time in the former

  14. Evaluation of potential particulate/colloidal TEP foulants on a pilot scale SWRO desalination study

    KAUST Repository

    Li, Sheng; Sinha, Shahnawaz; Leiknes, TorOve; Amy, Gary L.; Ghaffour, NorEddine

    2016-01-01

    This pilot study investigated the variation of potential foulants and different fractions of transparent exopolymer particles (TEP), along the treatment scheme under different conditions. The objectives are to provide a comprehensive understanding

  15. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  16. Solar photovoltaic systems and their use as grid-connected generators in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Munro, D K; Hacker, R J; Thornycroft, J M [Halcrow Gilbert Associates Ltd., Swindon (United Kingdom)

    1995-10-01

    There is an increasing interest in the use of building-integrated solar photovoltaic generators as grid-connected generators. This paper discusses the experience with this technology in Europe. Typical systems and their integration into domestic and non-domestic buildings are described. Information is provided on the energy output that can be expected from the systems and the economics of their use. The paper provides an overview of the requirements for photovoltaic systems as grid-connected generation plant in the United Kingdom. (Author)

  17. Design and Performance of 20 Watts Portable Solar Generator

    International Nuclear Information System (INIS)

    Majid, Z A Abdul; Hazali, N; Hanafiah, M A K M; Abdullah, A A; Ismail, A F; Ruslan, M H; Sopian, K; Azmi, M S Mohd

    2012-01-01

    A new portable solar generator has been developed to generate electricity. It has the potential to replace petrol generator, widely used by peddlers at night markets (pasar malam). Conventional generators are heavy, oily, have high maintenance and use fossil fuel to generate electricity. The solar generator can generate 20 Watts of electricity. This amount of power can supply up to 96 hours of electricity for the purpose of lighting and running small electrical appliances. The power output is (alternating current) AC current using 150 Watts inverter with 200 Watts surge, suitable for all commercial single phase electric appliances. Solar charge controller is used to maximize the charging rate and to protect the battery. The system has low maintenance whereby the batteries need to be changed every three to four years, depending on the usage. The main concepts of portable solar generator are to reduce installation cost and to introduce a compact design of an optimal energy sizing system. The materials used to develop the solar generator can be easily obtained from local markets, thus reducing the cost of developing the system and making it suitable for commercialization.

  18. Concentrating Solar Power Projects - ISCC Duba 1 | Concentrating Solar

    Science.gov (United States)

    Solar Break Ground: 2016 Start Production: 2017 Participants Developer(s): Saudi Electricity Co. Owner(s ) (%): Saudi Electricity Co. EPC Contractor: Initec Energia Generation Offtaker(s): Saudi Electricity Co. Plant Configuration Solar Field SCA Manufacturer (Model): Flabeg (Ultimate Trough) HCE Manufacturer: Archimede Solar

  19. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  20. Location optimization of solar plants by an integrated hierarchical DEA PCA approach

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Maghsoudi, A.

    2008-01-01

    Unique features of renewable energies such as solar energy has caused increasing demands for such resources. In order to use solar energy as a natural resource, environmental circumstances and geographical location related to solar intensity must be considered. Different factors may affect on the selection of a suitable location for solar plants. These factors must be considered concurrently for optimum location identification of solar plants. This article presents an integrated hierarchical approach for location of solar plants by data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT). Furthermore, an integrated hierarchical DEA approach incorporating the most relevant parameters of solar plants is introduced. Moreover, 2 multivariable methods namely, PCA and NT are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 6 different regions within each city. This is the first study that considers an integrated hierarchical DEA approach for geographical location optimization of solar plants. Implementation of the proposed approach would enable the energy policy makers to select the best-possible location for construction of a solar power plant with lowest possible costs

  1. Data Series Generation for CPS Plants Simulation from Measurement Data; Generacion de Series de Datos para Simulacion de Centrales Termosolares Basadas en Datos Medidos

    Energy Technology Data Exchange (ETDEWEB)

    Mora, D. E.; Valenzuela, R. X.; Ramirez, L.; Polo, J.

    2014-02-01

    This project studies the impact of new regulations for solar thermal power plants purporting to be made in the future. In this document we analyze each of the points of the standard PROCEDURE FOR GENERATING A REPRESENTATIVE SOLAR YEAR is expected to be approved in a short period of time. The main purpose of this standard is to establish a series of solar radiation data called Representative Solar Year (RSY), which are hourly data for a full year that characterize the site where the plant will be installed. For this there is the possibility of generating the RSY by two methods, the first is to use estimates of solar radiation and the second use solar radiation data measured at the site. The second case is the one that will be addressed in the following pages. According to the methodology set out in the rule for generating RSY, through measured data, develops each of the points which can obtain the final result an estimate of the energy produced by the plant. First we calculate a Monthly Reference Values (MRV) of solar radiation as a basis for generating the RSY. The following is taken measured data sets must overcome quality and validation processes. The next step is to make an accommodation between the MRV and sets measured by a change of days, following the directions of the standard. The end result of this process we obtain the respective RSY that for purposes of this study will be entered into a simulation program that calculates the energy produced by a solar thermal plant. In this way we analyze and compare the energy produced by the plant with real data and RSY data obtained. (Author)

  2. Solar generation: a blueprint for growing the PV market

    International Nuclear Information System (INIS)

    Cameron, M.; Stierstorfer, J.; Teske, S.; Aubrey, C.

    2001-01-01

    The rapid growth of the solar electricity market is discussed. The European Photovoltaic Industry Association and Greenpeace have recently collaborated on a long-term forecast of the global solar electricity market up to 2020 with predictions up to 2040; the conclusions from their joint study are the subject of this article. The paper is presented under the main sub-headings of (i) background to the collaboration; (ii) the Greenpeace perspective; (iii) the impact of solar electricity in the lives of consumers and job-seekers born today; (iv) solar generation-methods and assumptions (v) market growth rates; (vi) electricity generation; (vii) carbon dioxide emissions; (viii) projection to 2040; (ix) key results of the EPIA/Greenpeace analysis; (x) solar electricity as a vehicle for job creation and (xi) creating the conditions for optimizing the impact of solar electricity on future generations. A chart shows solar electricity job creation potential 2000-2020

  3. Coastal Thematic Exploitation Platform (C-TEP): An innovative and collaborative platform to facilitate Big Data coastal research

    Science.gov (United States)

    Tuohy, Eimear; Clerc, Sebastien; Politi, Eirini; Mangin, Antoine; Datcu, Mihai; Vignudelli, Stefano; Illuzzi, Diomede; Craciunescu, Vasile; Aspetsberger, Michael

    2017-04-01

    The Coastal Thematic Exploitation Platform (C-TEP) is an on-going European Space Agency (ESA) funded project to develop a web service dedicated to the observation of the coastal environment and to support coastal management and monitoring. For over 20 years ESA satellites have provided a wealth of environmental data. The availability of an ever increasing volume of environmental data from satellite remote sensing provides a unique opportunity for exploratory science and the development of coastal applications. However, the diversity and complexity of EO data available, the need for efficient data access, information extraction, data management and high spec processing tools pose major challenges to achieving its full potential in terms of Big Data exploitation. C-TEP will provide a new means to handle the technical challenges of the observation of coastal areas and contribute to improved understanding and decision-making with respect to coastal resources and environments. C-TEP will unlock coastal knowledge and innovation as a collaborative, virtual work environment providing access to a comprehensive database of coastal Earth Observation (EO) data, in-situ data, model data and the tools and processors necessary to fully exploit these vast and heterogeneous datasets. The cloud processing capabilities provided, allow users to perform heavy processing tasks through a user-friendly Graphical User Interface (GUI). A connection to the PEPS (Plateforme pour l'Exploitation des Produits Sentinel) archive will provide data from Sentinel missions 1, 2 and 3. Automatic comparison tools will be provided to exploit the in-situ datasets in synergy with EO data. In addition, users may develop, test and share their own advanced algorithms for the extraction of coastal information. Algorithm validation will be facilitated by the capabilities to compute statistics over long time-series. Finally, C-TEP subscription services will allow users to perform automatic monitoring of some key

  4. EXPERIMENTAL RESEARCH OF THE INFLUENCE OF VARIOUS TYPES OF SOLAR COLLECTORS FOR PERFORMANCE SOLAR DESALINATION PLANT

    Directory of Open Access Journals (Sweden)

    Rakhmatulin I.R.

    2014-04-01

    Full Text Available The article discusses the possibility of using renewable energy for water purification. Results of analysis of a preferred energy source for a water purification using installed in places where fresh water shortages and a lack of electrical energy. The possibility of desalination of salt water using solar energy for regions with temperate climate. Presented desalination plant working on energy vacuum solar collectors, principles of action developed by the desalination plant. The experimental results of a constructed distiller when working with vacuum glass tubes and vacuum tubes with copper core inside. Conclusions about the possibility of using solar collectors for water desalination, are tips and tricks to improve the performance of solar desalination plant.

  5. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  6. Location Study of Solar Thermal Power Plant in the State of Pernambuco Using Geoprocessing Technologies and Multiple-Criteria Analysis

    Directory of Open Access Journals (Sweden)

    Verônica Wilma B. Azevêdo

    2017-07-01

    Full Text Available Solar Thermal Technology for the generation of electricity in large scale has been a reality in the world since the 1980s, when the first large-sized solar plants in the United States were introduced. Brazil presents great potential for the development of large-scale projects, although it is noted that the main barriers for the insertion of this technology in Brazilian market are the lack of incentives and goals and associated costs. In a way to contribute to the insertion of solar thermal technology in Brazil, this paper presents a macro-spatial approach, based on the use of Multiple-Criteria Decision Analysis and Geoprocessing, for the location of solar thermal power plants. The applied methodology for Pernambuco, located in the Northeast Region of Brazil, considered the implantation of parabolic trough solar power plant of 80 MW, operating only in solar mode, without heat storage. Based on performed analysis, it was confirmed that Pernambuco presents great potential for the installation of solar power plants, especially in the backlands of Pernambuco. Performed validations in the model demonstrate that the methodology attended the objective once the consistence between the assigned weights to the thematic layers, individually, and the final Map of site suitability were evidenced.

  7. Solar Power Plants: Dark Horse in the Energy Stable

    Science.gov (United States)

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  8. Optimal Solar PV Arrays Integration for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  9. Automatic generation and analysis of solar cell IV curves

    Science.gov (United States)

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  10. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  11. Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region

    International Nuclear Information System (INIS)

    Gunderson, I.; Goyette, S.; Gago-Silva, A.; Quiquerez, L.; Lehmann, A.

    2015-01-01

    Highlights: • The solar resource is sufficient to provide PV power at suitable locations within the Black Sea catchment. • Climate change will not significantly impact the solar resource, although uncertainty exists. • Land-use change will significantly impact potential PV power, although socio-economic factors will have more importance. • It is important to strengthen regional cooperation for the integration of renewable energy resources. - Abstract: Climate change is a naturally occurring phenomenon that has recently been greatly impacted by anthropogenic greenhouse gas (GHG) emissions. One of the main contributing sectors to GHG emissions is the energy sector, due to its high dependency on fossil fuels. Renewable energy systems, notably solar energy, can be an effective climate change mitigation alternative. Photovoltaic (PV) technology provides an interesting method to produce electricity through a virtually infinite renewable resource at the human time scale: solar radiation. This study evaluates the current and future solar energy potential through the use of grid-connected PV power plants at the scale of countries within the Black Sea catchment. Simulated data are used to determine potential change in climate and land-use according to two different development scenarios. Incident solar radiation flux from re-analyses, spatial interpolation, and the application of the Delta change method are used to assess the current and future solar resource potential within this catchment. Potential sites suitable for PV power plants are selected following a Fuzzy logic approach, and thus the total potential solar energy through PV power generation can be determined. Results show that climate change will have little impact on the solar radiation resource, while land-use change induces more variability. However, regardless of the scenario followed, the solar energy potential is sufficient to provide an interesting contribution to the electricity generation mix of

  12. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  13. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  14. Improved method for measuring transparent exopolymer particles (TEP) and their precursors infresh and saline water

    KAUST Repository

    Villacorte, Loreen O.; Ekowati, Yuli; Calix-Ponce, Helga N.; Schippers, Jan Cornelis; Amy, Gary L.; Kennedy, Maria Dolores

    2015-01-01

    Transparent exopolymer particles (TEP) and their precursors produced by phyto-/bacterio-planktons in fresh and marine aquatic environments are increasingly considered as a major contributor to organic/particulate and biological fouling in micro

  15. Integrating geothermal into coal-fired power plant with carbon capture: A comparative study with solar energy

    International Nuclear Information System (INIS)

    Wang, Fu; Deng, Shuai; Zhao, Jun; Zhao, Jiapei; Yang, Guohua; Yan, Jinyue

    2017-01-01

    Highlights: • Post-combustion carbon capture integrating geothermal energy was proposed. • A 300 MWe subcritical coal-fired plant was selected as the baseline. • The geothermal assisted carbon capture system was compared with solar assisted carbon capture plant. • Two different locations were chosen for the technical and economical comparison. • Using medium temperature geothermal thermal energy to replace steam extraction performs better performance. - Abstract: A new system integrating geothermal energy into post-combustion carbon capture is proposed in this paper. Geothermal energy at medium temperatures is used to provide the required thermal heat for solvent regeneration. The performance of this system is compared with solar assisted carbon capture plant via technical and economic evaluation. A 300 MWe coal-fired power plant is selected as the reference case, and two different locations based on the local climatic conditions and geothermal resources are chosen for the comparison. The results show that the geothermal assisted post-combustion carbon capture plant has better performances than the solar assisted one in term of the net power output and annual electricity generation. The net plant average efficiency based on lower heating value can be increased by 2.75% with a thermal load fraction of about 41%. Results of economic assessment show that the proposed geothermal assisted post-combustion carbon capture system has lower levelized costs of electricity and cost of carbon dioxide avoidance compared to the solar assisted post-combustion carbon capture plant. In order to achieve comparative advantages over the reference post-combustion carbon capture plant in both locations, the price of solar collector has to be lower than 70 USD/m 2 , and the drilling depth of the geothermal well shall be less than 2.1 km.

  16. Thermo-economic analysis of Shiraz solar thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, M. [Academy of Science, Tehran (Iran, Islamic Republic of); Mokhtari, A.; Hesami, R. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Engineering

    2007-07-01

    The Shiraz solar thermal power plant in Iran has 48 parabolic trough collectors (PTCs) which are used to heat the working oil. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. Conventional energy analysis based on the first law of thermodynamics does qualitatively assess the various losses occurring in the components. Therefore, exergy analysis, based on the second law of thermodynamics, can be applied to better assess various losses quantitatively as well as qualitatively. This paper presented a newly developed exergy-economic model for the Shiraz solar thermal power plant. The objective was to find the minimum exergetic production cost (EPC), based on the second law of thermodynamics. The application of exergy-economic analysis includes the evaluation of utility supply costs for production plants, and the energy costs for process operations. The purpose of the analysis was to minimize the total operating costs of the solar thermal power plant by assuming a fixed rate of electricity production and process steam. 21 refs., 3 tabs., 8 figs.

  17. Scope for solar hydrogen power plants along Indian coasts

    Science.gov (United States)

    Hajra, Debdyut; Mukhopadhyay, Swarnav

    2016-09-01

    Energy is at the core of economic growth and development in the present day world. But relentless and unchecked use of harmful energy resources like fossil fuels (coil and oil), nuclear energy has taken a toll on mother nature. The energy coffers are being rapidly depleted and within a few years all of them will become empty, leaving nothing for the future generations to build on. Their constant usage has degraded the air quality and given way to land and water pollution. Scientists and world leaders have initiated a call for action to shift our dependence from currently popular energy sources to cleaner and renewable energy sources. Search for such energy sources have been going on for many years. Solar energy, wind energy, ocean energy, tidal energy, biofuel, etc. have caught the attention of people. Another such important which has become popular is 'Solar Hydrogen'. Many visionary scientists have called hydrogen the energy of the future. It is produced from water by direct or indirect use of sunlight in a sustainable manner. This paper discusses the current energy scenario, the importance of solar-hydrogen as a fuel and most importantly the scope for solar hydrogen power plants along Indian coastline.

  18. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  19. Solar thermal power: the seamless solar link to the conventional power world

    International Nuclear Information System (INIS)

    Geyer, Michael; Quaschning, Volker

    2000-01-01

    This article focuses on solar thermal power generation and describes two solar thermal power concepts, namely, the parabolic trough or solar farm, and the solar central receiver or power tower. Details are given of grid-connected parabolic trough power plants in California and recent developments in collector design and absorber tubes, and the operation of power tower plants with different heat transfer media. Market issues are discussed, and solar thermal power projects under development, and application for support for solar thermal power projects under the Global Environment Facility's Operational Programme by Egypt, India, Iran, Mexico and Morocco are reported

  20. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    Science.gov (United States)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  1. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  2. Prospects to solar energy power generation in space. Uchu taiyo hatsuden eno tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I. (Electrotechnical Laboratory, Tsukuba (Japan))

    1993-05-01

    Solar energy power generation in space uses large arrays of solar cells developed on a geosynchronous orbit to obtain electric energy, which is transmitted to the earth using microwaves. The idea had already been advocated in 1968, which was followed a decade later by joint discussions done by NASA and DOE. The concept intended to take care of the U.S. power demand by using 60 power plant satellites, each having an output of 5 GW. This expanse of the scale, regarded reasonable even today, calls for the solar cell arrays in space spreading over an area of 10 km [times] 5 km if silicon solar cells with a conversion efficiency of 15% are used, and rectenna on the ground (a received wave converting facility) forming an ellipse of 10 km [times] 13 km (assuming a location at the north latitude of 36[degree]). Although there are a number of problems in the idea such as transportation means to lift construction materials into the space and effect of microwaves on the ionosphere and the ecosystems, the Agency of Industrial Science and Technology organized a 'committee for investigating and studying the space power generation systems' in the fiscal year 1991, and has been moving discussions forward since then. 7 refs., 5 figs.

  3. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  4. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Brillas, Enric

    2014-01-01

    Highlights: • Assessment of an autonomous solar pre-pilot plant for solar photoelectro-Fenton. • Total decolorization and 96-97% mineralization for solutions of Direct Yellow 4 diazo dye at pH 3.0. • More rapid dye decay and mineralization at 0.50 mmol dm −3 Fe 2+ and maximum current of 5.0 A. • 11 aromatics, 22 hydroxylated derivatives and 9 carboxylic acids detected as intermediates. • Release of NH 4 + and SO 4 2− as main inorganic ions. - Abstract: Here, an overview on the advances in solar photoelectro-Fenton (SPEF) is initially presented to show that it is the more potent electrochemical advanced oxidation process based on Fenton's reaction chemistry to remove organic pollutants from waters, due to the synergistic action of generated hydroxyl radicals and solar irradiation. As a novel advance for SPEF, an autonomous solar pre-pilot plant is proposed to make an energetically inexpensive process that can be viable at industrial level. The plant of 10 dm 3 capacity contained a Pt/air-diffusion cell with 90.2 cm 2 electrode area, coupled to a solar compound parabolic collectors (CPCs) photoreactor of 1.57 dm 3 irradiation volume and to a solar photovoltaic panel that provides a maximum average current of 5.0 A. The oxidation ability of this plant was assessed by studying the degradation of Direct Yellow 4 (DY4) diazo dye, which involved the predominant destruction of organics by ·OH formed from Fenton's reaction between H 2 O 2 generated at the cathode and added Fe 2+ , along with the photolysis of Fe(III)-carboxylate complexes with sunlight in the CPCs photoreactor. The effect of Fe 2+ and dye contents as well as current on decolorization rate, substrate decay and mineralization rate was examined. About 96-97% mineralization was rapidly attained using 0.50 mmol dm −3 Fe 2+ and up to 0.32 mmol dm −3 DY4 at 5.0 A. The DY4 decay always obeyed a pseudo-first-order kinetics. Eleven aromatic products, twenty two hydroxylated derivatives

  5. First Experience from the World Largest fully commercial Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Furbo, Simon

    1997-01-01

    The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m.......The first experience from the largest solar heating plant in the world is given. The plant is situated in Marstal and is has a total area of 8000 square m....

  6. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Thermodynamic, economic and environmental analyses of concentrating solar power plants assist in identifying an effective and viable configuration. In this paper, a 4E (energy-exergy-environmental-economic) comparative study of 8 different configurations of parabolic trough solar thermal power plants with two different working fluids (Therminol VP-1 -oil and molten solar salt), with and without integrated thermal energy storage or/and backup fuel system is presented. The results of the comparative study indicate relevant differences among the 8 configurations. The molten solar salt configuration with integrated thermal energy storage and fossil fuel backup system exhibits the highest overall energy efficiency (18.48%) compared to other configurations. Whereas, the highest overall exergy efficiency (21.77%), capacity factor (38.20%) and annual energy generation (114 GWh) are found for the oil based configuration with integrated thermal energy storage and fossil fuel backup system. The results indicate that the configurations based on molten salt are better in terms of environmental and economical parameters. The configurations with integrated thermal energy storage and fossil fuel backup system are found to be techno-economical, but on the other hand are less environment friendly. A detailed comparison of these plants after optimization must be performed before drawing a final conclusion about the best configuration to be adopted in parabolic trough solar thermal power plant. - Highlights: • 4E comparative study of 8 configurations of PTSTPP with two different fluids. • Comparison of the configurations with and without integrated TES (thermal energy storage) and FBS (fuel backup system). • The overall energy efficiency of the salt plant with TES and FBS is the highest. • The overall exergy efficiency of the oil plant with TES and FBS is the highest. • The salt plants are the best configurations in terms of environ–eco parameters

  7. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump

  8. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  9. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  10. Life cycle assessment of a HYSOL concentrated solar power plant: Analyzing the effect of geographic location

    NARCIS (Netherlands)

    Corona, B.; Ruiz, Diego; San Miguel, Guillermo

    2016-01-01

    Concentrating Solar Power (CSP) technology is developing in order to achieve higher energy efficiency, reduced economic costs, and improved firmness and dispatchability in the generation of power on demand. To this purpose, a research project titled HYSOL has developed a new power plant, consisting

  11. Analysis and comparison between a concentrating solar and a photovoltaic power plant

    International Nuclear Information System (INIS)

    Desideri, Umberto; Campana, Pietro Elia

    2014-01-01

    Highlights: • The performance of CSP and PV plants were compared with similar assumptions. • The influence of the site on the performance of CSP and PV plants is determined. • CSP plants performance is always higher in locations where DNI is prevailing. • CSP levelized electricity costs are generally lower than those from PV plants. • PV plants may produce larger amounts of electricity where the DNI is not prevailing. - Abstract: Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun’s thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants. The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3 MW el . In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in

  12. An Integrated Decision-Making Model for the Location of a PV Solar Plant

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2015-09-01

    Full Text Available Due to the increasing demand for electricity, the depletion of fossil fuels and the increase in environmental consciousness, generating power from renewable energy resources has become necessary. How to select the most appropriate site is a critical and foremost decision that must be made when setting up a renewable energy plant. This research proposes a two-stage framework for evaluating the suitability of renewable energy plant site alternatives. In the first stage, a fuzzy analytic hierarchy process (FAHP is adopted to set the assurance region (AR of the quantitative factors, and the AR is incorporated into data envelopment analysis (DEA to assess the efficiencies of plant site candidates. A few sites are selected for further analysis. In the second stage, experts are invited to evaluate the qualitative characteristics of the selected sites, and FAHP is used to calculate the priorities of these sites. Solar energy is one of the most promising renewable energy sources, because of its abundance, inexhaustibility, safety and cleanliness. Based on the proposed integrated decision-making model, a case study for selecting the most appropriate photovoltaic (PV solar plant site is examined.

  13. Analysis of Solar Energy Generation Capacity Using Hesitant Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Veysel Coban

    2017-01-01

    Full Text Available Solar energy is an important and reliable source of energy. Better understanding the concepts and relationships of the factors that affect solar energy generation capacity can enhance the usage of solar energy. This understanding can lead investors and governors in their solar power investments. However, solar power generation process is complicated, and the relations among the factors are vague and hesitant. In this paper, a hesitant fuzzy cognitive map for solar energy generation is developed and used for modeling and analyzing the ambiguous relations. The concepts and the relationships among them are defined by using expertsr opinions. Different scenarios are formed and evaluated with the proposed model.

  14. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    International Nuclear Information System (INIS)

    Morelli, Marco; Masini, Andrea; Ruffini, Fabrizio; Potenza, Marco Alberto Carlo

    2015-01-01

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  15. Web tools concerning performance analysis and planning support for solar energy plants starting from remotely sensed optical images

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Marco, E-mail: marco.morelli1@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy); Masini, Andrea, E-mail: andrea.masini@flyby.it [Flyby S.r.l., Via Puini 97, 57128 Livorno (Italy); Ruffini, Fabrizio, E-mail: fabrizio.ruffini@i-em.eu [i-EM S.r.l., Via Lampredi 45, 57121 Livorno (Italy); Potenza, Marco Alberto Carlo, E-mail: marco.potenza@unimi.it [Department of Physics, University of Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-04-15

    We present innovative web tools, developed also in the frame of the FP7 ENDORSE (ENergy DOwnstReam SErvices) project, for the performance analysis and the support in planning of solar energy plants (PV, CSP, CPV). These services are based on the combination between the detailed physical model of each part of the plants and the near real-time satellite remote sensing of incident solar irradiance. Starting from the solar Global Horizontal Irradiance (GHI) data provided by the Monitoring Atmospheric Composition and Climate (GMES-MACC) Core Service and based on the elaboration of Meteosat Second Generation (MSG) satellite optical imagery, the Global Tilted Irradiance (GTI) or the Beam Normal Irradiance (BNI) incident on plant's solar PV panels (or solar receivers for CSP or CPV) is calculated. Combining these parameters with the model of the solar power plant, using also air temperature values, we can assess in near-real-time the daily evolution of the alternate current (AC) power produced by the plant. We are therefore able to compare this satellite-based AC power yield with the actually measured one and, consequently, to readily detect any possible malfunctions and to evaluate the performances of the plant (so-called “Controller” service). Besides, the same method can be applied to satellite-based averaged environmental data (solar irradiance and air temperature) in order to provide a Return on Investment analysis in support to the planning of new solar energy plants (so-called “Planner” service). This method has been successfully applied to three test solar plants (in North, Centre and South Italy respectively) and it has been validated by comparing satellite-based and in-situ measured hourly AC power data for several months in 2013 and 2014. The results show a good accuracy: the overall Normalized Bias (NB) is − 0.41%, the overall Normalized Mean Absolute Error (NMAE) is 4.90%, the Normalized Root Mean Square Error (NRMSE) is 7.66% and the overall

  16. Integration of solar process heat into an existing thermal desalination plant in Qatar

    Science.gov (United States)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  17. Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region

    Directory of Open Access Journals (Sweden)

    Praveen R. P.

    2018-03-01

    Full Text Available The Middle East is one among the areas of the world that receive high amounts of direct solar radiation. As such, the region holds a promising potential to leverage clean energy. Owing to rapid urbanization, energy demands in the region are on the rise. Along with the global push to curb undesirable outcomes such as air pollution, emissions of greenhouse gases, and climate change, an urgent need has arisen to explore and exploit the abundant renewable energy sources. This paper presents the design, performance analysis and optimization of a 100 MWe parabolic trough collector Solar Power Plant with thermal energy storage intended for use in the Middle Eastern regions. Two representative sites in the Middle East which offer an annual average direct normal irradiance (DNI of more than 5.5 kWh/m2/day has been chosen for the analysis. The thermodynamic aspect and annual performance of the proposed plant design is also analyzed using the System Advisor Model (SAM version 2017.9.5. Based on the analysis carried out on the initial design, annual power generated from the proposed concentrating solar power (CSP plant design in Abu Dhabi amounts to 333.15 GWh whereas that in Aswan recorded a value of 369.26 GWh, with capacity factors of 38.1% and 42.19% respectively. The mean efficiency of the plants in Abu Dhabi and Aswan are found to be 14.35% and 14.98% respectively. The optimization of the initial plant design is also carried out by varying two main design parameters, namely the solar multiple and full load hours of thermal energy storage (TES. Based on the findings of the study, the proposed 100 MW parabolic trough collector solar power plant with thermal energy storage can contribute to the sustainable energy future of the Middle East with reduced dependency on fossil fuels.

  18. New large solar photocatalytic plant: set-up and preliminary results.

    Science.gov (United States)

    Malato, S; Blanco, J; Vidal, A; Fernández, P; Cáceres, J; Trincado, P; Oliveira, J C; Vincent, M

    2002-04-01

    A European industrial consortium called SOLARDETOX has been created as the result of an EC-DGXII BRITE-EURAM-III-financed project on solar photocatalytic detoxification of water. The project objective was to develop a simple, efficient and commercially competitive water-treatment technology, based on compound parabolic collectors (CPCs) solar collectors and TiO2 photocatalysis, to make possible easy design and installation. The design, set-up and preliminary results of the main project deliverable, the first European industrial solar detoxification treatment plant, is presented. This plant has been designed for the batch treatment of 2 m3 of water with a 100 m2 collector-aperture area and aqueous aerated suspensions of polycrystalline TiO2 irradiated by sunlight. Fully automatic control reduces operation and maintenance manpower. Plant behaviour has been compared (using dichloroacetic acid and cyanide at 50 mg l(-1) initial concentration as model compounds) with the small CPC pilot plants installed at the Plataforma Solar de Almería several years ago. The first results with high-content cyanide (1 g l(-1)) waste water are presented and plant treatment capacity is calculated.

  19. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist's concept of this plant is shown.

  20. Studies in biogas technology. Part 4. A noval biogas plant incorporating a solar water-heater and solar still

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A K.N. [Indian Inst. of Science, Bangalore; Prasad, C R; Sathyanarayan, S R.C.; Rajabapaiah, P

    1979-09-01

    A reduction in the heat losses from the top of the gas holder of a biogas plant has been achieved by the simple device of a transparent cover. The heat losses thus prevented have been deployed to heat a water pond formed on the roof of the gas holder. This solar-heated water is mixed with the organic input for hot-charging of the biogas plant. To test whether the advantages indicated by a thermal analysis can be realized in practice, a biogas plant of the ASTRA design was modified to incorporate a roof-top water-heater. The operation of such a modified plant, even under worst case conditions, shows a significant improvement in the gas yield compared to the unmodified plant. Hence, the innovation reported here may lead to drastic reductions in the sizes and therefore costs of biogas plants. By making the transparent cover assume a tent-shape, the roof-top solar heater can serve the additional function of a solar still to yield distilled water. The biogas plant-cum-solar still described here is an example of a spatially integrated hybrid device which is extremely cost-effective.

  1. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  2. The effect of ultrapro or prolene mesh on postoperative pain and well-being following endoscopic Totally Extraperitoneal (TEP hernia repair (TULP: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Schouten Nelleke

    2012-06-01

    Full Text Available Abstract Background The purpose of this study was to describe the rationale and design of a randomized controlled trial analyzing the effects of mesh type (Ultrapro versus Prolene mesh on postoperative pain and well-being following an endoscopic Totally Extraperitoneal (TEP repair for inguinal hernias (short: TULP trial. Methods and design The TULP trial is a prospective, two arm, double blind, randomized controlled trial to assess chronic postoperative pain and quality of life following implantation of a lightweight (Ultrapro and heavyweight (Prolene mesh in endoscopic TEP hernia repair. The setting is a high-volume single center hospital, specializing in TEP hernia repair. All patients are operated on by one of four surgeons. Adult male patients (≥18 years of age with primary, reducible, unilateral inguinal hernias and no contraindications for TEP repair are eligible for inclusion in the study. The primary outcome is substantial chronic postoperative pain, defined as moderate to severe pain persisting ≥ 3 months postoperatively (Numerical Rating Scale, NRS 4–10. Secondary endpoints are the individual development of pain until three years after the TEP procedure, the quality of life (QoL, recurrence rate, patient satisfaction and complications. Discussion Large prospective randomized controlled studies with a long follow-up evaluating the incidence of chronic postoperative pain following implantation of lightweight and heavyweight mesh in endoscopic (TEP hernia repair are limited. By studying the presence of pain and quality of life, but also complications and recurrences in a large patient population, a complete efficiency and feasibility assessment of both mesh types in TEP hernia repair will be performed. Trial registration The TULP study is registered in the Dutch Trial Register (NTR2131

  3. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  4. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  5. Design and assessment of solar PV plant for girls hostel (GARGI of MNIT University, Jaipur city: A case study

    Directory of Open Access Journals (Sweden)

    Rahul Khatri

    2016-11-01

    Full Text Available In this paper designing and assessment of a solar PV plant for meeting the energy demand of girl’s hostel at MNIT University Jaipur city was analyzed. A solar PV plant was designed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for financial feasibility of PV plant near this location. The different financial parameters which affect the financial feasibility of PV plant were considered i.e. discount rate, effective discount rate, rate of escalation of electricity cost, salvage value of the plant etc. The environmental aspect related with the energy generated with PV plant i.e. reduction in carbon emission and carbon credits earned was also considered. Result obtained with the assessment of the proposed plant with different discount rate and current rate of inflation shows that the max IRR 6.85% and NPV of $1,430,834 was obtained with a discount rate of 8% and an inflation rate of 7.23% when no land cost considered and if land cost was considered the maximum IRR was 1.96% and NPV of $630,833. Minimum discounted payback of the plant will be 13.4 years if inflation was considered.

  6. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    Science.gov (United States)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  7. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  8. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  9. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  10. Quantitative real-time PCR analysis of Anopheles dirus TEP1 and NOS during Plasmodium berghei infection, using three reference genes

    Directory of Open Access Journals (Sweden)

    Jonathan W.K. Liew

    2017-07-01

    Full Text Available Quantitative reverse transcription PCR (qRT-PCR has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1 and nitric oxide synthase (NOS, play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1, actin 1 (Act and ribosomal protein S7 (S7 genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.

  11. Hierarchic control of the production of energy by means of plants of distributed solar collectors; Control jerarquico de la produccion de energia mediante plantas de colectores solares distribuidos

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Cirre, C. R.

    2008-07-01

    This work presents several different approaches to hierarchical control algorithms designed for a parabolic-trough solar collector field to demonstrate the possibility of maximizing hypothetical profit possible from this type of plant by improving and increasing plant automation. This study was developed in the current world power supply scenario, posing the possibility of using renewable energies (among which is solar thermal power), which the author is interested in contributing to advancing through research on improved plant operation control. The design was made for the ACUREX distributed solar collector field at the Plataforma Solar de Almeria. The control structures implemented to improve production in the solar collector field are based on a simple two-layered hierarchical control. One regulation layer (Layer 1) in which two proposals have been implemented: a control scheme developed using the feedback linearization technique and another proposal consisting on parallel deed forward control with an I-PD (Integral-Proportional Derivative) control. three proposals were implemented in the top layer (Layer 2) for generating the setpoint, the first one based on a physical model, the second one based on a fuzzy model, and the last uses the physical model and an optimization function for finding the optimum setpoint. (Author)

  12. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.

    Science.gov (United States)

    Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna

    2010-05-03

    The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Design and analysis of solar thermoelectric power generation system

    Science.gov (United States)

    Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel

    2005-09-01

    This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.

  14. Innovative milk pasteurizing plant fed by solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lucentini, M.; Naso, V. [Univ. of Rome La Sapienza, Dept. of Mechanical Engineering (Italy); Rubini, L. [ISES ITALIA (Italy)

    2000-07-01

    The possible use of solar-heat energy for industrial production has been evaluated, verifying the sector where this resource could be suitably applied. After a preliminary phase, the analysis has been focused on the agro-alimentary sector. As a matter of fact, in this case the range of temperatures coincides with the one typically carried out from solar collectors. Moreover, a deciding factor of choice has been the energy flow provided by solar radiation, close to the one typically needed to pasteurize milk. Taking into account production requirements, one comes to the conclusion of utilizing stored solar energy hot water - for washing operations of pasteurizing plant. These operations - really heavy from the point of view of heat energy consumption - are concentrated in the midday, just when solar energy storage is at its maximum level. This paper analyzes the technical and economical feasibility of an innovative plant, through the operational simulations of each machinery, related to different radiation conditions during the year. The economical analysis has shown that this solution is worth-while, especially taking advantage from the incentives offered by the national campaign of renewable energy diffusion. (au)

  15. New Earth-abundant Materials for Large-scale Solar Fuels Generation.

    Science.gov (United States)

    Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David

    2018-05-30

    The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

  16. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  17. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  18. Theseus, the 50 MW solar thermal power plant; Das solarthermische 50-MW-Kraftwerk Theseus

    Energy Technology Data Exchange (ETDEWEB)

    Brakmann, G. [Fichtner GmbH und Co. KG, Stuttgart (Germany). Solarenergieprojekte

    1998-04-01

    The Isle of Crete measures 8331 km{sup 2}, and this island renowned for its historical sites attracts millions of tourists every year. Like any other branch of industry, tourism, which is called a ``white`` industry, has an ever growing demand for electric power. Up to now, electricity generation on the island is based on fossil-fuelled thermal power plants. However, recent developments indicate that this technology might be overtaken soon by the novel Theseus power plant (Thermal Solar European Power Station) currently under construction. It is expected to usher in a new era of power generation on the Isle of Crete. (orig./CB) [Deutsch] Die 8 331 km{sup 2} grosse Insel Kreta wurde vor ueber 3 500 Jahren besiedelt. Der geschichtstraechtige Ort ist ein hochgeschaetztes Reiseziel von Millionen Griechenlandurlaubern. Wie jede Art von Industrie, so benoetigt auch die als `weisse Industrie` bezeichnete Touristikbranche immer mehr elektrische Energie. Diese wird derzeit auf Kreta ausschliesslich mit thermischen Kraftwerken, welche fossile Brennstoffe verbrennen, erzeugt. Aber die Vorherrschaft dieser Technologie kann schon bald mit dem neuen solarthermischen Kraftwerk Theseus (Thermal Solar European Power Station) gebrochen werden. Es soll in wenigen Jahren eine neue Aera der Energieerzeugung auf Kreta einlaeuten. (orig.)

  19. Recent advancements in plasmon-enhanced promising third-generation solar cells

    Directory of Open Access Journals (Sweden)

    Thrithamarassery Gangadharan Deepak

    2016-08-01

    Full Text Available The unique optical properties possessed by plasmonic noble metal nanostructures in consequence of localized surface plasmon resonance (LSPR are useful in diverse applications like photovoltaics, sensing, non-linear optics, hydrogen generation, and photocatalytic pollutant degradation. The incorporation of plasmonic metal nanostructures into solar cells provides enhancement in light absorption and scattering cross-section (via LSPR, tunability of light absorption profile especially in the visible region of the solar spectrum, and more efficient charge carrier separation, hence maximizing the photovoltaic efficiency. This review discusses about the recent development of different plasmonic metal nanostructures, mainly based on Au or Ag, and their applications in promising third-generation solar cells such as dye-sensitized solar cells, quantum dot-based solar cells, and perovskite solar cells.

  20. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  1. Energy Non-Availability in Distribution Grids with Heavy Penetration of Solar Power: Assessment and Mitigation through Solar Smoother

    Directory of Open Access Journals (Sweden)

    Tathagata Sarkar

    2018-03-01

    Full Text Available Rapid fluctuation of solar irradiance due to cloud passage causes corresponding variations in the power output of solar PV power plants. This leads to rapid voltage instability at the point of common coupling (PCC of the connected grid which may cause temporary shutdown of the plant leading to non-availability of energy in the connected load and distribution grid. An estimate of the duration and frequency of this outage is important for solar energy generators to ensure the generation and performance of the solar power plant. A methodology using PVsyst (6.6.4, University of Geneva, Geneva, Switzerland and PSCAD (4.5, Manitoba HVDC Research Centre, Winnipeg, MB, Canada simulation has been developed to estimate the duration and frequency of power outages due to rapid fluctuation of solar irradiance throughout the year. It is shown that the outage depends not only on the solar irradiance fluctuation, but also on the grid parameters of the connected distribution grid. A practical case study has been done on a 500 kilo Watt peak (kWp solar PV power plant for validation of the proposed methodology. It is observed that the energy non-availability for this plant is about 13% per year. This can be reduced to 8% by incorporating a solar smoother. A financial analysis of this outage and its mitigation has also been carried out.

  2. Estimating capacity of solar thermoelectric generator (STEG) panels

    International Nuclear Information System (INIS)

    Kokhova, I.I.; Malevskii, Yu.N.; Tsvetkov, A.I.

    1979-01-01

    Energy characteristics of a solar thermoelectric generator (STEG) panel without solar-flux concentration are considered. The design of such devices is no simple task. Several fully justified assumptions have been introduced in an attempt to obtain a solution convenient for engineering calculations

  3. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Solar thermal power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyo netsu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at surveys and researches on operation, economic efficiency and performance evaluation of solar thermal power generation systems, and test methods, e.g., for aging the materials for their devices, in order to establish the methods for evaluating their performance. For operation of solar thermal power generation systems, a feasible system is a hybrid with another system, e.g., thermal power or nuclear system. For economic efficiency, heat-storage capacity will be based on power generation for around 4 hours a day for a solar system to be installed in Japan. The construction and light/heat-collecting costs should be reduced to around 300,000 yen/kW and 13,000 to 21,000 yen/m{sup 2}, respectively, in order to keep the power generation cost at around 23 yen/kWH. The energy analysis of solar thermal power generation, based on the data given by the industrial correlation tables, indicates that the total energy required for construction of the system can be recovered in 2 to 3 years. Also outlined are construction of a 1MW pilot plant and its facilities, and designs of the pilot plants with a curved surface or tower type light collector. A total of 12 types of reflection mirrors are screened for establishing the air-exposure testing methods. Methods for treating back surface edges of the reflection mirrors are also investigated. (NEDO)

  4. Solar greenhouse assisted biogas plant in hilly region - A field study

    Energy Technology Data Exchange (ETDEWEB)

    Vinoth Kumar, K.; Kasturi Bai, R. [Department of Bio-Energy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu (India)

    2008-10-15

    The present study was undertaken with the objective of evaluating plastic as an alternative material for biogas plant on a par with conventional brick material. The field study was carried out for one year (October, 2005-September, 2006) in a small hamlet at Nilgiris incorporating solar energy to study its influence on biogas production. During summer (April-June) the temperature reaches to the maximum of 21-25 C and the minimum of 10-12 C. During winter (October-December), the temperature available is maximum of 16-21 C and minimum of 2 C. The solar insolation in the study area ranges from 250 to 600 W/m{sup 2}. This study involves the control conventional Deenabandhu model (Indian standard model prevailing in most part of India made of masonry structure only) and the experimental plastic tank with greenhouse canopy of similar capacity. Our previous work [Vinoth Kumar, K., Kasturi Bai, R., 2005. Plastic biodigesters - a systematic study. Energy for Sustainable Development 9 (4), 40-49] on lab scale digester made from plastic material was compared over other materials and the results gave us much confidence to carry out further study on pilot scale. In continuation, a semi-continuous study was conducted for one year with the retention time of 55 days. The gas generated from the biogas plants was utilized for cooking (burner) and lighting (lamp) purposes. The yearly average slurry temperatures recorded during the study period was 26.3 and 22.4 C in experimental and control biogas plants against ambient temperature of 17.0 C. The yearly average greenhouse chamber temperature recorded was 29.1 C in the experimental biogas plant. The yearly average gas yield from the experimental and control biogas plants were 39.1 and 34.6 l kg{sup -1}day{sup -1} respectively. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted plastic biogas plant can be efficiently adopted with minor modifications in hilly

  5. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    Science.gov (United States)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  6. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    International Nuclear Information System (INIS)

    Azoumah, Y; Yamegueu, D; Py, X

    2012-01-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy energy' concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  7. Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal

    DEFF Research Database (Denmark)

    Corona, Blanca; Bozhilova-Kisheva, Kossara Petrova; Olsen, Stig Irving

    2017-01-01

    of sustainability, namely, economy, environment, and society. Social life cycle assessment (S-LCA) is a novel methodology still under development, used to cover the social aspects of sustainability within LCSA. The aim of this article is to provide additional discussion on the practical application of S...... generation in a concentrated solar power plant in Spain. The inventory phase was completed by using the indicators proposed by the United Nations Environment Program/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines on S-LCA. The impact assessment phase was approached by developing...... a social performance indicator that builds on performance reference points, an activity variable, and a numeric scale with positive and negative values. The social performance indicator obtained (+0.42 over a range of –2 to +2) shows that the deployment of the solar power plant increases the social welfare...

  8. Solar Photovoltaic Plant for the 'Eftimie Murgu' University of Resita

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2010-01-01

    Full Text Available The paper presents an application of a solar photovoltaic plant for the 'Eftimie Murgu' University, with an estimation of the yearly medium energy production. The substantiation of the plant designed is based on the many years measurements obtained in the laboratory for monitoring the solar photovoltaic energy of the university and the favorable conditions of promoting the energy production from renewable sources, assured in the new legislation.

  9. SOLAR POWER PLANTS IN THE EU. AN ENVIRONMENTALLY-FRIENDLY ENGINE FOR THE EUROPEAN ECONOMIES

    Directory of Open Access Journals (Sweden)

    Mircea SAVEANU

    2014-10-01

    Full Text Available We establish that the European Union is facing severe ecological problems, by analysing the ecological footprint of selected member states. Many of these problems are related to carbon and carbon equivalent emissions, some of which are generated by fossil fuel power plants. It is then shown that the European Union has potential in the solar power renewable energy sector. Finally, we calculate roughly how much land would be necessary in order to replace fossil fuel power plants, as well as nuclear plants, which are largely seen as environmentally dangerous. It is concluded that developing this alternative energy sector would help improve the ecological sustainability of the Union, by diminishing a significant part of its carbon footprint.

  10. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  11. Thermodynamic evaluation of a novel solar-biomass hybrid power generation system

    International Nuclear Information System (INIS)

    Bai, Zhang; Liu, Qibin; Lei, Jing; Wang, Xiaohe; Sun, Jie; Jin, Hongguang

    2017-01-01

    Highlights: • A solar-biomass hybrid power system with zero carbon dioxide emission is proposed. • The internal mechanisms of the solar-biomass utilization are discussed. • The on-design and off-design properties of the system are numerically investigated. • The configurations of the proposed system are optimized. - Abstract: A solar-biomass hybrid power generation system, which integrates a solar thermal energy collection subsystem, a biomass steam boiler and a steam turbine power generation block, is developed for efficiently utilizing renewable energies. The solar thermal energy is concentrated by parabolic trough collectors and is used to heat the feed-water to the superheated steam of 371 °C, then the generated solar steam is further heated to a higher temperature level of 540 °C via a second-stage heating process in a biomass boiler, the system power generation capacity is about 50 MW. The hybrid process of the solar energy and biomass contributes to ameliorating the system thermodynamic performances and reducing of the exergy loss within the steam generation process. The off-design evaluation results indicate that the annual net solar-to-electric efficiency of the hybrid power system is improved to 18.13%, which is higher than that of the typical parabolic trough solar power system as 15.79%. The levelized cost of energy drops to 0.077 $/(kW h) from 0.192 $/(kW h). The annual biomass consumption rate is reduced by 22.53% in comparison with typical biomass power systems. The research findings provide a promising approach for the efficient utilization of the abundant renewable energies resources and the reduction of carbon dioxide emission.

  12. Design and development of solar desalination plant

    Directory of Open Access Journals (Sweden)

    Marimuthu Thaneissha a/p

    2017-01-01

    Full Text Available Direct sunlight has been utilized long back for desalination of water. The desalination process takes place in solar still. Solar still is a device that converts saline water to potable water. This process requires seawater and sunlight which are widely available on Earth. However, the current solar desalination generation capacity is generally low and has high installation cost. Hence, there is a need for the enhancement of the productivity which can be achieved through few modifications. This paper explores the challenges and opportunities of solar water desalination worldwide. It presents a comprehensive review of solar desalination technologies that have been developed in recent years which covers the economic and environmental aspects.

  13. Aesthetic impact assessment of solar power plants. An objective and a subjective approach

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Sibille, Ana del Carmen; Cloquell-Ballester, Vicente-Agustin; Cloquell-Ballester, Victor-Andres; Artacho Ramirez, Miguel Angel [Dpto. Proyectos de Ingenieria, Valencia University of Technology, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-15

    Solar energy for the production of electric energy is one source of renewable energy which is experiencing most development in recent years. In countries with high solar radiation indices, as is the case of Spain, expectations of installation of large solar power plants are increasing. Most solar power plants are located in rural environments, where the landscape has remained practically unaltered ever since extensive agriculture was introduced. Because of this, one of the most significant environmental impacts of this type of installation is the visual impact derived from the alteration of the landscape. In this work, an indicator is proposed for the quantification of the objective aesthetic impact, based on four criteria: visibility, colour, fractality and concurrence between fixed and mobile panels. The relative importance of each variable and the corresponding value functions are calculated using expert contribution. A study of the subjective aesthetic impact is then carried out using the semantic differential method, to obtain the perception of a sample of individuals of the initial landscapes and of the landscapes altered through the installation of a solar power plant. The indicator and the study of public perception are applied to five real solar power plants, to test their reliability. Subsequently, a different group of individuals is used to determine preferences between the five solar power plants. The study proves that the combined use of objective indicator and subjective study, faithfully explains user preferences corresponding to the combined comparisons of the five cases. It is concluded that the tools proposed for the evaluation of the aesthetic impact of solar power plants are useful for the selection of optimal plant location and most adequate use of panel technology, to minimise aesthetic impact. (author)

  14. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    Science.gov (United States)

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  15. Time scaling internal state predictive control of a solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.N. [DEE-FCT/UNL, Caparica (Portugal); Rato, L.M. [INESC-ID/University, Evora (Portugal); Lemos, J.M. [INESC-ID/IST, Lisboa (Portugal)

    2003-12-01

    The control of a distributed collector solar field is addressed in this work, exploiting the plant's transport characteristic. The plant is modeled by a hyperbolic type partial differential equation (PDE) where the transport speed is the manipulated flow, i.e. the controller output. The model has an external distributed source, which is the solar radiation captured along the collector, approximated to depend only of time. From the solution of the PDE, a linear discrete state space model is obtained by using time-scaling and the redefinition of the control input. This method allows overcoming the dependency of the time constants with the operating point. A model-based predictive adaptive controller is derived with the internal temperature distribution estimated with a state observer. Experimental results at the solar power plant are presented, illustrating the advantages of the approach under consideration. (author)

  16. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  17. Comparison of sensorless dimming control based on building modeling and solar power generation

    International Nuclear Information System (INIS)

    Lee, Naeun; Kim, Jonghun; Jang, Cheolyong; Sung, Yoondong; Jeong, Hakgeun

    2015-01-01

    Artificial lighting in office buildings accounts for about 30% of the total building energy consumption. Lighting energy is important to reduce building energy consumption since artificial lighting typically has a relatively large energy conversion factor. Therefore, previous studies have proposed a dimming control using daylight. When applied dimming control, method based on building modeling does not need illuminance sensors. Thus, it can be applied to existing buildings that do not have illuminance sensors. However, this method does not accurately reflect real-time weather conditions. On the other hand, solar power generation from a PV (photovoltaic) panel reflects real-time weather conditions. The PV panel as the sensor improves the accuracy of dimming control by reflecting disturbance. Therefore, we compared and analyzed two types of sensorless dimming controls: those based on the building modeling and those that based on solar power generation using PV panels. In terms of energy savings, we found that a dimming control based on building modeling is more effective than that based on solar power generation by about 6%. However, dimming control based on solar power generation minimizes the inconvenience to occupants and can also react to changes in solar radiation entering the building caused by dirty window. - Highlights: • We conducted sensorless dimming control based on solar power generation. • Dimming controls using building modeling and solar power generation were compared. • The real time weather conditions can be considered by using solar power generation. • Dimming control using solar power generation minimizes inconvenience to occupants

  18. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    Science.gov (United States)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a

  19. Scenarios for solar thermal energy applications in Brazil

    International Nuclear Information System (INIS)

    Martins, F.R.; Abreu, S.L.; Pereira, E.B.

    2012-01-01

    The Solar and Wind Energy Resource Assessment (SWERA) database is used to prepare and discuss scenarios for solar thermal applications in Brazil. The paper discusses low temperature applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of large-scale application of solar energy for water heating and electricity generation in Brazil. Payback periods for water heating systems are typically below 4 years if they were used to replace residential electric showerheads in low-income families. Large-scale water heating systems also present high feasibility and many commercial companies are adopting this technology to reduce operational costs. The best sites to set up CSP plants are in the Brazilian semi-arid region where the annual energy achieves 2.2 MW h/m 2 and averages of daily solar irradiation are larger than 5.0 kW h/m 2 /day. The western area of Brazilian Northeastern region meets all technical requirements to exploit solar thermal energy for electricity generation based on solar chimney technology. Highlights: ► Scenarios for solar thermal applications are presented. ► Payback is typically below 4 years for small scale water heating systems. ► Large-scale water heating systems also present high feasibility. ► The Brazilian semi-arid region is the best sites for CSP and chimney tower plants.

  20. Thermoeconomic optimization of a combined-cycle solar tower power plant

    International Nuclear Information System (INIS)

    Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain

    2012-01-01

    A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.

  1. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  2. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  3. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  4. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  5. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    Science.gov (United States)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  6. Adiabatic resonant oscillations of solar neutrinos in three generations

    International Nuclear Information System (INIS)

    Kim, C.W.; Sze, W.K.

    1987-01-01

    The Mikheyev-Smirnov-Wolfenstein model of resonant solar-neutrino oscillations is discussed for three generations of leptons. Assuming adiabatic transitions, bounds for the μ- and e-neutrinos mass-squared difference Δ/sub 21,0/ are obtained as a function of the e-μ mixing angle theta 1 . The allowed region in the Δ/sub 21,0/-theta 1 plot that would solve the solar-neutrino problem is shown to be substantially larger than that of the two-generation case. In particular, the difference between the two- and three-generation cases becomes significant for theta 1 larger than --20 0

  7. Performance evaluation of a stand-alone solar dish Stirling system for power generation suitable for off-grid rural electrification

    International Nuclear Information System (INIS)

    Kadri, Y.; Hadj Abdallah, H.

    2016-01-01

    Highlights: • Estimation of the output temperature reached by 2 m parabolic dish. • Output power estimation for uncontrollable load was done using Matlab®. • Validation of the proposed system under Tunisian conditions for rural electrification. - Abstract: The development of green power generation such as solar systems that have become a great interest for several countries especially for Tunisia as it presents a significant solar potential. For this purpose, this research has investigated the feasibility and the performance of standalone solar dish/Stirling micro generation plant for rural electrification. The considered hybrid system includes solar dish/Stirling engine, permanent magnet synchronous generator and a storage battery. To start with, thermal modeling and simulation have been carried out using Matlab® for the solar-driven Stirling heat engine system composed of an Alpha Stirling engine, a solar collector and a receiver, in which the radiation, convection, conduction and radiation heat loss have been taken into consideration for the selected design. For numerical validation of the receiver’s thermal model, simulation results were compared with experimental measurements reported for the EURODISH system with a reasonable degree of agreement. Second, the generated torque driving the generator has been estimated by the Adiabatic model of URIELI based on the classical fourth-order Runge-Kutta. In order for an autonomous control, the dish generator is connected to the load via power electronic converters where the bidirectional power flow is possible by the use of two voltage source converters in a back-to-back configuration. They are referred to as Stirling/generator side converter and load side inverter, both are oriented control by space vector pulse width modulation. In this context, the Stirling side converter is used to adjust the synchronous generator while the inverter controls the power flow between the direct current bus and the

  8. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy

    Directory of Open Access Journals (Sweden)

    Barbara Mendecka

    2018-03-01

    Full Text Available Hybridization of Waste to Energy (WtE plants with solar facilities can take competing energy technologies and make them complementary. However, realizing the benefits of the solar integration requires careful consideration of its efficiency. To analyse such systems from the point of view of resource efficiency, the pure energy analysis is not sufficient since the quality of particular energy carriers is not evaluated. This work applies the exergo-ecological analysis using the concepts of thermoecological cost (TEC and exergy cost for the performance evaluation of an integrated Solar-Waste to Energy plant scheme, where solar energy is used for steam superheating. Different plant layouts, considering several design steam parameters as well as different solar system configurations, in terms of area of heliostats and size of the thermal storage tank, were studied. The results for the solar integrated plant scheme were compared with the scenarios where superheating is performed fully by a non-renewable energy source. The presented results of exergy cost analysis indicate that the most favorable system is the one supported by non-renewable energy. Such an analysis does not consider the advantage of the use of renewable energy sources. By extending the system boundary to the level of natural resource and applying the thermoecological cost analysis, an opposite result was obtained.

  9. Experiences with publicly promoted solar plants in Munich, the capital of Bavaria

    International Nuclear Information System (INIS)

    Schmalschlaeger, T.; Sammueller, K.

    1994-01-01

    The purpose of the present study was to prepare, execute, and evaluate a poll among all the operators of solar heating plants promoted by the 'Foerderprogramm Energieeinsparung der Landeshauptstadt Muenchen' (Energy Conservation Promotion Programme for Munich). In the period from 1989 to April 1992 grants of upto 30% of investment costs were accorded by the city administration of Munich for solar heating plants and the technical energy conserving measures, notably high-efficiency boilers and some photovoltaic plants. The principal upper limit for grants was 25,000 DM per one or two-family house plus another 4.000 DM in certain borderline cases. Until early 1992 more than 350 households had made use of the grants offered by the Munich administration through this programme to finance thir solar heating plant. (orig.) [de

  10. Application of nuclear activation analysis (NAA) and low-level gamma counting to determine the radionuclide and trace element pollutant releases from coal-fired power plants in Vietnam

    International Nuclear Information System (INIS)

    Vanduong, P.; Thanh, V.T.; Dien, P.Q.; Binh, N.T.

    1995-01-01

    Results are reported of the application of NAA using research reactors TRIGA II in Dalat, Vietnam, and Vienna, Austria (with pyrolysis separation for Hg, Se, and As before irradiation), to determine As, Cd, Cu, Hg, Ni, Co, Pb, Sn and Zn. Low-level gamma counting was used to measure Ra-226, Th-228 and K-40, released from coal-fired power plants in Vietnam. Results showed that: (1) the content of the air pollutants in the vicinity of the operating power plants (in 1991, the Phalai plant produced 1700 million kWh, and the Ninhbinh plant 100 million kWh) depends on the coal combustion which is used for their applied operation technology, both plants used Quangninh anthracite as fuel. The content of trace elements pollutants (TEP) in the environment of the Ninhbinh plant is higher than in the Phalai plant. (2) In the vicinity of both plants, rain water is highly polluted by trace elements such as As, Cu, Pb, Hg, Ni, Co, Cd, Se, U, Th and sulphuric acid. Therefore, this kind of water is not acceptable for human consumption. (3) The algae growing in the waterfield in the vicinity of the power plants can be used to monitor TEP. Four NAA methods, in combination with low-level gamma counting and AAS, can be successfully used to monitor TEP released from power plants

  11. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  14. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  15. Low-cost distributed solar-thermal-electric power generation

    Science.gov (United States)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  16. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.

    Science.gov (United States)

    Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing

    2018-01-10

    The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.

  17. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...

  18. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  19. Evaluation end-of-life power generation of a satellite solar array

    International Nuclear Information System (INIS)

    Taherbaneh, Mohsen; Ghafooifard, H.; Rezaie, A.H.; Rahimi, K.

    2011-01-01

    Research highlights: → We present detailed design description and necessary considerations for solar panels utilized in a specific space mission. → All sources of losses and degradation of the solar panels are fully taken into account. → We introduce a comprehensive novel approach to investigate the electrical behavior of the solar panels. → We use a simple model to calculate the operating temperature range of the solar panels. → We also calculate Mission End-of-Life electrone fluence using SPENVIS. -- Abstract: Knowing the power generated by of solar arrays in a space missions shall satisfy mission requirements; prediction of the power generated by a solar array used in a space mission is very important and necessary. In this research, a detailed design description and necessary considerations for solar panels utilized in a specific space mission is presented. All sources of losses and degradation of solar panels are fully taken into account. This research emphasizes on investigation, analysis and verification of a manufactured solar assembly for a satellite before launch. Solar panels' generated power should be estimated at the end of the mission. For this purpose, radiation values and temperature operating range are specified for the mission. Panels' temperature operating rate is determined through considering a simple model and different spins for the satellite. Mission end-of-life 1 MeV equivalent dose is calculated by SPENVIS suite software. Finally, a comprehensive novel approach is introduced to investigate the electrical behavior of the solar panels. This approach can be implemented in MATLAB environment to obtain output power characteristics of the solar panels for each specific mission. The results are in full accordance with the mission requirements either in beginning-of-life or end-of-life. Therefore, the power prediction of the designed solar array for the mentioned satellite completely satisfies its mission requirements.

  20. Large scale solar thermal power for the European Union{exclamation_point}

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    Southern Europe, on the edge of the sunbelt, represents the ideal location for solar thermal generated power. Last year. SAWIE reported on the THESEUS project, a proposed 50 MWe solar thermal power plant for Frangokastello, southern Crete, which was submitted for support under the European Union`s THERMIE Programme. Funding was approved for the design phase for this innovative power plant, the first large-scale SEGS-style plant on European soil, at the end of last year. However, the THERMIE Programme also provided support for another Southern European plant, proposed by Colon Solar for Huelva in Southern Spain. Whilst hurdles remain to be overcome before both plants are built and commissioned, there is an excellent chance that by the start of the new Millennium, the solar collectors from these two plants could be generating over half a million MWh of energy a year. SAWIE compares the two projects. (author)

  1. Development and basic photovoltaic characteristics of a solar generator with double-sided silicon cells

    International Nuclear Information System (INIS)

    Aliev, R.; Mansurov, Kh.

    2015-01-01

    A new solar generator consisting of double-sided silicon sensing elements is described. The basic photovoltaic parameters of solar generators are made of mono- and polycrystalline silicon solar cells. (author)

  2. Concentrating Solar Power Projects - Nevada Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Nevada Solar One This page provides information on Nevada Solar One, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Acciona Energy's Nevada Solar One is the third largest CSP plant in the world and the first plant

  3. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.

    Science.gov (United States)

    Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun

    2017-05-03

    Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

  4. FENCH-analysis of electricity generation greenhouse gas emissions from solar and wind power in Germany

    International Nuclear Information System (INIS)

    Hartmann, D.

    1997-01-01

    The assessment of energy supply systems with regard to the influence on climate change requires not only the quantification of direct emissions caused by the operation of a power plant. It also has to take into account indirect emissions resulting from e.g. construction and dismounting of the power plant. Processes like manufacturing the materials for building the plant, the transportation of components and the construction and maintenance of the power plant are included. A tool to determine and assess the energy and mass flows is the Life Cycle Analysis (LCA) which allows the assessment of environmental impacts related to a product or service. In this paper a FENCH (Full Energy Chain)-analysis based on a LCA of electricity production from wind and solar power plants under operation conditions typical for application its Germany is presented. The FENCH-analysis is based on two methods, Process Chain Analysis (PCA) and Input-Output-Analysis (IOA) which are illustrated by the example of an electricity generation from a wind power plant. The calculated results are shown for the cumulated (indirect and direct) Greenhouse-Gas (GHG)-emissions for an electricity production from wind and solar power plants. A comparison of the results to the electricity production from a coal fired power plant is performed. At last a comparison of 1 kWh electricity from renewable energy to 1 kWh from fossil energy carrier has to be done, because the benefits of 1 kWh electricity from various types of power plants are different. Electricity from wind energy depends on the meteorological conditions while electricity from a fossil fired power plant is able to follow the power requirements of the consumers nearly all the time. By considering the comparison of the different benefit provided the GHG-Emissions are presented. (author)

  5. Phototropic solar tracking in sunflower plants: an integrative perspective

    Science.gov (United States)

    Kutschera, Ulrich; Briggs, Winslow R.

    2016-01-01

    Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201

  6. Nuclear energy of the future, solar energy of the future: some convergencies

    International Nuclear Information System (INIS)

    Flamant, G.

    2006-01-01

    Most medium- and long-term energy scenarios foresee the joint development of renewable and nuclear energies. In other words, the energy sources must be as various as possible. Among the renewable energy sources, the solar energy presents the highest development potential, even if today the biomass and wind energies are quantitatively more developed. In France, the solar power generation is ensured by photovoltaic systems. However, the thermodynamical conversion of solar energy (using concentrating systems) represents an enormous potential at the world scale and several projects of solar plants are in progress in Spain and in the USA. The advantages of this solution are numerous: high efficiency of thermodynamic cycles, possibility of heat storage and hybridization (solar/fuels), strong potential of innovation. Moreover, the solar concentrators allow to reach temperatures higher than 1000 deg. C and thus allow to foresee efficient thermochemical cycles for hydrogen generation. The future solar plants will have to be efficient, reliable and will have to be able to meet the energy demand. In order to reach high thermodynamic cycle efficiencies, it is necessary to increase the temperature of the hot source and to design combined cycles. These considerations are common to the communities of researchers and engineers of both the solar thermal and nuclear industries. Therefore, the future development of generation 4 nuclear power plants and of generation 3 solar plants are conditioned by the resolution of similar problems, like the coolants (molten salts and gases), the materials (metals and ceramics), the heat transfers (hydrogen generation), and the qualification of systems (how solar concentrators can help to perform qualification tests of nuclear materials). Short communication. (J.S.)

  7. Progress in preliminary studies at Ottana Solar Facility

    Science.gov (United States)

    Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.

    2016-05-01

    The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.

  8. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  9. A comparison of solar photovoltaics and molten carbonate fuel cells as commercial power plants

    International Nuclear Information System (INIS)

    Wee, Jung-Ho; Roh, Jae Hyung; Kim, Jeongin

    2011-01-01

    In line with the worldwide trend, Korea has recognized the importance of renewable energy and extensively supported its exploitation. As of August 2009, the largest incentives for renewable energy are offered to solar photovoltaic (PV) systems, which have vastly increased the installations of this system. On the basis of total paid incentives, the second largest beneficiary is the fuel cell (FC) system. This support has contributed to the successful commercialization of the molten carbonate FC (MCFC) as a distributed generation system (DG). Considering the status of energy systems in Korea, solar PV and MCFC systems are likely to be further developed in the country. The present paper analyzes the exploitation of these two energy systems by conducting a feasibility study and a technology assessment in the Korea environment based on many assumptions, conditions and data involved. The feasibility study demonstrates the positive economic gains of the solar PV and MCFC power plants. The unit electricity generation cost of solar PV is twice that of an MCFC system. In addition, the study reveals the slightly greater profitability of the MCFC. Exact estimation of their future economies is impossible because of uncertainties in many future conditions and environments. Nevertheless, the development of solar cells with higher efficiency is undoubtedly the most critical factor in increasing future profits. On the other hand, reductions in the operation and maintenance (O and M) costs and the natural gas (NG) price are the most important issues in raising the viability of the MCFC system. (author)

  10. Optimisation of Control Strategy at the Central Solar Heating Plant in Marstal, Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    1999-01-01

    The central solar heating plant at Marstal is monitored since 1996. The data is analysed with focus on the applied constrol strategy for the solar collector field. Variable flow is applied which is not the case at the other plants compared. The project analysed the performance, compared...

  11. Absorption generator for solar-powered air-conditioner

    Science.gov (United States)

    Lowen, D. J.; Murray, J. G.

    1977-01-01

    Device passes solar-heated water through coils. Hot lithium Bromide/Water solution leaves through central stand-pipe, and water vapor leaves through refrigerant outlet at top. Matching generation temperature to collector efficiency helps cut costs.

  12. MLP based LOGSIG transfer function for solar generation monitoring

    Science.gov (United States)

    Hashim, Fakroul Ridzuan; Din, Muhammad Faiz Md; Ahmad, Shahril; Arif, Farah Khairunnisa; Rizman, Zairi Ismael

    2018-02-01

    Solar panel is one of the renewable energy that can reduce the environmental pollution and have a wide potential of application. The exact solar prediction model will give a big impact on the management of solar power plants and the design of solar energy systems. This paper attempts to use Multilayer Perceptron (MLP) neural network based transfer function. The MLP network can be used to calculate the temperature module (TM) in Malaysia. This can be done by simulating the collected data of four weather variables which are the ambient temperature (TA), local wind speed (VW), solar radiation flux (GT) and the relative humidity (RH) as the input into the neural network. The transfer function will be applied to the 14 types of training. Finally, an equation from the best training algorithm will be deduced to calculate the temperature module based on the input of weather variables in Malaysia.

  13. Garrett solar Brayton engine/generator status

    Science.gov (United States)

    Anson, B.

    1982-07-01

    The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.

  14. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  15. Development of a monitoring system for a PV solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Forero, N. [Licenciatura en Fisica, Universidad Distrital, Bogota (Colombia); Hernandez, J. [Departamento de Ingenieria Electrica, Universidad Nacional de Colombia, Bogota (Colombia); Gordillo, G. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2006-09-15

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well. (author)

  16. Development of a monitoring system for a PV solar plant

    International Nuclear Information System (INIS)

    Forero, N.; Hernandez, J.; Gordillo, G.

    2006-01-01

    The aim of this paper is to introduce a system developed for monitoring PV solar plants using a novel procedure based on virtual instrumentation. The measurements and processing of the data are made using high precision I/O modular field point (FP) devices as hardware, a data acquisition card as software and the package of graphic programming, LabVIEW. The system is able to store and display both the collected data of the environmental variables and the PV plant electrical output parameters, including the plant I-V curve. A relevant aspect of this work is the development of a unit that allows automatic measuring of the solar plant I-V curve using a car battery as power supply. The system has been in operation during the last two years and all its units have functioned well

  17. A review of solar energy based heat and power generation systems

    DEFF Research Database (Denmark)

    Modi, Anish; Bühler, Fabian; Andreasen, Jesper Graa

    2017-01-01

    The utilization of solar energy based technologies has attracted increased interest in recent times in order to satisfy the various energy demands of our society. This paper presents a thorough review of the open literature on solar energy based heat and power plants. In order to limit the scope ...

  18. Generalized indices of a typical individual water-heating solar plant in the climatic conditions of Russia different regions

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.

    2003-01-01

    By the example of the typical solar water-heating plant (SWP), designed for daily consumption of 100 l of heated water the calculation of the number of days in the year is accomplished, during which such a plant could provide for heating the water not below the assigned control level of 37, 45 and 55 deg C for various ratios between the solar collector square and tank-accumulator volume. The generalized dependences are obtained on the basis of processing the results of the SWP dynamic modeling with application of the typical meteoyears, generated for the climatic conditions of more than 40 populated localities in Russia both in its European and Asian part. The efficiency of the SWP operation in different regions of the country may be determined through their application [ru

  19. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  20. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  1. Solar thermoelectric generators fabricated on a silicon-on-insulator substrate

    International Nuclear Information System (INIS)

    De Leon, Maria Theresa; Chong, Harold; Kraft, Michael

    2014-01-01

    Solar thermal power generation is an attractive electricity generation technology as it is environment-friendly, has the potential for increased efficiency, and has high reliability. The design, modelling, and evaluation of solar thermoelectric generators (STEGs) fabricated on a silicon-on-insulator substrate are presented in this paper. Solar concentration is achieved by using a focusing lens to concentrate solar input onto the membrane of the STEG. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. This thermal model is shown to be in good agreement with actual measurement results. For a 1 W laser input with a spot size of 1 mm, a maximum open-circuit voltage of 3.06 V is obtained, which translates to a temperature difference of 226 °C across the thermoelements and delivers 25 µW of output power under matched load conditions. Based on solar simulator measurements, a maximum TEG voltage of 803 mV was achieved by using a 50.8 mm diameter plano-convex lens to focus solar input to a TEG with a length of 1000 µm, width of 15 µm, membrane diameter of 3 mm, and 114 thermocouples. This translates to a temperature difference of 18 °C across the thermoelements and an output power under matched load conditions of 431 nW. This paper demonstrates that by utilizing a solar concentrator to focus solar radiation onto the hot junction of a TEG, the temperature difference across the device is increased; subsequently improving the TEG’s efficiency. By using materials that are compatible with standard CMOS and MEMS processes, integration of solar-driven TEGs with on-chip electronics is seen to be a viable way of solar energy harvesting where the resulting microscale system is envisioned to have promising applications in on-board power sources, sensor networks, and autonomous microsystems. (paper)

  2. Gas cooled solar tower power plant (GAST) KWU approach to a 20 MW hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Martin

    1980-07-01

    The gas cooled solar tower powerplant with a hybrid solar-fossil heating system in the form given here represents a significant step towards the industrial use of solar energy. The transition from fossil fuels to solar energy can be facilitated for the power plant operators if the transition is gradual and if conventional technology is used. Using solar energy and with a turbine inlet temperature of 800/sup 0/C the GAST power plant reaches an output of approximately 20 MW and a thermal efficiency of approximately 40% reference to the heat supplied by the receiver. In the absence of solar radiation the plant can be operated exclusively on fossil fuel. Increasing the turbine inlet temperature to 1000/sup 0/C enables an efficiency of about 47% to be reached in the GUD cycle.

  3. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    Science.gov (United States)

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  4. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  5. A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2017-01-01

    Full Text Available Due to decaying fossil resource and increasing environmental consciousness, the demand of renewable energy resources is escalating these days. Photovoltaic solar energy is one of the most popular renewable energy resources in places where sunlight is abundant. The selection of a desirable location for constructing a photovoltaic solar plant is the first and one of the most important stages in the plant construction to provide a long-term energy production. In this paper, a comprehensive multiple-criteria decision-making model, which incorporates the interpretive structural modeling (ISM, fuzzy analytic network process (FANP and VIKOR (VlseKriterijumska OptimizacijaI Kompromisno Resenje in Serbian,meaning multi-criteria optimization and compromise solution, is proposed to select the most suitable photovoltaic solar plant location. The ISM is applied first to determine the interrelationships among the criteria and among the sub-criteria,andtheresults are used to construct a decision-making network. The FANP is applied next to solve the network and to calculate the importance weights of the sub-criteria. Finally, the VIKOR is adopted to determine the ranking of the photovoltaic solar plant locations. The proposed model is applied in a case study in evaluating photovoltaic solar plant locations in Taiwan. By applying the proposed model, decision makers can have a better thinking process and make more appropriate decisions justifiably.

  6. Utility-Scale Solar Photovoltaic Power Plants : A Project Developer’s Guide

    OpenAIRE

    International Finance Corporation

    2015-01-01

    With an installed capacity greater than 137 gigawatts (GWs) worldwide and annual additions of about 40 GWs in recent years, solar photovoltaic (PV) technology has become an increasingly important energy supply option. A substantial decline in the cost of solar PV power plants (80 percent reduction since 2008) has improved solar PV’s competitiveness, reducing the needs for subsidies and ena...

  7. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  8. Analysis of environmental effect of hybrid solar-assisted desalination cycle in Sirdarya Thermal Power Plant, Uzbekistan

    International Nuclear Information System (INIS)

    Alikulov, Khusniddin; Xuan, Tran Dang; Higashi, Osamu; Nakagoshi, Nobukazu; Aminov, Zarif

    2017-01-01

    Highlights: • A hybrid solar-assisted desalination cycle was designed and stimulated. • Maximum of 21,064.00 kW effective solar heat can be achieved. • The use of parabolic-trough collectors in the Multi Effect Distillation is potential. • The cycle can be applied in other regions with high Direct Normal Irradiation. - Abstract: This study was to investigate possible reduction of fossil fuel consumption and carbon dioxide emission in one of energy sectors of Sirdarya Thermal Power Plant (TPP), Uzbekistan. A hybrid solar-assisted desalination cycle has been designed and simulated for partially supplying saturated steam with 200 °C, 8 bar, and 32 t/h parameters to a Multi Effect Distillation (MED) process in the Sirdarya Thermal Power Plant. The outcome of the parental design model stated that maximum, 21,064.00 kW effective solar heat can be achieved, which is equivalent to 31.76 t/h of saturated steam with 200 °C and 8 bar parameters. Total saved fossil fuel in each month proved that it is possible to reduce fossil fuel (heavy oil and natural gas) consumption with 59.64, 95.24, 389.96, and 298.26 tons during available Direct Normal Irradiation (DNI) by using parabolic-trough collectors. Moreover, the above-mentioned fossil fuel savings accounted for CO_2 reduction with amounts of 182.50, 255.46, 1045.87 & 799.96 tons per each consistent month. Findings proved that integration of parabolic-trough collectors into the MED process is feasible in terms of high DNI availability and demand for retrofitting old existing heat-consuming facilities in Sirdarya Thermal Power Plant. Besides, the cycle also can be applied in other regions of Uzbekistan with high DNI for generating solar heat. Therefore, conducted study is eligible to be applied on the research site by taking into account of sufficient meteorological data and required steam parameters.

  9. Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota

    Science.gov (United States)

    1981-01-01

    Partial space heating for 97,000 square foot plant is supplied by 360 flat plate solar collectors; energy is sorted as heat in indoor 20,000 gallon water tank. System includes all necessary control electronics for year round operation. During December 1978, solar energy supplied 24.4 percent of building's space heating load.

  10. PKI solar thermal plant evaluation at Capitol Concrete Products, Topeka, Kansas

    Science.gov (United States)

    Hauger, J. S.; Borton, D. N.

    1982-07-01

    A system feasibility test to determine the technical and operational feasibility of using a solar collector to provide industrial process heat is discussed. The test is of a solar collector system in an industrial test bed plant at Capitol Concrete Products in Topeka, Kansas, with an experiment control at Sandia National Laboratories, Albuquerque. Plant evaluation will occur during a year-long period of industrial utilization. It will include performance testing, operability testing, and system failure analysis. Performance data will be recorded by a data acquisition system. User, community, and environmental inputs will be recorded in logs, journals, and files. Plant installation, start-up, and evaluation, are anticipated for late November, 1981.

  11. Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    Moore, J.; Grimes, R.; Walsh, E.; O'Donovan, A.

    2014-01-01

    This paper aims at developing a novel air-cooled condenser for concentrated solar power plants. The condenser offers two significant advantages over the existing state-of-the-art. Firstly, it can be installed in a modular format where pre-assembled condenser modules reduce installation costs. Secondly, instead of using large fixed speed fans, smaller speed controlled fans are incorporated into the individual modules. This facility allows the operating point of the condenser to change and continuously maximise plant efficiency. A thorough experimental analysis was performed on a number of prototype condenser designs. This analysis investigated the validly and accuracy of correlations from literature in predicting the thermal and aerodynamic characteristics of different designs. These measurements were used to develop a thermodynamic model to predict the performance of a 50 MW CSP (Concentrated Solar Power) plant with various condenser designs installed. In order to compare different designs with respect to the specific plant capital cost, a techno-economic analysis was performed which identified the optimum size of each condenser. The results show that a single row plate finned tube design, a four row, and a two row circular finned tube design are all similar in terms of their techno-economic performance and offer significant savings over other designs. - Highlights: • A novel air cooled condenser for CSP (Concentrated Solar Power) applications is proposed. • A thorough experimental analysis of various condenser designs was performed. • Heat transfer and flow friction correlations validated for fan generated air flow. • A thermodynamic model to calculate CSP plant output is presented. • Results show the proposed condenser design can continually optimise plant output

  12. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  13. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments.

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  14. Techno-economic design optimization of solar thermal power plants

    OpenAIRE

    Morin, G.

    2011-01-01

    A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...

  15. Variational method for the minimization of entropy generation in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Sjoerd; Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  16. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  17. Summary of reports on 1979 result of Sunshine Project. Solar energy; 1979 nendo sunshine keikaku seika hokokusho gaiyoshu. Taiyo energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-04-01

    This report is a compilation of all outlines of the results concerning 'solar energy' for which R and D was carried out as a part of Sunshine Project in fiscal 1979. The research subjects (items of the studies) are written below. 1. Solar energy system (measurement of spectral irradiance, utilization system, and meteorological investigation); 2. Solar thermal power generation system; 3. Photovoltaic power generation system (basic research on solar cells, silicon vertical ribbon crystal, silicon horizontal ribbon crystal, particle non-acceleration growth type thin film silicon crystal, particle acceleration growth type thin film silicon crystal, new type solar cells, secondary to quaternary compound semiconductor solar cells, and photovoltaic power generation system); 4. Solar cooling, heating and hot water supply system (evaluation system, newly-built private residential system, existing private residential system, multiple dwelling system, large building system, synthetic resin materials, glass based materials, and metallic materials); 5. Solar energy new utilization method (new power generation system and materials); 6. R and D on solar thermal power generation plant (R and D on pilot plant, experimental research for developing plant on curved surface converging method, and experimental research for developing plant on tower converging method). (NEDO)

  18. A 10-MWe solar-thermal central-receiver pilot plant: Solar facilities design integration. Plant operating/training manual (RADL-Item 2-36)

    Science.gov (United States)

    1982-07-01

    Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.

  19. The greatest solar refrigeration plant of Switzerland. Holistic saving of CO{sub 2} at a private bank; Die groesste solare Kaelteanlage der Schweiz. Ganzheitliche CO{sub 2}-Einsparung bei einer Privatbank

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2011-07-01

    Since June 2008, the Swiss private bank Pictet and Cie. (Geneva, Switzerland) operates the largest solar refrigerant plant of Switzerland. The solar generated heat is used all over the year for heating up of drinking water, seasonally for room air conditioning and in the summer for driving of three absorption refrigerators with a refrigerating capacity of totally 210 kW. This is sufficient in order to keep the office space of nearly 4,000 m{sup 2} at a moderate temperature by means of cooling ceilings.

  20. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  1. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  2. Development of a Greek solar map based on solar model estimations

    Science.gov (United States)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  3. Expression profiles of vault components MVP, TEP1 and vPARP and their correlation to other multidrug resistance proteins in ovarian cancer.

    Science.gov (United States)

    Szaflarski, Witold; Sujka-Kordowska, Patrycja; Pula, Bartosz; Jaszczyńska-Nowinka, Karolina; Andrzejewska, Małgorzata; Zawierucha, Piotr; Dziegiel, Piotr; Nowicki, Michał; Ivanov, Pavel; Zabel, Maciej

    2013-08-01

    Vaults are cytoplasmic ribonucleoprotein particles composed of three proteins (MVP, TEP1, vPARP) and vault‑associated RNAs (vRNAs). Although the cellular functions of vaults remain unclear, vaults are strongly linked to the development of multidrug resistance (MDR), the major obstacle to the efficient treatment of cancers. Available published data suggest that vaults and their components are frequently upregulated in broad variety of multidrug-resistant cancer cell lines and tumors of different histological origin. Here, we provide detailed analysis of vault protein expression in post-surgery ovarian cancer samples from patients that were not exposed to chemotherapy. Our analysis suggests that vault proteins are expressed in the ovaries of healthy individuals but their expression in cancer patients is changed. Specifically, MVP, TEP1 and vPARP mRNA levels are significantly decreased in cancer samples with tendency of lower expression in higher-grade tumors. The pattern of vault protein mRNA expression is strongly correlated with the expression of other MDR-associated proteins such as MDR1, MRP1 and BCRP. Surprisingly, the protein levels of MVP, TEP1 and vPARP are actually increased in the higher‑grade tumors suggesting existence of post-transcriptional regulation of vault component production.

  4. Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey

    Directory of Open Access Journals (Sweden)

    Raad Kadhim Al-Dualimi

    2016-08-01

    Full Text Available A prior study on the performance of high-efficient models for a heliostat field and solar receiver at various candidate locations (e.g., certain regions in the south of Turkey helped determine suitable locations for installing solar tower power plant units. This study considered the fact that solar tower power plants are affected by the working conditions of a particular site, which helps realize the highest performance of the solar power tower plant. An optimized heliostat field consisting of 2650 SENER heliostats and a model of a solar receiver based on the data obtained using Gemasolar in Seville, Spain, was used as a reference in this work. Each heliostat position is specified using an optimization algorithm that refines previously proposed models, and two parameters are added to this model to further optimize the heliostat layout. Then, a sample analytical thermal model is used for predicting the radiative and convective heat losses from the receiver system. Article History: Received March 13rd 2016; Received in revised form Jun 22nd 2016; Accepted July 3rd 2016; Available onlineHow to Cite This Article: Ra'ad, K, M, A. and Mehmet, S, S. (2016, Evaluating the potential energy of a heliostat field and solar receiver of solar tower power plants in the southern region of Turkey. Int. Journal of Renewable Energy Development, 5(2, 151-161, http://dx.doi.org/10.14710/ijred.5.2.151-161

  5. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  6. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  7. Generation of typical solar radiation data for different climates of China

    International Nuclear Information System (INIS)

    Zang, Haixiang; Xu, Qingshan; Bian, Haihong

    2012-01-01

    In this study, typical solar radiation data are generated from both measured data and synthetic generation for 35 stations in six different climatic zones of China. (1) By applying the measured weather data during at least 10 years from 1994 to 2009, typical meteorological years (TMYs) for 35 cities are generated using the Finkelstein–Schafer statistical method. The cumulative distribution function (CDF) of daily global solar radiation (DGSR) for each year is compared with the CDF of DGSR for the long-term years in six different climatic stations (Sanya, Shanghai, Zhengzhou, Harbin, Mohe and Lhasa). The daily global solar radiation as typical data obtained from the TMYs are presented in the Table. (2) Based on the recorded global radiation data from at least 10 years, a new daily global solar radiation model is developed with a sine and cosine wave (SCW) equation. The results of the proposed model and other empirical regression models are compared with measured data using different statistical indicators. It is found that solar radiation data, calculated by the new model, are superior to these from other empirical models at six typical climatic zones. In addition, the novel SCW model is tested and applied for 35 stations in China. -- Highlights: ► Both TMY method and synthetic generation are used to generate solar radiation data. ► The latest and accurate long term weather data in six different climates are applied. ► TMYs using new weighting factors of 8 weather indices for 35 regions are obtained. ► A new sine and cosine wave model is proposed and utilized for 35 major stations. ► Both TMY method and the proposed regression model perform well on monthly bases.

  8. Performance analysis of a co-generation system using solar energy and SOFC technology

    International Nuclear Information System (INIS)

    Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R.

    2014-01-01

    Highlights: • A new concept of a cogeneration system is proposed and investigated. • The system comprises solar collector, PV, SOFC and heat exchanger. • 83.6% Power and heat generation efficiency has been found at fuel cell mode. • 85.1% Efficiency of SOSE has been found at H2 production mode. • The heat to power ratio of SOFC mode has been found about 0.917. - Abstract: Due to the increasing future energy demands and global warming, the renewable alternative energy sources and the efficient power systems have been getting importance over the last few decades. Among the renewable energy technologies, the solar energy coupling with fuel cell technology will be the promising possibilities for the future green energy solutions. Fuel cell cogeneration is an auspicious technology that can potentially reduce the energy consumption and environmental impact associated with serving building electrical and thermal demands. In this study, performance assessment of a co-generation system is presented to deliver electrical and thermal energy using the solar energy and the reversible solid oxide fuel cell. A mathematical model of the co-generation system is developed. To illustrate the performance, the system is considered in three operation modes: a solar-solid oxide fuel cell (SOFC) mode, which is low solar radiation time when the solar photovoltaic (PV) and SOFC are used for electric and heat load supply; a solar-solid oxide steam electrolyzer (SOSE) mode, which is high solar radiation time when PV is used for power supply to the electrical load and to the steam electrolyzer to generate hydrogen (H 2 ); and a SOFC mode, which is the power and heat generation mode of reversible SOFC using the storage H 2 at night time. Also the effects of solar radiation on the system performances and the effects of temperature on RSOFC are analyzed. In this study, 100 kW electric loads are considered and analyzed for the power and heat generation in those three modes to evaluate

  9. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  10. Reports on 1979 result of Sunshine Project. Testing research for detailed design of solar thermal power generation plant (tower converging method); 1979 nendo taiyonetsu hatsuden plant (tower shuko hoshiki) no shosai sekkei no tame no shiken kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    This report briefly describes first, in the summary of the results, the contents of the research results of the year with the outcome as the central point. Then, it explains in detail, in the contents of the research, the substance of each research item, results, their examination contents, and future research subjects. The objective of the research is, for the purpose of technically seeking the cost performance of a solar thermal power generation plant, (1) to develop equipment constituting the plant and (2) to develop a pilot plant having an electrical output of about 1,000kW at the peak by the tower converging method. The research results were as follows. (1) In the confirming test of a heliostat test unit, the final conclusion was obtained of the wind resistance calculated value by the wind tunnel test of the heliostat; the design materials of the assembly jigs were obtained; the data of the operation forecast was obtained in a tracking test; and a sensor was developed for the tracking instrumentation. (2) In the confirming test of the improved absorbing surface/mirror, the improvement/trial production including the manufacturing method was carried out as the absorbing surface for the actual unit. (3) In the heat collecting test, steam generation and a loop control test were performed. (4) The plant system was analyzed, with data obtained for the operating method. (NEDO)

  11. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.

  12. A new framework to increase the efficiency of large-scale solar power plants.

    Science.gov (United States)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  13. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    Science.gov (United States)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  14. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Khasawneh, Khalid; PARK, Youn Won

    2014-01-01

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  15. Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Khalid; PARK, Youn Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of

  16. A novel procedure for generating solar irradiance TSYs

    Science.gov (United States)

    Fanego, Vicente Lara; Rubio, Jesús Pulgar; Peruchena, Carlos M. Fernández; Romeo, Martín Gastón; Tejera, Sara Moreno; Santigosa, Lourdes Ramírez; Balderrama, Rita X. Valenzuela; Tirado, Luis F. Zarzalejo; Pantaleón, Diego Bermejo; Pérez, Manuel Silva; Contreras, Manuel Pavón; García, Ana Bernardos; Anarte, Sergio Macías

    2017-06-01

    Typical Solar Years (TSYs) are key parameters for the solar energy industry. In particular, TSYs are mainly used for the design and bankability analysis of solar projects. In essence, a TSY intends to describe the expected long-term behavior of the solar resource (direct and/or global irradiance) into a condensed period of one year at the specific location of interest. A TSY differs from a conventional Typical Meteorological Year (TMY) by its absence of meteorological variables other than solar radiation. Concerning the probability of exceedance (Pe) needed for bankability, various scenarios are commonly used, with Pe90, Pe95 or even Pe99 being most usually required as unfavorable scenarios, along with the most widely used median scenario (Pe50). There is no consensus in the scientific community regarding the methodology for generating TSYs for any Pe scenario. Furthermore, the application of two different construction methods to the same original dataset could produce differing TSYs. Within this framework, a group of experts has been established by the Spanish Association for Standardization and Certification (AENOR) in order to propose a method that can be standardized. The method developed by this working group, referred to as the EVA method, is presented in this contribution. Its evaluation shows that it provides reasonable results for the two main irradiance components (direct and global), with low errors in the annual estimations for any given Pe. The EVA method also preserves the long-term statistics when the computed TSYs for a specific Pe are expanded from the monthly basis used in the generation of the TSY to higher time resolutions, such as 1 hour, which are necessary for the precise energy simulation of solar systems.

  17. The solar two power tower project

    International Nuclear Information System (INIS)

    Chavez, J.M.; Klimas, P.C.; Laquil, P. de III; Skowronski, M.

    1993-01-01

    A consortium of United States utility concerns led by Southern California Edison Company (SCE) has begun a cooperative project with the U.S. Department of Energy (DOE) and industry to convert the 10-MWe Solar One Tower Pilot Plant to molten nitrate salt technology. Successful operation of the convert plant to be called Solar Two, will reduce the economic risks in building the initial commercial power tower projects and accelerate the commercial acceptance of this promising renewable energy technology. In a molten salt power tower plant, sunlight is concentrated by a field of sun-tracking mirrors, called heliostats, onto a centrally located receiver, atop a tower. Molten salt is heated in the receiver and stored until it is needed to generate steam to power a conventional turbine generator. Joining the SCE and DOE in sponsoring in sponsoring this project are the following organizations: Los Alamos department of Water Power, Idaho Power Company, PacifiCorp, Pacific Gas and Electric Company, Sacramento Municipal Utility District, Arizona Public Service Company, Salt River Project, City of Pasadena, California Energy Commission, Electric Power Research Institute, South Coast Air Quality Commission, Electric Power research Institute, South Coast Air Quality Management District, and Bechtel Corporation. The Solar Two project will convert the Solar One heat transfer system from a water/steam type to molten nitrate salt by replacing the water/steam receiver and oil/rock thermal storage system with a nitrate salt receiver, salt thermal storage, and steam generator. The estimate cost of Solar Two, including 3-year test period, is 48.5 millions. The plant will be on line in early 1995. (authors)

  18. Air emissions due to wind and solar power.

    Science.gov (United States)

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  19. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  20. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  1. Solar and nuclear power are partners

    International Nuclear Information System (INIS)

    Rossin, A.D.

    1985-01-01

    This chapter attempts to refute the claim made by solar energy proponents that the continued reliance on electric grids with coal-fired and nuclear plants hinders the development of solar energy sources. It is proposed that solar and nuclear power do not compete with one another, no energy source can do the job alone, and the future of solar energy is brightest only if nuclear power succeeds. Since electric utilities have to generate almost twice as much energy during the day than at night, solar energy could be used to decrease the amount of electric power the nuclear power plants must supply at peak periods. It is argued that the key to solving future energy demands is diversity in the forms of energy supply

  2. Who's hot, who's not? Effects of concentrating solar power heliostats on soil temperature at Ivanpah Solar Electric Generating System, Mojave Desert, USA

    Science.gov (United States)

    Grodsky, S.; Hernandez, R. R.

    2017-12-01

    Solar energy development may function as a contemporary, anthropogenic driver of disturbance when sited in natural ecosystems. Orientation and density of solar modules, including heliostats at concentrating solar power (CSP) facilities, may affect soils via shading and altered surface-water flow. Meanwhile, soil attributes like temperature and moisture may affect nutrient cycling, plant germination and growth, and soil biota. We tested effects of CSP heliostats on soil temperature at Ivanpah Solar Electric Generating System (ISEGS) in the Mojave Desert, USA. We implemented experimental treatments based on preconstruction rare plant [e.g., Mojave milkweed (Asclepias nyctaginifolia)] protection areas (hereafter "halos"), site preparation activities, and heliostat density throughout three, replicated CSP blocks (i.e., tower and associated heliostats), including: (1) No Halos (Bladed) - high site preparation intensity, high heliostat density immediately surrounding towers; (2) No Halos (Mowed) - moderate site preparation intensity, moderate to low heliostat density as distance increases from towers; and (3) Halos - no site preparation, no heliostats. We also established control sites within 1,600 km of ISEGS in undisturbed desert. We observed significant differences in soil temperature across treatments. We recorded significantly lower soil temperatures in the No Halos (Bladed) treatments (26.7°C) and No Halos (Mowed) treatments (29.9°C) than in the Halos treatments (32.9°C) and controls (32.1°C). We also determined that soil temperatures in the Halos treatments and controls did not significantly differ. Our results indicated that shading from high-density heliostat configuration significantly reduced soil temperature relative to low-density heliostat configuration and areas without CSP. Shading from heliostats and consequential fluctuation in soil temperatures may affect local-scale distribution of flora and fauna, leading to altered "bottom-up" ecological

  3. Performance of Generating Plant: Managing the Changes. Part 2: Thermal Generating Plant Unavailability Factors and Availability Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 2 (WG2). WG2's main task is to facilitate the collection and input on an annual basis of power plant performance data (unit-by-unit and aggregated data) into the WEC PGP database. The statistics will be collected for steam, nuclear, gas turbine and combined cycle, hydro and pump storage plant. WG2 will also oversee the ongoing development of the availability statistics database, including the contents, the required software, security issues and other important information. The report is divided into two sections: Thermal generating, combined cycle/co-generation, combustion turbine, hydro and pumped storage unavailability factors and availability statistics; and nuclear power generating units.

  4. Solar and atmospheric neutrinos in three generations with a magnetic moment

    International Nuclear Information System (INIS)

    Pulido, J.; Tao, Z.

    1995-01-01

    A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation

  5. Effects of the selection of heat transfer fluid and condenser type on the performance of a solar thermal power plant with technoeconomic approach

    International Nuclear Information System (INIS)

    Yilmazoglu, M. Zeki

    2016-01-01

    Highlights: • The effects of the selection of HTF and condenser type on STPs were examined. • Levelized cost of energy (LCOE) for STP was investigated. • LCOE for STP compared with gas turbine and combined cycle. • CSP with thermal storage can be competitive technology with carbon tax/credits. - Abstract: Renewable electricity generation systems have an increasing trend in terms of usage due to aiming to decrease greenhouse gas emissions and energy source diversification strategies of countries. Parabolic trough, Fresnel, and solar tower systems have been used to generate solar thermal electricity around the world. In this study, the effects of the selection of collector heat transfer fluid (HTF) and condenser type on a concentrated solar thermal power plant were analyzed. Net power, net electrical efficiency, and economic analysis were carried out for the selected HTFs for different collector outlet temperature cases. In the case of condenser type selection four different systems were considered; water cooled, air cooled (dry air) and air cooled with water spraying (spraying before fan and spraying before and after fan). Levelized cost of energy (LCOE) and specific investment cost were calculated. According to the results, specific investment cost and LCOE were found to be 4000 USD/kW_e_l and 0.207 USD/kW h, respectively. Carbon tax/credit was also included to the calculations of LCOE and a comparison study was carried out for gas turbine, combined cycle and solar thermal power plant with thermal storage. Including carbon tax/credit to the LCOE shows that solar thermal power plant with heat storage can be competitive when compared to gas turbines.

  6. Japan's Sunshine Project. Solar energy R and D program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-05-01

    This paper explains the Sunshine Project and its solar energy R and D program. The solar energy is poured into the earth at 1.04 x 10{sup 17} kcal per hour, while the energy consumption of the world in 1970 is equivalent to 30 minutes of the solar energy. It is infinite compared to fossil fuel and clean, with no extreme partiality by areas. Its problem in utilization, however, is the low energy density of 1 kw/m{sup 2} and unsteady supply caused by weather conditions, which raises difficulties in matching energy demand. These demerits and low competitiveness in cost must be overcome through R and D. Under the Sunshine Project, the solar energy utilization is in progress in the areas of thermal utilization in a building, solar thermal power generation, and photovoltaic power generation. The budget was 9.6 billion yen for fiscal 1980 and 8 billion yen for fiscal 1981. Since fiscal 1980, emphasis has been placed particularly on photovoltaic power generation. The experimental production of solar cells of 500 kW/year is scheduled as a target through fiscal 1981-82. Four demonstration plants and two central distributing substations for photovoltaic power generation are planned to be built by fiscal 1985. Also to be studied are 2 solar thermal power generation plants of 1,000 kWe each and a solar thermal system for industrial process heating. (NEDO)

  7. Techno-economic optimization for the design of solar chimney power plants

    International Nuclear Information System (INIS)

    Ali, Babkir

    2017-01-01

    Highlights: • Chimney height and collector area of different designs were optimized. • Simple actual and minimum payback periods were developed. • Comparative assessment was conducted for different designs configuration. • Effects of uncertain parameters on the payback period were studied. - Abstract: This paper aims to propose a methodology for optimization of solar chimney power plants taking into account the techno-economic parameters. The indicator used for optimization is the comparison between the actual achieved simple payback period for the design and the minimum possible (optimum) simple payback period as a reference. An optimization model was executed for different twelve designs in the range 5–200 MW to cover reinforced concrete chimney, sloped collector, and floating chimney. The height of the chimney was optimized and the associated collector area was calculated accordingly. Relationships between payback periods, electricity price, and the peak power capacity of each power plant were developed. The resulted payback periods for the floating chimney power plants were the shortest compared to the other studied designs. For a solar chimney power plant with 100 MW at electricity price 0.10 USD/kWh, the simple payback period for the reference case was 4.29 years for floating chimney design compared to 23.47 and 16.88 years for reinforced concrete chimney and sloped collector design, respectively. After design optimization for 100 MW power plant of each of reinforced concrete, sloped collector, and floating chimney, a save of 19.63, 2.22, and 2.24 million USD, respectively from the initial cost of the reference case is achieved. Sensitivity analysis was conducted in this study to evaluate the impacts of varied running cost, solar radiation, and electricity price on the payback periods of solar chimney power plant. Floating chimney design is still performing after applying the highest ratio of annual running cost to the annual revenue. The

  8. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  9. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor.

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(2)/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H(2) generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g(-1) at 0.5 A g(-1) and 287 F g(-1) at 1 A g(-1) are obtained with TiO(2)/Ni(OH)(2) nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application.

  10. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  11. Test reference year generation from meteorological and simulated solar radiation data

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, A. de; Bilbao, J. [University of Valladolid (Spain). Dept. of Applied Physics

    2005-06-01

    In this paper, a new method for generating test reference year (TRY) from the measured meteorological variables is proposed. Hourly recorded data of air temperature, relative humidity and wind velocity for two stations, Valladolid and Madrid (Spain) were selected to develop the method and a TRY was obtained. Monthly average solar radiation values were calculated taking into account the temperature and solar radiation correlations. Four different methodologies were used to evaluate hourly global solar radiation from hourly weather data of temperature and, as a consequence, four different TRYs with common data sets of temperature, relative humidity and wind velocity were generated for Valladolid and Madrid (Spain) stations. In order to evaluate the four different methodologies, TRYs data were compared with long-term measured data series using statistical estimators such as average, standard deviation, root mean square error (rmse) and mean bias error (mbe). Festa and Ratto and the TAG model, from Aguiar and Collares-Pereira, respectively, turned out to be the best methods for generating hourly solar irradiation data. The best performance was shown by the TRY0 year which was based on the solar radiation models mentioned above. The results show that the best reference year for each site varies with the season and the characteristics of the station. (author)

  12. Treatment of Solar Generation in Electric Utility Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  13. Fiscal 1976 Sunshine Project result report. R and D on solar heat power generation system (R and D on curved reflector light collection system); 1976 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. Kyokumen shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    As a part of Sunshine Project, study was made on the solar heat power generation system using a solar collection system composed of plane and curved reflectors. In fiscal 1976, study was made on plant characteristics and plant operation by using system simulation program, and the concept design of the system was promoted. The reflectance of the plane reflector was improved up to 0.92 by remodeling the prototype collector fabricated in last fiscal year, and the prototype test facility of full-scale reflectors for 1,000kW solar power plant was prepared to obtain design data for large reflectors. The prototype heat collection loop control equipment which was prepared to simulate control of plant operation conditions according to solar radiation fluctuation, succeeded in prediction of solar radiation fluctuation within nearly 30min. New study was also made on a system using both accumulator and molten salt heat storage equipment, and each proper capacity for power plants was determined. In addition, high-temperature vapor generation for 2 hours was achieved by the prototype heat storage equipment using KCl-LiCl molten salt. (NEDO)

  14. Usage of hybrid solar collector system in drying technologies of medical plants

    International Nuclear Information System (INIS)

    Čiplienė, Aušra; Novošinskas, Henrikas; Raila, Algirdas; Zvicevičius, Egidijus

    2015-01-01

    Highlights: • Solar radiation energy utilization in drying technologies. • Accumulation of solar radiation energy. • The system comprising two different solar collector types. • Preparation of the drying agent by employing solar radiation energy around the clock. • The energy resources saving technology for medicinal plants’ raw material processing and drying. - Abstract: In the temperate climate zone under natural conditions, medicinal plants drying up to 8–12% moisture content and preparation of the quality medicinal plant’s raw material are complicated tasks. In many cases drying process of medicinal plants raw material, particularly rich in volatile compounds, needs the optimal drying temperatures of 30–45 °C and relative humidity not higher than 50–60%. In Lithuania, located in the northern part of the temperate climate zone, in summer the average temperature of ambient air is 16.1 ± 0.5 °C, and relative humidity is 77.3 ± 1.8%. In order to improve the sorption properties of ambient air, it is heated up to the admissible drying temperature. The experimental dryer was developed comprising two different solar collectors: the air type solar collector with area 12 m 2 for direct heating of the drying agent and the flat-plate type solar collector (8 m 2 ) for accumulation of converted heat energy. The research of motherwort (Leonurus cardiaca L.) drying was carried out in the dryer. It was determined that by combining operation of two different solar collectors, the solar radiation energy for drying agent’s heating could be used continuously around the clock by employing the accumulated energy, in order to compensate the solar irradiance variability and to ensure stability of the drying process. In the daytime the air-type solar collector at an airflow equal to 367 m 3 h −1 , i.e. at comparative flow of the drying agent per ton of dried medicinal plant raw material – 2450 m 3 h −1 , heats the air up to 30 °C when the solar

  15. Electric power generation using photovoltaic solar cells for low income rural population; Geracao de energia eletrica com celula solar fotovoltaica para populacao rural de baixa renda

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldi, Andre Fava; Souza, Teofilo Miguel de; Mesquita, Rafael Pimenta [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    With the growing electric energy use demand and almost not expansion of the energy mesh (basically composed by hydroelectric plants) existing in the country, several others methods of alternative energy generation may be necessary. Beyond that, the usually employed energy is becoming much more costly, rarer and politically more impracticable like burn fuels as oil and coal. The use of renewable approaches of energy, that are 'infinite' energies (as the wind and the light of the sun, for example), can become an excellent alternative. In this new energy group, the solar energy transformed by the use of photo voltage cells is becoming very important. The 'clear' solar radiation tends to be a more intelligent and practical option, and the future technology of energy storage will be able to solve the problem of the regions that have less sunny days. Its main advantages on the other alternative sources of energy are the trustworthiness and the previsibility. Its biggest disadvantage consists on the fact that technical limitations can not allow a solar energy generator to distribute electricity for a city. It is interesting to notice that with the development of projects as this in alternative energy, isolated areas that does not access electricity distribution network (as some far regions), it has become the most viable option of generation of electric energy. Another point is that even with the distribution network it has to be checked if it is possible to use this electricity consulting the company credential that work at those localities of consumption. Moreover, many regions of the country already installed the solar energy system for water heating, confirming that, the existing structure allows the installation of a a solar cells generation energy system without many problems. In this project, we introduce a method for electric energy generation by solar cells for rural population of low gains. This option uses low cost materials but with a good

  16. Application of solar panels in vehicle parking under the concept of distributed generation

    International Nuclear Information System (INIS)

    Calderon Vega, Jefferson

    2013-01-01

    An analysis of solar panels technologies is realized to implement an application of distributed generation in vehicle parking. The different technologies available in the market about solar panels are investigated. The climatological and geographical conditions are studied for the use of solar energy. The electrical requirements are determined for the implementation of solar panels as a distributed generation system. The benefit/cost is analyzed in establishments of vehicle parking for the implementation of solar panels. A photovoltaic system was developed in a vehicle parking attached at the Colegio Federado de Ingenieros y Arquitectos, and also the technical feasibility has been determined. The photovoltaic systems about roofs of buildings every day have been more viable, due that the cost of the systems has been lower and more efficient. Crystalline silicon ''mono'' or ''poly'' has been the most reliable option in the development of new technologies in solar cells. Costa Rica is found in a zone where the photovoltaic solar energy is harnessed and should to be fostered by the engineering sector. The installation of photovoltaic systems has contributed to reduce the carbon footprint in the distributed generation [es

  17. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  18. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  19. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  20. Thermodynamic analysis of a solar-based multi-generation system with hydrogen production

    International Nuclear Information System (INIS)

    Ozturk, Murat; Dincer, Ibrahim

    2013-01-01

    Thermodynamic analysis of a renewable-based multi-generation energy production system which produces a number of outputs, such as power, heating, cooling, hot water, hydrogen and oxygen is conducted. This solar-based multi-generation system consists of four main sub-systems: Rankine cycle, organic Rankine cycle, absorption cooling and heating, and hydrogen production and utilization. Exergy destruction ratios and rates, power or heat transfer rates, energy and exergy efficiencies of the system components are carried out. Some parametric studies are performed in order to examine the effects of varying operating conditions (e.g., reference temperature, direct solar radiation and receiver temperature) on the exergy efficiencies of the sub-systems as well as the whole system. The solar-based multi-generation system which has an exergy efficiency of 57.35%, is obtained to be higher than using these sub-systems separately. The evaluation of the exergy efficiency and exergy destruction for the sub-systems and the overall system show that the parabolic dish collectors have the highest exergy destruction rate among constituent parts of the solar-based multi-generation system, due to high temperature difference between the working fluid and collector receivers. -- Highlights: ► Development of a new multi-generation system for solar-based hydrogen production. ► Investigation of exergy efficiencies and destructions in each process of the system. ► Evaluation of varying operating conditions on the exergy destruction and efficiency

  1. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  2. LAS TIC-TAC-TEP: un referente para la educación policial

    Directory of Open Access Journals (Sweden)

    Gloria Esperanza Ortiz Russi

    2015-11-01

    Full Text Available La lectura que las autoras esbozan, hace parte de un discurso tejido durante años en trabajo continuo de cerca a la educación policial, desde el centro de Mediaciones Pedagógicas y Tecnológicas –CEMPE-, se puede comentar que dicho discurso es aún inacabado, pero sí propone una postura clave para ser tenida en cuenta en los procesos educativos que demandan la globalidad en una socio-cultura cada vez más inmersa en las TIC-TAC-TEP,  esas siglas tienen unas nuevas acepciones muy especiales para la educación y que desde la PONAL son necesarias trabajarlas.

  3. Shiraz solar power plant operation with steam engine

    International Nuclear Information System (INIS)

    Yaghoubi, M.; Azizian, K.

    2004-01-01

    The present industrial developments and daily growing need of energy, as well as economical and environmental problem caused by fossil fuels consumption, resulted certain constraint for the future demand of energy. During the past two decades great attention has been made to use renewable energy for different sectors. In this regard for the first time in Iran, design and construction of a 250 K W Solar power plant in Shiraz, Iran is being carried out and it will go to operation within next year. The important elements of this power plant is an oil cycle and a steam cycle, and several studies have been done about design and operation of this power plant, both for steady state and transient conditions. For the steam cycle, initially a steam turbine was chosen and due to certain limitation it has been replaced by a steam engine. The steam engine is able to produce electricity with hot or saturated vapor at different pressures and temperatures. In this article, the effects of installing a steam engine and changing its vapor inlet pressure and also the effects of sending hot or saturated vapor to generate electricity are studied. Various cycle performance and daily electricity production are determined. The effects of oil cycle temperature on the collector field efficiency, and daily, monthly and annual amount of electricity production is calculated. Results are compared with the steam cycle output when it contains a steam turbine. It is found that with a steam engine it is possible to produce more annual electricity for certain conditions

  4. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  5. Intelligent system for a remote diagnosis of a photovoltaic solar power plant

    International Nuclear Information System (INIS)

    Sanz-Bobi, M A; San Roque, A Muñoz; Marcos, A de; Bada, M

    2012-01-01

    Usually small and mid-sized photovoltaic solar power plants are located in rural areas and typically they operate unattended. Some technicians are in charge of the supervision of these plants and, if an alarm is automatically issued, they try to investigate the problem and correct it. Sometimes these anomalies are detected some hours or days after they begin. Also the analysis of the causes once the anomaly is detected can take some additional time. All these factors motivated the development of a methodology able to perform continuous and automatic monitoring of the basic parameters of a photovoltaic solar power plant in order to detect anomalies as soon as possible, to diagnose their causes, and to immediately inform the personnel in charge of the plant. The methodology proposed starts from the study of the most significant failure modes of a photovoltaic plant through a FMEA and using this information, its typical performance is characterized by the creation of its normal behaviour models. They are used to detect the presence of a failure in an incipient or current form. Once an anomaly is detected, an automatic and intelligent diagnosis process is started in order to investigate the possible causes. The paper will describe the main features of a software tool able to detect anomalies and to diagnose them in a photovoltaic solar power plant.

  6. Wind and Solar Energy Role in the Achievement of EU Climate Policy After 2020

    International Nuclear Information System (INIS)

    Knezevic, S.

    2016-01-01

    This paper grades the possible role of solar and wind energy in the generation of electricity after 2020. The development of those energy sources will be defined by the climate policy implemented based on the last year's Paris Climate Agreement, but also by the existing initiatives of the European Commission (2030 climate and energy framework and 2050 low-carbon economy). Additionally, electricity generation from RES is observed through the decrease of dependency on the import of fossil fuels outside of the EU. According to the report of the International Renewable Energy Agency (IRENA), the biggest share of RES power plants, after hydro power plants, in EU are wind and solar power plants. Both wind and sun are constantly available resources, but with variable specific power, which makes the maximal generation dependent on the time of day and/or weather (wind, clouds). Future increase of wind and solar energy has to be observed from various perspectives as to properly grade it for the next period, until 2020. Therefore, this paper considers the following, intertwined aspects: Maturity of wind and solar technologies and future trends, Price of electricity generation from wind and solar power plants, with an analysis of price decreasing trends; Possibilities of power energy system and measures for the acceptance of wind and solar power plants; Integrative approach to all forms and transformations of electricity; Market integration of RES - aspirations towards free trade(author).

  7. 3D NUMERICAL STUDY OF FLOW IN A SOLAR CHIMNEY POWER PLANT SYSTEM

    Directory of Open Access Journals (Sweden)

    TAHAR TAYEBI

    2015-12-01

    Full Text Available Heat transfer process and fluid flow in a Solar Chimney Power Plant System (SCPPS are investigated numerically. As simulation object we use the Spanish prototype plant. The calculative model and boundary conditions in calculation are introduced. Boussinesq model was chosen in the natural convection processus, Discrete Ordinate radiation model was employed for radiation. The principal factors that influence on the performance of the Solar Chimney have been analysed. The effects on the flow of the Solar Chimney which caused by solar radiation intensity have been simulated. The calculated results are compared and are approximately equivalent to the relative experimental data of the Manzanares prototype. It can be concluded that the temperature difference between the inlet and outlet of collector, as well as the air velocity in the collector of the system, is increase with the increase of solar radiation intensity and the pressure throughout system is negative value.

  8. Simulation and evaluation of solar potential in Tehran, Kerman and Yazd for a 500 kW photovoltaic power plant using PVsyst software

    International Nuclear Information System (INIS)

    Badri, A.; Emadifar, R.; Eldoromi, M.

    2016-01-01

    Today, electricity has become an essential part of the life. At present, a large part of the electricity is supplied by thermal power plants and hydropower plants. With increasing concerns about greenhouse gas emissions and other environmental issues new technologies such as using solar energy for electricity generation are recommended. In this paper, a typical 500-kilowatt solar power plant connected to the grid is evaluated. Simulations are implemented by PVsyst software and its performance on different climatic conditions is investigated. Moreover, the performance ratio and different types of energy losses (such as losses due to temperature increases, the domestic network losses, losses of power electronics (convertors)) are calculated. Finally, the amount of energy produced and injected into the network and the annual income from the construction to the south of Tehran, Kerman and Yazd are compared. Results show that the city of Yazd as a suitable site for the construction of the plant is the best alternative among other two options.

  9. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    Science.gov (United States)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  10. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  11. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  12. Techno-economic evaluation of concentrating solar power generation in India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav

    2010-01-01

    The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m 2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. In this study, a preliminary attempt towards the technical and economic assessment of concentrating solar power (CSP) technologies in India has been made. To analyze the techno-economic feasibility of CSP technologies in Indian conditions two projects namely PS-10 (based on power tower technology) and ANDASOL-1 (based on parabolic trough collector technology) have been taken as reference cases for this study. These two systems have been simulated at several Indian locations. The preliminary results indicate that the use of CSP technologies in India make financial sense for the north-western part of the country (particularly in Rajasthan and Gujarat states). Moreover, internalization of secondary benefits of carbon trading under clean development mechanism of the Kyoto Protocol further improves the financial feasibility of CSP systems at other locations considered in this study. It may be noted that the locations blessed with annual direct solar radiation more than 1800 k

  13. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  14. Development of second-generation PFB combustion plants

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Domeracki, W.; Horazak, D. [and others

    1995-12-31

    Research is being conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fueled plant for electric power generation. This new type of plant--called an Advanced or Second-generation Pressurized Fluidized Bed Combustion (APFBC) plant--offers the promise of efficiencies greater than 45 percent (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot-plant R&D work being conducted to develop this new type of plant and discusses a proposed design that should reduce demonstration-plant risks and costs.

  15. Concentrating solar power plant investment and operation decisions under different price and support mechanisms

    International Nuclear Information System (INIS)

    Kost, Christoph; Flath, Christoph M.; Möst, Dominik

    2013-01-01

    The dispatch opportunities provided by storage-enhanced Concentrating Solar Power (CSP) plants have direct implications on the investment decisions as not only nameplate capacity but also the storage capacity and the solar multiple play a crucial role for the viability of the plant investment. By integrating additional technical aspects and operation strategies, this paper extends the optimization model proposed by Madaeni et al., How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power. Using a mixed integer maximization approach the paper yields both the optimal layout decision and the operation of CSP plants. Subsequently, the economic value of CSP storage is analyzed via energy modeling of a Spanish plant location under the respective wholesale market prices as well as the local feed-in tariff. The analysis shows that investment incentives for CSP plants with storage need to appropriately account for the interdependency between the price incentives and the plant operating strategy. As the resulting revenue characteristics influence the optimal size of solar field and storage differing operating strategies also give rise to differing optimal plant layouts. Most noteworthy, the current Spanish support scheme offers only limited incentives for larger thermal storage capacity. - Highlights: • Dispatch opportunities of CSP have direct implications on both investment and operational decisions. • Valuation approach with a single mixed integer maximization problem. • Profitability of CSP plants under the premium feed-in tariff in Spain was assessed. • Layout decision and storage size are influenced by remuneration scheme. • Discuss alternative remuneration schemes for “dispatchable” RE technologies

  16. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    Science.gov (United States)

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  18. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    Science.gov (United States)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2012-02-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  19. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

    Science.gov (United States)

    Xia, Xinhui; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Zhang, Yongqi; Tu, Jiangping; Zhang, Hua; Fan, Hong Jin

    2012-01-01

    Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO2/transition metal hydroxides/oxides core/shell nanorod arrays. The feasibility of solar-driven pseudocapacitance is clearly demonstrated, and the charge/discharge is indicated by reversible color changes (photochromism). In such an integrated device, the photogenerated electrons are utilized for H2 generation and holes for pseudocapacitive charging, so that both the reductive and oxidative energies are captured and converted. Specific capacitances of 482 F g−1 at 0.5 A g−1 and 287 F g−1 at 1 A g−1 are obtained with TiO2/Ni(OH)2 nanorod arrays. This study provides a new research strategy for integrated pseudocapacitor and solar energy application. PMID:23248745

  20. Tårs 10000 m2 CSP + Flat Plate Solar Collector Plant - Cost-Performance Optimization of the Design

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Tian, Zhiyong

    2016-01-01

    , was established. The optimization showed that there was a synergy in combining CSP and FP collectors. Even though the present cost per m² of the CSP collectors is high, the total energy cost is minimized by installing a combination of collectors in such solar heating plant. It was also found that the CSP......A novel solar heating plant with Concentrating Solar Power (CSP) collectors and Flat Plate (FP) collectors has been put into operation in Tårs since July 2015. To investigate economic performance of the plant, a TRNSYS-Genopt model, including a solar collector field and thermal storage tank...

  1. Third generation nuclear plants

    Science.gov (United States)

    Barré, Bertrand

    2012-05-01

    After the Chernobyl accident, a new generation of Light Water Reactors has been designed and is being built. Third generation nuclear plants are equipped with dedicated systems to insure that if the worst accident were to occur, i.e. total core meltdown, no matter how low the probability of such occurrence, radioactive releases in the environment would be minimal. This article describes the EPR, representative of this "Generation III" and a few of its competitors on the world market.

  2. High-Efficiency, Multijunction Solar Cells for Large-Scale Solar Electricity Generation

    Science.gov (United States)

    Kurtz, Sarah

    2006-03-01

    A solar cell with an infinite number of materials (matched to the solar spectrum) has a theoretical efficiency limit of 68%. If sunlight is concentrated, this limit increases to about 87%. These theoretical limits are calculated using basic physics and are independent of the details of the materials. In practice, the challenge of achieving high efficiency depends on identifying materials that can effectively use the solar spectrum. Impressive progress has been made with the current efficiency record being 39%. Today's solar market is also showing impressive progress, but is still hindered by high prices. One strategy for reducing cost is to use lenses or mirrors to focus the light on small solar cells. In this case, the system cost is dominated by the cost of the relatively inexpensive optics. The value of the optics increases with the efficiency of the solar cell. Thus, a concentrator system made with 35%- 40%-efficient solar cells is expected to deliver 50% more power at a similar cost when compare with a system using 25%-efficient cells. Today's markets are showing an opportunity for large concentrator systems that didn't exist 5-10 years ago. Efficiencies may soon pass 40% and ultimately may reach 50%, providing a pathway to improved performance and decreased cost. Many companies are currently investigating this technology for large-scale electricity generation. The presentation will cover the basic physics and more practical considerations to achieving high efficiency as well as describing the current status of the concentrator industry. This work has been authored by an employee of the Midwest Research Institute under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow

  3. Higher plant acclimation to solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Robberecht, R.

    1981-01-01

    The objectives of this study were to determine: (1) the relationship between plant sensitivity and epidermal uv attenuation, (2) the effect of phenotypic changes in the leaf epidermis, resulting from uv-B exposure, on plant sensitivity to uv radiation, and (3) the platicity of these changes in the epidermis leading to plant acclimation to uv-B radiation. A mechanism of uv-B attenuation, possibly involving the biosynthesis of uv-absorbing flavonoid compounds in the epidermis and mesophyll under the stress of uv-B radiation, and a subsequent increase in the uv-B attenuation capacity of the epidermis, is suggested. The degree of plant sensitivity and acclimation to natural and intensified solar uv-B radiation may involve a dynamic balance between the capacity for uv-B attenuation and uv-radiation-repair mechanisms in the leaf

  4. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  5. A Decision Support System for Plant Optimization in Urban Areas with Diversified Solar Radiation

    Directory of Open Access Journals (Sweden)

    Heyi Wei

    2017-02-01

    Full Text Available Sunshine is an important factor which limits the choice of urban plant species, especially in environments with high-density buildings. In practice, plant selection and configuration is a key step of landscape architecture, which has relied on an experience-based qualitative approach. However, the rationality and efficiency of this need to be improved. To maintain the diversity of plant species and to ensure their ecological adaptability (solar radiation in the context of sustainable development, we developed the Urban Plants Decision Support System (UP-DSS for assisting plant selection in urban areas with diversified solar radiation. Our methodology mainly consists of the solar radiation model and calibration, the urban plant database, and information retrieval model. The structure of UP-DSS is also presented at the end of the methodology section, which is based on the platform of Geographic Information Systems (GIS and Microsoft Excel. An application of UP-DSS is demonstrated in a residential area of Wuhan, China. The results show that UP-DSS can provide a very scientific and stable tool for the adaptive planning of shade-tolerant plants and photoperiod-sensitive plants, meanwhile, it also provides a specific plant species and the appropriate types of plant community for user decision-making according to different sunshine radiation conditions and the designer’s preferences.

  6. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng

    2014-05-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  7. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Zhou, Cheng

    2014-01-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  8. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids

    International Nuclear Information System (INIS)

    Fu, Yang; Mei, Tao; Wang, Gang; Guo, Ankang; Dai, Guangchao; Wang, Sheng; Wang, Jianying; Li, Jinhua; Wang, Xianbao

    2017-01-01

    Graphical abstract: Nanocomposites of graphene oxide (GO) and gold (Au) were explored to generate solar vapor under nature sunlight, and the water vaporization efficiency of GO-Au nanofluids at a temperature far below the boiling point could be up to 59.2%. - Highlights: • Graphene oxide/gold nanofluids were used to generate solar vapor under nature sunlight. • Water vaporization efficiency of GO-Au nanofluids could be up to 59.2%. • GO can be reduced to graphene by sunlight irradiation without reductants. - Abstract: Solar vapor generation enabled by nanoparticles is a green, efficient and direct approach to utilize solar energy. In this work, nanocomposites of graphene oxide (GO) and gold (Au) nanoparticles were prepared to generate solar steam under sunlight irradiation. The changes on steam pressure, mass loss and temperature of water were used to study the solar photothermal properties of GO-Au nanocomposites in water, which demonstrated that the synergistic interaction between GO nanosheets and Au nanoparticles played an active role in the photothermal effect of the nanocomposites. Trace of Au nanoparticles (15.6 wt‰) in the GO nanofluids could significantly improve the efficiency of solar vapor generation. More interestingly, the morphology and color of GO-Au nanofluids varied with irradiation times under sunlight, and our results suggested that GO sheets were reduced to graphene sheets. This process of photothermal deoxygenation of GO provides an available solution for preparing graphene sheets under ambient conditions without any reductions, and the solar steam generation method can enable potential applications like sterilization of waste, seawater desalination, and disinfection.

  9. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei

    2016-01-01

    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  10. View Factor of Solar Chimneys by Monte Carlo Method

    DEFF Research Database (Denmark)

    Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    in the chimney base to generate electricity or ventilation of buildings. A part of the solar radiation is absorbed by solar collector directly, which is greater than which reflected by collector to the tower. But this amount of reflection can enhance the efficiency of the system. Determining more precise view......A typical solar chimney power plant (SCPP) system mainly contains three components, namely, solar collector, tower and turbine. The collector heats up ambient air entering to the system by buoyancy force. Updraft airflow is then generated in the chimney and drives the pressure-staged turbine...

  11. Designs and Architectures for the Next Generation of Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Kang-Shyang Liao

    2010-06-01

    Full Text Available Organic solar cells show great promise as an economically and environmentally friendly technology to utilize solar energy because of their simple fabrication processes and minimal material usage. However, new innovations and breakthroughs are needed for organic solar cell technology to become competitive in the future. This article reviews research efforts and accomplishments focusing on three issues: power conversion efficiency, device stability and processability for mass production, followed by an outlook for optimizing OSC performance through device engineering and new architecture designs to realize next generation organic solar cells.

  12. Prospects for solar thermal electricity generation - an introduction

    International Nuclear Information System (INIS)

    DeLaquil, P.

    1991-01-01

    The future potential for solar thermal electric power plants is quite significant. The size of the renewable energy resource base for the United States of America alone is almost 500 times its current primary energy consumption. Unfortunately, the levels of current utilization are quite small. Why have these technologies not made a larger contribution to today's market? The answer is that significant barriers still exist. (orig.)

  13. Fiscal 1974 Sunshine Project result report. R and D on solar heat power generation system (R and D on tower solar collection system); 1974 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. Tower shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-29

    This report summarizes the fiscal 1974 research result on the solar heat power generation system with a tower light collection system. This system receives solar radiation energy by reflector group, and concentrates solar energy reflected by each reflector on the heat absorber mounted on the top of the tower. A ratio of the whole reflector group area to the receiving area of the heat absorber is called a concentration factor. The heat absorber converts concentrated dense radiation energy to thermal energy, and transfers heated thermal medium to the bottom of the tower to supply solar heat to a thermal plant after appropriate treatment. Based on the above basic idea, study was made on the total system and each subsystem, and some problems on component equipment and materials were extracted. After solving these problems and improving the whole system accuracy, these results are put to practical use for design and operation of an actual pilot plant. The main research items are as follows: feasibility study, simulation, element study, preparation of a 10kWT test equipment, and planning of a 1,000kW class pilot plant. (NEDO)

  14. Solar retrofitting of a historical brewery plant in Bad Toelz/Upper Bavaria; Solare Erneuerung einer historischen Brauereianlage in Bad Toelz/Obb.

    Energy Technology Data Exchange (ETDEWEB)

    Lichtblau, Wendelin; Lichtblau, Florian [Lichtblau Architekten, Muenchen (Germany); Bruenner, Michael [Ingenieurbuero EST, Miesbach (Germany)

    2010-07-01

    The contribution under consideration reports on a solar renovation of a historic brewery plant in Bad Toelz (Federal Republic of Germany). All energy requirements of this brewery plant were minimized and supplied with renewable energy sources. A visible sign of this is the fully glazed roof with an integrated solar technology for light, air, heat and electricity. The energy concept includes a fully renewable energy supply to the historic building complex under the limiting conditions of the stock.

  15. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  16. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    2016-04-01

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  17. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  18. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gueymard, Christian [Solar Consulting Services, Daytona Beach, FL (United States); Wilbert, Stefan [German Aerospace Center (DLR), Cologne (Germany); Renne, Dave [Dave Renne Renewables, LLC, Boulder, CO (United States)

    2017-12-01

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar power plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.

  19. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  20. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  1. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Bhatia, Hitasha Kaur; Bhatia, Charanjit Singh; Ng, K. C.

    2012-01-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  2. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications.

    Science.gov (United States)

    Morciano, Matteo; Fasano, Matteo; Salomov, Uktam; Ventola, Luigi; Chiavazzo, Eliodoro; Asinari, Pietro

    2017-09-20

    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ≥85%) and relatively low optical concentration (≈10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials.

  3. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  4. Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant

    International Nuclear Information System (INIS)

    Malato, Sixto; Blanco, Julian; Maldonado, Manuel I.; Oller, Isabel; Gernjak, Wolfgang; Perez-Estrada, Leonidas

    2007-01-01

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500 mg L -1 ) containing a non-biodegradable organic substance (α-methylphenylglycine at 500 mg L -1 ), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe 2+ = 20 mg L -1 . Based on pilot plant results, an industrial plant with 100 m 2 of CPC collectors for a 250 L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500 L h -1 at an average solar ultraviolet radiation of 22.9 W m -2 , under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant

  5. Feasibility Study for Paragon - Bisti Solar Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Benally, Thomas [Navajo Hopi Land Commission Office (NHLCO), Window Rock, AZ (United States)

    2015-06-01

    The Navajo Hopi Land Commission Office (NHLCO) and Navajo Nation (NN) plan to develop renewable energy (RE) projects on the Paragon-Bisti Ranch (PBR) lands, set aside under the Navajo Hopi Land Settlement Act (NHLSA) for the benefit of Relocatees. This feasibility study (FS), which was funded under a grant from DOE’s Tribal Energy Program (TEP), was prepared in order to explore the development of the 22,000-acre PBR in northwestern New Mexico for solar energy facilities. Topics covered include: • Site Selection • Analysis of RE, and a Preliminary Design • Transmission, Interconnection Concerns and Export Markets • Financial and Economic Analysis • Environmental Study • Socioeconomic and Cultural Factors • Next Steps.

  6. Fundamental aspects affecting the return on investment from solar power plants

    International Nuclear Information System (INIS)

    Cintula, B.; Viglas, D.

    2012-01-01

    The article deals with fundamental parameters of solar cells-conversion efficiency of solar radiation into electricity and price of solar cells. These two aspects affect each other, so it is important to deal with both at once. In introduction are described the theoretical solutions about efficiency analysis. Furthermore the article is focused on a description of materials used in the photovoltaic cells. In addition, the article shows the price trend of photovoltaic cells for the last year. Finally, these two aspects are evaluated for return on investment in photovoltaic power plants. (Authors)

  7. Europe's largest solar thermal power plant. [200 kw thermal output supplemented by two 10-kw windmills

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, U

    1976-03-01

    An overview is given over the solar heating plant which has recently been commissioned in the Camargue (France). This is the largest plant in Europe, with a mean heat output of about 200 kW, for the production of thermal energy from solar energy. The plant consists of 108 parabolic collectors (200 sq. metres) and 48 flat collectors (110 sq. metres). Two windmills with outputs of 10 kW each complete the system. The heat energy produced by the solar collectors is given up to 3 different stores, which in turn are connected to various consumers.

  8. Technical data for concentrated solar power plants in operation, under construction and in project

    Directory of Open Access Journals (Sweden)

    Ugo Pelay

    2017-08-01

    Full Text Available This article presents technical data for concentrated solar power (CSP plants in operation, under construction and in project all over the world in the form of tables. These tables provide information about plants (e.g., name of the CSP plant, country of construction, owner of the plant, aim of the plant and their technical characteristics (e.g., CSP technology, solar power, area of the plant, presence and type of hybridization system, electricity cost, presence and type of TES, power cycle fluid, heat transfer fluid, operating temperature, operating pressure, type of turbine, type and duration of storage, etc.. Further interpretation of the data and discussions on the current state-of-the-art and future trends of CSP can be found in the associated research article (Pelay et al., 2017 [1].

  9. Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh

    Directory of Open Access Journals (Sweden)

    Najmul Hoque

    2016-02-01

    Full Text Available In the summer season, irrigation sector in Bangladesh suffers a lot due to the country wide electricity crisis. Solar pump offers a clean and simple alternative to the conventional fuel fired engine or grid electricity driven pump in this regard to resolve the issue. In this paper, the techno-economic analyses of solar irrigation plants installed in Bangladesh are evaluated.  It was observed that systems were running around 70% to 80% of the rated power which was quite acceptable. A 10 hp pump was able to pump 600 liter of water per minute which was also satisfactory to irrigate the land. Average operating time was found to be 8 hour/day. It was found that the overall efficiency of the systems were in between 11.39% to 16.52% whereas the typical average value of lit/Wp/year was 9200. On the other hand, the cost of irrigation to cultivate paddy in 0.161 hectares’ land for one season was 1,750 BDT by solar irrigation which was found to be lower than that of other available modes. This charge for grid electricity based irrigation was about 3,000 to 3500 BDT per 0.161 hectares’ and 2,300 to 2,600 BDT per 0.161 hectares’ for diesel engine based irrigation. According to the current financial scheme (15% equity investment, 35% credit support and remaining 50% from government through IDCOL the average value of payback period was 5.43 years, NPV in the range from 7 to 15% and IRR was 18%. By considering 100% equity investment, however, these projects were not economically attractive. The payback period for this case was about 18 years. Study also revealed that each solar irrigation plant reduces 42.8 kg of CO2 emission per day compare to diesel engine operated pump and 2566.24 kg/day compared to grid electricity operated pump. A comprehensive effort from the Government as well as from all the stakeholders is required for further expansion of solar irrigation plants in Bangladesh. Article History: Received Sept 05, 2015; Received in revised form

  10. Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms

    International Nuclear Information System (INIS)

    Silva, R.; Berenguel, M.; Pérez, M.; Fernández-Garcia, A.

    2014-01-01

    Highlights: • A thermo-economic optimization of a parabolic-trough solar plant for industrial process heat applications is developed. • An analysis of the influence of economic cost functions on optimal design point location is presented. • A multi-objective optimization approach to the design routine is proposed. • A sensitivity analysis of the optimal point location to economic, operational, and ambient conditions is developed. • Design optimization of a parabolic trough plant for a reference industrial application is developed. - Abstract: A thermo-economic design optimization of a parabolic trough solar plant for industrial processes with memetic algorithms is developed. The design domain variables considered in the optimization routine are the number of collectors in series, number of collector rows, row spacing, and storage volume. Life cycle savings, levelized cost of energy, and payback time objective functions are compared to study the influence on optimal design point location. Furthermore a multi-objective optimization approach is proposed to analyze the design problem from a multi-economic criteria point of view. An extensive set of optimization cases are performed to estimate the influence of fuel price trend, plant location, demand profile, operation conditions, solar field orientation, and radiation uncertainty on optimal design. The results allow quantifying as thermo-economic design optimization based on short term criteria as the payback time leads to smaller plants with higher solar field efficiencies and smaller solar fractions, while the consideration of optimization criteria based on long term performance of the plants, as life cycle savings based optimization, leads to the reverse conclusion. The role of plant location and future evolution of gas prices in the thermo-economic performance of the solar plant has been also analyzed. Thermo-economic optimization of a parabolic trough solar plant design for the reference industrial

  11. LAPAROSCOPIC TEP VERSUS OPEN HERNIOPLASTY: A COMPARATIVE STUDY OF EXTRAPERITONEAL TENSION FREE MESH REPAIRS IN INGUINAL HERNIA

    OpenAIRE

    Rehan Sabir; Sadiq; Shadan

    2015-01-01

    Inguinal hernia repair is now one of the most commonly performed general surgical procedures in practice. 'Tension - free repair' is the procedure of choice . [ 1 ] due to its low recurrence rate, these tension - free repair procedures can be roughly categorized into two groups: laparoscopic and open anterior approach. TEP is accepted as the most ideal method because it can avoid entry into the peritoneal cavity, which can cause intraperitoneal compli...

  12. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    International Nuclear Information System (INIS)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds

  13. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  14. Novel nanostructures for next generation dye-sensitized solar cells

    KAUST Repository

    Té treault, Nicolas; Grä tzel, Michael

    2012-01-01

    Herein, we review our latest advancements in nanostructured photoanodes for next generation photovoltaics in general and dye-sensitized solar cells in particular. Bottom-up self-assembly techniques are developed to fabricate large-area 3D

  15. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  16. Thermo-electro-chemical storage (TECS) of solar energy

    International Nuclear Information System (INIS)

    Wenger, Erez; Epstein, Michael; Kribus, Abraham

    2017-01-01

    Highlights: • A solar plant with thermally regenerative battery unifies energy conversion and storage. • Storage is a flow battery with thermo-chemical charging and electro-chemical discharging. • Sodium-sulfur and zinc-air systems are investigated as candidate storage materials. • Theoretical solar to electricity efficiencies of over 60% are predicted. • Charging temperature can be lowered with hybrid carbothermic reduction. - Abstract: A new approach for solar electricity generation and storage is proposed, based on the concept of thermally regenerative batteries. Concentrated sunlight is used for external thermo-chemical charging of a flow battery, and electricity is produced by conventional electro-chemical discharge of the battery. The battery replaces the steam turbine, currently used in commercial concentrated solar power (CSP) plants, potentially leading to much higher conversion efficiency. This approach offers potential performance, cost and operational advantages compared to existing solar technologies, and to existing storage solutions for management of an electrical grid with a significant contribution of intermittent solar electricity generation. Here we analyze the theoretical conversion efficiency for new thermo-electro-chemical storage (TECS) plant schemes based on the electro-chemical systems of sodium-sulfur (Na-S) and zinc-air. The thermodynamic upper limit of solar to electricity conversion efficiency for an ideal TECS cycle is about 60% for Na-S at reactor temperature of 1550 K, and 65% for the zinc-air system at 1750 K, both under sunlight concentration of 3000. A hybrid process with carbothermic reduction in the zinc-air system reaches 60% theoretical efficiency at the more practical conditions of reaction temperature <1200 K and concentration <1000. Practical TECS plant efficiency, estimated from these upper limits, may then be much higher compared to existing solar electricity technologies. The technical and economical

  17. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant

    International Nuclear Information System (INIS)

    Fang, Wei; Huang, Qiang; Huang, Shengzhi; Yang, Jie; Meng, Erhao; Li, Yunyun

    2017-01-01

    Highlights: • Feasibility of complementary hydro-photovoltaic operation across the world is revealed. • Three scenarios of the novel operation mode are proposed to satisfy different load demand. • A method for optimally sizing a utility-scale photovoltaic plant is developed by maximizing the net revenue during lifetime. • The influence of complementary hydro-photovoltaic operation upon water resources allocation is investigated. - Abstract: The high variability of solar energy makes utility-scale photovoltaic power generation confront huge challenges to penetrate into power system. In this paper, the complementary hydro-photovoltaic operation is explored, aiming at improving the power quality of photovoltaic and promoting the integration of photovoltaic into the system. First, solar-rich and hydro-rich regions across the world are revealed, which are suitable for implementing the complementary hydro-photovoltaic operation. Then, three practical scenarios of the novel operation mode are proposed for better satisfying different types of load demand. Moreover, a method for optimal sizing of a photovoltaic plant integrated into a hydropower plant is developed by maximizing the net revenue during lifetime. Longyangxia complementary hydro-photovoltaic project, the current world’s largest hydro-photovoltaic power plant, is selected as a case study and its optimal photovoltaic capacities of different scenarios are calculated. Results indicate that hydropower installed capacity and annual solar curtailment rate play crucial roles in the size optimization of a photovoltaic plant and complementary hydro-photovoltaic operation exerts little adverse effect upon the water resources allocation of Longyangxia reservoir. The novel operation mode not only improves the penetration of utility-scale photovoltaic power generation but also can provide a valuable reference for the large-scale utilization of other kinds of renewable energy worldwide.

  18. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

    International Nuclear Information System (INIS)

    Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A.

    2013-01-01

    The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power. - Highlights: ► Nuclear, “renewable” and fossil energy are comparable on a uniform physical basis. ► Energy storage is considered for the calculation, reducing the ERoEI remarkably. ► All power systems generate more energy than they consume. ► Photovoltaics, biomass and wind (buffered) are below the economical threshold

  19. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  20. SOLAR WIND STRAHL BROADENING BY SELF-GENERATED PLASMA WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, J.; Gaelzer, R. [UFPEL, Pelotas (Brazil); Vinas, A. F. [NASA GSFC, Greenbelt, MD 20771 (United States); Yoon, P. H. [IPST, UMD, College Park, MD (United States); Ziebell, L. F., E-mail: joel.pavan@ufpel.edu.br, E-mail: rudi@ufpel.edu.br, E-mail: adolfo.vinas@nasa.gov, E-mail: yoonp@umd.edu, E-mail: luiz.ziebell@ufrgs.br [UFRGS, Porto Alegre (Brazil)

    2013-06-01

    This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

  1. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant

    International Nuclear Information System (INIS)

    Reyes-Belmonte, M.A.; Sebastián, A.; Romero, M.; González-Aguilar, J.

    2016-01-01

    Peculiar thermodynamic properties of carbon dioxide (CO 2 ) when it is held at or above its critical condition (stated as supercritical CO 2 or sCO 2 ) have attracted the attention of many researchers. Its excellent thermophysical properties at medium-to-moderate temperature range have made it to be considered as the alternative working fluid for next power plant generation. Among those applications, future nuclear reactors, solar concentrated thermal energy or waste energy recovery have been shown as the most promising ones. In this paper, a recompression sCO 2 cycle for a solar central particles receiver application has been optimized, observing net cycle efficiency close to 50%. However, small changes on cycle parameters such as working temperatures, recuperators efficiencies or mass flow distribution between low and high temperature recuperators were found to drastically modify system overall efficiency. In order to mitigate these uncertainties, an optimization analysis based on recuperators effectiveness definition was performed observing that cycle efficiency could lie among 40%–50% for medium-to-moderate temperature range of the studied application (630 °C–680 °C). Due to the lack of maturity of current sCO 2 technologies and no power production scale demonstrators, cycle boundary conditions based on the solar application and a detailed literature review were chosen. - Highlights: • Mathematical modelling description for recompression sCO 2 cycle. • Split fraction and recuperators effectiveness effect into sCO 2 cycle performance. • Optimization methodology of sCO 2 cycle for an innovative solar central receiver. • Power generation using particles central receiver.

  2. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  3. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  4. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weng, Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  5. Control oriented concentrating solar power (CSP) plant model and its applications

    Science.gov (United States)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  6. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  7. Best practices for mitigating soiling risk on PV power plants

    KAUST Repository

    AlDowsari, A.

    2015-09-24

    Solar power generates proven, predictable and economical energy and new innovations have made solar PV power plants easy to deploy, integrate and maintain. Areas with large solar energy potential are among the dustiest in the world. At first glance, solar would be a natural fit in many of these environments but humidity, airborne dust, and wind of these regions often bring high soiling rates that can accumulate to reduce performance by up to 10% per month on average, where soiling can be a major loss factor that affects the energy yield for PV plants especially in humid and dusty climates. Therefore, to achieve the desired performance ratio and obtain stable generation, mitigation solutions are proposed to overcome dust issues that affect the performance of PV plants. This makes PV module cleaning a key component for long-term plant performance and sustainable profitability. In this paper, a review of the mechanisms and mitigation solutions to overcome soiling on solar installations using real-world testing and verification is investigated with emphasis on dry type cleaning methods. © 2014 IEEE.

  8. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  9. Major plant retrofits at Monticello nuclear generating plant

    International Nuclear Information System (INIS)

    Larsen, D.E.; Hogg, C.B.

    1986-01-01

    For the past several years, Northern States Power (NSP) has been making major plant retrofits to Monticello Nuclear generating Station in order to improve plant availability and upgrade the plant components for the potential extension of the operating license (life extension). This paper discusses in detail three major retrofits that have been completed or in the process of completion; recirculation loop piping replacement, reactor pressure vessel (RPV) water level-instrumentation modification, core spray piping replacement, the authors will address the scope of work, design and installation concerns, and life extension considerations during the design and procurement process for these three projects

  10. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  11. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  12. A50-kW(el) solar energy thermionic power generator for spacecraft

    International Nuclear Information System (INIS)

    Sahin, S.

    1978-01-01

    The technical limits of thermionic reactors in space craft and the potentials of solar energy thermionic converters are discussed. The technical design of a solar energy thermionic generator for 50 kW(el) as a secondary energy source in unmanned space craft is presented. (GG) [de

  13. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  14. Optimization of a combined solar chimney for desalination and power generation

    International Nuclear Information System (INIS)

    Asayesh, Mohammad; Kasaeian, Alibakhsh; Ataei, Abtin

    2017-01-01

    Highlights: • One dimensional code is developed for simulation of a hybrid solar chimney. • The code is validated using experimental data of a simple solar chimney. • Partial coverage of the collector area by the desalination system is more beneficial. • The optimal configuration of the combined system is found using PSO algorithm. - Abstract: Large footprint and very low efficiency are main disadvantages of solar chimneys. To resolve this, solar desalination system has been added under the collector of a solar chimney power plant. Generally the collector ground is completely covered by the desalination pond but here it is shown that more benefit can be achieved by partial occupation of the collector area. This is performed by implementing the particle swarm optimization (PSO) algorithm in conjunction with a one dimensional simulation code. The code is first validated using data of a laboratory scale solar chimney. Then, optimization results show that for a collector diameter of 250 m and tower height of 200 m, a solar pond located between radii 85 and 125 m of the collector can maximize the outcome of the combined system. Generally, dimensions of the desalination system depend on local cost of building the system and price of electricity and fresh water produced.

  15. Automatic data acquisition system for a photovoltaic solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Barrio, C.L.; Guerra, A.G.

    1986-01-01

    An autonomous monitoring system for photovoltaic solar plants is described. The system is able to collect data about the plant's physical and electrical characteristics and also about the environmental conditions. It may present the results on a display, if requested, but its main function is measuring periodically a set of parameters, including several points in the panel I-V characteristics, in an unattended mode. The data are stored on a magnetic tape for later processing on a computer. The system hardware and software are described, as well as their main functions.

  16. The use of a sky camera for solar radiation estimation based on digital image processing

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.

    2015-01-01

    The necessary search for a more sustainable global future means using renewable energy sources to generate pollutant-free electricity. CSP (Concentrated solar power) and PV (photovoltaic) plants are the systems most in demand for electricity production using solar radiation as the energy source. The main factors affecting final electricity generation in these plants are, among others, atmospheric conditions; therefore, knowing whether there will be any change in the solar radiation hitting the plant's solar field is of fundamental importance to CSP and PV plant operators in adapting the plant's operation mode to these fluctuations. Consequently, the most useful technology must involve the study of atmospheric conditions. This is the case for sky cameras, an emerging technology that allows one to gather sky information with optimal spatial and temporal resolution. Hence, in this work, a solar radiation estimation using sky camera images is presented for all sky conditions, where beam, diffuse and global solar radiation components are estimated in real-time as a novel way to evaluate the solar resource from a terrestrial viewpoint. - Highlights: • Using a sky camera, the solar resource has been estimated for one minute periods. • The sky images have been processed to estimate the solar radiation at pixel level. • The three radiation components have been estimated under all sky conditions. • Results have been presented for cloudless, partially-cloudy and overcast conditions. • For beam and global radiation, the nRMSE value is of about 11% under overcast skies.

  17. Contribution to the modeling and simulation of solar power tower plants using energy analysis

    International Nuclear Information System (INIS)

    Benammar, S.; Khellaf, A.; Mohammedi, K.

    2014-01-01

    Highlights: • The solar tower power plant system (STPP) is divided into four main subsystems. • The energy balance of each subsystem has been developed. • A general nonlinear mathematical model of the studied system (STPP) has been presented. • Using numerical optimization methods, the nonlinear mathematical model has been solved. • The obtained results are presented and analyzed. - Abstract: In this paper, a mathematical model based on energy analysis, has been developed for modeling and simulation of solar tower power plants (STPP) performances without energy storage. The STPP system has been divided into four main subsystems: the heliostat field subsystem, the cavity receiver subsystem (tower), the steam generation subsystem and the power cycle subsystem (Rankine cycle). Thermal and thermodynamic models of main subsystems have been developed. A general nonlinear mathematical model of the studied system (STPP) has been presented and solved using numerical optimization methods. The obtained results are presented and analyzed. The effects of the receiver surface temperature and the receiver surface area on the cavity receiver efficiency and the steam mass flow have been investigated. The effects of other parameters, such as the incident heat flux, the absorbed energy and the heat losses from the receiver are also studied. The analysis of these results shows the existence of an optimal receiver efficiency value for each steam mass flow, receiver surface temperature and receiver surface area

  18. Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    diversely versus changing the solar radiation and module temperature. Moreover, the thermal response of the TEG stabilizes temperature fluctuation of the hybrid module when the solar radiation rapidly changes. In this work, impact of the thermal contact resistance on the temperature profile and system...... and solved by finite volume algorithm. In spite of temperatures profile in the hybrid CPV-TEG module, as results of variation of solar irradiation, power generation and efficiency of the CPV and TEG under the transient condition are presented. The results show that efficiency of the TEG and CPV varies...

  19. Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria

    International Nuclear Information System (INIS)

    Boudaoud, S.; Khellaf, A.; Mohammedi, K.; Behar, O.

    2015-01-01

    Highlights: • Performance of power plant with molten salt cavity receiver is assessed. • A method has been used to optimize the plant solar multiple, capacity factor and LEC. • Comparison of the simulated results to those of PS20 has shown good agreement. • Higher fossil fuel fraction reduces the LEC and increases the capacity factor. • Highland and Sahara regions are suitable for CRS plants deployment. - Abstract: Of all Concentrating Solar Power (CSP) technologies available today, the molten salt solar power plant appears to be the most important option for providing a major share of the clean and renewable electricity needed in the future. In the present paper, a technical and economic analysis for the implementation of a probable molten salt cavity receiver thermal power plant in Algeria has been carried out. In order to do so, we have investigated the effect of solar field size, storage capacity factor, solar radiation intensity, hybridization and power plant capacity on the thermal efficiency and electricity cost of the selected plant. The system advisor model has been used to perform the technical performance and the economic assessment for different locations (coastal, highland and Sahara regions) in Algeria. Taking into account various factors, a method has been applied to optimize the solar multiple and the capacity factor of the plant, to get a trade-off between the incremental investment costs of the heliostat field and the thermal energy storage. The analysis has shown that the use of higher fossil fuel fraction significantly reduces the levelized electricity cost (LEC) and sensibly increases the capacity factor (CF). The present study indicates that hybrid molten salt solar tower power technology is very promising. The CF and the LEC have been found to be respectively of the order of 71% and 0.35 $/kW e . For solar-only power plants, these parameters are respectively about 27% and 0.63 $/kW e . Therefore, hybrid central receiver systems are

  20. Solar PV-based rooftop power plant

    International Nuclear Information System (INIS)

    Ashok Kumar, B.; Kumar, Chaitanya; Patel, C.B.; Pattanaik, B.R.; Panda, P.K.; Kaul, S.K.; Mishra, H.

    2017-01-01

    Technical Services Division (TSD) is responsible for providing reliable power supply to various operating reactors, laboratories and facilities of BARC. The power supply to BARC is derived from TATA Power at 110 KV and 22 KV at an average HT tariff of Rs.8.49 per unit at present. Peak power demand of BARC in summer season goes up to 23 MW. TSD has implemented several energy conservation measures to reduce the energy consumption and as well taken initiatives to install solar PV based rooftop power plants to reduce the cost of energy consumption in BARC

  1. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  2. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Weng, Dean [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  3. Method of evaluation of solar collector cost under fuel price change

    International Nuclear Information System (INIS)

    Klychev, Sh. I.; Sadykova, N. S.; Saifiev, A. U.; Ismanzhanov, A. I.; Samiev, M.

    2013-01-01

    When we take into account the problems of large-scale use of solar energy, the matters of economic perspectives of solar plants in the future become vital. We present the method on whose basis evaluation of the cost of solar collectors is performed taking into account the change in the fuel prices. The method is based on the approach to evaluation of the cost of energy generated by the solar plants offered previously by the authors. Assuming that the components of expenditures for production are not changed, we obtained that the cost of solar collectors will grow, at approximately the same ratio as the growth of the prices for fuel (energy). Thus, the problem of creation of the economically effective solar collectors should be solved already today, at the existing prices for materials and fuel. At present, it is assumed that competitiveness of the solar plants will increase with the growth of the fuel prices. (authors)

  4. A standard description and costing methodology for the balance-of-plant items of a solar thermal electric power plant. Report of a multi-institutional working group

    Science.gov (United States)

    1983-01-01

    Standard descriptions for solar thermal power plants are established and uniform costing methodologies for nondevelopmental balance of plant (BOP) items are developed. The descriptions and methodologies developed are applicable to the major systems. These systems include the central receiver, parabolic dish, parabolic trough, hemispherical bowl, and solar pond. The standard plant is defined in terms of four categories comprising (1) solar energy collection, (2) power conversion, (3) energy storage, and (4) balance of plant. Each of these categories is described in terms of the type and function of components and/or subsystems within the category. A detailed description is given for the BOP category. BOP contains a number of nondevelopmental items that are common to all solar thermal systems. A standard methodology for determining the costs of these nondevelopmental BOP items is given. The methodology is presented in the form of cost equations involving cost factors such as unit costs. A set of baseline values for the normalized cost factors is also given.

  5. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  6. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  7. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  8. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  9. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  10. Explore the performance limit of a solar PV – thermochemical power generation system

    International Nuclear Information System (INIS)

    Li, Wenjia; Hao, Yong

    2017-01-01

    Highlights: •Theoretical net solar-to-electric efficiency of 51.5% is attainable. •Design of efficient PVT systems is governed by at least 5 key considerations. •Concentration ratio has the most pronounced influence on PVT system efficiency. •Efficient PV, low emissivity and high concentration deliver the best performance. -- Abstract: Performance limit of a solar hybrid power generation system integrating efficient photovoltaic (PV) cells and methanol thermal (T) decomposition is explored from a thermodynamic perspective within the capability of state-of-the-art technologies. This type of PVT system features potentially high “net solar-to-electric efficiency” in general, primarily resulting from a key difference in the design of the thermal part compared with conventional PVT systems, i.e. replacing heat engines by a thermochemical power generation module for thermal energy utilization. Key design parameters of the system, including PV cell type, emissivity, solar concentration ratio and solar concentrator type, are individually studied. A system combining all such optimized aspects is projected to achieve net solar-to-electric efficiencies up to 51.5%, after taking all major (e.g. optical, radiative) losses into consideration. This study reveals important insights and enriches understanding on design principles of efficient PVT systems aimed at comprehensive and effective utilization of solar energy.

  11. Start-up performance of parabolic trough concentrating solar power plants

    DEFF Research Database (Denmark)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim

    2017-01-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential...

  12. Modern prospects of development of branch of solar power

    Science.gov (United States)

    Luchkina, Veronika

    2017-10-01

    Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.

  13. Solar on the brink : more and more engineers are being asked to integrate solar technologies into building designs

    International Nuclear Information System (INIS)

    Sinclair, I.

    2010-01-01

    Methods of integrating solar technologies into building designs were discussed in this article. Ontario's feed-in-tariff (FIT) program will make Ontario a centre for solar technology and is expected to generate new jobs in the alternative energy industry. While photovoltaic (PV) systems eliminate the need for building new electricity and distribution networks, PV systems are the least efficient solar technology in relation to economics, carbon dioxide (CO 2 ) offsets, and energy generation. Many buildings in Canada have significant ventilation air heating loads that are not best served by heat recovery technologies. The economic performance of solar thermal systems can only be understood in relation to the operational efficiency of a building's heating plant. Solar PV systems can provide returns on investment when considered alongside Ontario's FIT program tariffs. Without the tariffs, many payback periods are in excess of PV system product lifetimes. Maintenance contracts and budgets must be carefully considered when commissioning solar energy projects. 3 figs.

  14. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  15. A solar power plant for Curtin University Malaysia

    International Nuclear Information System (INIS)

    Palanichamy, C

    2016-01-01

    The Curtin University, Sarawak Malaysia (Curtin Sarawak) is the first and largest offshore campus of Curtin University in Perth, Western Australia, and the first foreign university to be established in East Malaysia in partnership with the Sarawak State Government. Today's major concern of Curtin is its monthly electrical energy consumption and the electricity bill since its monthly energy consumption exceeds 0.3 Million kWh, and the corresponding electricity bill surpasses RM 95000. Such a situation necessitates Curtin to curtail the heavy energy consumption with immediate effect. Introducing Renewable Energy Source such as PV Solar Systems is a cost-effective and environmental friendly solution to reduce the exponential increase in energy consumption charges of Curtin. Hence, this paper proposes a 90 kW solar power plant for Curtin Sarawak. (paper)

  16. A solar power plant for Curtin University Malaysia

    Science.gov (United States)

    Palanichamy, C.

    2016-03-01

    The Curtin University, Sarawak Malaysia (Curtin Sarawak) is the first and largest offshore campus of Curtin University in Perth, Western Australia, and the first foreign university to be established in East Malaysia in partnership with the Sarawak State Government. Today's major concern of Curtin is its monthly electrical energy consumption and the electricity bill since its monthly energy consumption exceeds 0.3 Million kWh, and the corresponding electricity bill surpasses RM 95000. Such a situation necessitates Curtin to curtail the heavy energy consumption with immediate effect. Introducing Renewable Energy Source such as PV Solar Systems is a cost-effective and environmental friendly solution to reduce the exponential increase in energy consumption charges of Curtin. Hence, this paper proposes a 90 kW solar power plant for Curtin Sarawak.

  17. Very Short-term Nonparametric Probabilistic Forecasting of Renewable Energy Generation - with Application to Solar Energy

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Gooi, Hoay Beng

    2016-01-01

    Due to the inherent uncertainty involved in renewable energy forecasting, uncertainty quantification is a key input to maintain acceptable levels of reliability and profitability in power system operation. A proposal is formulated and evaluated here for the case of solar power generation, when only...... approach to generate very short-term predictive densities, i.e., for lead times between a few minutes to one hour ahead, with fast frequency updates. We rely on an Extreme Learning Machine (ELM) as a fast regression model, trained in varied ways to obtain both point and quantile forecasts of solar power...... generation. Four probabilistic methods are implemented as benchmarks. Rival approaches are evaluated based on a number of test cases for two solar power generation sites in different climatic regions, allowing us to show that our approach results in generation of skilful and reliable probabilistic forecasts...

  18. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels

    Energy Technology Data Exchange (ETDEWEB)

    Urena-Sanchez, Raul; Callejon-Ferre, Angel Jesus; Perez-Alonso, Jose; Carreno-Ortega, Angel [University of Almeria, Depto. de Ingenieia Rural, Almeria (Spain)], E-mail: acallejo@ual.es

    2012-07-15

    The integration of renewable energy sources into greenhouse crop production in southeastern Spain could provide extra income for growers. Wind energy could be captured by small to medium-sized wind turbines, gas could be produced from biomass, and solar energy could be gathered by solar panels. The aim of this study was to examine the effect of flexible solar panels, mounted on top of a greenhouse for electricity production, on yield and fruit quality of tomatoes (Solanum lycopersicum L., cv Daniela). This study was undertaken in a commercial raspa y amagado greenhouse, typical of the Almeria region (Spain). Tomato plantlets were planted at a density of 0.75 plants m{sup -2}. The flexible solar panels were mounted on two parts of the roof in different arrangements (T1 and T2), each blacking out 9.8 % of its surface area. A control area (T0 arrangement) was fitted with no panels. No difference was found in terms of total or marketable production under these three arrangements, although fruit mean mass and maximum diameter of T0 were significantly greater than T1 and T2. Fruit in T0 matured earlier with more intense color compared with those in T1 and T2. However, these differences had no effect on price as the tomatoes produced under three conditions fell into the same commercial class (G class; diameter 67-81 mm). Solar panels covering 9.8 % roof area of the greenhouse did not affect yield and price of tomatoes despite of their negative effect on fruit size and color. (author)

  19. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    Science.gov (United States)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  20. Trend of development of dispersion energy machine. Solar power generation system; Taiyoko hatsuden shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    2000-04-01

    Technology development of a solar power generation system is advanced in Japan taking the New Sunshine Subject (NSS) of the Agency of Industrial Science and Technology as the center. According to the initial stage plan (in fiscal 1993 to 2000) of the NSS, a general goal is to establish the technique which supplies electric power at the power generating cost (the production base cost) being equal to the electricity fees (20 to 30 yen/kWh) for normal families in the latest year. At present, introduction of the solar power generation system results in the reduction of about 1 million yen per kW. It is expected that 5 hundred thousand yen per kW is reduced by the present technology with a combination of cost reduction of solar battery modules, cost reduction of relevant equipment such as inverters, and rationalization of installation fees. It is necessary to realize 3 hundred thousand yen per kW for realizing the price having competition in the power supply market. In this paper, popularization prediction and popularization promotion countermeasures of the solar power generation system are concretely explained. (NEDO)

  1. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County

    Energy Technology Data Exchange (ETDEWEB)

    Kuver, Walt

    2009-11-10

    The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

  2. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov (United States)

    Power | NREL 20 This page provides information on Planta Solar 20, a concentrating solar power Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower and increasing incident solar radiation capture will increase net electrical power output by 10

  3. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    Science.gov (United States)

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Application of an electrochemical chlorine-generation system combined with solar energy as appropriate technology for water disinfection.

    Science.gov (United States)

    Choi, Jusol; Park, Chan Gyu; Yoon, Jeyong

    2013-02-01

    Affordable water disinfection is key to reducing the waterborne disease experienced worldwide where resources are limited. A simple electrochemical system that can generate chlorine as a disinfectant from the electrolysis of sodium chloride is an appropriate technology to produce clean water, particularly if driven by solar energy. This study examined the affordability of an electrochemical chlorine generation system using solar energy and developed the necessary design information for its implementation. A two-electrode batch reactor, equipped with commercial IrO(2)-coated electrodes and a solar panel (approximate area 0.2 m(2)), was used to produce chlorine from a 35g/L solution of NaCl. Within 1 h, sufficient chlorine (0.8 g) was generated to produce clean drinking water for about 80 people for 1 day (target microorganism: Escherichia coli; daily drinking water requirement: 2 L per person; chlorine demand: 4 mg/L; solar power: 650 W/m(2) in Seoul, Korea. Small household batteries were demonstrated to be a suitable alternative power source when there is insufficient solar irradiation. Using a 1 m(2) solar panel, the reactor would take only 15 min in Seoul, Korea, or 7 min in the tropics (solar power 1300 W/m(2)), to generate 1 g of chlorine. The solar-powered electrochemical chlorine generation system for which design information is provided here is a simple and affordable way to produce chlorine with which to convert contaminated water into clean drinking water.

  5. Economic Optimization of a Concentrating Solar Power Plant with Molten-salt Thermocline Storage

    OpenAIRE

    Flueckiger, S. M.; Iverson, B. D.; Garimella, S V

    2014-01-01

    System-level simulation of a molten-salt thermocline tank is undertaken in response to year-long historical weather data and corresponding plant control. Such a simulation is enabled by combining a finite-volume model of the tank that includes a sufficiently faithful representation at low computation cost with a system-level power tower plant model. Annual plant performance of a 100 MWe molten-salt power tower plant is optimized as a function of the thermocline tank size and the plant solar m...

  6. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  7. Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    Prasad Radha K.

    2017-09-01

    Full Text Available This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.

  8. An approach for generating synthetic fine temporal resolution solar radiation time series from hourly gridded datasets

    Directory of Open Access Journals (Sweden)

    Matthew Perry

    2017-06-01

    Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.

  9. Present condition and the future of photovoltaic generating systems. Part 5. Future perspective of photovoltaic power systems; Taiyo hikarihatsuden system no genjo to shorai. 5. Taiyo hikarihatsuden system no shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Horigome, T

    1994-12-20

    In this paper, as the future perspective of photovoltaic power systems, the establishment of the legal environment for the popularization of the photovoltaic power systems in large amounts and the future prediction of the popularization of power generation are described. Specially the following grand ideas are introduced: building in high seas regeneratable energy transformation plants with solar energy as the main energy, generating combined power of photovoltaic, solar heat, wave and temperature difference of the sea water, biomass, solar-bio power generating without CO2 exhaustion, building hard solar plants to produce electricity, hydrogen, methanol and fresh water from regeneratable energy, and breeding fish, shells and see weed in the sea pasture land under the plants, which are the so called `Energy sea pasture high breed plants (REPO Plan)` and also space power generating i.e. setting up special satellites for solar power generation in synchronous orbits, generating power through solar batteries or solar heat and then transmitting it to the earth through microwave. 12 refs., 4 figs.

  10. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    Science.gov (United States)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  11. Concentrating Solar Power Projects - Khi Solar One | Concentrating Solar

    Science.gov (United States)

    Power | NREL Khi Solar One This page provides information on Khi Solar One, a concentrating solar power (CSP) project, with data organized by background, parcipants and power plant configuration . Status Date: February 8, 2016 Project Overview Project Name: Khi Solar One Country: South Africa Location

  12. Enerplan, Professional association of solar energy - activity report 2007. Network of solar energy professionals in France

    International Nuclear Information System (INIS)

    2008-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2007 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  13. Enerplan, Professional association of solar energy - activity report 2008. Acting for solar energy promotion and development

    International Nuclear Information System (INIS)

    2009-01-01

    Enerplan is the French union of solar energy professionals. Created in 1983, its social purpose is the study and defense of the rights and of the material and moral interests of its members. Enerplan structures its action through two poles representing members' activities: 'solar energy and building' where topics about heat and electricity generation in relation with buildings are treated, and 'photovoltaic energy' where topics specific to big solar power plants are considered. Thanks to the collaborative participation of its members, both poles allow Enerplan union to be source of proposals to develop solar energy in France. As an active interface between professionals and institutions, Enerplan includes in its membership: industrialists, plant makers, engineering consultants, installers, associations, energy suppliers etc, from small-medium size companies to big groups. This document presents Enerplan's activities in 2008 (public relations, lobbying, meetings and conferences, promotional activities, collaborations, projects..)

  14. Field test of thermoelectric generator using parabolic trough solar concentrator for power generation

    Science.gov (United States)

    Viña, Rommel R.; Alagao, Feliciano B.

    2018-03-01

    A 2.4587 square meter effective area cylindrical parabolic solar concentrator was fabricated. The trough concentrator is a 4-ft by 8-ft metal sheet with solar mirror film adhered on it and it is laid on a frame with steel tubes bent in a shape of a parabola. On the focal region of the parabolic trough is the 1.22-m by 0.10-m absorber plate made of copper and coated flat black. This plate served as high temperature reservoir of the eight equally spaced TEC1-12710T125 thermoelectric modules. On the cold side of the modules is a 2.5-in. by 1-in. rectangular aluminum tube with coolant flowing inside. The coolant loop included a direct contact cooling tower which maintained the module cold side assembly inlet temperature of about 28°C. Collector temperature was also kept below the 125°C module maximum operating temperature by controlling the effective area. This was accomplished by adjusting the reflector covering. Using a dummy load and with 8 modules in series, tests results indicated current readings up to 179.4 mA with a voltage of 10.6 VDC and 27% of reflector area or voltage reading up to 12.7 VDC with a current of 165 mA. A steady voltage of 12 VDC was achieved with the use of a voltage regulator. A voltage above 12 VDC will be required to charge a storage battery. Overall results showed the potential of thermoelectric generator (TEG) in combination with solar energy in power generation.

  15. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A desalination plant with solar and wind energy

    International Nuclear Information System (INIS)

    Chen, H; Ye, Z; Gao, W

    2013-01-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m 2 per hour. Comparing

  17. Advancing solar energy forecasting through the underlying physics

    Science.gov (United States)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  18. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox

    International Nuclear Information System (INIS)

    Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV0B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferrox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. 56 refs., 7 figs

  19. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  20. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    Science.gov (United States)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further