WorldWideScience

Sample records for generation iv reactor

  1. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  2. Transient Analysis Needs for Generation IV Reactor Concepts

    International Nuclear Information System (INIS)

    Siefken, L.J.; Harvego, E.A.; Coryell, E.W.; Davis, C.B.

    2002-01-01

    The importance of nuclear energy as a vital and strategic resource in the U. S. and world's energy supply mix has led to an initiative, termed Generation IV by the U.S. Department of Energy (DOE), to develop and demonstrate new and improved reactor technologies. These new Generation IV reactor concepts are expected to be substantially improved over the current generation of reactors with respect to economics, safety, proliferation resistance and waste characteristics. Although a number of light water reactor concepts have been proposed as Generation IV candidates, the majority of proposed designs have fundamentally different characteristics than the current generation of commercial LWRs operating in the U.S. and other countries. This paper presents the results of a review of these new reactor technologies and defines the transient analyses required to support the evaluation and future development of the Generation IV concepts. The ultimate objective of this work is to identify and develop new capabilities needed by INEEL to support DOE's Generation IV initiative. In particular, the focus of this study is on needed extensions or enhancements to SCDAP/RELAP5/3D code. This code and the RELAP5-3D code from which it evolved are the primary analysis tools used by the INEEL and others for the analysis of design-basis and beyond-design-basis accidents in current generation light water reactors. (authors)

  3. Policy-induced market introduction of Generation IV reactor systems

    International Nuclear Information System (INIS)

    Heek, Aliki Irina van; Roelofs, Ferry

    2011-01-01

    Almost 10 years ago the U.S. Department of Energy (DOE) started the Generation IV Initiative (GenIV) with 9 other national governments with a positive ground attitude towards nuclear energy. Some of these Generation IV systems, like the fast reactors, are nearing the demonstration stage. The question on how their market introduction will be implemented becomes increasingly urgent. One main topic for future reactor technologies is the treatment of radioactive waste products. Technological solutions to this issue are being developed. One possible process is the transformation of long-living radioactive nuclides into short living ones; a process known as transmutation, which can be done in a nuclear reactor only. Various Generation IV reactor concepts are suitable for this process, and of these systems most experience has been gained with the sodium-cooled fast reactor (SFR). However, both these first generation SFR plants and their Generation IV successors are designed as electricity generating plants, and therefore supposed to be commercially viable in the electricity markets. Various studies indicate that the generation costs of a combined LWR-(S)FR nuclear generating park (LWR: light water reactor) will be higher than that of an LWR-only park. To investigate the effects of the deployment of the different reactors and fuel cycles on the waste produced, resources used and costs incurred as a function of time, a dynamic fuel cycle assessment is performed. This study will focus on the waste impact of the introduction of a fraction of fast reactors in the European nuclear reactor park with a cost increase as described in the previous paragraph. The nuclear fuel cycle scenario code DANESS is used for this, as well as the nuclear park model of the EU-27 used for the previous study. (orig.)

  4. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  5. Nordic Nuclear Materials Forum for Generation IV Reactors

    International Nuclear Information System (INIS)

    Anghel, C.; Penttilae, S.

    2010-03-01

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  6. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  7. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  8. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  9. Generation IV nuclear reactors: Current status and future prospects

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro; Todeschini, Nicola

    2013-01-01

    Generation IV nuclear power plants (GEN IV NPPs) are supposed to become, in many countries, an important source of base load power in the middle–long term (2030–2050). Nowadays there are many designs of these NPPs but for political, strategic and economic reasons only few of them will be deployed. International literature proposes many papers and reports dealing with GEN IV NPPs, but there is an evident difference in the types and structures of the information and a general unbiased overview is missing. This paper fills the gap, presenting the state-of-the-art for GEN IV NPPs technologies (VHTR, SFR, SCWR, GFR, LFR and MSR) providing a comprehensive literature review of the different designs, discussing the major R and D challenges and comparing them with other advanced technologies available for the middle- and long-term energy market. The result of this research shows that the possible applications for GEN IV technologies are wider than current NPPs. The economics of some GEN IV NPPs is similar to actual NPPs but the “carbon cost” for fossil-fired power plants would increase the relative valuation. However, GEN IV NPPs still require substantial R and D effort, preventing short-term commercial adoption. - Highlights: • Generation IV reactors are the middle–long term technology for nuclear energy. • This paper provides an overview and a taxonomy for the designs under consideration. • R and D efforts are in the material, heat exchangers, power conversion unit and fuel. • The life cycle costs are competitive with other innovative technologies. • The hydrogen economy will foster the development of Generation IV reactors

  10. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  11. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  12. Report on generation IV technical working group 3 : liquid metal reactors

    International Nuclear Information System (INIS)

    Lineberry, M. J.; Rosen, S. L.; Sagayama, Y.

    2002-01-01

    This paper reports on the first round of R and D roadmap activities of the Generation IV (Gen IV) Technical Working Group (TWG) 3, on liquid metal-cooled reactors. Liquid metal coolants give rise to fast spectrum systems, and thus the reactor systems considered in this TWG are all fast reactors. Gas-cooled fast reactors are considered in the context of TWG 2. As is noted in other Gen IV papers, this first round activity is termed ''screening for potential'', and includes collecting the most complete set of liquid metal reactor/fuel cycle system concepts possible and evaluating the concepts against the Gen IV principles and goals. Those concepts or concept groups that meet the Gen IV principles and which are deemed to have reasonable potential to meet the Gen IV goals will pass to the next round of evaluation. Although we sometimes use the terms ''reactor'' or ''reactor system'' by themselves, the scope of the investigation by TWG 3 includes not only the reactor systems, but very importantly the closed fuel recycle system inevitably required by fast reactors. The response to the DOE Request for Information (RFI) on liquid metal reactor/fuel cycle systems from principal investigators, laboratories, corporations, and other institutions, was robust and gratifying. Thirty three liquid metal concept descriptions, from eight different countries, were ultimately received. The variation in the scope, depth, and completeness of the responses created a significant challenge for the group, but the TWG made a very significant effort not to screen out concepts early in the process

  13. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  14. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  15. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  16. Current status of NPP generation IV

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Dharu Dewi; Nurlaila; Arief Tris Yuliyanto

    2013-01-01

    Today development of nuclear technology has reached the stage of research and development of Generation IV nuclear power plants (advanced reactor systems) which is an innovative development from the previous generation of nuclear power plants. There are six types of power generation IV reactors, namely: Very High Temperature Reactor (VHTR), Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), and Super Critical Water-cooled Reactor (SCWR). The purpose of this study is to know the development of Generation IV nuclear power plants that have been done by the thirteen countries that are members of the Gen IV International Forum (GIF). The method used is review study and refers to various studies related to the current status of research and development of generation IV nuclear power. The result of this study showed that the systems and technology on Generation IV nuclear power plants offer significant advances in sustainability, safety and reliability, economics, and proliferation resistance and physical protection. In addition, based on the research and development experience is estimated that: SFR can be used optimally in 2015, VHTR in 2020, while NPP types GFR, LFR, MSR, and SCWR in 2025. Utilization of NPP generation IV said to be optimal if fulfill the goal of NPP generation IV, such as: capable to generate energy sustainability and promote long-term availability of nuclear fuel, minimize nuclear waste and reduce the long term stewardship burden, has an advantage in the field of safety and reliability compared to the previous generation of NPP and VHTR technology have a good prospects in Indonesia. (author)

  17. Comparative analysis of power conversion cycles optimized for fast reactors of generation IV

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2011-01-01

    For the study, which is presented here, has been chosen as the specific parameters of each reactor, which are today the three largest projects within generation IV technology development: ESFR for the reactor's sodium, LEADER for the lead reactor's and finally, GoFastR in the case of reactor gas-cooled.

  18. Generation-IV nuclear reactors, SFR concept

    International Nuclear Information System (INIS)

    Dufour, P.

    2010-01-01

    In this presentation author deals with development of sodium-cooled fast reactors and lead-cooled fast reactors. He concluded that: - SFR is a proved concept that has never achieved industrial deployment; - The GEN IV objectives need to reconsider the design of both the core and the reactor design : innovations are being analysed; Future design will benefit from considerable feedback of design, licensing, construction and operation of PX, SPX, etc.

  19. Pebble bed modular reactor - The first Generation IV reactor to be constructed

    International Nuclear Information System (INIS)

    Ion, S.; Nicholls, D.; Matzie, R.; Matzner, D.

    2004-01-01

    Substantial interest has been generated in advanced reactors over the past few years. This interest is motivated by the view that new nuclear power reactors will be needed to provide low carbon generation of electricity and possibly hydrogen to support the future growth in demand for both of these commodities. Some governments feel that substantially different designs will be needed to satisfy the desires for public perception, improved safety, proliferation resistance, reduced waste and competitive economics. This has motivated the creation of the Generation IV Nuclear Energy Systems programme in which ten countries have agreed on a framework for international cooperation in research for advanced reactors. Six designs have been selected for continued evaluation, with the objective of deployment by 2030. One of these designs is the very high temperature reactor (VHTR), which is a thermal neutron spectrum system with a helium-cooled core utilising carbon-based fuel. The pebble bed modular reactor (PBMR), being developed in South Africa through a worldwide international collaborative effort led by Eskom, the national utility, will represent a key milestone on the way to achievement of the VHTR design objectives, but in the much nearer term. This paper outlines the design objectives, safety approach and design details of the PBMR, which is already at a very advanced stage of development. (author)

  20. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations

    International Nuclear Information System (INIS)

    Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Bruna, Giovanni; Hache, Georges; Repussard, Jacques

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  1. Fast reactor development and worldwide cooperation in Generation-IV International Forum

    International Nuclear Information System (INIS)

    Sagayama, Yutaka

    2013-01-01

    Objectives of Gen-IV systems development: Goals: Four challenging technology goals have been defined to be applied to innovative nuclear reactor concepts in the 21st century: 1) Safety and Reliability (safe and reliable operation, no offsite emergency response); 2) Sustainability (effective fuel utilization, minimization of nuclear waste); 3) Proliferation Resistance & Physical Protection (to assure unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism); 4) Economic Competitiveness (life-cycle cost advantage over other energy resources). Phase: Each Generation-IV reactor system is one of three stages. 1) Viability Phase; 2) Performance Phase; 3) Demonstration Phase. Target: Commercial Deployment is expected around 2030s or beyond

  2. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  3. Sargent-IV Project. Development of new methodologies for safety analysis of Generation IV reactors; Proyecto SARGEB-IV. Desarrollo de nuevas metodologias de analisis de seguridad para reactores de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Gallego, E.; Jimenez, G.

    2013-07-01

    The main result of this paper is the proposal for the addition of new ingredients in the safety analysis methodologies for Generation-IV reactors that integrates the features of probabilistic safety analysis within deterministic. This ensures a higher degree of integration between the classical deterministic and probabilistic methodologies.

  4. Comparative analysis of power conversion cycles optimized for fast reactors of generation IV; Analisis comparativo de ciclos de conversion de potencia optimizados para reactores rapidos de generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pichel, G. D.

    2011-07-01

    For the study, which is presented here, has been chosen as the specific parameters of each reactor, which are today the three largest projects within generation IV technology development: ESFR for the reactor's sodium, LEADER for the lead reactor's and finally, GoFastR in the case of reactor gas-cooled.

  5. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  6. Generation IV reactors and the ASTRID prototype: lessons from the Fukushima accident

    International Nuclear Information System (INIS)

    Gauche, F.

    2012-01-01

    In France, the ASTRID prototype is an industrial demonstrator of a sodium-cooled fast neutron reactor (SFR), fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for third generation reactors, and it takes into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, it will take advantage of the large thermal inertia of SFR for decay heat removal, and will provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place. (author)

  7. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  8. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  9. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  10. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  11. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  12. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  13. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  14. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  15. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  16. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations. Published on September 24, 2012

    International Nuclear Information System (INIS)

    Couturier, Jean; Bruna, Giovanni; Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Hache, Georges

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  17. Neutron lifetime and generation time by KENO IV

    International Nuclear Information System (INIS)

    Hayashi, Masatoshi

    1991-01-01

    It is believed that Monte Carlo method is suitable to the calculation of neutron lifetime and generation time with reference to the life cycle viewpoint. This paper illustrates that those times obtained by Monte Carlo method are quite different from the results by perturbation method. The neutron lifetime and the generation time for bare and reflected reactors were investigated by the Monte Carlo program, KENO IV. the Monte Carlo procedure is based on tracking and recording the life history of neutrons in a realistic fashion in a fissionable system with minimum nuclear and geometric approximations. The KENO IV provides the multiplication factor, neutron lifetime and generation time simultaneously. The thermal spherical reactors for both bare and reflected reactors were studied using the KENO IV. The reflected reactor is surrounded with 30 cm thick light water. The atomic densities in the regions and the calculated results of the multiplication factor, neutron lifetime and generation time are given. The different definitions of these times between the Monte Carlo method and perturbation theory caused the difference of the results. (K.I.)

  18. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2012-01-01

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  19. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  20. R and D programme on generation IV nuclear energy systems: the high temperatures gas-cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Billot, P.; Anzieu, P.; Brossard, P.

    2005-01-01

    The Generation IV Technology Roadmap selected, among others, a sequenced development of advanced high temperature gas cooled reactors as one of the main focus for R and D on future nuclear energy systems. The selection of this research objective originates both from the significance of high temperature and fast neutrons for nuclear energy to meet the needs for a sustainable development for the medium-long term (2020/2030 and beyond), and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR to meet specific international market needs around 2020. The second step is a Very High Temperature Reactor - VHTR (>950 C) - to efficiently produce hydrogen through thermo-chemical or electro-chemical water splitting or to generate electricity with an efficiency above 50%, among other applications of high temperature nuclear heat. The third step of the Path is a Gas Fast Reactor - GFR - that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct or indirect thermodynamic cycle for electricity production and full recycle of actinides. Hydrogen production is also considered for the GFR. The paper succinctly presents the R and D program currently under definition and partially launched within the Generation IV International Forum on this consistent set of advanced gas cooled nuclear systems. (orig.)

  1. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  2. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  3. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning

  4. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

  5. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  6. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10{sup -3}) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the

  7. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    International Nuclear Information System (INIS)

    2013-01-01

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10 -3 ) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the Proceedings of

  8. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  9. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  10. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Mynatt, Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-01-01

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  11. Analysis of a Spanish energy scenario with Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Ochoa, Raquel; Jimenez, Gonzalo; Perez-Martin, Sara

    2013-01-01

    Highlights: • Spanish energy scenario for the hypothetical deployment of Gen-IV SFR reactors. • Availability of national resources is assessed, considering SFR’s breeding. • An assessment of the impact of transmuting MA on the final repository. • SERPENT code with own pre- and post-processing tools were employed. • The employed SFR core design is based on the specifications of the CP-ESFR. - Abstract: The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed

  12. Transient Analysis of Generation IV quick reactors; Analisis de Transitorios en Reactores Rapidos de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Martin-Fuertes, F.

    2013-07-01

    As a complement to the attached code 3D neutron-CIEMAT thermohydraulic added a module to simulate transient. Temporary kinetics is resolved by factoring flow in a spatial part and another storm. MCNP provides the reactivity and updated spatial function and COBRA-IV calculates the temperature distribution. Temporary dependence of amplitude is calculated using time delayed neutron Kinetic equations. As an example of application, examines a transient loss of flow in MYRRHA, a lead-cooled experimental reactor.

  13. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Furtek, A.

    2008-01-01

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  14. Contribution of the IV generation fast reactors to the sustainable development

    International Nuclear Information System (INIS)

    Mendoza G, G.; Klapp E, J.L.

    2007-01-01

    During the XXI century all the energy forms are necessary for the sustainable development. A balanced energy politics has to use a mixture of energy sources that completes the objective of responding to the increase in the demand and that it uses non emitting gases sources of greenhouse effect like the nuclear one. It is evident the great existent difficulty to turn the objectives of emissions for the coming years without having the nuclear energy. Later on, the process continued outlining serious commitments among the development necessity, the improvement of the level of life and the competitiveness, and the execution from the established environmental requirements to world level. It is very foregone that the energy nuclear become the best energy source to improve the environmental conditions and that new initiatives are determined in those that this energy will have an important paper. The solution is to build a nuclear central of advanced design, using technologies that its help to brake the diffusion of the nuclear weapons. The nucleo electric energy at great scale should be developed on the base of designs of reactors and innovative processes of fuel that can lend technological support to the not nuclear proliferation regime, and that at the same time they contribute to satisfy the electricity demand in the world. In a scenario of increase of energy demand, mainly in the development countries, and of growing interest in the pollutants reduction originated by the use of fossil fuels, the nuclear reactors of IV Generation arise as proposal and challenge. Meanwhile the search of new technologies and innovations become imperative, translating an enormous evolution, not only in the conceptual projects, as well as in the fuel cycle so that, in a scenario of open economy, turn its more competitive. Inside the reactors of fourth generation, the quick reactors are configured as those that more assist to such demands and they will be, without a doubt, the reactors in

  15. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  16. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  17. JSFR design progress related to development of safety design criteria for generation IV sodium-cooled fast reactors. (3) Progress of component design

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Kawasaki, Nobuchika; Orita, Junichi; Eto, Masao; Miyagawa, Takayuki

    2015-01-01

    In the frame work of generation IV international forum (GIF), safety design criteria (SDC) and safety design guideline (SDG) for the generation IV sodium-cooled fast reactors have been developing in the circumstance of worldwide deployment of SFRs. JAEA, JAPC, MFBR have been investigating design study for JSFR to satisfy SDC in the feasibility study of SDG for Sodium-cooled Fast Reactor (SFR). In addition to the safety measures, maintainability, reparability and manufacturability are taken into account in the JSFR design study. This paper describes the design of main components. Enlargement of the access route for the inspection devices and addition of the access routes were carried out for the reactor structure. The pump-integrated IHX (pump/IHX) was modified for the primary heat exchanger (PHX), which was installed for the decay heat removal in the IHX at the upper plenum, to be removable for improved repair and maintenance. For the steam generator (SG), protective wall tube type design is under investigation as an option with less R and D risks. (author)

  18. IRIS Responsiveness to Generation IV Road-map Goals

    International Nuclear Information System (INIS)

    Carelli, M.D.; Paramonov, D.V.; Petrovic, B.

    2002-01-01

    The DOE Generation IV road-map process is in its second and final year. Almost one hundred concepts submitted from all over the world have been reviewed against the Generation IV goals of resources sustainability; safety and reliability; and, economics. Advanced LWRs are taken as the reference point. IRIS (International Reactor Innovative and Secure), a 100-335 MWe integral light water reactor being developed by a vast international consortium led by Westinghouse, is one on the concepts being considered in the road-map and is perhaps the most visible representative of the concept set known as Integral Primary System Reactors (IPSR). This paper presents how IRIS satisfies the prescribed goals. The first goal of resource sustainability includes criteria like utilization of fuel resources, amount and toxicity of waste produced, environmental impact, proliferation and sabotage resistance. As a thermal reactor IRIS does not have the same fuel utilization as fast reactors. However, it has a significant flexibility in fuel cycles as it is designed to utilize either UO 2 or MOX with straight burn cycles of 4 to 10 years, depending on the fissile content. High discharge burnup and Pu recycling result in good fuel utilization and lower waste; IRIS has also attractive proliferation resistance characteristics, due to the reduced accessibility of the fuel. The safety and reliability goal include reliability, workers' exposure, robust safety features, models with well characterized uncertainty, source term and mechanisms of energy release, robust mitigation of accidents. IRIS is significantly better than advanced LWRs because of its safety by design which eliminates a variety of accidents such as LOCAs, its containment vessel coupled design which maintains the core safely covered during the accident sequences, its design simplification features such as no (or reduced) soluble boron, internal shielding and four-year refueling/maintenance interval which significantly reduce

  19. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  20. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    Science.gov (United States)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  1. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  2. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  3. JSFR design progress related to development of safety design criteria for Generation IV sodium-cooled fast reactors. (1) Overview

    International Nuclear Information System (INIS)

    Kamide, Hideki; Ando, Masato; Ito, Takaya

    2015-01-01

    JAEA, JAPC and MFBR have been conducting design study for the Japan Sodium-cooled Fast Reactor (JSFR), which is a design concept aiming at future commercial use as sustainable electric power source. As the result of the design study and R and D activity related the innovative technologies incorporated in the design in the Fast Reactor Cycle Technology Development (FaCT) project up to 2010, basic design concept of JSFR was established and its development process to the commercialization including construction and operation of a demonstration version of JSFR was outlined. JSFR is a looptype next generation sodium-cooled fast reactor (SFR), which is aiming at achieving development targets of Generation IV reactors concerning sustainability, safety and reliability, economics and proliferation resistance and physical protection by introducing the innovative technologies such as shortened high-chromium steel piping. The output power is assumed for the design study as 1,500 MWe for the commercial version and 750 MWe for the demonstration version. In FaCT phase I up to 2010, in order to evaluate feasibility to achieve the development targets, the design study has been conducted on the main components and systems. Since 2011, in order to contribute to the development of safety design criteria (SDC) and safety design guideline (SDG), which include the lessons learned from the TEPCO's Fukushima Dai-ichi nuclear power plants accident, in the frame work of Generation IV International Forum (GIF), the design study is focusing on the design measures against severe external events such as earthquake and tsunami. At the same time, the design study is going into detail and paying much attention to the maintenance and repair to make surer its feasibility. This paper summarizes the design concept of the demonstration version of JSFR in which progress of design work was incorporated for the safety issues on SDC and SDG of a SFR. (author)

  4. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  5. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    International Nuclear Information System (INIS)

    Seneda, Jose A.; Lainetti, Paulo E.O.

    2013-01-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope 233 U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO 2 because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO 2 has higher corrosion resistance than UO 2 , besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt

  6. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Seneda, Jose A.; Lainetti, Paulo E.O., E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope {sup 233}U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO{sub 2} because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO{sub 2} has higher corrosion resistance than UO{sub 2}, besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the

  7. Corrosion of structural materials for Generation IV systems

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Cabet, C.; Courouau, J.L.; Martinelli, L.; Arnoux, P.

    2009-01-01

    The Generation IV International Forum aims at developing future generation nuclear energy systems. Six systems have been selected for further consideration: sodium-cooled fast reactor (SFR), gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR) and very high temperature reactor (VHTR). CEA, in the frame of a national program, of EC projects and of the GIF, contributes to the structural materials developments and research programs. Particularly, corrosion studies are being performed in the complex environments of the GEN IV systems. As a matter of fact, structural materials encounter very severe conditions regarding corrosion concerns: high temperatures and possibly aggressive chemical environments. Therefore, the multiple environments considered require also a large diversity of materials. On the other hand, the similar levels of working temperatures as well as neutron spectrum imply also similar families of materials for the various systems. In this paper, status of the research performed in CEA on the corrosion behavior of the structural material in the different environments is presented. The materials studied are either metallic materials as austenitic (or Y, La, Ce doped) and ferrito-martensitic steels, Ni base alloys, ODS steels, or ceramics and composites. In all the environments studied, the scientific approach is identical, the objective being in all cases the understanding of the corrosion processes to establish recommendations on the chemistry control of the coolant and to predict the long term behavior of the materials by the development of corrosion models. (author)

  8. ASN’s actions in GEN IV reactors and Sodium Fast Reactors (SFR)

    International Nuclear Information System (INIS)

    Belot, Clotilde

    2013-01-01

    The ASN is involved in 3 actions concerning GEN IV: • Overview of nuclear reactor GEN IV systems; • Specific analysis about transmutation; • Prototype reactor ASTRID (SFR). Furthermore theses actions are in the beginning (no conclusions or results available)

  9. A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Carlos H.; Stefani, Giovanni L.; Santos, Thiago A., E-mail: carlos.yamaguchi@usp.br, E-mail: giovanni.stefani@ipen.br, E-mail: thiago.santos@ufabc.edu.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2017-07-01

    The molten salt reactors (MSRs) make use of fluoride salt as primary cooler, at low pressure. Although considered a generation IV reactor, your concept isn't new, since in the 1960 years the Oak Ridge National Laboratory created a little prototype of 8MWt. Over the 20{sup th} century, other countries, like UK, Japan, Russia, China and France also did research in the area, especially with the use of thorium as fuel. This goes with the fact that Brazil possess the biggest reserve of thorium in the world. In the center of nuclear engineering at IPEN is being created a study group connected to thorium reactors, which purpose is to investigate reactors using thorium to produce {sup 233}U and tailing burn, thus making the MSR using thorium as fuel, an object of study. This present work searches to do a general summary about the researches of MSR's, having as focus the utilization of thorium with the goal being to show it's efficiency and utilization is doable. (author)

  10. Generation IV nuclear plant design strategies

    International Nuclear Information System (INIS)

    Altin, V.

    2007-01-01

    In this presentation Generation IV nuclear reactor design criteria are examined under the light of known nuclear properties of fissile and fertile nuclei. Their conflicting nature is elucidated along with the resulting inevitability of a multitude of designs. The designs selected as candidates for further development are evaluated with respect to their potential to serve the different design criteria, thereby revealing their more difficult aspects of realization and the strong research challenges lying ahead

  11. Nuclear fission today and tomorrow: from renaissance to technological breakthrough (Generation IV)

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2010-01-01

    This paper describes briefly the major scientific and technological challenges related to the very innovative nuclear fission reactor systems to be deployed at the horizon 2040 (called Generation IV). The paper focuses on the benefits of the Generation IV systems, according to criteria or technology goals established at the international level (Generation IV International Forum (GIF)). This goals are drastic improvements on four areas: sustainable development, industrial competitiveness, safety and reliability and proliferation resistance. The focus is on the design objectives and associated research issues that have been agreed upon internationally to meet these four ambitious goals. (author)

  12. Building generation four: results of Canadian research program on generation IV energy technologies

    International Nuclear Information System (INIS)

    Anderson, T.; Leung, L.K.H.; Guzonas, D.; Brady, D.; Poupore, J.; Zheng, W.

    2014-01-01

    A collaborative grant program has been established between Natural Sciences and Engineering Research Council (NSERC) of Canada, Natural Resources Canada (NRCan), and Atomic Energy of Canada Limited (AECL) to support research and development (R&D) for the Canadian SuperCritical Water-cooled Reactor (SCWR) concept, which is one of six advanced nuclear reactor systems being studied under the Generation-IV International Forum (GIF). The financial support for this grant program is provided by NSERC and NRCan. The grant fund has supported university research investigating the neutronic, fuel, thermal-hydraulics, chemistry and material properties of the Canadian SCWR concept. Twenty-two universities have actively collaborated with experts from AECL Nuclear Laboratories and NRCan's CanmetMATERIALS (CMAT) Laboratory to advance the technologies, enhance their infrastructure, and train highly qualified personnel. Their R&D findings have been contributed to GIF fulfilling Canada's commitments. The unique collaborative structure and the contributions to Canada's nuclear science and technology of the NSERC/NRCan/AECL Generation IV Energy Technologies Program are presented. (author)

  13. Nordic forum for generation IV reactors, status and activities in 2012

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.; Lauritzen, B.; Nonboel, E.

    2012-12-01

    The Nordic-Gen4 (continuation from NOMAGE4) seminar was this year hosted by DTU Nutech at Risoe, Denmark. The seminar was well attended (49 participants from 12 countries). The presentations covered many aspects in Gen-IV reactor research and gave a good overview of the activities within this field at the various institutes and universities. The present report contains book of abstracts. The individual Power Point presentations are indexed in INIS and may be found at http://nordic-gen4.org/seminars/nordic-gen4-riso-2012-2/ (LN)

  14. Nordic forum for generation IV reactors, status and activities in 2012

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. [Institutt for Energiteknikk, OECD Halden Reactor Project, Kjeller (Norway); Lauritzen, B.; Nonboel, E. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark)

    2012-12-15

    The Nordic-Gen4 (continuation from NOMAGE4) seminar was this year hosted by DTU Nutech at Risoe, Denmark. The seminar was well attended (49 participants from 12 countries). The presentations covered many aspects in Gen-IV reactor research and gave a good overview of the activities within this field at the various institutes and universities. The present report contains book of abstracts. The individual Power Point presentations are indexed in INIS and may be found at http://nordic-gen4.org/seminars/nordic-gen4-riso-2012-2/ (LN)

  15. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    need for substantial research. As we consider I and C systems in Generation IV reactors, we have the opportunity to take a much less 'timid' design philosophy than was taken in the design of I and C systems in the ALWRs. We need to make use of advanced technology to design an I and C system for the Generation IV multi-unit plant designs currently being considered. Such a design should accomplish the following: 1. provides for multi-unit control; 2. contributes to a plant design objective of a very low core damage frequency; 3. maximizes plant thermal efficiency (>50%); 4. maximizes plant capacity factor (>90%); 5. optimizes operability; 6. maximizes maintainability; 7. provides for on-line monitoring, calibration, and diagnostics; 8. provides optimum response to disturbances; 9. provides excellent load-following capability. When we consider the current situation in operating Generation I and II nuclear power plants and even Generation III ALWR design, we conclude that Generation IV reactors should employ at least Generation II measurement systems. Let us first consider data transmission, which is a form of communication, and ask the question: Do new communication-transferring methods by electrons flow in copper wires? The obvious answer is no. Virtually all new communication systems are using some electromagnetic method, such as light, microwaves, HF or VHF radio signals, and virtually no copper wires. When we envision Generation IV nuclear power plants, we should minimize the use of copper wires for data transmission. We should transmit data primarily by fiber optics and various wireless methods, some of which can penetrate thick barriers. Now let us consider sensors. If we use light for data transmission, then we should also use optical-based sensors. We should also take advantage of microprocessors, which provide opportunities to embed 'intelligence' in the sensor that can be used to increase accuracy, stability, and tolerance to external stressors (i.e., radiation

  16. Safety approach and research and development presentation for the selected systems of the International forum Generation IV

    International Nuclear Information System (INIS)

    Fiorini, G.L.

    2003-01-01

    This paper deals with the six projects of the Generation IV forum: Sodium Fast reactor, lead fast reactor, gas fast reactor, very high temperature reactor, supercritical water reactor, molten salt reactor. The technical objectives of the reactor safety and the design/evaluation approach are discussed. (A.L.B.)

  17. New reactor concepts for new generation of nuclear power plants: an overview, invited paper

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M.

    2006-01-01

    The outlook for energy demand underscores the need to increase the share of nuclear energy production. Achieving the vision of sustainable growth of nuclear energy will require development of both advanced nuclear fuel cycles and next generation reactor technologies and advanced reprocessing and fuel treatment technologies. To achieve this vision, the US department of energy (DOE) has adopted new strategy, the Global Nuclear Energy Partnership (GNEP), which integrates earlier programs: the Generation IV Nuclear Energy Systems Initiative (Generation IV), Nuclear Hydrogen Initiative (NHI), and the Advanced Fuel Cycle Initiative (AFCI) with proliferation-resistant spent fuel reprocessing to minimize nuclear waste. Generation IV furthers this vision beyond previous energy systems, such as Generation III+, through incremental improvements in economic competitiveness, sustainability, development of passively safe systems, and breakthrough methods to reduce the routes of nuclear proliferation. This paper summarizes the main characteristics of the six most promising nuclear energy systems identified by the Generation IV Roadmap and reviews some Generation IV system designs for small-side proliferation resistant reactors being developed by University of California at Berkeley. (author)

  18. Nuclear data uncertainty analysis for the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Pelloni, S.; Mikityuk, K.

    2012-01-01

    For the European 2400 MW Gas-cooled Fast Reactor (GoFastR), this paper summarizes a priori uncertainties, i.e. without any integral experiment assessment, of the main neutronic parameters which were obtained on the basis of the deterministic code system ERANOS (Edition 2.2-N). JEFF-3.1 cross-sections were used in conjunction with the newest ENDF/B-VII.0 based covariance library (COMMARA-2.0) resulting from a recent cooperation of the Brookhaven and Los Alamos National Laboratories within the Advanced Fuel Cycle Initiative. The basis for the analysis is the original GoFastR concept with carbide fuel pins and silicon-carbide ceramic cladding, which was developed and proposed in the first quarter of 2009 by the 'French alternative energies and Atomic Energy Commission', CEA. The main conclusions from the current study are that nuclear data uncertainties of neutronic parameters may still be too large for this Generation IV reactor, especially concerning the multiplication factor, despite the fact that the new covariance library is quite complete; These uncertainties, in relative terms, do not show the a priori expected increase with bum-up as a result of the minor actinide and fission product build-up. Indeed, they are found almost independent of the fuel depletion, since the uncertainty associated with 238 U inelastic scattering results largely dominating. This finding clearly supports the activities of Subgroup 33 of the Working Party on International Nuclear Data Evaluation Cooperation (WPEC), i.e. Methods and issues for the combined use of integral experiments and covariance data, attempting to reduce the present unbiased uncertainties on nuclear data through adjustments based on available experimental data. (authors)

  19. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  20. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  1. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  2. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  3. The concepts of liquid metal of IV generation

    International Nuclear Information System (INIS)

    Carbonnier, J. L.

    2005-01-01

    The concepts of liquid metals, due to their large spectrum, show important possibility of sustainable development: two concepts of liquid metal (Sodium and Lead) were engaged in the frame of the IV generation. The reactors with sodium benefit from considerable background of experience and of important work on projects to aim at the price diminution and the increase of safety (EFR, JSFR). The commitment of Japan as a leader of this concept and the support by France allow to contemplate an industrial deployment from 2015. The lead reactors offer some advantages in the domain of safety but otherwise require a highly important research and development binded to the control of the corrosion, the perspective of deployment of this concept are more hypothetical

  4. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsige-Tamirat, H.; Ammirabile, L.; D' Agata, E.; Fuetterer, M.; Ranguelova, V. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755LE Petten (Netherlands)

    2010-07-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  5. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ammirabile, L.; D'Agata, E.; Fuetterer, M.; Ranguelova, V.

    2010-01-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  6. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  7. Generation IV national program

    International Nuclear Information System (INIS)

    Preville, M.; Sadhankar, R.; Brady, D.

    2007-01-01

    This paper outlines the Generation IV National Program. This program involves evolutionary and innovative design with significantly higher efficiencies (∼50% compared to present ∼30%) - sustainable, economical, safe, reliable and proliferation resistant - for future energy security. The Generation IV Forum (GIF) effectively leverages the resources of the participants to meet these goals. Ten countries signed the GIF Charter in 2001

  8. Reducing scram frequency by modifying/eliminating steam generator low-low level reactor trip setpoint for Maanshan nuclear power plant

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Chiang, S.C.; Hsiue, J.K.; Chen, P.C.

    1987-01-01

    The feasibility of modification/elimination of steam generator low-low level reactor trip setpoint is evaluated by using RETRAN-02 code for the purpose of reducing scram frequency in Maanshan 3-loop pressurized water reactor. The ANS Condition II event loss of normal feedwater and condition IV event feedwater system line break are the basis for steam generator low-low level reactor trip setpoint sensitivity analysis, including various initial reactor power levels, reactivity feedback coefficients, and system functions assumptions etc., have been performed for the two basis events with steam generator low-low level reactor trip setpoint at 0% narrow range and without this trip respectively. The feasibility of modifying/eliminating current steam generator low-low level reactor trip setpoint is then determined based on whether the analysis results meet with the ANS Condition II and IV acceptance criteria or not

  9. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  10. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  11. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  12. Improvement of Sodium Neutronic Nuclear Data for the Computation of Generation IV Reactors

    International Nuclear Information System (INIS)

    Archier, P.

    2011-01-01

    The safety criteria to be met for Generation IV sodium fast reactors (SFR) require reduced and mastered uncertainties on neutronic quantities of interest. Part of these uncertainties come from nuclear data and, in the particular case of SFR, from sodium nuclear data, which show significant differences between available international libraries (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). The objective of this work is to improve the knowledge on sodium nuclear data for a better calculation of SFR neutronic parameters and reliable associated uncertainties. After an overview of existing 23 Na data, the impact of the differences is quantified, particularly on sodium void reactivity effects, with both deterministic and stochastic neutronic codes. Results show that it is necessary to completely re-evaluate sodium nuclear data. Several developments have been made in the evaluation code Conrad, to integrate new nuclear reactions models and their associated parameters and to perform adjustments with integral measurements. Following these developments, the analysis of differential data and the experimental uncertainties propagation have been performed with Conrad. The resolved resonances range has been extended up to 2 MeV and the continuum range begins directly beyond this energy. A new 23 Na evaluation and the associated multigroup covariances matrices were generated for future uncertainties calculations. The last part of this work focuses on the sodium void integral data feedback, using methods of integral data assimilation to reduce the uncertainties on sodium cross sections. This work ends with uncertainty calculations for industrial-like SFR, which show an improved prediction of their neutronic parameters with the new evaluation. (author) [fr

  13. Gen IV. Technical and economical aspects

    International Nuclear Information System (INIS)

    Kaluzny, Y.; Legee, F.

    2010-01-01

    In this presentation author deals with development of nuclear reactor type of Generation IV. He concluded that: - Nuclear energy is competitive with regards to the other generation sources; Its competitiveness also increases with CO 2 cost. Considering the nuclear cost breakdown of LWR reactors, it turns out that the uranium is currently not in the range of a threshold for FBR deployment; - The global balance of uranium supply and demand and also innovation required to fulfil GEN IV objectives would probably imply the emergence of fast reactor competitiveness after the turn of the mid-century; - We shall need fast reactors in the coming decade.

  14. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  15. Argentinean activities related to Fast Reactors

    International Nuclear Information System (INIS)

    Azpitarte, Osvaldo

    2012-01-01

    CNEA objectives in the area of Generation IV nuclear reactors: Implement a programme for the monitoring of the global progress of new technologies for Generation IV nuclear reactors and their fuel cycles, in order to generate and assess associated lines of R&D. – Perform studies and evaluations for defining the Generation IV line or lines on which CNEA would be interested; – Promote the participation on specific international projects; – Implementation of experimental facilities

  16. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  17. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  18. Safety approach and research and development presentation for the selected systems of the International forum Generation IV; Elements de l'approche de surete et themes de R et D specifiques pour les systemes selectionnes par le Forum International Generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, G.L. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN), 91 - Gif Sur Yvette (France)

    2003-07-01

    This paper deals with the six projects of the Generation IV forum: Sodium Fast reactor, lead fast reactor, gas fast reactor, very high temperature reactor, supercritical water reactor, molten salt reactor. The technical objectives of the reactor safety and the design/evaluation approach are discussed. (A.L.B.)

  19. GEN IV reactors: Where we are, where we should go

    International Nuclear Information System (INIS)

    Locatelli, G.; Mancini, M.; Todeschini, N.

    2012-01-01

    GEN IV power plants represent the mid-long term option of the nuclear sector. International literature proposes many papers and reports dealing with these reactors, but there is an evident difference of type and shape of information making impossible each kind of detailed comparison. Moreover, authors are often strongly involved in some particular design; this creates many difficulties in their super-partes position. Therefore it is necessary to put order in the most relevant information to understand strengths and weaknesses of each design and derive an overview useful for technicians and policy makers. This paper presents the state-of the art for GEN IV nuclear reactors providing a comprehensive literature review of the different designs with a relate taxonomy. It presents the more relevant references, data, advantages, disadvantages and barriers to the adoptions. In order to promote an efficient and wide adoption of GEN IV reactors the paper provides the pre-conditions that must be accomplished, enabling factors promoting the implementation and barriers limiting the extent and intensity of its implementation. It concludes outlying the state of the art of the most important R and D areas and the future achievements that must be accomplished for a wide adoption of these technologies. (authors)

  20. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    International Nuclear Information System (INIS)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-01-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean/US/laboratory/university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program

  1. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  2. European project SARGEN IV: safety approach and assessment of GEN IV reactors

    International Nuclear Information System (INIS)

    Ammirabile, L.

    2013-01-01

    • SARGEN I V has elaborated a proposal for the harmonization of safety assessment practices for GEN IV NPP. • An overall reinforcement of DiD is expected for GEN I V NPP, including improved independence between all levels of DiD. • An inherent approach should reinforce the fulfillment of fundamental safety functions e.g. the consequences for some situations should be reduced and the grace periods should be extended. For the same reason, the use of passive systems can be envisaged. • The need of complementary and integrated deterministic and probabilistic approaches is reiterated. • Methodologies: Some of them are not yet applied. • Assessment of hazards would be a challenging aspect of next generation of NPP safety assessment and should be improved, which is confirmed by the first insights of Fukushima Daiichi TEPCO reactors accidents. • Provisions to cope with extreme events notably to improve the grace period before cliff-edge effects and thus allowing back-up measures to be implemented have to be defined and should be considered as hardened equipments

  3. ASAMPSA2 best-practices guidelines for L2 PSA development and applications. Volume 3 - Extension to Gen IV reactors

    International Nuclear Information System (INIS)

    Bassi, C.; Bonneville, H.; Brinkman, H.; Burgazzi, L.; Polidoro, F.; Vincon, L.; Jouve, S.

    2010-01-01

    The main objective assigned to the Work Package 4 (WP4) of the 'ASAMPSA2' project (EC 7. FPRD) consist in the verification of the potential compliance of L2PSA guidelines based on PWR/BWR reactors (which are specific tasks of WP2 and WP3) with Generation IV representative concepts. Therefore, in order to exhibit potential discrepancies between LWRs and new reactor types, the following work was based on the up-to-date designs of: - The European Fast Reactor (EFR) which will be considered as prototypical of a pool-type Sodium-cooled Fast Reactor (SFR); - The ELSY design for the Lead-cooled Fast Reactor (LFR) technology; - The ANTARES project which could be representative of a Very-High Temperature Reactor (VHTR); - The CEA 2400 MWth Gas-cooled Fast Reactor (GFR). (authors)

  4. AMZ, multigroup constant library for EXPANDA code, generated by NJOY code from ENDF/B-IV

    International Nuclear Information System (INIS)

    Chalhoub, E.S.; Moraes, Marisa de

    1985-01-01

    It is described a library of multigroup constants with 70 energy groups and 37 isotopes to fast reactor calculation. The cross sections, scattering matrices and self-shielding factors were generated by NJOY code and RGENDF interface program, from ENDF/B-IV'S evaluated data. The library is edited in adequated format to be used by EXPANDA code. (M.C.K.) [pt

  5. Review on Korea Participation of Generation IV International Forum (GIF)

    International Nuclear Information System (INIS)

    Lee, Jewhan; Jeong, Ji-Young; Hahn, Dohee

    2015-01-01

    Generation IV International Forum (GIF) originates from US proposal of an initiative in 2000. The vision was to leapfrog LWR technology and collaborate with international partners to share R and D on advanced nuclear systems. Nine countries and EU joined the initiative and Gen IV concept was defined via technology goals and legal framework. Two years study with more than 100 experts worldwide has evaluated nearly 100 reactor designs and down selected six most promising concepts. In 2005, the first signatures on Framework Agreement were collected and the first research projects were defined in 2006. Korea is one of the founding members of GIF and actively participating in various areas. In 2013, TD was assigned to Korean expert and Korea is endeavoring to enhance the benefit of participation since this turning point. In this paper, pros and cons of engaging with GIF were briefly introduced and items to maximize the benefit were suggested

  6. Review on Korea Participation of Generation IV International Forum (GIF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jewhan; Jeong, Ji-Young; Hahn, Dohee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Generation IV International Forum (GIF) originates from US proposal of an initiative in 2000. The vision was to leapfrog LWR technology and collaborate with international partners to share R and D on advanced nuclear systems. Nine countries and EU joined the initiative and Gen IV concept was defined via technology goals and legal framework. Two years study with more than 100 experts worldwide has evaluated nearly 100 reactor designs and down selected six most promising concepts. In 2005, the first signatures on Framework Agreement were collected and the first research projects were defined in 2006. Korea is one of the founding members of GIF and actively participating in various areas. In 2013, TD was assigned to Korean expert and Korea is endeavoring to enhance the benefit of participation since this turning point. In this paper, pros and cons of engaging with GIF were briefly introduced and items to maximize the benefit were suggested.

  7. Development and application of an advanced fuel model for the safety analysis of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Petkevich, P.

    2008-09-01

    Until about the year 2030, current-day nuclear power plants (NPPs) will be replaced by so-called Gen-III or Gen-III+ units, which are mainly based on light water reactor technology. The principal new features are increased safety and improved economical effectiveness. However, these systems use the same fuel forms and are based on the same fuel cycle. Beyond 2030, the interest is likely to shift towards fourth generation NPPs, which offer the possibility of complete fuel cycle closure. Generation-IV reactor concepts include both thermal and fast systems, and involve a wide range of fuel forms and compositions. The present research has been focused on the development of a thermo-mechanical model for the innovative fuel design of the Generation-IV Gas-cooled Fast Reactor (GFR). The principal distinctive feature of the fuel is that the fuel pellets are arranged within plates which enclose an inner honeycomb structure. Apart from the geometry, the usage of new materials is foreseen. Thus, the fuel pellets are of mixed uranium-plutonium carbide, and the cladding is bulk or fiber-reinforced SiC. The setting up of an appropriate materials database was thus the very first task which had to be carried out in the current work. The main purpose of the currently developed model is to provide reliable data, in the context of transient analysis, for the calculation of the principal neutronic feedbacks in the GFR core, viz. the fuel temperature for the Doppler effect and the fuel plate deformation for the axial core expansion effect. None of the available fuel modeling codes is suitable for a realistic simulation of the GFR fuel, as the inner honeycomb structure cannot be explicitly taken into account. The development work has been carried out largely in the context of PSI’s generic code system for fast reactor safety analysis, FAST. Thereby, it has mainly involved extension of the thermo-mechanical code FRED, developed originally for the modeling of traditional rodded fuel

  8. Generation IV international forum 2002 - remarks

    International Nuclear Information System (INIS)

    Abraham, S.

    2002-01-01

    Analyses and forecasts underscore the important role of nuclear power in energy supply in the 21st century. Important aspects in this respect are the conservation of fossil resources, the protection of the world's climate, and the continuity of supply. Present 1st and 2nd generation nuclear power plants ensure an economical and technically mature electricity supply. Advanced systems offering, e.g., higher efficiency of fuel utilization, simplified systems technology, and advanced safety characteristics, can make available additional benefits in using nuclear power. Upon an initiative of the U.S. Department of Energy (DOE), ten countries combine their efforts in developing such reactor concepts in the Generation IV International Forum (GIF). Argentina, Brazil, Canada, France, Japan, South Africa, South Korea, Switzerland, the United Kingdom, and the United States pursue the common objective in GIF to identify suitable nuclear power systems and promote their development up to the envisaged readiness for construction in 2030. Besides technical and economic questions of nuclear power generation, also other aspects must be considered with a view to the future use of nuclear power. The particularly relevant issues, such as the management of radioactive waste, the intensification of research and development, and international cooperation, have been taken up by the Bush administration at an early point in time and have been, or will be, incorporated in practical solutions, as in the case of the Yucca Mountain repository project. (orig.)

  9. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  10. Benchmark analysis of SPERT-IV reactor with Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Motalab, M.A.; Mahmood, M.S.; Khan, M.J.H.; Badrun, N.H.; Lyric, Z.I.; Altaf, M.H.

    2014-01-01

    Highlights: • MVP was used for SPERT-IV core modeling. • Neutronics analysis of SPERT-IV reactor was performed. • Calculation performed to estimate critical rod height, excess reactivity. • Neutron flux, time integrated neutron flux and Cd-ratio also calculated. • Calculated values agree with experimental data. - Abstract: The benchmark experiment of the SPERT-IV D-12/25 reactor core has been analyzed with the Monte Carlo code MVP using the cross-section libraries based on JENDL-3.3. The MVP simulation was performed for the clean and cold core. The estimated values of K eff at the experimental critical rod height and the core excess reactivity were within 5% with the experimental data. Thermal neutron flux profiles at different vertical and horizontal positions of the core were also estimated. Cadmium Ratio at different point of the core was also estimated. All estimated results have been compared with the experimental results. Generally good agreement has been found between experimentally determined and the calculated results

  11. Market share scenarios for Gen-DIII and gen-IV reactors in Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Heek, A. V.; Durpel, L. V. D.

    2008-01-01

    Nuclear energy is back on the agenda worldwide in order to meet growing energy demand and especially the growth in electricity demand. Many objectives direct to an increased use of nuclear energy, i.e. minimising energy costs, reducing climate change effects and others. In the light of the potential renewed growth of nuclear energy, the public demands a clear view on what nuclear energy may contribute towards meeting these objectives and especially how nuclear energy may address some socio-political obstructions with respect to economics, radioactive waste, safety and proliferation of fissile materials. To address these questions, the future nuclear reactor park mix in Europe has been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options. In the analyses, it is assumed that different types of new reactors may be built, taking into account the introduction date of considered Gen-Ill (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, and the economic evaluation of the complete fuel cycle. The assessment was undertaken using the DANESS code (Dynamic Analysis of Nuclear Energy System Strategies). The analyses show that given the considered realistic nuclear energy demand and given a limited number of available Gen-III and Gen-IV reactor types, the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. The analyses also highlight the triggers influencing the choice between different nuclear energy deployment scenarios. (authors)

  12. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  13. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A. S.

    2010-09-01

    The majority of NPPs worldwide are currently light water reactors, using ordinary water as both coolant and moderator. (...) For the longer-term future, viz. beyond the year 2030, Research and Development is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Since the very beginning of the international cooperation on Generation IV, viz. the year 2000, the main research interest in Europe as regards the advanced fast-spectrum systems needed for achieving complete fuel cycle closure, has been for the Sodium-cooled Fast Reactor (SFR). However, the Gas-cooled Fast Reactor (GFR) is currently considered as the main back-up solution. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For depressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be

  14. A global model for gas cooled reactors for the Generation-4: application to the Very High Temperature Reactor (VHTR)

    International Nuclear Information System (INIS)

    Limaiem, I.

    2006-12-01

    Gas cooled high temperature reactor (HTR) belongs to the new generation of nuclear power plants called Generation IV. The Generation IV gathers the entire future nuclear reactors concept with an effective deployment by 2050. The technological choices relating to the nature of the fuel, the moderator and the coolant as well as the annular geometry of the core lead to some physical characteristics. The most important of these characteristics is the very strong thermal feedback in both active zone and the reflectors. Consequently, HTR physics study requires taking into account the strong coupling between neutronic and thermal hydraulics. The work achieved in this Phd consists in modeling, programming and studying of the neutronic and thermal hydraulics coupling system for block type gas cooled HTR. The coupling system uses a separate resolution of the neutronic and thermal hydraulics problems. The neutronic scheme is a double level Transport (APOLLO2) /Diffusion (CRONOS2) scheme respectively on the scale of the fuel assembly and a reactor core scale. The thermal hydraulics model uses simplified Navier Stokes equations solved in homogeneous porous media in code CAST3M CFD code. A generic homogenization model is used to calculate the thermal hydraulics parameters of the porous media. A de-homogenization model ensures the link between the porous media temperatures of the temperature defined in the neutronic model. The coupling system is made by external procedures communicating between the thermal hydraulics and neutronic computer codes. This Phd thesis contributed to the Very High Temperature Reactor (VHTR) physics studies. In this field, we studied the VHTR core in normal operating mode. The studies concern the VHTR core equilibrium cycle with the control rods and using the neutronic and thermal hydraulics coupling system. These studies allowed the study of the equilibrium between the power, the temperature and Xenon. These studies open new perspective for core

  15. In-Pile Testing and Instrumentation for Development of Generation-IV Fuels and Materials. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-12-01

    For many years, the increase in efficiency in the production of nuclear electricity has been an economic challenge in many countries which have developed this kind of energy. The increase in fuel burnup and fuel residence time leads to a reduction in the volume of fresh fuel loaded and spent fuel discharged, respectively. More demanding nuclear fuel cycle parameters are combined with a need to operate nuclear power plants with maximal availability and load factors, in load-follow mode and with longer fuel cycles. In meeting these requirements, fuel has to operate in a demanding environment of high radiation fields, high temperatures, high mechanical stresses and high coolant flow. Requirements of increased fuel reliability and minimal fuel failures also remain in force. Under such circumstances, continuous development of more radiation resistant fuel materials, especially advanced cladding, careful and incremental examinations, and improved understanding and modelling of high burnup fuel behaviour are required. Following a recommendation of the IAEA Technical Working Group on Fuel Performance and Technology, the Technical Meeting on In-pile Testing and Instrumentation for Development of Generation-IV Fuels and Materials was held in Halden, Norway, on 21-24 August 2012. The purpose of the meeting was to review the current status and the progress in methods and technologies used for the in-pile testing of nuclear fuel achieved since the previous IAEA meeting on In-core Instrumentation and Reactor Core Assessment, also held in Halden in 2007. Emphasis was placed on advanced techniques applied for the understanding of high burnup fuel behaviour of water cooled power reactors that represent the vast majority of the current nuclear reactor fleet. However, the meeting also included papers and discussion on testing techniques applied or developed specifically for new fuel and structural materials considered for Generation-IV systems. The meeting was attended by 43

  16. Generation 4 International Forum (GIF). 2015 Annual Report

    International Nuclear Information System (INIS)

    2016-01-01

    This ninth edition of the Generation IV International Forum (GIF) Annual Report highlights the main achievements of the Forum in 2015. On 26 February 2015, the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems was extended for another ten years, thereby paving the way for continued collaboration among participating countries. GIF organised the 3. Symposium in Makuhari Messe, Japan in May 2015 to present progress made in the development of the six generation IV systems: the gas-cooled fast reactor, the sodium-cooled fast reactor, the supercritical-water-cooled reactor, the very-high-temperature reactor, the lead-cooled fast reactor and the molten salt reactor. The report gives a detailed description of progress made in the 11 existing project arrangements. It also describes the development of safety design criteria and guidelines for the sodium-cooled fast reactor, in addition to the outcome of GIF engagement with regulators on safety approaches for generation IV systems. (authors)

  17. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Aug 15, 2002 to Nov. 15, 2002) - DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Lawrence Townsend; Martin Williamson; Rupy Sawhney; Jacob Fife

    2002-01-01

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. This report covers the ninth quarter of the project. The three reactor concept teams have completed initial plant concept development, evaluation and layout. A significant design effort has proceeded with substantial change and evolution from original ideas. The concepts have been reviewed by the industry participants and improvements have been implemented. The third phase, industrial engineering simulation of reactor fabrication has begun

  18. Directions for attractive tokamak reactors: The ARIES-II and ARIES-IV second-stability designs

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1993-01-01

    ARIES is a research program to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The ARIES study has developed four visions for tokamaks. All four designs are steady-state, 1000-MWe (net) power reactors. The ARIES-II and ARIES-IV designs assume potential advances in plasma physics (such as second-stability operation) predicted by theory but not yet established experimentally. The two designs have the same fusion plasma but different fusion-power-core. There are only minor differences between the ARIES-II and ARIES-IV plasma parameters. ARIES-IV is a 1000-MWe reactor with an average neutron wall loading of 3 MW/m 2 , and a mass power density of about 120 kWe/tonne of fusion power core. The reactor major radius is 6.1 m, the plasma minor radius is 1.5 m and the plasma elongation is 2, and the plasma triangularity is 0.67. The plasma current is low (6.8 MA), B on-axis is 7.7 T (corresponding to a maximum field at the coil of 16T), and the toroidal beta is 3.4% (Troyon coefficient = 6). The operating regime is optimized such that most of the plasma current (∼ 90%) is provided by the bootstrap current. ARIES-II uses liquid lithium as the coolant and tritium breeder. V-5Cr-5Ti is used as the structural material so that the potential of low-activation metallic blankets can be studied. ARIES-IV uses helium as the coolant, a solid tritium-breeding material (Li 2 O), and silicon carbide composite as structural material. The waste produced by neutron activation in both designs is found to meet the criteria allowing shallow-land burial under U.S. regulations. The cost of electricity for the ARIES-II-IV class of reactors is estimated to be about 20% lower than comparable, steady-state first-stability reactors (e.g. ARIES-I). 25 refs, 2 figs, 1 tab

  19. Advancing the CANDU reactor: From generation to generation

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Duffey, Romney B.; Yu, Steven; Torgerson, Dave F.

    2006-01-01

    Emphasizing safety, reliability and economics, the CANDU reactor development strategy is one of continuous improvement, offering value and assured support to customers worldwide. The Advanced CANDU Reactor (ACR-1000) generation, designed by Atomic Energy of Canada Limited (AECL), meets the new economic expectation for low-cost power generation with high capacity factors. The ACR is designed to meet customer needs for reduced capital cost, shorter construction schedule, high plant capacity factor, low operating cost, increased operating life, simple component replacement, enhanced safety features, and low environmental impact. The ACR-1000 design evolved from the internationally successful medium-sized pressure tube reactor (PTR) CANDU 6 and incorporates operational feedback from eight utilities that operate 31 CANDU units. This technical paper provides a brief description of the main features of the ACR-1000, and its major role in the development path of the generations of the pressure tube reactor concept. The motivation, philosophy and design approach being taken for future generation of CANDU pressure tube reactors are described

  20. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  1. Development of the control assembly pattern and dynamic analysis of the Generation IV large gas-cooled fast reactor (GFR)

    Energy Technology Data Exchange (ETDEWEB)

    Girardin, G.

    2009-07-15

    During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed interest in nuclear technology. In this context, the Generation IV International Forum (GIF) launched the initiative to collaborate on the research and development efforts needed for the next generation of nuclear reactors. A particular goal set for Generation IV systems is closure of the nuclear fuel cycle; they are expected to offer a better utilization of natural resources, as also a minimization of long-lived radioactive wastes. Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. The principal aim of the present research is to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for the 2400 MWth reference GFR design. The work has been carried out in three successive phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behaviour studies for hypothetical CA driven transients. The deterministic code system ERANOS and its associated nuclear data libraries for fast reactors were developed and validated for sodium-cooled reactors. In order to validate ERANOS for GFR applications, a systematic reanalysis of the GFR-relevant integral data generated at PSI during the GCFR-PROTEUS experimental program of the 1970’s was undertaken. The reference PROTEUS test lattice has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. For the main reaction rate ratios, the new analysis of the GCFR

  2. Development of the control assembly pattern and dynamic analysis of the Generation IV large gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Girardin, G.

    2009-07-01

    During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed interest in nuclear technology. In this context, the Generation IV International Forum (GIF) launched the initiative to collaborate on the research and development efforts needed for the next generation of nuclear reactors. A particular goal set for Generation IV systems is closure of the nuclear fuel cycle; they are expected to offer a better utilization of natural resources, as also a minimization of long-lived radioactive wastes. Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. The principal aim of the present research is to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for the 2400 MWth reference GFR design. The work has been carried out in three successive phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behaviour studies for hypothetical CA driven transients. The deterministic code system ERANOS and its associated nuclear data libraries for fast reactors were developed and validated for sodium-cooled reactors. In order to validate ERANOS for GFR applications, a systematic reanalysis of the GFR-relevant integral data generated at PSI during the GCFR-PROTEUS experimental program of the 1970’s was undertaken. The reference PROTEUS test lattice has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. For the main reaction rate ratios, the new analysis of the GCFR

  3. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  4. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  5. DEVELOPMENT OF A METHODOLOGY TO ASSESS PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J.; Kalenchuk, D.

    2004-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR and PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures

  6. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  7. Generation IV concepts - Presentation at ACRS workshop 'Regulatory challenges for future nuclear power plants'

    International Nuclear Information System (INIS)

    Versluis, Rob M.

    2001-01-01

    The concept of the Near-Term Deployment Working Group was to define a technical approach for Generation IV system with enough detail to allow evaluation against the goal, bur broad enough to allow for optional features and trade. The following concepts were taken into account: water coolant (water or heavy water), gas coolant, liquid metal coolants. Concepts were grouped according to concept sets of technology base share and design approach. Water coolant concepts were grouped as follows: PWR loop reactors, integral primary system PWRs, Integral BWRs, pressure tube reactors, high conversion cores, supercritical water reactors, advanced fuel cycle concepts. Gas coolant concepts were grouped as follows: pebble bed modular reactors; prismatic modular reactors, very high temperature reactors, fast spectrum reactors, others (fluidized bed, moving ignition zone concept). Liquid metal concepts were grouped in four major categories: Medium-to-large oxide-fueled systems; Medium-sized metal-fueled systems; Medium-sized Pb/Pb-Bi systems; Small-sized Pb/Pb-Bi systems. The three supporting technology areas were examined: Fuels (oxide, metal, nitride); Coolants (Na, Pb/Pb-Bi); Fuel Cycle (advanced aqueous, pyroprocess). Non-classical concepts were also grouped as follows: Eutectic metallic fuel; Molten salt fuel; Gas core reactor; Molten salt cooled/solid fuel; Organic cooled reactor; Solid conduction/heat pipe; Fission product direct energy conversion. The Technical working Groups are analyzing the candidate concepts for performance potential relative to the goals; and technology gaps

  8. Standard interface files and procedures for reactor physics codes. Version IV

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1977-09-01

    Standards, procedures, and recommendations of the Committee on Computer Code Coordination for promoting the exchange of reactor physics codes are updated to Version IV status. Standards and procedures covering general programming, program structure, standard interface files, and file management and handling subroutines are included

  9. Environmental sensitivity studies for Gen-IV roadmap fast reactor scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-03-01

    The environmental effect of the self-sufficient fast reactor scenario, which is considered as one of the full fissile plutonium and transuranic recycle scenario in Gen-IV roadmap, has been analyzed by using the dynamic analysis method. Through the parametric calculations for the fast reactor deployment time and capacity, the environmental effects of the fuel cycle for important parameters such as the amount of spent fuel and the combined amounts of plutonium and minor actinides were estimated and compared to those of the once-through LWR fuel cycle. The results of the sensitivity calculations showed that an early deployment of the fast reactor with a high capacity can reduce the accumulation of spent fuel by up to 37%. Furthermore, the recycling of plutonium and minor actinides can reduce the key repository parameter (long term decay heat). Therefore the favorable environmental effects can be expected with the implementation of the symbiotic fast reactor scenario

  10. Generation 4 - nuclear reactors and an approach to secure public acceptance and access to energy for everyone

    International Nuclear Information System (INIS)

    Pahladsingh, R.

    2001-01-01

    The aim of this paper is to bring the Pebble Bed Modular Reactor (PBMR) and a few interesting Light Water Passive nuclear reactor designs under your attention. The PBMR is under further development in South Africa and Asia. The philosophy behind the PBMR concept has been to develop a nuclear reactor which is so safe that it could be called inherently safe. Its concept is so completely different, see figure 2, that it can easily pass strictest safety regulations. Consequently it is a good Generation IV candidate. Good promotion of the gas-turbine direct cycle PBMR design is a main task to the nuclear technology and industry and could be the challenge that the young generation needs to consider a career in nuclear technology. (authors)

  11. Generation IV and transmutation materials (GETMAT) project: First assessment of selected results

    International Nuclear Information System (INIS)

    Fazio, Concetta; Serrano, Marta; Gessi, Alessandro; Henry, Jean; Malerba, Lorenzo

    2015-01-01

    The Generation IV and Transmutation Material (GETMAT) project has been initiated within the 7. EURATOM framework programme with the objective to support the development of innovative reactor designs. Emphasis has been put on the investigation, both in the theoretical and experimental domains, of selected material properties that are cross-cutting among the various Generation IV and Transmutation systems. The selection of the properties to be investigated has been performed by identifying relevant conditions of key components as cores and primary systems. Moreover, taking into account the envisaged conditions of these components it turned out that innovative materials might be a better choice with respect to conventional nuclear grade steels. Therefore, ODS alloys and 9-12 Cr Ferritic/Martensitic (F/M) steels have been selected as reference for the GETMAT project. The R and D activities have been focused on basic characterisation of ODS alloys produced ad hoc for the project and on an extensive PIE programme of F/M steels irradiated in previous programmes. Finally, first principle modelling studies to explain irradiation hardening and embrittlement of F/M alloys were an additional important task. The objective of this manuscript is to make a first assessment of the results obtained within GETMAT. (authors)

  12. Microscopy investigation on the corrosion of Canadian generation IV SCWR materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [CanmetMATERIALS, Hamilton, ON (Canada); Huang, X. [Carleton Univ., Ottawa, ON (Canada); Zeng, Y.; Zheng, W. [CanmetMATERIALS, Hamilton, ON (Canada); Woo, O.T.; Guzonas, D. [Atomic Energy Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Selection of fuel cladding materials for the Canadian Generation-IV Supercritical Water-cooled Reactor (SCWR) concept faces major challenges due to the severe operating conditions (650 {sup o}C and 25 MPa). High temperature microstructure stability and excellent resistance to general corrosion and stress corrosion cracking are key criteria. While corrosion resistance are generally assessed using weight change measurements and surface oxide examinations by optical and Scanning Electron Microscope (SEM) techniques, for materials exposed to SCW conditions, advanced analytical techniques that involve the use of Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) techniques are required. This paper provides examples of such work conducted at CanmetMATERIALS and AECL to provide an in-depth understanding of the corrosion mechanisms of alloys exposed under SCW conditions. (author)

  13. Improving fuel cycle design and safety characteristics of a gas cooled fast reactor

    NARCIS (Netherlands)

    van Rooijen, W.F.G.

    2006-01-01

    This research concerns the fuel cycle and safety aspects of a Gas Cooled Fast Reactor, one of the so-called "Generation IV" nuclear reactor designs. The Generation IV Gas Cooled Fast Reactor uses helium as coolant at high temperature. The goal of the GCFR is to obtain a "closed nuclear fuel cycle",

  14. Overview of the CEA R and D support to generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-01-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum

  15. Overview of the CEA R and D support to generation IV nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-07-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum.

  16. JRC-IE's research of safety of Gen IV systems

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ranguelova, V.; Feutterer, M.; Ammirabile, L.; Carlsson, J.; D'Agata, E.; Laurie, M.; Magallon, D.

    2010-01-01

    The Institute for Energy (IE), one of the seven scientific Institutes of the Joint Research Centre (JRC) of the European Commission, has the mission to provide scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. To accomplish its mission, IE performs research in the areas of renewable energies, safety and sustainability of nuclear energy for current and future reactor systems, energy technic/economic assessment, and security of energy supply. The Generation IV International Forum (GIF) is a cooperative international endeavour organized to carry out R and D needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems and support the progress towards their realization. The EU, represented by EURATOM and with the JRC as implementing agent, is working together with other GIF partners to perform pre-competitive R and D on key technologies to be implemented in future nuclear systems. IE is engaged in experimental research, simulation and modeling, scientific, feasibility and engineering studies on innovative nuclear reactor systems needed to support the EURATOM contribution to GEN IV initiative, in particular in assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions and knowledge management and preservation. IE's research activities on Generation IV reactor systems are focused on the assessment of the potential of such systems to meet long term EU energy needs with respect to economical advantages, enhanced safety, sustainability, and proliferation resistance. IE participates in international collaborations and has bilateral research cooperation both with European and non-European partners. This paper gives an overview of IE's current research activities on the Gen IV reactor systems related to safety. (authors)

  17. Technology Road-map Update for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2014-01-01

    This Technology Road-map Update provides an assessment of progress made by the Generation IV International Forum (GIF) in the development of the six systems selected when the original Technology Road-map was published in 2002. More importantly, it provides an overview of the major R and D objectives and milestones for the coming decade, aiming to achieve the Generation IV goals of sustainability, safety and reliability, economic competitiveness, proliferation resistance and physical protection. Lessons learnt from the Fukushima Daiichi nuclear power plant accident are taken into account to ensure that Generation IV systems attain the highest levels of safety, with the development of specific safety design criteria that are applicable across the six systems. Accomplishing the ten-year R and D objectives set out in this new Road-map should allow the more advanced Generation IV systems to move towards the demonstration phase. (authors)

  18. Level II Probabilistic Safety Analysis Methodology for the Application to GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Han, S. H.; Jeong, H. Y.

    2010-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the probabilistic safety assessment (PSA) domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of GEN-IV sodium fast reactor (SFR). An applicability of the PSA methodology of U. S. NRC and PRISM plant to the domestic GEN-IV SFR has been studied. The study contains a plant damage state analysis, a containment event tree analysis, and a source-term release category binning process

  19. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  20. Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Sang June Ahn

    2016-08-01

    Full Text Available The prototype generation IV sodium-cooled fast reactor (PGSFR has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS and the safety of the primary heat-transfer system (PHTS. In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  1. Optimisation of the mechanical alloying process for odsferritic steels for generation IV reactors application

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Abrudeanu, M.

    2016-01-01

    ODS ferritic steels appear as promising materials for fusion and Gen IV fission reactors, offering high temperature performance, corrosion and irradiation resistance and meeting low activation criteria. Mechanical alloying (MA) is a powder metallurgy technique efficient for fabricating advanced materials, and has been used for strengthening structural materials including Fe-Cr alloys. In this paper a high-energy ball mill is used to study the microstructural evolution of 14YW alloy during the mechanical alloying process. The elemental powders are milled at a rotation speed of 250rot/min in cycles of 10min milling and 5min pause, with a ball-to-powder ration of 10:1 and in argon protective atmosphere. After 72 hours milling, the morphology and element distribution of the MA powders is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, respectively. It is observed that the particles size increases in the first milling stages and then decreases with the milling time. Changes in the material composition are analysed by X-ray diffraction (DRX). It seems that after milling part of the W remains non-dissolved in the Fe-Cr matrix retarding the solid solution formation. (authors)

  2. AMZ, library of multigroup constants for EXPANDA computer codes, generated by NJOY computer code from ENDF/B-IV

    International Nuclear Information System (INIS)

    Chalhoub, E.S.; Moraes, M. de.

    1984-01-01

    A 70-group, 37-isotope library of multigroup constants for fast reactor nuclear design calculations is described. Nuclear cross sections, transfer matrices, and self-shielding factors were generated with NJOY code and an auxiliary program RGENDF using evaluated data from ENDF/B-IV. The output is being issued in a format suitable for EXPANDA code. Comparisons with JFS-2 library, as well as, test resuls for 14 CSEWG benchmark critical assemblies are presented. (Author) [pt

  3. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Epiney, A.S.

    2010-01-01

    Gas cooling in nuclear power plants (NPPs) has a long history, the corresponding reactor types developed in France, the UK and the US having been thermal neutron spectrum systems using graphite as the moderator. The majority of NPPs worldwide, however, are currently light water reactors, using ordinary water as both coolant and moderator. These NPPs - of the so-called second generation - will soon need replacement, and a third generation is now being made available, offering increased safety while still based on light water technology. For the longer-term future, viz. beyond the year 2030, R and D is currently ongoing on Generation IV NPPs, aimed at achieving closure of the nuclear fuel cycle, and hence both drastically improved utilization of fuel resources and minimization of long-lived radioactive wastes. Like the SFR, the GFR is an efficient breeder, also able to work as iso-breeder using simply natural uranium as feed and producing waste which is predominantly in the form of fission products. The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure

  4. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  5. The importance of thorium in the context of the generation in advanced reactors and the IPEN's experience

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Mindrisz, Ana C.; Freitas, Antonio A.

    2011-01-01

    Globally, the 80's and 90's years were characterized by a significant reduction in the rate of growth of nuclear energy. However, from the 2000's, there has been a significant change in the international arena, with the 'renaissance' of interest in nuclear energy, even in countries that had abandoned nuclear power. To answer questions like security, reducing the generation of radioactive waste, control of proliferation risks and long-term sustainability, some initiatives have been adopted by some countries. In 2000, the Department of Energy - DOE - United States created the GIF - Generation IV International Forum for Nuclear Reactors. Six reactor concepts were selected based on criteria such as: reduction of radioactive wastes, safety and cost effective to meet the increasing energy demand on a sustainable basis, being resistant to diversion of materials for nuclear weapons proliferation and safer against terrorist attacks. In this context, it becomes important to use thorium as nuclear fuel for the Generation IV Advanced Reactors, with startup scheduled for 2030. Although the thorium does not present significant commercial value nowadays, in a not too distant future it will probably be an important commodity. Unfortunately, contrarily to what is happening in most developed countries in recent years, Brazil is paying little attention to the thorium, even less than in the past, despite its large reserves. Thorium is three to four times more abundant than uranium in the Earth's crust and, although not fissile, all thorium can be used to produce 233 U, by absorption of neutrons and subsequent radioactive decay. This uranium isotope is an excellent fuel for use in almost all types of nuclear reactors. It is possible that the thorium constitutes the largest Brazilian energy reserve, supplanting much oil (despite the findings of the pre-salt) and uranium. Brazil has a long tradition in the thorium technology, from mining of monazite until the obtainment of high purity

  6. Knowledge gaps in economic analyses of advanced reactor concepts

    International Nuclear Information System (INIS)

    Moore, M.; Pencer, J.; Leung, L.K.H.; Sadhankar, R.

    2014-01-01

    The development of next generation nuclear systems is predicated on improvement in sustainability, safety, proliferation resistance and economics. The economic assessment of the reactor concept is required as early as in the concept development stage. The Generation IV International Forum (GIF) has developed a methodology for economic assessment of the Generation IV (GEN-IV) nuclear energy systems. The GIF economics methodology was used for the assessment of one of the reactor concepts for the Super-Critical Water-cooled Reactors (SCWR), namely the European pressure-vessel type concept referred to as the High Performance Light Water Reactor (HPLWR). The economic analysis involved studying the sensitivity of two main economic indicators, namely, the Levelized Unit Electricity Cost (LUEC) and the Total Capital Investment Cost (TCIC). The knowledge gaps in estimating the capital costs and fuel costs, as well as the uncertainties in other cost parameters affecting the economic assessment of the nuclear energy system in the concept development stage are presented. (author)

  7. Composite electric generator equipped with steam generator for heating reactor coolant

    International Nuclear Information System (INIS)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato.

    1997-01-01

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  8. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  9. Numerical research on natural convection in molten salt reactor with non-uniformly distributed volumetric heat generation

    International Nuclear Information System (INIS)

    Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi

    2010-01-01

    Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.

  10. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  11. New Materials for NGNP/Gen IV

    International Nuclear Information System (INIS)

    Swindeman, Robert W.; Marriott, Douglas L.

    2009-01-01

    The bounding conditions were briefly summarized for the Next Generation Nuclear Plant (NGNP) that is the leading candidate in the Department of Energy Generation IV reactor program. Metallic materials essential to the successful development and proof of concept for the NGNP were identified. The literature bearing on the materials technology for high-temperature gas-cooled reactors was reviewed with emphasis on the needs identified for the NGNP. Several materials were identified for a more thorough study of their databases and behavioral features relative to the requirements ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH.

  12. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  13. Unprotected Accident Analyses of the 1200MWe GEN-IV Sodium-Cooled Fast Reactor Using the SSC-K Code

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Hae Yong; Chang, Won Pyo; Seok, Su Dong; Lee, Yong Bum

    2010-02-01

    A conceptual design of an advanced breakeven sodium-cooled fast reactor (G4SFR) has recently been developed by KAERI under the national nuclear R and D plan. The G4SFR is a 1,200MWe metal-fueled pool-type sodium-cooled fast reactor adopting advanced safety design features. The G4SFR development plan focuses on particular technology development efforts to effectively meet the goals of the Generation-IV (GEN-IV) nuclear system such as efficient utilization of resources, economic competitiveness, a high standard of safety, and enhanced proliferation resistance. To enhance the safety of G4SFR, advanced design features of metal-fueled core, simple and large sodium-inventory primary heat transport system, and passive safety decay heat removal system are included in the reactor design. To evaluate potential safety characteristics of such advanced design features, the plant responses and safety margins were investigated using the system transient code SSC-K for three unprotected accidents of UTOP, ULOF, and ULOHS. It was shown that the G4SFR design has inherent and passive safety characteristics and is accommodating the selected ATWS events. The inherent safety mechanism of the reactor design makes the core shutdown with sufficient margin and passive removal of decay heat with matching the core power to heat sink by passive self-regulation. The self-regulation of power without scram is mainly due to the inherent negative reactivity feedback in conjunction with the large thermal inertia of the primary heat transport system and the passive decay heat removal. Such favorable inherent and passive safety behaviors of G4SFR are expected to virtually exclude the probability of severe accidents with potential for core damage

  14. A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors

    International Nuclear Information System (INIS)

    Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds

    2008-01-01

    Many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important criterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals

  15. A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds

    2008-04-23

    many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important crterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals.

  16. Automatic generation and analysis of solar cell IV curves

    Science.gov (United States)

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  17. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2017-01-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the 56 Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the 242 Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  18. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the {sup 56}Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the {sup 242}Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  19. Basic research in support of innovative fuels design for the Generation IV systems (F-BRIDGE project)

    International Nuclear Information System (INIS)

    Valot, Carole; Bertolus, Marjorie; Konings, Rudy; Somers, Joe; Groot, Sander de

    2010-01-01

    F-BRIDGE (Basic Research in support of Innovative Fuels Design for the GEN IV systems) is a 4-year project which started in 2008. It seeks to bridge the gap between basic research and technological applications for generation IV nuclear reactor systems. One of the challenges for the next generation of reactors is to significantly increase the efficiency in designing innovative fuels. The object of the F-BRIDGE project is to complement the empirical approach by a physically-based description of fuel and cladding materials to enable a rationalization of the design process and a better selection of promising fuel systems. Advanced modelling and separate effects experiments are carried out in order to obtain more exact physical descriptions of ceramic fuels and cladding, at relevant scales from the atomic to the macroscopic scale. Research is also focused on assessing and improving 'sphere-pac' fuel, a composite-ceramics concept which has shown promise. The project activities can be broken down into four main areas: (i) Basic research investigations using a multi-scale approach in both experimentation and modelling to enable the generation of missing basic data, the identification of relevant mechanisms and the development of appropriate models; (ii) Transfer between technological issues and basic research by bringing together within the same project materials scientists, engineers and end-users; (iii) Assessment of the drawbacks and benefits of the sphere-pac fuel application to various Generation IV systems; (iv) Education and training to promote research in the field of fuel materials, to ensure the exchange of results and ideas among the participants and to link the project with other related European or international initiatives. The project relies on the complementary expertise of 19 partners: nuclear and non nuclear research organisations, universities, a nuclear engineering company, as well as technology and project management consultancy small and medium

  20. Gen IV Materials Handbook Implementation Plan

    International Nuclear Information System (INIS)

    Rittenhouse, P.; Ren, W.

    2005-01-01

    A Gen IV Materials Handbook is being developed to provide an authoritative single source of highly qualified structural materials information and materials properties data for use in design and analyses of all Generation IV Reactor Systems. The Handbook will be responsive to the needs expressed by all of the principal government, national laboratory, and private company stakeholders of Gen IV Reactor Systems. The Gen IV Materials Handbook Implementation Plan provided here addresses the purpose, rationale, attributes, and benefits of the Handbook and will detail its content, format, quality assurance, applicability, and access. Structural materials, both metallic and ceramic, for all Gen IV reactor types currently supported by the Department of Energy (DOE) will be included in the Gen IV Materials Handbook. However, initial emphasis will be on materials for the Very High Temperature Reactor (VHTR). Descriptive information (e.g., chemical composition and applicable technical specifications and codes) will be provided for each material along with an extensive presentation of mechanical and physical property data including consideration of temperature, irradiation, environment, etc. effects on properties. Access to the Gen IV Materials Handbook will be internet-based with appropriate levels of control. Information and data in the Handbook will be configured to allow search by material classes, specific materials, specific information or property class, specific property, data parameters, and individual data points identified with materials parameters, test conditions, and data source. Details on all of these as well as proposed applicability and consideration of data quality classes are provided in the Implementation Plan. Website development for the Handbook is divided into six phases including (1) detailed product analysis and specification, (2) simulation and design, (3) implementation and testing, (4) product release, (5) project/product evaluation, and (6) product

  1. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    Rosenbalm, K.F.

    1995-01-01

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U 3 Si 2 Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings

  2. Development of high temperature gas cooled reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wentao [Paul Scherrer Institute, Villigen (Switzerland). Dept. of Nuclear Energy and Safety; Schorer, Michael [Swiss Nuclear Forum, Olten (Switzerland)

    2018-02-15

    High temperature gas cooled reactor (HTGR) is one of the six Generation IV reactor types put forward by Generation IV International Forum (GIF) in 2002. This type of reactor has high outlet temperature. It uses Helium as coolant and graphite as moderator. Pebble fuel and ceramic reactor core are adopted. Inherit safety, good economy, high generating efficiency are the advantages of HTGR. According to the comprehensive evaluation from the international nuclear community, HTGR has already been given the priority to the research and development for commercial use. A demonstration project of the High Temperature Reactor-Pebble-�bed Modules (HTR-PM) in Shidao Bay nuclear power plant in China is under construction. In this paper, the development history of HTGR in China and the current situation of HTR-PM will be introduced. The experiences from China may be taken as a reference by the international nuclear community.

  3. Perspective steels for generation IV and fusion reactors

    International Nuclear Information System (INIS)

    Bartosva, I.; Cizek, J.

    2013-01-01

    In this study we focus on the F/M steel Eurofer, the European candidate material for the future fusion reactor and for the strengthening we consider oxides of yttrium. The oxides of yttrium and complex yttrium titanium oxides reinforce the material by forming more or less stable obstacles to dislocations, and by promoting grain refinement by pinning grain boundaries. It appears that part of the yttrium titanium oxides particles dissolves from about 600 grad C while pure Yttria particles are stable at least to 1000 grad C in the steel. The aims of this study are the following: 1) Prove the positive effect of strengthening by yttrium oxides. 2) Measure the hardness of base Eurofer and ODS version by Vickers hardness test (HV). 3) Investigate the behaviour of steels at different annealing temperatures and the changes in strength. 4) Assess defects in microstructure by Coincidence Doppler Broadening (CDB) and Positron Annihilation Lifetime Spectroscopy (PALS) at chosen annealing temperatures. (authors)

  4. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  5. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  6. Generation 4 International Forum. 2007 annual report

    International Nuclear Information System (INIS)

    2007-01-01

    This annual report is the first to be issued by GIF (Generation IV International Forum). It summarizes the GIF goals and accomplishments throughout 2007, describes its membership and organization, and provides an overview of its cooperation with other international endeavors for the development of nuclear energy. Future editions will focus on technical progress. Chapter 2 provides an overview on the goals of Generation IV nuclear energy systems and outlines the main characteristics of the six systems selected for joint development by GIF (VHTR - Very High Temperature Reactor; SFR - Sodium-cooled Fast Reactor; SCWR - Super-Critical Water cooled Reactor; GFR - Gas-cooled Fast Reactor; LFR - Lead-cooled Fast Reactor; and MSR - Molten Salt Reactor). Chapter 3 describes the membership and organization of the GIF, the structure of its cooperative research and development (R-D) arrangements, and the status of Member participation in these arrangements. Chapter 4 summarizes the R-D plans and achievements of the Forum until now. It highlights the R-D challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made regarding the development of methodologies for assessing Generation IV systems with respect to the established goals. Chapter 5 reviews other major international collaborative projects in the field of nuclear energy and explains how the GIF interacts and cooperates with them. Bibliographical references are provided in each chapter in order to facilitate access to public information about the GIF objectives, goals and outcomes

  7. Design and Selection of Innovative Primary Circulation Pumps for GEN-IV Lead Fast Reactors

    Directory of Open Access Journals (Sweden)

    Walter Borreani

    2017-12-01

    Full Text Available Although Lead-cooled Fast Reactor (LFR is not a new concept, it continues to be an example of innovation in the nuclear field. Recently, there has been strong interest in liquid lead (Pb or liquid lead–bismuth eutectic (LBE both critical and subcritical systems in a relevant number of Countries, including studies performed in the frame of GENERATION-IV initiative. In this paper, the theoretical and computational findings for three different designs of Primary Circulation Pump (PCP evolving liquid lead (namely the jet pump, the Archimedean pump and the blade pump are presented with reference to the ALFRED (Advanced Lead Fast Reactor European Demonstrator design. The pumps are first analyzed from the theoretical point of view and then modeled with a 3D CFD code. Required design performance of the pumps are approximatively around an effective head of 2 bar with a mass flow rate of 5000 kg/s. Taking into account the geometrical constraints of the reactor and the fluid dynamics characteristics of the molten lead, the maximum design velocity for molten lead fluid flow of 2 m/s may be exceeded giving rise to unacceptable erosion phenomena of the blade or rotating component of the primary pumping system. For this reason a deep investigation of non-conventional axial pumps has been performed. The results presented shows that the design of the jet pump looks like beyond the current technological feasibility while, once the mechanical challenges of the Archimedean (screw pump and the fluid-dynamic issues of the blade pump will be addressed, both could represent viable solutions as PCP for ALFRED. Particularly, the blade pump shows the best performance in terms of pressure head generated in normal operation conditions as well as pressure drop in locked rotor conditions. Further optimizations (mainly for what the geometrical configuration is concerned are still necessary.

  8. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K F [comp.

    1995-07-01

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U{sub 3}Si{sub 2} Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings.

  9. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    Alesso, H.P.; Majumdar, K.C.

    1991-01-01

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  10. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  11. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    Science.gov (United States)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  12. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  13. Establishing a safety and licensing basis for generation IV advanced reactors. License by test

    International Nuclear Information System (INIS)

    Kadak, Andrew C.

    2001-01-01

    The license by test approach to licensing is a novel method of licensing reactors. It provides an opportunity to deal with innovative non-water reactors in a direct way on a time scale that could permit early certification based on tests of a demonstration reactor. The uncertainties in the design and significant contributors to risk would be identified in the PRA during the design. Deterministic analysis computer codes could be tested on a real reactor. Scaling effects and associated uncertainties would be minimized. License by test is an approach that has sufficient merit to be developed and tested

  14. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the thermal reactors diminish. Further, the fast-fission fuel cycle in which material is recycled (a basic requirement to meet sustainability criteria) offers the flexibility needed to contribute decisively towards solving the problem of growing “spent” fuel inventories by greatly reducing the volume, the heat load and the radiotoxic inventory of high-level wastes that must be disposed of in long-term geological repositories. This is a waste management option that will play an increasingly important role in the future, and help to ensure that nuclear energy remains a sustainable long-term option in the world’s overall energy mix. In recognition of the fast reactor’s importance for the sustainability of the nuclear option, currently there is worldwide renewed interest in fast reactor technology development, as indicated, e.g., by the outcome of the Generation IV International Forum (GIF) technology review, which concluded with 3 out of 6 innovative systems to be fast reactors (gas cooled fast reactor, sodium cooled fast reactor, and heavy liquid metal cooled fast reactor), plus a potential fast core for a 4th concept, the super-critical water reactor. Currently, fast reactor construction projects are ongoing in India (PFBR) and Russian Federation (BN-800), whilst in China the first experimental fast reactor (CEFR) is in the commissioning phase. Fast reactor programs are also carried out in Europe (in particular in France), Japan, Republic of Korea and the USA. The most important challenges for fast reactors are in the areas of cost competitiveness with respect to LWRs and other energy sources, enhanced safety, non-proliferation, and public acceptance. With the exception of this latter, these translate into technology development challenges, i.e. the development of advanced reactor

  15. Generation 4 International Forum. 2014 Annual Report

    International Nuclear Information System (INIS)

    2015-01-01

    This eighth edition of the Generation IV International Forum (GIF) Annual Report highlights the main achievements of the Forum in 2014, and in particular progress made in the collaborative RandD activities of the eleven existing project arrangements for the six GIF systems: the gas-cooled fast reactor, the sodium-cooled fast reactor, the supercritical-water-cooled reactor and the very-high-temperature reactor. Progress made under the memoranda of understanding for the lead-cooled fast reactor and the molten salt reactor is also reported. In May 2014, China joined the supercritical-water-cooled reactor system arrangement; and in October 2014, the project arrangement on system integration and assessment for the sodium-cooled fast reactor became effective. GIF also continued to develop safety design criteria and guidelines for the sodium-cooled fast reactor, and to engage with regulators on safety approaches for generation IV systems. Finally, GIF initiated an internal discussion on sustainability approaches to complement ongoing work on economics, safety, proliferation resistance and physical protection

  16. Reactor-core isolation cooling system with dedicated generator

    International Nuclear Information System (INIS)

    Nazareno, E.V.; Dillmann, C.W.

    1992-01-01

    This patent describes a nuclear reactor complex. It comprises a dual-phase nuclear reactor; a main turbine for converting phase-conversion energy stored by vapor into mechanical energy for driving a generator; a main generator for converting the mechanical energy into electricity; a fluid reservoir external to the reactor; a reactor core isolation cooling system with several components at least some of which require electrical power. It also comprises an auxiliary pump for pumping fluid from the reservoir into the reactor pressure vessel; an auxiliary turbine for driving the pump; control means for regulating the rotation rate of the auxiliary turbine; cooling means for cooling the control means; and an auxiliary generator coupled to the auxiliary turbine for providing at least a portion of the electrical power required by the components during a blackout condition

  17. Development and characterization of the control assembly system for the large 2400 MWth Generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Rimpault, G.; Morin, F.; Bosq, J.C.; Coddington, P.; Mikityuk, K.; Chawla, R.

    2008-01-01

    The present paper is related to the design and neutronic characterization of the principal control assembly system for the reference large (2400 MWth) Generation IV gas-cooled fast reactor (GFR), which makes use of ceramic-ceramic (CERCER) plate-type fuel-elements with (U-Pu) carbide fuel contained within a SiC inert matrix. For the neutronic calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European fast reactor (EFR)-type pattern for the control assemblies as a starting point. More specifically, the core contains a total of 33 control (control system device: CSD) and safety (diverse safety device: DSD) assemblies implemented in three banks. In the design of the new control assembly system, particular attention was given to the heat generation within the assemblies, so that both neutronic and thermal-hydraulic constraints could be appropriately accounted for. The thermal-hydraulic calculations have been performed with the code COPERNIC, significant coolant mass flow rates being found necessary to maintain acceptable cladding temperatures of the absorber pins. Complementary to the design study, neutronic investigations have been performed to assess the impact of the control assemblies in the GFR core in greater detail (rod interactions, shift of the flux, peaking factors, etc.). Thus, considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual assemblies within the first bank. Large anti-shadowing effects also occur, the most prominent being that between the two CSD banks, where the total assembly worth is almost doubled in comparison to the sum of the individual values. Additional investigations have been performed and, in this context, it has been found that computation of the first-order eigenvalue and the eigenvalue separation is a robust tool to anticipate control assembly interactions in a large fast-spectrum core. One interesting

  18. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F.

    2008-01-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  19. Gen IV International Forum - GIF, 2010 Annual Report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The Generation IV International Forum (GIF), created in 2000 to foster international collaboration at a detailed level of actual R and D, is a cooperative international endeavor, organized to develop the research necessary to test the feasibility and performance capabilities of fourth generation nuclear systems, with the goal of making such systems deployable in large numbers around 2030. Since its beginning, GIF members stated the following goals for the fourth generation of nuclear power plants when compared to previous generations: a) improve sustainability (including effective fuel utilization and minimization of waste); b) improve economics (competitiveness with respect to other energy sources); c) improve safety and reliability (e.g. no need for offsite emergency response); and d) improve proliferation resistance and physical protection. After an in-depth analysis of the different available concepts, whatever their level of development, the Forum selected six concepts as the most promising, and decided to focus R and D on these systems: - the very-high-temperature reactor (VHTR); - the sodium-cooled fast reactor (SFR); - the supercritical-water-cooled reactor (SCWR); - the gas-cooled fast reactor (GFR); - the lead-cooled fast reactor (LFR); - the molten salt reactor (MSR). Active members of the GIF are Canada, Euratom, France, Japan, People's Republic of China, Republic of Korea, Republic of South Africa, Russian Federation, Switzerland and the United States. Altogether, they represent around 90% of the world installed nuclear capacity for producing electricity, and all key technology holders. The forum is led by the policy group, where all members are represented, and currently chaired by Japan since December 2009, assisted by vice-chairs from France and United States. The year 2010 has seen some important achievements and decisions regarding these six systems. For example, two sodium-cooled fast reactors (re)started this year: Monju in Japan restarted after

  20. Improvement of Steam Generator Reliability for GEN-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O; Kim Se Yun; Kim, Seok Hoon; Eoh, Jae Hyuk; Lee, Hyeong Yeon; Choi, Byung Seon

    2005-11-15

    The R and D items performed in this study were selected from the R and D task of ' Reliability improvement of Steam Generator' of GEN-IV SFR Component Design and BOP. Since this project deals with one of the most important issues for a GEN-IV SFR system, it needs to enhance the domestic technical backgrounds associated with the corresponding R and D items even for a very short period by 2005. This study provides the R and D results for i) Development of assessment methodology for dissimilar metal weld and ii) Development of multi-dimensional simulation methodology for a SWR event in a SFR steam generator.

  1. Improvement of Steam Generator Reliability for GEN-IV SFR

    International Nuclear Information System (INIS)

    Kim, Seong O; Kim Se Yun; Kim, Seok Hoon; Eoh, Jae Hyuk; Lee, Hyeong Yeon; Choi, Byung Seon

    2005-11-01

    The R and D items performed in this study were selected from the R and D task of ' Reliability improvement of Steam Generator' of GEN-IV SFR Component Design and BOP. Since this project deals with one of the most important issues for a GEN-IV SFR system, it needs to enhance the domestic technical backgrounds associated with the corresponding R and D items even for a very short period by 2005. This study provides the R and D results for i) Development of assessment methodology for dissimilar metal weld and ii) Development of multi-dimensional simulation methodology for a SWR event in a SFR steam generator

  2. Material choices for the commercial fast reactor steam generators

    International Nuclear Information System (INIS)

    Willby, C.; Walters, J.

    1978-01-01

    Experience with fast reactor steam generators has shown them to be critical components in achieving a high availability. This paper presents the designers views on the use of ferritic materials for steam generators and describes the proposed design of the steam generators for the Commercial Fast Reactor (CFR), prototype of which are to be inserted in the Prototype Fast Reactor at Dounreay. (author)

  3. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  4. The different generation of nuclear reactors from Generation-1 to Generation-4

    International Nuclear Information System (INIS)

    Cognet, G.

    2010-01-01

    In this work author deals with the history of the development of nuclear reactors from Generation-1 to Generation-4. The fuel cycle and radioactive waste management as well as major accidents are presented, too.

  5. A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Jain, Mohit; Skandan, Ganesh; Khose, Gordon E.; Maro, Judith

    2008-01-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 C. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  6. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  7. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  8. Fault diagnosis of generation IV nuclear HTGR components – Part II: The area error enthalpy–entropy graph approach

    International Nuclear Information System (INIS)

    Rand, C.P. du; Schoor, G. van

    2012-01-01

    Highlights: ► Different uncorrelated fault signatures are derived for HTGR component faults. ► A multiple classifier ensemble increases confidence in classification accuracy. ► Detailed simulation model of system is not required for fault diagnosis. - Abstract: The second paper in a two part series presents the area error method for generation of representative enthalpy–entropy (h–s) fault signatures to classify malfunctions in generation IV nuclear high temperature gas-cooled reactor (HTGR) components. The second classifier is devised to ultimately address the fault diagnosis (FD) problem via the proposed methods in a multiple classifier (MC) ensemble. FD is realized by way of different input feature sets to the classification algorithm based on the area and trajectory of the residual shift between the fault-free and the actual operating h–s graph models. The application of the proposed technique is specifically demonstrated for 24 single fault transients considered in the main power system (MPS) of the Pebble Bed Modular Reactor (PBMR). The results show that the area error technique produces different fault signatures with low correlation for all the examined component faults. A brief evaluation of the two fault signature generation techniques is presented and the performance of the area error method is documented using the fault classification index (FCI) presented in Part I of the series. The final part of this work reports the application of the proposed approach for classification of an emulated fault transient in data from the prototype Pebble Bed Micro Model (PBMM) plant. Reference data values are calculated for the plant via a thermo-hydraulic simulation model of the MPS. The results show that the correspondence between the fault signatures, generated via experimental plant data and simulated reference values, are generally good. The work presented in the two part series, related to the classification of component faults in the MPS of different

  9. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  10. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  11. Progress reports for Gen IV sodium fast reactor activities FY 2007

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Tentner, A. M.

    2007-01-01

    An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being

  12. Massive computation methodology for reactor operation (MACRO)

    International Nuclear Information System (INIS)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael; Koning, Arjan; Rochman, Dimitri; Bejmer, Klaes-Hakan; Henriksson, Hans

    2010-01-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  13. Massive computation methodology for reactor operation (MACRO)

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Cecilia; Pomp, Stephan; Sjoestrand, Henrik; Wallin, Gustav; Oesterlund, Michael [Division of applied nuclear physics, Department of physics and astronomy, Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden); Koning, Arjan; Rochman, Dimitri [Nuclear Research and consultancy Group (NRG) Westerduinweg 3, Petten (Netherlands); Bejmer, Klaes-Hakan [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, Vaellingby (Sweden); Henriksson, Hans [Vattenfall Research and Development AB, Jaemtlandsgatan 99, Vaellingby (Sweden)

    2010-07-01

    Today, nuclear data libraries do not handle uncertainties from nuclear data in a consistent manner and the reactor codes do not request uncertainties in nuclear data input. Thus, the output from these codes have unknown uncertainties. The plan is to use a method proposed by Koning and Rochman to investigate the propagation of nuclear data uncertainties into reactor physics codes and macroscopic parameters. A project (acronym MACRO) has started at Uppsala University in collaboration with A. Koning and with financial support from Vattenfall AB and the Swedish Research Council within the GENIUS (Generation IV research in universities of Sweden) project. In the proposed method the uncertainties in nuclear model parameters will be derived from theoretical considerations and comparisons of nuclear model results with experimental cross-section data. Given the probability distribution in the model parameters a large set of random, complete ENDF-formatted nuclear data libraries will be created using the TALYS code. The generated nuclear data libraries will then be used in neutron transport codes to obtain macroscopic reactor parameters. For this, models of reactor systems with proper geometry and elements will be used. This will be done for all data libraries and the variation of the final results will be regarded as a systematic uncertainty in the investigated reactor parameter. The understanding of these systematic uncertainties is especially important for the design and intercomparison of new reactor concepts, i.e., Generation IV, and optimization applications for current generation reactors is envisaged. (authors)

  14. A Qualitative Assessment of Diversion Scenarios for a GEN IV Example Sodium Fast Reactor Using the GEN IV PR and PP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, M.D.; Coles, G.A. [PNNL, P.O. Box 999, 902 Battelle Boulvard, Richland, WA 99336 (United States); Therios, I.U. [Argonne National Lab. - ANL (United States)

    2009-06-15

    An experts working group was created in 2002 by The Generation IV International Forum for the purpose of developing an internationally accepted methodology for assessing the proliferation resistance of a nuclear energy system (NES) and its individual elements. A two year case study was performed by the working group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information to designers at various levels of details, including pre-conceptual design stage. The study analyzes the response of the ESFR entire nuclear energy system to different proliferation and theft strategies. The challenges considered comprise concealed diversion, concealed misuse and abrogation strategies. This paper describes the work done in performing a qualitative assessment of potential concealed diversion scenarios from the ESFR, and includes an evaluation of the potential effect of changes in the conversion ratio on diversion strategies. (authors)

  15. {sup 20}F power measurement for generation IV sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.M.; Kondrasovs, V.; Frelin-Labalme, A.M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); BAN, G. [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Dautremer, T.; Montagu, T.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Portier, J.L. [Centrale PHENIX, Centre de Marcoule, Groupe Essais Statistiques, F-30207 Bagnols sur Ceze (France); Jousset, P. [CEA, LIST, Laboratoire Capteurs Diamant, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille, France.F-84500 Bollene (France)

    2010-07-01

    The Phenix nuclear power plant has been a French Sodium Fast Reactor (SFR) prototype producing electrical power between 1973 and 2010. The power was monitored using ex-core neutron measurements. This kind of measurement instantly estimates the power but needs to be often calibrated with the heat balance thermodynamic measurement. Large safety and security margins have then been set not to derive above the nominal operating point. It is important for future SFR to reduce this margin and working closer to the nominal operating point. This work deals with the use of delayed gamma to measure the power. The main activation product contained in the primary sodium coolant is the {sup 24}Na which is not convenient for neutron flux measurement due to its long decay period. The experimental study done at the Phenix reactor shows that the use of {sup 20}F as power tagging agent gives a fast and accurate power measurement closed to the thermal balance measurement thanks to its high energy photon emission (1.634 MeV) and its short decay period (11 s). (authors)

  16. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  17. Physical aspects of the Canadian generation IV supercritical water-cooled pressure tube reactor plant design

    Energy Technology Data Exchange (ETDEWEB)

    Gaudet, M.; Yetisir, M.; Haque, Z. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The form of the containment building is a function of the requirements imposed by various systems. In order to provide sufficient driving force for naturally-circulated emergency cooling systems, as well as providing a gravity-driven core flooding pool function, the Canadian SCWR reactor design relies on elevation differences between the reactor and the safety systems. These elevation differences, the required cooling pool volumes and the optimum layout of safety-related piping are major factors influencing the plant design. As a defence-in-depth, the containment building and safety systems also provide successive barriers to the unplanned release of radioactive materials, while providing a path for heat flow to the ultimate heat sink, the atmosphere. Access to the reactor for refuelling is from the top of the reactor, with water used as shielding during the refuelling operations. The accessibility to the reactor and protection of the environment are additional factors influencing the plant design. This paper describes the physical implementation of the major systems of the Canadian SCWR within the reactor building, and the position of major plant services relative to the reactor building. (author)

  18. Thermal stability study for candidate stainless steels of GEN IV reactors

    International Nuclear Information System (INIS)

    Simeg Veternikova, J.; Degmova, J.; Pekarcikova, M.; Simko, F.; Petriska, M.; Skarba, M.; Mikula, P.; Pupala, M.

    2016-01-01

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  19. Thermal stability study for candidate stainless steels of GEN IV reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simeg Veternikova, J., E-mail: jana.veternikova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Degmova, J. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pekarcikova, M. [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Paulinska 16, 917 24 Trnava (Slovakia); Simko, F. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Petriska, M. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Skarba, M. [Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mikula, P. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pupala, M. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)

    2016-11-30

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  20. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  1. Strategies of development of reactor types

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    The development of nuclear energy in the coming decades will depend on the goals followed, on the available technologies and on the strategies implemented in the world in agreement with public acceptation. This article is limited to the technical aspects of the strategies of development of reactor types: 1 - objectives; 2 - common constraints to all reactor types: safety and terrorism risks, wastes, non-proliferation, economics; 3 - different reactor types: general considerations, proven technologies (PWR, BWR, Candu), non-proven technologies but having an important experience, technologies at the design stage; 4 - energy systems and 'Generation IV forum': systems based on thermal neutron reactors and low enrichment, systems for the valorization of 238 U, systems for Pu burning, systems allowing the destruction of minor actinides, thorium-based systems, the Gen IV international forum; 5 - conclusion. (J.S.)

  2. The development of model generators for specific reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor design, safety analysis, and code validation. The conventional approach is to use a text-editor to either manually manipulate an existing model or to assemble a new model by copying and pasting or direct typing. This approach is error-prone and substantial effort is required for verification. Alternatively, models can be generated programmatically for a specific system via a centralized data source and with rigid algorithms to generate models consistently and efficiently. This approach is demonstrated here for model generators for MCNP and KENO for the ZED-2 reactor. (author)

  3. Description and user's manual of light water reactor fuel analysis code FEMAXI-IV (Ver.2)

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-03-01

    FEMAXI-IV is an advanced version of FEMAXI-III, the analysis code of light water reactor fuel behavior in which various functions and improvements have been incorporated. The present report describes in detail the basic theories and structure, the models and numerical solutions applied, and the material properties adopted in the version 2 which is an improved version of the first version of FEMAXI-IV. In FEMAXI-IV (Ver.2), bugs have been fixed, pellet thermal conductivity properties have been updated, and thermal-stress-induced FP gas release model have been incorporated. In order to facilitate effective and wide-ranging application of the code, types and methods of input/output of the code are also described, and a sample output in an actual form is included. (author)

  4. Eugene P. Wigner’s Visionary Contributions to Generations-I through IV Fission Reactors

    Directory of Open Access Journals (Sweden)

    Carré Frank

    2014-01-01

    Full Text Available Among Europe’s greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  5. A combined XAFS, ESI TOF-MS and LIBD study on the formation of polynuclear Zr(IV), Th(IV) and Pu(IV) species

    Science.gov (United States)

    Rothe, J.; Walther, C.; Brendebach, B.; Büchner, S.; Fuss, M.; Denecke, M. A.; Geckeis, H.

    2009-11-01

    The long term radiotoxicity of spent nuclear fuel disposed of in deep underground repositories after discharge from nuclear power reactors is determined by actinide elements, mainly plutonium. Water intrusion into the repository might cause container corrosion and leaching of the waste matrices, leading to the release of Pu and other actinides into the geological environment. Performance assessment for a future nuclear waste repository requires detailed knowledge on actinide aqueous chemistry in the aquifer surrounding the disposal site. Tetravalent actinides exhibit a strong tendency towards hydrolysis and subsequent polymerization and/or colloid formation. These species provide a potential pathway for migration of actinides away from the repository. Therefore, it is of fundamental interest to study their generation and properties in-situ. To this end, X-ray Absorption Fine Structure Spectroscopy (XAFS) at the INE-Beamline for actinide research at ANKA, Electrospray Mass-Spectrometry (ESI TOF-MS) and Laser Induced Breakdown Detection (LIBD) are combined at FZK-INE in a comprehensive attempt to characterize Zr(IV) (An(IV) analogue), Th(IV) and Pu(IV) polymerization and colloid formation.

  6. Iris reactor conceptual design

    International Nuclear Information System (INIS)

    Carelli, M.D.; Conway, L.E.; Petrovic, B.; Paramonov, D.V.; Galvin, M.; Todreas, N.E.; Lombardi, C.V.; Maldari, F.; Ricotti, M.E.; Cinotti, L.

    2001-01-01

    IRIS (International Reactor Innovative and Secure) is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., proliferation resistance, enhanced safety, improved economics and fuel cycle sustainability. It relies on the proven technology of light water reactors and features innovative engineering, but it does not require new technology development. This paper discusses the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and five-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. (author)

  7. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  8. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  9. 01 - The sustainable management of radioactive materials with fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    This publication first explains the reasons for the development of fourth-generation nuclear systems: the issue of resources, the issue of used fuels, technologies for fast breeder fourth-generation reactors, the alternative of HFC-cooled light water reactors, the potential market for fast-breeder reactors, strategies in different countries. Then, the authors address the strategy development for these fourth-generation reactors: requirements, safety, economic competitiveness, resistance to proliferation, flexible management of nuclear resources, development scheme (sodium or gas-based heat transfer), and fuel cycle. They finally discuss the possible transition scenarios towards this new generation

  10. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  11. Conversion of actinide solutions for the production of MA bearing fuels for Gen IV fast reactor systems

    International Nuclear Information System (INIS)

    Fernandez, A.; McGinley, J.; Somers, J.

    2008-01-01

    The conversion of the solution to solid for fuels containing minor actinides for accelerator driven systems or Gen IV fast reactors cannot be made by conventional ammonia or oxalate precipitation as is the case in today's reprocessing plant. The small particle size and concomitant dust that is produced in subsequent processing steps will not permit use of these processes on industrial scale. Innovation is needed to avoid dust generating powders, and indeed to simplify the processes themselves. Two such processing routes have been developed at the JRC-ITU. The sol gel route has been used to produce fuel containing Am and Np for the SUPERFACT, TRABANT and other irradiation experiments. The infiltration process has also been established and fuels have been produced for the FUTURIX and HELIOS experiments. (authors)

  12. Conversion of actinide solutions for the production of MA bearing fuels for Gen IV fast reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; McGinley, J.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O.Box 2340, Karlsruhe, D-76125 (Germany)

    2008-07-01

    The conversion of the solution to solid for fuels containing minor actinides for accelerator driven systems or Gen IV fast reactors cannot be made by conventional ammonia or oxalate precipitation as is the case in today's reprocessing plant. The small particle size and concomitant dust that is produced in subsequent processing steps will not permit use of these processes on industrial scale. Innovation is needed to avoid dust generating powders, and indeed to simplify the processes themselves. Two such processing routes have been developed at the JRC-ITU. The sol gel route has been used to produce fuel containing Am and Np for the SUPERFACT, TRABANT and other irradiation experiments. The infiltration process has also been established and fuels have been produced for the FUTURIX and HELIOS experiments. (authors)

  13. A Qualitative Assessment of Diversion Scenarios for an Example Sodium Fast Reactor Using the GEN IV PR and PP Methodology

    International Nuclear Information System (INIS)

    Zentner, Michael D.; Coles, Garill A.; Therios, Ike

    2012-01-01

    FAST REACTORS;NUCLEAR ENERGY;NUCLEAR MATERIALS MANAGEMENT;PROLIFERATION;SAFEGUARDS;THEFT; A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  14. Redox reactions of U(IV) and Pu(IV) with H2O2 generated in nitric acid media by power ultrasound

    International Nuclear Information System (INIS)

    Moisy, P.; Venault, L.; Madic, C.; Nikitenko, S.

    1998-01-01

    Power ultrasound causes water molecule dissociation on H o and OH o radicals due to high local temperatures and pressures generated in the cavitation threshold. In nitric acid media scavenging of OH o radicals with NO 3 - followed by NO 3 o radicals hydrolysis leads to H 2 O 2 formation. It was shown that H 2 O 2 generated under the effect of ultrasound with the frequency 20 kHz and intensity 1-3 Wcm -2 (Ar atmosphere) oxidizes U(IV) to U(VI) or reduces Pu(IV) to Pu(III) in 1-4 M HNO 3 in the presence of antinitrous reagents ( N 2 H 5 NO 3 or NH 2 SO 3 H). The effect of HNO 3 concentration and ultrasonic intensity on the kinetics of U(IV) oxidation and Pu(IV) reduction was studied. (author)

  15. Estimation, comparison, and evaluation of advanced fission power reactor generation costs

    International Nuclear Information System (INIS)

    Waddell, J.D.

    1977-01-01

    The study compares the high-temperature gas-cooled reactor (HTGR), the gas-cooled fast reactor (GCFR), the molten-salt breeder reactor (MSBR), the light water breeder reactor (LWBR), and the heavy water reactor (HWR) with proposed light water reactors (LWR) and liquid-metal fast breeder reactors (LMFBR). The relative electrical generation costs, including the effects of the introduction of advanced reactor fuel cycles into the U.S. nuclear power economy, were projected through the year 2030. The study utilized the NEEDS computer code which is a simulation of the U.S. nuclear power economy. The future potential electrical generation costs and cumulative consumption of uranium ore were developed using characterizations of the advanced systems. The reactor-fuel cycle characterizations were developed from literature reviews and personal discussions with the proponents of the various systems. The study developed a ranking of the concepts based on generation costs and uranium consumption

  16. Graphite-water steam-generating reactor in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Dollezhal, N A [AN SSSR, Moscow

    1981-10-01

    One of the types of power reactor used in the USSR is the graphite-water steam-generating reactor RBMK. This produces saturated steam at a pressure of 7MPa. Reactors giving 1GWe each have been installed at the Leningrad, Kursk, Chernobyl and other power stations. Further stations using reactors of this type are being built. A description is given of the fuel element design, and of the layout of the plant. The main characteristics of RBMK reactors using fuel of rated and higher enrichment are listed.

  17. Exergy analysis for Generation IV nuclear plant optimization

    International Nuclear Information System (INIS)

    Gomez, A.; Azzaro-Pantel, C.; Domenech, S.; Pibouleau, L.; Latge, Ch.; Haubensack, D.; Dumaz, P.

    2010-01-01

    This paper deals with the application of the exergy concept to an energy production system involving a very high temperature reactor coupled with an innovative electricity-generating cycle. The objective is to propose a general approach to quantify exergy destruction of the involved process components, modelled by a thermodynamic simulator (Proceedings of the Conference on High Temperature Reactors, Beijing, China, 22-24 September 2004, International Atomic Agency, Vienna (Austria), HTR-2004; 1-11). The minimization of exergy destruction is then identified as the optimization criterion used in an optimization framework based on a genetic algorithm, in which the model is embedded. Finally, the approach is applied to electrical production by a Brayton-Rankine combined cycle connected to a nuclear reactor. Some typical results are presented. The perspectives of this work including the cogeneration of hydrogen and electricity are highlighted. (authors)

  18. Exergy analysis for Generation IV nuclear plant optimization

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.; Azzaro-Pantel, C.; Domenech, S.; Pibouleau, L. [Univ Toulouse, Lab Genie Chim, CNRS, UMR 5503, F-31700 Toulouse 1 (France); Latge, Ch. [CEA Cadarache DEN DTN DIR, St Paul Les Durance, (France); Haubensack, D.; Dumaz, P. [CEA Cadarache DEN DER SESI LCSI, St Paul Les Durance (France)

    2010-07-01

    This paper deals with the application of the exergy concept to an energy production system involving a very high temperature reactor coupled with an innovative electricity-generating cycle. The objective is to propose a general approach to quantify exergy destruction of the involved process components, modelled by a thermodynamic simulator (Proceedings of the Conference on High Temperature Reactors, Beijing, China, 22-24 September 2004, International Atomic Agency, Vienna (Austria), HTR-2004; 1-11). The minimization of exergy destruction is then identified as the optimization criterion used in an optimization framework based on a genetic algorithm, in which the model is embedded. Finally, the approach is applied to electrical production by a Brayton-Rankine combined cycle connected to a nuclear reactor. Some typical results are presented. The perspectives of this work including the cogeneration of hydrogen and electricity are highlighted. (authors)

  19. Cogeneration using a nuclear reactor to generate process heat

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon

    2009-01-01

    Some of the new nuclear reactor technologies (Generation III+) are claiming the production of process heat as an additional value to electricity generation. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product. The current study assess the likeliness of generate process heat from a Pebble Bed Modular Reactor to be used for a refinery showing different plant balance and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor and also the challenges that this option has. (author)

  20. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  1. GIF (Gen-IV International Forum) Symposium 2009. Proceedings

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this symposium is to give a well documented state of the art of the initiative and to report and discuss the most significant technical progress and evolution in the different areas during these last ten years. Another significant objective is to provide a forum for an open and hopefully lively discussion of the perspectives, priorities and challenges for the next few years, accounting for a rapidly evolving environment. The symposium has been organized into three sessions that have dealt with the following issues: -) Generation IV International Forum (GIF): 10 years of achievements and the path forward, -) Methodology Overviews and Focus on Applications, -) Very High Temperature Reactor (VHTR), -) Gas-cooled Fast Reactor (GFR), -) Super-Critical Water-cooled Reactor (SCWR), -) Lead-cooled Fast Reactor (LFR), -) Molten Salt Reactor (MSR), -) Sodium-cooled Fast Reactor (SFR), -) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and its potential synergy with GIF, and -) GIF priority objectives for the next 5 years

  2. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    International Nuclear Information System (INIS)

    None

    2005-01-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R and D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R and D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan

  3. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water

    International Nuclear Information System (INIS)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L.; Espinosa P, G.

    2011-11-01

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  4. A reflux capsule steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Lantz, E.

    Pressurized water reactor plants at numerous sites have sustained significant leakage through their steam generators. The consequent shutdowns for repairs and replacements have damaged their economics. This experience suggests that if steam generators for liquid metal fast breeder reactors (LMFBR's) continue to be built as presently designed some of them will have similar problems. Because of their larger capital investment, the consequent damage to the economics of LMFBR's could be more serious. Reflux capsules provide a way to separate sodium from water and to reduce thermal stresses in steam generators for sodium cooled reactors. Their use would also eliminate the need for a primary heat exchanger and a secondary sodium loop pump. (author)

  5. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  6. Economic assessment of R and D with real options in the field of fast reactors taking into account uncertainty on their competitiveness: the case of France

    International Nuclear Information System (INIS)

    Taverdet-Popiolek, Nathalie; Shoai Tehrani, Bianka

    2013-01-01

    In a context of potential worldwide nuclear development, this paper aims at assessing the economic value of pursuing research in Generation IV fast reactors today, given that it would allow industrial deployment around 2040 in case of high uranium prices. Two key variables shall be considered as inputs for the assessment: the price of uranium and the over-cost of Generation IV reactors compared to the previous generation. Our model based on real options theory demonstrates that this value is positive and outweighs the risks associated with the competitiveness of Generation IV. (authors)

  7. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  8. FISA-2009 Conference on Euratom Research and Training Activities: Nuclear Fission - Past, Present and Future (Generation-II, -III and -IV + Partitioning and Transmutation)

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Deffrennes, M.; Hugon, M.; Manolatos, P.; Ptackova, K.; Van Goethem, G.; Webster, S.

    2011-01-01

    This paper is an introduction to the research and training activities carried out under the Euratom 7th Framework Programme (FP7, 2007-2011) in the field of nuclear fission science and technology, covering in particular nuclear systems and safety, and including innovative reactor systems and partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by Euratom project coordinators and keynote speakers at the FISA-2009 Conference (), organised by the European Commission DG Research, 22-24 June 2009, Prague, Czech Republic. The Euratom programme must be considered in the context of current and future nuclear technology and the respective research effort: ·Generation-II (i.e. yesterday, NPP construction 1970-2000): safety and reliability of nuclear facilities and energy independence in order to ensure security of supply worldwide; ·Generation-III (i.e. today, construction 2000-2040+): continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; ·Generation-IV (i.e. tomorrow, construction from 2040) for increased sustainability though optimal utilisation of natural resources and waste minimisation, and increased proliferation resistance. Consequently, the focus of the lectures devoted to Generation-II and -III is on the major scientific challenges and technological developments needed to guarantee safety and reliability, in particular issues associated with plant lifetime extension and operation. The focus of the lectures devoted to Generation-IV is on the design objectives and associated research issues that have been agreed upon internationally, in particular the ambitious criteria and technology goals established at the international level by the Generation-IV International Forum (GIF). In the future, electricity must continue to be produced competitively, and in addition high temperature process heat may also be required, while exploiting a maximum of fissile and

  9. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  10. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  11. Analysing supercritical water reactor's (SCWR's) special safety systems using probabilistic tools

    International Nuclear Information System (INIS)

    Ituen, I.; Novog, D.R.

    2011-01-01

    The next generation of reactors, termed Generation IV, has very attractive features -- its superior safety characteristics, high thermal efficiency, and fuel cycle sustainability. A key element of the Generation IV designs is the improvement in safety, which in turn requires improvements in safety system performance and reliability, as well as a reduction in initiating event frequencies. This study compares the response of the systems important to safety in the CANDU-Supercritical Water Reactor to those of the generic CANDU under a main steamline break accident and loss of forced circulation events -- to quantify the improvements in safety for the pre-conceptual CANDU SCWR design. Probabilistic safety analysis is the tool used in this study to test the behavior of the pre- conceptual design during these events. (author)

  12. Development of technologies for nuclear reactors of small and medium sized; Desarrollo de Tecnologias para Reactores Nucleares de pequeno y medio tamano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  13. Deployable nuclear fleet based on available quantities of uranium and reactor types – the case of fast reactors started up with enriched uranium

    Directory of Open Access Journals (Sweden)

    Baschwitz Anne

    2016-01-01

    Full Text Available International organizations regularly produce global energy demand scenarios. To account for the increasing population and GDP trends, as well as to encompass evolving energy uses while satisfying constraints on greenhouse gas emissions, long-term installed nuclear power capacity scenarios tend to be more ambitious, even after the Fukushima accident. Thus, the amounts of uranium or plutonium needed to deploy such capacities could be limiting factors. This study first considers light-water reactors (LWR, GEN III using enriched uranium, like most of the current reactor technologies. It then examines the contribution of future fast reactors (FR, GEN IV operating with an initial fissile load and then using depleted uranium and recycling their own plutonium. However, as plutonium is only available in limited quantity since it is only produced in nuclear reactors, the possibility of starting up these Generation IV reactors with a fissile load of enriched uranium is also explored. In one of our previous studies, the uranium consumption of a third-generation reactor like an EPR™ was compared with that of a fast reactor started up with enriched uranium (U5-FR. For a reactor lifespan of 60 years, the U5-FR consumes three times less uranium than the EPR and represents a 60% reduction in terms of separative work units (SWU, though its requirements are concentrated over the first few years of operation. The purpose of this study is to investigate the relevance of U5-FRs in a nuclear fleet deployment configuration. Considering several power demand scenarios and assuming different finite quantities of available natural uranium, this paper examines what types of reactors must be deployed to meet the demand. The deployment of light-water reactors only is not sustainable in the long run. Generation IV reactors are therefore essential. Yet when started up with plutonium, the number of reactors that can be deployed is also limited. In a fleet deployment

  14. Study of diluting and absorber materials to control the reactivity during a postulated core meltdown accident in generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, Kamila

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic points of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author)

  15. Study of diluting and absorber materials to control reactivity during a postulated core melt down accident in Generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, K.

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic point of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, a volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author) [fr

  16. RGG: Reactor geometry (and mesh) generator

    International Nuclear Information System (INIS)

    Jain, R.; Tautges, T.

    2012-01-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  17. Application of a new cross section library based on ENDF/B-IV to reactor core analysis

    International Nuclear Information System (INIS)

    Lima Bezerra, J. de.

    1991-04-01

    The use of the ENDF/B-IV library in the LEOPARD code for the Angra-1 reactor simulation is presented. The results are compared to those obtained using the ENDF/B-II library and show better values for the power distribution but an underestimated global reactivity as compared to experimental results. (F.E.). 1 ref, 55 figs, 1 tab

  18. CRNL research reactor diesel generator reliability study 1960-1985

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1989-09-01

    A data base has been provided for the CRNL research reactor diesel generator reliability, for use in risk assessment studies of CRNL research reactors. Data from 1960 to the present have been collected, representing 281 diesel generator years of experience. The data is used to provide failure-to-start probabilities and failure-to-run rates. Data is also classified according to subsystem failures, multiple failures and common cause failures. Comparisons with other recent studies of nuclear power plant diesel generator reliability have been made

  19. MYRRHA a fast reactor to be operated by the young generation

    International Nuclear Information System (INIS)

    Engelen, J.; Ait Abderrahim, H.; Baeten, P.; De Bruyn, D.

    2015-01-01

    MYRRHA, the Multi-purpose hybrid Research Reactor for High-tech Applications, is an innovative research facility that is able to carry out a wide variety of applications: 1) transmutation of minor actinides, 2) qualification of fuel for new reactors, 3) material testing for Gen IV and fusion reactors, 4) production of medical radio-isotopes and 5) silicon doping for renewable electrical power. By means of these applications MYRRHA is the successor of BR2, it will validate the ADS (Accelerator Driven System) full concept and the use of heavy metal coolants (particularly the lead-bismuth eutectic - LBE). The MYRRHA plant consists of 3 main parts being the primary systems, the accelerator and the balance of plant which groups all structures, systems and components that are not included in the first two items. The scientific and technological knowledge that will be acquired with MYRRHA will be the basis for new lead cooled reactors having a higher performance and for industrial transmutation facilities capable of significantly reducing the amount and the burden time of high-level waste produced in power plants. It is the responsibility of the young and next generations to operate these upcoming facilities but our duty to obtain the crucial data. To profit from nuclear applications in the coming decades, the safety of these systems obviously has to be guaranteed. The safety approach of MYRRHA is based on the defence-in-depth principle. Initiating events are grouped in probability classes in order to determine the number of lines of defence needed to mitigate their consequences. Initiating events are preferably prevented, certainly those with potentially severe consequences or difficult to mitigate. For the design of MYRRHA we consider events up to a probability of occurrence of 10 -6 /year. This article describes the present state of the MYRRHA design. The article is followed by the slides of the presentation

  20. Contribution of nonlinear acoustic to the characterization of micro-bubbles clouds in liquid sodium. Application to the generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Cavaro, M.

    2010-11-01

    The SFR system chosen (Sodium Fast Reactor: fast neutron reactors cooled by liquid sodium) by France led to a fourth-generation prototype named ASTRID. The development of this kind of reactors presents several challenges, particularly in terms of improving the safety and monitoring operation. This involves, among other things, characterization of the bubbles presence in liquid sodium. The characterization of the bubbles presence is the subject of this thesis. It involves the determination of void fraction (gas volume fraction) and histogram of the radii of bubbles. The bibliographic work done has shown that linear acoustic techniques for the characterization of bubble clouds are inadequate to achieve this. However promising leads have been identified by studying nonlinear acoustic techniques. This last idea has therefore been explored. An experimental water bench for the generation and optical control of micro-bubbles cloud allowed us to validate finely the reconstruction of histograms of radii through a technique of nonlinear mixing of a high frequency with a low frequency. The potential of the mixing of two high frequencies, more interesting for the industrial point of view has also been demonstrated. Finally, the bases of the transposition of an original technique of nonlinear resonance spectroscopy applied to a bubbles cloud were explored through the introduction of acoustic resonators. The results offer many interesting opportunities, both in terms of industrial applications and for more fundamental understanding of non-linear behavior of a bubble excited by multiple frequencies and of bubbles clouds excited at low frequency. (author)

  1. A Stochastic Proof of the Resonant Scattering Kernel and its Applications for Gen IV Reactors Type

    International Nuclear Information System (INIS)

    Becker, B.; Dagan, R.; Broeders, C.H.M.; Lohnert, G.

    2008-01-01

    Monte Carlo codes such as MCNP are widely accepted as almost-reference for reactor analysis. The Monte Carlo Code should therefore use as few as possible approximations in order to produce 'experimental-level' calculations. In this study we deal with one of the most problematic approximations done in MCNP in which the resonances are ignored for the secondary neutron energy distribution, namely the change of the energy and angular direction of the neutron after interaction with a heavy isotope with pronounced resonances. The endeavour of exploiting the influence of the resonances on the scattering kernel goes back to 1944 where E. Wigner and J. Wilkins developed the first temperature dependent scattering kernel. However only in 1998, the full analytical solution for the double differential resonant dependent scattering kernel was suggested by W. Rothenstein and R. Dagan. An independent stochastic approach is presented for the first time to confirm the above analytical kernel with a complete different methodology. Moreover, by manipulating in a subtle manner the scattering subroutine COLIDN of MCNP, it is proven that this very subroutine is, to some extent, inappropriate as well as the relevant explanation in the MCNP manual. The impact of this improved resonance dependent scattering kernel on diverse types of reactors, in particular for the Generation IV innovative core design HTR, is shown to be significant. (authors)

  2. Design study on steam generator integration into the VVER reactor pressure vessel

    International Nuclear Information System (INIS)

    Hort, J.; Matal, O.

    2004-01-01

    The primary circuit of VVER (PWR) units is arranged into loops where the heat generated by the reactor is removed by means of main circulating pumps, loop pipelines and steam generators, all located outside the reactor pressure vessel. If the primary circuit and reactor core were integrated into one pressure vessel, as proposed, e.g., within the IRIS project (WEC), a LOCA situation would be limited by the reactor pressure vessel integrity only. The aim of this design study regarding the integration of the steam generator into the reactor pressure vessel was to identify the feasibility limits and some issues. Fuel elements and the reactor pressure vessel as used in the Temelin NPP were considered for the analysis. From among the variants analyzed, the variant with steam generators located above the core and vertically oriented circulating pumps at the RPV lower bottom seems to be very promising for future applications

  3. Advanced Reactors Around the World

    International Nuclear Information System (INIS)

    Majumdar, Debu

    2003-01-01

    At the end of 2002, 441 nuclear power plants were operating around the globe and providing 17% of the world's electricity. Although the rate of population growth has slowed, recent United Nations data suggest that two billion more people will be added to the world by 2050. A special report commissioned by the Intergovernmental Panel on Climate Change estimated that electricity demand would grow almost eight-fold from 2000 to 2050 in a high economic grown scenario and more than double in a low-growth scenario. There is also a global aspiration to keep the environment pristine. Because of these reasons, it is expected that a large number of new nuclear reactors may be operating by 2050. Realization of this has created an impetus for the development of a new generation of reactors in several countries. The goal is to make nuclear power cost-competitive with other resources and to enhance safety to a level that no evacuation outside a plant site would be necessary. It should also generate less waste, prevent materials diversion for weapons production, and be sustainable. This article discusses the status of next-generation reactors under development around the world. Specifically highlighted are efforts related to the Generation IV International Forum (GIF) and its six reactor concepts for research and development: Very High Temperature Reactor (VHTR); Gas-Cooled Fast Reactor (GFR); Supercritical Water-Cooled Reactor (SCWR); Sodium-Cooled Fast Reactor (SFR); Lead-Cooled Fast Reactor (LFR); and Molten Salt Reactor (MSR). Also highlighted are nuclear activities specific to Russia and India

  4. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  5. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  6. Reactor trip on turbine trip inhibit control system for nuclear power generating system

    International Nuclear Information System (INIS)

    Torres, J.M.; Musick, C.R.

    1976-01-01

    A reactor trip on turbine trip inhibit control system for a nuclear power generating system which utilizes steam bypass valves is described. The control system inhibits a normally automatic reactor trip on turbine trip when the bypass valves have the capability of bypassing enough steam to prevent reactor trip limits from being reached and/or to prevent opening of the secondary safety pressure valves. The control system generates a bypass valve capability signal which is continuously compared with the reactor power. If the capability is greater than the reactor power, then an inhibit signal is generated which prevents a turbine trip signal from tripping the nuclear reactor. 10 claims, 4 figures

  7. CRL research reactor diesel generator reliability study 1960 - 1992

    International Nuclear Information System (INIS)

    Winfield, D.J.; McCauley, G.M.

    1994-07-01

    A data base has been provided for the Chalk River Laboratories (CRL) research reactor diesel generator reliability, for use in risk assessment studies of CRL research reactors. Data from 1960 to end of 1992 have been collected, representing 358 diesel generator years of experience. The data is used to provide failure-to-start probabilities and failure-to-run rates. Data is also classified according to subsystem failures, multiple failures and common cause failures. Comparisons with other recent studies of nuclear power plant diesel generator reliability have been made. This revision updates the 1989 September report. (author). 14 refs., 13 tabs., 10 figs

  8. Nuclear reactor capable of electric power generation during in-service inspection

    International Nuclear Information System (INIS)

    Nakamura, Shinsuke; Nogami, Hitoshi.

    1992-01-01

    The nuclear power plant according to the present invention can generate electric power even in a period when one of a pair of reactors is put to in-service inspection. That is, the nuclear power plant of the present invention comprises a system constitution of two nuclear reactors each of 50% thermal power and one turbine power generator of 100% electric power. Further, facilities of various systems relevant to the two reactors each of 50% thermal power, as a pair, are used in common as much as possible in order to reduce the cost for construction and maintenance/ inspection. Further, a reactor building and a turbine building disposed in adjacent with each for paired two reactors each of 50% thermal power are arranged vertically. This arrangement can facilitate the common use of the facilities for various systems and equipments to attain branching and joining of fluids in reactor feed water systems and main steam system pipelines easily with low pressure loss and low impact shocks. The facility utilization factor of such reactors is remarkably improved by doubling the period of continuous power generation. As a result, economic property is remarkably improved. (I.S.)

  9. Euratom research and training in generation IV systems with emphasis on V/HTR

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Fuetterer, M.

    2006-01-01

    In this overview paper, the following questions are addressed: (1) What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2) What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle: Education, Research, and Innovation') respond to the S/T challenges: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is principally under the responsibility of the 2 Directorates Generals (DG) DG Research (RTD, located in Brussels), which implements and manages the programme of 'indirect actions', and the DG Joint Research Centre (JRC, headquarters in Brussels and 7 scientific institutes in 5 Member States) which carries out 'direct actions' in their own laboratories. In this HTR-2006 introductory paper, the emphasis is on the indirect and direct actions of the 6 th Euratom research framework programme 2003-2006, FP-6, with special emphasis on V/HTR Generation IV research. (orig.)

  10. Applying the PR and PP Methodology for a qualitative assessment of a misuse scenario in a notional Generation IV Example Sodium Fast Reactor. Assessing design variations

    Energy Technology Data Exchange (ETDEWEB)

    Cojazzi, G.G.M.; Renda, G. [European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, TP 210, Via E. Fermi 2749, I-21027, Ispra - Va (Italy); Hassberger, J. [Lawrence Livermore National Laboratory (United States)

    2009-06-15

    The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Working Group has developed a methodology for the PR and PP evaluation of advanced nuclear energy systems. The methodology is organised as a progressive approach applying alternative methods at different levels of thoroughness as more design information becomes available and research improves the depth of technical knowledge. The GIF Proliferation Resistance and Physical Protection (PR and PP) Working Group developed a notional sodium cooled fast neutron nuclear reactor, named the Example Sodium Fast Reactor (ESFR), for use in developing and testing the methodology. The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size, co-located with an on-site dry fuel storage facility and a Fuel Cycle Facility with pyrochemical processing of the spent fuel and re-fabrication of new ESFR fuel elements. The baseline design is an actinide burner, with LWR spent fuel elements as feed material processed on the site. In the years 2007 and 2008 the GIF PR and PP Working Group performed a case study designed to both test the methodology and demonstrate how it can provide useful feedback to designers even during pre-conceptual design. The Study analysed the response of the entire ESFR system to different proliferation and theft strategies. Three proliferation threats were considered: Concealed diversion, Concealed Misuse and Abrogation. An overt theft threat was also studied. One of the objectives of the case study is to confirm the capability of the methodology to capture PR and PP differences among varied design configurations. To this aim Design Variations (DV) have been also defined corresponding respectively to a) a small variation of the baseline design (DV0), b) a deep burner configuration (DV1), c) a self sufficient core (DV2), and c) a breeder configuration (DV3). This paper builds on the approach followed for the

  11. Gas cooled fast reactor research in Europe

    International Nuclear Information System (INIS)

    Stainsby, Richard; Peers, Karen; Mitchell, Colin; Poette, Christian; Mikityuk, Konstantin; Somers, Joe

    2011-01-01

    Research on the gas-cooled fast reactor system is directed towards fulfilling the ambitious long term goals of Generation IV (Gen IV), i.e., to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. In common with other fast reactors, gas-cooled fast reactors (GFRs) have exceptional potential as sustainable energy sources, for both the utilisation of fissile material and minimisation of nuclear waste through transmutation of minor actinides. The primary goal of GFR research is to develop the system primarily to be a reliable and economic electricity generator, with good safety and sustainability characteristics. However, for the longer term, GFR retains the potential for hydrogen production and other process heat applications facilitated through a high core outlet temperature which, in this case, is not limited by the characteristics of the coolant. In this respect, GFR can inherit the non-electricity applications of the thermal HTRs in a sustainable manner in a future in which natural uranium becomes scarce. GFR research within Europe is performed directly by those states who have signed the 'System Arrangement' document within the Generation IV International Forum (the GIF), specifically France and Switzerland and Euratom. Importantly, Euratom provides a route by which researchers in other European states, and other non-European affiliates, can contribute to the work of the GIF, even when these states are not signatories to the GFR System Arrangement in their own right. This paper is written from the perspective of Euratom's involvement in research on the GFR system, starting with the 5th Framework Programme (FP5) GCFR project in 2000, through the FP6 project between 2005 and 2009 and looking ahead to the proposed activities within the current 7th Framework Programme (FP7). The evolution of the GFR concept from the 1960s onwards is discussed briefly, followed by the current perceived role, objectives and progress with

  12. Nuclear cycle of thorium and molt salts reactors. PE 5.8

    International Nuclear Information System (INIS)

    Doubre, H.

    2004-01-01

    In the framework of the nuclear industry development, many scenario are studied from the standard reactors using enriched uranium to the IV generation reactors. The study of new systems for the future of the nuclear needs to develop new simulation tools. The research programs of the IPN of Orsay are presented. (A.L.B.)

  13. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  14. Generation of OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor

    Science.gov (United States)

    Fang, Yu; Shimizu, Sayaka; Yamamoto, Takuya; Komarov, Sergey

    2018-03-01

    Ultrasonic technology has been widely investigated in the past as one of the advance oxidation processes to treat wastewater, in this process acoustic cavitation causes generation of OH radical, which play a vital role in improving the treatment efficiency. In this study, OH radical formation rate was measured in batch and circulatory reactor by using Weissler reaction at various ultrasound output power. It is found that the generation rate in batch reactor is higher than that in circulatory reactor at the same output power. The generation rate tended to be slower when output power exceeds 137W. The optimum condition for circulatory reactor was found to be 137W output and 4L/min flow rate. Results of aluminum foil erosion test revealed a strong dependence of cavitation zone length on the ultrasound output power. This is assumed to be one of the reasons why the generation rate of HO radicals becomes slower at higher output power in circulatory reactor.

  15. Development of technologies for nuclear reactors of small and medium sized

    International Nuclear Information System (INIS)

    2011-08-01

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  16. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoon, K. H.; Lee, C. B.

    2014-01-01

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  17. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  18. Fuel research for subcritical and critical GEN-IV systems cooled by heavy liquid metal

    International Nuclear Information System (INIS)

    Sobolev, V.; Verwerft, M.

    2009-01-01

    The participation of the Belgian Nuclear Research Centre SCK-CEN in the worldwide GEN-IV research can be considered as an opportunity. Today's GEN-IV research at SCK-CEN is mainly driven by the interests of the project MYRRHA (Multipurpose hYbrid Research Reactor for High-tech Applications). The main goal of this project is to build at SCK-CEN in Mol a new generation fast spectrum, subcritical, research and materials testing reactor MYRRHA driven by a high-energy proton accelerator. This GEN-IV MTR is cooled by heavy liquid metal (Pb-Bi) and will be used for the ADS concept demonstration, testing and qualification of new fuels, transmutation targets and innovative materials. On the European scale, MYRRHA is integrated in the Euratom FP6 Integrated Project (IP) EUROTRANS (EUROpean research programme for TRANSmutation of high level nuclear waste in an accelerator driven system), as the small-scale experimental machine for transmutation demonstration called XT-ADS. Last but not least, this experimental facility will also demonstrate the technological feasibility of the LFR (Lead-cooled Fast Reactor) GEN-IV concept; in EU the LFR design studies are performed in the framework of the Euratom FP6 ELSY (European Lead-cooled SYstem) project, where SCK-CEN is a partner. Among the research needed to ensure a safe and reliable operation of the MYRRHA/XT ADS reactor, the development and qualification of fuel and cladding materials have been recognized as one of the main key issues to be addressed

  19. Methodology for proliferation resistance and physical protection of Generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Bari, R.; Peterson, P.; Nishimura, R.; Roglans-Ribas, J.

    2005-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts. Under the auspices of the Generation IV International Forum an international experts group has been chartered to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems and support design optimization to enhance robustness against proliferation, theft and sabotage. The assessment framework consists of identifying the threats to be considered, defining the PR and PP measures required to evaluate the resistance of a nuclear system to proliferation, theft or sabotage, and establishing quantitative methods to evaluate the proposed measures. The defined PR and PP measures are based on the design of the system (e.g., materials, processes, facilities), and institutional measures (e.g., safeguards, access control). The assessment methodology uses analysis of pathways' with respect to specific threats to determine the PR and PP measures. Analysis requires definition of the threats (i.e. objective, capability, strategy), decomposition of the system into its relevant elements (e.g., reactor core, fuel recycle facility, fuel storage), and identification of targets. (author)

  20. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  1. The status of proliferation resistance evaluation methodology development in GEN IV international forum

    International Nuclear Information System (INIS)

    Inoue, Naoko; Kawakubo, Yoko; Seya, Michio; Suzuki, Mitsutoshi; Kuno, Yusuke; Senzaki, Masao

    2010-01-01

    The Generation IV Nuclear Energy Systems International Forum (GIF) Proliferation Resistance and Physical Protection Working Group (PR and PP WG) was established in December 2002 in order to develop the PR and PP evaluation methodology for GEN IV nuclear energy systems. The methodology has been studied and established by international consensus. The PR and PP WG activities include development of the measures and metrics; establishment of the framework of PR and PP evaluation, the demonstration study using Example Sodium Fast Reactor (ESFR), which included the development of three evaluation approaches; the Case Study using ESFR and four kinds of threat scenarios; the joint study with GIF System Steering Committees (SSCs) of the six reactor design concepts; and the harmonization study with the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). This paper reviews the status of GIF PR and PP studies and identifies the challenges and directions for applying the methodology to evaluate future nuclear energy systems in Japan. (author)

  2. Mathematical modeling of a fast-breeder-reactor generating unit

    International Nuclear Information System (INIS)

    Kim, V.E.; Golovach, E.A.; Senkin, V.I.

    1984-01-01

    Dynamics equations are given for a reactor, intermediate heat exchanger, steam generator, and turbogenerator. The dynamic characteristics of the generating unit are described when perturbations occur in grid frequency, turbine valves, and feedwater consumption

  3. Development status and application prospect of supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Li Manchang; Wang Mingli

    2006-01-01

    The Supercritical-pressure Light Water Cooled Reactor (SCWR) is selected by the Generation IV International Forum (GIF) as one of the six Generation IV nuclear systems that will be developed in the future, and it is an innovative design based on the existing technologies used in LWR and supercritical coal-fired plants. Technically, SCWR may be based on the design, construction and operation experiences in existing PWR and supercritical coal-fired plants, which means that there is no insolvable technology difficulties. Since PWR technology will be adopted in the near term and medium term projects in China, and considering the sustainable development of the technology, it is an inevitable choice to research and develop the nuclear system of supercritical light water cooled reactor. (authors)

  4. Evolution of design of steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.; Vaidyanathan

    1997-01-01

    The first sodium cooled reactor was the experimental breeder reactor (EBR-I) in usa which was commissioned in 1951 and was incidentally the first nuclear reactor to generate electrical energy. This was followed by fast breeder reactors in USSR, UK, france, USA, japan, germany and India. The use of sodium as a coolant is due to its low moderation which helps in breeding fissile fuel from fertile materials and also its high heat transfer coefficient at comparatively low velocities. The good heat transfer properties introduce thermal stresses when there are rapid changes in the sodium temperatures. Also sodium has a chemical affinity with air and water. The steam generators for sodium cooled reactors have to allow for these novel conditions and in addition, unlike other components. Choices have to be made whether it is a recirculation type as in most fossil plants or an once through unit, the power rating, shape of the tube (straight, helical, U-tube), materials (Ferritic or austenitic), with free level of sodium or not, sodium on tube side or shell side and so on. With higher pressures and steam temperatures reheating steam after partial expansion in the turbine becomes essential as in conventional turbines. For this purpose the choice of reheating fluid viz sodium or live main steam has to be made. This paper traces the evolution of steam generator designs in the different sodium cooled reactors (chronologically) and the operation experience. 16 figs., 1 tab

  5. Evaluation and optimization of General Atomics' GT-MHR reactor cavity cooling system using an axiomatic design approach

    International Nuclear Information System (INIS)

    Thielman, Jeff; Ge, Ping; Wu, Qiao; Parme, Laurence

    2005-01-01

    The development of the Generation IV (Gen-IV) nuclear reactors has presented social, technical, and economical challenges to nuclear engineering design and research. To develop a robust, reliable nuclear reactor system with minimal environmental impact and cost, modularity has been gradually accepted as a key concept in designing high-quality nuclear reactor systems. While the establishment and reliability of a nuclear power plant is largely facilitated by the installment of standardized base units, the realization of modularity at the sub-system/sub-unit level in a base unit is still highly heuristic, and lacks consistent, quantifiable measures. In this work, an axiomatic design approach is developed to evaluate and optimize the reactor cavity cooling system (RCCS) of General Atomics' Gas Turbine-Modular Helium Reactor (GT-MHR) nuclear reactor, for the purpose of constructing a quantitative tool that is applicable to Gen-IV systems. According to Suh's axiomatic design theory, modularity is consistently represented by functional independence through the design process. Both qualitative and quantitative measures are developed here to evaluate the modularity of the current RCCS design. Optimization techniques are also used to improve the modularity at both conceptual and parametric level. The preliminary results of this study have demonstrated that the axiomatic design approach has great potential in enhancing modular design, and generating more robust, safer, and less expensive nuclear reactor sub-units

  6. Entropy Generation Minimization for Reverse Water Gas Shift (RWGS Reactors

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-05-01

    Full Text Available Thermal design and optimization for reverse water gas shift (RWGS reactors is particularly important to fuel synthesis in naval or commercial scenarios. The RWGS reactor with irreversibilities of heat transfer, chemical reaction and viscous flow is studied based on finite time thermodynamics or entropy generation minimization theory in this paper. The total entropy generation rate (EGR in the RWGS reactor with different boundary conditions is minimized subject to specific feed compositions and chemical conversion using optimal control theory, and the optimal configurations obtained are compared with three reference reactors with linear, constant reservoir temperature and constant heat flux operations, which are commonly used in engineering. The results show that a drastic EGR reduction of up to 23% can be achieved by optimizing the reservoir temperature profile, the inlet temperature of feed gas and the reactor length simultaneously, compared to that of the reference reactor with the linear reservoir temperature. These optimization efforts are mainly achieved by reducing the irreversibility of heat transfer. Optimal paths have subsections of relatively constant thermal force, chemical force and local EGR. A conceptual optimal design of sandwich structure for the compact modular reactor is proposed, without elaborate control tools or excessive interstage equipment. The results can provide guidelines for designing industrial RWGS reactors in naval or commercial scenarios.

  7. U.S. Status of Fast Reactor Research and Technology

    International Nuclear Information System (INIS)

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  8. Investigations of the unit generation costs of the nuclear power plants

    International Nuclear Information System (INIS)

    Guntay, S.

    1977-01-01

    An extensive study has been carried out to investigate the unit generation costs of different reactor types. The study analyzes the following: i) development of capital costs, ii) Fuel cycle costs, iii) operation and maintenance costs, iv) local and foreign finance requirements for an arbitrary reactor type

  9. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    International Nuclear Information System (INIS)

    Williams, W.C.

    2002-01-01

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft 2 , the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft 2 -degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation

  10. Thermal-Hydraulic Analysis of a Supercritical Water Reactor (SCWR) Core

    International Nuclear Information System (INIS)

    Kucukboyaci, V.N.; Oriani, L.

    2004-01-01

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor

  11. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    International Nuclear Information System (INIS)

    Blanford, E.; Keldrauk, E.; Laufer, M.; Mieler, M.; Wei, J.; Stojadinovic, B.; Peterson, P.F.

    2010-01-01

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  12. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  13. Innovative fission reactors for this century

    International Nuclear Information System (INIS)

    Minguez, E.

    2007-01-01

    It is well known that global trends indicate a rebirth of nuclear energy due to several items: the climate change and the use of energies that emits CO 2 , the cost and dependence of gas and oil, the new innovative reactors which are competitive, safer, and sustainable and can support the Kyoto Protocol. The Advanced Reactors have safer systems than those developed in the Generation II, which demonstrates that are sustainable for the present and nuclear industry has also developed new concepts for the future which also will be sustainable. Now the new power plants that have being constructed are classified in the Generation III. Several units of this technology are in operation in Japan and other countries of the Pacific. Europe is now constructing the first unit in Finland (Olkilouto) with European technology: the European Pressurized Reactor (EPR). France has announced the beginning of the construction of an EPR in Flamanville next year. In 2000, several countries with advanced nuclear technology established the Generation IV International Forum (GIF) to develop and demonstrate nuclear energy systems that offer advantages in the following areas: sustainability, economics, safety and reliability and proliferation resistance and physical protection. These new systems will be deployed commercially after 2030. Six innovative concepts are under research, and the aim is not only produce electricity, but also hydrogen using the operational conditions of several concepts. Developed countries with NPPs in operation have strategies for the future of the nuclear energy. For the short term is to extend the operation of the NPPs until 60 years, or alternatively construction of new units of Generation III, to substitute those closed for decommissioning, keeping the percentage of contribution to the electricity generated. Between the period 2030-50, the solution is to operate the new innovative systems of the Generation IV, which uses the passive concept, and in the second part

  14. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water; Estudio de un ensamble de combustible para el reactor nuclear de generacion IV enfriado con agua supercritica

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (MX)

    2011-11-15

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  15. Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production

    International Nuclear Information System (INIS)

    PARMA JR, EDWARD J.; PICKARD, PAUL S.; SUO-ANTTILA, AHTI JORMA

    2003-01-01

    The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept

  16. Belgian Contribution to the IAEA CRP-IV Programme on Assuring Structural Integrity of Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Puzzolante, J.L.; Fabry, A.; Van de Velde, J.

    1997-10-01

    This report contains the actual status of the Belgian contribution to the IAEA CRP-IV program. Besides Charpy-V impact tests on as-received CRP-IV JRQ-specimens, fracture toughness tests were performed on two geometries: PCCV-specimens and CRB-specimens. The Charpy-V impact results correspond very well with the as-received CRP-III results. The fracture toughness data are also very consistent with identical tests recently performed on remaining as-received CRP-III material. Irradiated broken Charpy-V samples were reconstituted and tested in PCCV-mode. This was done in order to investigate the evolution of the ASME-curve versus the evolution of the mastercurve with irradiation. Initial results were reported. A new CHIVAS-irradiation in the CALLISTO-loop of the BR-2-reactor to support this investigation, is under preparation

  17. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    International Nuclear Information System (INIS)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia

    2017-01-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  18. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia, E-mail: ghnfernandes@gmail.com, E-mail: marc5663@gmail.com, E-mail: athos1495@yahoo.com.br, E-mail: carlosvelcab@hotmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  19. Iris reactor development

    International Nuclear Information System (INIS)

    Paramonov, D.V.; Carelli, M.D.; Miller, K.; Lombardi, C.V.; Ricotti, M.E.; Todreas, N.E.; Greenspan, E.; Yamamoto, K.; Nagano, A.; Ninokata, H.; Robertson, J.; Oriolo, F.

    2001-01-01

    The development progress of the IRIS (International Reactor Innovative and Secure) nuclear power system is presented. IRIS is currently being developed by an international consortium of industry, laboratory, university and utility establishments, led by Westinghouse. It is aimed at achieving the four major objectives of the Generation IV nuclear systems, i.e., proliferation resistance, enhanced safety, economic competitiveness and reduced waste. The project first year activities, which are summarized here, were focused on core neutronics, in-vessel configuration, steam generator and containment design, safety approach and economic performance. Details of these studies are provided in parallel papers in these proceedings. (author)

  20. Super critical water reactors

    International Nuclear Information System (INIS)

    Dumaz, P.; Antoni, O; Arnoux, P.; Bergeron, A; Renault, C.; Rimpault, G.

    2005-01-01

    Water is used as a calori-porter and moderator in the most major nuclear centers which are actually in function. In the pressurized water reactor (PWR) and boiling water reactor (BWR), water is maintained under critical point of water (21 bar, 374 Centigrade) which limits the efficiency of thermodynamic cycle of energy conversion (yield gain of about 33%) Crossing the critical point, one can then use s upercritical water , the obtained pressure and temperature allow a significant yield gains. In addition, the supercritical water offers important properties. Particularly there is no more possible coexistence between vapor and liquid. Therefore, we don't have more boiling problem, one of the phenomena which limits the specific power of PWR and BWR. Since 1950s, the reactor of supercritical water was the subject of studies more or less detailed but neglected. From the early 1990s, this type of conception benefits of some additional interests. Therefore, in the international term G eneration IV , the supercritical water reactors had been considered as one of the big options for study as Generation IV reactors. In the CEA, an active city has engaged from 1930 with the participation to a European program: The HPWR (High Performance Light Water Reactor). In this contest, the R and D studies are focused on the fields of neutrons, thermodynamic and materials. The CEA intends to pursue a limited effort of R and D in this field, in the framework of international cooperation, preferring the study of versions of rapid spectrum. (author)

  1. High temperature fast reactor for hydrogen production in Brazil; Reator nuclear rapido de altissima temperatura para producao de hidrogenio no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mail: jamil@ieav.cta.br

    2008-07-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, {approx} 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  2. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  3. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  4. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Guidez Joel

    2017-01-01

    In the case of sodium-cooled fast reactors (SFRs, the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction. From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  5. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  6. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  7. Multi-layered silicides coating for vanadium alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Mathieu, S.; Chaia, N.; Vilasi, M.; Le Flem, M.

    2012-01-01

    The halide-activated pack-cementation technique was employed to fabricate a diffusion coating that is resistant both to isothermal and to cyclic oxidation in air at 650 degrees C on the surface of the V-4Cr-4Ti vanadium alloy that is a potential core component of future nuclear systems. A thermodynamic assessment determined the deposit conditions in terms of master alloy, activator, filler and temperature. The partial pressures of the main gaseous species (SiCl 4 , SiCl 2 and VCl 2 ) in the pack were calculated with the master alloy Si and the mixture VSi 2 + Si. The VSi 2 + Si master alloy was used to limit vanadium loss from the surface. The obtained coating consisted of multi-layered V x Si y silicides with an outer layer of VSi 2 . This silicide developed a protective layer of silica at 650 degrees C in air and was not susceptible to the pest phenomenon, unlike other refractory silicides (MoSi 2 , NbSi 2 ). We suggest that VSi 2 exhibits no risk of rapid degradation in the gas fast reactor (GFR) conditions. (authors)

  8. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation

    Energy Technology Data Exchange (ETDEWEB)

    Miletić, Marija, E-mail: marija_miletic@live.com [Czech Technical University in Prague, Prague (Czech Republic); Fukač, Rostislav, E-mail: fuk@cvrez.cz [Research Centre Rez Ltd., Rez (Czech Republic); Pioro, Igor, E-mail: Igor.Pioro@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada); Dragunov, Alexey, E-mail: Alexey.Dragunov@uoit.ca [University of Ontario Institute of Technology, Oshawa (Canada)

    2014-09-15

    Highlights: • Gas as a coolant in Gen-IV reactors, history and development. • Main physical parameters comparison of gas coolants: carbon dioxide, helium, hydrogen with water. • Forced convection in turbulent pipe flow. • Gas cooled fast reactor concept comparisons to very high temperature reactor concept. • High temperature helium loop: concept, development, mechanism, design and constraints. - Abstract: Rapidly increasing energy and electricity demands, global concerns over the climate changes and strong dependence on foreign fossil fuel supplies are powerfully influencing greater use of nuclear power. In order to establish the viability of next-generation reactor concepts to meet tomorrow's needs for clean and reliable energy production the fundamental research and development issues need to be addressed for the Generation-IV nuclear-energy systems. Generation-IV reactor concepts are being developed to use more advanced materials, coolants and higher burn-ups fuels, while keeping a nuclear reactor safe and reliable. One of the six Generation-IV concepts is a very high temperature reactor (VHTR). The VHTR concept uses a graphite-moderated core with a once-through uranium fuel cycle, using high temperature helium as the coolant. Because helium is naturally inert and single-phase, the helium-cooled reactor can operate at much higher temperatures, leading to higher efficiency. Current VHTR concepts will use fuels such as uranium dioxide, uranium carbide, or uranium oxycarbide. Since some of these fuels are new in nuclear industry and due to their unknown properties and behavior within VHTR conditions it is very important to address these issues by investigate their characteristics within conditions close to those in VHTRs. This research can be performed in a research reactor with in-pile helium loop designed and constructed in Research Center Rez Ltd. One of the topics analyzed in this article are also physical characteristic and benefits of gas

  9. Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code

    International Nuclear Information System (INIS)

    Shiba, T.; Fallot, M.

    2015-01-01

    To tackle nuclear material proliferation, we conducted several proliferation scenarios using the MURE (MCNP Utility for Reactor Evolution) code. The MURE code, developed by CNRS laboratories, is a precision, open-source code written in C++ that automates the preparation and computation of successive MCNP (Monte Carlo N-Particle) calculations and solves the Bateman equations in between, for burnup or thermal-hydraulics purposes. In addition, MURE has been completed recently with a module for the CHaracterization of Radioactive Sources, called CHARS, which computes the emitted gamma, beta and alpha rays associated to any fuel composition. Reactor simulations could allow knowing how plutonium or other material generation evolves inside reactors in terms of time and amount. The MURE code is appropriate for this purpose and can also provide knowledge on associated particle emissions. Using MURE, we have both developed a cell simulation of a typical CANDU reactor and a detailed model of light water PWR core, which could be used to analyze the composition of fuel assemblies as a function of time or burnup. MURE is also able to provide, thanks to its extension MURE-CHARTS, the emitted gamma rays from fuel assemblies unloaded from the core at any burnup. Diversion cases of Generation IV reactors have been also developed; a design of Very High Temperature Reactor (a Pebble Bed Reactor (PBR), loaded with UOx, PuOx and ThUOx fuels), and a Na-cooled Fast Breeder Reactor (FBR) (with depleted Uranium or Minor Actinides in the blanket). The loading of Protected Plutonium Production (P3) in the FBR was simulated. The simulations of various reactor designs taking into account reactor physics constraints may bring valuable information to inspectors. At this symposium, we propose to show the results of these reactor simulations as examples of the potentiality of reactor simulations for safeguards. (author)

  10. Environmental, financial and energy feasibility of the electrolysis of the water steam of a generation IV reactor cooling system during the moments of low consumption ef eletrical energy: challenges and perspectives

    International Nuclear Information System (INIS)

    Stefanelli, Eduardo J.; Vargas, Miltom; Garcia, Pedro L.; Seo, Emilia S.M.; Oliveira, Wagner de S.

    2009-01-01

    Our civilization is in an inflection moment. Our current decisions will lead us to drastic changes in the planet climate or to cleaner and more sustainable energy generation models. In a certain moment in the evolution of our society, we have privileged the productivity instead of the reasonable use of the planet's resources. This option has been leading us to a situation in which these resources are seriously jeopardized. New models of energy generation and use should be discussed and adopted in order to reverse this process. The electric-power consumption is not constant through time and it must be generated at the moment it is going to be used. There are moments of great idleness in the electric-power generation system, counterbalanced by high demand moments. This characteristic has induced us to the construction of a model of great generation capacity that remains without use most of the time, producing huge financial and environmental impacts. In this article, we discuss the environmental, financial and energy viability of using the idle capacity of the electric-power system to, through water steam electrolysis, produce hydrogen, which would be reconverted into electric power in peak moments by a fuel cell. In this study, we aim at investigating the viability of associating a SOFC (Solid Oxide Fuel Cell), acting as an electrolysis bow, to a generation IV reactor, in order to produce hydrogen from superheated water steam in the cooling of the reactor, which will be converted into electric power via SOFC (Solid Oxide Fuel Cell) in peak moments. The method used in this investigation was to study the electric charge variation consumed in a day, randomly selected in relation to the hour of the day, to launch a curve into a diagram 'Demand x hour of the day', to establish the peak moments, the minimum moments, and the average consumption, and, based on these data and geometrically, predict the viability of using the energetic potential of the moments in which the

  11. Environmental, financial and energy feasibility of the electrolysis of the water steam of a generation IV reactor cooling system during the moments of low consumption ef eletrical energy: challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Eduardo J.; Vargas, Miltom; Garcia, Pedro L.; Seo, Emilia S.M.; Oliveira, Wagner de S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: ipen@stefanelli.eng.br

    2009-07-01

    Our civilization is in an inflection moment. Our current decisions will lead us to drastic changes in the planet climate or to cleaner and more sustainable energy generation models. In a certain moment in the evolution of our society, we have privileged the productivity instead of the reasonable use of the planet's resources. This option has been leading us to a situation in which these resources are seriously jeopardized. New models of energy generation and use should be discussed and adopted in order to reverse this process. The electric-power consumption is not constant through time and it must be generated at the moment it is going to be used. There are moments of great idleness in the electric-power generation system, counterbalanced by high demand moments. This characteristic has induced us to the construction of a model of great generation capacity that remains without use most of the time, producing huge financial and environmental impacts. In this article, we discuss the environmental, financial and energy viability of using the idle capacity of the electric-power system to, through water steam electrolysis, produce hydrogen, which would be reconverted into electric power in peak moments by a fuel cell. In this study, we aim at investigating the viability of associating a SOFC (Solid Oxide Fuel Cell), acting as an electrolysis bow, to a generation IV reactor, in order to produce hydrogen from superheated water steam in the cooling of the reactor, which will be converted into electric power via SOFC (Solid Oxide Fuel Cell) in peak moments. The method used in this investigation was to study the electric charge variation consumed in a day, randomly selected in relation to the hour of the day, to launch a curve into a diagram 'Demand x hour of the day', to establish the peak moments, the minimum moments, and the average consumption, and, based on these data and geometrically, predict the viability of using the energetic potential of the moments

  12. A Qualitative Assessment Of Diversion Scenarios For A Example Sodium Fast Reactor Using The Gen IV PR And PP Methodology

    International Nuclear Information System (INIS)

    Zentner, Michael D.

    2008-01-01

    A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  13. Clinch river breeder reactor plant steam generator water quality

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, D; Lowe, P A

    1975-07-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: (1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; (2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and (3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present.

  14. Clinch river breeder reactor plant steam generator water quality

    International Nuclear Information System (INIS)

    Van Hoesen, D.; Lowe, P.A.

    1975-01-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: 1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; 2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and 3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present

  15. Radiolytic generation of gases in reactors

    International Nuclear Information System (INIS)

    Ramshesh, V.; Venkateswarlu, K.S.

    1988-01-01

    Water or heavy water is used in different circuits in a reactor. Their most common use is as a moderator and/or as a coolant. Light water is used at other places such as in end shield, calandria vault etc., In the process they are exposed to intense ionizing radiation and undergo radiolytic degradation. The molecular produts of radiolysis are hydrogen, hydrogen peroxide and oxygen. As is commonly known if hydrogen is formed beyond a certain level, in the presence of oxygen it may lead to combustion or even explosion. Thus one should comprehend the basic principles of radiolysis and see whether the concentration of these gases under various conditions can be worked out. This report attempts to analyse in depth the radiolytic generation of gases in reactor systems. (author). 3 tabs

  16. Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Directory of Open Access Journals (Sweden)

    Jaewoon Yoo

    2016-10-01

    Full Text Available The Prototype Gen IV sodium cooled fast reactor (PGSFR has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  17. Overall system description and safety characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Chang, Jin Wook; Lim, Jae Yong; Cheon, Jin Sik; Lee, Tae Ho; Kim, Sung Kyun; Lee, Kwi Lim; Joo, Hyung Kook

    2016-01-01

    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper

  18. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  19. Optimising end of generation of Magnox reactors

    International Nuclear Information System (INIS)

    Hall, D.; Hopper, E.D.A.

    2014-01-01

    Designing, justifying and gaining regulatory approval for optimised, terminal fuel cycles for the last 4 of the 13 strong Magnox Fleet is described, covering: - constraints set by the plant owner's integrated closure plan, opportunities for innovative fuel cycles while preserving flexibility to respond to business changes; - methods of collectively determining best options for each site; - selected strategies including lower fuel element retention and inter-reactor transfer of fuel; - the required work scope, its technical, safety case and resource challenges and how they were met; - achieving additional electricity generation worth in excess of Pound 1 b from 4 sites (a total of 8 reactors); - the keys to success. (authors)

  20. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  1. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  2. Steam generators in indirect-cycle water-cooled reactors

    International Nuclear Information System (INIS)

    Fajeau, M.

    1976-01-01

    In the indirect cycle water-cooled nuclear reactors, the steam generators are placed between the primary circuit and the turbine. They act both as an energy transmitter and as a leaktigh barrier against fission or corrosion products. Their study is thus very important from a performance and reliability point of view. Two main types are presented here: the U-tube and the once-through steam generators [fr

  3. Thermal fluid dynamics study of nuclear advanced reactors of high temperature using RELAP5-3D

    International Nuclear Information System (INIS)

    Scari, Maria Elizabeth

    2017-01-01

    Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF 2 , the LiF-BeF 2 , also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO (Tristructural

  4. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  5. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  6. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    Dai Anguo; Tang Jiahuan; Qian Huifu; Gao Zhikang

    1987-12-01

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  7. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  8. R and D Trends For The Future Sodium Fast Reactors In France

    International Nuclear Information System (INIS)

    Dufour, Ph.; Anzieu, P.; Lecarpentier, D.; Serpantie, JP.

    2006-01-01

    The sodium fast reactors are the natural Generation IV candidate, thanks to their strong potential for incineration and/or breeding that allow drastic fissile materials economy and fission waste products recycling or transmutation. The question is now to make evolve the existing or past projects of reactors to systems fully compatible with Generation IV objectives, in particular with regard to the economy, durability and safety. This work must be achieved in an international frame which requires a sharing of the objectives and will allow, in the long term, the sharing of the activities. However, in order to ensure the overall coherence of the various development programs defined within the Gen-IV framework, it is necessary to define a new SFR development plan based on the experience gained in France (Phenix, Superphenix) and Europe, in the EFR project. The commonly agreed SFR system issues to be improved or further investigated are its capital cost, safety issues (sodium risks, core criticality accidents), and in-service inspection and maintenance technology. (authors)

  9. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  10. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  11. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  12. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  13. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-01-01

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  14. Hydrogen generation using the modular helium reactor

    International Nuclear Information System (INIS)

    Richards, M.; Shenoy, A.

    2004-01-01

    Process heat from a high-temperature nuclear reactor can be used to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg.C to 950 deg.C can drive the sulfur-iodine (SI) thermochemical process to produce hydrogen with high efficiency. Electricity can also be used to split water, using conventional, low-temperature electrolysis. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyser to generate hydrogen. In this paper we investigate the coupling of the Modular Helium Reactor (MHR) to the SI process and HTE. These concepts are referred to as the H2-MHR. Optimization of the MHR core design to produce higher coolant outlet temperatures is also discussed. The use of fixed orifices to control the flow distribution is a promising design solution for increasing the coolant outlet temperature without increasing peak fuel temperatures significantly

  15. Issues of high-burnup fuel for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  16. Generation of multigroup cross sections from ENDF/B-IV nuclear data library

    International Nuclear Information System (INIS)

    Chapot, J.L.C.; Thome Filho, Z.D.

    1980-04-01

    The generation of nuclear data compacted in energy groups is made. The nuclear data library ENDF/B-IV, Evaluated Nuclear Data File, and the new version of the codes ETOG-3 and ETOT-3 are utilized. The data obtained are compared with data from other sources. (L.F.) [pt

  17. Implementation of defence in depth for next generation light water reactors

    International Nuclear Information System (INIS)

    1997-12-01

    The publication of this IAEA technical document represents the conclusion of a task, initiated in 1995, devoted to defence in depth in future reactors. It focuses mainly on the next generation of LWRs, although many general considerations may also apply to other types of reactors

  18. MYRRHA a multi-purpose hybrid research reactor for high-tech applications

    International Nuclear Information System (INIS)

    Abderrahim, H. A.; Baeten, P.

    2012-01-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

  19. Structural materials for the next generation nuclear reactors - an overview

    International Nuclear Information System (INIS)

    Charit, I.; Murty, K.L.

    2007-01-01

    The Generation-IV reactors need to withstand much higher temperatures, greater neutron doses, severe corrosive environment and above all, a substantially higher life time (60 years or more). Hence for their successful deployment, a significant research in structural materials is needed. Various potential candidate materials, such as austenitic stainless steels, oxide-dispersion strengthened steels, nickel-base superalloys, refractory alloys etc. are considered. Both baseline and irradiated mechanical, thermophysical and chemical properties are important. However, due to the longer high temperature exposure involved in most designs, creep and corrosion/oxidation will become the major performance limiting factors. In this study we did not cover fabricability and weldability of the candidate materials. Pros and cons of each candidate can be summarized as following: -) for austenitic stainless steel: lower thermal creep resistance at higher temperatures but poor swelling resistance at high temperatures; -) for ferritic-martensitic steels: excellent swelling resistance at higher burnups but thermal creep strength is limited at higher temperatures and radiation embrittlement at low temperature; -) for Ni-base alloys: excellent thermal creep resistance at higher temperatures but radiation embrittlement even at moderate doses and helium embrittlement at higher temperatures; and -) for refractory alloys: adequate swelling resistance up to high burnups but fabrication difficulties, low temperature radiation hardening and poor oxidation resistance

  20. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  1. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  2. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  3. Methods and criterions for IV generation system choice

    International Nuclear Information System (INIS)

    Carre, F; Fiorini, G. L.

    2005-01-01

    The international forum of IV generation has been built up in 2000, initiated by the American Energy Department with an initial participation of nine countries (and of ten today). In a primary phase of these works, which was finished in October 2002, the forum objects were to define the list of nuclear systems conditions which could be ready to use in 2030 to make a sustainable energy development, and select previously the most promising technology to attain these purposes. This article presents, with its trumps and limits, the methodology which was used to select, starting from 120 propositions, one set of 6 systems which includes key technologies for the nuclears of the 21st century. (Authors)

  4. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants

    DEFF Research Database (Denmark)

    de Sousa, David P; Miller, Christopher J; Chang, Yingyue

    2017-01-01

    The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....

  5. Active acoustic leak detection in steam generator units of fast reactors

    International Nuclear Information System (INIS)

    Oriol, L.; Journeau, Ch.

    1996-01-01

    Steam generators (SG) of Fast Reactors can be subject to water leakage into the sodium secondary circuit, causing an exothermic chemical reaction with potential serious damage to plant. Within the framework of the European Fast Reactor project, the CEA has developed an active acoustic detection technique which, when used in parallel with passive acoustic detection, will lead to effective leak detection results in terms of reliability and false alarm rates. Whilst the passive method is based on the increase in acoustic noise generated by the reaction, the active method takes advantage of the acoustic attenuation by the hydrogen bubbles produced. The method has been validated: in water, during laboratory testing at the Centre d'Etudes de Cadarache; in sodium, at the ASB loop at Bensberg (Germany) and at AEA Dounreay (Scotland). Full analysis of the tests carried out on the SG of the Prototype Fast Reactor in 1994 during end-of-life testing should lead to reactor validation on the method. (authors)

  6. Methodology on the sparger development for Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K.

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloud acceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs

  7. Methodology on the sparger development for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloudacceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs.

  8. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  9. Preliminary evaluation of steam generator tube rupture (SGTR) accident in lead cooled reactor

    International Nuclear Information System (INIS)

    Frano, R. Lo; Forasassi, G.

    2009-01-01

    In this paper some contributions are provided to the development of a European Lead-cooled System, known as the ELSY project (within EU-6 Framework Project); that will constitute a possible reference system for a large lead-cooled reactor of GEN IV. Steam generator (SG) tubing of this system type might be subject to a variety of degradation processes, such as cracking, wall thinning and potential leakage or rupture, eventually leading to the failure of one or more SG tubes that constitute a steam generator tube rupture (SGTR) accident with possible consequences for the safety of the primary systems. It is therefore of interest for the designer to know how the SG itself, as well as the vessel and internals structures, behave under impulsive loading conditions (in form of a rapid and strong increase of pressure) that can arise as consequences of the interaction between the primary and secondary coolants (lead-water interaction). The analysed initiator event, as already mentioned, is a large break (up to a double ended guillotine break) of one (or more) SG cooling tubes that may become severe enough to determine dangerous effects on the interested structures. In order to better simulate and perform the mentioned postulated SGTR accident sequence analyses, an appropriate numerical model with the available computing resources (FEM codes) was set up at the DIMNP of Pisa University. That model was used to evaluate the effects of the propagation of the blast pressure waves inside the SG structures, taking into account also the sloshing phenomenon that could be induced by the lead primary coolant motions. Therefore the SGTR effects study may be considered as a transient and non linear problem the solution of which provides the 'time histories' of hydrodynamic pressures and stresses on the reactor pressure vessel and internals walls. (author)

  10. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  11. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  12. PUFF-IV, Code System to Generate Multigroup Covariance Matrices from ENDF/B-VI Uncertainty Files

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The PUFF-IV code system processes ENDF/B-VI formatted nuclear cross section covariance data into multigroup covariance matrices. PUFF-IV is the newest release in this series of codes used to process ENDF uncertainty information and to generate the desired multi-group correlation matrix for the evaluation of interest. This version includes corrections and enhancements over previous versions. It is written in Fortran 90 and allows for a more modular design, thus facilitating future upgrades. PUFF-IV enhances support for resonance parameter covariance formats described in the ENDF standard and now handles almost all resonance parameter covariance information in the resolved region, with the exception of the long range covariance sub-subsections. PUFF-IV is normally used in conjunction with an AMPX master library containing group averaged cross section data. Two utility modules are included in this package to facilitate the data interface. The module SMILER allows one to use NJOY generated GENDF files containing group averaged cross section data in conjunction with PUFF-IV. The module COVCOMP allows one to compare two files written in COVERX format. 2 - Methods: Cross section and flux values on a 'super energy grid,' consisting of the union of the required energy group structure and the energy data points in the ENDF/B-V file, are interpolated from the input cross sections and fluxes. Covariance matrices are calculated for this grid and then collapsed to the required group structure. 3 - Restrictions on the complexity of the problem: PUFF-IV cannot process covariance information for energy and angular distributions of secondary particles. PUFF-IV does not process covariance information in Files 34 and 35; nor does it process covariance information in File 40. These new formats will be addressed in a future version of PUFF

  13. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  14. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  15. Determination of Ultra-Trace Amounts of Selenium(IV) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Co-precipitation with Lanthanium Hydroxide. Part II. On-line Addition of Coprecipating Agent

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    -line and merged with an ammonium buffer solution of pH 9.1, which promotes precipitation and quantitative collection on the inner walls of an incorporated knotted Microline reactor. The Se(IV) preconcentrated by coprecipitation with the generated lanthanum hydroxide precipitate is subsequently eluted...... with hydrochloric acid, allowing an ensuing determination via hydride generation. At different sample flow rates, i.e., 4.8, 6.4 and 8.8 ml/min, enrichment factors of 30, 40 and 46, respectively, were obtained at a sampling frequency of 33 samples/h. The detection limit (3s) was 0.005 µg/l at a sample flow rate...

  16. Next generation reactor development activity at Hitachi, Ltd

    International Nuclear Information System (INIS)

    Yamashita, Junichi

    2005-01-01

    Developments of innovative nuclear systems in Japan have been highly requested to cope with uncertain future nuclear power generation and fuel cycle situation. Next generation reactor system shall be surely deployed earlier to be capable to provide with several options such as plutonium multi-recycle, intermediate storage of spent fuels, simplified reprocessing of spent fuels and separated storage of 'Pu+FP' and 'U', spent fuels storage after Pu LWR recycle and their combinations, while future reactor system will be targeted at ideal fuel recycle system of higher breeding gain and transmutation of radioactive wastes. Modified designs of the ABWR at large size and medium and small size have been investigated as well as a BWR based RMWR and a supercritical-pressure LWR to ensure safety and improve economics. Advanced fuel cycle technologies of a combination of fluoride volatility process and PUREX process with high decontamination (FLUOREX process) and a modified fluoride volatility process with low decontamination have been developed. (T. Tanaka)

  17. Trends on development for reactor engineering

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2004-01-01

    There are basically two ways of improving the performance of a nuclear power plant. First, the conversion rate of thermal into mechanical energy can be increased, similar to conventional steam power plant technology, whose experience can be integrated. Secondly, the burnup rate can be optimized, i.e. the conversion of fuel into thermal energy. The worldwide resarch project GENERATION IV follows both strategies. This contribution presents two typical examples: A LWR reactor in which the efficiency was raised to more than 44 percent by supercritical steam states, and a lead-cooled fast breeder reactor in which burnup was increased to more than 150 GWd/t. (orig.)

  18. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  19. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    Energy Technology Data Exchange (ETDEWEB)

    Ferrini, Marcello [GeNERG - DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); Borreani, Walter [Ansaldo Nucleare S.p.A., Corso F.M. Perrone 25, 16152 Genova (Italy); INFN, Via Dodecaneso 33, 16146 Genova (Italy); Lomonaco, Guglielmo, E-mail: guglielmo.lomonaco@unige.it [GeNERG - DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, Via Dodecaneso 33, 16146 Genova (Italy); Magugliani, Fabrizio [Ansaldo Nucleare S.p.A., Corso F.M. Perrone 25, 16152 Genova (Italy)

    2016-02-15

    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or lead–bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MW{sub t} pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results

  20. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    International Nuclear Information System (INIS)

    Ferrini, Marcello; Borreani, Walter; Lomonaco, Guglielmo; Magugliani, Fabrizio

    2016-01-01

    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or lead–bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MW t pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results of

  1. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scale Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are 'right sized' for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral

  2. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  3. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  4. Safety criteria for the next generation of European reactors

    International Nuclear Information System (INIS)

    Dominguez Bautista, M.T.

    1995-01-01

    For the next generation of reactors, European companies operating in the electricity sector have drawn up a document called European Utilities Requirement (EUR), which sets out the requirements to be met by the designers of future reactors. The main objective of these new requirements is to increase the safety in existing reactors, making good use of operating experience available and the technological developments of the last decade. This paper offers an in-depth analysis of the most significant characteristics, describing how the EUR requirements have been prepared and how they are being implemented by the designers. Areas covered are: - Combining deterministic and probabilistic criteria - Automation of control systems - Design extension for severe accidents - Containment design - Emergency plans - Autonomy versus manual operation

  5. Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket (Gryllodes sigillatus) proteins.

    Science.gov (United States)

    Nongonierma, Alice B; Lamoureux, Candice; FitzGerald, Richard J

    2018-01-24

    Tropical banded crickets (Gryllodes sigillatus) were studied for their ability to yield hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. A cricket protein isolate (CPI) was prepared following extraction of the water soluble proteins from G. sigillatus powder (CP). The extraction yield and purity were 20.90 ± 0.35% and 57.0 ± 2.23%, respectively. Endogenous proteinase activities were detected in the CP, which were linked to the significant protein breakdown seen in this sample. Fifteen CPI hydrolysates (H1-H15) were generated with Protamex™ using a design of experiments (DOE) approach combining three parameters, temperature (40, 50 and 60 °C), enzyme to substrate ratio (E : S, 0.50, 1.25 and 2.00% (w/w)) and hydrolysis time (60, 150 and 240 min). The DPP-IV half maximal inhibitory concentrations (IC 50 ) of the CPI hydrolysates ranged from 0.40 ± 0.03/0.40 ± 0.02 (H2/H3) to 1.01 ± 0.07 mg mL -1 (H7). Following simulated gastrointestinal digestion (SGID), the DPP-IV IC 50 of CPI decreased (>3.57 vs. 0.78 ± 0.04 mg mL -1 ) while that of H5 increased (0.47 ± 0.03 vs. 0.71 ± 0.06 mg mL -1 ). This study has demonstrated for the first time that G. sigillatus protein hydrolysates are able to inhibit DPP-IV. The study of these hydrolysates in vivo is needed to evaluate their potential role in glycaemic management.

  6. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Nascimento, Jamil Alves do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 %Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pinch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  7. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, A. dos; Nascimento, J.A. do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 % Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pitch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  8. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  9. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  10. Managing Model Data Introduced Uncertainties in Simulator Predictions for Generation IV Systems via Optimum Experimental Design

    Energy Technology Data Exchange (ETDEWEB)

    Turinsky, Paul J [North Carolina State Univ., Raleigh, NC (United States); Abdel-Khalik, Hany S [North Carolina State Univ., Raleigh, NC (United States); Stover, Tracy E [North Carolina State Univ., Raleigh, NC (United States)

    2011-03-01

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept’s core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment

  11. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Smith, J.; Hart, R.; Lazic, L.

    2009-01-01

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  12. EDF view on next generation reactor safety and operability issues

    International Nuclear Information System (INIS)

    Serviere, G.

    2002-01-01

    In the foreseeable future, EDF will have to compete in an economically de-regulated market. Nuclear currently accounts for more than 80% of the electricity generated by the company, and generation costs are quite competitive compared to that of other competing energies. It is so likely that nuclear units will remain the backbone of EDF generating fleet in the years to come. However, to remain a viable option for electricity generation in the longer term, nuclear will have to maintain both its cost-effectiveness and a very high safety level. This could seem quite straightforward considering the current situation where safety records are at an all time high and Operating and Maintenance costs are under tight control. In fact, it could be a real challenge. Competing fossil technologies progress and there is a concurrent trend to try and improve the performance of future nuclear units. However, in most cases, proposed designs depart from the well-known Light Water Reactor (LWR) technology. They are either new concepts or designs already tested in the past and modified to address some of their perceived drawbacks. Contrary to the prevailing situation where short-term alternatives like the EPR, the ABWR or the AP600 largely build upon experience gathered on operating units, most designs contemplated for implementation beyond 2020 or 2030 cannot be considered proven. Considering the above mentioned uncertainties, EDF have confirmed their preference for proven designs with higher outputs, such as the EPR. However, it would appear unreasonable to consider that new designs are doomed to fail: they could well turn out to be adequate for specific niches in a de-regulated market and provide reasonable alternatives for the utility. Nevertheless, for such an alternative to be considered, additional evidence is needed that utility preferences are reflected in the design, and that all potential technical issues have been identified, adequately addressed and resolved. Currently, EDF

  13. RB Research nuclear reactor, Annual report for 1996, I-IV

    International Nuclear Information System (INIS)

    Stefanovic, D.; Milosevic, M.; Pesic, M.; Marinkovic, P.; Ilic, R.; Dasic, N.; Milovanovic, S.; Ljubenov, V.; Petronijevic, M.; Jevremovic, M.

    1996-12-01

    Report on RB reactor operation during 1996 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a list of publications resulting from experiments done at the RB reactor

  14. RB Research nuclear reactor, Annual report for 1995, I-IV

    International Nuclear Information System (INIS)

    Stefanovic, D.; Milosevic, M.; Pesic, M.; Marinkovic, P.; Ilic, R.; Dasic, N.; Milovanovic, S.; Ljubenov, V.; Petronijevic, M.; Jevremovic, M.

    1995-12-01

    Report on RB reactor operation during 1995 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor

  15. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  16. Electricity investments and development of power generation capacities: an approach of the drivers for investment choices in Europe regarding nuclear energy

    International Nuclear Information System (INIS)

    Shoai-Tehrani, Bianka

    2014-01-01

    In a context of growing energy prices and climate change mitigation, the thesis addresses the issues of investments in power generation capacities and in particular nuclear capacities. Given that the Generation IV of nuclear reactors is supposed to be ready in 2040 for industrial deployment, the purpose of the thesis is to study the conditions for electricity investments in France and Europe within this horizon, in order to assess development perspectives for nuclear energy and for potential emergence of Generation IV on the European market. To do so, it is necessary to study the mechanisms at stake in investment choices taking into account all power generating technologies. Economic theory usually bases the choice on long-term economic rationality, which does not allow explain the actual choices observed in European electricity mix. The objective of the research work is thus to identify investment choice drivers and to propose an approach describing the behavior of investors in a more realistic way. A multidisciplinary approach was adopted to explore the question. It combines a historical analysis of drivers evolution according to historical context, a structural analysis of these drivers to identify favorable scenarios for future nuclear reactors, a value creation approach to replicate investors' preferences in those scenarios, and last, a value option approach focusing on nuclear technologies and comparing competitiveness of Generation IV reactors with current reactors. As a result, only strong climate policy combined to government support to nuclear energy could allow industrial development of Generation IV, while high progress of renewables does not lessen the attractiveness of nuclear energy.On a international level, such analysis could be broaden by taking into account the drivers specific to each area of the world, such as highly growing demand in developing countries. (author)

  17. Electricity investments and development of power generation capacities: An approach of the drivers for investment choices in Europe regarding nuclear energy

    International Nuclear Information System (INIS)

    Shoai-Tehrani, Bianka

    2014-01-01

    In a context of growing energy prices and climate change mitigation, the thesis addresses the issues of investments in power generation capacities and in particular nuclear capacities. Given that the Generation IV of nuclear reactors is supposed to be ready in 2040 for industrial deployment, the purpose of the thesis is to study the conditions for electricity investments in France and Europe within this horizon, in order to assess development perspectives for nuclear energy and for potential emergence of Generation IV on the European market. To do so, it is necessary to study the mechanisms at stake in investment choices taking into account all power generating technologies. Economic theory usually bases the choice on long-term economic rationality, which does not allow explain the actual choices observed in European electricity mix. The objective of the research work is thus to identify investment choice drivers and to propose an approach describing the behavior of investors in a more realistic way. A multidisciplinary approach was adopted to explore the question. It combines a historical analysis of drivers evolution according to historical context, a structural analysis of these drivers to identify favorable scenarios for future nuclear reactors, a value creation approach to replicate investors' preferences in those scenarios, and last, a value option approach focusing on nuclear technologies and comparing competitiveness of Generation IV reactors with current reactors. As a result, only strong climate policy combined to government support to nuclear energy could allow industrial development of Generation IV, while high progress of renewables does not lessen the attractiveness of nuclear energy. On a international level, such analysis could be broaden by taking into account the drivers specific to each area of the world, such as highly growing demand in developing countries. (author)

  18. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Min, Byung Joo; Lee, Jong Tai [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-01-01

    In nuclear or shielding design analysis for reactors or other facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multi-group constant library using the newly compiled data files and the code systems. As the results of this project, the latest version of NJOY nuclear data processing system, NJOY91.38 which is capable of processing data in ENDF-6 format, was compiled and installed in Cyber 960-31(OS : NOS/VE) and HP710 workstation. A 50-group constant library for fast reactor was generated with NJOY91.38 using evaluated data from JEF-1 and benchmark test of this library was performed. The newly generated library has been found to do an excellent job of calculating integral quantities for fast critical assemblies and is expected to be positively used to develop fast reactors. (Author).

  19. Future generations of CANDU: advantages and development with passive safety

    International Nuclear Information System (INIS)

    Duffey, R. B.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) advances water reactor and CANDLT technology using an evolutionary development strategy. This strategy ensures that innovations are based firmly on current experience and keeps our development programs focused on one reactor concept, reducing risks, development costs, and product development cycle times. It also assures our customers that our products will never become obsolete or unsupported, and the continuous line of water reactor development is secure and supported into the future. Using the channel reactor advantage of modularity, the subdivided core has the advantage of passive safety by heat removal to the low- pressure moderator. With continuous improvements, the Advanced CANDU Reactor TM (ACR-1000TM) concept will likely remain highly competitive for a number of years and leads naturally to the next phase of CANDU development, namely the Generation IV CANDU -SCWR concept. This is conventional water technology, since supercritical boilers and turbines have been operating for some time in coal-fired power plants. Significant cost, safety, and performance advantages would result from the CANDU-SCWR concept, plus the flexibility of a range of plant sizes suitable for both small and large electric grids, and the ability for co-generation of electric power, process heat, and hydrogen. In CANDU-SCWR, novel developments are included in the primary circuit layout and channel design. The R and D in Canada is integrated with the Generation IV international Forum (GIF) plans, and has started on examining replaceable insulating liners that would ensure channel life, and on providing completely passive reactor decay heat removal directly to the moderator heat sink without forced cooling. In the interests of sustainability, hydrogen production by a CANDU- SCWR is also be included as part of the system requirements, where the methods for hydrogen production will depend on the outlet temperature of the reactor

  20. Hydride generation atomic fluorescence spectrometric determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter using multivariate optimization

    International Nuclear Information System (INIS)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario

    2004-01-01

    A highly sensitive and simple method, based on hydride generation and atomic fluorescence detection, has been developed for the determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter samples. Atmospheric particulates matter was collected on glass fiber filters using a medium volume sampler (PM1 particulate matter). Two-level factorial designs have been used to optimise the hydride generation atomic fluorescence spectrometry (HG-AFS) procedure. The effects of several parameters affecting the hydride generation efficiency (hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations and flow rates) have been evaluated using a Plackett-Burman experimental design. In addition, parameters affecting the hydride measurement (delay, analysis and memory times) have been also investigated. The significant parameters obtained (sodium tetrahydroborate concentration, sodium tetrahydroborate flow rate and analysis time for As; hydrochloric acid concentration and sodium tetrahydroborate flow rate for Se(IV); and sodium tetrahydroborate concentration and sodium tetrahydroborate flow rate for Te(IV)) have been optimized by using 2 n + star central composite design. Hydrochloric acid concentration and sodium tetrahydroborate flow rate were the significant parameters obtained for Sb and Bi determination, respectively. Using a univariate approach these parameters were optimized. The accuracy of methods have been verified by using several certified reference materials: SRM 1648 (urban particulate matter) and SRM 1649a (urban dust). Detection limits in the range of 6 x 10 -3 to 0.2 ng m -3 have been achieved. The developed methods were applied to several atmospheric particulate matter samples corresponding to A Coruna city (NW Spain)

  1. Development of Next-Generation LWR (Light Water Reactor) in Japan

    International Nuclear Information System (INIS)

    Yamamoto, T.; Kasai, S.

    2011-01-01

    The Next-Generation Light Water Reactor development program was launched in Japan in April 2008. The primary objective of the program is to cope with the need to replace existing nuclear power plants in Japan after 2030. The reactors to be developed are also expected to be a global standard design. Several innovative features are envisioned, including a reactor core system with uranium enrichment above 5%, a seismic isolation system, the use of long-life materials and innovative water chemistry, innovative construction techniques, safety systems with the best mix of passive and active concepts, and innovative digital technologies to further enhance reactor safety, reliability, economics, etc. In the first 3 years, a plant design concept with these innovative features is established and the effectiveness of the program is reevaluated. The major part of the program will be completed in 2015. (author)

  2. Overview of fourth generation reactors. Assessment in terms of safety and radiation protection

    International Nuclear Information System (INIS)

    Couturier, J.; Baudrand, O.; Blanc, D.; Bourgois, T.; Hache, G.; Ivanov, E.; Bonneville, H.; Meignen, R.; Nicaise, G.; Bruna, G.; Clement, B.; Kissane, M.; Monhardt, B.

    2012-01-01

    Based on a systematic analysis of the different concepts of fourth generation nuclear reactors, this report gives an overview of specific aspects regarding safety and radiation protection for six concepts: sodium fast reactors (SFR), gas fast reactors (GFR), lead fast reactors (LFR), molten salt reactors (MSR), very high or high temperature reactors (V/HTR) and supercritical water reactors (SCWR). This assessment is based on different studies and researches performed by the IRSN at an international level. For each reactor concept, the report proposes a presentation of the current status of development and its perspectives, describes the safety aspects which are specific to this concept, identifies and discusses elements for safety analysis, and assesses the concept with respect to the Fukushima accident and IAEA recommendations and predefined themes

  3. An autonomous control framework for advanced reactors

    Directory of Open Access Journals (Sweden)

    Richard T. Wood

    2017-08-01

    Full Text Available Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  4. An autonomous control framework for advanced reactors

    International Nuclear Information System (INIS)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C.

    2017-01-01

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors

  5. An autonomous control framework for advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  6. Development of source term evaluation method for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-10-15

    This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.

  7. A small modular fast reactor as starting point for industrial deployment of fast reactors

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Lo Pinto, Pierre; Konomura, Mamoru

    2006-01-01

    , at the same time advancing the technology for the longer term applications. Numerous innovative options have been incorporated into the consistent SMFR designs, the near-term reference design as well as more advanced designs requiring additional research and development. These innovative features are proposed as design solutions regarding all the generation IV goals, except for the economics due to the small reactor-size penalty. As for the economics goal, the approach will be to pursue the refinement of a small modular design as inexpensive test-bed for demonstrating advanced technologies, and to develop in parallel a scale-up potential up to about 300 MWe, which can lead to economic competitiveness in developed nuclear energy markets

  8. Emergency systems and protection equipment of modular steam generators for fast reactors

    International Nuclear Information System (INIS)

    Matal, O.

    The requirements are discussed for accident protection of modular steam generators for fast reactors. Accident protection is assessed for a modular through-flow steam generator and for a natural circulation modular steam generator. Benefits and constraints are shown and possible improvements are outlined for accident protection of liquid sodium fired modular steam generators. (Kr)

  9. Frequency and distribution of leakages in steam generators of gas-cooled reactors

    International Nuclear Information System (INIS)

    Bongratz, R.; Breitbach, G.; Wolters, J.

    1988-01-01

    In gas cooled reactors with graphitic primary circuit structures - such as HTR, AGR or Magnox - the water ingress is an event of great safety concern. Water or steam entering the primary circuit react with the hot graphite and carbon-oxide and hydrogen are produced. As the most important initiating event a leak in a steam generator must be taken into account. From the safety point of view as well as for availability reasons it is necessary to construct reliable boilers. Thus the occurrence of a boiler leak should be a rare event. In the context of a probabilistic safety study for an HTR-Project much effort was invested to get information about the frequency and the size distribution of tube failures in steam generators of gas cooled reactors. The main data base was the boiler tube failure statistics of United Kingdom gas cooled reactors. The data were selected and applied to a modern HTR steam generator design. A review of the data showed that the failure frequency is not connected with the load level (pressures, temperatures) or with the geometric size of the heating surface of the boiler. Design, construction, fabrication, examination and operation conditions have the greatest influence an the failure frequency but they are practically not to be quantified. The typical leak develops from smallest size. By erosion effects of the entering water or steam it is enlarged to perhaps some mm 2 , then usually it is detected by moisture monitors. Sudden tube breaks were not reported in the investigated period. As a rule boiler leaks in gas cooled reactors are much more, rare then leaks in steam generators of light water reactors and fossil fired boilers. (author)

  10. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    Full text: The requirements to NPP power reactors that will be under construction in Kazakhstan are proved and given in the report. A comparative analysis of the most advanced projects of power reactors with light and heavy water under pressure of large, medium and low power is carried out. Different reactors have been considered as follows: 1. Reactors with high-power (700 MW(el) and up) such as EPR, French - German reactor; CANDU-9, Canadian heavy-water reactor; System 80+, developed by ABB Combustion Engineering company, USA; KNGR, Korean reactor of the next generation; APWR, Japanese advanced reactor; WWER-1000 (V-392) - development of Atomenergoproect /Gydropress, Russian Federation; EP 1000, European passive reactor. 2. Reactors with medium power (300 MW (el) - 700 MW (el): AP-600, passive PWR of the Westinghouse company; CANDU-6, Canadian heavy-water reactor; AC-600, Chinese passive PWR; WWER-640, Russian passive reactor; MS-600 Japanese reactor of Mitsubishi Company; KSNP-600, South Korean reactor. 3. Reactors with low power (a few MW(el)- 300 MW(el)): IRIS, reactor of IV generation, developed by the International Corporation of 13 organizations from 7 countries, SMART, South Korean integrated reactor; CAREM, Argentina integrated reactor; MRX, Japanese integrated reactor; 'UNITERM', Russian NPP with integrated reactor, development of NIKIET; AHEC-80, Russian NPP, developed by OKBM. A comparison of the projects of the above-mentioned power reactors was carried out with respect to 15 criteria of nuclear, radiating, ecological safety and economic competitiveness, developed especially for this case. Data on a condition and prospects of power production and power consumption, stations and networks in Kazakhstan necessary for the choice of projects of NPP reactors for Kazakhstan are given. According to the data a balance of power production and power consumption as a whole in the country was received at the level of 59 milliard kw/h. However, strong dis balance

  11. To question of NPP power reactor choice for Kazakhstan

    International Nuclear Information System (INIS)

    Batyrbekov, G.A.; Makhanov, Y.M.; Reznikova, R.A.; Sidorenco, A.V.

    2004-01-01

    The requirements to NPP power reactors that will be under construction in Kazakhstan are proved and given in the report. A comparative analysis of the most advanced projects of power reactors with light and heavy water under pressure of large, medium and low power is carried out. Different reactors have been considered as follows: 1. Reactors with high-power (700 MW(el) and up) such as EPR, French - German reactor; CANDU-9, Canadian heavy-water reactor; System 80+, developed by ABB Combustion Engineering company, USA; KNGR, Korean reactor of the next generation; APWR, Japanese advanced reactor; WWER-1000 (V-392) - development of Atomenergoproect /Gydropress, Russian Federation; EP 1000, European passive reactor. 2. Reactors with medium power (300 MW (el) - 700 MW (el): AP-600, passive PWR of the Westinghouse company; CANDU-6, Canadian heavy-water reactor; AC-600, Chinese passive PWR; WWER-640, Russian passive reactor; MS-600 Japanese reactor of Mitsubishi Company; KSNP-600, South Korean reactor. 3. Reactors with low power (a few MW(el)- 300 MW(el)): IRIS, reactor of IV generation, developed by the International Corporation of 13 organizations from 7 countries, SMART, South Korean integrated reactor; CAREM, Argentina integrated reactor; MRX, Japanese integrated reactor; 'UNITERM', Russian NPP with integrated reactor, development of NIKIET; AHEC-80, Russian NPP, developed by OKBM. A comparison of the projects of the above-mentioned power reactors was carried out with respect to 15 criteria of nuclear, radiating, ecological safety and economic competitiveness, developed especially for this case. Data on a condition and prospects of power production and power consumption, stations and networks in Kazakhstan necessary for the choice of projects of NPP reactors for Kazakhstan are given. According to the data a balance of power production and power consumption as a whole in the country was received at the level of 59 milliard kw/h. However, strong dis balance in the

  12. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  13. A linear current injection generator for the generation of electrons in a nuclear reactor

    International Nuclear Information System (INIS)

    Kar, Moutushi; Thakur, Satish Kumar; Agiwal, Mamta; Sholapurwala, Zarir H.

    2011-01-01

    While, operating a nuclear reactor it is absolutely necessary for generating a chain reaction or fission. A chain reaction can be initiated by bombardment of a heavy nucleus with fast moving particles. One of the common methods used for generating a fast moving particle is injecting a very high voltage into a particle accelerator and accelerating high energy particle beams using machine like cyclotron, synchrotron, linear accelerators i.e. linac and similar equipment. These equipment generated and run by several high voltage applications like simple high voltage DC systems and supplies or pulsed electron systems. (author)

  14. US Nuclear Regulatory Commission region IV

    International Nuclear Information System (INIS)

    Vanderburch, C.

    1996-01-01

    The NRC has established a policy to provide for the timely through and systematic inspection of significant operational events at nuclear power plants. This includes the use of an Augmented Inspection Team to determine the causes, conditions, and circumstances relevant to an event and to communicate its findings and conclusions to NRC management. In accordance with NRC Inspection Manual Chapter 0325. The Region IV Regional Administrator dispatched an Augmented Inspection Team to the Wolf Creek Nuclear Generating Station to review the circumstances surrounding a manual reactor trip on January 30, 1996, with the failure of five control rods to fully insert into the core, a failure of the turbine-driven auxiliary feedwater pump, and the subsequent loss of one train of the essential service water system

  15. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA, within the framework of its Nuclear Energy Department’s Technical Working Group on Fast Reactors (TWG-FR), assists Member States activities in fast reactors technology development areas by providing an umbrella for information exchange [topical Technical Meetings (TMs), Workshops and large Conferences] and collaborative R&D [Coordinated Research Projects (CRPs)]. The Technical meeting on “Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors” was held from 21 – 22 December 2011 in Vienna, addressing Member States’ expressed needs of information exchange in the field of advanced fast reactor design features, with particular attention to innovative heat exchangers and steam generators. The Objective of the TM is to provide a global forum for in-depth information exchange and discussion on the most advanced concepts of heat exchangers and steam generators for fast reactors. More specifically, the objectives are: · Review of the status of advanced fast reactor development activities with special emphasis on design and performance of heat exchangers and steam generators; · Discuss requirements for innovative heat exchangers and steam generators; · Present results of studies and conceptual designs for innovative heat exchangers and steam generators; · Provide recommendations for international collaboration under the IAEA aegis. The meeting agenda of the meeting is in Annex I

  16. Major NSSS design features of the Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Insk; Kim, Dong-Su

    1999-01-01

    In order to meet national needs for increasing electric power generation in the Republic of Korea in the 2000s, the Korean nuclear development group (KNDG) is developing a standardized evolutionary advanced light water reactor (ALWR), the Korean Next Generation Reactor (KNGR). It is an advanced version of the successful Korean Standard Nuclear Power Plant (KSNP) design, which meets utility needs for safety enhancement, performance improvement and ease of operation and maintenance. The KNGR design starts fro the proven design concept of the currently operating KSNPs with uprated power and advanced design features required by the utility. The KNGR design is currently in the final stage of the basic design, and the paper describes the major nuclear steam supply system (NSSS) design features of the KNGR together with introduction of the KNGR development program. (author)

  17. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  18. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Science.gov (United States)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  19. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-15

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology.

  20. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-01

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology

  1. Trends and Developments for Fast Neutron Reactors and Related Fuel Cycles

    International Nuclear Information System (INIS)

    Carré, Frank

    2013-01-01

    • FR13 – A unique and dedicated framework to share updates on national programs of Fast Reactor developments, projects of new builds and plans for the future: - Near term projects of sodium and lead-alloy Fast Reactors; - Gen-IV visions of sodium-cooled and alternative types of Fast Neutron Reactors (GFR, LFR…). • FR13 – A special emphasis put on Fast Reactor Safety, Sustainability of nuclear fuel cycle and Young Generation perspective. • FR13 – A catalyst for further collaborations and alliances: - To share visions of goals and advisable options for future Fast Reactors and Nuclear Fuel Cycle; - To share cost of R&D and large demonstrations (safety, security, recycling); - To progress towards harmonized international standards; - To integrate national projects into a consistent international roadmap

  2. Extension of cycle 8 of Angra-1 reactor, optimization of electric power generation reduction

    International Nuclear Information System (INIS)

    Miranda, Anselmo Ferreira; Moreira, Francisco Jose; Valladares, Gastao Lommez

    2000-01-01

    The main objective of extending fuel cycle length of Angra-1 reactor, is in fact of that each normal refueling are changed about 40 fuel elements of the reactor core. Considering that these elements do not return for the reactor core, this procedure has became possible a more gain of energy of these elements. The extension consists in, after power generation corresponding to a cycle burnup of 13700 MWD/TMU or 363.3 days, to use the reactivity gain by reduction of power and temperature of primary system for power generation in a low energy patamar

  3. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the

  4. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  5. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    Yehia, Ashraf; Mizuno, Akira

    2013-01-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  6. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  7. Programmes and projects for high-temperature reactor development

    International Nuclear Information System (INIS)

    Bogusch, Edgar; Hittner, Dominique

    2009-01-01

    An increasing attention has to be recognised worldwide on the development of High-Temperature Reactors (HTR) which has started in Germany and other countries in the 1970ies. While pebble bed reactors with spherical fuel elements have been developed and constructed in Germany, countries such as France, the US and Russia investigated HTR concepts with prismatic block-type fuel elements. The concept of a modular HTR formerly developed by Areva NP was an essential basis for the HTR-10 in China. A pebble bed HTR for electricity production is developed in South Africa. The construction is planned after the completion of the licensing procedure. Also the US is planning an HTR under the NGNP (Next Generation Nuclear Plant) Project. Due to the high temperature level of the helium coolant, the HTR can be used not only for electricity production but also for supply of process heat. Including its inherent safety features the HTR is an attractive candidate for heat supply to various types of plants e.g. for hydrogen production or coal liquefactions. The conceptual design of an HTR with prismatic fuel elements for the cogeneration of electricity and process heat has been developed by Areva NP. On the European scale the HTR development is promoted by the RAPHAEL (ReActor for Process heat, Hydrogen And ELectricity generation) project. RAPHAEL is an Integrated Project of the Euratom 6th Framework Programme for the development of technologies towards a Very High-Temperature Reactor (VHTR) for the production of electricity and heat. It is financed jointly by the European Commission and the partners of the HTR Technology Network (HTR-TN) and coordinated by Areva NP. The RAPHAEL project not only promotes HTR development but also the cooperation with other European projects such as the material programme EXTREMAT. Furthermore HTR technology is investigated in the frame of Generation IV International Forum (GIF). The development of a VHTR with helium temperatures above 900 C for the

  8. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  9. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  10. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  11. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  12. Detection of steam generator tube leaks in pressurized water reactors

    International Nuclear Information System (INIS)

    Roach, W.H.

    1985-01-01

    This report addresses the early detection of small steam generator tube leaks in pressurized water reactors. It discusses the third, and final, year's work on an NRC-funded project examining diagnostic instrumentation in water reactors. The first two years were broad in coverage, concentrating on anticipatory measurements for detection of potential problems in both pressurized- and boiling-water reactors, with recommendations for areas of further study. One of these areas, the early detection of small steam tube leaks in PWRs, formed the basis of study for the last year of the project. Four tasks are addressed in this study of the detection of steam tube leaks. (1) Determination of which physical parameters indicate the onset of steam generator tube leaks. (2) Establishing performance goals for diagnostic instruments which could be used for early detection of steam generator tube leaks. (3) Defining the diagnostic instrumentation and their location which satisfy Items 1 and 2 above. (4) Assessing the need for diagnostic data processing and display. Parameters are identified, performance goals established, and sensor types and locations are specified in the report, with emphasis on the use of existing instrumentation with a minimum of retrofitting. A simple algorithm is developed which yields the leak rate as a function of known or measurable quantities. The conclusion is that leak rates of less than one-tenth gram per second should be detectable with existing instrumentation. (orig./HP)

  13. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  14. Proliferation resistance assessment of high temperature gas reactors

    International Nuclear Information System (INIS)

    Chikamatsu N, M. A.; Puente E, F.

    2014-10-01

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  15. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  16. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  17. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    Science.gov (United States)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  18. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  19. Emergency diesel generator reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    A program to apply some of the techniques of reliability engineering to the High Flux Isotope Reactor (HFIR) was started on August 8, 1992. Part of the program was to track the conditional probabilities of the emergency diesel generators responding to a valid demand. This was done to determine if the performance of the emergency diesel generators (which are more than 25 years old) has deteriorated. The conditional probabilities of the diesel generators were computed and trended for the period from May 1990 to December 1992. The calculations indicate that the performance of the emergency diesel generators has not deteriorated in recent years, i.e., the conditional probabilities of the emergency diesel generators have been fairly stable over the last few years. This information will be one factor than may be considered in the decision to replace the emergency diesel generators

  20. Behavior of generated aerosols in decommissioning of reactor

    International Nuclear Information System (INIS)

    Tomii, H.; Nakamura, K.

    1999-01-01

    Generated aerosols in dismantling of the JPDR were investigated for making an estimation of air contamination. The maximum dose equivalent rate at the surface of each reactor component was 9.4 Sv/h for core shroud, 80 mSv/h for pressure vessel, 2.0 mSv/h for biological shield, respectively. An under-water cutting method with remote handling plasma torch was used for dismantling of the core shroud and the pressure vessel. The biological shield was dismantled by an in-air cutting method and a controlled blasting method. Pipes connected to recirculation system were dismounted by a conventional mechanical and thermal cutting machine in the air. Generated radioactive aerosols were collected in the exhaust air of green house which enclosed the upper part of the reactor room to control the air contamination. An Andersen sampler was used for the measurement of particle distribution in the aerosols. Most of the particle size was below 0.1 μm in the under-water cutting method. The particle size distribution in the in-air cutting method, however, was divided into two parts at 0.1 μm and 0.3 μm. Dispersion rate of aerosol into the atmosphere was decreased exponentially with the depth of water. The dispersion rate and the size distribution of aerosol generated during cutting of the stainless steel pipes and blasting of the biological shield are also reported in the paper. (Suetake, M.)

  1. Waste generated by the future decommissioning of the Magurele VVR-S Research Reactor

    International Nuclear Information System (INIS)

    Dragolici, F.; Turcanu, C.N.; Dragolici, A.C.

    2001-01-01

    Nuclear Research Reactor WWR-S from the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei', Bucharest-Magurele, was commissioned in July 1957 and it was shut down in December 1997. At the moment the reactor is in conservation state. During its operation this reactor worked at an average power of 2MW, almost 3216 h/year, producing a total thermal power of 230 x 10 3 MWh. No major modifications or improvements were made during the 40 years of operation to the essential parts of the reactor, respective to the primary cooling system, reactor vessel, active core and electronic devices. So, all components of the measure, control and protection systems are old, generally at the technical level of the 1950s, therefore a reason why in December 1997 the operation was ceased. At present, the reactor can be considered, by IAEA definition in the first stage (reactor shut down, but the vital functions are maintained and monitored). The survey is related to the second stage - restrictive use of the area. To develop a real decommissioning project, it was first necessary to evaluate the volume and the characteristics of the radioactive waste which will be generated. Radioactive waste generated during the decommissioning of Magurele WR-S research reactor may be classified as: Activated wastes (internal structures, horizontal channels and thermal column, biological shield); Contaminated wastes (primary circuit non-activated components, hot cells, some technological rooms as main hall, pumps room, radioactive material transfer areas, ventilation building and stack); Possibly contaminated materials from any area of reactor building and ventilation building. After 40 years of nuclear research activities, all such areas are suspected of contamination. The volume of wastes that will result from WWR-S Research Reactor decommissioning is summarized

  2. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  3. Generation IV SFR Nuclear Reactors: Under Sodium Robotics for ASTRID

    International Nuclear Information System (INIS)

    Jouan-de-Kervenoael, T.; Rey, F.; Baque, F.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. The maintenance of future ASTRID nuclear reactor prototype (inspection, repair) will be performed during shut down periods with some robotic carriers which have to be introduced within the main vessel, in primary 200 deg. C sodium coolant with argon gas cover. Inspection campaigns will be 20 days long. These robots (or carriers) will allow bringing inspection and repairing tools up to concerned components and structures. The needed degrees of freedom associated to these operations will be assumed either directly by the carrier itself or by specifics lower end carrier device for accurate local positioning. Several carriers will be designed, well adapted to specific needs: type of maintenance operation and location of inspection and repair sites. Feedback experience was gained during Superphenix SFR operation with the MIR robot which allowed to successfully make the Non Destructive Examination of main vessel welding joints, the carrier being outside bulk sodium. Operating conditions for the ASTRID robots will be harder from those of the MIR robot: temperature ranging from 180 deg. C to 200 deg. C, radiation dose ranging from 105 to 106 Gy, but mainly direct immersion within liquid sodium coolant. At the design phase of

  4. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  5. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2003-01-01

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity

  6. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  7. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  8. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  9. Proceedings of 18th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    2005-07-01

    The 18th International Conference on Structural Mechanics in Reactor Technology was held on August 7-12, 2005 in Beijing, China, and Sponsored by International Association for Structural Mechanics in Reactor Technology, Chinese Nuclear Society, Chinese Society of Theoretical and Applied Mechanics, and Tsinghua University. 486 abstracts are Collected. The contents includes: opening, plenary and keynote presentations; computational mechanics; fuel and core structures; aging, life extension, and license renewal; design methods and rules for components; fracture mechanics; concrete material, containment and other structures; analysis and design for dynamic and extreme loads; seismic analysis, design and qualification; structural reliability and probabilistic safety assessment (PSA); operation, inspection and maintenance; severe accident management and structural evaluation; advanced reactors and generation IV reactors; decommissioning of nuclear facilities and waste management.

  10. Economic aspects of electricity and industrial heat generating reactors

    International Nuclear Information System (INIS)

    Gaussens, J.; Moulle, N.; Dutheil, F.

    1964-01-01

    The economic advantage of electricity-generating nuclear stations decreases when their size decreases. However, when a counter-pressure turbine is joined on to a reactor and the residual heat can be properly used, it can be shown that fairly low capacity nuclear equipment may compete with conventional equipment under certain realistic enough conditions. The aim of this paper is to define these special conditions under which nuclear energy can be profitable. They are connected with the location and the general economic environment of the station, the pattern of the electricity and heat demands it must meet, the level of fuel and specific capital costs, nuclear and conventional. These conditions entail certain technical and economic specifications for the reactors used in this way otherwise they are unlikely to be competitive. In addition, these results are referred to the potential steam and electricity market, which leads us to examine certain uses for the heat generated by double purpose power stations; for example, to supply combined industrial plants, various types of town heating and for removal of salt from sea water. (authors) [fr

  11. Fast Reactor Research in Europe: The Way Towards Sustainability (Summary)

    International Nuclear Information System (INIS)

    Schenkel, R.

    2012-01-01

    Full text: The European Union (EU) has taken the lead in responding to climate change, announcing far-reaching initiatives ranging from promoting energy efficient light bulbs and cars to new building codes, carbon trading schemes, development of low carbon technologies and greater competition in energy markets. Nuclear energy remains central to the energy debate in Europe. One third of EU electricity is produced via nuclear fission and eight new reactors are under construction. Traditionally non-nuclear countries are manifesting an interest in building nuclear power plants while the clock is ticking down on Belgium, Germany and the United Kingdom's decision to renew or close existing nuclear infrastructures. Sustainability in nuclear energy production is ensured in the medium term as a result of the large and diverse uranium resources available in politically stable countries around the world. The quantities available with high probability ensure more than one hundred years of nuclear energy production. This extrapolation depends, however, on the forecast for future nuclear energy production. The use of fast neutron breeder reactors would lead to a much more efficient utilization of the uranium, extending the sustainable energy production to several thousands of years. The presentation will outline the fast reactors of the new generation currently being developed within the Generation IV initiative. Broad conclusions of the presentation are that: - There is a growing nuclear renaissance in Europe for good reason; - Nuclear energy is a green and sustainable option for Europe and indeed the world's energy needs; - Nuclear energy is a competitive energy that makes economic sense; - Nuclear fission reactors have a safety and environmental track record that is second to none, yet public misperceptions persist and must be tackled; - Waste management solutions exist while new developments hold great promise; - The evolution and promise of nuclear technologies must also be

  12. Some aspects affecting fast reactor steam generator integrity considered from a utility viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, P R

    1975-07-01

    The important conditions affecting fast reactor steam generator integrity are discussed. In addition to the need for high integrity levels when the steam generator is first delivered to the power station site, the equally important aspect of demonstrating retention of continued high levels of integrity throughout the operating life of the station is described. The functional and related conditions that are believed important to the selection of a design type which can offer adequately high levels of integrity are given. Some of the data needs of a utility concerned with fast reactor S.G.U. design assessment are described, particular emphasis being given to areas believed to have a significant effect on steam generator reliability and integrity. (author)

  13. Preliminary analysis of basic reactor physics of the Dual Fluid Reactor - 15270

    International Nuclear Information System (INIS)

    Wang, X.; Macian-Juan, R.; Seidl, M.

    2015-01-01

    The Dual Fluid Reactor (DFR) is a novel fast nuclear reactor concept invented by the IFK based on the Generation IV Molten Salt Reactor and the Liquid Metal Cooled Reactor. The DFR uses a chloride based molten fuel salt in order to harden the neutron spectrum. The molten fuel salt is cooled with a separated liquid lead loop, which in principle allows for higher power densities and better breeding performance. The DFR does not combine heat removal and breeding into a single circuit but separates the two functions into two independent circuits. Since there are attractive features mentioned in this design, the main task of this paper is to verify the model of the whole reactor based on this concept. For this purpose several calculations are presented, including steady state calculations, sensitivity calculations with regard to the nuclide cross sections, the temperature and geometry coefficient of k eff as well as the burnup calculation. The Monte Carlo calculation codes MCNP, SERPENT and SCALE are used for the analysis. As expected the study shows a significant negative reactivity feedback with temperature in the overall fission zone. For the coupled coolant and reflector design the temperature feedback is rather small for practical purposes such as reactor control during normal operation. In the view of these results the DFR in principle can be self-regulated totally by the temperature change of its own fuel salt and consequently can rely on fully passive safety systems for accident management

  14. Benchmarking of nuclear reactors selected in the frame of GIF project

    International Nuclear Information System (INIS)

    Azpitarte, O; Villanueva, A; Ramos, R; Ramilo, L; Alvarez, M; Yorio, D; Herrero, V

    2012-01-01

    In this article a comparative assessment of the six reactor concepts selected in the frame of the Generation IV International Forum (GIF) project is presented. The assessment was carried out in the areas of Viability of the concept, Design and nuclear safety, Economics, Sustainability, Proliferation resistance, Nuclear fuel, Reprocessing, Materials and Balance of Plant, by means of qualification of chosen performance indicators (author)

  15. A preliminary neutronic evaluation and depletion study of VHTR and LS-VHTR reactors using the codes: WIMSD5 and MCNPX

    International Nuclear Information System (INIS)

    Silva, Fabiano C.; Pereira, Claubia; Costa, Antonella Lombardi; Veloso, Maria Auxiliadora Fortini

    2009-01-01

    It is expected that, in the future, besides electricity generation, reactors should also develop secondary activities, such as hydrogen generation and seawater desalinization. Generation IV reactors are expected to possess special characteristics, like high safety, minimization of radioactive rejects amount and ability to use reprocessed fuel with non-proliferating projects in their cycles. Among the projects of IV generation reactors available nowadays, the (High Temperature Reactors) HTR, are highlighted due to these desirable characteristics. Under such circumstances, such reactor may be able to have significant higher thermal power ratings to be used for hydrogen production, without loose of safety, even in an emergency. For this work, we have chosen two HTR concepts of a prismatic reactor: (Very High Temperature Reactor) VHTR and the (Liquid Salted -Very High Temperature Reactor) LS-VHTR. The principal difference between them is the coolant. The VHTR uses helium gas as a coolant and have a burnup of 101,661 MWd/THM while the LS-VHTR uses low-pressure liquid coolant molten fluoride salt with a boiling point near 1500 de C working at 155,946 MWd/THM. The ultimate power output is limited by the capacity of the passive decay system; this capacity is limited by the reactor vessel temperature. The goal was to evaluate the neutronic behavior and fuel composition during the burnup using the codes (Winfrith Improved Multi-Group Scheme) WIMSD5 and the MCNPX2.6. The first, deterministic and the second, stochastic. For both reactors, burned fuel type 'C' coming from Angra-I nuclear plant, in Brazil, was used with 3.1% of initial enrichment, burnup to 33,000 MWd/THM using the ORIGEN2.1 code, divided in three steps of 11,000 MWd/THM, with an average density power of 37.75 MWd/THM and 5 years of cooling in pool. Finally, the fuel was reprocessed by Purex technique extracting 99.9% of Pu, and the desired amount of fissile material (15%) to achieve the final mixed oxide was

  16. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  17. Comparison of serpent and triton generated FEW group constants for APR1400 nuclear reactor core

    International Nuclear Information System (INIS)

    Elsawi, Mohamed A.; Alnoamani, Zainab

    2015-01-01

    The accuracy of full-core reactor power calculations using diffusion codes is strongly dependent on the quality of the homogenized cross sections and other few-group constants generated by lattice codes. For many years, deterministic lattice codes have been used to generate these constants using different techniques: the discrete ordinates, collision probability or the method of characteristics, just to name a few. These codes, however, show some limitations, for example, on complex geometries or near heavy absorbers as in modern pressurized water reactor (PWR) designs like the Korean Advanced Power Reactor 1400 (APR1400) core. The use of continuous-energy Monte Carlo (MC) codes to produce nuclear constants can be seen as an attractive option when dealing with fuel or reactor types that lie beyond the capabilities of conventional deterministic lattice transport codes. In this paper, the few-group constants generated by two of the state-of-the-art reactor physics codes, SERPENT and SCALE/TRITON, will be critically studied and their reliability for being used in subsequent diffusion calculations will be evaluated. SERPENT is a 3D, continuous-energy, Monte Carlo reactor physics code which has a built-in burn-up calculation capability. It has been developed at the Technical Research Center of Finland (VTT) since 2004. SCALE/TRITON, on the other hand, is a control module developed within the framework of SCALE package that enables performing deterministic 2-D transport calculations on nuclear reactor core lattices. The approach followed in this paper is as follows. First, the few-group nuclear constants for the APR1400 reactor core were generated using SERPENT (version 2.1.22) and NEWT (in SCALE version 6.1.2) codes. For both codes, the critical spectrum, calculated using the B1 method, was used as a weighting function. Second, 2-D diffusion calculations were performed using the US NRC core simulator PARCS employing the two few-group constant sets generated in the first

  18. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  19. Proceedings of US-Japan workshop on new generation experiments and reactors (joined by EC)

    International Nuclear Information System (INIS)

    1988-07-01

    The workshop, titled 'New Generation Experiments and Reactors', was held at Plasma Physics Laboratory, Kyoto University from 25 to 28 July 1988. The purpose of the meeting was to review the latest achievements and status of stellarator/heliotron new generation experiments as well as the prospects for stellarator/heliotron fusion reactors on the occasion when the New Large Helical System of MOE in Japan is being realized. The reports on the New Large Helical System of MOE cover an overview, physics issues, design, MHD studies, transport code results and bootstrap current, particle orbit studies, divertor studies, NBI heating, analysis of wave heating, heating system, diagnostics, and SC coil technology. The reports on ATF II cover an overview, physics studies strategy, status of physics studies, engineering issues, perspective of helical systems, issues for next-generation experiments and relationship to the Univ. of Wisconsin Program, and issues for next-generation experiments and relation to Auburn Program. Other reports address recent studies of present devices, studies related with WVIIX, and reactor studies. (N.K.)

  20. Scylla IV-P theta pinch

    International Nuclear Information System (INIS)

    Bailey, A.G.; Chandler, G.I.; Ekdahl, C.A. Jr.; Lillberg, J.W.; Machalek, M.D.; Seibel, F.T.

    1976-01-01

    Scylla IV-P is a flexible, linear theta pinch designed to investigate high-density linear concepts, end-stoppering, alternate heating methods, and plasma injection techniques relevant to a pure fusion reactor and/or a fusion-fission hybrid system. The construction and experimental arrangement of the device are briefly described

  1. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Application

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Jung, Y. H.; Bang, B. G.

    2006-08-01

    The systematic study was performed to develop the advanced corrosion-resistant Zr alloys for high burnup and Gen IV application. The corrosion behavior was significantly changed with the alloy composition and the corrosion environment. In general, the model alloys with a higher alloying elements showed a higher corrosion resistance. Among the model alloys tested in this study, Zr-10Cr-0.2Fe showed the best corrosion resistance regardless of the corrosion condition. The oxide on the higher corrosion-resistant alloy such as Zr-1.0Cr-0.2Fe consisted of mainly columnar grains, and it have a higher tetragonal phase stability. In comparison with other alloys being considered for the SCWR, the Zr alloys showed a lower corrosion rate than ferritic-martensitic steels. The results of this study imply that, at least from a corrosion standpoint, Zr alloys deserve consideration as potential cladding or structural materials in supercritical water cooled reactors

  2. Fuel development for reactors of new generation in Ukraine

    International Nuclear Information System (INIS)

    Odeychuk, N.P.

    2006-01-01

    elements development with fuel on a basis: Metal: uranium, alloys of uranium; Ceramic: uranium dioxide, thorium dioxide, uranium carbonitride, uranium oxycarbide, mixed oxide of uranium and thorium. The special attention is given to discussion of the basic technological schemes of reception of the fuel microspheres, coated particles and spherical fuel elements for HTGR. Features of reception carbongraphite materials and products by the methods of volumetric gas-phase condensation of porous preparations by pyrocarbon are considered. Results of investigations of the basic fuel elements characteristics and their components, materials and products with pyrocarbon binding, including in conditions of reactor irradiations are discussed. The review concerning the experience of the development the fuel elements with fuel based on metal uranium is given. In NSC KIPT constructions and manufacturing techniques of components for active zones of new perspective directions of atomic engineering are created and proved, also was laid the foundation for the base design and technological decisions for the fourth generation nuclear reactors

  3. Small modular reactor (SMR) development plan in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup; Choi, Swongho; Hwang, Il Soon [Nuclear Transmutation Energy Research Center, Seoul National University, Bldg.31-1, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 151-742 (Korea, Republic of)

    2015-04-29

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent status of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.

  4. LOCA analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Grgic, D.; Cavlina, N.

    2003-01-01

    The IRIS reactor (International Reactor Innovative and Secure) is an integral, light water cooled, medium power reactor. IRIS has been selected as an International Near Term Deployable (INTD) reactor, within the Generation IV International Forum activities. The IRIS concept addresses the key-requirements defined by the US DOE for next generation reactors, i.e. enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). An innovative safety approach has been developed to mitigate the IRIS response to small-to-medium Loss of Coolant Accident (LOCA). This strategy is based on the interaction of IRIS compact containment with the reactor vessel to limit initial blowdown, and on depressurization through the use of a passive Emergency Heat Removal System (EHRS). A small Automatic Depressurization System (ADS) provides supplementary depressurization capability. A pressure suppression system is provided to limit the pressure peak following the initial blowdown to well below the containment design limit. The ultimate result is that during a small-to-medium LOCA, the core remains covered for an extended period of time, without credit for emergency water injection or external core makeup. The IRIS LOCA response is based on 'maintaining water inventory' rather than on the principle of safety injection. This novel safety approach poses significant issues for computational and analysis methods since the IRIS vessel and containment are strongly coupled, and the system response is based on the interaction between the two. The small break LOCA was calculated using RELAP5/mod3.3 and GOTHIC codes. Break of the largest line connected to the IRIS Reactor Pressure Vessel (RPV) was analyzed. The results of the calculations confirmed good performance of the IRIS system during LOCA. (author)

  5. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  6. Materials Options of Steam Generator for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Fu Xiaogang; Long Bin; Han Liqing; Qin Bo; Zhang Jinquan; Wang Shuxing

    2013-01-01

    Overview of the material options of steam generator for sodium-cooled fast reactors, the method to calculate the service life, the thinning of wall thickness and the sodium corrosion rate, the degradation of mechanical properties (thermal aging and decarburization) and the calculation results of theoretical models

  7. First wall/blanket/shield design and power conversion for the ARIES-IV tokamak fusion reactor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Conn, R.W.; Najmabadi, F.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10 MPa base pressure. The coolant flows poloidally in two loops, one inboard and one outboard. The coolant channels are circular tubes that form shells and are placed between two purge plates; the space between two adjacent tubes and the plate is purge gas flow area. The solid breeder is Li 2 O, and Be is used as neutron multiplier to ensure adequate TBR. Beryllium and Li 2 O are placed in between the adjacent tube shells. A computer code was developed to perform and optimize thermal-hydraulic design. Minimization of blanket thickness and the amount of Be, and the maximization of breeder zone thickness were done by iteration with neutronics. The gross thermal efficiency is 49%. The cost of electricity is 68 mills/kWh. The use of low activation SiC composite as the structural material, Li 2 O as the solid breeder, and avoidance of tungsten in the divertor has resulted in a good safety performance, and LSA rating of 1. Overall, SiC/He/Li 2 O ARIES-IV design is expected to have attractive economic and safety advantages

  8. Technical Survey and Feasibility Review for Development of IV-CEAPI

    International Nuclear Information System (INIS)

    Jang, Yongtae; Park, Jinseok; Lee, Myounggoo; Cho, Yeonho; Kim, Hyunmin

    2016-01-01

    The purpose of this paper is to establish the development direction of the IV-CEAPI(Control element assembly position indicator). The paper presents the technologies of the existing CEAPI and other linear displacement sensors. The paper also presents feasibility review of those technologies for the IV-CEAPI considering its environmental conditions as shown in Table 1. an instrument to monitor vertical position of the control element assembly (CEA) in nuclear reactors. The CEAPI is installed in each control element drive mechanism (CEDM). The conventional CEDMs are installed outside the reactor vessel (RV) with nozzles penetrating the RV head. To select the type of the IV-CEAPI, technical surveys on linear displacement sensors were performed. Feasibility of those sensors was reviewed considering the environment conditions, experience, reliability and simplicity. The result is summarized in Table 2 which implies that the solenoid type is considered to be the best suitable types for the IV-CEAPI

  9. An Innovative Three-Dimensional Heterogeneous Coarse-Mesh Transport Method for Advanced and Generation IV Reactor Core Analysis and Design

    International Nuclear Information System (INIS)

    Rahnema, Farzad

    2009-01-01

    This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based solely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.

  10. In-service inspection of nuclear reactor vessels and steam generators. Results and evolution of the technics

    International Nuclear Information System (INIS)

    Rapin, Michel; Saglio, Robert.

    1978-01-01

    Methods and original technics have been developed by the CEA for inspection of the primary coolant circuit of PWR. Multifrequency Eddy currents for inspection of steam generators tubes gudgeons and bolts; focussed ultrasonics to test all the welds of the reactor vessel and its cover of mixed welds of tanks and steam generators, pressurizer welds and gudgeons from the inside; gamma radiography of vessel mixed welds, televisual examination of the stainless steel lining of the reactor vessel and its cover. Use of these technics is made with specific automatic machines designed either for inspection of steam generator tubes or for complete inspection of the vessel. Several reactors were inspected with these devices [fr

  11. Nuclear reactor development in Korea: It's history and status

    International Nuclear Information System (INIS)

    Cheong, J.; Kim, I.; Kim, D. S.

    2007-01-01

    Currently in Korea, 20 nuclear plants are in operation, generating some 18,000 MWe of electricity which is about 30% of the national electricity supply. Further 8 reactors, including innovative light water reactors developed with 30 years' experience in construction and operation with continuous technology development, are either under construction or being planned. Executing an energetic program of nuclear development, Korea is now the world's sixth-ranked nuclear nation. In this paper, at first, history of the nuclear reactor development in Korea will be discussed including technology self-reliance efforts of the nuclear industry, and future plan and prospects will also be presented. Secondly, the OPR1000 which is a Korean standard plant will be introduced in detail including its characteristics, design approach and features. Six OPR1000's are being operated with outstanding performance and 4 more units are under construction. The APR1400, an upgraded reactor of the OPR1000 in capacity and design, has been developed as a next generation reactor, and the contracts were signed for the first 2 units' construction in August 2006. Its development process and design features will be described. Finally, Korea's efforts for future nuclear power generation will be introduced. For future reliable energy supply, Korea has been actively participating in international cooperation such as Gen IV International Forum. In summary, this paper will introduce the history and status of the Korean nuclear reactor development with its past, present and future, which might be helpful to understand the Korean nuclear industry and find a way for international cooperation especially with European countries

  12. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  13. Materials development for fast reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Mathew, M.D.; Laha, K.; Sandhya, R., E-mail: san@igcar.gov.in

    2013-12-15

    Highlights: • A modified version of alloy D9 designated as IFAC-1 has been developed. • Oxide dispersion strengthened Grade 91 steel with good creep strength developed. • 0.14 wt% nitrogen in 316LN stainless steel leads to improved mechanical properties. • Type IV cracking resistant Grade 91 steel with boron addition developed. • Mechanical properties of SFR materials evaluated in sodium environment. -- Abstract: Materials play a crucial role in the economic competitiveness of electricity produced from fast reactors. It is necessary to increase the fuel burn-up and design life in order to realize this objective. The burnup is largely limited by the void swelling and creep resistance of the fuel cladding and wrapping materials. India's 500 MWe Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are D9 austenitic stainless steel as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup, titanium, phosphorous and silicon contents in alloy D9 have been optimized for decreased void swelling and increased creep strength and this has led to the development of a modified version of alloy D9 as IFAC-1. Ferritic steels are inherently resistant to void swelling. The disadvantage is their poor creep strength. Creep resistance of 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long-term creep strength, comparable to alloy D9 so as to achieve higher fuel burnup. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt% having higher creep strength to increase the life of fast reactors and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator

  14. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  15. Performance evaluation study of IHX-IV seal assembly

    Energy Technology Data Exchange (ETDEWEB)

    Padmakumar, G.; Venkatramanan, J.; Balasubramanian, V.; Prakash, V.; Vaidyanathan, G. [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Konnur, M.S.; Ram Mohan, S.; Suresh, M.; Manikandan, S.; Rajesh, V. [Fluid Control Research Institute, Palakkad - 678 623 (India)

    2005-07-01

    Full text of publication follows: The construction of the 500 MWe Prototype Fast Breeder Reactor (PFBR) has commenced at IGCAR, Kalpakkam. PFBR has four intermediate Heat Exchangers (IHX) and two primary Sodium Pumps. The secondary circuits consist of two loops with each loop having one secondary pump, two intermediate heat exchangers, one surge tank and four steam generators. Primary circuit has both hot and cold sodium and is separated into hot and cold pools by Inner Vessel(IV). IHX forms the interface between the primary circuit and secondary circuit of PFBR. The IHX and pumps are supported from at the top in the roof slab and penetrate through the conical portion of inner vessel. Proper sealing arrangements are necessary to prevent leakage of hot sodium into the cold pool through the penetration. The Mechanical Seal is employed to minimize the leakage through the penetration. This seal arrangement can facilitate Differential radial and thermal expansion between IHX and IV stand pipe at the region of penetration Relative tilting between the axis of IHX and IV stand pipe Smooth installation during commissioning and easy removal during maintenance Minimizes the forces transmitted to IV The hydraulic simulation study, of the IHX - IV mechanical seal assembly was undertaken at the Fluid Control Research Institute, Palghat. The seal has two leakage paths viz. Axial and radial. The leakage depends on the contact pressure on the sealing surface and the head causing the leakage. High leakage flow may lead to damage of inner vessel and may affect the thermal efficiency of the IHX. CFD analysis of the geometry was done in detail. This was done for prototype and the model condition. The optimized design obtained using CFD was employed for experimental evaluation. In the experimental set up, the leakage characteristics was studied for varying axial and radial clearance that prevails during the various stages of operation of the seal assembly in the reactor. A 1/2 scaled

  16. Optimization of a fuel bundle within a CANDU supercritical water reactor

    International Nuclear Information System (INIS)

    Schofield, M.E.

    2009-01-01

    The supercritical water reactor is one of six nuclear reactor concepts being studied under the Generation IV International Forum. Generation IV nuclear reactors will improve the metrics of economics, sustainability, safety and reliability, and physical protection and proliferation resistance over current nuclear reactor designs. The supercritical water reactor has specific benefits in the areas of economics, safety and reliability, and physical protection. This work optimizes the fuel composition and bundle geometry to maximize the fuel burnup, and minimize the surface heat flux and the form factor. In optimizing these factors, improvements can be achieved in the areas of economics, safety and reliability of the supercritical water reactor. The WIMS-AECL software was used to model a fuel bundle within a CANDU supercritical water reactor. The Gauss' steepest descent method was used to optimize the above mentioned factors. Initially the fresh fuel composition was optimized within a 43-rod CANFLEX bundle and a 61-rod bundle. In both the 43-rod and 61-rod bundle scenarios an online refuelling scheme and non-refuelling scheme were studied. The geometry of the fuel bundles was then optimized. Finally, a homogeneous mixture of thorium and uranium fuel was studied in a 60-rod bundle. Each optimization process showed definitive improvements in the factors being studied, with the most significant improvement being an increase in the fuel burnup. The 43-rod CANFLEX bundle was the most successful at being optimized. There was little difference in the final fresh fuel content when comparing an online refuelling scheme and non-refuelling scheme. Through each optimization scenario the ratio of the fresh fuel content between the annuli was a significant determining cause in the improvements in the factors being optimized. The geometry optimization showed that improvement in the design of a fuel bundle is indeed possible, although it would be more advantageous to pursue it

  17. Neutron radiation characteristics of the IVth generation reactor spent fuel

    Science.gov (United States)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  18. Building competencies for New Gen IV Reactors

    International Nuclear Information System (INIS)

    Pavel, G.L.; Ghitescu, P.

    2015-01-01

    The Advanced Lead Fast Reactor European Demonstrator - ALFRED is designed and sustained by several European countries. It is a 300 MWt (125 MWe) reactor, intended to be built in Romania, near the Pitesti site. Pure lead is used as primary coolant and it is foreseen to have a 40% thermal efficiency. Secondary cycle contains superheated water steam at around 450 Celsius degrees. Through ARCADIA cooperation, 26 partners from all over Europe joined their forces to provide the necessary research support for ALFRED. In Romania, several entities are providing nuclear courses but only the University Politechnica of Bucharest is offering a complete training program for nuclear industry but targeted courses for LFR technology need to be developed and implemented. Issues like physics of breeding, coolant analysis and behavior, targeted computer codes, core design and dynamics, safety still needs to be tackled

  19. The promises and challenges of future reactor system developments

    International Nuclear Information System (INIS)

    Kim, S. H.; Chang, M. H.; Kim, H. J.

    2007-01-01

    improved economy when compared to currently the existing plants. The APR 1400 has been developed since 1991 and it is expected that its first commercial operation will be in 2012. In the short term by 2011, the APR-1400 design will be improved from the viewpoints of safety, economics and performance. We are also developing a small integral reactor SMART, which is a promising advanced small and medium-size power category of nuclear reactors. It is an integral type reactor with a sensible mixture of new innovative design features and proven technologies aimed at achieving a highly enhanced safety and improved economics. SMART is purposed for dual applications such as for seawater desalination and electricity generation. Since the SMART technology is technically sound and has sufficient economics, the SMART desalination plant has good prospects of being deployed as a nuclear desalination plant. We are also actively participating in the GEN IV collaboration (GIF: GEN IV International Forum) for a VHTR and a SFR technology development. Through close collaboration with GIF, a proliferation-resistant SFR technology will be developed based on KALIMAER for an effective uranium utilization and waste minimization. Also a high temperature reactor is currently under development to demonstrate a nuclear based hydrogen production technology. Korea is really looking ahead by developing new generation of advanced nuclear reactor systems for a sustainable development, economical benefits, a clean environment and public confidence. In this paper, Korean nuclear reactor technology development program is described together with lessons learned from self-reliance in nuclear reactor technology. In addition, this paper presents the status of the next generation reactor system development program and the future reactor system development program for addressing these challenges

  20. Improvement of computer programs 'BAMBOO' and 'ASFRE-IV' for coupling analysis of deformation and thermal-hydraulics in a high burn-up fuel subassembly of fast reactor

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ohshima, Hiroyuki; Imai, Yasutomo

    2003-04-01

    A simulation system of a deformed fuel subassembly is being developed for the structure integrity of high burn-up wire-spacer-type fuel subassemblies of sodium-cooled fast breeder reactors. This report describes a computer program improvement work for coupling analyses of deformation and thermal-hydraulics in a fuel subassembly as part of the simulation system development. In this work, a function of data conversion as an interface between a bundle deformation analysis program BAMBOO and a thermal hydraulic analysis program ASFRE-IV was incorporated to each program. BAMBOO was improved to accept the coolant temperature data from ASFRE-IV and to offer bundle deformation data to ASFRE-IV. ASFRE-IV was also improved to offer the coolant temperature data to BAMBOO and to obtain the bundle deformation data from BAMBOO. Improved BAMBOO and ASFRE-IV were applied to an analysis of 169-pin bundle for the program verification. It was confirmed that the coupling analysis gave the physically reasonable results on both deformation and thermal hydraulic behaviors in the fuel subassembly. (author)

  1. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  2. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  3. On the reliability of steam generator performance at nuclear power plants with WWER type reactors

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Margulova, T.Kh.

    1974-01-01

    The problem of ensuring reliable operation of steam generators in a nuclear power plant with a water-cooled, water-moderated reactor (WWER) was studied. At a nuclear power plant with a vertical steam generator (specifically, a Westinghouse product) the steam generator tubes were found to have been penetrated. Shutdown was due to corrosion disintegration of the austenitic stainless steel, type 18/8, used as pipe material for the heater surface. The corrosion was the result of the action of chlorine ions concentrated in the moisture contained in the iron oxide films deposited in low parts of the tube bundle, directly at the tube plate. Blowing through did not ensure complete removal of the film, and in some cases the construction features of the steam generator made removal of the film practically impossible. Replacement of type 18/8 stainless steel by other construction material, e.g., Inconel, did not give good results. To ensure reliable operation of vertical steam generators in domestic practice, the generators are designed without a low tube plate (a variant diagram of the vertical steam generator of such construction for the water-cooled, water-moderated reactor 1000 is presented). When low tube plates are used the film deposition is intolerable. For organization of a non-film regime a complex treatment of the feed water is used, in which the amount of complexion is calculated from the stoichmetric ratios with the composition of the feed water. It is noted that, if 100% condensate purification is used with complexon processing of the feed water to the generator, we can calculate the surface of the steam-generator heater without considering the outer placement on the tubes. In this the cost of the steam generator and all the nuclear power plants with WWER type reactors is decreased even with installation of a 100% condensate purification. It is concluded that only simultaneous solution of construction and water-regime problems will ensure relaible operation of

  4. Theoretical analysis of nuclear reactors (Phase III), I-V, Part III, Reactor poisoning; Razrada metoda teorijske analize nuklearnih reaktora (III faza) I-IV, III Deo, Zatrovanje reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-01-15

    Report on calculation of poisoning in experimental and power reactor includes four parts. Part one describes the influence of poisoning on the physical parameters of a reactor. part two includes transformation of differential equations for iodine and xenon. It was needed for easier solution of of differential equation using the analog computer. This calculation was done for RA reactor operating at 5 MW power. The RA reactor was used an example of calculation by the proposed method. Part four shows the application of the method for calculating the Calder Hall power reactor.

  5. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    International Nuclear Information System (INIS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Wu, Yan; Li, Jie

    2013-01-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O 3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O 3 generation was approximate 4 mg kJ −1 ; moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  6. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Science.gov (United States)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  7. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  8. Wien Automatic System Planning (WASP) Package. A computer code for power generating system expansion planning. Version WASP-IV. User's manual

    International Nuclear Information System (INIS)

    2001-01-01

    As a continuation of its efforts to provide methodologies and tools to Member States to carry out comparative assessment and analyse priority environmental issues related to the development of the electric power sector, the IAEA has completed a new version of the Wien Automatic System Planning (WASP) Package WASP-IV for carrying out power generation expansion planning taking into consideration fuel availability and environmental constraints. This manual constitutes a part of this work and aims to provide users with a guide to use effectively the new version of the model WASP-IV. WASP was originally developed in 1972 by the Tennessee Valley Authority and the Oak Ridge National Laboratory in the USA to meet the IAEA needs to analyse the economic competitiveness of nuclear power in comparison to other generation expansion alternatives for supplying the future electricity requirements of a country or region. Previous versions of the model were used by Member States in many national and regional studies to analyse the electric power system expansion planning and the role of nuclear energy in particular. Experience gained from its application allowed development of WASP into a very comprehensive planning tool for electric power system expansion analysis. New, improved versions were developed, which took into consideration the needs expressed by the users of the programme in order to address important emerging issues being faced by the electric system planners. In 1979, WASP-IV was released and soon after became an indispensable tool in many Member States for generation expansion planning. The WASP-IV version was continually upgraded and the development of version WASP-III Plus commenced in 1992. By 1995, WASP-III Plus was completed, which followed closely the methodology of the WASP-III but incorporated new features. In order to meet the needs of electricity planners and following the recommendations of the Helsinki symposium, development of a new version of WASP was

  9. Fission product data for thermal reactors. Final report. Part I. A data set for EPRI-CINDER using ENDF/B-IV

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    A four-group fission-product neutron absorption library, appropriate for use in thermal reactors, is described. All decay parameters are taken from ENDF/B-IV. The absorption cross sections are also processed from ENDF/B-IV files, first into a 154-group set and subsequently collapsed into the 4-group set described in this report. The decay and cross section data were used to form 84 linear chains in the CINDER code format. These chains contain all significant fission products having half-lives exceeding 4 hours--a total of 186 nuclides. A 12-chain set containing one pseudo-chain for use in spatial depletion calculations is described. This set accurately reproduces the aggregate absorption buildup of the 84 chains. This report describes the chains and processed data, results of comparison calculations for various fuels, and a comparison of calculated temporal fission-product absorption buildup with corresponding results from a long-term fuel irradiation and cooling integral experiment

  10. Heat exchanging tube behaviour in steam generators of pressurized water reactors

    International Nuclear Information System (INIS)

    Pastor, D.; Oertel, K.

    1979-01-01

    Based on a comprehensive failure statistics, materials corrosion chemistry and thermohydraulics problems of the tubings of steam generators are considered. A historical review of failures in the tubings of steam generators in pressurized water reactors reflects the often successless measures by designers, manufacturers and operating organizations for preventing failures, especially with regard to materials selection and water regime. It is stated that laboratory tests could not give sufficient information about safe and stable operation of nuclear steam generators unless real constructive, hydrodynamic, thermodynamical and chemical conditions of operation had been taken into account. (author)

  11. Overview of welding of oxide dispersion strengthened (ODS) alloys for advanced nuclear reactor applications

    International Nuclear Information System (INIS)

    Kalvala, Prasad Rao; Raja, K.S.; Misra, Manoranjan; Tache, Ricard A.

    2009-01-01

    Oxide dispersion strengthened (ODS) alloys are very promising materials for Generation IV reactors with a potential to be used at elevated temperatures under severe neutron exposure environment. Welding of the ODS alloys is an understudied problem. In this paper, an overview of welding of the ODS alloys useful for advanced nuclear reactor applications is presented. The microstructural changes and the resultant mechanical properties obtained by various solid state welding processes are reviewed. Based on our results on PM2000, an approach for future work on welding of the ODS alloys is suggested. (author)

  12. Proceedings of 'workshop on Pb-alloy cooled fast reactor'

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Kim, Yong Hee; Hong, Ser Gi

    2003-06-01

    The objective of 'Workshop on Pb-Alloy Cooled Fast Reactor', held in Taejeon, Korea on May 6, 2003, is to enhance the basic knowledge in this area by facilitating the exchange of information and discussions about problematic area of design aspects. There were five presentations from three different countries and about 25 participants gathered during the workshop. The topics covered in the workshop include benefits and drawbacks of Pb-alloy and Sodium coolant, two Pb-alloy cooled 900 MWt reactor designs using both B4C rods and NSTs, BREST-300 breakeven reactor and transmutation effectiveness of LLFPs in the typical thermal/fast neutron systems. The generic conclusion for the Pb-alloy cooled fast reactor from this workshop is as follows: 1) It has a potential to satisfy the goals established for the Generation-IV reactor concepts, so it has a bright future. 2) As a fast neutron system with a moderate breeding or a conversion, it is flexible in its roles and has superior safety characteristics over sodium coolant because of Pb-alloy's chemical inertness with water/air and high boiling temperature

  13. Steam generator materials constraints in UK design gas-cooled reactors

    International Nuclear Information System (INIS)

    James, D.W.

    1988-01-01

    A widely reported problem with Magnox-type reactors was the oxidation of carbon steel components in gas circuits and steam generators. The effects of temperature, pressure, gas composition and steel composition on oxidation kinetics have been determined, thus allowing the probabilities of failure of critical components to be predicted for a given set of operating conditions. This risk analysis, coupled with regular inspection of reactor and boiler internals, has allowed continued operation of all U.K. Magnox plant. The Advanced Gas Cooled Reactor (AGR) is a direct development of the Magnox design. The first four AGRs commenced operation in 1976, at Hinkley Point 'B' and at Hunterston 'B'. All known materials problems with the steam generators have been diagnosed and solved by the development of appropriate operational strategies, together with minor plant modifications. Materials constraints no longer impose any restrictions to full load performance from the steam generators throughout the predicted life of the plant. Problems discussed in detail are: 1. oxidation of the 9 Cr - 1 Mo superheater. 2. Stress corrosion of the austenitic superheater. 3. Creep of the transition joints between the 9 Cr - 1 Mo and austenitic sections. With the 9 Cr - 1 Mo oxidation maximum temperature restriction virtually removed and creep constraints properly quantified, boiler operation in now favourably placed. Stress corrosion research has allowed the risk of tube failure to be related to time, temperature, stress and chemistry. As a result, the rigorous 'no wetting' policy has been relaxed for the normally high quality AGR feedwater, and the superheat margin has been reduced to 23 deg. C. This has increased the size of the operating window and reduced the number of expensive, and potentially harmful, plant trips. (author)

  14. Safety Design Criteria (SDC) for Gen-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Nakai, Ryodai

    2013-01-01

    SDC Development Background & Objectives: • Safety Design Criteria (SDC) Development for Gen-IV SFR: – Proposed at the GIF Policy Group (PG) meeting in October 2010 –SDC “harmonization” is increasingly important for: • Realization of enhanced safety designs meeting to Gen-IV safety goals and safety approach common to SFR systems; • Preparation for the forthcoming licensing in the near future; • Because Gen-IV SFR are progressing into conceptual design stage. • The SDC is the Reference criteria: – Of the designs of safety-related Structures, Systems & Components that are specific to the SFR system; – For clarifying the requisites systematically & comprehensively; – When the technology developers apply the basic safety approach and use the codes & standards for conceptual design of the Gen-IV SFR system

  15. The Jules Horowitz Reactor project, a driver for revival of the research reactor community

    International Nuclear Information System (INIS)

    Pere, P.; Cavailler, C.; Pascal, C.

    2010-01-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first-rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10 14 n.cm -2 /sec -1 E>1 MeV in core and 3,6x10 14 n.cm -2 /sec -1 E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items:accommodation of a broad experimental domain; involvement by international partners making in-kind contributions to the project; ? development of components critical to safety and performance; the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and; tools to carry out the project, including computer codes

  16. Steam generator tubing development for commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Sessions, C.E.; Uber, C.F.

    1981-01-01

    The development work to design, manufacture, and evaluate pre-stressed double-wall 2/one quarter/ Cr-1 Mo steel tubing for commercial fast breeder reactor steam generator application is discussed. The Westinghouse plan for qualifying tubing vendors to produce this tubing is described. The results achieved to date show that a long length pre-stressed double-wall tube is both feasible and commercially available. The evaluation included structural analysis and experimental measurement of the pre-stress within tubes, as well as dimensional, metallurgical, and interface wear tests of tube samples produced. This work is summarized and found to meet the steam generator design requirements. 10 refs

  17. Examination of nuclear systems of fourth generation

    International Nuclear Information System (INIS)

    2015-01-01

    This report proposes a detailed discussion of the six nuclear systems selected by the Generation IV International Forum with the objective of coordinating research and development activities which should result in the deployment of nuclear systems (reactors and associated fuel cycle installations) of fourth generation by the second half of the 21. century. These systems are: sodium cooled fast reactors (SFR), very high temperature reactors (VHTR), gas cooled fast reactors (GFR), lead cooled fast reactors (LFR) or lead bismuth eutectic reactors (LBE), molten salt reactors (MSR), and supercritical water reactors (SCWR). Fast systems are interesting as they favour the transmutation of fertile materials into fissile materials. History and perspectives of development, main characteristics, management of safety functions, risk analysis, impact on the environment, radiation protection and decommissioning, concept maturity and R and D needs are discussed for each of these systems. A comparison is reported in terms of main characteristics of reactors, of neutron characteristics and reactivity control, of sensitivity to cooling losses, of confinement function, of exploitation safety, of in-service inspection, of behaviour in case of severe accident, of toxicity of chemical substances, of sensitivity to aggressions (seism), of concept maturity and technological difficulties. The report also proposes a review of the various fuels which can be used in these different systems and which have been considered as eligible by the International Forum: oxides, carbides, nitrides, metals, waste processing. The last part addresses the transmutation of long life radioactive elements: physics, context, assessment of scenarios soundness, influence of transmutation on installations and transports

  18. The future of nuclear power and fourth-generation reactors

    International Nuclear Information System (INIS)

    Carre, F.; Renault, C.

    2006-01-01

    Faced with the exhaustion of fossil fuel resources, the output of existing nuclear power must quadruple between now and 2050, and the Commissariat a l'Energie atomique (CEA) and its industrial partners are cooperating in a programme of R and D on future nuclear power. France strategy puts rapid neutron reactors (RNR) at the forefront, in view of their possible introduction by 2040. These reactors allow a more efficient use of uranium resources and minimise the production of long-life nuclear waste. Two technologies which use respectively, sodium and gas as their coolant are being studied. For the sodium RNR, which benefits from significant existing experience, the key is to first improve its economic performance. For the gas RNR, which draws on the principles and the generic assets of the RNR, for those using helium as the coolant, and those with applications at high temperature, it is important firstly to demonstrate the key technologies such as the fuel. The decision of President Chirac to launch the study of a prototype, fourth-generation reactor for 2020 is stimulating the research effort into France future nuclear power. (author)

  19. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  20. Engineering design of the Aries-IV gaseous divertor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Najmabadi, F.; Sharafat, S.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10MPa base pressure. ARIES-IV uses double-null divertors for particle control. Total thermal power recovered from the divertors is 425MW, which is 16% of the total reactor thermal power. Among the desirable goals of divertor design were to avoid the use of tungsten and to use the same structural material and primary coolant as in the blanket design. In order to reduce peak heat flux, the innovative gaseous divertor has been used in ARIES-IV. A gaseous divertor reduces peak heat flux by increasing the surface area and by distributing particle and radiation energy more uniformly. Another benefit of gaseous divertor is the reduction of plasma temperature in the divertor chamber, so that material erosion due to sputtering, can be diminished. This makes the use of low-Z material possible in a gaseous divertor

  1. Coupled thermal-hydraulic and neutronic simulations of Phenix control rod withdrawal tests with SIMMER-IV

    International Nuclear Information System (INIS)

    Kriventsev, Vladimir; Gabrielli, Fabrizio; Rineiski, Andrei

    2014-01-01

    The “end-of-life” tests performed in the Phenix reactor before its final shutdown in 2009, in particular the Control Rod (CR) withdrawal experiments provide an excellent opportunity for the validation and verification of the reactor physics computer codes and modeling approaches. SIMMER-IV, a modern three-dimensional reactor safety code, has been recently employed at Karlsruhe Institute of Technology (KIT) for simulating Phenix experiments in the framework of a benchmark exercise organized under the IAEA project. In this paper, we report and discuss main results obtained with SIMMER-IV at KIT. Particular attention is devoted to the coupling features of thermal-hydraulics and neutronics and their mutual influences. The reactor reactivity, power and neutron flux distributions calculated with SIMMER-IV are in good agreement both with experimental results and with calculations with advanced neutronics codes, such as ERANOS, while the CR reactivity worth is overestimated due to neglecting heterogeneity effects. Because of its multi-physics capabilities SIMMER also calculates the temperature distributions which are in a good agreement with the experimental test results. In this work we describe the improvements in SIMMER neutronics model by employing a correction that is based on the results of cell calculations performed with ERANOS. The study confirms that the 3D SIMMER-IV code can accurately predict major fast reactor neutronics and thermal hydraulic parameters, provided that a special treatment is employed for CR modeling. The results of calculations are analyzed in frames of SIMMER-IV validation and verification assessment. (author)

  2. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  3. Perturbative methods for sensitivity calculation in safety problems of nuclear reactors: state-of-the-art

    International Nuclear Information System (INIS)

    Lima, Fernando R.A.; Lira, Carlos A.B.O.; Gandini, Augusto

    1995-01-01

    During the last two decades perturbative methods became an efficient tool to perform sensitivity analysis in nuclear reactor safety problems. In this paper, a comparative study taking into account perturbation formalisms (Diferential and Matricial Mthods and generalized Perturbation Theory - GPT) is considered. Then a few number of applications are described to analyze the sensitivity of some functions relavant to thermal hydraulics designs or safety analysis of nuclear reactor cores and steam generators. The behaviours of the nuclear reactor cores and steam generators are simulated, respectively, by the COBRA-IV-I and GEVAP codes. Results of sensitivity calculations have shown a good agreement when compared to those obtained directly by using the mentioned codes. So, a significative computational time safe can be obtained with perturbative methods performing sensitivity analysis in nuclear power plants. (author). 25 refs., 5 tabs

  4. Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism.

    Science.gov (United States)

    Fu, Fenglian; Lu, Jianwei; Cheng, Zihang; Tang, Bing

    2016-03-01

    In this paper, the performance and application of zero-valent iron (ZVI) assisted by ultrasonic irradiation for the removal of selenite (Se(IV)) in wastewater was evaluated and reaction mechanism of Se(IV) with ZVI in such systems was investigated. A series of batch experiments were conducted to determine the effects of ultrasound power, pH, ZVI concentration, N2 and air on Se(IV) removal. ZVI before and after reaction with Se(IV) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ultrasound can lead to a significant synergy in the removal of Se(IV) by ZVI because ultrasound can promote the generation of OH and accelerate the advanced Fenton process. The primary reaction products of ZVI and Se(IV) were Se(0), ferrihydrite, and Fe2O3. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    Science.gov (United States)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  6. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  7. The story of fission reactors: from Chicago Pile to advanced energy systems

    International Nuclear Information System (INIS)

    Kannan, Umasankari

    2017-01-01

    Nuclear reactors have been designed which cater to different applications from small research reactors of a few watts to power reactors of several Giga Watts. Based on the neutron energy, there are thermal, intermediate and fast reactors operating are being designed. On the fuel utilization front, there are designs ranging from reactors using natural uranium fuel to enriched uranium to more efficient thorium based reactors. Reactors have also been designed which are neutron eaters, minor actinide burners and breeders. There have been variety of coolant and moderating materials used for different applications from water, gas cooled, liquid sodium cooled to molten salt cooled reactors. Several new reactor designs have been developed using innovative concepts in high temperature reactors, nuclear power packs and compact reactors for special purposes. The design challenges are many from modest designs to complicated hybrid reactors. The GEN-IV forum of IAEA has selected a few of these reactor designs for commercial power production in the coming years based on several quantified indicators. The evolutionary and revolutionary design approaches have been made over the years catering to different need of energy generation. A glimpse of some of the reactors being currently developed and the design modifications done in existing reactors have been given in this paper

  8. Some aspects of primary and secondary water chemistry in CANDU reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-09-01

    A brief review of the water chemistry in various circuits of CANDU reactors is given. Then, five particular aspects of recent work are highlighted: (i) Radiation Field Growth: in-reactor and out-reactor studies have related water chemistry to corrosion product deposition on fuel sheaths and subsequent contamination of out-core surfaces. (ii) Metal Oxide Solubility: novel techniques are being used to measure the solubilities of metal oxides at primary circuit conditions. (iii) Decontamination: the use of heavy water as coolant in CANDU reactors led to the development of a unique decontamination strategy and technique, called CAN-DECON, which has attracted the attention of operators of light-water reactors. (iv) Steam Generator Corrosion: mathematical modelling of the water chemistry in the bulk and crevice regions of nuclear steam generators, supported by chemical experiments, has shown why sea water ingress from leaking condensers can be damaging, and has provided a rapid way to evaluate alternative boiler water chemistries. (v) Automatic Control of Feedwater Chemistry: on-line automatic chemical analysis and computer control of feedwater chemistry provides All Volatile Treatment for normal operation with pure feedwater, and carefully controlled sodium phosphate addition when there is detectable sea-water ingress from leaking condensers. (author)

  9. Next Generation Reactors in Korea

    International Nuclear Information System (INIS)

    Oh, Yongshick; Choi, Youngsang; Park, Keecheol

    1990-01-01

    In Korea, nuclear power will be continuously needed to meet the trend of steady increase in electricity demand. But in relation to the further development of nuclear energy, there are still many uncertainties to be solved such as power demand forecast, site availability, thermal energy utilization and technology enhancement for economic and safety. To cope with those uncertainties effectively and to proceed the nuclear projects uninterruptedly, KEPCO decided to initiate two research project. i. e., one is 'the outlook and developmental strategy of nuclear energy for the early 21st century in the R. O. K' and the other is 'the feasibility study on the advanced reactors in Korea. Prospects of nuclear energy in Korea was overviewed and recommendations from the industry were introduced. It is strong opinion of Korea nuclear industry that nuclear policy should be changed from the support policy to the target management policy. In the point of reactor strategy, the life of light water reactor technology might be longer than expected before in Korea and it is emphasized that good maintenance of light water reactor technology and smooth transition program to the advanced technologies should be carefully considered. There are differences in the opinions between preferences to the evolutionary and/or passive, inherently safe reactors but, in the long-term point of view, it is judged to be desirable to have alternatives

  10. Transmutation of americium in critical reactors

    International Nuclear Information System (INIS)

    Wallenius, J.

    2005-01-01

    Already in 1974, a Los Alamos report suggested that the recycling of higher actinides would be detrimental for the safety of critical reactors. Later investigations confirmed this understanding, and stringent limits on the fraction of minor actinides allowed to be present in the fuel of fast neutron reactors were established. In recent years, and in particular in connection with the generation IV initiative, it has been advocated that recycling of americium in critical reactors is not only feasible, but also a recommendable approach. In the present contribution, it is shown, to the contrary, that introduction of americium into reactors with uranium based fuels deteriorates the safety margin of these reactors to a degree that will not allow consumption of the americium sources present in any economically competitive nuclear fuel cycle. Further, it is shown that uranium and thorium free cores with plutonium based fuels may be designed, that features excellent safety characteristics, as long as americium is not present in the feed. Hence, a closed fuel cycle is suggested, that consists of commercial power production in light water reactors, plutonium burning in uranium and thorium free fast neutron critical reactors, and higher actinide consumption in accelerator driven systems with inert matrix fuel. It is argued that such a fuel cycle (being a refinement of the Double Strata fuel cycle proposed by JAERI and further developed by M. Salvatores) provides a minimum cost penalty for implementing P and T under realistic boundary conditions. (author)

  11. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  12. Analysis of the VVER-440 reactor steam generator secondary side with the RELAP5/MOD3 code

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1993-01-01

    Nuclear Engineering Laboratory of the Technical Research Centre of Finland has widely used RELAP5/MOD2 and -MOD3 codes to simulate horizontal steam generators. Several models have been developed and successfully used in the VVER-safety analysis. Nevertheless, the models developed have included only rather few nodes in the steam generator secondary side. The secondary side has normally been divided into about 10 to 15 nodes. Since the secondary side at the steam generators of VVER-440 type reactors consists of a rather large water pool, these models were only roughly capable to predict secondary side flows. The paper describes an attempt to use RELAP5/MOD3 code to predict secondary side flows in a steam generator of a VVER-440 reactor. A 2D/3D model has been developed using RELAP5/MOD3 codes cross-flow junctions. The model includes 90 volumes on the steam generator secondary side. The model has been used to calculate steady state flow conditions in the secondary side of a VVER-440 reactor steam generator. (orig.) (1 ref., 9 figs., 2 tabs.)

  13. Steam generator tube performance. Experience with water-cooled nuclear power reactors during 1985

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.

    1988-12-01

    The performance of steam generator tubes at water-cooled reactors during 1985 has been reviewed. Seventy-three of 168 reactors in the survey experienced tube degradation sufficient for the tubes to be plugged. The number of tubes plugged was 6837 or 0.28% of those in service. The leading cause of tube failure was stress corrosion cracking from the primary side. Stress corrosion cracking or intergranular attack from the secondary side and pitting were also major causes of tube failure. Unlike most previous years, fretting was a substantial problem at some reactors. Overall, corrosion continued to account for more than 80% of the defects. 20 refs

  14. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    Science.gov (United States)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  15. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior

    Directory of Open Access Journals (Sweden)

    Ordóñez Ródenas José

    2016-01-01

    Full Text Available One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have been identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modelling of primary pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor design and the analysis of loss of flow transients triggered by pumps coast–down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast–down is also included.

  16. Studying the processes of sodium-water interaction in the BOR-60 reactor micromodule steam generator

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Antipin, G.K.; Borisov, V.V.

    1981-01-01

    Main results of experimental studies of emergency regimes of micromodule steam generator (MSG) at small and big leaks of water into sodium, realized using the 30 MW MSG, operating in the BOR-o0 reactor, are considered. The aims of the study are as follows: the modelling of macroleak in ''Nadja'' steam generator for the BN-350 reactor; testing the conceptions of alarm signalling and MSG protection; testing under real conditions of new perspective systems of leak detection; gaining the experimence and development of the ways to eliminate the consequences of accident caused by big water leak into sodium; accumulation of knowledge on restoration of MSG operating ability after accident; experimental test of calculational techniques for big leak accidents to use them in future for calculational studies of similar situations at other reactors equipped with sodium-water steam generators; refinement of characteristics of hydrodynamic and thermal effects interaction zone for big leak in real circuit during the plant operation. A series of experiments with the imitation of water leak into sodium by means of argon and steam supply through injection devices, located before the steam superheater module of one of the sections and between evaporator module of the same section, is conducted. The range of steam flow rate is 0.02-0.45 g/s. Duration of steam supply is 100-400 s. A conclusion is made that the results obtained can be used for steam generator of the BN-350 reactor [ru

  17. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models

  18. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  19. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sub; Lee, Jong Tai; Hwang, Won Guk [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1990-12-01

    A one-group cross section data base used by the ORIGEN2 computer code to simulate the depletion, buildup and decay of radionuclides in research reactor was developed. For this, ENDF/B-IV or -V data was processed using the NJOY code system into 69-group data. The burn-up-dependent weighting spectra were calculated with the WIMS-KAERI code, and then the 69-group data were collapsed to one-group using the spectra. The ORIGEN2 depletion calculations for the KMRR fuel were performed using an old PWR and the new data base. By comparing these results to the WIMS-KAERI calculations, it is seen that the results of actinide composition calculated by the ORIGEN2 with the new data base turn out to be in an excellent agreement with the WIMS-KAERI results in the range up to 120 GWD/MTIHM burnup. (Author).

  20. Study on steam separation in steam generators of a NPP with the WWER-440 reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.I.; Kolzov, Yu.V.; Titov, V.F.; Dubrovin, A.V.; Ilyushin, V.F.; Volkov, A.P.

    1977-01-01

    The separation characteristics as well as the actual level position in steam generators with and without a submerged holy sheet have been determined at a WWER-440 reactor nuclear power plant. It has been shown, that without changing the design of steam generators their load at the WWER-440 reactor nuclear power plant can be increased by about 10%. In this case the vapour humidity does not exceed the permissible value equal to 0.25%. The submerged holy sheet considerably decreases load irregularity and swelling of the water-steam mixture layer

  1. Performance Evaluation of a Printed Circuit Steam Generator for Integral Reactors: A Feasibility Test

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hun Sik; Kang, Han-Ok; Yoon, Juhyeon; Kim, Young In; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of); Seo, Jang-won; Choi, Brain [Alfa Laval Korea Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    SMART (System-integrated Modular Advanced ReacTor) is a small-sized integral type pressurized water reactor. It adopts advanced design features such as structural safety improvement, system simplification, and component modularization to achieve highly enhanced safety and improved economics. The design issues related to further safety enhancement and cost reduction have received significant attention to increase its competitiveness in the global small reactor market. For the cost reduction, it is important to design the reactor vessel as small as possible. Thus, it is necessary to reduce the volume of main components such as a steam generator. Its manufacturing processes of the chemical etching and diffusion bonding provide high effectiveness, high compactness, and inherent structural safety under high temperatures and high pressures. Thus, it is expected to be an alternative to the conventional shell and tube type steam generator in SMART. In this paper, simple thermal-hydraulic performance measurement of a small-scale printed circuit steam generator (PCSG) is conducted to investigate the feasibility of applying it to SMART. The simple thermal-hydraulic performance of the PCSG has been experimentally evaluated. A small-scale PCHE is employed to investigate the feasibility of operating it as a steam generator. The performance assessment reveals that the PCSG stably produces superheated steam, and the increased degree of superheat is obtained at lower water flow rate. However, the flow instability is increased with the decrease of the water flow rate. Thus, it is required to apply the orifice design into the cold side plate to suppress the density-wave oscillations. The pressure drops and heat transfer rates increase with the water flow rate.

  2. Electro-regeneration of Ce(IV) in real spent Cr-etching solutions

    International Nuclear Information System (INIS)

    Chen, Te-San; Huang, Kuo-Lin

    2013-01-01

    Highlights: • An electrochemical process is used to regenerate Ce(IV) in real (hazardous) spent TFT-LCD Cr-etching solutions. • The Ce(IV) yield on tested anodes was in order BDD > Pt > DSA. • A Neosepta CMX separator was better than Nafion ones to be used in the process. • The activation energy on Pt was 10.7 kJ/mol. • The obtained parameters are useful to design reactors for 100% Ce(IV) regeneration in real spent Cr-etching solutions. -- Abstract: This paper presents the electro-regeneration of Ce(IV) in real (hazardous) spent thin-film transistor liquid-crystal display (TFT-LCD) Cr-etching solutions. In addition to Ce(III) > Ce(IV) in diffusivity, a quasi-reversible behavior of Ce(III)/Ce(IV) was observed at both boron-doped diamond (BDD) and Pt disk electrodes. The Ce(IV) yield on Pt increased with increasing current density, and the best current efficiency (CE) was obtained at 2 A/2.25 cm 2 . The performance in terms of Ce(IV) yield and CE of tested anodes was in order BDD > Pt > dimensional stable anode (DSA). At 2 A/2.25 cm 2 on Pt and 40 °C for 90 min, the Ce(IV) yield, CE and apparent rate constant (k) for Ce(III) oxidation were 81.4%, 21.8% and 3.17 × 10 −4 s −1 , respectively. With the increase of temperature, the Ce(IV) yield, CE, and k increased (activation energy = 10.7 kJ/mol), but the specific electricity consumption decreased. The Neosepta CMX membrane was more suitable than Nafion-117 and Nafion-212 to be used as the separator of the Ce(IV) regeneration process. The obtained parameters are useful to design divided batch reactors for the Ce(IV) electro-regeneration in real spent Cr-etching solutions

  3. Power Conversion Study for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Richard Moore; Robert Barner

    2005-01-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gas cooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language

  4. Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions

    International Nuclear Information System (INIS)

    Hiwatari, R.; Asaoka, Y.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2004-01-01

    This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with β N = 1.8, HH = 1.0, andf nGW 0.85 had sufficient potential to achieve the electric break-even condition (net electric power P e net = 0MW) under the following engineering conditions: machine major radius 6.5m ≤ R p ≤ 8.5m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency η e 30%, and NBI system efficiency η NBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and fη GW . ≥ 3.0 is required for P e net ∼ 600MW with fusion power P f ∼ 3000MW. On the other hand, fη GW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of T ave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs P f (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius R p ∼ 7.5m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy. (author)

  5. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  6. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  7. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  8. Fast nuclear reactors. Associated international projects. State of the art and assessment of the concepts

    International Nuclear Information System (INIS)

    Azpitarte, O.; Ramilo, L.

    2013-01-01

    The recognition of the strategic importance of nuclear energy as a source of sustainable energy may be perceived in the continuous development, in many countries, of the technology of fast nuclear reactors with an associated closed fuel cycle, assuming that these Generation IV innovative systems will be required in the future. These reactors fulfill international requirements for safety and reliability, economic competitiveness, sustainability and proliferation resistance. They have the potential of using more efficiently the natural resources of Uranium and of reducing the volume and radiotoxicity of the nuclear waste by partitioning and transmutation of Minor Actinides. The national and international programs being carried out today are concentrated in the following concepts: Sodium Fast Reactor (SFR), Lead Fast Reactor (LFR), Gas Fast Reactor (GFR), Super Critical Water Reactor (SCWR) and Molten Salt Reactor (MSR). This article presents a short review of the technology of the mentioned concepts and details the current state of the main national and international related projects. (author)

  9. Analysis of fast reactor steam generator performance

    International Nuclear Information System (INIS)

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  10. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  11. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  12. Report and analysis on 'PR and PP evaluation. Example sodium fast reactor full system case study'

    International Nuclear Information System (INIS)

    Sagara, Hiroshi; Inoue, Naoko; Kawakubo, Yoko; Watahiki, Masaru

    2011-01-01

    The Generation IV (GEN IV) Nuclear Energy Systems International Forum (GIF) Proliferation Resistance and Physical Protection Working Group (PRPP WG) was established in December 2002 in order to develop the PR and valuation methodology for GEN IV nuclear energy systems. In the final report of 'PR and PP Evaluation: Example Sodium Fast Reactor (ESFR) Full System Case Study,' issued in October 2009, the demonstration study of PR and PP evaluation with the qualitative approach are summarized using ESFR with four scenario threats. The present paper reviews and analyzes some results of the ESFR case study, and identifies the challenges and direction for the PR and PP evaluation methodology with quantitative approach. (author)

  13. Detection of steam generator tube leaks in pressurized water reactors

    International Nuclear Information System (INIS)

    Roach, W.H.

    1984-11-01

    This report addresses the early detection of small steam generator tube leaks in pressurized water reactors. It identifies physical parameters, establishes instrumentation performance goals, and specifies sensor types and locations. It presents a simple algorithm that yields the leak rate as a function of known or measurable quantities. Leak rates of less than one-tenth gram per second should be detectable with existing instrumentation

  14. Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Anderson, Nolan

    2011-01-01

    The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

  15. International project GT-MHR - New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Vasyaev, A.; Kodochigov, N.; Kuzavkov, N.; Kuznetsov, L.

    2001-01-01

    Gas turbine-modular helium reactor (GT-MHR) is the reactor of new generation, which satisfies the requirements of the progressing large-scale nuclear power engineering. The activities in GT-MHR Project started in 1995. In 1997 the Conceptual Design was developed under four-side Agreement (MINATOM, General Atomics, FRAMATOME, Fuji Electric); it has passed through the internal and international reviews, has been approved and recommended for further development as one of new trends in creation of new generation plants. Starting from 1999, the activities in the development of the Preliminary Design of the plant were deployed under the Agreement between the Government of the United States of America and the Government of the Russian Federation on Scientific and Technical Cooperation in the Management of Plutonium That Has Been Withdrawn From Nuclear Military Programs dated July 24, 1998. The activities are established under the Contract between MINATOM and OKBM Russia, and under the General Agreement between Department of Energy (DOE), USA and OKBM. The GT-MHR Project is included into 'Development Strategy of Russian Nuclear Power in the first Half of the XXI-st Century' providing for 'the participation in an international project on the development and construction of GT-MHR nuclear power plant till year 2010 and 'operation of GT-MHR prototype unit and creation of fuel fabrication facility (within framework of International Project) till year 2030'. (author)

  16. AREVA's nuclear reactors portfolio

    International Nuclear Information System (INIS)

    Marincic, A.

    2009-01-01

    A reasonable assumption for the estimated new build market for the next 25 years is over 340 GWe net. The number of prospect countries is growing almost each day. To address this new build market, AREVA is developing a comprehensive portfolio of reactors intended to meet a wide range of power requirements and of technology choices. The EPR reactor is the flagship of the fleet. Intended for large power requirements, the four first EPRs are being built in Finland, France and China. Other countries and customers are in view, citing just two examples: the Usa where the U.S. EPR has been selected as the technology of choice by several U.S utilities; and the United Kingdom where the Generic Design Acceptance process of the EPR design submitted by AREVA and EDF is well under way, and where there is a strong will to have a plant on line in 2017. For medium power ranges, the AREVA portfolio includes a boiling water reactor and a pressurized water reactor which both offer all of the advantages of an advanced plant design, with excellent safety performance and competitive power generation cost: -) KERENA (1250+ MWe), developed in collaboration with several European utilities, and in particular with Eon; -) ATMEA 1 (1100+ MWe), a 3-loop evolutionary PWR which is being developed by AREVA and Mitsubishi. AREVA is also preparing the future and is deeply involved into Gen IV concepts. It has developed the ANTARES modular HTR reactor (pre-conceptual design completed) and is building upon its vast Sodium Fast Reactor experience to take part into the development of the next prototype. (author)

  17. Optimization of the steam generator project of a gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Sakai, Massao

    1978-01-01

    The present work is concerned with the modeling of the primary and secondary circuits of a gas cooled nuclear reactor in order to obtain the relation between the parameters of the two cycles and the steam generator performance. The procedure allows the optimization of the steam generator, through the maximization of the plant net power, and the application of the optimal control theory of dynamic systems. The heat balances for the primary and secondary circuits are carried out simultaneously with the optimized - design parameters of the steam generator, obtained using an iterative technique. (author)

  18. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  19. Fast reactor steam generators with sodium on the tube side. Design and operational parameters

    International Nuclear Information System (INIS)

    1994-01-01

    A comparison of design and operational characteristics as well as analysis of experience gained during the long terms operation of the Micro Module Inverse Steam Generator and Module Inverse Steam Generator at BOR 60 reactor are main aims of this technical report. 20 refs, 47 figs, 14 tabs

  20. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior - 15294

    International Nuclear Information System (INIS)

    Ordonez, J.; Lazaro, A.; Martorell, S.

    2015-01-01

    One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modeling of recirculation pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor) design and the analysis of loss of flow transients triggered by pumps coast-down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast-down is also included. (authors)