WorldWideScience

Sample records for generation packaging technology

  1. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  2. Japan's electronic packaging technologies

    Science.gov (United States)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  3. Japan's electronic packaging technologies

    Science.gov (United States)

    Tummala, Rao R.; Pecht, Michael

    1995-02-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  4. Anticounterfeit packaging technologies

    Directory of Open Access Journals (Sweden)

    Ruchir Y Shah

    2010-01-01

    Full Text Available Packaging is the coordinated system that encloses and protects the dosage form. Counterfeit drugs are the major cause of morbidity, mortality, and failure of public interest in the healthcare system. High price and well-known brands make the pharma market most vulnerable, which accounts for top priority cardiovascular, obesity, and antihyperlipidemic drugs and drugs like sildenafil. Packaging includes overt and covert technologies like barcodes, holograms, sealing tapes, and radio frequency identification devices to preserve the integrity of the pharmaceutical product. But till date all the available techniques are synthetic and although provide considerable protection against counterfeiting, have certain limitations which can be overcome by the application of natural approaches and utilization of the principles of nanotechnology.

  5. Electronic equipment packaging technology

    CERN Document Server

    Ginsberg, Gerald L

    1992-01-01

    The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron­ ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod­ ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter­ mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pr...

  6. High Frequency Electronic Packaging Technology

    Science.gov (United States)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  7. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  8. A new generation in the family of packages for transportation

    International Nuclear Information System (INIS)

    Mondanel, Jean-Luc

    2002-01-01

    A new generation of packages has been develop ped by COGEMA LOGISTICS, formerly TRANSNUCLEAIRE, to meet the various needs and requirements of the Research and Test Laboratories worldwide, and to offer long-term solutions, following the 1996 Regulations. These packages are adapted to various options, and are able to propose long term solutions for international transports of all kinds and sizes of materials from and to all kinds of sites. The TN MTR is a B (U) package which has been develop ped for the shipments of spent fuel of research and test laboratories. Up to 68 assemblies can be shipped in one time. This package offers many possible internal configurations, by means of various baskets adapted to the fuels characteristics and the contents. The TN 106 is a new B(U) package used for transport of irradiated fuel rods and pins. It is the only existing and licensed package which can be manufactured in several lengths : the package has been designed based upon a modular concept, adapted to the various sizes of spent fuel. The TN UO2 is a package which can be used to ship many different contents of non irradiated materials, including reprocessed uranium. The packages can be loaded in a transport container in order to facilitate the logistics aspects. The RD 26 is a type B(U) package for multipurpose shipments, such as alpha contaminated technological wastes in drums, UO2 powder, pellets, or part of fuel rods, liquid wastes. The package is now widely used, and can be adapted to various possible contents in various transport configuration. All this new generation of packages is intended to be adapted to the main needs of the Test and Research Reactors, by offering at maximum a standard system which can be modulated for any specific purpose. (author)

  9. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  10. Packaging and Embedded Electronics for the Next Generation

    Science.gov (United States)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.

  11. Technological Packages Extended To Farmers by Non ...

    African Journals Online (AJOL)

    The paper investigated technological packages extended to farmers by Non Governmental Organizations in the Niger Delta area of Nigeria. Data for the study was collected with the aid of structured questionnaire from 450 respondents in the study area. Findings revealed that yam minisett technology, hybrid cassava ...

  12. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  13. Data analysis for the LISA Technology Package

    International Nuclear Information System (INIS)

    Hewitson, M; Danzmann, K; Diepholz, I; GarcIa, A; Armano, M; Fauste, J; Benedetti, M; Bogenstahl, J; Bortoluzzi, D; Bosetti, P; Cristofolini, I; Brandt, N; Cavalleri, A; Ciani, G; Dolesi, R; Ferraioli, L; Cruise, M; Fertin, D; GarcIa, C; Fichter, W

    2009-01-01

    The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.

  14. 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology

    CERN Document Server

    Ouyang, Yun; Xu, Min; Yang, Li; Ouyang, Yujie

    2017-01-01

    This book includes a selection of reviewed papers presented at the 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology, held on November 25-27, 2016 in Xi’an, China. The conference was jointly organized by China Academy of Printing Technology, Xi’an University of Technology and Stuttgart Media University of Germany. The proceedings cover the recent outcomes on color science and technology, image processing technology, digital media technology, digital process management technology in packaging and packaging etc. They will be of interest to university researchers, R&D engineers and graduate students in graphic communications, packaging, color science, image science, material science, computer science, digital media and network technology fields.

  15. New Generator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-17

    New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. These remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company

  16. Power generation with laterally packaged piezoelectric fine wires.

    Science.gov (United States)

    Yang, Rusen; Qin, Yong; Dai, Liming; Wang, Zhong Lin

    2009-01-01

    Converting mechanical energy into electricity could have applications in sensing, medical science, defence technology and personal electronics, and the ability of nanowires to 'scavenge' energy from ambient and environmental sources could prove useful for powering nanodevices. Previously reported nanowire generators were based on vertically aligned piezoelectric nanowires that were attached to a substrate at one end and free to move at the other. However, there were problems with the output stability, mechanical robustness, lifetime and environmental adaptability of such devices. Here we report a flexible power generator that is based on cyclic stretching-releasing of a piezoelectric fine wire that is firmly attached to metal electrodes at both ends, is packaged on a flexible substrate, and does not involve sliding contacts. Repeatedly stretching and releasing a single wire with a strain of 0.05-0.1% creates an oscillating output voltage of up to approximately 50 mV, and the energy conversion efficiency of the wire can be as high as 6.8%.

  17. Recent trends and future of pharmaceutical packaging technology

    Directory of Open Access Journals (Sweden)

    Nityanand Zadbuke

    2013-01-01

    Full Text Available The pharmaceutical packaging market is constantly advancing and has experienced annual growth of at least five percent per annum in the past few years. The market is now reckoned to be worth over $20 billion a year. As with most other packaged goods, pharmaceuticals need reliable and speedy packaging solutions that deliver a combination of product protection, quality, tamper evidence, patient comfort and security needs. Constant innovations in the pharmaceuticals themselves such as, blow fill seal (BFS vials, anti-counterfeit measures, plasma impulse chemical vapor deposition (PICVD coating technology, snap off ampoules, unit dose vials, two-in-one prefilled vial design, prefilled syringes and child-resistant packs have a direct impact on the packaging. The review details several of the recent pharmaceutical packaging trends that are impacting packaging industry, and offers some predictions for the future.

  18. Recent trends and future of pharmaceutical packaging technology.

    Science.gov (United States)

    Zadbuke, Nityanand; Shahi, Sadhana; Gulecha, Bhushan; Padalkar, Abhay; Thube, Mahesh

    2013-04-01

    The pharmaceutical packaging market is constantly advancing and has experienced annual growth of at least five percent per annum in the past few years. The market is now reckoned to be worth over $20 billion a year. As with most other packaged goods, pharmaceuticals need reliable and speedy packaging solutions that deliver a combination of product protection, quality, tamper evidence, patient comfort and security needs. Constant innovations in the pharmaceuticals themselves such as, blow fill seal (BFS) vials, anti-counterfeit measures, plasma impulse chemical vapor deposition (PICVD) coating technology, snap off ampoules, unit dose vials, two-in-one prefilled vial design, prefilled syringes and child-resistant packs have a direct impact on the packaging. The review details several of the recent pharmaceutical packaging trends that are impacting packaging industry, and offers some predictions for the future.

  19. Recent trends and future of pharmaceutical packaging technology

    Science.gov (United States)

    Zadbuke, Nityanand; Shahi, Sadhana; Gulecha, Bhushan; Padalkar, Abhay; Thube, Mahesh

    2013-01-01

    The pharmaceutical packaging market is constantly advancing and has experienced annual growth of at least five percent per annum in the past few years. The market is now reckoned to be worth over $20 billion a year. As with most other packaged goods, pharmaceuticals need reliable and speedy packaging solutions that deliver a combination of product protection, quality, tamper evidence, patient comfort and security needs. Constant innovations in the pharmaceuticals themselves such as, blow fill seal (BFS) vials, anti-counterfeit measures, plasma impulse chemical vapor deposition (PICVD) coating technology, snap off ampoules, unit dose vials, two-in-one prefilled vial design, prefilled syringes and child-resistant packs have a direct impact on the packaging. The review details several of the recent pharmaceutical packaging trends that are impacting packaging industry, and offers some predictions for the future. PMID:23833515

  20. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  1. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  2. Packaging Technology for SiC High Temperature Electronics

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  3. Study on the consistency and repeatability of FBG packaging technology

    Science.gov (United States)

    Tan, Yuegang; Chen, Yiyang; Li, Ruiya; Yu, Zhaoxiang; Chen, Yujia

    2016-10-01

    The main research is thermal strain sensing characteristics of epoxy resin in fiber Bragg grating (FBG) packaging process. The results of experiment showed that modified epoxy acrylate resin which is often used to package FBG, occurred glass transition at about 65°C, of which the thermal strain sensing sensitivity decreased. Meanwhile, this study showed that FBG is packaged by the modified epoxy acrylate resin after heat treatment has the effect on strain measurement. The experiment indicated that strain measuring consistency and repeatability of FBG has been significantly improved after heat treatment at high temperature 120°C. Finally, a FBG packaging technology about curable epoxy resin curing at room temperature is proposed, and it can improved strain and temperature measuring consistency and repeatability.

  4. The packaging technology and equipment of silicon microstrip detector

    International Nuclear Information System (INIS)

    Han Lixiang; Gong Wei; Li Zhankui

    2010-01-01

    Silicon microstrip detectors use opened packages in most occasions. The typical packaging approach should be implemented in following steps: 1) select suitable packaging design and materials, connectors with proper type and class, bonds having appropriate function, components, parameters and class. Then fabricate baseboard and slice; 2) weld connector; 3)fluid dispense; 4) adherence; 5) bond; 6) gel-coated to protect leaders. The baseboard must be copper poured properly, and has enough thickness and rigidity. Domestic low rotation rate cutting machine with mechanical bearing, double-side blue tape for protecting the wafer, high precision fluid dispenser, domestic bonding machine and special clamps are used. Packaged ASIC (application specific integrated circuit) on baseboard is the developing trend. The fluid cooling device via MEMS (Micro-electromechanical Systems) technology performs well. (authors)

  5. Novel Ruggedized Packaging Technology for VCSELs

    Science.gov (United States)

    2017-03-01

    creates board-level solder interconnect at the wafer level, e liminating t he cost and parasitics as sociated with p ackages. O TDR technology enables...10.3125 is -12.6 dBm OMA. SERDES TOSA Wavelength/fiber dependant components LDD fiber plant ROSATIA-LA ROSA OTDR RX Pulse Gen MUX OTDR ASIC

  6. Next generation DNA led technologies

    CERN Document Server

    Jyothsna, G; Kashyap, Amita

    2016-01-01

    This brief highlights advances in DNA technologies and their wider applications. DNA is the source of life and has been studied since a generation, but very little is known as yet. Several sophisticated technologies of the current era have laid their foundations on the principle of DNA based mechanisms. DNA based technologies are bringing a new revolution of Advanced Science and Technology. Forensic Investigation, Medical Diagnosis, Paternity Disputes, Individual Identity, Health insurance, Motor Insurance have incorporated the DNA testing and profiling technologies for settling the issues.

  7. RF and microwave integrated circuit development technology, packaging and testing

    CERN Document Server

    Gamand, Patrice; Kelma, Christophe

    2018-01-01

    RF and Microwave Integrated Circuit Development bridges the gap between existing literature, which focus mainly on the 'front-end' part of a product development (system, architecture, design techniques), by providing the reader with an insight into the 'back-end' part of product development. In addition, the authors provide practical answers and solutions regarding the choice of technology, the packaging solutions and the effects on the performance on the circuit and to the industrial testing strategy. It will also discuss future trends and challenges and includes case studies to illustrate examples. * Offers an overview of the challenges in RF/microwave product design * Provides practical answers to packaging issues and evaluates its effect on the performance of the circuit * Includes industrial testing strategies * Examines relevant RF MIC technologies and the factors which affect the choice of technology for a particular application, e.g. technical performance and cost * Discusses future trends and challen...

  8. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  9. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  10. A proposal for a drug information database and text templates for generating package inserts

    Directory of Open Access Journals (Sweden)

    Okuya R

    2013-07-01

    Full Text Available Ryo Okuya,1 Masaomi Kimura,2 Michiko Ohkura,2 Fumito Tsuchiya3 1Graduate School of Engineering and Science, 2Faculty of Engineering, Shibaura Institute of Technology, Tokyo, 3School of Pharmacy, International University of Health and Welfare, Tokyo, Japan Abstract: To prevent prescription errors caused by information systems, a database to store complete and accurate drug information in a user-friendly format is needed. In previous studies, the primary method for obtaining data stored in a database is to extract drug information from package inserts by employing pattern matching or more sophisticated methods such as text mining. However, it is difficult to obtain a complete database because there is no strict rule concerning expressions used to describe drug information in package inserts. The authors' strategy was to first build a database and then automatically generate package inserts by embedding data in the database using templates. To create this database, the support of pharmaceutical companies to input accurate data is required. It is expected that this system will work, because these companies can earn merit for newly developed drugs to decrease the effort to create package inserts from scratch. This study designed the table schemata for the database and text templates to generate the package inserts. To handle the variety of drug-specific information in the package inserts, this information in drug composition descriptions was replaced with labels and the replacement descriptions utilizing cluster analysis were analyzed. To improve the method by which frequently repeated ingredient information and/or supplementary information are stored, the method was modified by introducing repeat tags in the templates to indicate repetition and improving the insertion of data into the database. The validity of this method was confirmed by inputting the drug information described in existing package inserts and checking that the method could

  11. DEEP DRAWING TECHNOLOGY WITH WALL IRONING IN MASS PACKAGING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Saša Ranđelović

    2017-04-01

    Full Text Available Aluminum is a metal that is being increasingly used in the packaging industry in the modern metal forming technology, but it also provides a good opportunity for effective advertising and product promotion. Processing technologies for aluminum plastic deformation ensure superior packaging that meets the most rigorous demands in the food, pharmaceutical, chemical, and other industries. It is the case of mass production with very little material loss that offers the possibility of multiple recycling. On the other hand, today's products for general purpose consumers cannot be imagined without aggressive advertising that has a major impact on customers. Modern graphics techniques for printing images and different basic surfaces offer great opportunities that manufacturers use widely in the promotion and sale of their products.

  12. New Generation Flask Sampling Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James R. [AOS, Inc., Colorado Springs, CO (United States)

    2017-11-09

    Scientists are turning their focus to the Arctic, site of one of the strongest climate change signals. A new generation of technologies is required to function within that harsh environment, chart evolution of its trace gases and provide new kinds of information for models of the atmosphere. Our response to the solicitation tracks how global atmospheric monitoring was launched more than a half century ago; namely, acquisition of discrete samples of air by flask and subsequent analysis in the laboratory. AOS is proposing to develop a new generation of flask sampling technology. It will enable the new Arctic programs to begin with objective high density sampling of the atmosphere by UAS. The Phase I program will build the prototype flask technology and show that it can acquire and store mol fractions of CH4 and CO2 and value of δ13C with good fidelity. A CAD model will be produced for the entire platform including a package with 100 flasks and the airframe with auto-pilot, electronic propulsion and ground-to-air communications. A mobile flask analysis station will be prototyped in Phase I and designed to final form in Phase II. It expends very small sample per analysis and will interface directly to the flask package integrated permanently into the UAS fuselage. Commercial Applications and Other Benefits: • The New Generation Flask Sampling Technology able to provide a hundred or more samples of air per UAS mission. • A mobile analysis station expending far less sample than the existing ones and small enough to be stationed at the remote sites of Arctic operations. • A new form of validation for continuous trace gas observations from all platforms including the small UAS. • Further demonstration to potential customers of the AOS capabilities to invent, build, deploy and exploit entire platforms for observations of Earth’s atmosphere and ocean. Key Words: Flask Sampler, Mobile Analysis Station, Trace Gas, CO2, CH4, δC13, UAS, Baseline Airborne Observatory

  13. Pilot Project Technology Business Case: Mobile Work Packages

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Niedermuller, Josef [ScottMadden, Inc., Raleigh, NC (United States)

    2015-05-01

    Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) was developed in September of 2015 to frame the benefit side of II&C technologies to address the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the “benefits” side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology. The methodology is presented in the context of the entire process, but the tool provided is limited to determining the organizational benefits only. This report describes a the use of the BCM in building a business case for mobile work packages, which includes computer-based procedures and other automated elements of a work package. Key to those impacts will be identifying where the savings are

  14. Package

    Directory of Open Access Journals (Sweden)

    Arsić Zoran

    2013-01-01

    Full Text Available It is duty of the seller to pack the goods in a manner which assures their safe arrival and enables their handling in transit and at the place of destination. The problem of packing is relevant in two main respects. First of all the buyer is in certain circumstances entitled to refuse acceptance of the goods if they are not properly packed. Second, the package is relevant to calculation of price and freight based on weight. In the case of export trade, the package should conform to the legislation in the country of destination. The impact of package on environment is regulated by environment protection regulation of Republic if Serbia.

  15. Interferometry for the LISA technology package (LTP) aboard SMART-2

    International Nuclear Information System (INIS)

    Heinzel, G; Braxmaier, C; Schilling, R; Ruediger, A; Robertson, D; Plate, M te; Wand, V; Arai, K; Johann, U; Danzmann, K

    2003-01-01

    The interferometer of the LISA technology package (LTP) on SMART-2 is needed to verify the performance of the gravitational sensors by monitoring the distance between two test masses with a noise level of 10 pm Hz -1/2 between 3 mHz and 30 mHz. It must continuously track the motion of the test mass distance while that distance changes by many μm with a speed of up to 20 μm s -1 , without losing track of the sign of the motion and without exerting any influence on the test masses that might lead to a motion above that level. As a result of a detailed comparison study, a heterodyne Mach-Zehnder interferometer was selected as the baseline for the SMART-2 mission. Its design and expected performance are described in this paper

  16. A QR code identification technology in package auto-sorting system

    Science.gov (United States)

    di, Yi-Juan; Shi, Jian-Ping; Mao, Guo-Yong

    2017-07-01

    Traditional manual sorting operation is not suitable for the development of Chinese logistics. For better sorting packages, a QR code recognition technology is proposed to identify the QR code label on the packages in package auto-sorting system. The experimental results compared with other algorithms in literatures demonstrate that the proposed method is valid and its performance is superior to other algorithms.

  17. The Packaging Technology Study on Smart Composite Structure Based on The Embedded FBG Sensor

    Science.gov (United States)

    Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong

    2018-03-01

    It is convenient to carry out the health monitoring of the solid rocket engine composite shell based on the embedded FBG sensor. In this paper, the packaging technology using one-way fiber layer of prepreg fiberglass/epoxy resin was proposed. The proposed packaging process is simple, and the packaged sensor structure size is flexible and convenient to use, at the mean time, the packaged structure has little effect on the pristine composite material structure.

  18. MCAPM: All particle method generator and collision package

    International Nuclear Information System (INIS)

    Rathkopf, J.A.

    1992-11-01

    MCAPM (Monte Carlo All Particle Method) is a collection of subroutines that read the data necessary for and perform the physics involved in collisions of neutrons, protons, deuterons, helium-3, alphas, and gammas with background material. These subroutines are divided into two packages. The first package, gen2000, reads the cross sections and distributions from binary libraries that describe in-flight reactions and formats them in a form appropriate for use by the second package. Libraries are organized by incident particle type, but contain information describing the attributes of all output particles. The method of tabulating cross section data depends on the incident particle type. Neutron and charged particle cross sections are multi-group; gamma cross sections are log-log interpolated from an energy grid consistent over all target elements. The second package, bang2000, uses these data to perform the collision physics. Each Monte Carlo particle possesses a discrete energy value allowing the kinematics of collisions to be performed on a continuous energy basis. The result of the kinematics is the attributes (type, number, energy, and direction) of all the particles emerging from the collision. MCAPM is modular and has been ported to a variety of platforms

  19. Using computer technology to identify the appropriate radioactive materials packaging

    International Nuclear Information System (INIS)

    Driscoll, K.L.; Conan, M.R.

    1989-01-01

    The Radioactive Materials Packaging (RAMPAC) database is designed to store and retrieve information on all non-classified packages certified for the transport of radioactive materials within the boundaries of the US. The information in RAMPAC is publicly available, and the database has been designed so that individuals without programming experience can search for and retrieve information using a menu-driven system. RAMPAC currently contains information on over 650 radioactive material shipping packages. Information is gathered from the US Department of Energy (DOE), the US Department of transportation (DOT), and the US Nuclear Regulatory Commission (NRC). RAMPAC is the only tool available to radioactive material shippers that contains and reports packaging information from all three Federal Agencies. The DOT information includes package listings from Canada, France, Germany, Great Britain, and Japan, which have DOT revalidations for their certificates of competent authority and are authorized for use within the US for import and export shipments only. RAMPAC was originally developed in 1981 by DOE as a research and development tool. In recent years, however, RAMPAC has proven to be highly useful to operational personnel. As packages become obsolete or materials to be transported change, shippers of radioactive materials must be able to determine if alternative packages exist before designing new packages. RAMPAC is designed to minimize the time required to make this determination, thus assisting the operational community in meeting their goals

  20. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  1. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  2. Packaging Technologies for 500C SiC Electronics and Sensors

    Science.gov (United States)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  3. Generating Local Needs through Technology

    DEFF Research Database (Denmark)

    á Rogvi, Sofie; Juul, Annegrete; Langstrup, Henriette

    2016-01-01

    . With this focus on the interrelations among technological innovation, local needs, and comparisons across global distances, we aim to contribute to critical discussions of the prospects of traveling technologies for global health, as well as drawing attention to the recipient’s agency in (re)shaping the capacity...... setting to another. Central to this process of a technology traveling, we suggest, is the role played by comparisons invoked by actors and the technology itself. These comparisons become instances of evaluating local practices, thus determining what is needed in tackling a health challenge locally...

  4. Package-friendly piezoresistive pressure sensors with on-chip integrated packaging-stress-suppressed suspension (PS3) technology

    International Nuclear Information System (INIS)

    Wang, Jiachou; Li, Xinxin

    2013-01-01

    An on-chip integrated packaging-stress-suppressed suspension (PS 3 ) technology for a packaging-stress-free pressure sensor is proposed and developed. With a MIS (microholes interetch and sealing) micromachining process implemented only from the front-side of a single-side polished (1 1 1) silicon wafer, a compact cantilever-shaped PS 3 is on-chip integrated surrounding a piezoresistive pressure-sensing structure to provide a packaging-process/substrate-friendly method for low-cost but high-performance sensor applications. With the MIS process, the chip size of the PS 3 -enclosed pressure sensor is as small as 0.8 mm × 0.8 mm. Compared with a normal pressure sensor without PS 3 (but with an identical pressure-sensing structure), the proposed pressure sensor has the same sensitivity of 0.046 mV kPa −1 (3.3 V) −1 . However, without using the thermal compensation technique, a temperature coefficient of offset of only 0.016% °C −1 FS is noted for the sensor with PS 3 , which is about 15 times better than that for the sensor without PS 3 . Featuring effective isolation and elimination of the influence from packaging stress, the PS 3 technique is promising to be widely used for packaging-friendly mechanical sensors. (paper)

  5. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does n...

  6. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  7. The Assurance Challenges of Advanced Packaging Technologies for Electronics

    Science.gov (United States)

    Sampson, Michael J.

    2010-01-01

    Advances in microelectronic parts performance are driving towards finer feature sizes, three-dimensional geometries and ever-increasing number of transistor equivalents that are resulting in increased die sizes and interconnection (I/O) counts. The resultant packaging necessary to provide assemble-ability, environmental protection, testability and interconnection to the circuit board for the active die creates major challenges, particularly for space applications, Traditionally, NASA has used hermetically packaged microcircuits whenever available but the new demands make hermetic packaging less and less practical at the same time as more and more expensive, Some part types of great interest to NASA designers are currently only available in non-hermetic packaging. It is a far more complex quality and reliability assurance challenge to gain confidence in the long-term survivability and effectiveness of nonhermetic packages than for hermetic ones. Although they may provide more rugged environmental protection than the familiar Plastic Encapsulated Microcircuits (PEMs), the non-hermetic Ceramic Column Grid Array (CCGA) packages that are the focus of this presentation present a unique combination of challenges to assessing their suitability for spaceflight use. The presentation will discuss the bases for these challenges, some examples of the techniques proposed to mitigate them and a proposed approach to a US MIL specification Class for non-hermetic microcircuits suitable for space application, Class Y, to be incorporated into M. IL-PRF-38535. It has recently emerged that some major packaging suppliers are offering hermetic area array packages that may offer alternatives to the nonhermetic CCGA styles but have also got their own inspectability and testability issues which will be briefly discussed in the presentation,

  8. ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Cabanski Christopher R

    2012-09-01

    Full Text Available Abstract Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration.

  9. New-generation radiofrequency technology.

    Science.gov (United States)

    Krueger, Nils; Sadick, Neil S

    2013-01-01

    Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation.

  10. Design of a type - a transport package for 99Mo-99mTc Coltech generator

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Suryanarayana, G.V.; Dey, A.C.; Sachdev, S.S.; Choughule, N.; Murali, S.

    2012-01-01

    BRIT is launching a new product called 99 Mo- 99m Tc Coltech generator. The Coltech generator is a devise designed for the transport of 99 Mo radioisotope adsorbed on the acidic alumina in a sealed glass column (max dimensions: 13 mm diameter, 70 mm height) as the primary containment. At hospital end, 99m Tc, the daughter product of 99 Mo, can be eluted out from the generator using saline. The active column is fitted with a leak proof network of stainless steel needles. The glass column carrying 99 Mo is housed inside a lead shielding having minimum thickness of 50 mm all around, which serves as secondary containment. The shielding is housed inside the ABS shell which acts as tertiary containment, also provides protection to the needles, filters etc. Total weight of the generator is 16 kg. Based on the AERB code SC/TR-1 (being revised), 99 Mo- 99m Tc Coltech generator will be transported in a Type-A transport container. A transport package has been designed by following the code SC/TR-1. Principle design of the package is based on the package for transportation of the similar generator produced by POLATOM, Poland and the package is approved by the Polish regulatory authority. Components are manufactured locally taking care of lndian conditions. The package comprised of a MS drum (HOBBOCK) with tamper proof lockable MS lid and a handle to assist in lifting. For absorbing the shock during transportation, the generator assembly is packed inside the two pieces EPS top and bottom support. The package has been designed for transportation by all modes of transport. Since radioactive material is solid in form and sealed a glass column, it has been designed to sustain a free drop test of 1.2 m, in addition to other tests specified in SC/TR-1. During trial batches upto ∼ 1 Ci of 99 Mo generators were produced, packed in the same Type-A package and supplied to local nuclear medicine center RMC, Mumbai in BRIT vehicle in consultation with AERB. The radiometry of the packages

  11. Polymer dispensing and embossing technology for the lens type LED packaging

    Science.gov (United States)

    Chien, Chien-Lin Chang; Huang, Yu-Che; Hu, Syue-Fong; Chang, Chung-Min; Yip, Ming-Chuen; Fang, Weileun

    2013-06-01

    This study presents a ring-type micro-structure design on the substrate and its corresponding micro fabrication processes for a lens-type light-emitting diode (LED) package. The dome-type or crater-type silicone lenses are achieved by a dispensing and embossing process rather than a molding process. Silicone with a high viscosity and thixotropy index is used as the encapsulant material. The ring-type micro structure is adopted to confine the dispensed silicone encapsulant so as to form the packaged lens. With the architecture and process described, this LED package technology herein has three merits: (1) the flexibility of lens-type LED package designs is enhanced; (2) a dome-type package design is used to enhance the intensity; (3) a crater-type package design is used to enhance the view angle. Measurement results show the ratio between the lens height and lens radius can vary from 0.4 to 1 by changing the volume of dispensed silicone. The view angles of dome-type and crater-type packages can reach 155° ± 5° and 175° ± 5°, respectively. As compared with the commercial plastic leaded chip carrier-type package, the luminous flux of a monochromatic blue light LED is improved by 15% by the dome-type package (improved by 7% by the crater-type package) and the luminous flux of a white light LED is improved by 25% by the dome-type package (improved by 13% by the crater-type package). The luminous flux of monochromatic blue light LED and white light LED are respectively improved by 8% and 12% by the dome-type package as compare with the crater-type package.

  12. An overview of advanced power generation technologies

    International Nuclear Information System (INIS)

    Gardner, D.; Shaw, P.

    1993-01-01

    This paper is intended as a brief review of the technologies currently applied in Australian electricity generation and the technologies which are likely to be employed in the future. The paper opens with a review of the primary energy resources available for the generation of electricity in Australia, and the technologies currently employed. The development of advanced generation technologies around the world is reviewed, and the most likely technologies to be employed in Australia are described. There are a number of renewable and alternative technologies, such as generation from sewage digester, landfill or mine gases. Their impact would, however, be disproportionate because of the strong climate forcing effect of methane. Of the wide range of other emerging renewable technologies examined, solar thermal offers the best prospect of maturing into a financially-competitive technology for large scale generation in the next 20 years. However, will remain unable to compete with non-renewable technologies in normal financial terms, at least until 2005 and probably well beyond that date. Generation using the fission of nuclear fuels is a mature, proven technology. Based on the most likely fuel and other assumptions made in this study, the costs of nuclear generation are only moderately higher than conventional coal-fired options. Nuclear generation is thus a relatively low cost route to reductions in carbon dioxide emission for new plant, at $19/tonne CO 2 saved, in comparison with conventional black coal technology, and $13/tonne CO 2 compared with conventional brown coal firing. While major considerations of societal acceptance clearly exist, nuclear generation has the necessary technical and financial qualifications for serious consideration as an element in any greenhouse strategy. 5 tab., 2 figs

  13. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  14. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator.

    Science.gov (United States)

    Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin

    2016-12-27

    Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm 3 in volume and 28.3 g in weight) in the low-frequency range (hybrid nanogenerator to deliver valuable outputs in a broad range of operation frequencies. Therefore, the hybrid nanogenerator can maximize the energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.

  15. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    Science.gov (United States)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  16. Computer-generated slide technology.

    Science.gov (United States)

    Palmer, D S

    1994-03-01

    Presentation technology is available, and it does not have to be expensive. This article describes computer hardware and software concepts for graphics use, and recommends principles for making cost-effective buying decisions. Also included is a previously published technique for making custom computer graphic 35-mm slides at minimal expense. This information is vital to anyone lecturing without the support of a custom graphics laboratory.

  17. Exploring packaging strategies of nano-embedded thermoelectric generators

    Directory of Open Access Journals (Sweden)

    Aniket Singha

    2015-10-01

    Full Text Available Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to a multi moded one. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - the advantage factor, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.

  18. Design and development of Type-A package for 99Mo-99mTc Coltech generator

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Niteesh Kumar; Muni, Tukuna; Dey, A.C.; Sachdev, S.S.

    2014-01-01

    BRIT introduced 99 Mo- 99m Tc Coltech generator in Indian market. It used to be transported in the steel drum type, AERB approved Type-A package. Due to the issues related to recyclability of generator hardware for competitiveness in the market, drum type package was found to be uneconomical and so a new Type-A package using cardboard carton and EPE packing has been developed. After passing all tests required for normal condition of transport, AERB approved the package. Presently, Coltech generator is transported in the new package and is reused. New Coltech generator package is found to be operator friendly, recyclable. The old drum type package has been phased out

  19. Coal based electric generation comparative technologies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  20. Technological challenges of addressing new and more complex migrating products from novel food packaging materials.

    Science.gov (United States)

    Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad

    2009-12-01

    The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may

  1. Package of online Teacher Resources for Generate, the EPA Energy Game

    Science.gov (United States)

    These materials will enable teachers to make and utilize their own copy of the energy board game, called Generate, that has been developed in ORD and used in local EPA-RTP STEM outreach. The teacher resource package includes: (1) Webinar presentation for National Science Teach...

  2. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  3. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    International Nuclear Information System (INIS)

    Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3

  4. Strategic Business-IT alignment of application software packages: Bridging the Information Technology gap

    Directory of Open Access Journals (Sweden)

    Wandi Kruger

    2012-09-01

    Full Text Available An application software package implementation is a complex endeavour, and as such it requires the proper understanding, evaluation and redefining of the current business processes to ensure that the implementation delivers on the objectives set at the start of the project. Numerous factors exist that may contribute to the unsuccessful implementation of application software packages. However, the most significant contributor to the failure of an application software package implementation lies in the misalignment of the organisation’s business processes with the functionality of the application software package. Misalignment is attributed to a gap that exists between the business processes of an organisation and what functionality the application software package has to offer to translate the business processes of an organisation into digital form when implementing and configuring an application software package. This gap is commonly referred to as the information technology (IT gap. This study proposes to define and discuss the IT gap. Furthermore this study will make recommendations for aligning the business processes with the functionality of the application software package (addressing the IT gap. The end result of adopting these recommendations will be more successful application software package implementations.

  5. Sensors and packages based on LTCC and thick-film technology for ...

    Indian Academy of Sciences (India)

    Reliable operation in harsh environments such as high temperatures, high pressures, aggressive media and space, poses special requirements for sensors and packages, which usually cannot be met using polymer-based technologies. Ceramic technologies, especially LTCC (Low-Temperature Cofired Ceramic), offer a ...

  6. Microelectronic packaging

    CERN Document Server

    Datta, M; Schultze, J Walter

    2004-01-01

    Microelectronic Packaging analyzes the massive impact of electrochemical technologies on various levels of microelectronic packaging. Traditionally, interconnections within a chip were considered outside the realm of packaging technologies, but this book emphasizes the importance of chip wiring as a key aspect of microelectronic packaging, and focuses on electrochemical processing as an enabler of advanced chip metallization.Divided into five parts, the book begins by outlining the basics of electrochemical processing, defining the microelectronic packaging hierarchy, and emphasizing the impac

  7. The next generation of ultraviolet light technologies

    International Nuclear Information System (INIS)

    Roy, K.A.

    1990-01-01

    According to this article, the next generation of ultraviolet (UV) light technologies into the environmental spotlight. Researchers have long recognized the potential of UV light, nestled between the longer radiation wavelengths of the visible spectrum and the shorter ones in the x-ray region, to effect chemical change. Environmentally, UV light made its debut as a water purification tool. As the technology improved, researchers incorporated UV light in wastewater treatment systems and, later, in remediation techniques

  8. The development of MEMS device packaging technology using proton beam

    International Nuclear Information System (INIS)

    Hyeon, J. W.; Kong, Y. J.; Kim, E. H.; Kim, H. S.; No, S. J.

    2006-05-01

    Wafer-bonding techniques are key issues for the commercialization of MEMS(MicroElectroMechanical Systems) devices. The anodic bonding method and the wafer direct-bonding method are well-known major techniques for wafer bonding. Due to the anodic bonding method includes high voltage processes above 1.5 kV, the MEMS devices can be damaged during the bonding process or malfunctioned while long-term operation. On the other hand, since the wafer direct-bonding method includes a high temperature processes above 1000 .deg. C, temperature-sensitive materials and integrated circuits will be damaged or degraded during the bonding processes. Therefore, high-temperature bonding processes are not applicable for fabricating or packaging devices where temperature-sensitive materials exist. During the past few years, much effort has been undertaken to find a reliable bonding process that can be conducted at a low temperature. Unfortunately, these new bonding processes depend highly on the bonding material, surface treatment and surface flatness. In this research, a new packaging method using proton beam irradiation is proposed. While the energy loss caused in an irradiated material by X-rays or electron beams decreases with the surface distance, the energy loss caused by proton beams has a maximum value at the Bragg peak. Thus, the localized energy produced at the Bragg peak of the proton beams can be used to bond pyrex glass on a silicon wafer, so the MEMS damage is expected to be minimized. The localized heating caused by as well as the penetration depth, or the proton beam has been investigated. The energy absorbed in a stack of pyrex glass/silicon wafers due to proton-beam irradiation was numerically calculated for various proton energies by using the SRIM program. The energy loss was shown to be sufficiently localized at the interface between the pyrex glass and the silicon wafer. Proton beam irradiation was performed in the common environment of room temperature and

  9. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  10. Design Brief--Packaging: More than Just a Box! Communications: Getting the Message across with Advertising. Technology Learning Activities.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    Each technology learning activity in this article includes content description, objectives, required materials, challenge, and evaluation questions. Subjects are designing product packages and communication through advertising. (SK)

  11. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  12. Verification of 3-D generation code package for neutronic calculations of WWERs

    International Nuclear Information System (INIS)

    Sidorenko, V.D.; Aleshin, S.S.; Bolobov, P.A.; Bolshagin, S.N.; Lazarenko, A.P.; Markov, A.V.; Morozov, V.V.; Syslov, A.A.; Tsvetkov, V.M.

    2000-01-01

    Materials on verification of the 3 -d generation code package for WWERs neutronic calculations are presented. The package includes: - spectral code TVS-M; - 2-D fine mesh diffusion code PERMAK-A for 4- or 6-group calculation of WWER core burnup; - 3-D coarse mesh diffusion code BIPR-7A for 2-group calculations of quasi-stationary WWERs regimes. The materials include both TVS-M verification data and verification data on PERMAK-A and BIPR-7A codes using constant libraries generated with TVS-M. All materials are related to the fuel without Gd. TVS-M verification materials include results of comparison both with benchmark calculations obtained by other codes and with experiments carried out at ZR-6 critical facility. PERMAK-A verification materials contain results of comparison with TVS-M calculations and with ZR-6 experiments. BIPR-7A materials include comparison with operation data for Dukovany-2 and Loviisa-1 NPPs (WWER-440) and for Balakovo NPP Unit 4 (WWER-1000). The verification materials demonstrate rather good accuracy of calculations obtained with the use of code package of the 3 -d generation. (Authors)

  13. Partnership for electrical generation technology education

    International Nuclear Information System (INIS)

    Rasmussen, R. S.; Beaty, L.; Holman, R.

    2006-01-01

    This Engineering Technician education effort adapts an existing two-year Instrumentation and Control (I and C) education program into a model that is focused on electrical-generation technologies. It will also locally implement a program developed elsewhere with National Science Foundation funding, aimed at public schools, and adapt it to stimulate pre-college interest in pursuing energy careers in general. (authors)

  14. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    Assessment of technology generating institutions in biotechnology innovation system of South-Eastern Nigeria. ... Results of the study revealed that some of the institutions have been involved in biotechnology research for the past two decades but have only significantly invested on bio-processing (58.8%) and cell and ...

  15. Superconducting generator technology--an overview

    International Nuclear Information System (INIS)

    Edmonda, J.S.

    1979-01-01

    Application of superconducting technology to field windings of large ac generators provides virtually unlimited field capability without incurring resistive losses in the winding. Several small-scale superconducting generators have been built and tested demonstrating the feasibility of such concepts. For machines of much larger capacity, conceptual designs for 300 Mva and 1200 Mva have been completed. The development of a 300 Mva generator is projected. Designed, engineered and fabricated as a turbo generator, the superconducting machine is to be installed in a power plant, tested and operated in concert with a prime mover, the steam generator and the auxiliary support systems of the power plant. This will provide answers to the viability of operating a superconducting machine and its cryogenic handling systems in a full time, demanding environment. 21 refs

  16. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  17. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  18. Packaging and testing of multi-wavelength DFB laser array using REC technology

    Science.gov (United States)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  19. A C++ package for assembling quantum circuits and generating associated polynomial sets

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Sever'yanov, V.M.

    2007-01-01

    Recently it has been shown that elements of the unitary matrix determined by a quantum circuit can be computed by counting the number of common roots in the finite field Z 2 for a certain set of multivariate polynomials over Z 2 . In this paper we present a C++ package that allows a user to assemble a quantum circuit and to generate the multivariate polynomial set associated with the circuit. The generated polynomial system can further be converted to the canonical triangular involutive basis form which is appropriate for counting the number of common roots of the polynomials

  20. Technological Innovations in the Food Packaging: a case study of adoption of active packaging in coffee roaster companies

    Directory of Open Access Journals (Sweden)

    Mário Otávio Batalha

    2010-12-01

    Full Text Available Most of technological innovations in agro-food systems are created by “supporting industries”, the group where packaging industries are inserted. This article presents the packaging innovations used in food industries, particularly, the active packaging. This paper deals with an adoption case of a degassing one-way valve, describing this innovation and its impacts in two coffee companies. This study can be classified as a documental, qualitative-descriptive and empirical research, using indirect documentation technique and case study analysis. According to this case, the valve made possible the diversification of the company product line and product quality improvement. There were no complications involving an additional cost to the customers. However, it has been observed that this additional cost from technology adoption makes difficult the diffusion of this valve in other similar products.Grande parcela das inovações tecnológicas dos sistemas agroindustriais é gerada pelas “indústrias de apoio”, grupo no qual as indústrias de embalagens se inserem. Esse artigo discute as inovações em embalagens destinadas à indústria de alimentos, em especial as chamadas embalagens ativas. Discute-se o caso de adoção da válvula unidirecional de alívio de gases, descrevendo a inovação e seus impactos em duas indústria processadoras de café nas empresas. A pesquisa desenvolvida é de ordem documental e qualitativo-descritiva de caráter empírica, usando técnica de análise de documentação indireta e estudo de caso . No caso abordado, a válvula possibilitou a diversificação da linha de produtos e o incremento da sua qualidade, não havendo complicações no que se refere ao repasse do custo adicional para o consumidor desse produto. Contudo, verifica-se que esse custo adicional da adoção da tecnologia dificulta a difusão da válvula em produtos similares.

  1. "First generation" automated DNA sequencing technology.

    Science.gov (United States)

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  2. [Evaluation and selection of VOCs treatment technologies in packaging and printing industry].

    Science.gov (United States)

    Wang, Hai-Lin; Wang, Jun-Hui; Zhu, Chun-Lei; Nie, Lei; Hao, Zheng-Ping

    2014-07-01

    Volatile organic compounds (VOCs) play an important role in urban air pollution. Activities of industries including the packaging and printing industries are regarded as the major sources. How to select the suitable treating techniques is the major problem for emission control. In this article, based on the VOCs emission characteristics of the packaging and printing industry and the existing treatment technologies, using the analytic hierarchy process (AHP) model, an evaluation system for VOCs selection was established and all the technologies used for treatment were assessed. It showed that the priority selection was in the following order: Carbon Fiber Adsorption-Desorption > Granular Carbon Adsorption-Desorption > Thermal Combustion > Regenerative Combustion > Catalytic combustion > Rotary adsorption-concentration and combustion > Granular Carbon adsorption-concentration and combustion. Carbon Fiber Adsorption-Desorption was selected as the best available technology due to its highest weight among those technologies.

  3. Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices.

    Science.gov (United States)

    Sutanto, Jemmy; Anand, Sindhu; Sridharan, Arati; Korb, Robert; Zhou, Li; Baker, Michael S; Okandan, Murat; Muthuswamy, Jit

    2012-04-10

    We report here a successful demonstration of a flip-chip packaging approach for a microelectromechanical systems (MEMS) device with in-plane movable microelectrodes implanted in a rodent brain. The flip-chip processes were carried out using a custom-made apparatus that was capable of the following: 1) creating Ag epoxy microbumps for first-level interconnect; 2) aligning the die and the glass substrate; and 3) creating non-hermetic encapsulation (NHE). The completed flip-chip package had an assembled weight of only 0.5 g significantly less than the previously designed wire-bonded package of 4.5 g. The resistance of the Ag bumps was found to be negligible. The MEMS micro-electrodes were successfully tested for its mechanical movement with microactuators generating forces of 450 μ N with a displacement resolution of 8.8 μ m/step. An NHE on the front edge of the package was created by patterns of hydrophobic silicone microstructures to prevent contamination from cerebrospinal fluid while simultaneously allowing the microelectrodes to move in and out of the package boundary. The breakdown pressure of the NHE was found to be 80 cm of water, which is significantly (4.5-11 times) larger than normal human intracranial pressures. Bench top tests and in vivo tests of the MEMS flip-chip packages for up to 75 days showed reliable NHE for potential long-term implantation.

  4. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  5. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  6. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  7. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  8. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  9. MEMS packaging

    CERN Document Server

    Hsu , Tai-Ran

    2004-01-01

    MEMS Packaging discusses the prevalent practices and enabling techniques in assembly, packaging and testing of microelectromechanical systems (MEMS). The entire spectrum of assembly, packaging and testing of MEMS and microsystems, from essential enabling technologies to applications in key industries of life sciences, telecommunications and aerospace engineering is covered. Other topics included are bonding and sealing of microcomponents, process flow of MEMS and microsystems packaging, automated microassembly, and testing and design for testing.The Institution of Engineering and Technology is

  10. MESHJET. A mesh generation package for finite element MHD equilibrium codes at JET

    International Nuclear Information System (INIS)

    Springmann, E.; Taroni, A.

    1984-01-01

    MESHJET is a fairly general package and can be used to generate meshes for any finite element code in two space dimensions. These finite element codes are widely used at JET. The first code is for the identification of the plasma boundary and internal flux surfaces from measurements of external fluxes and fields under the assumption that the plasma toroidal density can be represented within a given class of functions. The second code computes plasma equilibrium configurations taking into account a two-dimensional model of the transformer iron core in JET. (author)

  11. Integrated, Automated Distributed Generation Technologies Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin [Atk Launch Systems Inc., Brigham City, UT (United States)

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  12. Determinants of Adoption of Wheat Production Technology Package by Smallholder Farmers: Evidences from Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Degefu Kebede

    2017-03-01

    Full Text Available A study was conducted to analyze factors influencing adoption of wheat technology packages by smallholder farmers in Gurawa, Meta and Habro districts in eastern Ethiopia. The analysis was based on a household survey data collected from 136 randomly selected households. A Two-limit Tobit model was used to elucidate factors affecting adoption of technology packages measured based on an index derived from five components of wheat technologies which included row planting, pesticide application, use of improved varieties, and application of inorganic fertilizers, namely, Diammonium Phosphate (DAP and Urea. Among the variables included in the model, variation in district, gender, age of the household head, education status of the household head, farm size, distance to market, distance to FTC (Farmers’ Training Centers, cooperative membership, dependency ratio, and annual income of the households were found to significantly affect the adoption of wheat technology packages. Policy makers, planners and development practitioners should give due attention to these determinants to support smallholder farmers in wheat production and enhance gains derived from it.

  13. Candu technology: the next generation now

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Duffey, R.B.; Torgerson, D.F.

    2001-01-01

    We describe the development philosophy, direction and concepts that are being utilized by AECL to refine the CANDU reactor to meet the needs of current and future competitive energy markets. The technology development path for CANDU reactors is based on the optimization of the pressure tube concept. Because of the inherent modularity and flexibility of this basis for the core design, it is possible to provide a seamless and continuous evolution of the reactor design and performance. There is no need for a drastic shift in concept, in technology or in fuel. By continual refinement of the flow and materials conditions in the channels, the basic reactor can be thermally and operationally efficient, highly competitive and economic, and highly flexible in application. Thus, the design can build on the successful construction and operating experience of the existing plants, and no step changes in development direction are needed. This approach minimizes investor, operator and development risk but still provides technological, safety and performance advances. In today's world energy markets, major drivers for the technology development are: (a) reduced capital cost; (b) improved operation; (c) enhanced safety; and (d) fuel cycle flexibility. The drivers provide specific numerical targets. Meeting these drivers ensures that the concept meets and exceeds the customer economic, performance, safety and resource use goals and requirements, including the suitable national and international standards. This logical development of the CANDU concept leads naturally to the 'Next Generation' of CANDU reactors. The major features under development include an optimized lattice for SEU (slightly enriched uranium) fuel, light water cooling coupled with heavy water moderation, advanced fuel channels and CANFLEX fuel, optimization of plant performance, enhanced thermal and BOP (balance of plant) efficiency, and the adoption of layout and construction technology adapted from successful on

  14. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-06-01

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis

  15. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.; Thornton, Brian A.; Rosenberg, Michael I.; Liu, Bing

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  16. Method to determine the radioactivity of radioactive waste packages. Basic procedure of the method used to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants: 2007

    International Nuclear Information System (INIS)

    2008-03-01

    This document describes the procedures adopted in order to determine the radioactivity of low-level radioactive waste packages generated at nuclear power plants in Japan. The standards applied have been approved by the Atomic Energy Society of Japan after deliberations by the Subcommittee on the Radioactivity Verification Method for Waste Packages, the Nuclear Cycle Technical Committee, and the Standards Committee. The method for determining the radioactivity of the low-level radioactive waste packages was based on procedures approved by the Nuclear Safety Commission in 1992. The scaling factor method and other methods of determining radioactivity were then developed on the basis of various investigations conducted, drawing on extensive accumulated knowledge. Moreover, the international standards applied as common guidelines for the scaling factor method were developed by Technical Committee ISO/TC 85, Nuclear Energy, Subcommittee SC 5, Nuclear Fuel Technology. Since the application of accumulated knowledge to future radioactive waste disposal is considered to be rational and justified, such body of knowledge has been documented in a standardized form. The background to this standardization effort, the reasoning behind the determination method as applied to the measurement of radioactivity, as well as other related information, are given in the Annexes hereto. This document includes the following Annexes. Annex 1: (reference) Recorded items related to the determination of the scaling factor. Annex 2 (reference): Principles applied to the determining the radioactivity of waste packages. (author)

  17. Photonics and Nanophotonics and Information and Communication Technologies in Modern Food Packaging

    Science.gov (United States)

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-05-01

    The analysis of the problem of conjunction of information and communication technologies (ICT) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown. There were investigated luminescent films with zinc oxide nanoparticles, which change luminescence intensity as nano-ZnO interacts with decay compounds of food products, for active and intelligent packaging. High luminescent transparent films were obtained from colloidal suspension of ZnO and polyvinylpyrrolidone (PVP). The influence of molecular mass, concentration of nano-ZnO, and film thickness on luminescent properties of films was studied in order to optimize the content of the compositions. The possibility of covering the obtained films with polyvinyl alcohol was considered for eliminating water soluble properties of PVP. The luminescent properties of films with different covers were studied. The insoluble in water composition based on ZnO stabilized with colloidal silicon dioxide and PVP in polymethylmethacrylate was developed, and the luminescent properties of films were investigated. The compositions are non-toxic, safe, and suitable for applying to the inner surface of active and intelligent packaging by printing techniques, such as screen printing, flexography, inkjet, and pad printing.

  18. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sy; Moritz, Bob

    2001-09-01

    potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  19. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  20. speedR: An R Package for Interactive Data Import, Filtering and Ready-to-Use Code Generation

    Directory of Open Access Journals (Sweden)

    Ilhami Visne

    2012-10-01

    Full Text Available Emerging technologies in the experimental sciences have opened the way for large-scale experiments. Such experiments generate ever growing amounts of data from which researchers need to extract relevant pieces for subsequent analysis. R offers a great environment for statistical analysis. However, due to the diversity of possible data sources and formats, data preprocessing and import can be time consuming especially with data that require user interaction such as editing, filtering or formatting. Writing a code for these tasks can be time-consuming, error prone and rather complex. We present speedR, an R-package for interactive data import, filtering and code generation in order to address these needs. Using speedR, researchers can import new data, make basic corrections, examine current R session objects, open them in the speedR environment for filtering (subsetting, put the filtered data back into R, and even create new R functions with applied import and filtering constraints to speed up their productivity.

  1. Compact Shorted Stacked-Patch Antenna Integrated with Chip-Package Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Yongjiu Li

    2014-01-01

    Full Text Available A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (about λ/25 at 2.45 GHz due to the shorted pin. The package is mounted on a 44 × 44 mm2 ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth (S11< -10 dB is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.

  2. On-orbit alignment and diagnostics for the LISA Technology Package

    International Nuclear Information System (INIS)

    MarIn, A F GarcIa; Wand, V; Steier, F; Cervantes, F Guzman; Bogenstahl, J; Jennrich, O; Heinzel, G; Danzmann, K

    2006-01-01

    This paper presents a procedure to perform fully autonomous on-orbit alignment of the interferometer on board the LISA Technology Package (LTP). LTP comprises two free-floating test masses as inertial sensors that additionally serve as end mirrors of a set of interferometers. From the output signals of the interferometers, a subset has been selected to obtain alignment information of the test masses. Based on these signals, an alignment procedure was developed and successfully tested on the engineering model of the optical bench. Furthermore, operation procedures for the characterization of critical on-orbit properties of the optical metrology system (e.g. fibre noise) have been established

  3. LTP - LISA technology package: Development challenges of a spaceborne fundamental physics experiment

    Science.gov (United States)

    Gerndt, R.; entire LTP Team

    2009-03-01

    The LISA Technology Package (LTP) is the main payload onboard the LISA Pathfinder Spacecraft. The LTP Instrument together with the Drag-Free Attitude Control System (DFACS) and the respective LTP and DFACS operational software forms the LTP Experiment. It is completed by the FEEPs of the LPF spacecraft that are controlled by DFACS in order to control the spacecraft's attitude along with the experiment's needs. This article concentrates on aspects of the Industrial development of the LTP Instrument items and on essential performance issues of LTP. Examples of investigations on specific issue will highlight the kind of special problems to be solved for LTP in close cooperation with the Scientific Community.

  4. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  5. Digital technologies to generate health awareness

    Directory of Open Access Journals (Sweden)

    Herman Adriaan van Wietmarschen

    2015-10-01

    A third use case for improving health awareness is the launch of a HealthCafé. The aim is to inspire people to measure their own health and measure the effects of interventions on their health, using all sorts of do-it-your-self technologies. The current version of the HealthCafé offers first of all a physical location where people can interact. It also offers devices such as activity trackers, glucose and cholesterol measurement devices, questionnaires, and a personal internet portal to store and analyse the data. The goal is to empower people and give people more control over their own health. Conclusions: Complexity science offers new opportunities to create health awareness. We have shown how a systems dynamics software tool can be used in group model building sessions to generate a shared understanding of a health problem among stakeholders. The resulted in a successful integrative overweight treatment program at a rehabilitation centre in the Netherlands. The HealthCafé was launched as a living lab which can be used by people to explore their own health and conduct studies on themselves. These activities are aiming for a transition in health care towards more awareness as the personal level, empowerment and thereby increasing the chances for successful life-style changes towards more health and happiness.

  6. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms.

    Science.gov (United States)

    Appel, R D; Vargas, J R; Palagi, P M; Walther, D; Hochstrasser, D F

    1997-12-01

    After two generations of software systems for the analysis of two-dimensional electrophoresis (2-DE) images, a third generation of such software packages has recently emerged that combines state-of-the-art graphical user interfaces with comprehensive spot data analysis capabilities. A key characteristic common to most of these software packages is that many of their tools are implementations of algorithms that resulted from research areas such as image processing, vision, artificial intelligence or machine learning. This article presents the main algorithms implemented in the Melanie II 2-D PAGE software package. The applications of these algorithms, embodied as the feature of the program, are explained in an accompanying article (R. D. Appel et al.; Electrophoresis 1997, 18, 2724-2734).

  7. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  8. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Ferrell, P.C.

    1996-01-01

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer

  9. Rf probe technology for the next generation of technological plasmas

    International Nuclear Information System (INIS)

    Law, V.J.; Kenyon, A.J.; Thornhill, N.F.; Seeds, A.J.; Batty, I.

    2001-01-01

    We describe radio frequency (rf) analysis of technological plasmas at the 13.56 MHz fundamental drive frequency and integer narrow-band harmonics up to n = 9. In particular, we demonstrate the use of harmonic amplitude information as a process end-point diagnostic. Using very high frequency (vhf) techniques, we construct non-invasive ex situ remote-coupled probes: a diplexer, an equal-ratio-arm bridge, and a dual directional coupler used as a single directional device. These probes bolt into the plasma-tool 50 Ω transmission-line between the rf generator and matching network, and hence do not require modification of the plasma tool. The 50 Ω probe environment produces repeatable measurements of the chamber capacitance and narrow-band harmonic amplitude with an end-point detection sensitivity corresponding to a 2 dB change in the harmonic amplitude with the removal of 1 cm 2 of photoresist. The methodology and design of an instrument for the measurement of the plasma-tool frequency response, and the plasma harmonic amplitude and phase response are examined. The instrument allows the monitoring of the plasma phase delay, plasma-tool short- and long-term ageing, and process end-point prediction. (author)

  10. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    Science.gov (United States)

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  11. Determining the feasibility of objective adherence measurement with blister packaging smart technology.

    Science.gov (United States)

    van Onzenoort, Hein A; Neef, Cees; Verberk, Willem W; van Iperen, H Peter; de Leeuw, Peter W; van der Kuy, Paul-Hugo M

    2012-05-15

    The results of a feasibility study of blister-pack smart technology for monitoring medication adherence are reported. Research in the area of objective therapy compliance measurement has led to the development of microprocessor-driven systems that record the time a unit dose is removed from blister packaging. One device under development is the Smart Blister-a label imprinted with event-detection circuitry that can be affixed to standard commercial blister cards. In the first trial of the device in actual clinical practice, 115 community-dwelling Dutch patients receiving valsartan maintenance therapy (160 mg once daily) were given 14-day blister packages equipped with the Smart Blister. On the return of empty blister cards to the 20 participating community pharmacies, the stored information was scanned and downloaded for data analysis and patient counseling purposes. A total of 245 Smart Blister-equipped packages were used by valsartan recipients during the eight-month study. The device was largely effective in recording patient and blister-card identification data and other desired information. However, in 17% of cases, the Smart Blister system registered multiple tablet-removal events at the same time, presumably indicating unintentional breakage of nearby conductive circuits and the need for design refinements. The Smart Blister-equipped medication cards were generally well received by patients and pharmacies. An evaluation of the functionality and robustness of the Smart Blister in a real-world clinical practice situation yielded some promising results, but the findings also indicated a need for design refinements and additional performance testing of the device.

  12. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  13. Inclusion of Assistive Technologies in a Basic Package of Essential Healthcare Service.

    Science.gov (United States)

    O'Brolcháin, Fiachra; Gordijn, Bert

    2017-11-23

    This paper outlines the potential and necessity of the development of assistive technologies (AT) for people with intellectual disabilities (IDs). We analyse a policy recommendation designed to determine the contents of a basic health package supplied by the state, known as the Dunning Funnel. We contend that the Dunning Funnel is a useful methodology, but is weakened by a potentially relativistic understanding of "necessity" in relation to the requirements of people with IDs (i.e., community standards will determine whether AT are necessary). We remedy this defect by using the capabilities approach as outlined by Martha Nussbaum. We argue that this approach provides a strong normative case for ensuring that communities provide help to people with IDs, if those communities are to achieve a minimal standard of justice. However, the capabilities approach does not offer much specific guidance on how AT ought to be distributed, nor does it offer guidance on risks, like the bottomless pit problem. We propose that the Dunning Funnel used in combination with the capabilities approach will provide a suitable heuristic for determining the distribution of AT in a basic health package.

  14. Performance characteristics of the 12 GHz, 200 watt Transmitter Experiment Package for CTS. [Communication Technology Satellite

    Science.gov (United States)

    Miller, E. F.; Fiala, J. L.; Hansen, I. G.

    1975-01-01

    Measured performance characteristics from ground test of the Transmitter Experiment Package (TEP) for the Communications Technology Satellite are presented. The experiment package consists of a 200 W Output Stage Tube (OST) powered by a Power Processing System (PPS). Descriptions of both the PPS and OST are given. The PPS provides the necessary voltages with a measured dc/dc conversion efficiency of 89 per cent. The OST, a traveling wave tube with multiple collectors, has a saturated rf output power of 224 W and operates at an overall efficiency exceeding 40 per cent over an 85 MHz bandwidth at 12 GHz. OST performance given includes frequency response, saturation characteristics, group delay, AM to PM conversion, intermodulation distortion, and two channel gain suppression. Single and dual channel FM video performance is presented. It was determined that for 12 MHz peak to peak frequency deviation on each channel, dual channel FM television signals can be transmitted through the TEP at 60 W, each channel, with 40 MHz channel spacing (center to center).

  15. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Key words: Biotechnology, innovation system, research institutions, universities and agricultural development programme. INTRODUCTION ... technology is the application of indigenous and / or scientific knowledge to the .... professionals, public attitude to genetic engineering organisms and products, and ...

  16. Radioactive waste package assay facility. Volume 1. Application of assay technology

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Green, T.H.; Molesworth, T.V.; Staniforth, D.; Strachan, N.R.; Rogers, J.D.; Wise, M.O.; Forrest, K.R.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd., and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd., on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. In volume 1, the reasons for assay are considered together with the various techniques that can be used, and the information that can be obtained. The practical problems associated with the use of the various techniques in an integrated assay facility are identified, and the key parameters defined. Engineering and operational features are examined and provisional designs proposed for facilities at three throughput levels: 15,000, 750 and 30 drums per year respectively. The capital and operating costs for such facilities have been estimated. A number of recommendations are made for further work. 16 refs., 14 figs., 13 tabs

  17. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R.

    Science.gov (United States)

    Chen, Hanbo; Boutros, Paul C

    2011-01-26

    Visualization of orthogonal (disjoint) or overlapping datasets is a common task in bioinformatics. Few tools exist to automate the generation of extensively-customizable, high-resolution Venn and Euler diagrams in the R statistical environment. To fill this gap we introduce VennDiagram, an R package that enables the automated generation of highly-customizable, high-resolution Venn diagrams with up to four sets and Euler diagrams with up to three sets. The VennDiagram package offers the user the ability to customize essentially all aspects of the generated diagrams, including font sizes, label styles and locations, and the overall rotation of the diagram. We have implemented scaled Venn and Euler diagrams, which increase graphical accuracy and visual appeal. Diagrams are generated as high-definition TIFF files, simplifying the process of creating publication-quality figures and easing integration with established analysis pipelines. The VennDiagram package allows the creation of high quality Venn and Euler diagrams in the R statistical environment.

  19. Next-generation wireless technologies 4G and beyond

    CERN Document Server

    Chilamkurti, Naveen; Chaouchi, Hakima

    2013-01-01

    This comprehensive text/reference examines the various challenges to secure, efficient and cost-effective next-generation wireless networking. Topics and features: presents the latest advances, standards and technical challenges in a broad range of emerging wireless technologies; discusses cooperative and mesh networks, delay tolerant networks, and other next-generation networks such as LTE; examines real-world applications of vehicular communications, broadband wireless technologies, RFID technology, and energy-efficient wireless communications; introduces developments towards the 'Internet o

  20. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  1. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface.

    Science.gov (United States)

    Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F

    1997-12-01

    Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.

  2. ADEPT2 - Next Generation Process Management Technology

    NARCIS (Netherlands)

    Dadam, P.; Rinderle, S.B.; Reichert, M.U.; Jurisch, M.; Acker, H.; Göser, K.; Kreher, U; Lauer, M.

    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to

  3. Designing Business and Technology Management Work-Packages in Cleantech Research Projects

    DEFF Research Database (Denmark)

    Tambo, Torben; Enevoldsen, Peter

    2014-01-01

    Cleantech in terms of wind turbines, photovoltaics, biofuel, biomass and smart grids have been on the industrial and political agenda in the recent years. Despite the investments and attention, cleantech still fail to answer the whole question on how to create a fossile free energy system......: The intermittence of wind and solar and the environmental effects of bio-energy are not themselves sufficient to maintain a stable and economical energy supplier. Therefore a new generation of technologies to store energy and smoothen out the transients of the renewable energy supplier we know now. Massive research...... is still to be done in creating technologies to store renewable energy, to ensure optimal use of bio-energy, to introduce new forms of balances into the energy grid, and to create complete new technologies paving the way for a second or third generation of cleantech. This paper is focusing on embedding...

  4. Overview of new-generation photovoltaic technologies

    International Nuclear Information System (INIS)

    Della Sala, D.; Moro, A.; Fidanza, A.; Di Francia, G.; Giorgi, R.

    2008-01-01

    The number of photovoltaic installation is rising in Italy, but they are all based on imported technologies. This article describes some new types of photovoltaic cells that benefit from powerful synergies with other sectors. ENEA can help speed their development by exploiting its long experience with photovoltaic and the growing body of know-how on the new frontiers of electronics and new materials [it

  5. SeFo: A Package for Generating Probabilistic Forecasts from NMME Predictive Ensembles

    Directory of Open Access Journals (Sweden)

    Nir Y Krakauer

    2016-05-01

    Full Text Available Long-range weather forecasts based on output from ensembles of computer simulations are attracting increasing interest. A variety of methods have been proposed to convert the ensemble outputs to calibrated probabilistic forecasts. The package presented here (SeFo, for Seasonal Forecasting implements a number of methods for producing forecasts of monthly surface air temperature anomalies up to 9 months in advance using output from the North American Multi-Model Ensemble (NMME. The package contains modules for downloading and reading past observations and ensemble output; producing forecast probability distributions; and verifying and calibrating a user-determined subset of methods using arbitrary past periods. By changing individual modules, the package could be extended to use other model ensembles, forecast other weather variables, or apply other forecast methods. SeFo is written in the numerical computing language Octave and is available on Bitbucket under the GNU General Public License (Version 3 or later.

  6. SECOND WASTE PACKAGE PROBABILISTIC CRITICALITY ANALYSIS: GENERATION AND EVALUATION OF INTERNAL CRITICIALITY CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Gottlieb, J.R. Massari, J.K. McCoy

    1996-03-27

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having sonic or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment. The ultimate objective of this analysis is to augment the information gained from the Initial Waste Package Probabilistic Criticality Analyses (Ref. 5.8 and 5.9, hereafter referred to as IPA) to a degree which will support preliminary waste package design recommendations intended to reduce the risk of waste package criticality and the risk to total repository system performance posed by the consequences of any criticality. The IPA evaluated the criticality potential under the assumption that the waste package basket retained its structural integrity, so that the assemblies retained their initial separation, even when the neutron absorbers had been leached from the basket. This analysis is based on the more realistic condition that removal of the neutron absorbers is a consequence of the corrosion of the steel in which they are contained, which has the additional consequence of reducing the structural support between assemblies. The result is a set of more reactive configurations having a smaller spacing between assemblies, or no inter-assembly spacing at all. Another difference from the IPA is the minimal attention to probabilistic evaluation given in this study. Although the IPA covered a time horizon to 100,000 years, the lack of consideration of basket degradation modes made it primarily applicable to the first 10,000 years. In contrast, this study, by focusing on the degraded modes of the basket, is primarily

  7. Repair technology for steam generator tubes

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating

  8. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  9. Impact of different packaging technologies on post harvest losses of stone fruits in swat pakistan

    International Nuclear Information System (INIS)

    Shahzad, M.; Luqman, M.; Jehan, N.

    2015-01-01

    Soft texture of stone fruits makes them prone to post harvest losses. Effect of different packaging materials on the texture of fruits also varies for their post-harvest losses. The present study was conducted to evaluate the effect of wooden and cardboard box technologies on post-harvest losses of plum through its marketing channel. Primary data was collected through pre tested questionnaires by proportionate random sampling procedure. Quantitative losses were estimated through percentage method while partial losses were estimated at the wholesale and retail level by price differential method. Multiple regression analysis was employed to find relation between post-harvest losses and different factors at three different stages. Findings of the study revealed the channel of cardboard box technology accounted for post-harvest losses of 10.49% while at farm level, losses were 2.90%, at wholesale level 1.45% and retail level the losses were 6.14%. On the other hand post-harvest losses were 14.24% in wooden box channel; in which 6.10% occurred at farm level, 1.43% at the wholesale level and 6.71% at the retail level. Cardboard box technology has reduced post-harvest losses of plum by 27%. Post-harvest losses were moderate and positively correlated at farm level, weakly and positive related at whole sale level and weak and negatively correlated at retail level. Pre-harvest management, careful handling and harvesting in proper maturity can help in reducing post-harvest losses. (author)

  10. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitte...

  11. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  12. Effects of Technological Parameters and Fishing Ground on Quality Attributes of Thawed, Chilled Cod Fillets Stored in Modified Atmosphere Packaging

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Østerberg, Carsten; Sørensen, Rie

    2001-01-01

    Effects were studied of various technological parameters and fishing ground on quality attributes of thawed, chilled cod fillets stored in modified atmosphere packaging Frozen fillets of Baltic Sea and Barents Sea cod, representing two commercial fishing grounds, were used as raw material....... The parameters investigated were: (1) packaging in modified atmosphere during frozen storage, (2)frozen storage period and temperature, (3),fishing ground and chill storage temperature, together with (4) the addition of trimethylamine oxide (TMAO) and sodium chloride (NaCl) to cod fillets before freezing...

  13. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    National Research Council Canada - National Science Library

    Scott, Sarah

    2003-01-01

    .... While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased "off the shelf", and complicated codes and standards deter potential users...

  14. Generation of discrete scattering cross sections and demonstration of Monte Carlo charged particle transport in the Milagro IMC code package

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J. A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, NW12-312 Albany, St. Cambridge, MA 02139 (United States); Palmer, T. S. [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, 116 Radiation Center, Corvallis, OR 97331 (United States); Urbatsch, T. J. [XTD-5: Air Force Systems, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-01

    A new method for generating discrete scattering cross sections to be used in charged particle transport calculations is investigated. The method of data generation is presented and compared to current methods for obtaining discrete cross sections. The new, more generalized approach allows greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data generated with the new method is verified through a comparison with discrete data obtained with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code package, Milagro. The implementation of this capability is verified using test problems with analytic solutions as well as a comparison of electron dose-depth profiles calculated with Milagro and an already-established electron transport code. An initial investigation of a preliminary integration of the discrete cross section generation method with the new charged particle transport capability in Milagro is also presented. (authors)

  15. Second Generation Small Pixel Technology Using Hybrid Bond Stacking †

    Science.gov (United States)

    Venezia, Vincent C.; Hsiung, Alan Chih-Wei; Yang, Wu-Zang; Zhang, Yuying; Zhao, Cheng; Lin, Zhiqiang; Grant, Lindsay A.

    2018-01-01

    In this work, OmniVision’s second generation (Gen2) of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process and a high near-infrared (NIR) QE technology. PMID:29495272

  16. Second Generation Small Pixel Technology Using Hybrid Bond Stacking

    Directory of Open Access Journals (Sweden)

    Vincent C. Venezia

    2018-02-01

    Full Text Available In this work, OmniVision’s second generation (Gen2 of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process and a high near-infrared (NIR QE technology.

  17. Second Generation Small Pixel Technology Using Hybrid Bond Stacking.

    Science.gov (United States)

    Venezia, Vincent C; Hsiung, Alan Chih-Wei; Yang, Wu-Zang; Zhang, Yuying; Zhao, Cheng; Lin, Zhiqiang; Grant, Lindsay A

    2018-02-24

    In this work, OmniVision's second generation (Gen2) of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process and a high near-infrared (NIR) QE technology.

  18. Third-Generation Display Technology: Nominally Transparent Material

    Directory of Open Access Journals (Sweden)

    Charles Willow

    2010-12-01

    Full Text Available Display technology is reshaping the consumer, business, government, and even not-for-profit markets in the midst of the digital convergence, coupled with recent smart phones led by Apple, Inc. First-Generation (1G display technology was dominated by the Cathode Ray Tubes, followed by Liquid Crystal Display and Plasma in 2G. A radically innovative shift as a disruptive technology is expected to follow in 3G to utilize virtually any transparent material, which wirelessly connects to portable access points. This paper studies the feasibility of the 3G Display Technology (DT with Technology S-Curves, and presents possible business models and technology strategies which may be generated from it. Additional subsets of business models may be derived for a wide range of industry applications.

  19. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.M. [Department of Mechanical Engineering, National University of Singapore (Singapore); Lim, S.H.; Tay, B.Y. [Forming Technology Group, Singapore Institute of Manufacturing Technology (Singapore); Lee, M.W. [Food Innovation and Resource Centre, Singapore Polytechnic (Singapore); Thian, E.S., E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore (Singapore)

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  20. Packaging & Other Structures. Stuff That Works! A Technology Curriculum for the Elementary Grades.

    Science.gov (United States)

    Benenson, Gary

    This book explores all kinds of packaging materials including bags, boxes, etc. and how they are used to protect and display products. Contents are divided into six chapters: (1) "Appetizers" includes activities that can be done individually to become familiar with the topic of packaging and structures; (2) "Concepts" provides…

  1. The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial

    International Nuclear Information System (INIS)

    Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

    2003-01-01

    Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project

  2. Second Generation Small Pixel Technology Using Hybrid Bond Stacking

    OpenAIRE

    Vincent C. Venezia; Alan Chih-Wei Hsiung; Wu-Zang Yang; Yuying Zhang; Cheng Zhao; Zhiqiang Lin; Lindsay A. Grant

    2018-01-01

    In this work, OmniVision’s second generation (Gen2) of small-pixel BSI stacking technologies is reviewed. The key features of this technology are hybrid-bond stacking, deeper back-side, deep-trench isolation, new back-side composite metal-oxide grid, and improved gate oxide quality. This Gen2 technology achieves state-of-the-art low-light image-sensor performance for 1.1, 1.0, and 0.9 µm pixel products. Additional improvements on this technology include less than 100 ppm white-pixel process a...

  3. Corrosion studies on selected packaging materials for disposal of heat-generating radioactive wastes in rock-salt formations

    International Nuclear Information System (INIS)

    Smailos, E.; Schwarzkopf, W.; Gago, J.A.; Azkarate, I.

    1992-04-01

    In previous corrosion studies, carbon steels and the alloy Ti 99.8-Pd were identified as promising materials for heat-generating nuclear waste packagings that could act as a barrier in a rock-salt repository. To characterize the corrosion behaviour of these materials in more detail, a research programme including laboratory-scale and in-situ corrosion studies has been undertaken jointly by KfK and ENRESA/INASMET. Besides carbon steels and Ti 99.8-Pd, also Hastelloy C4 and some Fe-base materials are being examined in order to complete the results available to date. (orig.) [de

  4. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  5. SMOG 2: A Versatile Software Package for Generating Structure-Based Models.

    Directory of Open Access Journals (Sweden)

    Jeffrey K Noel

    2016-03-01

    Full Text Available Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have proven to be an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Originally developed in the context of protein folding, structure-based models (SBMs have since been extended to probe a diverse range of biomolecular processes, spanning from protein and RNA folding to functional transitions in molecular machines. The hallmark feature of a structure-based model is that part, or all, of the potential energy function is defined by a known structure. Within this general class of models, there exist many possible variations in resolution and energetic composition. SMOG 2 is a downloadable software package that reads user-designated structural information and user-defined energy definitions, in order to produce the files necessary to use SBMs with high performance molecular dynamics packages: GROMACS and NAMD. SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs, and it can process template files that are altered according to the needs of each user. This computational infrastructure also allows for experimental or bioinformatics-derived restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups and post-translational/transcriptional modifications. The code and user guide can be downloaded at http://smog-server.org/smog2.

  6. SMOG 2: A Versatile Software Package for Generating Structure-Based Models.

    Science.gov (United States)

    Noel, Jeffrey K; Levi, Mariana; Raghunathan, Mohit; Lammert, Heiko; Hayes, Ryan L; Onuchic, José N; Whitford, Paul C

    2016-03-01

    Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have proven to be an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Originally developed in the context of protein folding, structure-based models (SBMs) have since been extended to probe a diverse range of biomolecular processes, spanning from protein and RNA folding to functional transitions in molecular machines. The hallmark feature of a structure-based model is that part, or all, of the potential energy function is defined by a known structure. Within this general class of models, there exist many possible variations in resolution and energetic composition. SMOG 2 is a downloadable software package that reads user-designated structural information and user-defined energy definitions, in order to produce the files necessary to use SBMs with high performance molecular dynamics packages: GROMACS and NAMD. SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs, and it can process template files that are altered according to the needs of each user. This computational infrastructure also allows for experimental or bioinformatics-derived restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups and post-translational/transcriptional modifications. The code and user guide can be downloaded at http://smog-server.org/smog2.

  7. Information technologies and software packages for education of specialists in materials science [In Russian

    NARCIS (Netherlands)

    Krzhizhanovskaya, V.; Ryaboshuk, S.

    2009-01-01

    This paper presents methodological materials, interactive text-books and software packages developed and extensively used for education of specialists in materials science. These virtual laboratories for education and research are equipped with tutorials and software environment for modeling complex

  8. New Energy-Saving Technologies Use Induction Generators

    Science.gov (United States)

    Nola, F.

    1982-01-01

    Two energy-saving technologies tested recently at Marshall Space Flight Center use an induction motor operated in reverse (as an induction generator). In the first, energy ordinarily dissipated during load testing of machinery is recovered and returned to powerline. In the second, efficiency of wind-driven induction generator is improved, and useful range of windspeed is broadened. Both technologies take advantage of ac voltage developed across terminals of an induction motor when rotated at higher than-synchronous speed in the direction it normally turns when power is appled.

  9. ATK-ForceField: a new generation molecular dynamics software package

    Science.gov (United States)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  10. Test Plan for Lockheed Idaho Technologies Company (LITCO), ARROW-PAK Packaging, Docket 95-40-7A, Type A Container

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Lockheed Idaho Technologies Company, ARROW-PAK, for use as a Type A Packaging. The packaging configuration being tested is intended for transportation of radioactive solids, Form No. 1, Form No. 2, and Form No. 3

  11. Next generation digital microfluidic technology: Electrophoresis of charged droplets

    Energy Technology Data Exchange (ETDEWEB)

    Im, Do Jin [Pukyong National University, Busan (Korea, Republic of)

    2015-06-15

    Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

  12. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  13. Market power and technological bias in electricity generation markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2005-01-01

    It is difficult or very costly to avoid all market power in electricity markets. A recurring response is that a limited amount of market power is accepted with the justification that it is necessary to produce revenues to cover some of the fixed costs. It is assumed that all market participants benefit equally from the increased prices. However, this assumption is not satisfied if different production technologies are used. We assess the case of a generation mix of conventional generation and intermittent generation with exogenously varying production levels. If all output is sold in the spot market, then intermittent generation benefits less from market power than conventional generation. If forward contracts or option contracts are signed, then market power might be reduced but the bias against returns to intermittent generators persists. Thus allowing some level of market power as a means of encouraging investment in new generation may result in a bias against intermittent technologies or increase the costs of strategic deployment to achieve renewable quotas. (Author)

  14. Next generation 100Gb/s ethernet technologies

    Science.gov (United States)

    Chang, Gee-kung; Chowdhury, Arshad; Yu, Jianjun; Jia, Zhensheng; Younce, Richard

    2007-11-01

    We have designed and experimentally demonstrated optical networking technologies for generating, transmitting and switching 100Gbit/s packet signals in optical networks. The performance of 100Gb/s packet transmission over cascaded ROADM nodes with WSSs and over label switched metro networks are discussed.

  15. Structural materials for the next generation of technologies

    CERN Document Server

    Van de Voorde, Marcel Hubert

    1996-01-01

    1. Overview of advanced technologies; i.e. aerospace-aeronautics; automobile; energy technology; accelerator engineering etc. and the need for new structural materials. 2. Familiarisation with polymers, metals and alloys, structural ceramics, composites and surface engineering. The study of modern materials processing, generation of a materials data base, engineering properties includind NDE, radiation damage etc. 3. Development of new materials for the next generation of technologies; including the spin-off of materials developed for space and military purposes to industrial applications. 4. Materials selection for modern accelerator engineering. 5. Materials research in Europe, USA and Japan. Material R & D programmes sponsored by the European Union and the collaboration of CERN in EU sponsored programmes.

  16. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  17. Waste-paper recyling in the packaging industry. January 1982-August 1989 (a Bibliography from Packaging Science and Technology Abstracts data base). Report for January 1982-August 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This bibliography contains citations concerning the reclamation and re-use of waste paper in the packaging industry. Uses of recycled papers include containers, paper manufacture, paperboard products, and other packaging applications. Economics, environmental impacts, legislation, and feasibility studies are included. Problems associated with recycling paper products, and comparisons with plastic products are also considered. Biodegradation of packaging materials is considered in separate bibliographies. (Contains 142 citations fully indexed and including a title list.)

  18. Sociocultural Constraints: The Relation between Generations in the United States, Parental Education, Income, Hispanic Origin and the Financial Aid Packages of Hispanic Undergraduate Students

    Science.gov (United States)

    Del Razo, Parvati Heliana

    2012-01-01

    The purpose of this study was to find out if the demographic variables of country of origin, generation in the United States (immigration status), income and parental education had an impact on the financial aid packages of Hispanic undergraduate students. This dissertation asked: What is the relation between generation in the United States,…

  19. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  20. Learning Technology through Three Generations of Technology Enhanced Distance Education Pedagogy

    Science.gov (United States)

    Anderson, Terry; Dron, Jon

    2012-01-01

    This paper updates earlier work in which we defined three generations of distance education pedagogy. We then describe emerging technologies that are most conducive to instructional designs that evolve with each generation. Finally we discuss matching the pedagogies with learning outcomes. (Contains 3 figures.)

  1. Effects of self-carbon dioxide-generation material for active packaging on pH, water-holding capacity, meat color, lipid oxidation and microbial growth in beef during cold storage.

    Science.gov (United States)

    Lee, Seung-Jae; Lee, Seung Yun; Kim, Gap-Don; Kim, Geun-Bae; Jin, Sang Keun; Hur, Sun Jin

    2017-08-01

    Active packaging refers to the mixing of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. The aim of this study was to develop an easy and cheap active packaging for beef. Beef loin samples were divided into three packaging groups (C, ziplock bag packaging; T1, vacuum packaging; T2, active packaging) and stored at 4 °C for 21 days. The water-holding capacity was significantly (P packaging using self-CO 2 -generation materials can extend the shelf life similarly to that observed with vacuum packaging, and that the active packaging method can improve the quality characteristics of beef during cold storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  3. Reliability of Next Generation Power Electronics Packaging Under Concurrent Vibration, Thermal and High Power Loads

    Science.gov (United States)

    2008-02-01

    damascene copper interconnects," I 3 255 Advanced Metallization Conference (AMC) 2001, pp. 433-440.I Wang, P. C., "Real-time x-ray microbeam ...1966. Ref Type: Conference Proceeding Blech, I. A. and Sello, H., "Physics of Failure in Electronics," in Shilliday, T. S. (ed.) USAF Rome Air...film under bump metallization," 52nd Electronic Components and Technology Conference 2002. (Cat. No. 02CH37345). IEEE. 2002, Piscataway, NJ, USA., pp

  4. Exploring the switchgrass transcriptome using second-generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    Yixing Wang

    Full Text Available BACKGROUND: Switchgrass (Panicum virgatum L. is a C4 perennial grass and widely popular as an important bioenergy crop. To accelerate the pace of developing high yielding switchgrass cultivars adapted to diverse environmental niches, the generation of genomic resources for this plant is necessary. The large genome size and polyploid nature of switchgrass makes whole genome sequencing a daunting task even with current technologies. Exploring the transcriptional landscape using next generation sequencing technologies provides a viable alternative to whole genome sequencing in switchgrass. PRINCIPAL FINDINGS: Switchgrass cDNA libraries from germinating seedlings, emerging tillers, flowers, and dormant seeds were sequenced using Roche 454 GS-FLX Titanium technology, generating 980,000 reads with an average read length of 367 bp. De novo assembly generated 243,600 contigs with an average length of 535 bp. Using the foxtail millet genome as a reference greatly improved the assembly and annotation of switchgrass ESTs. Comparative analysis of the 454-derived switchgrass EST reads with other sequenced monocots including Brachypodium, sorghum, rice and maize indicated a 70-80% overlap. RPKM analysis demonstrated unique transcriptional signatures of the four tissues analyzed in this study. More than 24,000 ESTs were identified in the dormant seed library. In silico analysis indicated that there are more than 2000 EST-SSRs in this collection. Expression of several orphan ESTs was confirmed by RT-PCR. SIGNIFICANCE: We estimate that about 90% of the switchgrass gene space has been covered in this analysis. This study nearly doubles the amount of EST information for switchgrass currently in the public domain. The celerity and economical nature of second-generation sequencing technologies provide an in-depth view of the gene space of complex genomes like switchgrass. Sequence analysis of closely related members of the NAD(+-malic enzyme type C4 grasses such as

  5. Steam generator asset management: integrating technology and asset management

    International Nuclear Information System (INIS)

    Shoemaker, P.; Cislo, D.

    2006-01-01

    Asset Management is an established but often misunderstood discipline that is gaining momentum within the nuclear generation industry. The global impetus behind the movement toward asset management is sustainability. The discipline of asset management is based upon three fundamental aspects; key performance indicators (KPI), activity-based cost accounting, and cost benefits/risk analysis. The technology associated with these three aspects is fairly well-developed, in all but the most critical area; cost benefits/risk analysis. There are software programs that calculate, trend, and display key-performance indicators to ensure high-level visibility. Activity-based costing is a little more difficult; requiring a consensus on the definition of what comprises an activity and then adjusting cost accounting systems to track. In the United States, the Nuclear Energy Institute's Standard Nuclear Process Model (SNPM) serves as the basis for activity-based costing. As a result, the software industry has quickly adapted to develop tracking systems that include the SNPM structure. Both the KPI's and the activity-based cost accounting feed the cost benefits/risk analysis to allow for continuous improvement and task optimization; the goal of asset management. In the case where the benefits and risks are clearly understood and defined, there has been much progress in applying technology for continuous improvement. Within the nuclear generation industry, more specialized and unique software systems have been developed for active components, such as pumps and motors. Active components lend themselves well to the application of asset management techniques because failure rates can be established, which serves as the basis to quantify risk in the cost-benefits/risk analysis. A key issue with respect to asset management technologies is only now being understood and addressed, that is how to manage passive components. Passive components, such as nuclear steam generators, reactor vessels

  6. Construction of a Chemical Sensor/Instrumentation Package Using Fiber Optic and Miniaturization Technology

    Science.gov (United States)

    Newton, R. L.

    1999-01-01

    The objective of this research was to construct a chemical sensor/instrumentation package that was smaller in weight and volume than conventional instrumentation. This reduction in weight and volume is needed to assist in further reducing the cost of launching payloads into space. To accomplish this, fiber optic sensors, miniaturized spectrometers, and wireless modems were employed. The system was evaluated using iodine as a calibration analyte.

  7. Leadless Chip Carrier Packaging and CAD/CAM-Supported Wire Wrap Interconnect Technology for Subnanosecond ECL.

    Science.gov (United States)

    1981-11-01

    Invar , and alloy 42 in a sandwich configuration. These developments will be monitored by the Mayo group; such a material could provide a substrate with...Points of Various . . . . 124 Solders 4. Composition of Alloys Employed in Dual-In-Line . . . . 128 Package Pins and Plating by Mass Spectrographic...of hardened alloy steel to allow minimum wall thickness; it appeared unlikely that bits with even thinner barrels could be manufactured at acceptable

  8. Smart Home Technologies: Insights into Generation-Specific Acceptance Motives

    Science.gov (United States)

    Gaul, Sylvia; Ziefle, Martina

    In this research we examine the generation specific acceptance motives of eHealth technologies in order to assess the likelihood of success for these new technologies. 280 participants (14 - 92 years of age) volunteered to participate in a survey, in which using motives and barriers toward smart home technologies were explored. The scenario envisaged was the use of a medical stent implemented into the body, which monitors automatically the health status and which is able to remotely communicate with the doctor. Participants were asked to evaluate the pros and cons of the usage of this technology, their acceptance motives and potential utilization barriers. In order to understand the complex nature of acceptance, personal variables (age, technical expertise, health status), individual's cognitive concepts toward ageing as well as perceived usefulness were related. Outcomes show that trust, believe in the reliability of technology, privacy and security as well as intimacy facets are essential for acceptance and should be considered in order to proactively design a successful rollout of smart home technologies.

  9. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  10. Next-generation in-situ science concepts and technology

    Science.gov (United States)

    Muirhead, Brian; Varsi, Giulio

    1990-01-01

    This paper discusses the concepts of a next-generation in situ science program, named Sample Acquisition, Analysis, and Preservation (SAAP), established by NASA to develop critical technologies for remote identification, acquisition, processing, analysis, and preservation of materials for the in situ science, engineering characterization, and earth return. Special attention is given to the SAAP architecture, system design, remote sensing system, sample acquisition system, and methods for sample analysis. A diagram of the SAAP preliminary system conceptual design is included.

  11. Climate regulation enhances the value of second generation biofuel technology

    Science.gov (United States)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  12. Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies

    International Nuclear Information System (INIS)

    Walker, Randy M.; Resseguie, David R.; Shankar, Mallikarjun; Gorman, Bryan L.; Smith, Cyrus M.; Hill, David E.

    2010-01-01

    of existing legacy hazardous, radioactive and related informational databases and systems using emerging Web 2.0 technologies. These capabilities were used to interoperate ORNL s waste generating, packaging, transportation and disposal with other DOE ORO waste management contractors. Importantly, the DOE EM objectives were accomplished in a cost effective manner without altering existing information systems. A path forward is to demonstrate and share these technologies with DOE EM, contractors and stakeholders. This approach will not alter existing DOE assets, i.e. Automated Traffic Management Systems (ATMS), Transportation Tracking and Communications System (TRANSCOM), the Argonne National Laboratory (ANL) demonstrated package tracking system, etc.

  13. Generative Design Masterclass

    OpenAIRE

    Dean, Lionel T.

    2017-01-01

    A two day masterclass in generative design delivered by Dean at University of Technology, Sydney, Australia. The audience were University staff and research students. The demonstration used the Grasshopper scripting plug-in for the Computer Aided Design package Rhino.

  14. Nanopore-based fourth-generation DNA sequencing technology.

    Science.gov (United States)

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  15. Nanopore-based Fourth-generation DNA Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Yanxiao Feng

    2015-02-01

    Full Text Available Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.

  16. Knowledge Generation in Technology-Enhanced Health Exhibitions

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Kharlamov, Nikita; Zachariasssen, Maria

    2016-01-01

    This paper presents results from eye-tracking studies of audience interaction and knowledge generation in the technology-enhanced health promotion exhibition PULSE at a science centre in Copenhagen, Denmark. The main purpose of the study was to understand what types of knowledge audiences build...... age 6–12. Health promotion technologies are defined here, as technologies designed specifically for the purpose of health promotion, be they educational or focused on physical activities. The study was conducted in late 2015 and comprised eight families with children in 2nd-6th grade visiting....... Results also showed that the exhibition supported both themes related to discovering new types of physical activity and themes of collaboration and social family activity....

  17. Technology commercialization: From generating ideas to creating economic value

    Directory of Open Access Journals (Sweden)

    Tayeb Dehghani

    2015-06-01

    Full Text Available Frequent changes in competitors' status, technology, and customer interests make it unwise and impossible for companies to rely on their products. Customers always seek to find new products. Consequently, companies should continuously produce and offer superior products to meet customer needs, tastes, and expectations. In fact, every company needs a development plan for its new products. Research has demonstrated that one of the major reasons for rapid development of technology in industrial countries is commercialization of research results. The basis of such commercialization is research-industry collaboration in converting research output into innovation. Today, technology commercialization and its outcomes can provide financial resources required for organizational longevity. The main objective of this article is to propose a model for commercializing research findings from idea generation to initial market entry. We believe that this article can, hopefully, contribute to commercialization literature by acting as a guide to local authorities involved in commercialization cycle.

  18. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  19. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    International Nuclear Information System (INIS)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-01

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO 2 prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a review

  20. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  1. Technology for the Next-Generation-Mobile User Experience

    Science.gov (United States)

    Delagi, Greg

    specialized circuits, highly parallel architectures, and new packaging design. Another concern of the smart-mobile-companion user will be that their device is able to deliver an always-on, always-aware environment in a way that is completely seamless and transparent. These handsets will automatically determine the best and most appropriate modem link from the multiple choices on the device, including WiFi, LTE, 5G, and mmWave, based on which link will optimize performance, battery life, and network charges to deliver the best possible user experience. In the future, adaptive connectivity will require many different solutions, including the standard modem technologies of today, as well as new machine-machine interfaces and body-area-networks. All of the new and exciting applications and features of these mobile-companion devices are going to require additional energy due to added computational requirements. However, a gap in energy efficiency is quickly developing between the energy that can be delivered by today's battery technologies, and the energy needed to deliver all-day operation or 2-day always-on standby without a recharge. New innovations ranging from low-voltage digital and analog circuits, non-volatile memory, and adaptive power management, to energy harvesting, will be needed to further improve the battery life of these mobile companion devices. Increased bandwidth combined with decreased latency, higher power efficiency, energy harvesting, massive multimedia processing, and new interconnect technologies will all work together to revolutionize how we interact with our smart-companion devices. The implementation challenges in bringing these technologies to market may seem daunting and numerous at first, but with the strong collaboration in research and development from universities, government agencies, and corporations, the smart-mobile-companion devices of the future will likely become reality within 5 years!

  2. Generating Relational Competitive Advantage from Strategic Technological Partnership

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2012-01-01

    Collaborating with external partners on strategic technological partnerships (STPs) have been popular phenomena for long, which leads new development in existing theories on competitive advantage. Under the relational view, the competitive advantage is jointly generated by alliance firms. Though...... the relational view of competitive advantage has been proposed for more than a decade, few in-depth empirical researches are down within this field, especially case study on R&D strategic alliance from this perspective. Based on these considerations, we investigate an STP between a Danish transnational...... corporation and a Chinese private firm aiming to understand how to generate relational competitive from an STP? Based on the explorative case study, we find that there are three key processes related to relational competitive advantage: partner selection, relational rents generation and relational rents...

  3. Trends in Food Packaging.

    Science.gov (United States)

    Ott, Dana B.

    1988-01-01

    This article discusses developments in food packaging, processing, and preservation techniques in terms of packaging materials, technologies, consumer benefits, and current and potential food product applications. Covers implications due to consumer life-style changes, cost-effectiveness of packaging materials, and the ecological impact of…

  4. RPC Stereo Processor (rsp) - a Software Package for Digital Surface Model and Orthophoto Generation from Satellite Stereo Imagery

    Science.gov (United States)

    Qin, R.

    2016-06-01

    Large-scale Digital Surface Models (DSM) are very useful for many geoscience and urban applications. Recently developed dense image matching methods have popularized the use of image-based very high resolution DSM. Many commercial/public tools that implement matching methods are available for perspective images, but there are rare handy tools for satellite stereo images. In this paper, a software package, RPC (rational polynomial coefficient) stereo processor (RSP), is introduced for this purpose. RSP implements a full pipeline of DSM and orthophoto generation based on RPC modelled satellite imagery (level 1+), including level 2 rectification, geo-referencing, point cloud generation, pan-sharpen, DSM resampling and ortho-rectification. A modified hierarchical semi-global matching method is used as the current matching strategy. Due to its high memory efficiency and optimized implementation, RSP can be used in normal PC to produce large format DSM and orthophotos. This tool was developed for internal use, and may be acquired by researchers for academic and non-commercial purpose to promote the 3D remote sensing applications.

  5. Packaging for Food Service

    Science.gov (United States)

    Stilwell, E. J.

    1985-01-01

    Most of the key areas of concern in packaging the three principle food forms for the space station were covered. It can be generally concluded that there are no significant voids in packaging materials availability or in current packaging technology. However, it must also be concluded that the process by which packaging decisions are made for the space station feeding program will be very synergistic. Packaging selection will depend heavily on the preparation mechanics, the preferred presentation and the achievable disposal systems. It will be important that packaging be considered as an integral part of each decision as these systems are developed.

  6. Power Generation Technology Choice in the Presence of Climate Policy

    International Nuclear Information System (INIS)

    Pettersson, Fredrik

    2005-01-01

    The overall purpose of this thesis is to analyze power generation technology choices in the presence of climate policy. Special attention is paid to the diffusion of renewable power technologies following a carbon pricing policy, and this topic is analyzed in two self-contained papers. The overall objective of paper 1 is to analyze how future investments in the Swedish power sector can be affected by carbon pricing policies following the Kyoto Protocol. In the first part we focus on the price of carbon following the Kyoto commitments and to what extent this policy will affect the relative competitiveness of the available investment alternatives. The second part pays attention to the possible impacts of technology learning - and the resulting cost decreases - on the economics of power generation in the presence of climate policy. The first part considers the majority of power generation technologies available in Sweden, while the second part focuses solely on the competition between combined cycle natural gas plants and the cheapest renewable power alternative, wind power. Methodologically, we approach the above issues from the perspective of a power generator who considers investing in new generation capacity. This implies that we first of all assess the lifetime engineering costs of different power generation technologies in Sweden, and analyze the impact of carbon pricing on the competitive cost position of these technologies under varying rate-of-return requirements. Overall the results indicate that in general it is not certain that compliance with the Kyoto commitments implies substantial increases in renewable power sources. If, therefore, renewable power sources are favored for reasons beyond climate policy additional policy instruments will be needed. The purpose of paper 2 is to analyze the costs for reducing CO 2 emissions in the power-generating sectors in Croatia, the European part of Russia, Macedonia, Serbia and the Ukraine in 2020 by using a linear

  7. Technology spin-offs generation – a multicase study

    Directory of Open Access Journals (Sweden)

    Jonas Mendes Constante

    2014-05-01

    Full Text Available The objective of this study is to understand how small businesses can innovate through the generation of technological spin-offs, identifying motivations, influences and barriers to achieving this phenomenon. Through a qualitative and exploratory study, we analyzed four cases of technological spin-offs in Santa Catarina State. We collected data through field observations, historical data and semi-structured interviews. The main reasons found for spin-offs creation were: diversification and to complement the value chain of the parent company and to ensure greater focus for a specific technology. The main barrier was lack of capital. Government initiatives to support the creation of new businesses, coupled with the organizational culture open to entrepreneurship and investment in R&D, contributed to the development of spin-offs analyzed. This work contributes to the understanding that small and medium-sized technology-based companies are a source of technological spin-offs and can benefit from the occurrence of this process.

  8. Technology for the storage of radioactive materials packagings during maritime transport. Phase 1

    International Nuclear Information System (INIS)

    Ringot, C.; Chevalier, G.; Tomachevski, E.G.

    1989-01-01

    Following the accident of the M/S Mont Louis on August 25, 1984 carrying UF 6 cylinders, this report is a preliminary study of bibliographic data to help to define recommendations on packaging stowing for sea transport. Data on acceleration to take into account for normal or accidental transport conditions, safe areas on board that should be reserved for radioactive materials and accidents statistics are collected. Main information concerns: number of serious casualities or total losses to ships in European waters, accident causes, collision probability in function of mean distance between ships in the British Channel, selection of 8 reference accidents for future studies

  9. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    Science.gov (United States)

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.

  10. Next-generation technologies and data analytical approaches for epigenomics.

    Science.gov (United States)

    Mensaert, Klaas; Denil, Simon; Trooskens, Geert; Van Criekinge, Wim; Thas, Olivier; De Meyer, Tim

    2014-04-01

    Epigenetics refers to the collection of heritable features that modulate the genome-environment interaction without being encoded in the actual DNA sequence. While being mitotically and sometimes even meiotically transmitted, epigenetic traits often demonstrate extensive flexibility. This allows cells to acquire diverse gene expression patterns during differentiation, but also to adapt to a changing environment. However, epigenetic alterations are not always beneficial to the organism, as they are, for example, frequently identified in human diseases such as cancer. Accurate and cost-efficient genome-scale profiling of epigenetic features is thus of major importance to pinpoint these "epimutations," for example, to monitor the epigenetic impact of environmental exposure. Over the last decade, the field of epigenetics has been revolutionized by several innovative "epigenomics" technologies exactly addressing this need. In this review, we discuss and compare widely used next-generation methods to assess DNA methylation and hydroxymethylation, noncoding RNA expression, histone modifications, and nucleosome positioning. Although recent methods are typically based on "second-generation" sequencing, we also pay attention to still commonly used array- and PCR-based methods, and look forward to the additional advantages of single-molecule sequencing. As the current bottleneck in epigenomics research is the analysis rather than generation of data, the basic difficulties and problem-solving strategies regarding data preprocessing and statistical analysis are introduced for the different technologies. Finally, we also consider the complications associated with epigenomic studies of species with yet unsequenced genomes and possible solutions. Copyright © 2013 Wiley Periodicals, Inc.

  11. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    International Nuclear Information System (INIS)

    Luke, D.E.; Hamp, S.

    2002-01-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities

  12. Inductive energy store (IES) technology for multi-terrawatt generators

    International Nuclear Information System (INIS)

    Sincerny, P.S.; Ashby, S.R.; Childers, F.K.; Deeney, C.; Kortbawi, D.; Goyer, J.R.; Riordan, J.C.; Roth, I.S.; Stallings, C.; Schlitt, L.

    1993-01-01

    An IES pulsed power machine has been built at Physics International Company that serves as a prototype demonstration of IES technology that is scaleable to very large TW generators. The prototype module utilizes inductive store opening switch technology for the final stage of pulse compression and is capable of driving both electron beam Bremsstrahlung loads or imploding plasma loads. Each module consists of a fast discharge Marx driving a water dielectric transfer capacitor which is command triggered to drive the inductive store section of the machine. The inductive store is discharged into the load using a plasma erosion opening switch. Data demonstrating 22% efficient operation into an electron beam diode load are presented. The system issues addressing the combining of these modules into a very large pulsed power machine are discussed

  13. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  14. Natural biopolimers in organic food packaging

    Science.gov (United States)

    Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio

    2014-05-01

    Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology

  15. The external costs of electricity generation: a comparison of generation technologies

    International Nuclear Information System (INIS)

    Ozdemiroglu, E.

    1995-01-01

    Electricity generation, like any economic activity, leads to costs that can be grouped in two categories: (a) private or internal and (b) external. Private costs are those paid by the buyers and sellers of energy within the market system. The external costs, however, are not included in the market price mechanism as they accrue to third parties other than the buyer and the seller. External costs include environmental external costs and non-environmental external costs. There are two conditions for the existence of external costs: (a) market failure, or the inability of markets to account for the cost of environmental impacts of energy generation and the market structure and (b) government or policy failure, or the policies that cause private generators to pay either higher or lower costs than they would if these interventions did not exist. A third reason can be added for the existence of non-environmental externalities: energy security, or certain costs faced by society as a result of over-reliance on imported energy. Section A introduces the concept of external costs and benefits. Section B looks at the environmental externalities of energy generation. The procedure is to develop the methodology to estimate what are known as externality adders, i.e. a monetary value for the environmental costs and benefits associated with selected generation technologies, expressed in pence per kilowatt-hour. The result is an 'adder' because, in principle, the sum can be added to the private cost of generating electricity to obtain a measure of the 'full' or 'social' cost. The selected generation technologies are conventional coal, wind power, small-scale hydro, energy crops, incineration of municipal solid waste and energy recovery from landfill. The data reported are based on the application of the technologies in Scotland, but the methodology can be applied anywhere. Section C takes a brief look at the non-environmental externalities including the general theory and evidence

  16. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  17. Automatic summary generating technology of vegetable traceability for information sharing

    Science.gov (United States)

    Zhenxuan, Zhang; Minjing, Peng

    2017-06-01

    In order to solve problems of excessive data entries and consequent high costs for data collection in vegetable traceablility for farmers in traceability applications, the automatic summary generating technology of vegetable traceability for information sharing was proposed. The proposed technology is an effective way for farmers to share real-time vegetable planting information in social networking platforms to enhance their brands and obtain more customers. In this research, the influencing factors in the vegetable traceablility for customers were analyzed to establish the sub-indicators and target indicators and propose a computing model based on the collected parameter values of the planted vegetables and standard legal systems on food safety. The proposed standard parameter model involves five steps: accessing database, establishing target indicators, establishing sub-indicators, establishing standard reference model and computing scores of indicators. On the basis of establishing and optimizing the standards of food safety and traceability system, this proposed technology could be accepted by more and more farmers and customers.

  18. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  19. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented

  20. Power cycling test of a 650 V discrete GaN-on-Si power device with a laminated packaging embedding technology

    DEFF Research Database (Denmark)

    Song, Sungyoung; Munk-Nielsen, Stig; Uhrenfeldt, Christian

    2017-01-01

    A GaN-on-Si power device is a strong candidate to replace power components based on silicon in high-end market for low-voltage applications, thanks to its electrical characteristics. To maximize opportunities of the GaN device in field applications, a package technology plays an important role...... cycling test of a discrete GaN power device employing a laminated embedded packaging technology subjected to 125 degrees Celsius junction temperature swing. Failure modes are described with collected electrical characteristics and measured temperature data under the test. In conclusion, physical...

  1. Wafer level hermetic packaging based on Cu-Sn isothermal solidification technology

    International Nuclear Information System (INIS)

    Cao Yuhan; Luo Le

    2009-01-01

    A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding parameters are optimized based on both theoretical and experimental results. Verification shows that oxidation of the solder layer, voids and the scalloped-edge appearance of the Cu 6 Sn 5 phase are successfully avoided. An average shear strength of 19.5 MPa and an excellent leak rate of around 1.9 x 10 -9 atm cc/s are possible, meeting the demands of MIL-STD-883E. (semiconductor technology)

  2. Bits of Homeland: Generational and Gender Transformations of Moroccan-Dutch Youth using digital technologies

    NARCIS (Netherlands)

    Leurs, K.H.A.; Ponzanesi, S.

    2013-01-01

    Generational and gendered specificities of digital technology use within migrant families remain understudied and undertheorized (Green & Kabir, 2012). Digital technologies are used among descendants of migrants to sustain and update networks while simultaneously they allow the younger generation to

  3. Determining the feasibility of objective adherence measurement with blister packaging smart technology

    NARCIS (Netherlands)

    Onzenoort, H.A. van; Neef, C.; Verberk, W.W.; van Iperen, H.P.; Leeuw, P.W. de; van der Kuy, P.H.

    2012-01-01

    PURPOSE: The results of a feasibility study of blister-pack smart technology for monitoring medication adherence are reported. METHODS: Research in the area of objective therapy compliance measurement has led to the development of microprocessor-driven systems that record the time a unit dose is

  4. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    Science.gov (United States)

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  5. Tax barriers to four renewable electric generation technologies

    International Nuclear Information System (INIS)

    Jenkins, A.F.; Chapman, R.A.; Reilly, H.E.

    1996-01-01

    The tax loads associated with constructing and owning current and advanced solar central receiver, biomass-electric, and flash and binary cycle geothermal projects are compared to the tax loads incurred by natural gas-fired generation matched in size, hours of operation, and technology status. All but one of the eight renewable projects carry higher tax burdens under current tax codes. These higher tax loads proportionately reduce the competitiveness of renewables. Three tax neutralizing policies are applied to the renewable projects, each restoring competitiveness for some of the projects. The results show that RD and D must be accompanied with such public initiatives as tax neutrality in order for the majority of renewable projects to compete with advanced gas turbines in the emerging electric services market

  6. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  7. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  8. Evaluation of second-generation central receiver technologies

    International Nuclear Information System (INIS)

    Kolb, G.L.; Chavez, J.M.; Klimas, P.; Meinecke, W.; Becker, M.; Kiera, M.

    1993-01-01

    This paper summarizes the results of a study performed by the US and Germany to assess the technical and economic potential of central receiver power plants and to identify the necessary research and development (R ampersand D) activities required to reach demonstration and commercialization. Second generation power plant designs, employing molten-salt and volumetric-air receivers, were assessed at the size of 30 and 100 MWe. The study developed a common guideline and used data from previous system tests and studies. The levelized-energy costs for the second generation plants were estimated and found to be competitive with costs from fossil-fueled power plants. Potential for further cost reductions exists if technical improvements can be introduced successfully in the long term. Additionally, the study presents results of plant reliability and uncertainty analyses. Mid- and long-term technical potentials are described, as well as recommendations for the R ampersand D activities needed to reach the goal of large-scale commercialization. The results of this study have already helped direct research in the US and Europe. For example, the favorable potential for these technologies has led to the Solar Two molten-salt project in the US and the TSA volumetric receiver test in Spain. In addition, early analysis conducted within this study indicated that an advanced thermal storage medium was necessary to achieve favorable economics for the air plant. This led to the design of the thermal storage system currently being tested in Spain. In summary, each of the investigated receiver technologies has mid- and long-term potential for improving plant performance and reducing capital and energy costs (resulting in less than 10 cts/kWh given excellent insolation conditions) in an environmentally safe way and largely independent of fossil-fuel prices

  9. Macroeconomic effects and benefits of different power generation technologies

    International Nuclear Information System (INIS)

    Maeenpaeae, I.; Tervo, H.

    1994-01-01

    The report compares the overall economic effects and benefits of different power station technologies using the FMS long-term simulation model for the Finnish economy. Special emphasis is placed on domestic fuels and new technologies that are on the average of commercialization. The overall economic benefits are compared as such and also assuming the implementation of targets for reductions in carbon dioxide emissions. Without environmental targets nuclear power, natural gas combined cycle and coal gasification combined cycle were shown to be macroeconomically the most profitable means of generating electricity. For the municipal cogeneration of heat and power, a natural gas diesel plant was the most advantageous, followed by solid fuel gasification combined cycle plants. Upon implementation of CO 2 -emission reduction targets nuclear power would remain the most beneficial alternative, but the benefits of wood and wind power rises would be nearly as great. For municipal cogeneration, the wood gasification combined cycle type power plant surpasses gas diesel and the relative benefits of the fluidized bed combustion of wood also increases. (7 refs., 9 tabs.)

  10. Developing the Next Generation Shell Buckling Design Factors and Technologies

    Science.gov (United States)

    Hilburger, Mark W.

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) Project was established in the spring of 2007 by the NASA Engineering and Safety Center (NESC) in collaboration with the Constellation Program and Exploration Systems Mission Directorate. The SBKF project has the current goal of developing less-conservative, robust shell buckling design factors (a.k.a. knockdown factors) and design and analysis technologies for light-weight stiffened metallic launch vehicle (LV) structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s LV development and performance risks. In particular, it is expected that the results from this project will help reduce the reliance on testing, provide high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. The SBKF project objectives and approach used to develop and validate new design technologies are presented, and provide a glimpse into the future of design of the next generation of buckling-critical launch vehicle structures.

  11. Overview of steam generator tube-inspection technology

    International Nuclear Information System (INIS)

    Obrutsky, L.; Renaud, J.; Lakhan, R.

    2014-01-01

    Degradation of steam generator (SG) tubing due to both mechanical and corrosion modes has resulted in extensive repairs and replacement of SGs around the world. The variety of degradation modes challenges the integrity of SG tubing and, therefore, the stations' reliability. Inspection and monitoring aimed at timely detection and characterization of the degradation is a key element for ensuring tube integrity. Up to the early-70's, the in-service inspection of SG tubing was carried out using single-frequency eddy current testing (ET) bobbin coils, which were adequate for the detection of volumetric degradation. By the mid-80's, additional modes of degradation such as pitting, intergranular attack, and axial and circumferential inside or outside diameter stress corrosion cracking had to be addressed. The need for timely, fast detection and characterization of these diverse modes of degradation motivated the development in the 90's of inspection systems based on advanced probe technology coupled with versatile instruments operated by fast computers and remote communication systems. SG inspection systems have progressed in the new millennium to a much higher level of automation, efficiency and reliability. Also, the role of Non Destructive Evaluation (NDE) has evolved from simple detection tools to diagnostic tools that provide input into integrity assessment decisions, fitness-far-service and operational assessments. This new role was motivated by tighter regulatory requirements to assure the safety of the public and the environment, better SG life management strategies and often self-imposed regulations. It led to the development of advanced probe technologies, more reliable and versatile instruments and robotics, better training and qualification of personnel and better data management and analysis systems. This paper provides a brief historical perspective regarding the evolution of SG inspections and analyzes the motivations behind that evolution. It presents an

  12. NASA Technology Utilization House technical support package Summary of results and house description

    Science.gov (United States)

    1979-01-01

    The Technology Utilization House (Tech House) was designed and constructed to demonstrate to the building industry and the public the benefits of aerospace technology and other new technology that are presently available or will be in very near future. Use of solar energy, conservation of energy and of water, safety, and security were incorporated in the design of the house. The terms to be incorporated into the house and to assist in the design of the house were evaluated. An architectural engineering team was employed to investigate energy conservation ideas, determine cost effectiveness of new materials and systems, and prepare specifications and drawings for the house. The Tech House was constructed during the spring of 1976. All the systems were monitored to insure proper operation, and data were collected during a one year occupancy. Results obtained during the family live-in period, comments on the acceptance of the various energy-saving systems by the family, and suggestions for improvement of the systems are presented.

  13. Application of the air/water cushion technology for handling of heavy waste packages in Sweden and France

    International Nuclear Information System (INIS)

    Bosgiraud, Jean-Michel; Seidler, Wolf K.; Londe, Louis; Thurner, Erik; Pettersson, Stig

    2008-01-01

    The disposal of certain types of radioactive waste canisters in a deep repository involves handling and emplacement of very heavy loads. The weight of these particular canisters can be in the order of 20 to 50 metric tons. They generally have to be handled underground in openings that are not much larger than the canisters themselves as it is time consuming and expensive to excavate and backfill large openings in a repository. This therefore calls for the development of special technology that can meet the requirements for safe operation in an industrial scale in restrained operating spaces. Air/water cushion lifting systems are used world wide in the industry for moving heavy loads. However, until now the technology needed for emplacing heavy cylindrical radioactive waste packages in bored drifts (with narrow annular gaps) has not been developed or demonstrated previously. This paper describes the related R and D work carried out by ANDRA (for air cushion technology) and by SKB and Posiva (for water cushion technology) respectively, mainly within the framework of the European Commission (EC) funded Integrated Project called ESDRED (6th European Framework Programme). The background for both the air and the water cushion applications is presented. The specific characteristics of the two different emplacement concepts are also elaborated. The various phases of the Test Programmes (including the Prototype phases) are detailed and illustrated for the two lifting media. Conclusions are drawn for each system developed and evaluated. Finally, based on the R and D experience, improvements deemed necessary for an industrial application are listed. The tests performed so far have shown that the emplacement equipment developed is operating efficiently. However further tests are required to verify the availability and the reliability of the equipment over longer periods of time and to identify the modifications that would be needed for an industrial application in a nuclear

  14. Advanced flip chip packaging

    CERN Document Server

    Lai, Yi-Shao; Wong, CP

    2013-01-01

    Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable. This book also: Offers broad-ranging chapters with a focus on IC-package-system integration Provides viewpoints from leading industry executives and experts Details state-of-the-art achievements in process technologies and scientific research Presents a clear development history and touches on trends in the industry while also discussing up-to-date technology information Advanced Flip Chip Packaging is an ideal book for engineers, researchers, and graduate students interested in the field of flip chip packaging.

  15. R and D areas for next generation desalination and water purification technologies

    International Nuclear Information System (INIS)

    Raha, A.; Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    By 2020, desalination and water purification technologies are expected to contribute significantly to ensure a safe, sustainable, affordable and adequate water supply. The cost of producing water from the current generation desalination technologies has declined over time at a rate of only approximately 4% per year. So we need to accelerate our research and development (R and D) activities with a near and long term objective for evolution of current generation desalination technology and to create revolutionary next generation advanced desalination and water purification technologies which will offer a promise of step reduction in cost of producing water. There are five broad technological areas-thermal technologies, membrane technologies, alternate technologies, concentrate management technologies, reuse and recycle technologies that encompass the spectrum of desalination technology. In this paper high priority research areas in all the above technologies areas are discussed to make decision about research direction that will help to mitigate our nation's future water supply challenges. (author)

  16. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  17. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  18. Packaging fluency

    DEFF Research Database (Denmark)

    Mocanu, Ana; Chrysochou, Polymeros; Bogomolova, Svetlana

    2011-01-01

    Research on packaging stresses the need for packaging design to read easily, presuming fast and accurate processing of product-related information. In this paper we define this property of packaging as “packaging fluency”. Based on the existing marketing and cognitive psychology literature...... on packaging design and processing fluency, our aim is to define and conceptualise packaging fluency. We stress the important role of packaging fluency since it is anticipated that a fluent package would influence the evaluative judgments for a product. We conclude this paper by setting the research agenda...

  19. Next-generation ionomer encapsulants for thin film technology

    Science.gov (United States)

    Czyzewicz, Robin; Smith, C. Anthony

    2011-09-01

    The characteristic properties of newly developed ionomer-based encapsulants are highlighted along with an in-depth analysis of moisture ingress, electrical and mechanical properties. The mechanical properties of these encapsulants with their high stiffness and strength have been found to allow the use of thinner glass and a possible shift from tempered to annealed glass. Lower-cost mounting options may be explored through full-module stress/deflection measurement capability and competencies developed in world-class finite-element modeling of system parameters. The superior electrical and moisture properties may allow modules to be produced without the use of an additional edge seal. These new materials have improved melt flow properties when compared to other encapsulant families such as EVA or PVB. This allows for faster processing which reduces production cost by shortening the lamination cycle. During the lamination process the sheets show excellent dimensional stability and low shrinkage behavior; and there is no need for curing, thus energy costs are lower due to lower lamination temperature. As advancement of technology proceeds across the entire PV industry, next generation ionomer encapsulants have been developed to keep up with the pace.

  20. Applications of Active Packaging in Breads

    Directory of Open Access Journals (Sweden)

    Ali Göncü

    2017-10-01

    Full Text Available Changes on consumer preferences lead to innovations and improvements in new packaging technologies. With these new developments passive packaging technologies aiming to protect food nowadays have left their place to active and intelligent packaging technologies that have other various functions beside protection of food. Active packaging is defined as an innovative packaging type and its usage increases the shelf life of food significantly. Applications of active packaging have begun to be used for packaging of breads. In this study active packaging applications in breads have been reviewed.

  1. Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2017-09-01

    Full Text Available Replication-defective (RD recombinant simian virus 40 (SV40-based gene delivery vectors hold a great potential for clinical applications because of their presumed non-immunogenicity and capacity to induce immune tolerance to the transgene products in humans. However, the clinical use of SV40 vectors has been hampered by the lack of a packaging cell line that produces replication-competent (RC free SV40 particles in the vector production process. To solve this problem, we have adapted the current SV40 vector genome used for the production of vector particles and generated a novel Vero-based packaging cell line named SuperVero that exclusively expresses the SV40 large T antigen. SuperVero cells produce similar numbers of SV40 vector particles compared to the currently used packaging cell lines, albeit in the absence of contaminating RC SV40 particles. Our unique SV40 vector platform named SVac paves the way to clinically test a whole new generation of SV40-based therapeutics for a broad range of important diseases.

  2. Preferences of Informal Carers on Technology Packages to Support Meal Production by People Living with Dementia, Elicited from Personalised AT and ICT Product Brochures

    Directory of Open Access Journals (Sweden)

    Maria Laura De Filippis

    2017-01-01

    Full Text Available Assistive technology (AT can help support the continued independence of people living with dementia, supported by informal carers. Opinions and preferences of informal carers towards a range of assistive and digital information and communication technologies (ICT to support food purchase and menu selection, including navigation and online shopping, and safe meal-making by individuals living with dementia were investigated. General attitudes and experiences with assistive technologies were first probed by means of a focus group with carers (n = 6, organised through the Alzheimer’s Society in Nottingham, England. A series of AT/ICT product brochures were then produced, describing packages of technologies to enable meal production. Task-specific questions were asked of carers (n = 10 at local Memory Cafés as to the perceived capabilities of each individual for shopping and meal-making. Carers were asked to make pair-wise choices in order to select a personalised brochure and to complete a questionnaire to elicit the practicality, desirability and affordability of specific products and to probe for preferences amongst key features. Opinions on ease-of-use, aesthetics, expected safety-in-use, independence of use and stigma related to the technology packages were also collected. Results showed that carers are able to make detailed choices and express preferences about assistive and digital technologies for the individuals in their care, and customise their enabler package. Most believed that having an enabler package would improve safety. Greater exposure of carers to newer digital products would be beneficial. The brochure method could be employed on consumer websites and by AT assessors.

  3. Generational Differences in Technology Adoption in Community Colleges

    Science.gov (United States)

    Rosario, Victoria C.

    2012-01-01

    This research study investigated the technological perceptions and expectations of community college students, faculty, administrators, and Information Technology (IT) staff. The theoretical framework is based upon two assumptions on the process of technological innovation: it can be explained by diffusion of adoption theory, and by studying the…

  4. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  5. Discovery of posttranscriptional regulatory RNAs using next generation sequencing technologies.

    Science.gov (United States)

    Gelderman, Grant; Contreras, Lydia M

    2013-01-01

    Next generation sequencing (NGS) has revolutionized the way by which we engineer metabolism by radically altering the path to genome-wide inquiries. This is due to the fact that NGS approaches offer several powerful advantages over traditional methods that include the ability to fully sequence hundreds to thousands of genes in a single experiment and simultaneously detect homozygous and heterozygous deletions, alterations in gene copy number, insertions, translocations, and exome-wide substitutions that include "hot-spot mutations." This chapter describes the use of these technologies as a sequencing technique for transcriptome analysis and discovery of regulatory RNA elements in the context of three main platforms: Illumina HiSeq, 454 pyrosequencing, and SOLiD sequencing. Specifically, this chapter focuses on the use of Illumina HiSeq, since it is the most widely used platform for RNA discovery and transcriptome analysis. Regulatory RNAs have now been found in all branches of life. In bacteria, noncoding small RNAs (sRNAs) are involved in highly sophisticated regulatory circuits that include quorum sensing, carbon metabolism, stress responses, and virulence (Gorke and Vogel, Gene Dev 22:2914-2925, 2008; Gottesman, Trends Genet 21:399-404, 2005; Romby et al., Curr Opin Microbiol 9:229-236, 2006). Further characterization of the underlying regulation of gene expression remains poorly understood given that it is estimated that over 60% of all predicted genes remain hypothetical and the 5' and 3' untranslated regions are unknown for more than 90% of the genes (Siegel et al., Trends Parasitol 27:434-441, 2011). Importantly, manipulation of the posttranscriptional regulation that occurs at the level of RNA stability and export, trans-splicing, polyadenylation, protein translation, and protein stability via untranslated regions (Clayton, EMBO J 21:1881-1888, 2002; Haile and Papadopoulou, Curr Opin Microbiol 10:569-577, 2007) could be highly beneficial to metabolic

  6. INFLUENCE OF VARIOUS RAW MATERIAL AND TECHNOLOGICAL REGIMES OF ITS RECYCLING ON QUALITATIVE INDICES OF SEMI-FINISHED PRODUCT USED FOR PACKAGE PRINTING

    Directory of Open Access Journals (Sweden)

    V. V. Kuzmich

    2014-01-01

    Full Text Available The paper has investigated influence of various technologies on recycling of vegetal raw material with the purpose to obtain the desired product used for package printing. Influence of various technological regimes and introduction of fresh polyethylene additives for recycled raw material on qualitative indices of the desired product has been studied in the paper. Investigations of preliminary aquatic hydrolysis of vegetal raw material have shown that in order to obtain high quality cellulose from vegetal raw material it is necessary that this cellulose has not less than 2-3 % of hemicellulose otherwise its qualitative indices are significantly deteriorated that is important for packaging printing. Usage of carbon dioxide aqueous solution for preliminary vegetal raw material hydrolysis contributes to reduction in destruction of cellulose carbo-hydrate. This improves qualitative indices of the obtained desired product that is cellulose which is used for package printing.Recommendations for sulphate pulping of vegetal raw material with preliminary hydrolysis have been prepared with the purpose to improve physical and mechanical characteristics of the obtained desired product - cellulose on the basis of the obtained data on content of hemicellulose in cellulose.While investigating recycled polymers the obtained results have demonstrated that increase of low- molecular product content in them looks rather typical. This suggests that packaging will have lower qualitative indices while using polymers being kept in waste deposits. In order to avoid this phenomena it is necessary to add 20-30 % of fresh polymers during their recycling.

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  8. ANITA-2000 activation code package - updating of the decay data libraries and validation on the experimental data of the 14 MeV Frascati Neutron Generator

    Directory of Open Access Journals (Sweden)

    Frisoni Manuela

    2016-01-01

    Full Text Available ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1 containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2 containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E are shown and discussed in this paper.

  9. System issues for multichip packaging

    Science.gov (United States)

    Sage, Maurice G.; Hartley, Neil

    1991-04-01

    It is now generally recognised that the performance of an electronic system is governed by the choice of packaging technology. Never before have the technical and financial implications of a packaging technology choice been more critical and never before has technology interdependence or industry globalisation made the choice more difficult. This paper is aimed at examining the choices available and the system issues resulting from the move from single chip to multichip packaging.

  10. New technologies to enhance quality and safety of table eggs: ultra-violet treatment and modified atmosphere packaging

    Directory of Open Access Journals (Sweden)

    Frédérique Pasquali

    2014-12-01

    Full Text Available In the present study the effect of ultra-violet (UV treatment alone and in combination with 100% CO2 modified atmosphere packaging (MAP was evaluated both on the survival of naturally occurring bacteria, as well as on quality parameters of table eggs during 28 days of storage at 21°C. Table eggs were collected from the conveyor belt after the UV module, and placed on carton trays. A representative number of carton trays were packed in a high barrier multilayer pouch filled with 100% CO2. All eggs were stored at 21°C and analysed at 0, 1, 7, 14, 21 and 28 days of storage. Eggs not treated with UV and not packed were also included. On the eggshells total colony count, total coliforms and faecal coliforms counts, as well as the detection of Salmonella spp. were investigated. Moreover, chemical-functional parameters such as weight loss, albumen pH and Haugh Unit (HU were evaluated. The total colony count on UV treated table eggs was approximately 1 log10 CFU/g lower than untreated eggs (2.27 vs 3.29 log10 CFU/g. During storage, CO2 packed eggs maintained the initial values of HU, whereas the albumen pH decreased up to 1.5-2 points in comparison to unpacked eggs. The UV treatment was effective in reducing the total colony count on the surface of table eggs. MAP showed a great potential in maintaining/enhance the technological properties of egg constituents (higher foam stability of the albumen for meringue preparation without significantly impacting on the microbial load of table eggs.

  11. Perspectives on next-generation technology for environmental sensor networks

    Science.gov (United States)

    Barbara J. Benson; Barbara J. Bond; Michael P. Hamilton; Russell K. Monson; Richard. Han

    2009-01-01

    Sensor networks promise to transform and expand environmental science. However, many technological difficulties must be overcome to achieve this potential. Partnerships of ecologists with computer scientists and engineers are critical in meeting these challenges. Technological issues include promoting innovation in new sensor design, incorporating power optimization...

  12. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  13. Semi-stochastic generator (FRAGMA) of 2D fractured media by mechanistic analogy - Application to reactive transport in a fractured package of vitrified nuclear waste

    International Nuclear Information System (INIS)

    Crevoisier, D.; Bouyer, F.; Gin, St.

    2011-01-01

    In a geological storage context, the durability of nuclear glass is first and foremost determined by its alteration rate and by the surface being leached. This surface is comprised of a network of three-dimensional cracks due to the stress relief generated by the cooling of glass packages. In order to improve the methods employed so far for quantifying the impact of a fissure network on the life time of glass packages in geological disposal, we have developed a software, referred to as FRAGMA, which can be used to generate a realistic 2D geometry of the fissure network inside the glass based on mechanistic analogies. This type of tool is required for providing a mesh adapted to the calculation codes simulating water flow and glass alteration in such a medium. The main principles of this tool have been developed and its parameters have been defined based on the analysis of theoretical fracture processes and observations of real fissure networks. The 2D networks developed using FRAGMA are compared with cross-sections of real networks. It is outlined that the general structure of the fracture maps is correctly reproduced, compared to the observations; consequently, it is relevant to apply the tool for further studies in order to generate more complex crack networks, and to study the channeling in such structures, as expected by the strong organized pattern of the experimental fracture maps. (authors)

  14. More than Moore technologies for next generation computer design

    CERN Document Server

    2015-01-01

    This book provides a comprehensive overview of key technologies being used to address challenges raised by continued device scaling and the extending gap between memory and central processing unit performance.  Authors discuss in detail what are known commonly as “More than Moore” (MtM), technologies, which add value to devices by incorporating functionalities that do not necessarily scale according to “Moore's Law”.  Coverage focuses on three key technologies needed for efficient power management and cost per performance: novel memories, 3D integration and photonic on-chip interconnect.

  15. Clinical operations generation next… The age of technology and outsourcing.

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  16. Clinical operations generation next… The age of technology and outsourcing

    Directory of Open Access Journals (Sweden)

    Priya Temkar

    2015-01-01

    Full Text Available Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  17. Clinical operations generation next… The age of technology and outsourcing

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations. PMID:26623386

  18. Digital Waveform Technology and the Next Generation of Mass Spectrometers

    Science.gov (United States)

    Hoffman, Nathan M.; Gotlib, Zachary P.; Opačić, Bojana; Huntley, Adam P.; Moon, Ashley M.; Donahoe, Katherine E. G.; Brabeck, Gregory F.; Reilly, Peter T. A.

    2018-02-01

    Ion traps and guides are integral parts of current commercial mass spectrometers. They are currently operated with sinusoidal waveform technology that has been developed over many years. Recently, digital waveform technology has begun to emerge and promises to supplant its older cousin because it presents new capabilities that result from the ability to instantaneously switch the frequency and duty cycle of the waveforms. This manuscript examines these capabilities and reveals their uses and effects on instrumentation.

  19. Comments on US LMFBR steam generator base technology

    International Nuclear Information System (INIS)

    Simmons, W.R.

    1984-01-01

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects

  20. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  1. Packaging Technology for Dielectric-Coating-Less Heavy Ion Radiation Testing of High-Voltage (HV) Electronic Parts

    Science.gov (United States)

    Woodworth, Andrew; Chen, Liangyu

    2017-01-01

    Testing high voltage (HV) electronic parts (greater than 300 V) for sudden event effects (SEE) caused by cosmic rays in the space environment, consisting of energetic heavy-ions, and neutron radiation in the upper atmosphere is a crucial step towards using these parts in spacecraft and aircraft. Due to the nature of cosmic radiation and neutrons, electronic parts are tested for SEE without any packaging and/or shielding over the top of the device. In the case of commercial HV parts, the top of the packaging is etched off and then a thin dielectric coating is placed over the part in order to avoid electrical arcing between the device surface and wire bonds and other components. Even though the effects of the thin dielectric layer on SEE testing can be accounted for, the dielectric layer significantly hinders post testing failure analysis. Replicating the test capability of state-of-the-art packaging while eliminating the need for post radiation test processing of the die surface (that obscures failure analysis) is the goal. To that end, a new packaging concept for HV parts has been developed that requires no dielectric coating over the part. Testing of prototype packages used with Schottky diodes (rated at 1200V) has shown no electrical arcing during testing and leakage currents during reverse bias testing are within the manufactures specifications.

  2. Characterization of integrated circuit packaging materials

    CERN Document Server

    Moore, Thomas

    1993-01-01

    Chapters in this volume address important characteristics of IC packages. Analytical techniques appropriate for IC package characterization are demonstrated through examples of the measurement of critical performance parameters and the analysis of key technological problems of IC packages. Issues are discussed which affect a variety of package types, including plastic surface-mount packages, hermetic packages, and advanced designs such as flip-chip, chip-on-board and multi-chip models.

  3. PING 2.0: an R/Bioconductor package for nucleosome positioning using next-generation sequencing data.

    Science.gov (United States)

    Woo, Sangsoon; Zhang, Xuekui; Sauteraud, Renan; Robert, François; Gottardo, Raphael

    2013-08-15

    MNase-Seq and ChIP-Seq have evolved as popular techniques to study chromatin and histone modification. Although many tools have been developed to identify enriched regions, software tools for nucleosome positioning are still limited. We introduce a flexible and powerful open-source R package, PING 2.0, for nucleosome positioning using MNase-Seq data or MNase- or sonicated- ChIP-Seq data combined with either single-end or paired-end sequencing. PING uses a model-based approach, which enables nucleosome predictions even in the presence of low read counts. We illustrate PING using two paired-end datasets from Saccharomyces cerevisiae and compare its performance with nucleR and ChIPseqR. PING 2.0 is available from the Bioconductor website at http://bioconductor.org. It can run on Linux, Mac and Windows.

  4. Comparative analysis of the agro-technology generation and ...

    African Journals Online (AJOL)

    On technology transfer, the university grouped farmers and targeted them with programmes based on need more than the ADP. The ADP system had better knowledge of rural dynamics than the university system. The ADP had poor staff training facilities and provided inadequate training incentives to staff compared with the ...

  5. Generations of Research on New Technologies in Mathematics Education

    Science.gov (United States)

    Sinclair, Nathalie

    2014-01-01

    This article traces some of the influential ideas and motivations that have shaped a large part of the research on the use of new technologies in mathematics education over the past 40 years. Particular attention is focused on Papert's legacy, Celia's Hoyles' transformation of it, and how both relate to the current research landscape that features…

  6. Advanced relay technologies in next generation wireless communications

    CERN Document Server

    Krikidis, Ioannis

    2016-01-01

    This book details the use of the cooperative networks/relaying approach in new and emerging telecommunications technologies such as full-duplex radio, massive multiple-input multiple-output (MIMO), network coding and spatial modulation, and new application areas including visible light communications (VLC), wireless power transfer, and 5G.

  7. Impact of externalities on various power generation technologies

    International Nuclear Information System (INIS)

    Rubow, L.

    2008-01-01

    This analysis develops and compares the cost of electricity of the envisioned nuclear power plant at Belene1 (with approximately 2000 MW of installed capacity), with the cost of electricity from alternate generation sources, with a view toward the Bulgarian economy. The logical alternate generating sources are: New Lignite fueled Thermal Electric Power Plants (TEPPs) New Coal fueled TEPPs (based on imported coal), and New Natural gas fueled TEPPs. The developed economic cost of electricity considers the internalized costs such as capital, fuel and operating costs, as well as the external costs, such as health and environmental impacts, to the extent possible

  8. Advanced organics for electronic substrates and packages

    CERN Document Server

    Fletcher, Andrew E

    1992-01-01

    Advanced Organics for Electronic Substrates and Packages provides information on packaging, which is one of the most technologically intensive activities in the electronics industry. The electronics packaging community has realized that while semiconductor devices continue to be improved upon for performance, cost, and reliability, it is the interconnection or packaging of these devices that will limit the performance of the systems. Technology must develop packaging for transistor chips, with high levels of performance and integration providing cooling, power, and interconnection, and yet pre

  9. Computational package for the dynamic analysis of synchronous generators and their controls; Paquete computacional para el analisis de generadores sincronos y sus controles

    Energy Technology Data Exchange (ETDEWEB)

    Perez Guillen, Jesus Artemio

    1997-12-31

    This thesis presents a computational package for the dynamic analysis of synchronous generators and their controls in a machine - infinite bus system. The package is integrated by a graphic interface for Windows environment and several models for the different components of the generation system. The development of the graphic interface was carried out with object oriented programming under Windows environment, available from Borland C++, which generates a group of menus that integrates an environment of interactive and versatile simulation. The package contains mathematical models of third, fourth, fifth and sixth order for synchronous generators of round and salient poles. Several mathematical models for the excitation systems DC1A, AC1A and ST1A, according to the IEEE classification, are included. Models for thermal and hydraulic turbines with governor of speed are also included, as well as a mathematical model for the power system stabilizer and magnetic saturation on synchronous generators. Numerical methods like Euler, Modified Euler and Runge Kutta of second and fourth order are used to solve the characteristics differential equations of the system under study. Algorithms for graphic generation includes phasor diagram, capability and saturation curves for synchronous machine. Computer models are validated and sensitivity analysis is carried out in order to assess the ef ect of type of model for synchronous machine, excitation systems, power system stabilizer, magnetic saturation in the synchronous generator and different numerical methods of integration. The computational package is useful in teaching and research on the dynamic response of synchronous machines and their controls. [Espanol] En este trabajo se presenta el desarrollo de un paquete computacional para el analisis dinamico de generadores sincronos y sus controles en el esquema de una unidad de generacion - bus infinito. El paquete esta integrado por una interfaz grafica para ambiente Windows y un

  10. Primary electric power generation systems for advanced-technology engines

    Science.gov (United States)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  11. Occupational therapy students' technological skills: Are 'generation Y' ready for 21st century practice?

    Science.gov (United States)

    Hills, Caroline; Ryan, Susan; Smith, Derek R; Warren-Forward, Helen; Levett-Jones, Tracy; Lapkin, Samuel

    2016-12-01

    Technology is becoming increasingly integral to the practice of occupational therapists and part of the everyday lives of clients. 'Generation Y' are purported to be naturally technologically skilled as they have grown up in the digital age. The aim of this study was to explore one cohort of 'Generation Y' occupational therapy students' skills and confidence in the use of technologies relevant to contemporary practice. A cross-sectional survey design was used to collect data from a cohort of 274 students enrolled in an Australian undergraduate occupational therapy programme. A total of 173 (63%) students returned the survey. Those born prior to 1982 were removed from the data. This left 155 (56%) 'Generation Y' participants. Not all participants reported to be skilled in everyday technologies although most reported to be skilled in word, Internet and mobile technologies. Many reported a lack of skills in Web 2.0 (collaboration and sharing) technologies, creating and using media and gaming, as well as a lack of confidence in technologies relevant to practice, including assistive technology, specialist devices, specialist software and gaming. Overall, the results suggested that this group of 'Generation Y' students were not universally skilled in all areas of technology relevant to practice but appear to be skilled in technologies they use regularly. Recommendations are therefore made with view to integrating social networking, gaming, media sharing and assistive technology into undergraduate programmes to ensure that graduates have the requisite skills and confidence required for current and future practice. © 2016 Occupational Therapy Australia.

  12. Next generation sequencing (NGS)technologies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vuyisich, Momchilo [Los Alamos National Laboratory

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  13. Contact Metallization and Packaging Technology Development for SiC Bipolar Junction Transistors, PiN Diodes, and Schottky Diodes Designed for Long-Term Operations at 350degreeC

    Science.gov (United States)

    2006-05-01

    for high temperature contacts. A Bipolar Junction Transistor ( BJT ) in 4H-SiC can operate at higher temperatures (300oC) because its operation does not...AFRL-PR-WP-TR-2006-2181 CONTACT METALLIZATION AND PACKAGING TECHNOLOGY DEVELOPMENT FOR SiC BIPOLAR JUNCTION TRANSISTORS , PiN DIODES, AND...SUBTITLE CONTACT METALLIZATION AND PACKAGING TECHNOLOGY DEVELOPMENT FOR SiC BIPOLAR JUNCTION TRANSISTORS , PiN DIODES, AND SCHOTTKY DIODES DESIGNED

  14. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  15. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  16. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  17. Scaling of Fiber Laser Systems Based on Novel Components and High Power Capable Packaging and Joining Technologies

    Science.gov (United States)

    2010-09-01

    l ri Laser Splicing/ Welding r li i / l i Contact Bonding t t i Wafer Level Bonding Mineralic , Fusion. Anodic, Eutectic, Glass-frit, liquid...stress “cold” bonding NO creep NO „out-gassing“ Bonding and Packaging of Optical Components Mineralic Bonding University Glasgow © Fraunhofer IOF

  18. Packaging Printing Today

    Directory of Open Access Journals (Sweden)

    Stanislav Bolanča

    2015-12-01

    Full Text Available Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. The possibilities of particular printing techniques for optimal production of the determined packaging were studied in the paper. The problem was viewed from the technological and economical aspect. The possible printing quality and the time necessary for the printing realization were taken as key parameters. An important segment of the production and the way of life is alocation value and it had also found its place in this paper. The events in the field of packaging printing in the whole world were analyzed. The trends of technique developments and the printing technology for packaging printing in near future were also discussed.

  19. Hermeticity of electronic packages

    CERN Document Server

    Greenhouse, Hal

    2000-01-01

    This is a book about the integrity of sealed packages to resist foreign gases and liquids penetrating the seal or an opening (crack) in the package-especially critical to the reliability and longevity of electronics. The author explains how to predict the reliability and the longevity of the packages based on leak rate measurements and the assumptions of impurities. Non-specialists in particular will benefit from the author's long involvement in the technology. Hermeticity is a subject that demands practical experience, and solving one problem does not necessarily give one the background to so

  20. Hermeticity of electronic packages

    CERN Document Server

    Greenhouse, Hal; Romenesco, Bruce

    2011-01-01

    This is a book about the integrity of sealed packages to resist foreign gases and liquids penetrating the seal or an opening (crack) in the packageùespecially critical to the reliability and longevity of electronics. The author explains how to predict the reliability and the longevity of the packages based on leak rate measurements and the assumptions of impurities. Non-specialists in particular will benefit from the author's long involvement in the technology. Hermeticity is a subject that demands practical experience, and solving one problem does not necessarily give one the background to so

  1. GUFDIPP - the GUERAP user-friendly data-input programme package for generating and modifying GUERAP III data-files

    International Nuclear Information System (INIS)

    Richards, A.G.

    1989-11-01

    This document describes the GUERAP User-Friendly Data-Input Program Package, called GUFDIPP for short. GUFDIPP is a large suite of programs, developed at RAL (Rutherfield Appleton Laboratory), with the specific purpose of providing a user-friendly interface to the GUERAP III straylight analysis program. GUERAP III is a powerful, Monte-Carlo based program (supplied under licence from ESTEC) for simulating the transfer of electromagnetic radiation between the surfaces of a physical structure and it requires a rather detailed data-set to describe the structure to be modelled. GUFDIPP was developed in order to permit the GUERAP III dataset to be easily, efficiently and accurately built-up and modified, so that access to the GUERAP III program would be much easier, therefore encouraging its use. This document acts as a user-manual for GUFDIPP. Perhaps the most powerful of GUFDIPP's capabilities are those which permit the extraction of subsets of surfaces from a model's datasets to create a new 'sub-model' and the ability to 'add' two models' datasets to create a new 'merged' model. These permit considerable time-saving when entering constraint surface information for a sensor model. (author)

  2. Techno-economic evaluation of hybrid energy storage technologies for a solar–wind generation system

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Shi, J.; Dou, J.; Zhou, S.; Jin, T.

    2013-01-01

    Highlights: ► The techno-economic feasibility of four ESSs is studied. ► The hybrid ESS applied on a renewable energy generation system is feasible. ► From the technical and economic viewpoint, case 3 is the optimal hybrid ESS. -- Abstract: Huazhong University of Science and Technology is planning to establish a hybrid solar–wind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted

  3. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Sudhakar [Lehigh Univ., Bethlehem, PA (United States). Mechanical Engineering and Mechanics; Oztekin, Alparslan [Lehigh Univ., Bethlehem, PA (United States); Chen, John [Lehigh Univ., Bethlehem, PA (United States); Tuzla, Kemal [Lehigh Univ., Bethlehem, PA (United States); Misiolek, Wojciech [Lehigh Univ., Bethlehem, PA (United States)

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  4. Status of Mirror Technology for the Next Generation Space Telescope

    Science.gov (United States)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight

  5. [Technological convergence will quickly generate disruptive innovations in oncology].

    Science.gov (United States)

    Coucke, Ph A

    2016-06-01

    Convergence between information and communication technology and recent developments in medical care will totally change the health care sector. The way we perform diagnosis, treatment and follow-up will undergo disruptive changes in a very near future. We intend to highlight this statement by a limited selection of examples of radical innovations, especially in the field of oncology. To be totally disruptive and to illustrate the concept of "lateral power" - especially cognitive distribution - the list of references is only made up of internet links. Anyone - patients included - can easily and instantly access to this information everywhere.

  6. CRISPR-Based Typing and Next-Generation Tracking Technologies.

    Science.gov (United States)

    Barrangou, Rodolphe; Dudley, Edward G

    2016-01-01

    Bacteria occur ubiquitously in nature and are broadly relevant throughout the food supply chain, with diverse and variable tolerance levels depending on their origin, biological role, and impact on the quality and safety of the product as well as on the health of the consumer. With increasing knowledge of and accessibility to the microbial composition of our environments, food supply, and host-associated microbiota, our understanding of and appreciation for the ratio of beneficial to undesirable bacteria are rapidly evolving. Therefore, there is a need for tools and technologies that allow definite, accurate, and high-resolution identification and typing of various groups of bacteria that include beneficial microbes such as starter cultures and probiotics, innocuous commensals, and undesirable pathogens and spoilage organisms. During the transition from the current molecular biology-based PFGE (pulsed-field gel electrophoresis) gold standard to the increasingly accessible omics-level whole-genome sequencing (WGS) N-gen standard, high-resolution technologies such as CRISPR-based genotyping constitute practical and powerful alternatives that provide valuable insights into genome microevolution and evolutionary trajectories. Indeed, several studies have shown potential for CRISPR-based typing of industrial starter cultures, health-promoting probiotic strains, animal commensal species, and problematic pathogens. Emerging CRISPR-based typing methods open new avenues for high-resolution typing of a broad range of bacteria and constitute a practical means for rapid tracking of a diversity of food-associated microbes.

  7. Food-packaging materials: migration of constituents into food contents. January 1982-December 1988 (Citations from Packaging Science and technology Abstracts data base). Report for January 1982-December 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This bibliography contains citations concerning the migration of food-packaging materials into foods. Plastic, glass, cardboard, metal, and ceramic containers are discussed. Techniques for analyzing packaging contamination are included. (Contains 90 citations fully indexed and including a title list.)

  8. Budget performance reporting and construction work packaging

    International Nuclear Information System (INIS)

    Strong, M.G.; Weyers, L.L.

    1976-01-01

    A changing financial, technological, and regulatory environment has increased the complexity, costliness, and risk involved in constructing new generating facilities. A primary challenge facing utility executives is to hold down costs on these construction projects. New construction management techniques are required to accomplish this. Commonwealth Edison has responded by implementing a new Budget Performance Reporting System and a Construction Work Packaging System. The new systems are being used successfully on four major construction projects with budgets totaling over $4 billion

  9. Reconsidering the European regulation of merchant transmission investment in light of the third energy package: The role of dominant generators

    International Nuclear Information System (INIS)

    Hauteclocque, Adrien de; Rious, Vincent

    2011-01-01

    The regulation of merchant transmission investment (MTI) has become an important issue in the EU electricity sector, subsequent to the granting of authorizations by European authorities to five merchant projects: BritNed, Estlink, the East West Cables, NorGer and recently a merchant line connecting Italy and Austria. The creation of a new Agency for the Cooperation of Energy Regulators (ACER) at the EU level, which has decision-making powers on MTI, therefore presents a unique opportunity to question and re-design the current European policy. This paper shows that the recent decisions concerning MTI may suffer a strong bias against dominant electricity generators while incumbent Transmission System Operators (TSOs) or new entrant TSOs are generally favored by national regulators and the European Commission (EC). This strategy is misguided as it fails to recognize both the new incentives of generators to develop MTI and the conflict of interest between the regulated and non-regulated activities of incumbent TSOs. Letting dominant generators undertake MTI is indeed generally beneficial as long as potential abuses of dominance are mitigated. To deter possible anti-competitive effects, we propose a new and feasible allocation of regulatory powers based on a clear demarcation between the market monitoring powers of ACER and the antitrust powers of the EC. - Highlights: → We compare TSOs and generators as merchant transmission investors in Europe. → We find a bias among regulators against the involvement of generators. → The conflict of interest with the regulated activities of TSOs is under-estimated. → Investment by generators is preferable provided market manipulation is deterred. → We propose a new allocation of regulatory powers to make it possible.

  10. Process technology development of Ni electroplating in steam generator tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Yi, Y. S.; Kim, D. J.; Jeong, M. K

    2006-07-15

    Alloy 600 having superior resistance to corrosion is used as a steam generator tubing in Nuclear Power Plants. In spite of its high corrosion resistance, there are many tubes which have experienced the corrosion problems such as SCC, pitting under high temperature and high pressure environments of NPP, leading to a menace to the safety of NPPs as well as economical loss. A commonly applied approach to rehabilitation has been to repair the damaged areas of the tubes via the insertion of tubular sleeves which are either welded or mechanically bonded at their extremities to the host tube. Such intrusive sleeves have weak points, such as the crevices, the tube deformation and an introduction of stress onto the host tube which then usually requires stress relief to improve the in-service life. However a lot of problems including these during and after repairing can be solved by Ni electroplating having excellent corrosion resistance to such as SCC. This work is related to optimum process development for Ni electrodeposition inside damaged steam generator tubing for repairing and the damage prevention. The optimum electroplating process for planar specimens was developed and the electrodeposition was performed successfully inside tube specimens by using the modified and improved anode probe. The Ni-electrodeposit plated on the inner surfaces of the tube specimens was confirmed to show excellent SCC resistance. A multiple electrodeposition facility for simultaneous electroplating inside three tubes at the same time was built and proved to work properly.

  11. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption

    International Nuclear Information System (INIS)

    Willis, Ken; Scarpa, Riccardo; Gilroy, Rose; Hamza, Neveen

    2011-01-01

    Many countries are endeavouring to supply more of their energy from renewable resources. Such countries are also experiencing an aging population with a greater proportion of people aged ≥65 years. This demographic shift may reduce the uptake of renewable energy, if older person households are less inclined to accept change and adopt new technologies. This paper assesses whether such households have different behavioural responses to energy efficiency compared to the rest of society and investigates whether micro-generation renewable energy technologies are less likely to be adopted by these households. It uses conditional logit and mixed logit models to investigate the impact of age of household on primary heating adoption, and also to assess the impact of older households on the installation of discretionary micro-generation technologies (solar thermal, solar voltaic, and wind power) to supplement existing heating and lighting systems. Results indicate that primary heating choice is not affected but that older person households are less inclined to adopt micro-generation technologies. - Highlights: → Heterogeneity exists in decisions on micro-generation technology installation. → Older person households are less inclined to adopt micro-generation technologies. → Micro-generation technologies fail a social cost-benefit analysis test.

  12. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Science.gov (United States)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  13. HOW THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE DEVELOPED A NEW WASTE PACKAGE USING A POLYUREA COATING THAT IS SAFELY AND ECONOMICALLY ELIMINATING SIZE REDUCTION OF LARGE ITEMS

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Hogue, Richard S.; Kimokeo, Margaret K.

    2003-01-01

    One of the major challenges involved in closing the Rocky Flats Environmental Technology Site (RFETS) is the disposal of extremely large pieces of contaminated production equipment and building debris. Past practice has been to size reduce the equipment into pieces small enough to fit into approved, standard waste containers. Size reducing this equipment is extremely expensive, and exposes workers to high-risk tasks, including significant industrial, chemical, and radiological hazards. RFETS has developed a waste package using a Polyurea coating for shipping large contaminated objects. The cost and schedule savings have been significant

  14. Latest generation interconnect technologies in APEnet+ networking infrastructure

    Science.gov (United States)

    Ammendola, Roberto; Biagioni, Andrea; Cretaro, Paolo; Frezza, Ottorino; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Rossetti, Davide; Simula, Francesco; Vicini, Piero

    2017-10-01

    In this paper we present the status of the 3rd generation design of the APEnet board (V5) built upon the 28nm Altera Stratix V FPGA; it features a PCIe Gen3 x8 interface and enhanced embedded transceivers with a maximum capability of 12.5Gbps each. The network architecture is designed in accordance to the Remote DMA paradigm. The APEnet+ V5 prototype is built upon the Stratix V DevKit with the addition of a proprietary, third party IP core implementing multi-DMA engines. Support for zero-copy communication is assured by the possibility of DMA-accessing either host and GPU memory, offloading the CPU from the chore of data copying. The current implementation plateaus to a bandwidth for memory read of 4.8GB/s. Here we describe the hardware optimization to the memory write process which relies on the use of two independent DMA engines and an improved TLB.

  15. History of the nuclear power generation technology in Japan

    International Nuclear Information System (INIS)

    2016-01-01

    First, the outline of the historical fact is described. Next, the research institution, the industrial world, and the government which were the bearers of technical development are described and look back upon the history of development from each position. The focus is a viewpoint based on refection of a Fukushima disaster. 'Teachings from history' seen from each actor was described being based on the objective fact. Moreover, it focuses also on the society, the politics, and the economic factor which affected development of nuclear development. The following three were treated as themes. 1. Relation with the atomic power and the nonproliferation policy of the U.S. government. 2. Relation with public opinion or media. 3. Social responsibility of a society, or a scientist and an engineering person. Finally, based on these teachings, the viewpoint considered to be important for future nuclear power generation and technical development was summarized as a proposal. (author)

  16. Packaging microservices

    DEFF Research Database (Denmark)

    Montesi, Fabrizio; Thrane, Dan Sebastian

    2017-01-01

    We describe a first proposal for a new packaging system for microservices based on the Jolie programming language, called the Jolie Package Manager (JPM). Its main features revolve around service interfaces, which make the functionalities that a service provides and depends on explicit. For the f......We describe a first proposal for a new packaging system for microservices based on the Jolie programming language, called the Jolie Package Manager (JPM). Its main features revolve around service interfaces, which make the functionalities that a service provides and depends on explicit...

  17. Decision-making model of generation technology under uncertainty based on real option theory

    International Nuclear Information System (INIS)

    Ming, Zeng; Ping, Zhang; Shunkun, Yu; Ge, Zhang

    2016-01-01

    Highlights: • A decision-making model of generation technology investment is proposed. • The irreversible investment concept and real option theory is introduced. • Practical data was used to prove the validity of the model. • Impact of electricity and fuel price fluctuation on investment was analyzed. - Abstract: The introduction of market competition and the increased uncertainty factors makes the generators have to decide not only on whether to invest generation capacity or not but also on what kind of generation technology to choose. In this paper, a decision-making model of generation technology investment is proposed. The irreversible investment concept and real option theory is introduced as the fundamental of the model. In order to explain the decision-making process of generator’s investment, the decision-making optimization model was built considering two generation technologies, i.e., the heat-only system and the combined heat and power generation. Also, we discussed the theory deducing process, which explained how to eliminate the overrated economic potential caused by risk hazard, based on economic evaluation of both generation technologies. Finally, practical data from electricity market of Inner Mongolia was used to prove the validity of the model and the impact of uncertainties of electricity and fuel price fluctuation on investment was analyzed according to the simulated results.

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  19. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  20. Final Scientific/Technical Report (DOE F 241.3) Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Murugaiah, Anand [Momentive Performance Materials Quartz, Inc., Strongsville, OH (United States)

    2016-12-30

    The objective of this program is to generate novel LED package designs that would provide 30% improvement in lumen/$ output. This was to be achieved by improving thermal management in encapsulants/ phosphors to reduce their temperatures. Currently, the heat that is generated during down conversion of blue light to longer wavelengths by the phosphors dispersed in the encapsulant does not have optimum thermal pathways for dissipation due to poor thermal conductivity of the encapsulant material. Additionally, high temperature in the encapsulant during operation is one of the primary failure modes in LED luminaires resulting in much shorter than expected life. The thermal issues manifest in color instability (yellowing, browning), cracking and hot spots in the encapsulant leading to failures. This work explored boron nitride (hBN) as thermal fillers in encapsulants to improve thermal conductivity while minimally impacting optical properties. Various approaches to Boron Nitride (BN) were evaluated and over 380 samples were generated to down select appropriate BN morphologies. We developed a range or BN materials for enabling thermal properties while attempting to minimally impact to optical properties.

  1. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    OpenAIRE

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional...

  2. The theories and key technologies for the new generation mine wireless information system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Feng, X.; Cheng, S.; Sun, J. [Beijing Jiaotong University, Beijing (China). Key Laboratory of ARP Optical Network and Advanced Telecommunication Network

    2004-07-01

    Breaking through the traditional mine wireless communication theories and technologies, combining advanced wireless communication technologies, wireless network technologies with optical fiber communication technologies have been proposed to construct a new generation mine wireless information system. This has a full range of functions such as managing mobile communications, vehicle positioning and navigation, personnel positioning and tracing, wireless multimedia surveillance, mobile computing and mine environment parameters monitoring. The relevant theories and key technologies were proposed. The urgency to do research work for China is stressed. 10 refs., 2 figs.

  3. Development of the Electromagnetic Induction Type Micro Air Turbine Generator Using MEMS and Multilayer Ceramic Technology

    International Nuclear Information System (INIS)

    Iiduka, A; Ishigaki, K; Takikawa, Y; Ohse, T; Saito, K; Uchikoba, F

    2011-01-01

    The miniaturized electromagnetic induction type air turbine generator is described. The micro air turbine generator rotated by the compressed air and generating electricity was fabricated by the combination of MEMS and multilayer ceramic technology. The micro generator consisted of an air turbine and a magnetic circuit. The turbine part consisted of 7 silicon layers fabricated by the MEMS technology. The magnetic circuit was fabricated by the multilayer ceramic technology based on the green sheet process. The magnetic material used in the circuit was ferrite, and the internal conductor was silver. The dimensions of the obtained generator were 3.5x4x3.5 mm. The output power was 1.92 μW. From FEM analysis of the magnetic flux, it was found that leakage of the flux affected the output power.

  4. Next generation sequencing technologies: tool to study avian virus diversity.

    Science.gov (United States)

    Kapgate, S S; Barbuddhe, S B; Kumanan, K

    2015-03-01

    Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses.

  5. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  6. The role of accelerated power generation technology development to carbon dioxide emissions

    International Nuclear Information System (INIS)

    Russ, P.

    2004-01-01

    The paper focuses on the role of advanced power generation technology in the reduction of carbon dioxide emissions. In order to quantify the importance of these technologies a scenario approach is applied comparing a 'business as usual' scenario with technology cases which assume the accelerated development and earlier availability of certain advanced technologies. The simulations with the POLES world energy model demonstrate that the availability of advanced technology for power generation alone does not lead to emission reductions needed to stabilise carbon dioxide emissions in the atmosphere at a sustainable level. To achieve that additional policy measures are necessary. It is however shown, that the availability of advanced technology has a crucial impact on the cost to meet emission reduction targets. (Author)

  7. Use and Perception of Technology: Sex and Generational Differences in a Community Sample

    Science.gov (United States)

    Van Volkom, Michele; Stapley, Janice C.; Malter, Johnna

    2013-01-01

    A community sample of 431 adults (175 men and 256 women) ages 18 to 91 across three generations (young adults, adults, and older adults) were recruited for the current study. Participants completed a demographic and technology use questionnaire that ascertained their attitudes toward, and use of, various types of technology--such as cellular…

  8. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  9. Mind the Gap: Technology, Millennial Leadership and the Cross-Generational Workforce

    Science.gov (United States)

    Murray, Adam

    2011-01-01

    It comes as no surprise that different generations respond to and utilise emerging technology in vastly different ways. However as more Millennials take on leadership positions within academic libraries, their attitudes towards and uses of technology may bring conflicting expectations for leadership to the forefront. What are the generational…

  10. Generational affinities and discourses of difference: a case study of highly skilled information technology workers.

    Science.gov (United States)

    McMullin, Julie Ann; Duerden Comeau, Tammy; Jovic, Emily

    2007-06-01

    Sociologists theorizing the concept of 'generation' have traditionally looked to birth cohorts sharing major social upheavals such as war or decolonization to explain issues of generational solidarity and identity affiliation. More recently, theorists have drawn attention to the cultural elements where generations are thought to be formed through affinities with music or other types of popular culture during the 'coming of age' stage of life. In this paper, we ask whether developments in computer technology, which have both productive and cultural components, provide a basis for generational formation and identity and whether generational discourse is invoked to create cultures of difference in the workplace. Qualitative data from a sample of Information Technology workers show that these professionals mobilize 'generational' discourse and draw upon notions of 'generational affinity' with computing technology (e.g. the fact that people of different ages were immersed to varying degrees in different computing technologies) in explaining the youthful profile of IT workers and employees' differing levels of technological expertise.

  11. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  12. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  13. Digital Generation of Noise-Signals with Arbitrary Constant or Time-Varying Spectra (A noise generation software package and its application)

    CERN Document Server

    Tückmantel, Joachim

    2008-01-01

    Artificial creation of arbitrary noise signals is used in accelerator physics to reproduce a measured perturbation spectrum for simulations but also to generate real-time shaped noise spectra for controlled emittance blow-up giving tailored properties to the final bunch shape. It is demonstrated here how one can produce numerically what is, for all practical purposes, an unlimited quantity of non-periodic noise data having any predefined spectral density. This spectral density may be constant or varying with time. The noise output never repeats and has excellent statistical properties, important for very long-term applications. It is difficult to obtain such flexibility and spectral cleanliness using analogue techniques. This algorithm was applied both in computer simulations of bunch behaviour in the presence of RF noise in the PS, SPS and LHC and also to generate real-time noise, tracking the synchrotron frequency change during the energy ramp of the SPS and producing controlled longitudinal emittance blow-...

  14. Report of the 2. research coordination meeting on development of generator technologies for therapeutic radionuclides

    International Nuclear Information System (INIS)

    2006-01-01

    The objectives of this CRP are to evaluate various generator and concentration technologies for 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators, to optimize generator fabrication and use, to standardize quality control techniques for the eluted radionuclides and to provide standardized procedures to participating laboratories. The following issues will be addressed during the CRP. - Development of reproducible methodologies for the preparation of 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators. - Development and evaluation of chromatography adsorbents (Zr/Ti composites) having higher binding capacities and demonstration of their utility in the preparation of column generators for 188 Re and 99 mTc. - Comparison and optimization of technologies for post elution concentration of 188 Re and 99 mTc in order to improve the radioactive concentration. - Development of quality control techniques and specifications for generator eluted therapeutic radionuclides

  15. Reviews on Fuel Cell Technology for Valuable Chemicals and Energy Co-Generation

    OpenAIRE

    Wisitsree Wiyaratn

    2010-01-01

    This paper provides a review of co-generation process in fuel cell type reactor to produce valuable chemical compounds along with electricity. The chemicals and energy co-generation processes have been shown to be a promising alternative to conventional reactors and conventional fuel cells with pure water as a byproduct. This paper reviews researches on chemicals and energy co-generation technologies of three types of promising fuel cell i.e. solid oxide fuel cell (SOFC), alkaline fuel cell (...

  16. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies

    International Nuclear Information System (INIS)

    Allan, Grant; Eromenko, Igor; McGregor, Peter; Swales, Kim

    2011-01-01

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. - Research Highlights: → Portfolio analysis of scenarios for Scotland's electricity generating mix in 2020. → Reveals potential inefficiencies of selecting mixes based on levelised cost alone. → Portfolio risk-reducing contribution of Wave and Tidal technologies assessed.

  17. A Review of Factors Influencing the Cost Development of Electricity Generation Technologies

    Directory of Open Access Journals (Sweden)

    Sascha Samadi

    2016-11-01

    Full Text Available This article reviews the literature on the past cost dynamics of various renewable, fossil fuel and nuclear electricity generation technologies. It identifies 10 different factors which have played key roles in influencing past cost developments according to the literature. These 10 factors are: deployment-induced learning, research, development and demonstration (RD&D-induced learning, knowledge spillovers from other technologies, upsizing, economies of manufacturing scale, economies of project scale, changes in material and labour costs, changes in fuel costs, regulatory changes, and limits to the availability of suitable sites. The article summarises the relevant literature findings for each of these 10 factors and provides an overview indicating which factors have impacted on which generation technologies. The article also discusses the insights gained from the review for a better understanding of possible future cost developments of electricity generation technologies. Finally, future research needs, which may support a better understanding of past and future cost developments, are identified.

  18. Multimedia package for LRFD concrete bridge design.

    Science.gov (United States)

    2009-02-01

    This Project developed a Load and Resistance Factor Design (LRFD) multimedia package to provide a practical introduction and an in-depth understanding of the technological advances in the design of concrete bridges. This package can be used to train ...

  19. Development of Specifications for Radioactive Waste Packages

    International Nuclear Information System (INIS)

    2006-10-01

    The main objective of this publication is to provide guidelines for the development of waste package specifications that comply with waste acceptance requirements for storage and disposal of radioactive waste. It will assist waste generators and waste package producers in selecting the most significant parameters and in developing and implementing specifications for each individual type of waste and waste package. This publication also identifies and reviews the activities and technical provisions that are necessary to meet safety requirements; in particular, selection of the significant safety parameters and preparation of specifications for waste forms, waste containers and waste packages using proven approaches, methods and technologies. This report provides guidance using a systematic, stepwise approach, integrating the technical, organizational and administrative factors that need to be considered at each step of planning and implementing waste package design, fabrication, approval, quality assurance and control. The report reflects the considerable experience and knowledge that has been accumulated in the IAEA Member States and is consistent with the current international requirements, principles, standards and guidance for the safe management of radioactive waste

  20. U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M.C. MILLER

    2013-11-01

    Full Text Available The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

  1. Wien Automatic System Planning (WASP) Package. A computer code for power generating system expansion planning. Version WASP-III Plus. User's manual. Volume 1: Chapters 1-11

    International Nuclear Information System (INIS)

    1995-01-01

    As a continuation of its effort to provide comprehensive and impartial guidance to Member States facing the need for introducing nuclear power, the IAEA has completed a new version of the Wien Automatic System Planning (WASP) Package for carrying out power generation expansion planning studies. WASP was originally developed in 1972 in the USA to meet the IAEA's needs to analyze the economic competitiveness of nuclear power in comparison to other generation expansion alternatives for supplying the future electricity requirements of a country or region. The model was first used by the IAEA to conduct global studies (Market Survey for Nuclear Power Plants in Developing Countries, 1972-1973) and to carry out Nuclear Power Planning Studies for several Member States. The WASP system developed into a very comprehensive planning tool for electric power system expansion analysis. Following these developments, the so-called WASP-Ill version was produced in 1979. This version introduced important improvements to the system, namely in the treatment of hydroelectric power plants. The WASP-III version has been continually updated and maintained in order to incorporate needed enhancements. In 1981, the Model for Analysis of Energy Demand (MAED) was developed in order to allow the determination of electricity demand, consistent with the overall requirements for final energy, and thus, to provide a more adequate forecast of electricity needs to be considered in the WASP study. MAED and WASP have been used by the Agency for the conduct of Energy and Nuclear Power Planning Studies for interested Member States. More recently, the VALORAGUA model was completed in 1992 as a means for helping in the preparation of the hydro plant characteristics to be input in the WASP study and to verify that the WASP overall optimized expansion plan takes also into account an optimization of the use of water for electricity generation. The combined application of VALORAGUA and WASP permits the

  2. Perfect match? Generation Y as change agents for information communication technology implementation in healthcare.

    Science.gov (United States)

    Yee, Kwang Chien; Miils, Erin; Airey, Caroline

    2008-01-01

    The current healthcare delivery model will not meet future healthcare demands. The only sustainable healthcare future is one that best leverages advances in technology to improve productivity and efficiency. Information communication technology (ICT) has, therefore, been touted as the panacea of future healthcare challenges. Many ICT projects in healthcare, however, fail to deliver on their promises to transform the healthcare system. From a technologist's perspective, this is often due to the lack of socio-technical consideration. From a socio-cultural perspective, however, there is often strong inertia to change. While the utilisation of user-centred design principles will generate a new wave of enthusiasm among technologists, this has to be matched with socio-cultural changes within the healthcare system. Generation Y healthcare workers might be the socio-cultural factor required, in combination with new technology, to transform the healthcare system. Generation Y has generated significant technology-driven changes in many other industries. The socio-cultural understanding of generation Y healthcare workers is essential to guide the design and implementation of ICT solutions for a sustainable healthcare future. This paper presents the initial analysis of our qualitative study which aims to generate in-depth conceptual insights of generation Y healthcare workers and their view of ICT in healthcare. Our results show that generation Y healthcare workers might assist future ICT implementation in healthcare. This paper, however, argues that significant changes to the current healthcare organisation will be required in order to unleash the full potential of generation Y workers and ICT implementation. Finally, this paper presents some strategies to empower generation Y workers as change agents for a sustainable future healthcare system.

  3. Generational influences in academic emergency medicine: teaching and learning, mentoring, and technology (part I).

    Science.gov (United States)

    Mohr, Nicholas M; Moreno-Walton, Lisa; Mills, Angela M; Brunett, Patrick H; Promes, Susan B

    2011-02-01

    For the first time in history, four generations are working together-traditionalists, baby boomers, generation Xers (Gen Xers), and millennials. Members of each generation carry with them a unique perspective of the world and interact differently with those around them. Through a review of the literature and consensus by modified Delphi methodology of the Society for Academic Emergency Medicine Aging and Generational Issues Task Force, the authors have developed this two-part series to address generational issues present in academic emergency medicine (EM). Understanding generational characteristics and mitigating strategies can help address some common issues encountered in academic EM. Through recognition of the unique characteristics of each of the generations with respect to teaching and learning, mentoring, and technology, academicians have the opportunity to strategically optimize interactions with one another. © 2011 by the Society for Academic Emergency Medicine.

  4. Generational Influences in Academic Emergency Medicine: Teaching and Learning, Mentoring, and Technology (Part I)

    Science.gov (United States)

    Mohr, Nicholas M.; Moreno-Walton, Lisa; Mills, Angela M.; Brunett, Patrick H.; Promes, Susan B.

    2010-01-01

    For the first time in history, four generations are working together – Traditionalists, Baby Boomers, Generation Xers, and Millennials. Members of each generation carry with them a unique perspective of the world and interact differently with those around them. Through a review of the literature and consensus by modified Delphi methodology of the Society for Academic Emergency Medicine (SAEM) Aging and Generational Issues Task Force, the authors have developed this two-part series to address generational issues present in academic emergency medicine (EM). Understanding generational characteristics and mitigating strategies can help address some common issues encountered in academic EM. Through recognition of the unique characteristics of each of the generations with respect to teaching and learning, mentoring, and technology, academicians have the opportunity to strategically optimize interactions with one another. PMID:21314779

  5. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  6. New Approach on Sunflower Seeds Processing: Kernel with Several Technological Applications, Husks Package, Different Fat Content Tahini and Halva Properties

    Directory of Open Access Journals (Sweden)

    Vlad Mureşan

    2015-11-01

    Full Text Available Sunflower is the basic oil-crop in Central and Eastern Europe. As sunflower seeds are mainly used for oil production, the most of the kernels available on the market show high oil content (>55%. Consequently, when sunflower kernel paste (tahini is used in different food products, oil exudation occurs.The aim of current work was to use entirely the sunflower seeds by partially defatting and obtaining different fat content sunflower pastes with multiple food applications, while using the husks for developing an ecological package. Sunflower kernels were industrially roasted in a continuous roasting drum.  Raw and roasted kernels were pressed at pilot plant scale by using a laboratory expeller. Partially defatted sunflower paste was obtained from the press cakes by employing a ball mill. Different fat content tahini samples were obtained by adding the required amount of oil to the partially defatted paste. Tahini samples fat content ranged from 45 to 60%. Tahini and halva were chosen as a study model. Decreasing tahini oil content increased its colloidal stability during storage, a similar trend being noticed when halva samples were stored. Moreover, halva texture analysis and sensory characteristics were assessed for selecting the optimum tahini oil content and thermal treatment. Various sunflower kernel food applications were proposed by obtaining the related prototypes at pilot plant scale: roasted sunflower kernel biscuits, sunflower spreadable cream filled biscuits, hummus, sunflower paste coated in chocolate, sunflower kernel chikki and bars, as well as an innovative ecological package based on the resulting sunflower husks and a starch adhesive. 

  7. Comparison of two biomass-electricity generation technologies in Peninsular Malaysia using linear programming method

    International Nuclear Information System (INIS)

    Kumaran, P.; Hari, Z.; Boosroh, M.H.

    2006-01-01

    Two technologies have been considered to generate electricity using palm oil mill waste, the Empty Fruit Bunch (EFB) as power plant fuel. One technology is to build new 100% EFB fired power plants, located in the vicinity of the palm oil mill, in which the produced electricity would be connected to the national electricity grid system. The other technology is to transport all the available EFB fuel to an existing coal power station in which the EFB fuel would be blended with coal and co-fired in conventional coal power plant to produce electricity. A study intended to compare the difference between these two technologies, to obtain the same electricity generation, has been done. Linear programming software was used simulate the two technologies to generate 5% of Peninsular Malaysia's electricity demand in the year 2005. The study indicated that the co firing technology total cost is 43.7% cheaper than EFB technology and the fuel coat is competitive until transport cost reaches 78 RM/tone

  8. The virtuous technology cycle concept and its application in next-generation sequencing.

    Science.gov (United States)

    Pluess-Li, Ying; Bongiovanni, Sandrine; Oakeley, Edward J; Johnson, Keith J; Staedtler, Frank

    2012-09-01

    External access to scientific technology plays an increasingly important part in pharmaceutical R&D. One advantage of accessing technology externally is the avoidance of costs associated with purchase and the reduced time required for developing new methods; in addition, access to external scientific expertise can be beneficial. However, few conceptual frameworks exist for achieving an optimal mix of internal and external technology access. In this review, we describe the virtuous technology cycle (VTC) concept and exemplify its application to next-generation sequencing (NGS). Based on selected examples, we show that the VTC concept can greatly enhance the number of technologies accessed and thus significantly increase flexibility and efficiency in drug discovery. We also discuss the challenges of externally accessing NGS technologies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    generation, which is the same scenario in the North and Northwest China Grid. In the Northeast, East, and Central China Grid, nuclear power gradually replaces coal-fired electricity and becomes the marginal technology. In the Southwest China Grid and the China Southern Power Grid, the marginal electricity......Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national...... and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal...

  10. IFT Scientific Status Summary 2008: Innovative Food Packaging Solutions

    Science.gov (United States)

    Food and beverage packaging comprises 55-65% of the $110 billion value of packaging in the United States. This review provides a summary of innovative technology developments in food packaging. The expanded role of food and beverage packaging is reviewed. Active and intelligent food packaging, ba...

  11. Next-generation online MC and A technologies for reprocessing plants

    International Nuclear Information System (INIS)

    Smith, L.E.; Schwantes, J.M.; Ressler, J.J.; Douglas, M.; Anderson, K.A.; Fraga, C.G.; Durst, C.; Orton, C.; Christensen, R.

    2007-01-01

    As power-production nuclear fuel cycles propagate across the globe, a new generation of measurement technologies is needed to support safeguards monitoring of fuel reprocessing facilities. This paper describes the simulation and analysis of two potential technologies for meeting the challenges of 1) direct measurement of fissile isotopic content in irradiated fuel to detect partial defects, and 2) near-real-time monitoring of process chemistry to detect protracted diversion scenarios. Lead slowing-down spectroscopy is the core of the spent fuel assay technology and multi-isotope indicators via high-resolution gamma ray spectroscopy are the foundation of the process chemistry verification approach. The safeguards context and methods for each technology are described and the results of preliminary performance studies are presented. The quantitative results for both studies are promising but more comprehensive analysis and empirical validation is needed to adequately assess their potential value as next generation online materials control and accountability measures. (authors)

  12. Present technologies and the next future in Mexico for the power generation starting from fossil fuels

    International Nuclear Information System (INIS)

    Gonzalez S, J.M.

    1999-01-01

    A brief analysis is done of the expected evolution of the world energy and electrical energy demand and a projection of the Mexican electrical demand is presented. Typical data for electric power generation technologies that currently in use or under development are presented and a discussion is made of the factors that influence technology selection, particularly for fossil fuel technologies. Taking into account the current expansion plans of the Mexican electrical sector, and proposing some reasonable hypotheses about the behavior of the factors that were identified, the evolution of the electrical demand in Mexico up to the year 2020 is presented, showing the installed capacity expected for each fuel and for each technology. At the end the needs for research and development in the area of power generation, emphasizing the Mexican R and D Programs, are discussed. (Author)

  13. 'Net Generation' medical students: technological experiences of pre-clinical and clinical students.

    Science.gov (United States)

    Kennedy, Gregor; Gray, Kathleen; Tse, Justin

    2008-02-01

    While institutions have been keen to integrate information and communication technologies into medical education, little is known about the technological experiences of the current cohort of so-called 'Net Generation' students. This study investigated the technological experiences of medical students and determined whether there were differences between pre-clinical and clinical students. In 2006, 207 pre-clinical and 161 clinical students studying medicine at a major Australian university were surveyed. The questionnaire asked students about their access to, use of and skills with an array of technologies and technology-based tools. The results show that access to mobile phones, memory sticks, desktop computers, and broadband Internet connections was high while technologies such as PDAs were used in very low numbers. A factor analysis of students' use of 39 technology-based tools revealed nine clear activity types, including the 'standard' use of computers and mobile-phones, and the use of the Internet as a pastime activity, for podcasting and for accessing services. A comparison of pre-clinical and clinical students revealed a number of significant differences in terms of the frequency and skill with which these students use distinct technology-based tools. The findings inform current technology-based teaching and learning activities and shed light on potential areas of educational technology development.

  14. Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology

    DEFF Research Database (Denmark)

    Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr

    2013-01-01

    The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (S......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....

  15. Plenary lecture 1: thermoelectric technology as renewable energy source for power generation and heating & cooling systems

    OpenAIRE

    SHAMMAS, Noel

    2011-01-01

    This paper will review the latest research and current status of thermoelectric power generation, and will also demonstrate, using electronic design, semiconductor simulation and practical laboratory experimentation, the application of thermoelectric technology for use in energy harvesting and scavenging systems. Ongoing research and advances in thermoelectric materials and manufacturing techniques, enables the technology to make a greater contribution to address the growing requirement for l...

  16. Technology Road-map Update for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2014-01-01

    This Technology Road-map Update provides an assessment of progress made by the Generation IV International Forum (GIF) in the development of the six systems selected when the original Technology Road-map was published in 2002. More importantly, it provides an overview of the major R and D objectives and milestones for the coming decade, aiming to achieve the Generation IV goals of sustainability, safety and reliability, economic competitiveness, proliferation resistance and physical protection. Lessons learnt from the Fukushima Daiichi nuclear power plant accident are taken into account to ensure that Generation IV systems attain the highest levels of safety, with the development of specific safety design criteria that are applicable across the six systems. Accomplishing the ten-year R and D objectives set out in this new Road-map should allow the more advanced Generation IV systems to move towards the demonstration phase. (authors)

  17. A development perspective for biomass-fuelled electricity generation technologies. Economic technology assessment in view of sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Siemons, R.V.

    2002-10-15

    In Chapters 1-3 the methodology for assessing the development of biomass based energy technologies for reducing greenhouse gas (GHG) emissions is brought into focus. The development of this methodology begins with a chapter on existing views regarding the environment, sustainability and the role of technology. In the second part of this thesis, the newly established methodology is applied to biomass-fuelled central electricity production. First the scope for application in the European Union (EU) is considered. Following this, the assessment focusses on rural electrification in developing countries. Where biomass, in addition to being grown purposefully as an energy crop, may become available as residues and waste, developments in legislation with regard to waste biomass can be critical. This is discussed in a special introduction to Part B. Here also, the methodological differences between technology assessments for waste processing and for sustainable electricity generation are discussed.

  18. White LED with High Package Extraction Efficiency

    International Nuclear Information System (INIS)

    Yi Zheng; Stough, Matthew

    2008-01-01

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W e using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated

  19. Current State of Development of Electricity-Generating Technologies: A Literature Review

    Directory of Open Access Journals (Sweden)

    Manfred Lenzen

    2010-03-01

    Full Text Available Electricity is perhaps the most versatile energy carrier in modern economies, and it is therefore fundamentally linked to human and economic development. Electricity growth has outpaced that of any other fuel, leading to ever-increasing shares in the overall mix. This trend is expected to continue throughout the following decades, as large—especially rural—segments of the world population in developing countries start to climb the “energy ladder” and become connected to power grids. Electricity therefore deserves particular attention with regard to its contribution to global greenhouse gas emissions, which is reflected in the ongoing development of low-carbon technologies for power generation. The focus of this updated review of electricity-generating technologies is twofold: (a to provide more technical information than is usually found in global assessments on critical technical aspects, such as variability of wind power, and (b to capture the most recent findings from the international literature. This report covers eight technologies. Seven of these are generating technologies: hydro-, nuclear, wind, photovoltaic, concentrating solar, geothermal and biomass power. The remaining technology is carbon capture and storage. This selection is fairly representative for technologies that are important in terms of their potential capacity to contribute to a low-carbon world economy.

  20. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2010-01-01

    We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.

  1. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  2. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  3. How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, M.; Biegler, T.; Brook, B.W. [University of Adelaide, Adelaide, SA (Australia). School of Earth & Environmental Science

    2011-01-15

    There is wide public debate about which electricity generating technologies will best be suited to reduce greenhouse gas emissions (GHG). Sometimes this debate ignores real-world practicalities and leads to over-optimistic conclusions. Here we define and apply a set of fit-for-service criteria to identify technologies capable of supplying baseload electricity and reducing GHGs by amounts and within the timescale set by the Intergovernmental Panel on Climate Change (IPCC). Only five current technologies meet these criteria: coal (both pulverised fuel and integrated gasification combined cycle) with carbon capture and storage (CCS); combined cycle gas turbine with CCS; Generation III nuclear fission; and solar thermal backed by heat storage and gas turbines. To compare costs and performance, we undertook a meta-review of authoritative peer-reviewed studies of levelised cost of electricity (LCOE) and life-cycle GHG emissions for these technologies. Future baseload electricity technology selection will be influenced by the total cost of technology substitution, including carbon pricing, which is synergistically related to both LCOE and emissions. Nuclear energy is the cheapest option and best able to meet the IPCC timetable for GHG abatement. Solar thermal is the most expensive, while CCS will require rapid major advances in technology to meet that timetable.

  4. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  5. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  6. New technology adoption for Russian energy generation: What does it cost? A case study for Moscow

    International Nuclear Information System (INIS)

    Bratanova, Alexandra; Robinson, Jacqueline; Wagner, Liam

    2016-01-01

    Highlights: • Power generation cost is modelled for a Russian region under two gas price scenarios. • Conventional, new and renewable technologies are compared based on levelised cost. • Regional energy system is shown to be crucially dependent on natural gas prices. • We conclude that new gas-fired technology adoption is feasible and cost-competitive. • Biomass demonstrates cost competitiveness, whereas solar appears infeasible. - Abstract: Russia is frequently referred to as a country with substantial energy efficiency and renewable energy potential. In 2000–2008 energy-gross domestic product (GDP) ratios were improved by 35%, however, the contribution of technological progress accounts for only 1% of the energy-GDP ratio reduction. At the same time, although new policy mechanisms to stimulate renewable energy development have been recently introduced, renewable technology deployment has not yet taken off. Economic theory suggests that there is no better incentive for industry development than cost signals. This paper adapts the levelised cost of energy methodology to examine the cost structures associated with electricity generation by conventional and new technology types for a Russian region (Moscow). The model, run for two fuel price scenarios, allowed us to conclude that the regional energy supply system is heavily dependent on the natural gas price and that the diversification provided by technology development will be beneficial for the energy security of the region. We conclude that new and renewable technologies become cost-effective for electricity generation as domestic natural gas prices reach parity with export prices. However, strong political and financial support is needed to boost technological development and renewables application in Russia.

  7. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  8. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu

    2010-03-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  9. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    Science.gov (United States)

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  10. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu

    2016-10-21

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  11. Next-generation sequencing technology for genetics and genomics of sorghum

    DEFF Research Database (Denmark)

    Luo, Hong; Mocoeur, Anne Raymonde Joelle; Jing, Hai-Chun

    2014-01-01

    The invention and application of Next-Generation Sequencing (NGS) technologies have revolutionized the study of genetics and genomics. Much research which would not even be considered are nowdays being excuted in many laboratories as routine. In this chapter, we introduce the currently available...

  12. Dual Use Packaging, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA calculation that over a kg of packaging waste are generated per day for a 6 member crew. This represents over 1.5 metric tons of waste during a Mars mission....

  13. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  14. Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)

    Energy Technology Data Exchange (ETDEWEB)

    Gumerman, Etan; Marnay, Chris

    2004-01-16

    This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.

  15. Impacts of Electricity Market Reforms on the Choice of Nuclear and Other Generation Technologies

    International Nuclear Information System (INIS)

    2016-05-01

    Electricity market reforms have been underway worldwide for the last 20 years. They have included restructuring, privatization, regulation and the introduction of market mechanisms in electricity generation and trading. This publication analyses the impacts of these reforms as well as non-reform factors, on the selection of electricity generation technologies, including nuclear power, by investors. A country case study approach has been adopted in developing the material presented in the publication. Each case study is organized around the following themes: rationale for reform; nature of the electricity market reform; how has the reform shaped the allocation of investment risk in electricity markets and how has this risk allocation influenced investor choice of generation technologies; and finally, how have non-reform related factors influenced investors’ choice. This report will be of use by stakeholders in the strategic planning of the electricity sector, including policy makers, policy analysts, policy advisors, power sector regulators and utility operators

  16. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    Science.gov (United States)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  17. Effect of problem solving support and cognitive style on idea generation: Implications for Technology-Enhanced-Learning

    OpenAIRE

    Stoyanov, Slavi; Kirschner, Paul A.

    2008-01-01

    Stoyanov, S., & Kirschner, P. (2007). Effect of problem solving support and cognitive style on idea generation: Implications for Technology-Enhanced-Learning. Journal of Research on Technology in Education, 40(1), 49-63.

  18. Integrated Approach to Industrial Packaging Design

    Science.gov (United States)

    Vorobeva, O.

    2017-11-01

    The article reviews studies in the field of industrial packaging design. The major factors which influence technological, ergonomic, economic and ecological features of packaging are established. The main modern trends in packaging design are defined, the principles of marketing communications and their influence on consumers’ consciousness are indicated, and the function of packaging as a transmitter of brand values is specified. Peculiarities of packaging technology and printing techniques in modern printing industry are considered. The role of designers in the stage-by-stage development of the construction, form and graphic design concept of packaging is defined. The examples of authentic packaging are given and the mention of the tetrahedron packaging history is made. At the end of the article, conclusions on the key research aspects are made.

  19. Technological solutions of decentralized generation of hydroelectricity for those demands that cannot be attended by conventional electric with centralized generation

    Energy Technology Data Exchange (ETDEWEB)

    Signoretti, Valdir Tesche; Veras, Carlos Alberto Gurgel Rudi; Els, Henri Van [Universidade de Brasilia, Brasilia, DF (Brazil). Faculdade de Tecnologia. Dept. de Engenharia Mecanica], e-mail: gurgel@unb.br

    2010-07-01

    A source of energy stable and reliable and of acceptable cost is a basic requisite for the development of a given region can give-if full. Access to energy is important basis of human existence, essential to the satisfaction of basic needs such as food, clothing, and housing and also of mobility and communication. However, the dependency world burning of fossil fuels for energy generation and supply of a demand constantly increasing, both in industrialized countries and those in development, already threatening the ecological stability of the Earth. At the same time, conflicts by distribution of the last reserves these resources non-renewable threaten significantly to civil society. Adding to the breakneck speed in which humanity consumes the energetic sources and the obvious devastation of nature has an unequal distribution in consumption and access to energy. Renewable sources and energy efficiency are viable and necessary, especially because they can be the key to reduce wastefulness and extend the access to energy. In this way, there is a significant influence on economic and social inclusion of population excluded, generating employment and income with costs local and global environmental reduced compared to traditional forms and unsustainable generation and use of energy. This work is a study involving issues related to rural electrification from hydroelectricity, especially related to those isolated communities of the Amazon region that are lacking this form of energy, presented a general review since the origins of hydroelectricity in Brazil, as well as a national panorama electric exclusion as well as a scenario Amazon's supply of electricity. Finally presenting-if the main technologies available for hydroelectric generation for these isolated communities. (author)

  20. Design and application of mathematical model for strategic planning of technology transfer in Iran's packaging industries company (I.P.I.C)

    International Nuclear Information System (INIS)

    Aliahmadi, A.

    2001-01-01

    Selecting right strategies for technology transfer and R and D projects is vital for developing countries. A number of researchers have di sussed the problem and applied different techniques, such as Engineering Economics Analysis, Ranking Methods, Goal Programming, Integer Programming and Analytical Hierarchy Process, to this problem. They haven't discussed the problems of developing countries in their models from a strategic planning point of view. In this paper the model of Moore and Ghand-Foruch is used and developed to improve the strategic planning for technology acquisition in developing countries. The proposed model consists of two phases, in which the first phase deals with calculating the utility of different strategies, policies and programs by considering critical, quantitative and qualitative factors. The second phase optimizes the total utility of strategic planning by using Mixed Integer Linear Programming while considering the constraints on budget, manpower, time etc. At the end, the result of application of the model in an Iranian industry (Iran's Packaging Industries Company) is discussed

  1. Intelligent food packaging - research and development

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2015-03-01

    Full Text Available Packaging also fosters effective marketing of the food through distribution and sale channels. It is of the utmost importance to optimize the protection of the food, a great quality and appearance - better than typical packaged foods. In recent years, intelligent packaging became very popular. Intelligent packaging is becoming more and more widely used for food products. Application of this type of solution contributes to improvement of the quality consumer life undoubtedly. Intelligent packaging refers to a package that can sense environmental changes, and in turn, informs the users about the changes. These packaging systems contain devices that are capable of sensing and providing information about the functions and properties of the packaged foods. Also, this paper will review intelligent packaging technologies and describe different types of indicators (time-temperature indicators, freshness indicators.

  2. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  3. 40 CFR 262.30 - Packaging.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Packaging. 262.30 Section 262.30... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before... the waste in accordance with the applicable Department of Transportation regulations on packaging...

  4. Smart packaging systems for food applications: a review.

    Science.gov (United States)

    Biji, K B; Ravishankar, C N; Mohan, C O; Srinivasa Gopal, T K

    2015-10-01

    Changes in consumer preference for safe food have led to innovations in packaging technologies. This article reviews about different smart packaging systems and their applications in food packaging, packaging research with latest innovations. Active and intelligent packing are such packaging technologies which offer to deliver safer and quality products. Active packaging refers to the incorporation of additives into the package with the aim of maintaining or extending the product quality and shelf life. The intelligent systems are those that monitor the condition of packaged food to give information regarding the quality of the packaged food during transportation and storage. These technologies are designed to the increasing demand for safer foods with better shelf life. The market for active and intelligent packaging systems is expected to have a promising future by their integration into packaging materials or systems.

  5. Tamper indicating packaging

    International Nuclear Information System (INIS)

    Baumann, M.J.; Bartberger, J.C.; Welch, T.D.

    1994-01-01

    Protecting sensitive items from undetected tampering in an unattended environment is crucial to the success of non-proliferation efforts relying on the verification of critical activities. Tamper Indicating Packaging (TIP) technologies are applied to containers, packages, and equipment that require an indication of a tamper attempt. Examples include: the transportation and storage of nuclear material, the operation and shipment of surveillance equipment and monitoring sensors, and the retail storage of medicine and food products. The spectrum of adversarial tampering ranges from attempted concealment of a pin-hole sized penetration to the complete container replacement, which would involve counterfeiting efforts of various degrees. Sandia National Laboratories (SNL) has developed a technology base for advanced TIP materials, sensors, designs, and processes which can be adapted to various future monitoring systems. The purpose of this technology base is to investigate potential new technologies, and to perform basic research of advanced technologies. This paper will describe the theory of TIP technologies and recent investigations of TIP technologies at SNL

  6. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  7. The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators.

    Science.gov (United States)

    Chakraborty, Chiranjib; Teoh, Seong Lin; Das, Srijit

    2017-01-01

    The present era is fast experiencing rapid innovation in the genome-editing technology. CRISPR Cas9-mediated targeted genetic manipulation is an easy, cost-effective and scalable method. As a result, it can be used for a broad range of targeted genome engineering. The main objective of the present review is to highlight the structural signature, classification, its mechanism and application from basic science to medicine and future challenges for this genome editing tool kit. The present review provides a brief description of the recent development of CRISPR-Cas9 genome editing technology. We discuss the paradigms shift for this next generation genome editing technology, CRISPR. The CRISPR structural significance, classification and its different applications are also being discussed. We portray the future challenges for this extraordinary genome in vivo editing tool. We also highlight the role of CRISPR genome editing in curing many diseases. Scientists and researchers are constantly looking one genome editing tool that is competent, simple and low-cost assembly of nucleases. It can target any particular site without any off-target mutations in the genome. The CRISPR-Cas9 has all of the above characteristics. The genome engineering technology may be a strong and inspiring technology meant for the next generation of drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    Energy Technology Data Exchange (ETDEWEB)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define

  9. Report on the FY 1999 survey for making a data book related to new energy technology development. Trends of solar energy utilization, waste power generation, clean energy vehicle, geothermal power generation, clean coal technology, other new energy technology and new energy technology development; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Taiyonetsu riyo, haikibutsu hatsuden, clean energy jidosha, chinetsu hatsuden, clean coal technology, sonota no shin energy gijutsu, shin energy gijutsu kaihatsu kanren doko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper collected/arranged the most up-to-date data made public in the new energy technology field. As to the solar energy utilization, the utilization is on the decrease with the beginning of the 1980s as a peak, and the solar systems introduced in FY 1998 totaled 15,000 and the water heaters 56,000. The waste power generation is showing a steady growth both in the general use and in the industrial use, and the introduction of 5 million KW is expected for FY 2010. The sale of the hybrid car started at the end of 1997, and the subjects are the price/performance/fuel supply system. Concerning the geothermal power generation, 497,000 KW and 36,000 KW were introduced for business use and non-utility use, respectively. Japan ranks sixth among nations of the world. Relating to the coal liquefaction, the pilot plant (PP) of Japan's original bituminous coal liquefaction NEDOL process finished operation in 1998, and the construction of technology package, international cooperation, etc. are being conducted. About the coal gasification, the construction of demonstrative equipment and operation are planned during FY 2002 - FY 2007, making use of the PP achievements of IGCC. In regard to the biomass-based waste power generation, the lignocellulose system is large in potential quantity. As to the hydrogen energy, the WE-NET project entered Period II. With respect to the ocean thermal energy conversion, the demonstrative study started. In relation to the wave power generation, a small size of approximately several hundred W was commercialized. (NEDO)

  10. Packaging of control system software

    International Nuclear Information System (INIS)

    Zagar, K.; Kobal, M.; Saje, N.; Zagar, A.; Sabjan, R.; Di Maio, F.; Stepanov, D.

    2012-01-01

    Control system software consists of several parts - the core of the control system, drivers for integration of devices, configuration for user interfaces, alarm system, etc. Once the software is developed and configured, it must be installed to computers where it runs. Usually, it is installed on an operating system whose services it needs, and also in some cases dynamically links with the libraries it provides. Operating system can be quite complex itself - for example, a typical Linux distribution consists of several thousand packages. To manage this complexity, we have decided to rely on Red Hat Package Management system (RPM) to package control system software, and also ensure it is properly installed (i.e., that dependencies are also installed, and that scripts are run after installation if any additional actions need to be performed). As dozens of RPM packages need to be prepared, we are reducing the amount of effort and improving consistency between packages through a Maven-based infrastructure that assists in packaging (e.g., automated generation of RPM SPEC files, including automated identification of dependencies). So far, we have used it to package EPICS, Control System Studio (CSS) and several device drivers. We perform extensive testing on Red Hat Enterprise Linux 5.5, but we have also verified that packaging works on CentOS and Scientific Linux. In this article, we describe in greater detail the systematic system of packaging we are using, and its particular application for the ITER CODAC Core System. (authors)

  11. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    Science.gov (United States)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  12. The effect of advanced technology on the second-generation SST

    Science.gov (United States)

    Coen, P. G.

    1986-01-01

    Technological developments that promise to substantially increase the efficiency of next-generation subsonic commercial aircraft, together with additional developments in supersonic aircraft aerodynamics, structures and propulsion systems, are presently evaluated in order to project the extent of performance and economic improvement obtainable for a future SST by comparison to the Concorde SST. It is demonstrated that the second-generation SST projected will double passenger-carrying capacity from 100 for the Concorde to 200, despite reducing takeoff gross weight from 400,000 to 321,000 lbs and extending range by some 2000 nm.

  13. Amdahl 470 Chip Package

    CERN Multimedia

    1975-01-01

    In the late 70s the larger IBM computers were water cooled. Amdahl, an IBM competitor, invented an air cooling technology for it's computers. His company worked hard, developing a computer that was faster and less expensive than the IBM System/360 mainframe computer systems. This object contains an actual Amdahl series 470 computer logic chip with an air cooling device mounted on top. The package leads and cooling tower are gold-plated.

  14. Reward preferences for generations in selected Information and Communication Technology companies

    Directory of Open Access Journals (Sweden)

    Annetjie Moore

    2012-01-01

    Full Text Available Orientation: Previous research suggests that different generations have different reward preferences based on differences in values, frames of reference and life goals. Research purpose: The focus of this study was to determine whether different generations prefer different rewards in the Information and Communication Technology (ICT industry in South Africa.Motivation for the study: The rationale for this study was to obtain a better understanding of the reward preferences of Veterans, Baby Boomers, Generation X and Generation Y in the ICT industry.Research design, approach and method: The research was a quantitative, cross-sectional, correlational design. Participants from two ICT companies completed a structured electronic survey. One hundred and sixty four valid responses were received. A Cronbach’s alpha of 0.821 indicates that the survey was reliable.Main findings: Contrary to previous research, the results show that generations do not display different reward preferences.Practical/managerial implications: It would be more beneficial to use individual interrelationship factors to develop a reward strategy than generations.Contribution/value-add: The research has added insight and value to reward preferences for generations in the ICT sector.

  15. Federal tax incentives and disincentives for the adoption of wood-fuel electric-generating technologies

    International Nuclear Information System (INIS)

    Hill, L.J.; Hadley, S.W.

    1995-01-01

    In this paper, we estimate the effects of current federal tax policy on the financial criteria that investor-owned electric utilities (IOUs) and non-utility electricity generators (NUGs) use to evaluate wood-fuel electric-generating technologies, distinguishing between dedicated-plantation and wood-waste fuels. Accelerated tax depreciation, the 1.5 cent/kWh production tax credit for the dedicated-plantation technology, and the alternative minimum tax are the most important tax provisions. The results indicate that federal tax laws have significantly different effects on the evaluation criteria, depending on the plant's ownership (IOU vs NUG) and type of fuel (dedicated-plantation vs wood-waste). (Author)

  16. Advances in clinical next-generation sequencing: target enrichment and sequencing technologies.

    Science.gov (United States)

    Ballester, Leomar Y; Luthra, Rajyalakshmi; Kanagal-Shamanna, Rashmi; Singh, Rajesh R

    2016-01-01

    The huge parallel sequencing capabilities of next generation sequencing technologies have made them the tools of choice to characterize genomic aberrations for research and diagnostic purposes. For clinical applications, screening the whole genome or exome is challenging owing to the large genomic area to be sequenced, associated costs, complexity of data, and lack of known clinical significance of all genes. Consequently, routine screening involves limited markers with established clinical relevance. This process, referred to as targeted genome sequencing, requires selective enrichment of the genomic areas comprising these markers via one of several primer or probe-based enrichment strategies, followed by sequencing of the enriched genomic areas. Here, the authors review current target enrichment approaches and next generation sequencing platforms, focusing on the underlying principles, capabilities, and limitations of each technology along with validation and implementation for clinical testing.

  17. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2013-01-01

    Electricity generation is a key contributor to global emissions of greenhouse gases (GHG), NOx and SO2 and their related environmental impact. A critical review of 167 case studies involving the life cycle assessment (LCA) of electricity generation based on hard coal, lignite, natural gas, oil...... contribution for biomass technologies (71% for GHG, 54% for NOx and 61% for SO2) and nuclear power (60% for GHG, 82% for NOx and 92% for SO2); infrastructures provided the highest impact for renewables. These data indicated that all three phases should be included for completeness and to avoid problem shifting....... The most critical methodological aspects in relation to LCA studies were identified as follows: definition of the functional unit, the LCA method employed (e.g., IOA, PCA and hybrid), the emission allocation principle and/or system boundary expansion. The most important technological aspects were...

  18. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  19. Soft technologies as generating satisfaction in users of a Family Health Unit

    Directory of Open Access Journals (Sweden)

    Sonia Mara Neves Ferri

    2007-01-01

    Full Text Available This study had the purpose to evaluate the quality of the health service provided at a Family Health Unit (FHU, with emphasis on user satisfaction, based on soft technologies. Furthermore, this study also aimed to analyze the aspects of health care that generated user satisfaction or dissatisfaction regarding attachment, accountability, providing solutions, expectations, relationship, comfort, and access, and to identify recommendations for local interventions. The authors made a general characterization of the population seen at the studied service, and then selected the subjects. The study used a qualitative approach. Data were collected in semi-structured interviews, and ordered using the Collective Subject Discourse (CSD method. The analysis reveals the importance that service users assign to the soft technologies, but also shows the need to reduce the waiting time for medical consultations and referrals, and to obtain access to medication and dental care at the same location. These factors generated great dissatisfaction among users.

  20. ACTIVE PACKAGING SYSTEM FOR MEAT AND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2012-10-01

    Full Text Available In the recent past, food packaging was used to enable marketing of products and to provide passive protection against environmental contaminations or influences that affect the shelf life of the products. However, unlike traditional packaging, which must be totally inert, active packaging is designed to interact with the contents and/or the surrounding environment. Interest in the use of active packaging systems for meat and meat products has increased in recent years. Active packaging systems are developed with the goal of extending shelf life for foods and increasing the period of time that the food is high quality. Developments in active packaging have led to advances in many areas, including delayed oxidation and controlled respiration rate, microbial growth, and moisture migration. Active packaging technologies include some physical, chemical, or biological action which changes interactions between a package, product, and/or headspace of the package in order to get a desired outcome. Active packaging systems discussed include oxygen scavengers, carbon dioxide scavengers and emitters, moisture control agents, flavour/odour absorbers and releasers  and antimicrobial packaging technologies. Active packaging is typically found in two types of systems; sachets and pads which are placed inside of packages, and active ingredients that are incorporated directly into packaging materials.  Recognition of the benefits of active packaging technologies by the food industry, development of economically viable packaging systems and increased consumer acceptance is necessary for commercial realisation of these packaging technologies.doi:10.5219/205

  1. Diversity and Inclusion in Information Technology from an Age Perspective: Motivating and Managing Information Technology Professionals across Multiple Generations in the Workforce

    Science.gov (United States)

    Kenan-Smalls, Yottie Marie

    2011-01-01

    The purpose of this quantitative study was to investigate diversity and inclusion from an age perspective among information technology (IT) professionals that were categorized as 4 different generations in the workforce today: Traditionalists, Baby Boomers, Generation X, and Generation Y. At the same time, this study sought to examine motivational…

  2. Arbitrary waveform generation based on Microwave Photonics Technology for Ultrawideband applications

    OpenAIRE

    Moreno Galué, Vanessa Alejandra

    2017-01-01

    The herein presented Ph.D. dissertation finds its application niche in pulse generation for optical communication schemes, specifically for Ultrawideband (UWB) purposes. In this sense, as the requirements in terms of capacity and bandwidth per user in the field of broadband communication services continuously increase, different technological techniques such as hybrid wireless-optical approaches including UWB systems and close competitors like the Worldwide Interoperability for Microwave Acce...

  3. A hybrid model for the optimum integration of renewable technologies in power generation systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis

    2011-01-01

    The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010-2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3-0.5 Euro c/kWh (in real prices), depending on the RES-E penetration level. - Research Highlights: →Development of a hybrid optimization model for the integration of renewable technologies in power generation systems. →Estimation of the optimum feed-in-tariffs to be offered to future renewable systems. →Determination of the overall cost increase in the electricity sector for the promotion of renewable technologies. →Analyses taking into account fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc.

  4. Size matters: Installed maximal unit size predicts market life cycles of electricity generation technologies and systems

    International Nuclear Information System (INIS)

    Li, N.

    2008-01-01

    The electricity generation technologies and systems are complex and change in very dynamic fashions, with a multitude of energy sources and prime movers. Since an important concept in generator design is the 'economies of scale', we discover that the installed maximal unit size (capacity) of the generators is a key 'envelope-pushing' characteristic with logistical behaviors. The logistical wavelet analysis of the max unit sizes for different fuels and prime movers, and the cumulative capacities, reveals universal quantitative features in the aggregate evolution of the power industry. We extract the transition times of the max sizes (spanning 10-90% of the saturation limits) for different technologies and systems, and discover that the max size saturation in the 90-99% range precedes the saturation of cumulative capacities of the corresponding systems in the US. While these universal laws are still empirical, they give us a simple yet elegant framework to examine the evolution of the power industry and markets in predictive, not just descriptive, terms. Such laws give us a quantitative tool to spot trends and predict future development, invaluable in planning and resource allocation based on intrinsic technology and system market life cycles. (author)

  5. Individual and big technology: a comparative attitudinal research to electricity generation from coal and uranium

    International Nuclear Information System (INIS)

    Midden, C.J.H.

    1986-01-01

    The basic issue addressed in this research can be formulated as follows: how can peoples reactions to high risk energy technologies be described, analysed and compared. In this study the technologies for electricity generation of nuclear power and coal were chosen for comparison. The thesis gives a general introduction and considers: 1. policy issues involved in the introduction and implementation of large scale technologies. 2. the current electricity supply situation with particular emphasis on the contribution of nuclear power and coal. 3. recent research which has contributed to the formulation of energy policy decisions. The attitudinal framework adopted in this study is discussed in relation to other approaches for the analysis of risk perception, classification of risks and personal and collective decisions about risk taking. (Auth.)

  6. GaN MODFET microwave power technology for future generation radar and communications systems

    Science.gov (United States)

    Grider, D. E.; Nguyen, N. X.; Nguyen, C.

    1999-08-01

    In order to gain a better understanding of the role that GaN MODFET technology will play in future generation radar and communications systems, a comparison of the state-of-the-art performance of alternative microwave power technologies will be reviewed. The relative advantages and limitations of each technology will be discussed in relation to system needs. Device results from recent MBE-grown GaN MODFETs will also be presented. In particular, 0.25 μm gate GaN MODFETs grown by MBE have been shown to exhibit less than 5% variation in maximum drain current density ( Idmax) from the center to the edge of a 2 inch wafer. This level of uniformity is a substantially higher than that normally found in MOCVD-grown GaN devices (˜28% variation). In addition, evidence is also presented to demonstrate the excellent reproducibility of MBE-grown GaN MODFETs.

  7. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa

    Science.gov (United States)

    van Zyl, W. H.; Chimphango, A. F. A.; den Haan, R.; Görgens, J. F.; Chirwa, P. W. C.

    2011-01-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  8. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa.

    Science.gov (United States)

    van Zyl, W H; Chimphango, A F A; den Haan, R; Görgens, J F; Chirwa, P W C

    2011-04-06

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation.

  9. Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis

    International Nuclear Information System (INIS)

    Maxim, Alexandru

    2014-01-01

    Solving the issue of environmental degradation due to the expansion of the World's energy demand requires a balanced approach. The aim of this paper is to comprehensively rank a large number of electricity generation technologies based on their compatibility with the sustainable development of the industry. The study is based on a set of 10 sustainability indicators which provide a life cycle analysis of the plants. The technologies are ranked using a weighted sum multi-attribute utility method. The indicator weights were established through a survey of 62 academics from the fields of energy and environmental science. Our results show that large hydroelectric projects are the most sustainable technology type, followed by small hydro, onshore wind and solar photovoltaic. We argue that political leaders should have a more structured and strategic approach in implementing sustainable energy policies and this type of research can provide arguments to support such decisions. - Highlights: • We rank 13 electricity generation technologies based on sustainability. • We use 10 indicators in a weighted sum multi-attribute utility approach. • Weights are calculated based on a survey of 62 academics from the field. • Large hydroelectric projects are ranked as the most sustainable. • Decision makers can use the results to promote a more sustainable energy industry

  10. Lessons learned in the generation of biomedical research datasets using Semantic Open Data technologies.

    Science.gov (United States)

    Legaz-García, María del Carmen; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2015-01-01

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years, the Open Data paradigm has proposed new ways for making data available in ways that sharing and integration are facilitated. Open Data approaches may pursue the generation of content readable only by humans and by both humans and machines, which are the ones of interest in our work. The Semantic Web provides a natural technological space for data integration and exploitation and offers a range of technologies for generating not only Open Datasets but also Linked Datasets, that is, open datasets linked to other open datasets. According to the Berners-Lee's classification, each open dataset can be given a rating between one and five stars attending to can be given to each dataset. In the last years, we have developed and applied our SWIT tool, which automates the generation of semantic datasets from heterogeneous data sources. SWIT produces four stars datasets, given that fifth one can be obtained by being the dataset linked from external ones. In this paper, we describe how we have applied the tool in two projects related to health care records and orthology data, as well as the major lessons learned from such efforts.

  11. Summary Describing Integration of ERM Methodology into Supervisory Control Framework with Software Package Documentation; Advanced Reactor Technology Milestone: M4AT-16PN2301052

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Veeramany, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-20

    This project involved the development of enhanced risk monitors (ERMs) for active components in Advanced Reactor (AdvRx) designs by integrating real-time information about equipment condition with risk monitors. Health monitoring techniques in combination with predictive estimates of component failure based on condition and risk monitors can serve to indicate the risk posed by continued operation in the presence of detected degradation. This combination of predictive health monitoring based on equipment condition assessment and risk monitors can also enable optimization of maintenance scheduling with respect to the economics of plant operation. This report summarizes PNNL’s multi-year project on the development and evaluation of an ERM concept for active components while highlighting FY2016 accomplishments. Specifically, this report provides a status summary of the integration and demonstration of the prototypic ERM framework with the plant supervisory control algorithms being developed at Oak Ridge National Laboratory (ORNL), and describes additional case studies conducted to assess sensitivity of the technology to different quantities. Supporting documentation on the software package to be provided to ONRL is incorporated in this report.

  12. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin

    2012-06-09

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  13. The relationship between technology acceptance and frequency of mobile commerce use amongst Generation Y consumers

    Directory of Open Access Journals (Sweden)

    Nobukhosi Dlodlo

    2013-05-01

    Research purpose: To examine the nature of the relationships that exist between technology acceptance and frequency of mobile commerce usage amongst Generation Y consumers. Motivation for the study: The Generation Y cohort has emerged as an important age-group due to its economic contribution to the economy. It is therefore essential that their attitudes and behaviour continue to receive empirical introspection, particularly since mobile commerce has gathered momentum as an important and arguably, the most popular medium for commercial transactions. In a global space that is technology based, it becomes imperative to investigate the interplay between mobile commerce acceptance dimensions and frequency of use amongst Generation Ys. Research design, approach and method: A survey was conducted with the aid of a structured self-administered questionnaire with a view to collecting primary data from a sample consisting of 204 Generation Y consumers. Main findings: There were positive correlations between frequency of use and five mobile commerce acceptance dimensions. Cronbach Alpha values ranged between 0.714 and 0.898, thereby indicating high internal consistency amongst the subscales as well as within the entire survey instrument. Correlation coefficients ranged between 0.164 and 0.677 at both the p < 0.01 and p < 0.05 significance levels (2-tailed test, indicating very high levels of association amongst the subscales. Predictive validity of the five subscales and the variable frequency of use resulted in positive and statistically-significant results that were established at an adjusted R2 value of 0.674. Practical/managerial implications: Marketers and business practitioners are presented with practical insights into dimensions that enhance frequency of use of mobile commerce technology amongst Generation Y consumers. Furthermore, an increased usage of mobile commerce technologies is projected to have a stimulus effect on profitability, sustainability and loyalty

  14. Lively package

    International Nuclear Information System (INIS)

    Jaremko, G.

    1997-01-01

    Progress on the Lloydminster Heavy Oil Interpretive Centre, sponsored by the Lloydminster Oilfield Technical Society and expected to open in late 1998, was discussed. Some $150,000 of the $750,000 budget is already in the bank, and another $150,000 is in the pipeline. The Centre will be added to an existing and well-established visitor's site. It is reported to contain a lively and imaginatively-designed exhibit package, and promises to become a combination of educational tool and tourist attraction for the town of Lloydminster, Saskatchewan, in the heart of heavy oil country

  15. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology

    Directory of Open Access Journals (Sweden)

    Karen A.M. O’ Callaghan

    2016-06-01

    Full Text Available The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.

  16. An Assessment of the Influence of the Industry Distribution Chain on the Oxygen Levels in Commercial Modified Atmosphere Packaged Cheddar Cheese Using Non-Destructive Oxygen Sensor Technology.

    Science.gov (United States)

    O' Callaghan, Karen A M; Papkovsky, Dmitri B; Kerry, Joseph P

    2016-06-20

    The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.

  17. Toward computerized morphometric facilities: a review of 58 software packages for computer-aided three-dimensional reconstruction, quantification, and picture generation from parallel serial sections

    NARCIS (Netherlands)

    Huijsmans, D. P.; Lamers, W. H.; Los, J. A.; Strackee, J.

    1986-01-01

    This review gives an inventory of 58 computer-aided three-dimensional reconstruction applications in the domain of biomedical research. It is devoted to the formulation of a set of recommendations thought to be necessary for improved performance of software packages in this field. These

  18. Planning and Programming of Education and Training Courses on the Radiation Fusion Technologies for Next Generations

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Nam, Y. M.; Choi, P. H.

    2009-06-01

    In order to program education and training courses on the radiation technologies and to have the WNU RT School to be held in Korea, this project was carried out. It was also done to make a strategy for running the programmed courses, and to build and knit a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee. A plan for the WNU RT School in Korea was made under this project. Curricula in all subjects related to radiation technology and the lecture materials were prepared, which are essential for education and training courses on radiation technologies for next generations. Lecturers were selected among global CEOs and professionals in radiation industries and university professors and radiation specialists. In addition, a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee was built and organized. As a model for the international education and training courses in RT field as well as the other fields, it can be used for making fundamentals of technology exports and promoting Korea's national image in science and technology

  19. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  20. Nuclear fission, today and tomorrow. From renaissance to technological breakthrough (generation IV) - Part II

    International Nuclear Information System (INIS)

    Van Goethem, Georges

    2010-01-01

    This paper is an overview of the current Euratom FP-7 research and training actions in innovative nuclear fission reactors and fuel cycle technologies, including partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by research project coordinators and by keynote speakers at the FISA-2009 Conference, organised by the European Commission DG Research/Euratom. The education and training programmes in nuclear fission and radiation protection are also discussed, aiming at continuously increasing the level of nuclear competences across the EU. It is necessary to consider the most recent nuclear fission technologies (Generations of Nuclear Power Plants): - GEN II: safety and reliability of nuclear facilities and energy independence; - GEN III: continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; - GEN IV: for increased sustainability, and proliferation resistance. The focus in this paper is on the design objectives and research issues associated to Generations IV systems that have been agreed upon internationally. Their benefits are discussed according to a series of ambitious criteria or technology goals established at the international level. One will have to produce not only electricity at lower costs but also heat at very high temperatures, while exploiting a maximum of fissile and fertile matters, and recycling all actinides, under safe and reliable conditions. Scientific viability studies and technological performance tests for each Generation IV system are now being carried out in many laboratories world-wide, in line with the intergovernmental GIF agreement. The ultimate phase of commercial deployment is foreseen for 2040. (orig.)

  1. RECENT TRENDS IN PACKAGING SYSTEMS FOR PHARMACEUTICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2014-12-01

    Full Text Available Background:  In recent years, pharmaceutical packaging market was one of the fastest growing areas of the packaging industry. At the same time the packaging manufacturers put high demands on quality and safety. Methods: Review of innovations in packaging systems for pharmaceutical products was made including newest information of researches and achievements of recent years. Results and conclusion: Observed in recent years the development of pharmaceutical packaging market expanded due to with the huge technological advances that allow introduction of new packaging. Also, in this study presented intelligent packaging in pharmacy and innovation in child-resistance packaging.

  2. Test and evaluation report for Lockheed Idaho Technologies Company, arrow-pak packaging, docket 95-40-7A, type A container

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1996-01-01

    This report incorporates the U.S. Department of Energy, Office of Facility Safety Analysis (DOE/EH-32) approval letter for packaging use. This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Arrow-Pak packaging. The Arrow-Pak packaging system consists of Marlex M-8000 Driscopipe, manufactured by Phillips-Driscopipe, Inc., and is sealed with two dome-shaped end caps manufactured from the same materials. The patented sealing process involves the use of electrical energy to heat opposing faces of the pipe and end caps, and hydraulic rams to press the heated surfaces together. This fusion process produces a homogeneous bonding of the end cap to the pipe. The packaging may be used with or without the two internal plywood spacers. This packaging configuration described in this report is designed to ship Type A quantities of solid radioactive materials

  3. Final evaluation report for Lockheed Idaho Technologies Company, ARROW-PAK packaging, Docket 95-40-7A, Type A container

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-11-01

    The report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the ARROW-PAK packaging. The ARROW-PAK packaging system consists of Marlex M-8000 Driscopipe (Series 8000 [gas] or Series 8600 [industrial]) resin pipe, manufactured by Phillips-Driscopipe, Inc., and is sealed with two dome-shaped end caps manufactured from the same materials. The patented sealing process involves the use of electrical energy to heat opposing faces of the pipe and end caps, and hydraulic rams to press the heated surfaces together. This fusion process produces a homogeneous bonding of the end cap to the pipe. The packaging may be used with or without the two internal plywood spacers. This packaging was evaluated and tested in October 1995. The packaging configuration described in this report is designed to ship Type A quantities of solid radioactive materials, Form No. 1, Form No. 2, and Form No. 3

  4. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    Science.gov (United States)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  5. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  6. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  7. Emotional response towards food packaging

    DEFF Research Database (Denmark)

    Liao, Lewis Xinwei; Corsi, Armando M.; Chrysochou, Polymeros

    2015-01-01

    In this paper we investigate consumers’ emotional responses to food packaging. More specifically, we use self-report and physiological measures to jointly assess emotional responses to three typical food packaging elements: colours (lowwavelength vs. high-wavelength), images (positive vs. negative...... response that can only be measured by self-report measures. We propose that a joint application of selfreport and physiological measures can lead to richer information and wider interpretation of consumer emotional responses to food packaging elements than using either measure alone.......) and typefaces (simple vs. ornate). A sample of 120 participants was exposed to mock package design concepts of chocolate blocks. The results suggest that images generate an emotional response that can be measured by both self-report and physiological measures, whereas colours and typefaces generate emotional...

  8. Developing next-generation telehealth tools and technologies: patients, systems, and data perspectives.

    Science.gov (United States)

    Ackerman, Michael J; Filart, Rosemarie; Burgess, Lawrence P; Lee, Insup; Poropatich, Ronald K

    2010-01-01

    The major goals of telemedicine today are to develop next-generation telehealth tools and technologies to enhance healthcare delivery to medically underserved populations using telecommunication technology, to increase access to medical specialty services while decreasing healthcare costs, and to provide training of healthcare providers, clinical trainees, and students in health-related fields. Key drivers for these tools and technologies are the need and interest to collaborate among telehealth stakeholders, including patients, patient communities, research funders, researchers, healthcare services providers, professional societies, industry, healthcare management/economists, and healthcare policy makers. In the development, marketing, adoption, and implementation of these tools and technologies, communication, training, cultural sensitivity, and end-user customization are critical pieces to the process. Next-generation tools and technologies are vehicles toward personalized medicine, extending the telemedicine model to include cell phones and Internet-based telecommunications tools for remote and home health management with video assessment, remote bedside monitoring, and patient-specific care tools with event logs, patient electronic profile, and physician note-writing capability. Telehealth is ultimately a system of systems in scale and complexity. To cover the full spectrum of dynamic and evolving needs of end-users, we must appreciate system complexity as telehealth moves toward increasing functionality, integration, interoperability, outreach, and quality of service. Toward that end, our group addressed three overarching questions: (1) What are the high-impact topics? (2) What are the barriers to progress? and (3) What roles can the National Institutes of Health and its various institutes and centers play in fostering the future development of telehealth?

  9. Recovery and packaging of tritium from Canadian heavy water reactors

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Goyette, V.; Harrison, T.E.; Miller, J.M.

    1985-01-01

    The Tritium Extraction Plant being built at Chalk River Nuclear Laboratories (CRNL) will be the first industrial scale demonstration of the Liquid Phase Catalytic Exchange (LPCE) process for transfer of tritium from heavy water to deuterium. The plant will also demonstrate new technology in the areas of electrolytic cells for D 2 generation, water cooled recombiners, metal hydride packaging and magnetically coupled blowers for tritium service. It will be used to detritiate the heavy water in Atomic Energy of Canada Limited's (AECL) reactors

  10. Present state of new technologies of nuclear power generation, and technological development of fast-breeder reactor and next-generation light water reactor

    International Nuclear Information System (INIS)

    Aoyagi, Toshihiro; Ando, Masato

    2014-01-01

    This paper introduces the present state of development of FBR in Japan and international cooperation, the development of HP-ABWR and HP-APWR as the next-generation light water reactors, and SMR development in the United States. As for FBR, the following situations are described: (1) history of development in Japan in the past, (2) history of change due to the readjustment of development plan caused by the accident of Fukushima Daiichi Nuclear Power Station, in which shift to FaCT phase 2 was suspended, and the approach to the establishment of safety standards for sodium-cooled FBR and its international standardization was adopted, and (3) future challenges. As for the Japan - France fast-breeder reactor development cooperation, the conclusion of the Japan - France inter-government agency agreement, and Japan's cooperation plan and system are described. Next, as for HP-ABWR and HP-APWR, the development goal and concept of each plant, and the element technologies required for the success are described. On the other hand, the small reactor development in the United States started with the aim of the securement of domestic technology base, contribution to reduction in carbon dioxide emissions, and its export to new entry countries for nuclear energy. This project aimed the practical use of SMR, and started 'financial support program for small reactors' to allocate about 452 million dollars to maximum two units of SMRs in the next five years. This project is outlined. (A.O.)

  11. Performance characterization and optimization of microgrid-based energy generation and storage technologies

    Science.gov (United States)

    Guggenberger, Joe David, II

    Renewable energy-powered microgrids have proven to be a valuable technology for self-contained (off-grid) energy systems. Characterizing microgrid system performance pre-deployment would allow the system to be appropriately sized to meet all required electrical loads at a given renewable source operational time frequency. A vanadium redox battery was empirically characterized to determine operating efficiency as a function of charging characteristics and parasitic load losses. A model was developed to iteratively determine system performance based on known weather conditions and load requirements. A case study was performed to compare modeled system performance to measurements taken during operation of the microgrid system. Another iterative model was developed to incrementally predict the microgrid operating performance as a function of diesel generator operating frequency. Calibration of the model was performed to determine accurate PV panel and inverter efficiencies. A case study was performed to estimate the constant loads the system could power at varying diesel generator operating frequencies. Typical Meteorological Year 3 (TMY3) data from 217 Class I locations throughout the United States was inserted into the model to determine the quantity of external AC and DC load the system could supply at intermittent diesel generator variable operational frequencies. Ordinary block Kriging analysis was performed using ArcGIS to interpolate AC and DC load power between TMY3 Class I locations for each diesel generator operating frequency. Figures representing projected AC and DC external load were then developed for each diesel generator operating frequency.

  12. What electricity generation technology to choose? The Australian energy policy challenge to 2030

    International Nuclear Information System (INIS)

    Page, B.

    2006-01-01

    Demand for electricity in Australia is forecast to grow over the period to 2030 by between 2.1 percent and 2.3 percent per annum. At a minimum, in excess of 12.000 MW of new baseload generation capacity will need to be built to meet this growing demand, in addition to substantial amounts of peaking and mid-merit plant. With extensive low-cost and easily accessible reserves of coal and natural gas available for new generation facilities, investment decisions in a competitive market environment would ordinarily be largely determined by average cost considerations. However, domestic and international policy uncertainty on the future treatment of carbon emissions, anticipated development of new, lower emission generation technologies and uncertainty over future fuel prices and availability results in a difficult investment decision making environment. The competing considerations, generation options and importance of a clear and sustainable national energy policy in delivering timely, least cost new generation plant will be examined in the paper

  13. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  14. All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation

    Science.gov (United States)

    2014-01-01

    Generation of induced pluripotent stem cells (iPSCs) via the ectopic expression of reprogramming factors is a simple, advanced, yet often perplexing technology due to low efficiency, slow kinetics, and the use of numerous distinct systems for factor delivery. Scientists have used almost all available approaches for the delivery of reprogramming factors. Even the well-established retroviral vectors confuse some scientists due to different tropisms in use. The canonical virus-based reprogramming poses many problems, including insertional mutagenesis, residual expression and re-activation of reprogramming factors, uncontrolled silencing of transgenes, apoptosis, cell senescence, and strong immunogenicity. To eliminate or alleviate these problems, scientists have tried various other approaches for factor delivery and transgene removal. These include transient transfection, nonintegrating viral vectors, Cre-loxP excision of transgenes, excisable transposon, protein transduction, RNA transfection, microRNA transfection, RNA virion, RNA replicon, nonintegrating replicating episomal plasmids, minicircles, polycistron, and preintegration of inducible reprogramming factors. These alternative approaches have their own limitations. Even iPSCs generated with RNA approaches should be screened for possible transgene insertions mediated by active endogenous retroviruses in the human genome. Even experienced researchers may encounter difficulty in selecting and using these different technologies. This survey presents overviews of iPSC technologies with the intention to provide a quick yet comprehensive reference for both new and experienced reprogrammers. PMID:24524728

  15. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process

    Science.gov (United States)

    Kuroki, Takashi; Murai, Ryota; Makino, Kazuya; Nagano, Kouji; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi

    2015-06-01

    In Japan, integrated steelworks have greatly lowered their energy use over the past few decades through investment in energy-efficient processes and facilities, maintaining the highest energy efficiency in the world. However, in view of energy security, the steelmaking industry is strongly required to develop new technologies for further energy saving. Waste heat recovery can be one of the key technologies to meet this requirement. To recover waste heat, particularly radiant heat from steel products which has not been used efficiently yet, thermoelectric generation (TEG) is one of the most effective technologies, being able to convert heat directly into electric power. JFE Steel Corporation (JFE) implemented a 10-kW-class grid-connected TEG system for JFE's continuous casting line with KELK Ltd. (KELK), and started verification tests to generate electric power using radiant heat from continuous casting slab at the end of fiscal year 2012. The TEG system has 56 TEG units, each containing 16 TEG modules. This paper describes the performance and durability of the TEG system, which has been investigated under various operating conditions at the continuous casting line.

  16. A real options evaluation model for the diffusion prospects of new renewable power generation technologies

    International Nuclear Information System (INIS)

    Kumbaroglu, Guerkan; Demirel, Mustafa; Madlener, Reinhard

    2008-01-01

    This study presents a policy planning model that integrates learning curve information on renewable power generation technologies into a dynamic programming formulation featuring real options analysis. The model recursively evaluates a set of investment alternatives on a year-by-year basis, thereby taking into account that the flexibility to delay an irreversible investment expenditure can profoundly affect the diffusion prospects of renewable power generation technologies. Price uncertainty is introduced through stochastic processes for the average wholesale price of electricity and for input fuel prices. Demand for electricity is assumed to be increasingly price-sensitive, as the electricity market deregulation proceeds, reflecting new options of consumers to react to electricity price changes (such as time-of-use pricing, unbundled electricity services, and choice of supplier). The empirical analysis is based on data for the Turkish electricity supply industry. Apart from general implications for policy-making, it provides some interesting insights about the impact of uncertainty and technical change on the diffusion of various emerging renewable energy technologies. (author)

  17. Social costs of innovative electricity generation technologies in the present and in 2030

    Energy Technology Data Exchange (ETDEWEB)

    Preiss, Philipp; Friedrich, Rainer; Blesl, Markus; Wissel, Steffen; Mayer-Spohn, Oliver; Klotz, Volker [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    2008-07-01

    Social costs (costs seen from the perspective of the society) differ from private costs and thus influence the ranking of electricity generating technologies. The resulting social costs data provide a basis for the recommendation to use the potential of nuclear, wind and hydropower as far as possible, however the potential of these technologies is limited. The analysis shows, that the remaining electricity demand in the future still should be met by using lignite and coal. Depending on the stringency of the climate change aims these plants would be equipped with CCS (carbon capture and storage) or not. Only with ambitious climate change aims and if CCS turns out to be less economically or technically feasible, than the import of electricity generated by a solar through systems in Mediterranean countries would become an option. The environmental advantages of PV are too small to compensate the very high investment costs in Germany. The detailed analysis of different contributions to the social costs per kWh shows that the costs of natural gas technologies are dominated by private costs of fuel supply. If we assume 50% higher prices than in the basic assumption this increases social costs up to 30%. (orig.)

  18. Eddy current technology for heat exchanger and steam generator tube inspection

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.; Lepine, B.; Lu, J.; Cassidy, R.; Carter, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-07-01

    A variety of degradation modes can affect the integrity of both heat exchanger (HX) and balance of plant tubing, resulting in expensive repairs, tube plugging or replacement of tube bundles. One key component for ensuring tube integrity is inspection and monitoring for detection and characterization of the degradation. In-service inspection of HX and balance of plant tubing is usually carried out using eddy current (EC) bobbin coils, which are adequate for the detection of volumetric degradations. However, detection and quantification of additional modes of degradation such as pitting, intergranular attack (IGA), axial cracking and circumferential cracking require specialized probes. The need for timely, reliable detection and characterization of these modes of degradation is especially critical in Nuclear Generating Stations. Transmit-receive single-pass array probes, developed by AECL, offer high defect detectability in conjunction with fast and reliable inspection capabilities. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection. Compared to impedance probes, they offer improved performance in the presence of variable lift-off. This EC technology can help resolve critical detection issues at susceptible areas, such as the rolled-joint transitions at the tubesheet, U-bends and tube-support intersections. This paper provides an overview of the operating principles and the capabilities of advanced ET inspection technology available for HX tube inspection. Examples of recent application of this technology in Nuclear Generating Stations (NGSs) are discussed. (author)

  19. Eddy current technology for heat exchanger and steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Lepine, B.; Lu, J.; Cassidy, R.; Carter, J.

    2004-01-01

    A variety of degradation modes can affect the integrity of both heat exchanger (HX) and balance of plant tubing, resulting in expensive repairs, tube plugging or replacement of tube bundles. One key component for ensuring tube integrity is inspection and monitoring for detection and characterization of the degradation. In-service inspection of HX and balance of plant tubing is usually carried out using eddy current (EC) bobbin coils, which are adequate for the detection of volumetric degradations. However, detection and quantification of additional modes of degradation such as pitting, intergranular attack (IGA), axial cracking and circumferential cracking require specialized probes. The need for timely, reliable detection and characterization of these modes of degradation is especially critical in Nuclear Generating Stations. Transmit-receive single-pass array probes, developed by AECL, offer high defect detectability in conjunction with fast and reliable inspection capabilities. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection. Compared to impedance probes, they offer improved performance in the presence of variable lift-off. This EC technology can help resolve critical detection issues at susceptible areas, such as the rolled-joint transitions at the tubesheet, U-bends and tube-support intersections. This paper provides an overview of the operating principles and the capabilities of advanced ET inspection technology available for HX tube inspection. Examples of recent application of this technology in Nuclear Generating Stations (NGSs) are discussed. (author)

  20. [Research progress in the third-generation genomic editing technology - CRISPR/Cas9].

    Science.gov (United States)

    Zhou, Yalan; Zong, Yanan; Kong, Xiangdong

    2016-10-01

    CRISPR/Cas9 technology originated from type II CRISPR/Cas system, which is widely found in bacteria and equips them with acquired immunity against viruses and plasmids. CRISPR-associated protein Cas9 is a RNA-guided endonuclease, which can efficiently introduce double-strand breaks at specific sites and activate homologous recombination and/or non-homologous end joining mechanism for the repair of impaired DNA. Features such as easy-to-use, cost-effectiveness, multiple targeting ability have made it the third-generation genomic engineering tool following ZFNs and TALENs. Here the history of discovery and molecular mechanism of the CRISPR/Cas9 technology are reviewed. The rapid advance in its various applications, especially for the treatment of human genetic disorders, as well as some concomitant problems are discussed.

  1. Development of new-generation dietary bread technologies by using soya processing products

    Directory of Open Access Journals (Sweden)

    M.A. Silagadze

    2017-06-01

    Full Text Available In order to develop low-calorie high-biological value dietary bread, we used the soya processing products – roasted full fat soya flour, soya milk and soya pomace. There has been studied their chemical and micro nutrient composition. The study shows that the soya processing products have low energy and high biological value, and exhibit low glycemic index that makes them very attractive for the design of dietary food products. In order to increase bioavailability of soya, we carried out its sprouting. We studied the impact of different technological factors on the accumulation dynamics of highly digestible components of soya. based on the studies of the separate and complex influence of the soya processing products on the quality of whole wheat bread, there have been determined the optimal doses of food additives. There has been developed a new-generation dietary product with the trade name “Our Daily Bread”, as well as its making technology.

  2. Internet of Things and big data technologies for next generation healthcare

    CERN Document Server

    Dey, Nilanjan; Ashour, Amira

    2017-01-01

    This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the I...

  3. Prospects for the use of SMR and IGCC technologies for power generation in Poland

    Science.gov (United States)

    Wyrwa, Artur; Suwała, Wojciech

    2017-11-01

    This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC) and small modular reactors (SMR). For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE). The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.

  4. Prospects for the use of SMR and IGCC technologies for power generation in Poland

    Directory of Open Access Journals (Sweden)

    Wyrwa Artur

    2017-01-01

    Full Text Available This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC and small modular reactors (SMR. For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE. The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.

  5. Spectroscopy of Technological Defects in Si Solar Cells by Analysis of Temperature Dependent Generation Currents

    Directory of Open Access Journals (Sweden)

    Jevgenij PAVLOV

    2014-09-01

    Full Text Available The efficiency of solar cells considerably depends on the technological defects introduced by the formation of junctions, passivation layers and electrodes. Identification of these defects present in the high conductivity base layer of modern solar cells by usage of the standard techniques, such as capacitance deep level spectroscopy, is restricted by extremely small size of samples with inherent enhanced leakage current on sample boundaries. Therefore, it is important to develop the alternative methods for the defect spectroscopy in the high conductivity junction structures, to directly control a relative low concentration of the technological defects. In this work, the spectroscopy of deep traps has been performed by combining the temperature scans of the thermal generation currents extracted from barrier capacitance charging transients and capacitance deep level transient spectroscopy techniques. The dominant carrier traps ascribed to the Cu and Ni impurities were revealed. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5194

  6. Laser cleaning of steam generator tubing based on acoustic emission technology

    International Nuclear Information System (INIS)

    Hou, Su-xia; Luo, Ji-jun; Shen, Tao; Li, Ru-song

    2015-01-01

    As a physical method, laser cleaning technology in equipment maintenance will be a good prospect. The experimental apparatus for laser cleaning of heat tubes in the steam generator was designed according to the results of theoretical analysis. There are two conclusions; one is that laser cleaning technology is attached importance to traditional methods. Which has advantages in saving on much manpower and material resource and it is a good cleaning method for heat tubes. The other is that the acoustic emission signal includes lots of information on the laser cleaning process, which can be used as real-time monitoring in laser cleaning processes. When the laser acts for 350 s, 100 % contaminants of heat tubes is cleaned off, and the sensor only receives weak AE signal at that time.

  7. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  8. [Application of next-generation semiconductor sequencing technologies in genetic diagnosis of inherited cardiomyopathies].

    Science.gov (United States)

    Zhao, Yue; Zhang, Hong; Xia, Xue-shan

    2015-07-01

    Inherited cardiomyopathy is the most common hereditary cardiac disease. It also causes a significant proportion of sudden cardiac deaths in young adults and athletes. So far, approximately one hundred genes have been reported to be involved in cardiomyopathies through different mechanisms. Therefore, the identification of the genetic basis and disease mechanisms of cardiomyopathies are important for establishing a clinical diagnosis and genetic testing. Next-generation semiconductor sequencing (NGSS) technology platform is a high-throughput sequencer capable of analyzing clinically derived genomes with high productivity, sensitivity and specificity. It was launched in 2010 by Life Technologies of USA, and it is based on a high density semiconductor chip, which was covered with tens of thousands of wells. NGSS has been successfully used in candidate gene mutation screening to identify hereditary disease. In this review, we summarize these genetic variations, challenge and application of NGSS in inherited cardiomyopathy, and its value in disease diagnosis, prevention and treatment.

  9. Laser cleaning of steam generator tubing based on acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Su-xia; Luo, Ji-jun; Shen, Tao; Li, Ru-song [Xi' an Hi-Tech Institute, Xi' an (China)

    2015-12-15

    As a physical method, laser cleaning technology in equipment maintenance will be a good prospect. The experimental apparatus for laser cleaning of heat tubes in the steam generator was designed according to the results of theoretical analysis. There are two conclusions; one is that laser cleaning technology is attached importance to traditional methods. Which has advantages in saving on much manpower and material resource and it is a good cleaning method for heat tubes. The other is that the acoustic emission signal includes lots of information on the laser cleaning process, which can be used as real-time monitoring in laser cleaning processes. When the laser acts for 350 s, 100 % contaminants of heat tubes is cleaned off, and the sensor only receives weak AE signal at that time.

  10. Information Technology and generating business value: An analysis in industrial SMEs

    Directory of Open Access Journals (Sweden)

    Sara Trigueros-Preciado

    2014-05-01

    Full Text Available Purpose: The literature examines the relationship between information technologies and business results mainly through direct relationship between investment on Information Technologies (IT and financial measures. This has resulted in disparity of results and lack of consensus, and therefore, the necessity to deepen this topic. In this sense, this paper aims to analyze in industrial SMEs the effects of the use of IT on different financial and non-financial variables related to business value. Design/methodology/approach: The work follows the classical research scheme with literature review, statement of hypotheses and application of quantitative empirical methodology, collecting information through questionnaires sent by email, for further processing and statistical testing using ANOVA models, which allow get results and conclusions. Findings and Originality/value: The study provides an approach beyond classical search of direct relationship between IT investment and financial measures, using instead as an explanatory variable the "use of IT" and as explained variables the Balance scorecard dimensions, which considers the financial ones and introduces other more qualitative as customers, human resources and internal processes. The obtained results show that IT contributes to the generation of value not only through the profitability but also other more qualitative factors. Research limitations/implications: The sample size (85 companies complicates the extrapolation of results. In addition, in the future it would be appropriate to consider new technological developments like Cloud computing, along with variables such as information security and its impact on value creation. Originality/value: This work shows that to analyze the generated value by IT it must to be considered financial and non-financial variables. The proposed approach, variables and scales complement traditional approaches and can guide future research as well as companies who

  11. Next Generation Astronomical Data Processing using Big Data Technologies from the Apache Software Foundation

    Science.gov (United States)

    Mattmann, Chris

    2014-04-01

    In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.

  12. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology.

    Science.gov (United States)

    Janssen, Sander J C; Porter, Cheryl H; Moore, Andrew D; Athanasiadis, Ioannis N; Foster, Ian; Jones, James W; Antle, John M

    2017-07-01

    Agricultural modeling has long suffered from fragmentation in model implementation. Many models are developed, there is much redundancy, models are often poorly coupled, model component re-use is rare, and it is frequently difficult to apply models to generate real solutions for the agricultural sector. To improve this situation, we argue that an open, self-sustained, and committed community is required to co-develop agricultural models and associated data and tools as a common resource. Such a community can benefit from recent developments in information and communications technology (ICT). We examine how such developments can be leveraged to design and implement the next generation of data, models, and decision support tools for agricultural production systems. Our objective is to assess relevant technologies for their maturity, expected development, and potential to benefit the agricultural modeling community. The technologies considered encompass methods for collaborative development and for involving stakeholders and users in development in a transdisciplinary manner. Our qualitative evaluation suggests that as an overall research challenge, the interoperability of data sources, modular granular open models, reference data sets for applications and specific user requirements analysis methodologies need to be addressed to allow agricultural modeling to enter in the big data era. This will enable much higher analytical capacities and the integrated use of new data sources. Overall agricultural systems modeling needs to rapidly adopt and absorb state-of-the-art data and ICT technologies with a focus on the needs of beneficiaries and on facilitating those who develop applications of their models. This adoption requires the widespread uptake of a set of best practices as standard operating procedures.

  13. Protection of constitutional rights, technological development, and responsibility towards future generations

    International Nuclear Information System (INIS)

    Lawrence, C.

    1989-01-01

    Nuclear engineering and the peaceful use of nuclear energy still is a major issue in the dispute about technological progress. There are the two most ambiguous concepts in the nuclear controversy which illustrate the uncertainty in dealing with the 'new technologies': The 'risk to be accepted', and the 'responsibility towards future generations'. The study in hand focusses on the 'risk to be accepted', which from the constitutional point of view still lacks legitimation. The concept of 'social adequacy' used in the Kalkar judgement of the Federal Constitutional Court is based on custom and consensus and today, in view of the lack of consensus, can no longer be used to derive a constitutional legitimation. This gap is filled in this study by examining the applicability of the basic right of physical integrity (Art. 2, section 2, first sentence of the GG). In addition, it is a particular feature of the concept of 'risk to be accepted' that neither the Constitution nor the Atomic Energy Act allow direct limits to the quantitative increase of that risk to be derived from their provisions. However, it is just the need for legal provisions checking and controlling the risk growing with technological progress that creates the major problem in the effort to prevent a possible intrinsic dynamic development of risks. The study investigates whether there are such instruments provided by the law. Another aspect discussed in connection with the safe ultimate disposal of radioactive wastes with half-life periods of up to 24.000 years is the responsibility we have towards the future generations. The author examines whether there are constitutional rights affecting nuclear technology in relation to this topic. (orig./HSCH) [de

  14. [New-generation high-throughput technologies based 'omics' research strategy in human disease].

    Science.gov (United States)

    Yang, Xu; Jiao, Rui; Yang, Lin; Wu, Li-Ping; Li, Ying-Rui; Wang, Jun

    2011-08-01

    In recent years, new-generation high-throughput technologies, including next-generation sequencing technology and mass spectrometry method, have been widely applied in solving biological problems, especially in human diseases field. This data driven, large-scale and industrialized research model enables the omnidirectional and multi-level study of human diseases from the perspectives of genomics, transcriptomics and proteomics levels, etc. In this paper, the latest development of the high-throughput technologies that applied in DNA, RNA, epigenomics, metagenomics including proteomics and some applications in translational medicine are reviewed. At genomics level, exome sequencing has been the hot spot of the recent research. However, the predominance of whole genome resequencing in detecting large structural variants within the whole genome level is coming to stand out as the drop of sequencing cost, which also makes it possible for personalized genome based medicine application. At trancriptomics level, e.g., small RNA sequencing can be used to detect known and predict unknown miRNA. Those small RNA could not only be the biomarkers for disease diagnosis and prognosis, but also show the potential of disease treatment. At proteomics level, e.g., target proteomics can be used to detect the possible disease-related protein or peptides, which can be useful index for clinical staging and typing. Furthermore, the application and development of trans-omics study in disease research are briefly introduced. By applying bioinformatics technologies for integrating multi-omics data, the mechanism, diagnosis and therapy of the disease are likely to be systemically explained and realized, so as to provide powerful tools for disease diagnosis and therapies.

  15. Modeling technology innovation: how science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts.

    Science.gov (United States)

    Stone, Vathsala I; Lane, Joseph P

    2012-05-16

    Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact-that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and "bench to bedside" expectations for

  16. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  17. Environmental Impacts of Renewable Electricity Generation Technologies: A Life Cycle Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin

    2016-01-13

    All energy systems impact the environment. Much has been learned about these environmental impacts from decades of research. Through systematic reviews, meta-analysis and original research, the National Renewable Energy Laboratory has been building knowledge about environmental impacts of both renewable and conventional electricity generation technologies. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Impacts from oil and natural gas systems will be highlighted. Areas of uncertainty and challenge will be discussed as suggestions for future research, as well as career opportunities in this field.

  18. Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts

    Science.gov (United States)

    2012-01-01

    Background Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact—that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. Methods This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. Results The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and

  19. Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts

    Directory of Open Access Journals (Sweden)

    Stone Vathsala I

    2012-05-01

    Full Text Available Abstract Background Government-sponsored science, technology, and innovation (STI programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact—that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries, with less focus on transfer metrics about development outputs (patented prototypes and almost none on econometrics related to production outputs (commercial innovations. This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. Methods This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. Results The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation, as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and

  20. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  1. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    generation, which is the same scenario in the North and Northwest China Grid. In the Northeast, East, and Central China Grid, nuclear power gradually replaces coal-fired electricity and becomes the marginal technology. In the Southwest China Grid and the China Southern Power Grid, the marginal electricity...... imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China...

  2. Integrated ultrasonic inspection technology to meet the requirements of CANDU steam generators

    International Nuclear Information System (INIS)

    Chen, Z.; Maynard, K.; Chan, K.; Malkiewicz, T.; Prince, J.; Huggins, J.

    2009-01-01

    For over a decade, ultrasonic (UT) inspection techniques with TRUSTIE (Tiny Rotating UltraSonic Tube Inspection Equipment) have been providing inspection capability that can assess the severity of flaws in Steam Generator (SG) tubes, and accurately monitor their growth. TRUSTIE, a high-resolution ultrasonic imaging system specialized for small diameter tube inspection, plays an important role in CANDU Steam Generator life cycle management. The increasing demand for production-oriented outage management strategies is focused on shortening outage windows. Advanced technologies in the areas of data analysis, multi-element probes, high torque servo systems, and integrated fibre-optic cable networks are being integrated into the existing TRUSTIE system to meet the new and challenging inspection requirements. This paper presents an overview of the advanced technical developments and enhancements that are currently underway and being implemented for SG tube UT inspections in CANDU nuclear power plants. (author)

  3. Has Technology Become a Need? A Qualitative Study Exploring Three Generational Cohorts' Perception of Technology in Regards to Maslow's Hierarchy of Needs

    Science.gov (United States)

    Dunmore, Denisia

    2013-01-01

    For the first time in the history of America, there are four different generations living, working and learning together in a society that is more technologically advanced than ever before. However, could it be that technology has become a need? The primary purpose of this qualitative case study was to utilize Maslow's hierarchy of needs as the…

  4. Service Packages – Attractiveness Has Many Faces

    Directory of Open Access Journals (Sweden)

    Ilona Bondos

    2016-01-01

    Full Text Available This article is an attempt to identify the impact of the customer age (especially the Baby boomers generation and the X and the Y generation on the assessment of incentives to buy service package. Belonging to different age generations seems to be important for the effectiveness of service packages sales – the entrance by the consumers in subsequent phases of the life cycle is related to their perception of the market offer. The starting point for the empirical part of the article was to analyze the different average scores attractiveness of the ten packages service features (incentives to purchase. Then, using multidimensional scaling authors determined the similarity or dissimilarity data on a set of applied incentives to use service packages. Visible differences indicate a different perception of the attractiveness of packages representatives of the Baby boomer generation and Y generation. Managerial implications and directions for future research are discussed.

  5. Micro/Nanospheres Generation by Fluid-Fluid Interaction Technology: A Literature Review.

    Science.gov (United States)

    Lei, Lei; Bergstrom, Don; Zhang, Bing; Zhang, Hongbo; Yin, Ruixue; Song, Ki-Young; Zhang, Wenjun

    2017-01-01

    This review focuses on the fundamental fluid mechanics which governs the generation of micro/nanospheres. The micro/nanosphere generation process has gathered significant attention in the past two decades, since micro/nanospheres are widely used in drug delivery, food science, cosmetics, and other application areas. Many methods have been developed based on different operating principles, such as microfluidic methods, electrospray methods, chemical methods, and so forth. This paper focuses on microfluidic methods. Although the structure of the microfluidic devices may be different, the operating principles behind them are often very similar. Following an initial discussion of the fluid mechanics related to the generation of microspheres, various design approaches are discussed, including T-junction, flow focusing, membrane emulsification, modified T-junction, and double emulsification methods. The advantages and problems associated with each method are also discussed. Next, the most commonly used computational fluid dynamics (CFD) methods are reviewed at three different levels: microscopic, mesoscopic, and macroscopic. Finally, the issues identified in the current literature are discussed, and some suggestions are offered regarding the future direction of technology development related to micro/nanosphere generation. Few relevant patents to the topic have been reviewed and cited. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Reviews on Fuel Cell Technology for Valuable Chemicals and Energy Co-Generation

    Directory of Open Access Journals (Sweden)

    Wisitsree Wiyaratn

    2010-07-01

    Full Text Available This paper provides a review of co-generation process in fuel cell type reactor to produce valuable chemical compounds along with electricity. The chemicals and energy co-generation processes have been shown to be a promising alternative to conventional reactors and conventional fuel cells with pure water as a byproduct. This paper reviews researches on chemicals and energy co-generation technologies of three types of promising fuel cell i.e. solid oxide fuel cell (SOFC, alkaline fuel cell (AFC, and proton exchange membrane fuel cell (PEMFC. In addition, the research studies on applications of SOFCs, AFCs, and PEMFCs with chemical production (i.e. nitric oxide, formaldehyde, sulfur oxide, C2 hydrocarbons, alcohols, syngas and hydrogen peroxide were also given. Although, it appears that chemicals and energy co-generation processes have potential to succeed in commercial applications, the development of cheaper catalyst materials with longer stability ,and understanding in thermodynamic are still challenging to improve the overall system performance and enable to use in commercial market.

  7. Technical assessment of discarded tires gasification as alternative technology for electricity generation.

    Science.gov (United States)

    Machin, Einara Blanco; Pedroso, Daniel Travieso; de Carvalho, João Andrade

    2017-10-01

    Concern about contamination associated with the disposal of tires has led to the search for technologies to reuse discarded tires, which include the use of Tire Derived Fuel (TDF) as fuel in advanced thermal-conversion processes, this allows the energy use of these wastes at affordable costs and reduces the environmental impact on scrap tires disposal. A theoretical assessment of the technical viability of TDF gasification for electric and thermal power generation, from the producer gas combustion in an internal combustion engine and in a gas turbine, was performed. The combustion of producer gas derived from the gasification of TDF in an internal combustion engine driving a generator (ICE-G) appears as the more efficient route for electricity generation when compared with the efficiency obtained with the use of gas turbine (GT-G). A higher global efficiency, considering the electric and thermal generation efficiency can be expected with the use of TDF producer gas in GT-G, where is expected an overall efficiency of 77.49%. The assessment shows that is possible produces up to 7.67MJ and 10.62MJ of electric and thermal energy per kilogram of TDF gasified using an ICE-G and up to 6.06MJ and 13.03MJ of electric and thermal energy respectively per kilogram of gasified TDF using a GT-G. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Antimicrobial Food Packaging: Potential & Pitfalls

    Directory of Open Access Journals (Sweden)

    BHANU eMALHOTRA

    2015-06-01

    Full Text Available Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line.

  9. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  10. Development of a technology for the preparation of 188W-188Re generators

    International Nuclear Information System (INIS)

    Oliveira, Alexandre de

    2004-01-01

    A big interest has recently arisen concerning the use of Rhenium-188 (188Re) for various medical applications. Tumor therapy with antibodies labeled with 188Re is the main application, but it is being studied its application in carcinomas of medullar thyroid, bone pain palliation and radionuclide synovectomy, among others. Rhenium-188 decays 79% to the ground state of stable 188Os (Eβ1max - 2,11 MeV) and 20% to the first excited state (Eβ2max = 1,97 MeV). The deexcitation of this state gives a 155 keV gamma ray (15r%) which can be detected by imaging. Another great advantage is the viability of carrier-free 188Re from the decay of 188W (t 1/2 = 69.4 days) in a generator system. The objective of this work is the development of the technology for the preparation of 188W- 188Re generators. To accomplish this, the steps of the work are: preparation of the targets of W; irradiation of W targets in order to measure the activation and radionuclidic impurities; development of 188W-188Re generators; development of a method for the quality control of 188Re: chemical, radiochemical and radionuclidic purities. The study of alumina-based generators was performed with the irradiation of targets of natural metallic W and W03 and showed that this kind of generator will only be viable with the importation of 188W, due to the low neutron flux of the Reactor IEA-R1 Reactor for the commercial routine production of this radioisotope, but the technology of production and quality control were successful. The gel type chromatographic generators of WZr were produced with natural WO3 targets and showed that, if enriched targets are to be used and with the power upgrade of the IEA-R1 Reactor, they can be produced by the Radiopharmacy Center at IPEN-SP. The quality control methodology were determined and the results were inside the limits given by the Pharmacopoeia. (author)

  11. New power generation technologies pave the way for growth and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    As the global population and the economy grow, and more people live in urban areas, demand for energy and electrical power is on the rise. At present, for the first time ever, more people on earth live in cities than in rural areas. This urbanization will accelerate the demand for sufficient and secure power. Fossil fuels will continue to be the backbone of power supply over the next decades. However, finite conventional resources, security of supply, volatile fuel prices, increasing costs of exploration and the threat to the climate from greenhouse gases all impose global constraints. New technologies based on all energy resources are necessary to guarantee a balanced electricity supply. Examples of innovative technology fields: Efficiency: Higher firing temperatures and steam parameters allow increased efficiencies of combined-cycle power plants beyond 60% and supercritical steam power plants. Gasification: Gasifiers for broader usage of coal offer the option of power generation and synfuel production without emitting CO2. Renewables: The next major challenge is to increase efficiency and life-time of wind turbines and to establish offshore wind parks. Equipment suppliers are working on innovative concepts, products and solutions to renew and replace the world's power generation capacity under optimized ecological, technical and economic aspects. (auth)

  12. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chapman, Jamie [Texas Tech Univ., Lubbock, TX (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Drury, Easan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bishop, Norman A. [Knight Piesold, Denver, CO (United States); Brown, Stephen R. [HDR/DTA, Portland, ME (Untied States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Felker, Fort [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fernandez, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goodrich, Alan C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hagerman, George [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neil, Sean [Ocean Renewable Energy Coalition, Portland, OR (United States); Paquette, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  13. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. [Anti-HBV effects of genetically engineered replication-defective HBV with combined expression of antisense RNA and dominant negative mutants of core protein and construction of first-generation packaging cell line for HBV vector].

    Science.gov (United States)

    Sun, Dian Xing; Hu, Da Rong; Wu, Guang Hui; Hu, Xue Ling; Li, Juan; Fan, Gong Ren

    2002-08-01

    To explore the possibility of using HBV as a gene delivery vector, and to test the anti-HBV effects by intracellular combined expression of antisense RNA and dominant negative mutants of core protein. Full length of mutant HBV genome, which expresses core-partial P fusion protein and/or antisense RNA, was transfected into HepG2.2.15 cell lines. Positive clones were selected and mixed in respective groups with hygromycin in the culture medium. HBsAg and HBeAg, which exist in the culture medium, were tested by ELISA method. Intracellular HBc related HBV DNA was examined by dot blot hybridization. The existence of recombinant HBV virion in the culture medium was examined by PCR. Free of packaging signal, HBV genome, which express the HBV structural proteins including core, pol and preS/S proteins, was inserted into pCI-neo vector. HepG2 cell lines were employed to transfect with the construct. G418 selection was done at the concentration of 400mug/ml in the culture medium. The G418-resistant clones with the best expression of HBsAg and HBcAg were theoretically considered as packaging cell lines and propagated under the same conditions. It was transfected with plasmid pMEP-CPAS and then selected with G418 and hygromycin in the culture medium. The existence of recombinant HBV virion in the culture medium was examined by PCR. The mean inhibitory rates of HBsAg were 2.74% 3.83%, 40.08 2.05% (t=35.5, PDNA were 0, 82.0%, 59.9%, and 96.6%, respectively. Recombinant HB virion was detectable in the culture medium of all the three treatment groups. G418-resistant HBV packaging cell line, which harbored an HBV mutant whose packaging signal had been deleted, was generated. Expression of HBsAg and HBcAg was detectable. Transfected with plasmid pMEP-CPAS, it was found to secrete recombinant HB virion and no wild-type HBV was detectable in the culture medium. It has stronger anti-HBV effects by combined expression of antisense RNA and dominant negative mutants than by individual

  15. The impact of the EU ETS on the sectoral innovation system for power generation technologies. Findings for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Karoline [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Swiss Federal Inst. of Technology Zurich (ETH Zurich) (Switzerland). Dept. of Management, Technology, and Economics; Hoffmann, Volker [Swiss Federal Inst. of Technology Zurich (ETH Zurich) (Switzerland). Dept. of Management, Technology, and Economics

    2009-07-01

    This paper provides an overview of early changes in the sectoral innovation system for power generation technologies which have been triggered by the European Emission Trading Scheme (EU ETS). Based on a broad definition of the sector, our research analyses the impact of the EU ETS on the four building blocks 'knowledge and technologies', 'actors and networks', 'institutions' and 'demand' by combining two streams of literature, namely systems of innovation and environmental economics. Our analysis is based on 42 exploratory inter-views with German and European experts in the field of the EU ETS, the power sector and technological innovation. We find that the EU ETS mainly affects the rate and direction of the technological change of power generation technologies within the large-scale, coal-based power generation technological regime to which carbon capture technologies are added as a new technological trajectory. While this impact can be interpreted as defensive behaviour of incumbents, the observed changes should not be underestimated. We argue that the EU ETS' impact on corporate CO2 culture and routines may prepare the ground for the transition to a low carbon sectoral innovation system for power generation technologies. (orig.)

  16. The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany

    International Nuclear Information System (INIS)

    Rogge, Karoline S.; Hoffmann, Volker H.

    2010-01-01

    This paper provides an overview of early changes in the sectoral innovation system for power generation technologies which have been triggered by the European Emission Trading System (EU ETS). Based on a broad definition of the sector, our research analyses the impact of the EU ETS on the four building blocks 'knowledge and technologies', 'actors and networks', 'institutions', and 'demand' by combining two streams of literature, namely systems of innovation and environmental economics. Our analysis for Germany is based on 42 exploratory interviews with experts in the field of the EU ETS, the power sector, and technological innovation. We find that the EU ETS mainly affects the rate and direction of technological change of power generation technologies within the large-scale, coal-based power generation technological regime, to which carbon capture technologies are added as a new technological trajectory. While this impact can be interpreted as the defensive behaviour of incumbents, the observed changes should not be underestimated. We argue that the EU ETS' impact on corporate CO 2 culture and routines may prepare the ground for the transition to a low-carbon sectoral innovation system for power generation technologies.

  17. Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario

    International Nuclear Information System (INIS)

    Ayres, M.; McRae, M.; Stogran, M.

    2004-08-01

    This report provides a comparison of the lifetime cost of constructing, operating and decommissioning new generation suitable for supplying baseload power by early in the next decade. New baseload generation options in Ontario are nuclear, coal-fired steam turbines or combined cycle gas turbines (CCGT). Nuclear and coal-fired units are characterised by high capital costs and low operating costs. As such, they are candidates for baseload operation only. Gas-fired generation is characterised by lower capital costs and higher operating costs and thus may meet the requirements for operation as peaking and/or baseload generation. The comparison of baseload generating technologies is made by reference to the estimated levelised unit electricity cost (LUEC). The LUEC can be thought of as a 'supply cost', where the unit cost is the price needed to recover all costs over the period. It is determined by finding the price that sets the sum of all future discounted cash flows (net present value, or NPV) to zero. It can also be thought of as representing the constant real wholesale price of electricity that meets the financing cost, debt repayment, income tax and cash flow constraints associated with the construction operation and decommissioning of a generating plant. Levelised unit cost comparisons are usually made with different sets of financing assumptions. This report considers two base cases, which we describe as 'merchant' and 'public' financing. The term 'merchant plant' is used to refer to ones that are built and operated by private investors. These investors pay for their capital through debt and by raising equity, and thus pay return on equity and interest on debt throughout their lifetime. These projects include income taxes, both provincial and federal. Publicly financed projects typically are not subject to income taxes or to the same constraints on raising finance through issuing debt and equity. However, they are constrained to provide a rate of return. The

  18. Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, M.; McRae, M.; Stogran, M.

    2004-08-15

    This report provides a comparison of the lifetime cost of constructing, operating and decommissioning new generation suitable for supplying baseload power by early in the next decade. New baseload generation options in Ontario are nuclear, coal-fired steam turbines or combined cycle gas turbines (CCGT). Nuclear and coal-fired units are characterised by high capital costs and low operating costs. As such, they are candidates for baseload operation only. Gas-fired generation is characterised by lower capital costs and higher operating costs and thus may meet the requirements for operation as peaking and/or baseload generation. The comparison of baseload generating technologies is made by reference to the estimated levelised unit electricity cost (LUEC). The LUEC can be thought of as a 'supply cost', where the unit cost is the price needed to recover all costs over the period. It is determined by finding the price that sets the sum of all future discounted cash flows (net present value, or NPV) to zero. It can also be thought of as representing the constant real wholesale price of electricity that meets the financing cost, debt repayment, income tax and cash flow constraints associated with the construction operation and decommissioning of a generating plant. Levelised unit cost comparisons are usually made with different sets of financing assumptions. This report considers two base cases, which we describe as 'merchant' and 'public' financing. The term 'merchant plant' is used to refer to ones that are built and operated by private investors. These investors pay for their capital through debt and by raising equity, and thus pay return on equity and interest on debt throughout their lifetime. These projects include income taxes, both provincial and federal. Publicly financed projects typically are not subject to income taxes or to the same constraints on raising finance through issuing debt and equity. However, they are

  19. Renewable generation technology choice and policies in a competitive electricity supply industry

    Science.gov (United States)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable

  20. Development directions of packaging made from polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan

    2011-01-01

    Full Text Available World packaging market achieves turnover of about $620 billion per year with one third of this amount being associated to packaging made from polymer materials. It is expected that this kind of packaging consumption will hold at least 3% of world packaging market share in the next five years and that it will surpass the consumption of all other materials used in the packaging production. This can be contributed to product quality, low production costs as well as significant investments made in the development of polymer materials, packaging technology and packaging. This paper presents some development directions for packaging made from polymer materials, such as: packaging in the protective atmosphere, the use of active and intelligent packaging, and the use of biopolymers and recycled polymers for packaging production that come into direct contact with the packed product.

  1. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  2. Biobased Packaging - Application in Meat Industry

    Directory of Open Access Journals (Sweden)

    S. Wilfred Ruban

    2009-04-01

    Full Text Available Because of growing problems of waste disposal and because petroleum is a nonrenewable resource with diminishing quantities, renewed interest in packaging research is underway to develop and promote the use of “bio-plastics.” In general, compared to conventional plastics derived from petroleum, bio-based polymers have more diverse stereochemistry and architecture of side chains which enable research scientists a greater number of opportunities to customize the properties of the final packaging material. The primary challenge facing the food (Meat industry in producing bio-plastic packaging, currently, is to match the durability of the packaging with product shelf-life. Notable advances in biopolymer production, consumer demand for more environmentally-friendly packaging, and technologies that allow packaging to do more than just encompass the food are driving new and novel research and developments in the area of packaging for muscle foods. [Vet. World 2009; 2(2.000: 79-82

  3. Electrical machines, in particular generators: superconductor technology in competition with improved conventional technology; Elektrische Maschinen, insbesondere Generatoren: Supraleiter-Technologie im Wettbewerb mit verbesserter konventioneller Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Joho, R.; Ginet, C.; Schleussinger, A.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) summarises work done within the framework of a second project on the use of superconductor technology and conventional technology in electrical machines. The two variants, a generator using second-generation high-temperature superconductors (HTSC) and one using improved conventional technology are described and compared. The use of various coolants for the windings of generators of various types and usage is described and the optimisation of winding-geometry is discussed. The refrigeration equipment used to provide low-temperature coolant is looked at and the energy balance for the combination of generator and cooling system is discussed. The conclusions drawn by the project are presented and the advantages offered by both variants are discussed.

  4. Post-harvest technologies for various crops of pakistan: status quo, employment generation and prospects

    International Nuclear Information System (INIS)

    Ahmad, M.

    2005-01-01

    The climatic conditions of Pakistan vary from tropical to temperate, allow 40 different kinds of vegetables, 21 type of fruit, and 5 major crops (wheat, cotton, rice, sugarcane, and maize) to grow. During the peak harvest-season, a great proportion of fresh agricultural/horticultural produce is lost, due to unavailability of suitable post-harvest technologies. An effort was made to present the status quo, constraints, Government policies and possible post-harvest technologies that can be developed/adopted in the country to generate employment in the rural areas. Secondary processing-industry (flour mills, sugar mills, oil mills etc.) is fairly developed in the country. However. primary processing of agricultural produce is poorly developed in the country. The higher cost of the processed products, consumers habits of eating fresh commodities, seasonability of fresh fruit and vegetables, and low quality of the processed products are the key-constraints for the slow growth of post-harvest processing industry. By removing these constraints, and by developing/adopting various technologies, identified in this paper, we may help to establish post-harvest processing industry on sound footings. Consequently, the employment-opportunities will increase in the rural areas of the country. (author)

  5. Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat

    International Nuclear Information System (INIS)

    Hirschberg, Stefan; Bauer, Christian; Burgherr, Peter; Cazzoli, Eric; Heck, Thomas; Spada, Matteo; Treyer, Karin

    2016-01-01

    As a part of comprehensive analysis of current and future energy systems we carried out numerous analyses of health effects of a wide spectrum of electricity supply technologies including advanced ones, operating in various countries under different conditions. The scope of the analysis covers full energy chains, i.e. fossil, nuclear and renewable power plants and the various stages of fuel cycles. State-of-the-art methods are used for the estimation of health effects. This paper addresses health effects in terms of reduced life expectancy in the context of normal operation as well as fatalities resulting from severe accidents and potential terrorist attacks. Based on the numerical results and identified patterns a comparative perspective on health effects associated with various electricity generation technologies and fuel cycles is provided. In particular the estimates of health risks from normal operation can be compared with those resulting from severe accidents and hypothetical terrorist attacks. A novel approach to the analysis of terrorist threat against energy infrastructure was developed, implemented and applied to selected energy facilities in various locations. Finally, major limitations of the current approach are identified and recommendations for further work are given. - Highlights: • We provide state-of-the-art comparative assessment of energy health risks. • The scope of the analysis should to the extent possible cover full energy chains. • Health impacts from normal operation dominate the risks. • We present novel approach to analysis of terrorist threat. • Limitations include technology choices, geographical coverage and terrorist issues.

  6. Analysis of plant microbe interactions in the era of next generation sequencing technologies

    Directory of Open Access Journals (Sweden)

    Claudia eKnief

    2014-05-01

    Full Text Available Next generation sequencing (NGS technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the pant associated microbiota to demonstrate the worth of the new methods.

  7. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  8. How and Why Digital Generation Teachers Use Technology in the Classroom: An Explanatory Sequential Mixed Methods Study

    Science.gov (United States)

    Li, Lan; Worch, Eric; Zhou, YuChun; Aguiton, Rhonda

    2015-01-01

    While teachers' conservative attitude toward technology has been identified as a barrier to effective technology integration in classrooms, it is often optimistically assumed that this issue will resolve when the digital generation enters the teaching profession (Morris, 2012). Using a mixed methodology approach, this study aimed to examine the…

  9. Technological Improvements for Digital Fire Control Systems

    Science.gov (United States)

    2017-09-30

    Initiative Information Develop and fabricate next generation designs using advanced materials and processes. This will include but is not limited to...component fabrication ; process integration, configuration management, materials development, coatings technology, packaging technology and overall...systems engineering. Prototype and integrated system components shall be produced for developmental test units, production test units and

  10. Scaffolding High School Students' Divergent Idea Generation in a Computer-Mediated Design and Technology Learning Environment

    Science.gov (United States)

    Yeo, Tiong-Meng; Quek, Choon-Lang

    2014-01-01

    This comparative study investigates how two groups of design and technology students generated ideas in an asynchronous computer-mediated communication setting. The generated ideas were design ideas in the form of sketches. Each group comprised five students who were all 15 years of age. All the students were from the same secondary school but…

  11. Technological forecasting applied to the processes of hydrogen generation; Previsao tecnologica sobre os processos de geracao de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Milton Satocy; Oliveira, Wagner dos Santos [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mails: msnakano@usp.br; wagner@ipen.br

    2008-11-15

    Fuel cells are attracting interest as efficient and clean energy conversion devices. Hydrogen is the combustible of the fuel cells and must be generated by an efficient and clean method. This work exploits Delphi methodology of technological forecasting applied to hydrogen generation and identifies the most probable methods that, in future, can be used to obtain hydrogen in Brazil. (author)

  12. MHC ligand generation in T cell-mediated immunity and MHC multimer technologies for T cell detection

    NARCIS (Netherlands)

    Bakker, Arnold Hendrik

    2009-01-01

    This thesis focuses on the generation of MHC ligands and their use in analyzing T cell immunity, both in mouse and men. It is roughly split into two sections: the first part deals specifically with the rules governing the generation of MHC ligands, while the second part describes technological

  13. Antimicrobial packaging with natural compunds - a review

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2016-12-01

    Full Text Available Background:  Packaging problems are an integral part of logistics and the implementation of packaging significantly affects the effectiveness of logistics processes, as a factor which increases the safety and the quality of products being transported. Active packaging is an area of technology needed to meet the requirements of the contemporary consumer. Active packaging creates additional opportunities in systems for packing goods, as well as offering a solution in which the packaging, the product and surroundings interact. Furthermore, active packaging allows packaging to interact with food and the environment and play a dynamic role in food preservation. The main role of antimicrobial packaging is to inhibit the growth of microorganisms that reduce the quality of the packaged product. Methods: The application of natural antimicrobial agents appears to be safe for food products. Also, these compounds have potential applications as a natural preservative in the food packaging industry. This study presents some antibacterial agents, namely chitosan, nisin and pectins. Results and conclusion: Natural substances used in active packaging can eliminate the danger of chemical substances migrating to food.

  14. Young Generation in Nuclear Initiative to Promote Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Kilavi Ndege, P.K.

    2015-01-01

    The Kenyan Young Generation in Nuclear (KYGN) is a recently founded not to profit organization. Its mandate is to educate, inform, promote and transfer knowledge on the peaceful, safe and secure users of nuclear science and technology in Kenya. It brings on board all scientist and students with special interest in nuclear science and related fields. KYGN is an affiliate of International Youth Nuclear Congress (YNC) whose membership with IYNC whose membership is drawn from member state of United Nations. Through our membership with IYNC, KYGN members have been able to participate in different forums. In this paper, we discuss KYGN’s prime roles opportunities as well as the challenges of the organization

  15. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  16. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  17. The Application of Next Generation Sequencing Technology on Noninvasive Prenatal Test

    DEFF Research Database (Denmark)

    Jiang, Hui

    a sensitivity and specificity of over 99%, which can provide accurate and reliable results and thus avoid most of invasive process compared to standard prenatal test. Moreover,we also designed probes for genes related to Monogenetic disorders and conducted target region sequencing for parents, proband......There are nearly 7000 rare diseases that have been reported in the world. Although most of them occur with a frequency of less than one in 2000, in total about 6% of the population suffers from rare diseases. These rare diseases are often caused by changes in genes, which is currently lack...... of effective treatment. The rapid development of next generation sequencing technology boosts the discovery of new causative gene for these rare diseases, as well as the genetic diagnosis in clinic practice. Carrier screening, prenatal diagnosis and newborn screening are wildly used in the world to prevent...

  18. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  19. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

  20. Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Akisawa, Atsushi; Miyazaki, Takahiko [Tokyo University of Agriculture and Technology, Institute of Symbiotic Science and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588 (Japan); Kashiwagi, Takao [Tokyo Institute of Technology, Integrated Research Institute, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-10-15

    This study aims at exploiting optimal configurations of technologies combined with co-generation theoretically based on a linear optimization model. With the objective function defining primary energy consumption to be minimized, optimal solutions are derived analytically. They describe the technological configurations as well as associated conditions depending on their final energy demand. An interesting finding is that the essential parameters to determine the configurations are heat, cooling and steam demands normalized by power demand. The optimal solutions are also applied to investigate the competitiveness of co-generation related technologies. The optimal solutions yield critical conditions theoretically, which is useful to understand the priority of the technologies. A sensitivity analysis numerically indicates that absorption chillers can be superior to compression chillers even though the former has lower COP than the latter. Actual data of various types of co-generation are also examined to show the practical competitiveness. (author)

  1. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes.

    Science.gov (United States)

    Sansano, M; Juan-Borrás, M; Escriche, I; Andrés, A; Heredia, A

    2015-05-01

    This paper investigated the effect of air-frying technology, in combination with a pretreatment based of soaking the samples in different chemical agent solutions (citric acid, glycine, calcium lactate, sodium chloride, or nicotinic acid [vitamin B3]), on the generation of acrylamide in fried potatoes. The influence of reducing sugars on the development of surface's color was also analyzed. The experiments were conducted at 180 °C by means of air-frying and deep-oil-frying, as a reference technology. Based on the evolution of color crust with frying time, it could be concluded that the rate of Maillard reaction decreased as the initial reducing sugars content increased in the raw material, and was also lower for deep-oil-frying than for air-frying regardless of pretreatments applied. Air-frying reduced acrylamide content by about 90% compared with conventional deep-oil-frying without being necessary the application of a pretreatment. However, deep-oil fried potatoes pretreated with solutions of nicotinic acid, citric acid, glycine at 1%, and NaCl at 2% presented much lower acrylamide levels (up to 80% to 90% reduction) than nonpretreated samples. © 2015 Institute of Food Technologists®

  2. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-01-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  3. Economic evaluation of technology for a new generation biofuel production using wastes.

    Science.gov (United States)

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production. Copyright © 2015. Published by Elsevier Ltd.

  4. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Matt J Cahill

    Full Text Available BACKGROUND: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. METHODOLOGY/PRINCIPAL FINDINGS: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. CONCLUSIONS: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.

  5. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.

    2010-07-12

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  6. Telebation: next-generation telemedicine in remote airway management using current wireless technologies.

    Science.gov (United States)

    Mosier, Jarrod; Joseph, Bellal; Sakles, John C

    2013-02-01

    Since the first remote intubation with telemedicine guidance, wireless technology has advanced to enable more portable methods of telemedicine involvement in remote airway management. Three voice over Internet protocol (VoIP) services were evaluated for quality of image transmitted, data lag, and audio quality with remotely observed and assisted intubations in an academic emergency department. The VoIP clients evaluated were Apple (Cupertino, CA) FaceTime(®), Skype™ (a division of Microsoft, Luxembourg City, Luxembourg), and Tango(®) (TangoMe, Palo Alto, CA). Each client was tested over a Wi-Fi network as well as cellular third generation (3G) (Skype and Tango). All three VoIP clients provided acceptable image and audio quality. There is a significant data lag in image transmission and quality when VoIP clients are used over cellular broadband (3G) compared with Wi-Fi. Portable remote telemedicine guidance is possible with newer technology devices such as a smartphone or tablet, as well as VoIP clients used over Wi-Fi or cellular broadband.

  7. Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies

    Directory of Open Access Journals (Sweden)

    Michael Seleman

    2017-07-01

    Full Text Available Primary immunodeficiencies (PIDs are genetic disorders impairing host immunity, leading to life-threatening infections, autoimmunity, and/or malignancies. Genomic technologies have been critical for expediting the discovery of novel genetic defects underlying PIDs, expanding our knowledge of the complex clinical phenotypes associated with PIDs, and in shifting paradigms of PID pathogenesis. Once considered Mendelian, monogenic, and completely penetrant disorders, genomic studies have redefined PIDs as a heterogeneous group of diseases found in the global population that may arise through multigenic defects, non-germline transmission, and with variable penetrance. This review examines the uses of next-generation DNA sequencing (NGS in the diagnosis of PIDs. While whole genome sequencing identifies variants throughout the genome, whole exome sequencing sequences only the protein-coding regions within a genome, and targeted gene panels sequence only a specific cohort of genes. The advantages and limitations of each sequencing approach are compared. The complexities of variant interpretation and variant validation remain the major challenge in wide-spread implementation of these technologies. Lastly, the roles of NGS in newborn screening and precision therapeutics for individuals with PID are also addressed.

  8. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    Science.gov (United States)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  9. Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    T. R. Ayodele

    2015-01-01

    Full Text Available Genetic algorithm (GA is utilized to select most suitable Distributed Generator (DG technology for optimal operation of power system as well as determine the optimal location and size of the DG to minimize power loss on the network. Three classes of DG technologies, synchronous generators, asynchronous generators, and induction generators, are considered and included as part of the variables for the optimization problem. IEEE 14-bus network is used to test the applicability of the algorithm. The result reveals that the developed algorithm is able to successfully select the most suitable DG technology and optimally size and place the DGs to minimize power loss in the network. Furthermore, optimum multiple placement of DG is considered to see the possible impact on power loss in the network. The result reveals that multiple placements can further reduce the power loss in the network.

  10. Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology

    Directory of Open Access Journals (Sweden)

    Mushafau Adewale Akinsanya

    2015-12-01

    Full Text Available Next generation sequencing (NGS enables rapid analysis of the composition and diversity of microbial communities in several habitats. We applied the high throughput techniques of NGS to the metagenomics study of endophytic bacteria in Aloe vera plant, by assessing its PCR amplicon of 16S rDNA sequences (V3–V4 regions with the Illumina metagenomics technique used to generate a total of 5,199,102 reads from the samples. The analyses revealed Proteobacteria, Firmicutes, Actinobacteria and Bacteriodetes as the predominant genera. The roots have the largest composition with 23% not present in other tissues. The stems have more of the genus—Pseudomonas and the unclassified Pseudomonadaceae. The α-diversity analysis indicated the richness and inverse Simpson diversity index of the bacterial endophyte communities for the leaf, root and stem tissues to be 2.221, 6.603 and 1.491 respectively. In a similar study on culturable endophytic bacteria in the same A. vera plants (unpublished work, the dominance of Pseudomonas and Bacillus genera was similar, with equal proportion of four species each in root, stem and leaf tissues. It is evident that NGS technology captured effectively the metagenomics of microbiota in plant tissues and this can improve our understanding of the microbial–plant host interactions.

  11. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  12. Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing.

    Science.gov (United States)

    Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C

    2016-08-01

    As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.

  13. Peptide welding technology - A simple strategy for generating innovative ligands for G protein coupled receptors.

    Science.gov (United States)

    Calo', Girolamo; Rizzi, Anna; Ruzza, Chiara; Ferrari, Federica; Pacifico, Salvatore; Gavioli, Elaine C; Salvadori, Severo; Guerrini, Remo

    2018-01-01

    Based on their high selectivity of action and low toxicity, naturally occurring peptides have great potential in terms of drug development. However, the pharmacokinetic properties of peptides, in particular their half life, are poor. Among different strategies developed for reducing susceptibility to peptidases, and thus increasing the duration of action of peptides, the generation of branched peptides has been described. However, the synthesis and purification of branched peptides are extremely complicated thus limiting their druggability. Here we present a novel and facile synthesis of tetrabranched peptides acting as GPCR ligands and their in vitro and vivo pharmacological characterization. Tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ), N/OFQ related peptides, opioid peptides, tachykinins, and neuropeptide S were generated with the strategy named peptide welding technology (PWT) and characterized by high yield and purity of the desired final product. In general, PWT derivatives displayed a pharmacological profile similar to that of the natural sequence in terms of affinity, pharmacological activity, potency, and selectivity of action in vitro. More importantly, in vivo studies demonstrated that PWT peptides are characterized by increased potency associated with long lasting duration of action. In conclusion, PWT derivatives of biologically active peptides can be viewed as innovative pharmacological tools for investigating those conditions and states in which selective and prolonged receptor stimulation promotes beneficial effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pebble bed modular reactors versus other generation technologies. Costs and challenges for South Africa

    International Nuclear Information System (INIS)

    Grubert, Emily; Parks, Brian; Schneider, Erich; Sekar, Srinivas

    2011-01-01

    South Africa is Africa's major economy, with plans to double its electricity generation capacity by 2026. South Africa has spent almost two decades developing a nuclear reactor known as a Pebble Bed Modular Reactor (PBMR), which could provide substantial benefits to the electricity grid but was recently mothballed due to high costs. This work estimates the lifecycle financial costs of South African PBMRs, then compares these costs to those of five other generation options: coal, nuclear as pressurized water reactors (PWRs), wind, and solar as photovoltaics (PV) or concentrating solar power (CSP). Each technology is evaluated with low, base case, and high assumptions for capital costs, construction time, and interest rates. Decommissioning costs, project lifetime, capacity factors, and sensitivity to carbon price are also considered. PBMR could be cost competitive with coal under certain low cost conditions, even without a carbon price. However, international lending practices and other factors suggest that a high capital cost, high interest rate nuclear plant is likely to be competing with a low capital cost, low interest rate coal plant in a market where cost recovery is challenging. PBMR could potentially become more competitive if low rate international loans were available to nuclear projects or became unavailable to coal projects. (author)

  15. Packaging food for radiation processing

    Science.gov (United States)

    Komolprasert, Vanee

    2016-12-01

    Irradiation can play an important role in reducing pathogens that cause food borne illness. Food processors and food safety experts prefer that food be irradiated after packaging to prevent post-irradiation contamination. Food irradiation has been studied for the last century. However, the implementation of irradiation on prepackaged food still faces challenges on how to assess the suitability and safety of these packaging materials used during irradiation. Irradiation is known to induce chemical changes to the food packaging materials resulting in the formation of breakdown products, so called radiolysis products (RP), which may migrate into foods and affect the safety of the irradiated foods. Therefore, the safety of the food packaging material (both polymers and adjuvants) must be determined to ensure safety of irradiated packaged food. Evaluating the safety of food packaging materials presents technical challenges because of the range of possible chemicals generated by ionizing radiation. These challenges and the U.S. regulations on food irradiation are discussed in this article.

  16. Advanced airborne 3D computer image generation systems technologies for the year 2000

    Science.gov (United States)

    Bridges, Alan L.

    1992-07-01

    An airborne 3-D computer image generation system (CIGS) is a modular avionics box that receives commands from and sends status information to other avionics units. The CIGS maintains a large amount of data in secondary storage systems and simultaneously drives several display units. Emerging requirements for CIGS include: advanced avionics system architecture requirements and BIT/fault tolerance; real-time operating systems and graphic interface languages in Ada; and geometric/pixel processing functions, rendering system, and frame buffers/display controllers for pictorial displays. In addition, podded sensors (FLIR, LLTV, radar, etc.) will require multiplexing of high-resolution sensor video with graphics overlays. A combination of head-down AMLCD flat panels, helmet-mounted display (HMD), and Head-Up Display (HUD) will require highly parallel graphics generation technology. Generation of high-resolution, real-time 2-D/3-D displays with anti-aliasing, transparency, shading, and motion, however, emphasizes compute-intensive processing. High-performance graphics engines, powerful floating point processors, and parallel architectures are needed to increase the rendering speed, functionality and reliability, while reducing power, space requirements, and cost. The CIGS of the future will feature special high speed busses geared toward real-time graphics processing. The CIG system will be multi-channel, will have a high addressable resolution to drive HUD, 3-D displays in 4-pi-steradian virtual space, and 3-D panoramic displays; and will include fiber optics video distribution between CIG and display units. The head-down display (HDD) is by far the most complex display in that both background and overlay display elements are required. The background is usually generated from terrain/cultural features data. Terrain data is used to generate 2-D map backgrounds or 3-D perspective views duplicating or substituting for the pilot's out-the-window view. Performance of 150

  17. New Technology for Corrosion Mitigation of Steam Generator Tubesheet in Secondary Side Environments

    International Nuclear Information System (INIS)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho

    2013-01-01

    Denting has been mitigated by a modification of the design and material of the tube support structures, it has been an inevitable problem in the crevice region of the top of the tubesheet(TTS). Denting at the TTS has been a significant concern regardless of the tube materials. This is because it is a mechanical process resulted from a volume expansion of corrosion products of the tubesheet materials. It should be noted that the corrosion rate of low alloy tubesheet materials is accelerated due to the presence of corrosion products accumulated at the top of the tubesheet. Therefore a reduction of the corrosion rate of the tubesheet material should be a key strategy to prevent tube denting at the TTS as well as an improvement of the secondary water chemistry. This paper provides a new technology to prevent denting by cladding the secondary side surface of the tubesheet with a corrosion resistant material. In this study, Alloy 690 material on the surface of the SA508 tubesheet was cladded to a thickness of about 9mm. The corrosion rates of the SA508 original tubesheet and Alloy 690 clad material were measured in acidic and caustic simulated environments. Denting has been a precursor of stress corrosion cracking in nuclear steam generator tubing, although it may be mitigated by a design and material modification of the tube support structures and secondary water chemistry control. Corrosion resistant Alloy 690 tubing is not an exception because denting at the TTS is due to corrosion of the tubesheet material. In this paper, a new technology was suggested to prevent denting at the TTS by cladding the secondary side surface of the tubesheet with a corrosion resistant material. It was verified that the corrosion rates of a tubesheet with an Alloy 690 clad layer drastically decreased in both acidic and alkaline environments, even inside the magnetite sludge pile. Because the cladding processes of Alloy 690 have already been applied to the primary side surface of a

  18. Eco-efficient Value Creation : An Alternative Perspective on Packaging and Sustainability

    NARCIS (Netherlands)

    Wever, R.; Vogtländer, J.

    2012-01-01

    The classical sustainability perspective on packaging is to reduce the environmental impact or eco burden of the packaging, using life cycle assessment to evaluate different design alternatives. Simultaneously, the classical marketing perspective on packaging is to generate value through

  19. Technology data for energy plants. Generation of electricity and district heating, energy storage and energy carrier generation and conversion

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in June 2010. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The current update has been developed with an unbalanced focus, i.e. most attention to technologies which are most essential for current and short

  20. Future Perspective : Design Process of Perfume Packaging

    OpenAIRE

    Anderson, Duncan

    2016-01-01

    In a world where technology develops at a rapid speed a packaging designer should have the ability to adapt to the challenges in a world where the packaging landscape might look far more different from today. This thesis will look at possible future scenarios relating to resources, infrastructure and consumer behaviour in the year 2050. It will then go on to discuss the emergence of new packaging materials pitted to replace plastic, as well as take a look at printed electronics in packaging a...

  1. Material Efficiency in Dutch Packaging Policy

    NARCIS (Netherlands)

    Worrell, E.; van Sluisveld, M.A.E.

    2013-01-01

    Packaging materials are one of the largest contributors to municipal solid waste generation. In this paper, we evaluate the material impacts of packaging policy in The Netherlands, focusing on the role of material efficiency (or waste prevention). Since 1991, five different policies have been

  2. A review on the current status and production technology for {sup 188}W-{sup 188}Re generator system

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, R. A.; Han, H. S.; Cho, W. K.; Park, U. J.; Kim, Y. M

    1998-11-01

    The current status of {sup 188}W-{sup 188}Re generator production technology were reviewed in PART 1. Main interests were given to the aspects of {sup 188}W reactor production, irradiated targets reprocessing and generator loading technologies, such as alumina type and gel type generators. In order to develop the more convenient and advanced {sup 188}W-{sup 188}Re generator, further studies must be carried out to get the precise evaluation of production and burn-up cross section of {sup 188}W, the more easily realizable generator loading procedure, and also to optimize the column and generator design to compensate the deterioration of generator performance because of parent radionuclide decay. By irradiation of {sup 186}W enriched sample, {sup 188}W-{sup 188}Re generator production experiments were performed to evaluate the possibility of {sup 188}W-{sup 188}Re generator production using HANARO, and PART 2 describes about the experiments. The experimental results shows the possibility of practical {sup 188}W-{sup 188}Re generator production using of low-specific activity {sup 188}W produced in HANARO. (author). 79 refs., 4 tabs., 26 figs.

  3. Sterile Product Packaging and Delivery Systems.

    Science.gov (United States)

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  4. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  5. Proceedings of the first MIT international conference on the next generation of nuclear power technology

    International Nuclear Information System (INIS)

    1990-01-01

    The overall goal of advanced nuclear reactor development is to provide technological options which will be broadly acceptable to the different interested communities - electric utilities, environmental protection interests and electricity consumers. These constituencies will differ greatly in their priorities and understandings of what is feasible. However they all will collectively determine the definition of what constitutes an acceptable technology. The purpose of the Conference reported here was to aid the process reaching a greater consensus concerning acceptable technologies. The Conference was structured to permit all of those involved to gain a common understanding of the performance attributes which can reasonably be expected from the next generation of nuclear power plants, and to assist the process of communication among the various interest groups - ranging from reactor manufacturers and electric utilities to groups which have been strongly critical of nuclear power. This Conference is the first of an indefinite series of Conferences to be sponsored by the Program. The purpose of having a series of Conferences is to permit them to serve as a vehicle for sustained discussion among the communities which will determine whether future nuclear power plants are acceptable as national strategic options. The hope in organizing these Conferences is to improve the technologies which will eventually emerge, as a consequence of early effective communication among those concerned with the results. In order to do this, however, it is necessary for the people involved in such communication to have opportunities for sustained exposure to the ideas of others whom they would not otherwise have met. To do this it is necessary that these various communities interact repeatedly. The Conference series is intended to assist in that process. The Conference consisted of six focused topical sessions and two panel discussions. In each topical session keynote and respondent papers

  6. Event-Driven Technology to Generate Relevant Collections of Near-Realtime Data

    Science.gov (United States)

    Graves, S. J.; Keiser, K.; Nair, U. S.; Beck, J. M.; Ebersole, S.

    2017-12-01

    Getting the right data when it is needed continues to be a challenge for researchers and decision makers. Event-Driven Data Delivery (ED3), funded by the NASA Applied Science program, is a technology that allows researchers and decision makers to pre-plan what data, information and processes they need to have collected or executed in response to future events. The Information Technology and Systems Center at the University of Alabama in Huntsville (UAH) has developed the ED3 framework in collaboration with atmospheric scientists at UAH, scientists at the Geological Survey of Alabama, and other federal, state and local stakeholders to meet the data preparedness needs for research, decisions and situational awareness. The ED3 framework supports an API that supports the addition of loosely-coupled, distributed event handlers and data processes. This approach allows the easy addition of new events and data processes so the system can scale to support virtually any type of event or data process. Using ED3's underlying services, applications have been developed that monitor for alerts of registered event types and automatically triggers subscriptions that match new events, providing users with a living "album" of results that can continued to be curated as more information for an event becomes available. This capability can allow users to improve capacity for the collection, creation and use of data and real-time processes (data access, model execution, product generation, sensor tasking, social media filtering, etc), in response to disaster (and other) events by preparing in advance for data and information needs for future events. This presentation will provide an update on the ED3 developments and deployments, and further explain the applicability for utilizing near-realtime data in hazards research, response and situational awareness.

  7. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  8. Advanced cell culture technology for generation of in vivo-like tissue models

    Directory of Open Access Journals (Sweden)

    Stefan Przyborski

    2017-06-01

    Full Text Available Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011. The scaffold comprises a highly porous polystyrene material, engineered into a 200 micron thick membrane that is presented in various ways including multi-welled plates and well inserts, for use with conventional culture plasticware and medium perfusion systems. This technology has been applied to generate numerous unique types of co-culture model. For example: 1 a full thickness human skin construct comprising dermal fibroblasts and keratinocytes, raised to the air-liquid interface to induce cornification of the upper layers (Fig.1 (Hill et al., 2015; 2 a neuron-glial co-culture to enable the study of neurite outgrowth interacting with astroglial cells to model and investigate the glial scar found in spinal cord injury (Clarke et al., 2016; 3 formation of a sub-mucosa consisting of a polarised simple epithelium, layer of ECM proteins simulating the basement membrane, and underlying stromal tissues (e.g. intestinal mucosa. These organotypic models demonstrate the versatility of scaffold membranes and the creation of advanced in vivo-like tissue models. Creating a layered arrangement more closely simulates the true anatomy and organisation of cells within many tissue types. The addition of different cell types in a temporal and spatial fashion can be used to study inter-cellular relationships and create more physiologically relevant in vivo-like cell-based assays. Methods that are relatively straightforward to use and that recreate the organised structure of real tissues will become valuable research tools for use in

  9. Beyond activity tracking: next-generation wearable and implantable sensor technologies (Conference Presentation)

    Science.gov (United States)

    Mercier, Patrick

    2017-05-01

    Current-generation wearable devices have had success continuously measuring the activity and heart rate of subjects during exercise and daily life activities, resulting in interesting new data sets that can, though machine learning algorithms, predict a small subset of health conditions. However, this information is only very peripherally related to most health conditions, and thus offers limited utility to a wide range of the population. In this presentation, I will discuss emerging sensor technologies capable of measuring new and interesting parameters that can potentially offer much more meaningful and actionable data sets. Specifically, I will present recent work on wearable chemical sensors that can, for the first time, continuously monitor a suite of parameters like glucose, alcohol, lactate, and electrolytes, all while wirelessly delivering these results to a smart phone in real time. Demonstration platforms featuring patch, temporary tattoo, and mouthguard form factors will be described, in addition to the corresponding electronics necessary to perform sensor conditioning and wireless readout. Beyond chemical sensors, I will also discuss integration strategies with more conventional electrophysiological and physical parameters like ECG and strain gauges for cardiac and respiration rate monitoring, respectively. Finally, I will conclude the talk by introducing a new form of wireless communications in body-area networks that utilize the body itself as a channel for magnetic energy. Since the power consumption of conventional RF circuits often dominates the power of wearable devices, this new magnetic human body communication technique is specifically architected to dramatically reduce the path loss compared to conventional RF and capacitive human body communication techniques, thereby enabling ultra-low-power body area networks for next-generation wearable devices.

  10. Development of a Three‐Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling

    Science.gov (United States)

    Wilkinson, Dan C.; Alva‐Ornelas, Jackelyn A.; Sucre, Jennifer M.S.; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J.; Paul, Manash K.; Karumbayaram, Saravanan; Dunn, Bruce

    2016-01-01

    Abstract Stem cell technologies, especially patient‐specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ‐level tissues. The generation of three‐dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self‐assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor‐β1 to single cell‐type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two‐dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell‐cell contact and recapitulating the lung microenvironment. Our bottom‐up approach for synthesizing patient‐specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine 2017;6:622–633 PMID:28191779

  11. Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling.

    Science.gov (United States)

    Wilkinson, Dan C; Alva-Ornelas, Jackelyn A; Sucre, Jennifer M S; Vijayaraj, Preethi; Durra, Abdo; Richardson, Wade; Jonas, Steven J; Paul, Manash K; Karumbayaram, Saravanan; Dunn, Bruce; Gomperts, Brigitte N

    2017-02-01

    Stem cell technologies, especially patient-specific, induced stem cell pluripotency and directed differentiation, hold great promise for changing the landscape of medical therapies. Proper exploitation of these methods may lead to personalized organ transplants, but to regenerate organs, it is necessary to develop methods for assembling differentiated cells into functional, organ-level tissues. The generation of three-dimensional human tissue models also holds potential for medical advances in disease modeling, as full organ functionality may not be necessary to recapitulate disease pathophysiology. This is specifically true of lung diseases where animal models often do not recapitulate human disease. Here, we present a method for the generation of self-assembled human lung tissue and its potential for disease modeling and drug discovery for lung diseases characterized by progressive and irreversible scarring such as idiopathic pulmonary fibrosis (IPF). Tissue formation occurs because of the overlapping processes of cellular adhesion to multiple alveolar sac templates, bioreactor rotation, and cellular contraction. Addition of transforming growth factor-β1 to single cell-type mesenchymal organoids resulted in morphologic scarring typical of that seen in IPF but not in two-dimensional IPF fibroblast cultures. Furthermore, this lung organoid may be modified to contain multiple lung cell types assembled into the correct anatomical location, thereby allowing cell-cell contact and recapitulating the lung microenvironment. Our bottom-up approach for synthesizing patient-specific lung tissue in a scalable system allows for the development of relevant human lung disease models with the potential for high throughput drug screening to identify targeted therapies. Stem Cells Translational Medicine 2017;6:622-633. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Waste package performance assessment

    International Nuclear Information System (INIS)

    Lester, D.H.

    1981-01-01

    This paper describes work undertaken to assess the life-expectancy and post-failure nuclide release behavior of high-level and waste packages in a geologic repository. The work involved integrating models of individual phenomena (such as heat transfer, corrosion, package deformation, and nuclide transport) and using existing data to make estimates of post-emplacement behavior of waste packages. A package performance assessment code was developed to predict time to package failure in a flooded repository and subsequent transport of nuclides out of the leaking package. The model has been used to evaluate preliminary package designs. The results indicate, that within the limitation of model assumptions and data base, packages lasting a few hundreds of years could be developed. Very long lived packages may be possible but more comprehensive data are needed to confirm this

  13. Prevention policies addressing packaging and packaging waste: Some emerging trends.

    Science.gov (United States)

    Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia

    2016-10-01

    Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Main trends in steam generator monitoring using the equipment of a power unit technological process on-line control system

    International Nuclear Information System (INIS)

    Khutorestkij, G.M.; Vatan'yan, A.G.; Kotova, I.P.; Sivkov, A.P.

    1989-01-01

    The possibility to use signals of technological process control system equipment and data provided by conventional means of parameter on-line and technological control for functional diagnostics of turbine generators in the process of operation is analyzed. Four groups of parameters (power, thermal, mechanical and process) which should be taken into account when selecting algorithms and determining the order of various defect diagnostics are separated. 4 refs.; 2 figs.; 1 tab

  15. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  16. 1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Felby, Claus

    2009-01-01

    "1st or 2nd generation bioethanol-impacts of technology integration & on feed production and land use" Liquid bio fuels are perceived as a means of mitigating CO2 emissions from transport and thus climate change, but much concern has been raised to the energy consumption from refining biomass...... to liquid fuels. Integrating technologies such that waste stream can be used will reduce energy consumption in the production of bioethanol from wheat. We show that the integration of bio refining and combined heat an power generation reduces process energy requirements with 30-40 % and makes bioethanol...

  17. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    Full Text Available The advent of next-generation sequencing technologies is accompanied with the development of many whole-genome sequence assembly methods and software, especially for de novo fragment assembly. Due to the poor knowledge about the applicability and performance of these software tools, choosing a befitting assembler becomes a tough task. Here, we provide the information of adaptivity for each program, then above all, compare the performance of eight distinct tools against eight groups of simulated datasets from Solexa sequencing platform. Considering the computational time, maximum random access memory (RAM occupancy, assembly accuracy and integrity, our study indicate that string-based assemblers, overlap-layout-consensus (OLC assemblers are well-suited for very short reads and longer reads of small genomes respectively. For large datasets of more than hundred millions of short reads, De Bruijn graph-based assemblers would be more appropriate. In terms of software implementation, string-based assemblers are superior to graph-based ones, of which SOAPdenovo is complex for the creation of configuration file. Our comparison study will assist researchers in selecting a well-suited assembler and offer essential information for the improvement of existing assemblers or the developing of novel assemblers.

  18. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  19. Transposon assisted gene insertion technology (TAGIT: a tool for generating fluorescent fusion proteins.

    Directory of Open Access Journals (Sweden)

    James A Gregory

    2010-01-01

    Full Text Available We constructed a transposon (transposon assisted gene insertion technology, or TAGIT that allows the random insertion of gfp (or other genes into chromosomal loci without disrupting operon structure or regulation. TAGIT is a modified Tn5 transposon that uses Kan(R to select for insertions on the chromosome or plasmid, beta-galactosidase to identify in-frame gene fusions, and Cre recombinase to excise the kan and lacZ genes in vivo. The resulting gfp insertions maintain target gene reading frame (to the 5' and 3' of gfp and are integrated at the native chromosomal locus, thereby maintaining native expression signals. Libraries can be screened to identify GFP insertions that maintain target protein function at native expression levels, allowing more trustworthy localization studies. We here use TAGIT to generate a library of GFP insertions in the Escherichia coli lactose repressor (LacI. We identified fully functional GFP insertions and partially functional insertions that bind DNA but fail to repress the lacZ operon. Several of these latter GFP insertions localize to lacO arrays integrated in the E. coli chromosome without producing the elongated cells frequently observed when functional LacI-GFP fusions are used in chromosome tagging experiments. TAGIT thereby faciliates the isolation of fully functional insertions of fluorescent proteins into target proteins expressed from the native chromosomal locus as well as potentially useful partially functional proteins.

  20. Treatment of ground water contaminated with volatile organic compounds using second generation ultraviolet light technology

    International Nuclear Information System (INIS)

    Lyandres, S.E.; Rees, J.T.; Folsom, E.N.; Boegel, A.J.

    1991-03-01

    Pilot tests, using a second generation ultraviolet (UV) light technology, were run on ground water samples taken f rom two separate aquifers contaminated with volatile organic compounds (VOCS) at the Lawrence Livermore National Laboratory (LLNL) in Alameda County, California. The VOCs included gasoline, TCE, and 1,2-DCA. VOC concentrations in the ground water ranged from 11 to 1,000 ppB. Discharges of treated ground water at LLNL are not to exceed 5 ppb total VOCs under a Federal National Pollution Discharge Elimination System discharge permit. Test results indicated that double-bonded VOCS, including aromatic compounds and TCE, were decomposed quickly and efficiently to low or nondetectable levels (<0.5 ppB, analyzed with a gas chromatograph). An equivalent level of degradation for 1,2-DCA required a moderately higher UV energy input and greater concentrations of additives. Concentrations of peroxide tested ranged between 10 and 60 ppM; however, those above 30 ppM did not significantly increase the rate of VOC destruction