WorldWideScience

Sample records for generation iv nuclear

  1. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  2. Nordic Nuclear Materials Forum for Generation IV Reactors

    International Nuclear Information System (INIS)

    Anghel, C.; Penttilae, S.

    2010-03-01

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  3. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  4. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  5. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  6. Generation IV nuclear plant design strategies

    International Nuclear Information System (INIS)

    Altin, V.

    2007-01-01

    In this presentation Generation IV nuclear reactor design criteria are examined under the light of known nuclear properties of fissile and fertile nuclei. Their conflicting nature is elucidated along with the resulting inevitability of a multitude of designs. The designs selected as candidates for further development are evaluated with respect to their potential to serve the different design criteria, thereby revealing their more difficult aspects of realization and the strong research challenges lying ahead

  7. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  8. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  9. Generation IV nuclear reactors: Current status and future prospects

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro; Todeschini, Nicola

    2013-01-01

    Generation IV nuclear power plants (GEN IV NPPs) are supposed to become, in many countries, an important source of base load power in the middle–long term (2030–2050). Nowadays there are many designs of these NPPs but for political, strategic and economic reasons only few of them will be deployed. International literature proposes many papers and reports dealing with GEN IV NPPs, but there is an evident difference in the types and structures of the information and a general unbiased overview is missing. This paper fills the gap, presenting the state-of-the-art for GEN IV NPPs technologies (VHTR, SFR, SCWR, GFR, LFR and MSR) providing a comprehensive literature review of the different designs, discussing the major R and D challenges and comparing them with other advanced technologies available for the middle- and long-term energy market. The result of this research shows that the possible applications for GEN IV technologies are wider than current NPPs. The economics of some GEN IV NPPs is similar to actual NPPs but the “carbon cost” for fossil-fired power plants would increase the relative valuation. However, GEN IV NPPs still require substantial R and D effort, preventing short-term commercial adoption. - Highlights: • Generation IV reactors are the middle–long term technology for nuclear energy. • This paper provides an overview and a taxonomy for the designs under consideration. • R and D efforts are in the material, heat exchangers, power conversion unit and fuel. • The life cycle costs are competitive with other innovative technologies. • The hydrogen economy will foster the development of Generation IV reactors

  10. Current status of NPP generation IV

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Dharu Dewi; Nurlaila; Arief Tris Yuliyanto

    2013-01-01

    Today development of nuclear technology has reached the stage of research and development of Generation IV nuclear power plants (advanced reactor systems) which is an innovative development from the previous generation of nuclear power plants. There are six types of power generation IV reactors, namely: Very High Temperature Reactor (VHTR), Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), and Super Critical Water-cooled Reactor (SCWR). The purpose of this study is to know the development of Generation IV nuclear power plants that have been done by the thirteen countries that are members of the Gen IV International Forum (GIF). The method used is review study and refers to various studies related to the current status of research and development of generation IV nuclear power. The result of this study showed that the systems and technology on Generation IV nuclear power plants offer significant advances in sustainability, safety and reliability, economics, and proliferation resistance and physical protection. In addition, based on the research and development experience is estimated that: SFR can be used optimally in 2015, VHTR in 2020, while NPP types GFR, LFR, MSR, and SCWR in 2025. Utilization of NPP generation IV said to be optimal if fulfill the goal of NPP generation IV, such as: capable to generate energy sustainability and promote long-term availability of nuclear fuel, minimize nuclear waste and reduce the long term stewardship burden, has an advantage in the field of safety and reliability compared to the previous generation of NPP and VHTR technology have a good prospects in Indonesia. (author)

  11. Technology Road-map Update for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2014-01-01

    This Technology Road-map Update provides an assessment of progress made by the Generation IV International Forum (GIF) in the development of the six systems selected when the original Technology Road-map was published in 2002. More importantly, it provides an overview of the major R and D objectives and milestones for the coming decade, aiming to achieve the Generation IV goals of sustainability, safety and reliability, economic competitiveness, proliferation resistance and physical protection. Lessons learnt from the Fukushima Daiichi nuclear power plant accident are taken into account to ensure that Generation IV systems attain the highest levels of safety, with the development of specific safety design criteria that are applicable across the six systems. Accomplishing the ten-year R and D objectives set out in this new Road-map should allow the more advanced Generation IV systems to move towards the demonstration phase. (authors)

  12. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    International Nuclear Information System (INIS)

    None

    2005-01-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R and D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R and D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan

  13. Nuclear fission today and tomorrow: from renaissance to technological breakthrough (Generation IV)

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2010-01-01

    This paper describes briefly the major scientific and technological challenges related to the very innovative nuclear fission reactor systems to be deployed at the horizon 2040 (called Generation IV). The paper focuses on the benefits of the Generation IV systems, according to criteria or technology goals established at the international level (Generation IV International Forum (GIF)). This goals are drastic improvements on four areas: sustainable development, industrial competitiveness, safety and reliability and proliferation resistance. The focus is on the design objectives and associated research issues that have been agreed upon internationally to meet these four ambitious goals. (author)

  14. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    need for substantial research. As we consider I and C systems in Generation IV reactors, we have the opportunity to take a much less 'timid' design philosophy than was taken in the design of I and C systems in the ALWRs. We need to make use of advanced technology to design an I and C system for the Generation IV multi-unit plant designs currently being considered. Such a design should accomplish the following: 1. provides for multi-unit control; 2. contributes to a plant design objective of a very low core damage frequency; 3. maximizes plant thermal efficiency (>50%); 4. maximizes plant capacity factor (>90%); 5. optimizes operability; 6. maximizes maintainability; 7. provides for on-line monitoring, calibration, and diagnostics; 8. provides optimum response to disturbances; 9. provides excellent load-following capability. When we consider the current situation in operating Generation I and II nuclear power plants and even Generation III ALWR design, we conclude that Generation IV reactors should employ at least Generation II measurement systems. Let us first consider data transmission, which is a form of communication, and ask the question: Do new communication-transferring methods by electrons flow in copper wires? The obvious answer is no. Virtually all new communication systems are using some electromagnetic method, such as light, microwaves, HF or VHF radio signals, and virtually no copper wires. When we envision Generation IV nuclear power plants, we should minimize the use of copper wires for data transmission. We should transmit data primarily by fiber optics and various wireless methods, some of which can penetrate thick barriers. Now let us consider sensors. If we use light for data transmission, then we should also use optical-based sensors. We should also take advantage of microprocessors, which provide opportunities to embed 'intelligence' in the sensor that can be used to increase accuracy, stability, and tolerance to external stressors (i.e., radiation

  15. Generation of multigroup cross sections from ENDF/B-IV nuclear data library

    International Nuclear Information System (INIS)

    Chapot, J.L.C.; Thome Filho, Z.D.

    1980-04-01

    The generation of nuclear data compacted in energy groups is made. The nuclear data library ENDF/B-IV, Evaluated Nuclear Data File, and the new version of the codes ETOG-3 and ETOT-3 are utilized. The data obtained are compared with data from other sources. (L.F.) [pt

  16. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  17. Some consideration on nuclear power development. Topics aroused by U.S. proposed 'Generation IV Nuclear Power System

    International Nuclear Information System (INIS)

    Wang Chuanying; Chen Shiqi

    2001-01-01

    U.S. proposed 'Generation IV Nuclear Power System' concept. Its origin and proposed goals for it are analyzed; goals are compared with requirements of URD. In particular, discussed issues on nuclear fuel cycle and Non-proliferation. A well-considered nuclear power development plan, paying close attention to international trend and considering comprehensively domestic situation, is expected

  18. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  19. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  20. Computations of nuclear response functions with MACK-IV

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hybrids, and fission applications

  1. Computations of nuclear response functions with MACK-IV

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M A; Gohar, Y

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hybrids, and fission applications.

  2. Policy-induced market introduction of Generation IV reactor systems

    International Nuclear Information System (INIS)

    Heek, Aliki Irina van; Roelofs, Ferry

    2011-01-01

    Almost 10 years ago the U.S. Department of Energy (DOE) started the Generation IV Initiative (GenIV) with 9 other national governments with a positive ground attitude towards nuclear energy. Some of these Generation IV systems, like the fast reactors, are nearing the demonstration stage. The question on how their market introduction will be implemented becomes increasingly urgent. One main topic for future reactor technologies is the treatment of radioactive waste products. Technological solutions to this issue are being developed. One possible process is the transformation of long-living radioactive nuclides into short living ones; a process known as transmutation, which can be done in a nuclear reactor only. Various Generation IV reactor concepts are suitable for this process, and of these systems most experience has been gained with the sodium-cooled fast reactor (SFR). However, both these first generation SFR plants and their Generation IV successors are designed as electricity generating plants, and therefore supposed to be commercially viable in the electricity markets. Various studies indicate that the generation costs of a combined LWR-(S)FR nuclear generating park (LWR: light water reactor) will be higher than that of an LWR-only park. To investigate the effects of the deployment of the different reactors and fuel cycles on the waste produced, resources used and costs incurred as a function of time, a dynamic fuel cycle assessment is performed. This study will focus on the waste impact of the introduction of a fraction of fast reactors in the European nuclear reactor park with a cost increase as described in the previous paragraph. The nuclear fuel cycle scenario code DANESS is used for this, as well as the nuclear park model of the EU-27 used for the previous study. (orig.)

  3. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning

  4. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

  5. R and D programme on generation IV nuclear energy systems: the high temperatures gas-cooled reactors

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Billot, P.; Anzieu, P.; Brossard, P.

    2005-01-01

    The Generation IV Technology Roadmap selected, among others, a sequenced development of advanced high temperature gas cooled reactors as one of the main focus for R and D on future nuclear energy systems. The selection of this research objective originates both from the significance of high temperature and fast neutrons for nuclear energy to meet the needs for a sustainable development for the medium-long term (2020/2030 and beyond), and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR to meet specific international market needs around 2020. The second step is a Very High Temperature Reactor - VHTR (>950 C) - to efficiently produce hydrogen through thermo-chemical or electro-chemical water splitting or to generate electricity with an efficiency above 50%, among other applications of high temperature nuclear heat. The third step of the Path is a Gas Fast Reactor - GFR - that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct or indirect thermodynamic cycle for electricity production and full recycle of actinides. Hydrogen production is also considered for the GFR. The paper succinctly presents the R and D program currently under definition and partially launched within the Generation IV International Forum on this consistent set of advanced gas cooled nuclear systems. (orig.)

  6. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  7. Transient Analysis Needs for Generation IV Reactor Concepts

    International Nuclear Information System (INIS)

    Siefken, L.J.; Harvego, E.A.; Coryell, E.W.; Davis, C.B.

    2002-01-01

    The importance of nuclear energy as a vital and strategic resource in the U. S. and world's energy supply mix has led to an initiative, termed Generation IV by the U.S. Department of Energy (DOE), to develop and demonstrate new and improved reactor technologies. These new Generation IV reactor concepts are expected to be substantially improved over the current generation of reactors with respect to economics, safety, proliferation resistance and waste characteristics. Although a number of light water reactor concepts have been proposed as Generation IV candidates, the majority of proposed designs have fundamentally different characteristics than the current generation of commercial LWRs operating in the U.S. and other countries. This paper presents the results of a review of these new reactor technologies and defines the transient analyses required to support the evaluation and future development of the Generation IV concepts. The ultimate objective of this work is to identify and develop new capabilities needed by INEEL to support DOE's Generation IV initiative. In particular, the focus of this study is on needed extensions or enhancements to SCDAP/RELAP5/3D code. This code and the RELAP5-3D code from which it evolved are the primary analysis tools used by the INEEL and others for the analysis of design-basis and beyond-design-basis accidents in current generation light water reactors. (authors)

  8. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models

  9. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  10. FISA-2009 Conference on Euratom Research and Training Activities: Nuclear Fission - Past, Present and Future (Generation-II, -III and -IV + Partitioning and Transmutation)

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Deffrennes, M.; Hugon, M.; Manolatos, P.; Ptackova, K.; Van Goethem, G.; Webster, S.

    2011-01-01

    This paper is an introduction to the research and training activities carried out under the Euratom 7th Framework Programme (FP7, 2007-2011) in the field of nuclear fission science and technology, covering in particular nuclear systems and safety, and including innovative reactor systems and partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by Euratom project coordinators and keynote speakers at the FISA-2009 Conference (), organised by the European Commission DG Research, 22-24 June 2009, Prague, Czech Republic. The Euratom programme must be considered in the context of current and future nuclear technology and the respective research effort: ·Generation-II (i.e. yesterday, NPP construction 1970-2000): safety and reliability of nuclear facilities and energy independence in order to ensure security of supply worldwide; ·Generation-III (i.e. today, construction 2000-2040+): continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; ·Generation-IV (i.e. tomorrow, construction from 2040) for increased sustainability though optimal utilisation of natural resources and waste minimisation, and increased proliferation resistance. Consequently, the focus of the lectures devoted to Generation-II and -III is on the major scientific challenges and technological developments needed to guarantee safety and reliability, in particular issues associated with plant lifetime extension and operation. The focus of the lectures devoted to Generation-IV is on the design objectives and associated research issues that have been agreed upon internationally, in particular the ambitious criteria and technology goals established at the international level by the Generation-IV International Forum (GIF). In the future, electricity must continue to be produced competitively, and in addition high temperature process heat may also be required, while exploiting a maximum of fissile and

  11. Improvement of Sodium Neutronic Nuclear Data for the Computation of Generation IV Reactors

    International Nuclear Information System (INIS)

    Archier, P.

    2011-01-01

    The safety criteria to be met for Generation IV sodium fast reactors (SFR) require reduced and mastered uncertainties on neutronic quantities of interest. Part of these uncertainties come from nuclear data and, in the particular case of SFR, from sodium nuclear data, which show significant differences between available international libraries (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). The objective of this work is to improve the knowledge on sodium nuclear data for a better calculation of SFR neutronic parameters and reliable associated uncertainties. After an overview of existing 23 Na data, the impact of the differences is quantified, particularly on sodium void reactivity effects, with both deterministic and stochastic neutronic codes. Results show that it is necessary to completely re-evaluate sodium nuclear data. Several developments have been made in the evaluation code Conrad, to integrate new nuclear reactions models and their associated parameters and to perform adjustments with integral measurements. Following these developments, the analysis of differential data and the experimental uncertainties propagation have been performed with Conrad. The resolved resonances range has been extended up to 2 MeV and the continuum range begins directly beyond this energy. A new 23 Na evaluation and the associated multigroup covariances matrices were generated for future uncertainties calculations. The last part of this work focuses on the sodium void integral data feedback, using methods of integral data assimilation to reduce the uncertainties on sodium cross sections. This work ends with uncertainty calculations for industrial-like SFR, which show an improved prediction of their neutronic parameters with the new evaluation. (author) [fr

  12. New reactor concepts for new generation of nuclear power plants: an overview, invited paper

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M.

    2006-01-01

    The outlook for energy demand underscores the need to increase the share of nuclear energy production. Achieving the vision of sustainable growth of nuclear energy will require development of both advanced nuclear fuel cycles and next generation reactor technologies and advanced reprocessing and fuel treatment technologies. To achieve this vision, the US department of energy (DOE) has adopted new strategy, the Global Nuclear Energy Partnership (GNEP), which integrates earlier programs: the Generation IV Nuclear Energy Systems Initiative (Generation IV), Nuclear Hydrogen Initiative (NHI), and the Advanced Fuel Cycle Initiative (AFCI) with proliferation-resistant spent fuel reprocessing to minimize nuclear waste. Generation IV furthers this vision beyond previous energy systems, such as Generation III+, through incremental improvements in economic competitiveness, sustainability, development of passively safe systems, and breakthrough methods to reduce the routes of nuclear proliferation. This paper summarizes the main characteristics of the six most promising nuclear energy systems identified by the Generation IV Roadmap and reviews some Generation IV system designs for small-side proliferation resistant reactors being developed by University of California at Berkeley. (author)

  13. Neutron lifetime and generation time by KENO IV

    International Nuclear Information System (INIS)

    Hayashi, Masatoshi

    1991-01-01

    It is believed that Monte Carlo method is suitable to the calculation of neutron lifetime and generation time with reference to the life cycle viewpoint. This paper illustrates that those times obtained by Monte Carlo method are quite different from the results by perturbation method. The neutron lifetime and the generation time for bare and reflected reactors were investigated by the Monte Carlo program, KENO IV. the Monte Carlo procedure is based on tracking and recording the life history of neutrons in a realistic fashion in a fissionable system with minimum nuclear and geometric approximations. The KENO IV provides the multiplication factor, neutron lifetime and generation time simultaneously. The thermal spherical reactors for both bare and reflected reactors were studied using the KENO IV. The reflected reactor is surrounded with 30 cm thick light water. The atomic densities in the regions and the calculated results of the multiplication factor, neutron lifetime and generation time are given. The different definitions of these times between the Monte Carlo method and perturbation theory caused the difference of the results. (K.I.)

  14. Building generation four: results of Canadian research program on generation IV energy technologies

    International Nuclear Information System (INIS)

    Anderson, T.; Leung, L.K.H.; Guzonas, D.; Brady, D.; Poupore, J.; Zheng, W.

    2014-01-01

    A collaborative grant program has been established between Natural Sciences and Engineering Research Council (NSERC) of Canada, Natural Resources Canada (NRCan), and Atomic Energy of Canada Limited (AECL) to support research and development (R&D) for the Canadian SuperCritical Water-cooled Reactor (SCWR) concept, which is one of six advanced nuclear reactor systems being studied under the Generation-IV International Forum (GIF). The financial support for this grant program is provided by NSERC and NRCan. The grant fund has supported university research investigating the neutronic, fuel, thermal-hydraulics, chemistry and material properties of the Canadian SCWR concept. Twenty-two universities have actively collaborated with experts from AECL Nuclear Laboratories and NRCan's CanmetMATERIALS (CMAT) Laboratory to advance the technologies, enhance their infrastructure, and train highly qualified personnel. Their R&D findings have been contributed to GIF fulfilling Canada's commitments. The unique collaborative structure and the contributions to Canada's nuclear science and technology of the NSERC/NRCan/AECL Generation IV Energy Technologies Program are presented. (author)

  15. Generation IV international forum 2002 - remarks

    International Nuclear Information System (INIS)

    Abraham, S.

    2002-01-01

    Analyses and forecasts underscore the important role of nuclear power in energy supply in the 21st century. Important aspects in this respect are the conservation of fossil resources, the protection of the world's climate, and the continuity of supply. Present 1st and 2nd generation nuclear power plants ensure an economical and technically mature electricity supply. Advanced systems offering, e.g., higher efficiency of fuel utilization, simplified systems technology, and advanced safety characteristics, can make available additional benefits in using nuclear power. Upon an initiative of the U.S. Department of Energy (DOE), ten countries combine their efforts in developing such reactor concepts in the Generation IV International Forum (GIF). Argentina, Brazil, Canada, France, Japan, South Africa, South Korea, Switzerland, the United Kingdom, and the United States pursue the common objective in GIF to identify suitable nuclear power systems and promote their development up to the envisaged readiness for construction in 2030. Besides technical and economic questions of nuclear power generation, also other aspects must be considered with a view to the future use of nuclear power. The particularly relevant issues, such as the management of radioactive waste, the intensification of research and development, and international cooperation, have been taken up by the Bush administration at an early point in time and have been, or will be, incorporated in practical solutions, as in the case of the Yucca Mountain repository project. (orig.)

  16. Methodology for proliferation resistance and physical protection of Generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Bari, R.; Peterson, P.; Nishimura, R.; Roglans-Ribas, J.

    2005-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts. Under the auspices of the Generation IV International Forum an international experts group has been chartered to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems and support design optimization to enhance robustness against proliferation, theft and sabotage. The assessment framework consists of identifying the threats to be considered, defining the PR and PP measures required to evaluate the resistance of a nuclear system to proliferation, theft or sabotage, and establishing quantitative methods to evaluate the proposed measures. The defined PR and PP measures are based on the design of the system (e.g., materials, processes, facilities), and institutional measures (e.g., safeguards, access control). The assessment methodology uses analysis of pathways' with respect to specific threats to determine the PR and PP measures. Analysis requires definition of the threats (i.e. objective, capability, strategy), decomposition of the system into its relevant elements (e.g., reactor core, fuel recycle facility, fuel storage), and identification of targets. (author)

  17. Basis for the safety approach for design and assessment of Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Fiorini, G.L.; Leahy, T.

    2009-01-01

    The primary objective of the RSWG is the implementation of a harmonized approach on long-term safety, and to address risk and regulatory issues in development of the next generation of nuclear systems. To this end, the group is proposing safety goals and evaluation methodology applicable for the design and assessment of future systems. The paper resumes the content of the first RSWG report which provides insights for the safety approach and assists the GIF Systems Steering Committee as well as the GIF Experts Group and the GIF Policy Group for the definition of the most adequate safety related Gen IV R and D. The document is also an essential contributor to help identifying the needed supportive crosscut R and D effort (i.e. applicable to all the innovative nuclear technologies). Although the report presents a number of thoughts and recommendations, it really represents only the start of the efforts for the RSWG. (author)

  18. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Allen, T.R.; Was, G.S.; Bruemmer, S.M.; Gan, J.; Ukai, S.

    2005-12-28

    The objective of this program is to improve the radiation tolerance of both austenitic and ferritic-martensitic (F-M) alloys projected for use in Generation IV systems. The expected materials limitations of Generation IV components include: creep strength, dimensional stability, and corrosion/stress corrosion compatibility. The material design strategies to be tested fall into three main categories: (1) engineering grain boundaries; (2) alloying, by adding oversized elements to the matrix; and (3) microstructural/nanostructural design, such as adding matrix precipitates. These three design strategies were tested across both austenitic and ferritic-martensitic alloy classes

  19. Overview of the CEA R and D support to generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-01-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum

  20. Overview of the CEA R and D support to generation IV nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-07-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum.

  1. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2012-01-01

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  2. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  3. Analysis of a Spanish energy scenario with Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Ochoa, Raquel; Jimenez, Gonzalo; Perez-Martin, Sara

    2013-01-01

    Highlights: • Spanish energy scenario for the hypothetical deployment of Gen-IV SFR reactors. • Availability of national resources is assessed, considering SFR’s breeding. • An assessment of the impact of transmuting MA on the final repository. • SERPENT code with own pre- and post-processing tools were employed. • The employed SFR core design is based on the specifications of the CP-ESFR. - Abstract: The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed

  4. Generation IV national program

    International Nuclear Information System (INIS)

    Preville, M.; Sadhankar, R.; Brady, D.

    2007-01-01

    This paper outlines the Generation IV National Program. This program involves evolutionary and innovative design with significantly higher efficiencies (∼50% compared to present ∼30%) - sustainable, economical, safe, reliable and proliferation resistant - for future energy security. The Generation IV Forum (GIF) effectively leverages the resources of the participants to meet these goals. Ten countries signed the GIF Charter in 2001

  5. A Study on the Planning of Technology Development and Research for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J. and others

    2005-08-15

    This study aimed at the planning the domestic technology development of the Gen IV and the formulating the international collaborative project contents and executive plan for 'A Validity Assessment and Policies of the R and D of Generation IV Nuclear Energy Systems'. The results of the study include follows; - Survey of the technology state in the fields of the Gen IV system specific technologies and the common technologies, and the plans of the international collaborative research - Drawing up the executive research and development plan by the experts of the relevant technology field for the systems which Korean will participate in. - Formulating the effective conduction plan of the program reflecting the view of the experts from the industry, the university and the research institute. - Establishing the plan for estimation of the research fund and the manpower for the efficient utilization of the domestic available resources. This study can be useful material for evaluating the appropriateness of the Korea's participation in the international collaborative development of the Gen IV, and can be valuably utilized to establish the strategy for the effective conduction of the program. The executive plan of the research and development which was produced in this study will be used to the basic materials for the establishing the guiding direction and the strategic conduction of the program when the research and development is launched in the future.

  6. US Nuclear Regulatory Commission region IV

    International Nuclear Information System (INIS)

    Vanderburch, C.

    1996-01-01

    The NRC has established a policy to provide for the timely through and systematic inspection of significant operational events at nuclear power plants. This includes the use of an Augmented Inspection Team to determine the causes, conditions, and circumstances relevant to an event and to communicate its findings and conclusions to NRC management. In accordance with NRC Inspection Manual Chapter 0325. The Region IV Regional Administrator dispatched an Augmented Inspection Team to the Wolf Creek Nuclear Generating Station to review the circumstances surrounding a manual reactor trip on January 30, 1996, with the failure of five control rods to fully insert into the core, a failure of the turbine-driven auxiliary feedwater pump, and the subsequent loss of one train of the essential service water system

  7. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  8. MACKLIB-IV: a library of nuclear response functions generated with the MACK-IV computer program from ENDF/B-IV

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.A.

    1978-03-01

    MACKLIB-IV employs the CTR energy group structure of 171 neutron groups and 36 gamma groups. A retrieval computer program is included with the library to permit collapsing into any other energy group structure. The library is in the new format of the ''MACK-Activity Table'' which uses a fixed position for each specific response function. This permits the user when employing the library with present transport codes to obtain directly the nuclear responses (e.g. the total nuclear heating) summed for all isotopes and integrated over any geometrical volume. The response functions included in the library are neutron kerma factor, gamma kerma factor, gas production and tritium-breeding functions, and all important reaction cross sections. Pertinent information about the library and a graphical display of six response functions for all materials in the library are given

  9. Nuclear data uncertainty analysis for the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Pelloni, S.; Mikityuk, K.

    2012-01-01

    For the European 2400 MW Gas-cooled Fast Reactor (GoFastR), this paper summarizes a priori uncertainties, i.e. without any integral experiment assessment, of the main neutronic parameters which were obtained on the basis of the deterministic code system ERANOS (Edition 2.2-N). JEFF-3.1 cross-sections were used in conjunction with the newest ENDF/B-VII.0 based covariance library (COMMARA-2.0) resulting from a recent cooperation of the Brookhaven and Los Alamos National Laboratories within the Advanced Fuel Cycle Initiative. The basis for the analysis is the original GoFastR concept with carbide fuel pins and silicon-carbide ceramic cladding, which was developed and proposed in the first quarter of 2009 by the 'French alternative energies and Atomic Energy Commission', CEA. The main conclusions from the current study are that nuclear data uncertainties of neutronic parameters may still be too large for this Generation IV reactor, especially concerning the multiplication factor, despite the fact that the new covariance library is quite complete; These uncertainties, in relative terms, do not show the a priori expected increase with bum-up as a result of the minor actinide and fission product build-up. Indeed, they are found almost independent of the fuel depletion, since the uncertainty associated with 238 U inelastic scattering results largely dominating. This finding clearly supports the activities of Subgroup 33 of the Working Party on International Nuclear Data Evaluation Cooperation (WPEC), i.e. Methods and issues for the combined use of integral experiments and covariance data, attempting to reduce the present unbiased uncertainties on nuclear data through adjustments based on available experimental data. (authors)

  10. Fast reactor development and worldwide cooperation in Generation-IV International Forum

    International Nuclear Information System (INIS)

    Sagayama, Yutaka

    2013-01-01

    Objectives of Gen-IV systems development: Goals: Four challenging technology goals have been defined to be applied to innovative nuclear reactor concepts in the 21st century: 1) Safety and Reliability (safe and reliable operation, no offsite emergency response); 2) Sustainability (effective fuel utilization, minimization of nuclear waste); 3) Proliferation Resistance & Physical Protection (to assure unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism); 4) Economic Competitiveness (life-cycle cost advantage over other energy resources). Phase: Each Generation-IV reactor system is one of three stages. 1) Viability Phase; 2) Performance Phase; 3) Demonstration Phase. Target: Commercial Deployment is expected around 2030s or beyond

  11. A Study on planning of promotion for international collaborative development of Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Hee, Chang Moon; Yang, M. S.; Ha, J. J.

    2006-06-01

    Korea has participated in the international collaboration programs for the development of future nuclear energy systems driven by the countries holding advanced nuclear technology and Korea and U. S. have cooperated in the INERI. This study is mainly at developing the plan for participation in the collaborative development of the Gen IV, searching the participation strategy for INERI and the INPRO, and the international cooperation in these programs. Contents and scope of the study for successful achievement are as follows; - Investigation and analysis of international and domestic trends related to advanced nuclear technologies - Development of the plan for collaborative development of the Gen IV and conducting the international cooperation activities - Support for the activities related to I-NERI between Korea and U. S. and conducting the international cooperation - International cooperation activities for the INPRO This study can be useful for planning the research plan and setting up of the strategy of integrating the results of the international collaboration and the domestic R and D results by combining the Gen IV and the domestic R and D in the field of future nuclear technology. Furthermore, this study can contribute to establishing the effective foundation and broadening the cooperation activities not only with the advanced countries for acquisition of the advanced technologies but also with the developing countries for the export of the domestic nuclear energy systems

  12. Fault diagnosis of generation IV nuclear HTGR components – Part II: The area error enthalpy–entropy graph approach

    International Nuclear Information System (INIS)

    Rand, C.P. du; Schoor, G. van

    2012-01-01

    Highlights: ► Different uncorrelated fault signatures are derived for HTGR component faults. ► A multiple classifier ensemble increases confidence in classification accuracy. ► Detailed simulation model of system is not required for fault diagnosis. - Abstract: The second paper in a two part series presents the area error method for generation of representative enthalpy–entropy (h–s) fault signatures to classify malfunctions in generation IV nuclear high temperature gas-cooled reactor (HTGR) components. The second classifier is devised to ultimately address the fault diagnosis (FD) problem via the proposed methods in a multiple classifier (MC) ensemble. FD is realized by way of different input feature sets to the classification algorithm based on the area and trajectory of the residual shift between the fault-free and the actual operating h–s graph models. The application of the proposed technique is specifically demonstrated for 24 single fault transients considered in the main power system (MPS) of the Pebble Bed Modular Reactor (PBMR). The results show that the area error technique produces different fault signatures with low correlation for all the examined component faults. A brief evaluation of the two fault signature generation techniques is presented and the performance of the area error method is documented using the fault classification index (FCI) presented in Part I of the series. The final part of this work reports the application of the proposed approach for classification of an emulated fault transient in data from the prototype Pebble Bed Micro Model (PBMM) plant. Reference data values are calculated for the plant via a thermo-hydraulic simulation model of the MPS. The results show that the correspondence between the fault signatures, generated via experimental plant data and simulated reference values, are generally good. The work presented in the two part series, related to the classification of component faults in the MPS of different

  13. Modeling by GASP-IV simulation of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Kurstedt, H.A. Jr.; DePorter, E.L.; Turek, J.L.; Funk, S.K.; Rasbach, C.E.

    1981-01-01

    High-level nuclear waste generated by defense-oriented and commercial nuclear energy activities are to be stored ultimately in underground repositories. Research continues on the waste-form and waste-form processing. DOE managers must coordinate the results of this research, the capacities and availability times of the permanent geologic storage repositories, and the capacities and availability times of interim storage facilities (pending availability of permanent repositories). Comprehensive and active DOE program-management information systems contain predicted generation of nuclear wastes from defense and commercial activities; milestones on research on waste-forms; and milestones on research and development, design, acquisition, and construction of facilities and repositories. A GASP IV simulation model is presented which interfaces all of these data. The model accepts alternate management decisions; relates all critical milestones, all research and development data, and the generation of waste nuclear materials; simulates the passage of time; then, predicts the impact of those alternate decisions on the availability of storage capacity for waste nuclear materials. 3 references, 3 figures

  14. Methods and criterions for IV generation system choice

    International Nuclear Information System (INIS)

    Carre, F; Fiorini, G. L.

    2005-01-01

    The international forum of IV generation has been built up in 2000, initiated by the American Energy Department with an initial participation of nine countries (and of ten today). In a primary phase of these works, which was finished in October 2002, the forum objects were to define the list of nuclear systems conditions which could be ready to use in 2030 to make a sustainable energy development, and select previously the most promising technology to attain these purposes. This article presents, with its trumps and limits, the methodology which was used to select, starting from 120 propositions, one set of 6 systems which includes key technologies for the nuclears of the 21st century. (Authors)

  15. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  16. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  17. Foresight of nuclear generation at long term in Mexico

    International Nuclear Information System (INIS)

    Guadarrama L, R.; Sanchez R, O. E.; Martin del Campo M, C.

    2009-10-01

    This paper presents an analysis of the nuclear generation expansion for the period 2008-2030. The main objective is to plan the expansion of electrical generation system at long term taking into account four decision criteria. These are, the total cost of generation, the risk associated whit changes in fuel prices, the diversity of the generation park and polluting emissions of global impact (greenhouse effect gases) and local effects (acid rain and suspended particles). The analyzed expansion plans were developed using a model of uni nodal planning called WASP-IV. The analysis methodology was based on four steps. The first consisted in developing, with model WASP-IV, different expansion plans of the electrical generation system that fulfill the energy demand and certain conditions of the study in which was optimized the additions program of generator units searching the minimal cost of electrical generation. The second step was to calculate the generation costs of each plan for two scenarios of fuel prices, also with model WASP-IV. Later was calculated the diversity index and the accumulated emissions during the expansion and the avoided emission of CO 2 when units of combined cycle that burn natural gas are replaced by nuclear power units. (Author)

  18. DEVELOPMENT OF A METHODOLOGY TO ASSESS PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J.; Kalenchuk, D.

    2004-01-01

    Enhanced proliferation resistance and physical protection (PR and PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR and PP. This methodology will permit an objective PR and PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR and PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures

  19. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10{sup -3}) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the

  20. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    International Nuclear Information System (INIS)

    2013-01-01

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10 -3 ) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the Proceedings of

  1. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    Science.gov (United States)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  2. Generation-IV nuclear reactors, SFR concept

    International Nuclear Information System (INIS)

    Dufour, P.

    2010-01-01

    In this presentation author deals with development of sodium-cooled fast reactors and lead-cooled fast reactors. He concluded that: - SFR is a proved concept that has never achieved industrial deployment; - The GEN IV objectives need to reconsider the design of both the core and the reactor design : innovations are being analysed; Future design will benefit from considerable feedback of design, licensing, construction and operation of PX, SPX, etc.

  3. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations

    International Nuclear Information System (INIS)

    Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Bruna, Giovanni; Hache, Georges; Repussard, Jacques

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  4. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  5. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  6. Status of the design and safety project for the sodium-cooled fast reactor as a generation IV nuclear energy system

    International Nuclear Information System (INIS)

    Niwa, Hajime; Fiorini, Gian-Luigi; Sim, Yoon-Sub; Lennox, Tom; Cahalan, James E.

    2005-01-01

    The Design and Safety Project Management Board (DSPMB) was established under the Sodium Cooled Fast Reactor (SFR) System Steering Committee (SSC) in the Generation IV international Forum. The DSPMB will promote collaborative R and D activities on reactor core design, and safety assessment for candidate systems, and also integrate these results together with those from other PMBs such as advanced fuel and component to a whole fast reactor system in order to develop high performance systems that will satisfy the goals of Generation IV nuclear energy systems. The DSPMB has formulated the present R and D schedules for this purpose. Two SFR concepts were proposed: a loop-type system with primarily a MOX fuel core and a pool-type system with a metal fuel core. Study of innovative systems and their evaluation will also be included. The safety project will cover both the safety assessment of the design and the preparation of the methods/tools to be used for the assessment. After a rather short viability phase, the project will move to the performance phase for development of performance data and design optimization of conceptual designs. This paper describes the schedules, work packages and tasks for the collaborative studies of the member countries. (author)

  7. Exergy analysis for Generation IV nuclear plant optimization

    International Nuclear Information System (INIS)

    Gomez, A.; Azzaro-Pantel, C.; Domenech, S.; Pibouleau, L.; Latge, Ch.; Haubensack, D.; Dumaz, P.

    2010-01-01

    This paper deals with the application of the exergy concept to an energy production system involving a very high temperature reactor coupled with an innovative electricity-generating cycle. The objective is to propose a general approach to quantify exergy destruction of the involved process components, modelled by a thermodynamic simulator (Proceedings of the Conference on High Temperature Reactors, Beijing, China, 22-24 September 2004, International Atomic Agency, Vienna (Austria), HTR-2004; 1-11). The minimization of exergy destruction is then identified as the optimization criterion used in an optimization framework based on a genetic algorithm, in which the model is embedded. Finally, the approach is applied to electrical production by a Brayton-Rankine combined cycle connected to a nuclear reactor. Some typical results are presented. The perspectives of this work including the cogeneration of hydrogen and electricity are highlighted. (authors)

  8. Exergy analysis for Generation IV nuclear plant optimization

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, A.; Azzaro-Pantel, C.; Domenech, S.; Pibouleau, L. [Univ Toulouse, Lab Genie Chim, CNRS, UMR 5503, F-31700 Toulouse 1 (France); Latge, Ch. [CEA Cadarache DEN DTN DIR, St Paul Les Durance, (France); Haubensack, D.; Dumaz, P. [CEA Cadarache DEN DER SESI LCSI, St Paul Les Durance (France)

    2010-07-01

    This paper deals with the application of the exergy concept to an energy production system involving a very high temperature reactor coupled with an innovative electricity-generating cycle. The objective is to propose a general approach to quantify exergy destruction of the involved process components, modelled by a thermodynamic simulator (Proceedings of the Conference on High Temperature Reactors, Beijing, China, 22-24 September 2004, International Atomic Agency, Vienna (Austria), HTR-2004; 1-11). The minimization of exergy destruction is then identified as the optimization criterion used in an optimization framework based on a genetic algorithm, in which the model is embedded. Finally, the approach is applied to electrical production by a Brayton-Rankine combined cycle connected to a nuclear reactor. Some typical results are presented. The perspectives of this work including the cogeneration of hydrogen and electricity are highlighted. (authors)

  9. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  10. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsige-Tamirat, H.; Ammirabile, L.; D' Agata, E.; Fuetterer, M.; Ranguelova, V. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755LE Petten (Netherlands)

    2010-07-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  11. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ammirabile, L.; D'Agata, E.; Fuetterer, M.; Ranguelova, V.

    2010-01-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  12. Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    IV International scientific and technical conference “Innovative designs and technologies of nuclear power” has been organized and is conducted by JSC NIKIET with support from Rosatom State Corporation, the International Atomic Energy Agency, the Russian Academy of Sciences and the Nuclear Society of Russia. The conference topics include: innovative designs of nuclear facilities for various applications, nuclear fuel and new materials, closed fuel cycle technologies, SNF and RW management, technological answers to nonproliferation problems, small power reactors (stationary, transportable, floatable, propulsion, space), integrated codes of a new generation for safety analysis of nuclear power plants and fuel cycles, controlled fusion [ru

  13. Review on Korea Participation of Generation IV International Forum (GIF)

    International Nuclear Information System (INIS)

    Lee, Jewhan; Jeong, Ji-Young; Hahn, Dohee

    2015-01-01

    Generation IV International Forum (GIF) originates from US proposal of an initiative in 2000. The vision was to leapfrog LWR technology and collaborate with international partners to share R and D on advanced nuclear systems. Nine countries and EU joined the initiative and Gen IV concept was defined via technology goals and legal framework. Two years study with more than 100 experts worldwide has evaluated nearly 100 reactor designs and down selected six most promising concepts. In 2005, the first signatures on Framework Agreement were collected and the first research projects were defined in 2006. Korea is one of the founding members of GIF and actively participating in various areas. In 2013, TD was assigned to Korean expert and Korea is endeavoring to enhance the benefit of participation since this turning point. In this paper, pros and cons of engaging with GIF were briefly introduced and items to maximize the benefit were suggested

  14. Review on Korea Participation of Generation IV International Forum (GIF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jewhan; Jeong, Ji-Young; Hahn, Dohee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Generation IV International Forum (GIF) originates from US proposal of an initiative in 2000. The vision was to leapfrog LWR technology and collaborate with international partners to share R and D on advanced nuclear systems. Nine countries and EU joined the initiative and Gen IV concept was defined via technology goals and legal framework. Two years study with more than 100 experts worldwide has evaluated nearly 100 reactor designs and down selected six most promising concepts. In 2005, the first signatures on Framework Agreement were collected and the first research projects were defined in 2006. Korea is one of the founding members of GIF and actively participating in various areas. In 2013, TD was assigned to Korean expert and Korea is endeavoring to enhance the benefit of participation since this turning point. In this paper, pros and cons of engaging with GIF were briefly introduced and items to maximize the benefit were suggested.

  15. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  16. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-01-01

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  17. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  18. Gen IV. Technical and economical aspects

    International Nuclear Information System (INIS)

    Kaluzny, Y.; Legee, F.

    2010-01-01

    In this presentation author deals with development of nuclear reactor type of Generation IV. He concluded that: - Nuclear energy is competitive with regards to the other generation sources; Its competitiveness also increases with CO 2 cost. Considering the nuclear cost breakdown of LWR reactors, it turns out that the uranium is currently not in the range of a threshold for FBR deployment; - The global balance of uranium supply and demand and also innovation required to fulfil GEN IV objectives would probably imply the emergence of fast reactor competitiveness after the turn of the mid-century; - We shall need fast reactors in the coming decade.

  19. Corrosion of structural materials for Generation IV systems

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Cabet, C.; Courouau, J.L.; Martinelli, L.; Arnoux, P.

    2009-01-01

    The Generation IV International Forum aims at developing future generation nuclear energy systems. Six systems have been selected for further consideration: sodium-cooled fast reactor (SFR), gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR) and very high temperature reactor (VHTR). CEA, in the frame of a national program, of EC projects and of the GIF, contributes to the structural materials developments and research programs. Particularly, corrosion studies are being performed in the complex environments of the GEN IV systems. As a matter of fact, structural materials encounter very severe conditions regarding corrosion concerns: high temperatures and possibly aggressive chemical environments. Therefore, the multiple environments considered require also a large diversity of materials. On the other hand, the similar levels of working temperatures as well as neutron spectrum imply also similar families of materials for the various systems. In this paper, status of the research performed in CEA on the corrosion behavior of the structural material in the different environments is presented. The materials studied are either metallic materials as austenitic (or Y, La, Ce doped) and ferrito-martensitic steels, Ni base alloys, ODS steels, or ceramics and composites. In all the environments studied, the scientific approach is identical, the objective being in all cases the understanding of the corrosion processes to establish recommendations on the chemistry control of the coolant and to predict the long term behavior of the materials by the development of corrosion models. (author)

  20. In-Pile Testing and Instrumentation for Development of Generation-IV Fuels and Materials. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-12-01

    For many years, the increase in efficiency in the production of nuclear electricity has been an economic challenge in many countries which have developed this kind of energy. The increase in fuel burnup and fuel residence time leads to a reduction in the volume of fresh fuel loaded and spent fuel discharged, respectively. More demanding nuclear fuel cycle parameters are combined with a need to operate nuclear power plants with maximal availability and load factors, in load-follow mode and with longer fuel cycles. In meeting these requirements, fuel has to operate in a demanding environment of high radiation fields, high temperatures, high mechanical stresses and high coolant flow. Requirements of increased fuel reliability and minimal fuel failures also remain in force. Under such circumstances, continuous development of more radiation resistant fuel materials, especially advanced cladding, careful and incremental examinations, and improved understanding and modelling of high burnup fuel behaviour are required. Following a recommendation of the IAEA Technical Working Group on Fuel Performance and Technology, the Technical Meeting on In-pile Testing and Instrumentation for Development of Generation-IV Fuels and Materials was held in Halden, Norway, on 21-24 August 2012. The purpose of the meeting was to review the current status and the progress in methods and technologies used for the in-pile testing of nuclear fuel achieved since the previous IAEA meeting on In-core Instrumentation and Reactor Core Assessment, also held in Halden in 2007. Emphasis was placed on advanced techniques applied for the understanding of high burnup fuel behaviour of water cooled power reactors that represent the vast majority of the current nuclear reactor fleet. However, the meeting also included papers and discussion on testing techniques applied or developed specifically for new fuel and structural materials considered for Generation-IV systems. The meeting was attended by 43

  1. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  2. Basic research in support of innovative fuels design for the Generation IV systems (F-BRIDGE project)

    International Nuclear Information System (INIS)

    Valot, Carole; Bertolus, Marjorie; Konings, Rudy; Somers, Joe; Groot, Sander de

    2010-01-01

    F-BRIDGE (Basic Research in support of Innovative Fuels Design for the GEN IV systems) is a 4-year project which started in 2008. It seeks to bridge the gap between basic research and technological applications for generation IV nuclear reactor systems. One of the challenges for the next generation of reactors is to significantly increase the efficiency in designing innovative fuels. The object of the F-BRIDGE project is to complement the empirical approach by a physically-based description of fuel and cladding materials to enable a rationalization of the design process and a better selection of promising fuel systems. Advanced modelling and separate effects experiments are carried out in order to obtain more exact physical descriptions of ceramic fuels and cladding, at relevant scales from the atomic to the macroscopic scale. Research is also focused on assessing and improving 'sphere-pac' fuel, a composite-ceramics concept which has shown promise. The project activities can be broken down into four main areas: (i) Basic research investigations using a multi-scale approach in both experimentation and modelling to enable the generation of missing basic data, the identification of relevant mechanisms and the development of appropriate models; (ii) Transfer between technological issues and basic research by bringing together within the same project materials scientists, engineers and end-users; (iii) Assessment of the drawbacks and benefits of the sphere-pac fuel application to various Generation IV systems; (iv) Education and training to promote research in the field of fuel materials, to ensure the exchange of results and ideas among the participants and to link the project with other related European or international initiatives. The project relies on the complementary expertise of 19 partners: nuclear and non nuclear research organisations, universities, a nuclear engineering company, as well as technology and project management consultancy small and medium

  3. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  4. AMZ, library of multigroup constants for EXPANDA computer codes, generated by NJOY computer code from ENDF/B-IV

    International Nuclear Information System (INIS)

    Chalhoub, E.S.; Moraes, M. de.

    1984-01-01

    A 70-group, 37-isotope library of multigroup constants for fast reactor nuclear design calculations is described. Nuclear cross sections, transfer matrices, and self-shielding factors were generated with NJOY code and an auxiliary program RGENDF using evaluated data from ENDF/B-IV. The output is being issued in a format suitable for EXPANDA code. Comparisons with JFS-2 library, as well as, test resuls for 14 CSEWG benchmark critical assemblies are presented. (Author) [pt

  5. Electricity investments and development of power generation capacities: an approach of the drivers for investment choices in Europe regarding nuclear energy

    International Nuclear Information System (INIS)

    Shoai-Tehrani, Bianka

    2014-01-01

    In a context of growing energy prices and climate change mitigation, the thesis addresses the issues of investments in power generation capacities and in particular nuclear capacities. Given that the Generation IV of nuclear reactors is supposed to be ready in 2040 for industrial deployment, the purpose of the thesis is to study the conditions for electricity investments in France and Europe within this horizon, in order to assess development perspectives for nuclear energy and for potential emergence of Generation IV on the European market. To do so, it is necessary to study the mechanisms at stake in investment choices taking into account all power generating technologies. Economic theory usually bases the choice on long-term economic rationality, which does not allow explain the actual choices observed in European electricity mix. The objective of the research work is thus to identify investment choice drivers and to propose an approach describing the behavior of investors in a more realistic way. A multidisciplinary approach was adopted to explore the question. It combines a historical analysis of drivers evolution according to historical context, a structural analysis of these drivers to identify favorable scenarios for future nuclear reactors, a value creation approach to replicate investors' preferences in those scenarios, and last, a value option approach focusing on nuclear technologies and comparing competitiveness of Generation IV reactors with current reactors. As a result, only strong climate policy combined to government support to nuclear energy could allow industrial development of Generation IV, while high progress of renewables does not lessen the attractiveness of nuclear energy.On a international level, such analysis could be broaden by taking into account the drivers specific to each area of the world, such as highly growing demand in developing countries. (author)

  6. Electricity investments and development of power generation capacities: An approach of the drivers for investment choices in Europe regarding nuclear energy

    International Nuclear Information System (INIS)

    Shoai-Tehrani, Bianka

    2014-01-01

    In a context of growing energy prices and climate change mitigation, the thesis addresses the issues of investments in power generation capacities and in particular nuclear capacities. Given that the Generation IV of nuclear reactors is supposed to be ready in 2040 for industrial deployment, the purpose of the thesis is to study the conditions for electricity investments in France and Europe within this horizon, in order to assess development perspectives for nuclear energy and for potential emergence of Generation IV on the European market. To do so, it is necessary to study the mechanisms at stake in investment choices taking into account all power generating technologies. Economic theory usually bases the choice on long-term economic rationality, which does not allow explain the actual choices observed in European electricity mix. The objective of the research work is thus to identify investment choice drivers and to propose an approach describing the behavior of investors in a more realistic way. A multidisciplinary approach was adopted to explore the question. It combines a historical analysis of drivers evolution according to historical context, a structural analysis of these drivers to identify favorable scenarios for future nuclear reactors, a value creation approach to replicate investors' preferences in those scenarios, and last, a value option approach focusing on nuclear technologies and comparing competitiveness of Generation IV reactors with current reactors. As a result, only strong climate policy combined to government support to nuclear energy could allow industrial development of Generation IV, while high progress of renewables does not lessen the attractiveness of nuclear energy. On a international level, such analysis could be broaden by taking into account the drivers specific to each area of the world, such as highly growing demand in developing countries. (author)

  7. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    , moreover, the energy source, which does not emit carbon dioxide into atmosphere, are considered as the energy source for basic loads in an electrical grid. Currently, the vast majority of NPPs are used only for electricity generation. However, there are possibilities to use NPPs also for district heating or for desalination of water. In spite of all current advances in nuclear power, NPPs have the following deficiencies: 1) Generate radioactive wastes; 2) Have relatively low thermal efficiencies, especially, watercooled NPPs; 3) Risk of radiation release during severe accidents; and 4) Production of nuclear fuel is not an environment-friendly process. Therefore, all these deficiencies should be addressed in the next generation or Generation-IV reactors. Generation-IV reactors will be hightemperature reactors and multipurpose ones, which include electricity generation, hydrogen cogeneration, process heat, district heating, desalination, etc.

  8. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  9. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  10. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations. Published on September 24, 2012

    International Nuclear Information System (INIS)

    Couturier, Jean; Bruna, Giovanni; Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Hache, Georges

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  11. A combined XAFS, ESI TOF-MS and LIBD study on the formation of polynuclear Zr(IV), Th(IV) and Pu(IV) species

    Science.gov (United States)

    Rothe, J.; Walther, C.; Brendebach, B.; Büchner, S.; Fuss, M.; Denecke, M. A.; Geckeis, H.

    2009-11-01

    The long term radiotoxicity of spent nuclear fuel disposed of in deep underground repositories after discharge from nuclear power reactors is determined by actinide elements, mainly plutonium. Water intrusion into the repository might cause container corrosion and leaching of the waste matrices, leading to the release of Pu and other actinides into the geological environment. Performance assessment for a future nuclear waste repository requires detailed knowledge on actinide aqueous chemistry in the aquifer surrounding the disposal site. Tetravalent actinides exhibit a strong tendency towards hydrolysis and subsequent polymerization and/or colloid formation. These species provide a potential pathway for migration of actinides away from the repository. Therefore, it is of fundamental interest to study their generation and properties in-situ. To this end, X-ray Absorption Fine Structure Spectroscopy (XAFS) at the INE-Beamline for actinide research at ANKA, Electrospray Mass-Spectrometry (ESI TOF-MS) and Laser Induced Breakdown Detection (LIBD) are combined at FZK-INE in a comprehensive attempt to characterize Zr(IV) (An(IV) analogue), Th(IV) and Pu(IV) polymerization and colloid formation.

  12. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    International Nuclear Information System (INIS)

    Williams, W.C.

    2002-01-01

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft 2 , the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft 2 -degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation

  13. Automatic generation and analysis of solar cell IV curves

    Science.gov (United States)

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  14. PUFF-IV, Code System to Generate Multigroup Covariance Matrices from ENDF/B-VI Uncertainty Files

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The PUFF-IV code system processes ENDF/B-VI formatted nuclear cross section covariance data into multigroup covariance matrices. PUFF-IV is the newest release in this series of codes used to process ENDF uncertainty information and to generate the desired multi-group correlation matrix for the evaluation of interest. This version includes corrections and enhancements over previous versions. It is written in Fortran 90 and allows for a more modular design, thus facilitating future upgrades. PUFF-IV enhances support for resonance parameter covariance formats described in the ENDF standard and now handles almost all resonance parameter covariance information in the resolved region, with the exception of the long range covariance sub-subsections. PUFF-IV is normally used in conjunction with an AMPX master library containing group averaged cross section data. Two utility modules are included in this package to facilitate the data interface. The module SMILER allows one to use NJOY generated GENDF files containing group averaged cross section data in conjunction with PUFF-IV. The module COVCOMP allows one to compare two files written in COVERX format. 2 - Methods: Cross section and flux values on a 'super energy grid,' consisting of the union of the required energy group structure and the energy data points in the ENDF/B-V file, are interpolated from the input cross sections and fluxes. Covariance matrices are calculated for this grid and then collapsed to the required group structure. 3 - Restrictions on the complexity of the problem: PUFF-IV cannot process covariance information for energy and angular distributions of secondary particles. PUFF-IV does not process covariance information in Files 34 and 35; nor does it process covariance information in File 40. These new formats will be addressed in a future version of PUFF

  15. Generation IV and transmutation materials (GETMAT) project: First assessment of selected results

    International Nuclear Information System (INIS)

    Fazio, Concetta; Serrano, Marta; Gessi, Alessandro; Henry, Jean; Malerba, Lorenzo

    2015-01-01

    The Generation IV and Transmutation Material (GETMAT) project has been initiated within the 7. EURATOM framework programme with the objective to support the development of innovative reactor designs. Emphasis has been put on the investigation, both in the theoretical and experimental domains, of selected material properties that are cross-cutting among the various Generation IV and Transmutation systems. The selection of the properties to be investigated has been performed by identifying relevant conditions of key components as cores and primary systems. Moreover, taking into account the envisaged conditions of these components it turned out that innovative materials might be a better choice with respect to conventional nuclear grade steels. Therefore, ODS alloys and 9-12 Cr Ferritic/Martensitic (F/M) steels have been selected as reference for the GETMAT project. The R and D activities have been focused on basic characterisation of ODS alloys produced ad hoc for the project and on an extensive PIE programme of F/M steels irradiated in previous programmes. Finally, first principle modelling studies to explain irradiation hardening and embrittlement of F/M alloys were an additional important task. The objective of this manuscript is to make a first assessment of the results obtained within GETMAT. (authors)

  16. Least cost analysis of Belarus electricity generation system with focus on nuclear option

    International Nuclear Information System (INIS)

    Mikhalevich, A.; Yakushau, A.

    2004-01-01

    A basic feature of the Belarus electricity system is that about 50% of the installed power capacity is used to produce heat for the central heating supply system. The Republic has one of the most developed districts heating system in Europe. The installation started in 1930, and developed very fast after 1945. Co-generation of electricity and thermal energy in central power plants has played a fundamental role in the local economy. Presently, Belarus electricity generation system includes: Total installed capacities of condensing turbines 3665 MW; Total installed capacities of co-generation turbines 3889 MW. It is expected that in 2020 in accordance with electricity demand forecast peak load demand will be equaled approximately 9500 MW. Taking into account that operation time of 60 % existent co-generation turbine and 70 % of condensing turbine can be extended up to 2020 during the period 2005 - 2020 it is necessity to install about 1500 MW of new co-generation units and about 2000 MW of condensing turbines. To select the least cost scenario for electricity generation system expansion improved computer code WASP-IV for Windows had been used. As far code WASP-IV do not allow finding out optimal solution for electricity generation system with high share of co-generation directly the methodology of application of this program for this case had been developed. Methodology is based on utilization of code WASP-IV for simulation condensing turbines and module BALANCE for modeling co-generation part of the system. The scenarios for the electricity system expansion plan included only conventional technologies. Presently, the works connected with the preparedness for NPP construction in the Republic including site survey for NPP are being carried out. The first stage of siting process according to the IAEA classification has been completed. It was based on a set of criteria answered to A Safety Guide of the IAEA Site Survey for Nuclear Power Plants and requirements to be

  17. Pebble bed modular reactor - The first Generation IV reactor to be constructed

    International Nuclear Information System (INIS)

    Ion, S.; Nicholls, D.; Matzie, R.; Matzner, D.

    2004-01-01

    Substantial interest has been generated in advanced reactors over the past few years. This interest is motivated by the view that new nuclear power reactors will be needed to provide low carbon generation of electricity and possibly hydrogen to support the future growth in demand for both of these commodities. Some governments feel that substantially different designs will be needed to satisfy the desires for public perception, improved safety, proliferation resistance, reduced waste and competitive economics. This has motivated the creation of the Generation IV Nuclear Energy Systems programme in which ten countries have agreed on a framework for international cooperation in research for advanced reactors. Six designs have been selected for continued evaluation, with the objective of deployment by 2030. One of these designs is the very high temperature reactor (VHTR), which is a thermal neutron spectrum system with a helium-cooled core utilising carbon-based fuel. The pebble bed modular reactor (PBMR), being developed in South Africa through a worldwide international collaborative effort led by Eskom, the national utility, will represent a key milestone on the way to achievement of the VHTR design objectives, but in the much nearer term. This paper outlines the design objectives, safety approach and design details of the PBMR, which is already at a very advanced stage of development. (author)

  18. New reactor concepts for new generation of nuclear power in the USA: An overview

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M. . E-mail addresses of corresponding authors: vujic@nuc.berkeley.edu , mmilos@vin.bg.ac.yu; Vujic, J.; Milosevic, M.)

    2005-01-01

    With the growing demands for more reliable energy sources, there is an international interest in the development of new nuclear energy systems to be deployed between 2010 and 2030, that will improve safety and reliability, decrease proliferation risks, improve radioactive waste management and lower cost of nuclear energy production. Six nuclear energy systems were selected as candidates for this Generation IV initiative. In this paper we will explore each of these concepts, as well as several of more advanced concepts. (author)

  19. Foresight of nuclear generation at long term in Mexico;Prospectiva de la generacion nucleoelectrica en Mexico a largo plazo

    Energy Technology Data Exchange (ETDEWEB)

    Guadarrama L, R.; Sanchez R, O. E.; Martin del Campo M, C., E-mail: rodrigoguadarrama28@hotmail.co [UNAM, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    This paper presents an analysis of the nuclear generation expansion for the period 2008-2030. The main objective is to plan the expansion of electrical generation system at long term taking into account four decision criteria. These are, the total cost of generation, the risk associated whit changes in fuel prices, the diversity of the generation park and polluting emissions of global impact (greenhouse effect gases) and local effects (acid rain and suspended particles). The analyzed expansion plans were developed using a model of uni nodal planning called WASP-IV. The analysis methodology was based on four steps. The first consisted in developing, with model WASP-IV, different expansion plans of the electrical generation system that fulfill the energy demand and certain conditions of the study in which was optimized the additions program of generator units searching the minimal cost of electrical generation. The second step was to calculate the generation costs of each plan for two scenarios of fuel prices, also with model WASP-IV. Later was calculated the diversity index and the accumulated emissions during the expansion and the avoided emission of CO{sub 2} when units of combined cycle that burn natural gas are replaced by nuclear power units. (Author)

  20. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    International Nuclear Information System (INIS)

    Timothy Shaw; Vaugh Whisker

    2004-01-01

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project

  1. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Vaugh Whisker

    2004-02-28

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

  2. IRIS Responsiveness to Generation IV Road-map Goals

    International Nuclear Information System (INIS)

    Carelli, M.D.; Paramonov, D.V.; Petrovic, B.

    2002-01-01

    The DOE Generation IV road-map process is in its second and final year. Almost one hundred concepts submitted from all over the world have been reviewed against the Generation IV goals of resources sustainability; safety and reliability; and, economics. Advanced LWRs are taken as the reference point. IRIS (International Reactor Innovative and Secure), a 100-335 MWe integral light water reactor being developed by a vast international consortium led by Westinghouse, is one on the concepts being considered in the road-map and is perhaps the most visible representative of the concept set known as Integral Primary System Reactors (IPSR). This paper presents how IRIS satisfies the prescribed goals. The first goal of resource sustainability includes criteria like utilization of fuel resources, amount and toxicity of waste produced, environmental impact, proliferation and sabotage resistance. As a thermal reactor IRIS does not have the same fuel utilization as fast reactors. However, it has a significant flexibility in fuel cycles as it is designed to utilize either UO 2 or MOX with straight burn cycles of 4 to 10 years, depending on the fissile content. High discharge burnup and Pu recycling result in good fuel utilization and lower waste; IRIS has also attractive proliferation resistance characteristics, due to the reduced accessibility of the fuel. The safety and reliability goal include reliability, workers' exposure, robust safety features, models with well characterized uncertainty, source term and mechanisms of energy release, robust mitigation of accidents. IRIS is significantly better than advanced LWRs because of its safety by design which eliminates a variety of accidents such as LOCAs, its containment vessel coupled design which maintains the core safely covered during the accident sequences, its design simplification features such as no (or reduced) soluble boron, internal shielding and four-year refueling/maintenance interval which significantly reduce

  3. Contribution of the IV generation fast reactors to the sustainable development

    International Nuclear Information System (INIS)

    Mendoza G, G.; Klapp E, J.L.

    2007-01-01

    During the XXI century all the energy forms are necessary for the sustainable development. A balanced energy politics has to use a mixture of energy sources that completes the objective of responding to the increase in the demand and that it uses non emitting gases sources of greenhouse effect like the nuclear one. It is evident the great existent difficulty to turn the objectives of emissions for the coming years without having the nuclear energy. Later on, the process continued outlining serious commitments among the development necessity, the improvement of the level of life and the competitiveness, and the execution from the established environmental requirements to world level. It is very foregone that the energy nuclear become the best energy source to improve the environmental conditions and that new initiatives are determined in those that this energy will have an important paper. The solution is to build a nuclear central of advanced design, using technologies that its help to brake the diffusion of the nuclear weapons. The nucleo electric energy at great scale should be developed on the base of designs of reactors and innovative processes of fuel that can lend technological support to the not nuclear proliferation regime, and that at the same time they contribute to satisfy the electricity demand in the world. In a scenario of increase of energy demand, mainly in the development countries, and of growing interest in the pollutants reduction originated by the use of fossil fuels, the nuclear reactors of IV Generation arise as proposal and challenge. Meanwhile the search of new technologies and innovations become imperative, translating an enormous evolution, not only in the conceptual projects, as well as in the fuel cycle so that, in a scenario of open economy, turn its more competitive. Inside the reactors of fourth generation, the quick reactors are configured as those that more assist to such demands and they will be, without a doubt, the reactors in

  4. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  5. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Mynatt, Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-01-01

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  6. Improvement of Steam Generator Reliability for GEN-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong O; Kim Se Yun; Kim, Seok Hoon; Eoh, Jae Hyuk; Lee, Hyeong Yeon; Choi, Byung Seon

    2005-11-15

    The R and D items performed in this study were selected from the R and D task of ' Reliability improvement of Steam Generator' of GEN-IV SFR Component Design and BOP. Since this project deals with one of the most important issues for a GEN-IV SFR system, it needs to enhance the domestic technical backgrounds associated with the corresponding R and D items even for a very short period by 2005. This study provides the R and D results for i) Development of assessment methodology for dissimilar metal weld and ii) Development of multi-dimensional simulation methodology for a SWR event in a SFR steam generator.

  7. Improvement of Steam Generator Reliability for GEN-IV SFR

    International Nuclear Information System (INIS)

    Kim, Seong O; Kim Se Yun; Kim, Seok Hoon; Eoh, Jae Hyuk; Lee, Hyeong Yeon; Choi, Byung Seon

    2005-11-01

    The R and D items performed in this study were selected from the R and D task of ' Reliability improvement of Steam Generator' of GEN-IV SFR Component Design and BOP. Since this project deals with one of the most important issues for a GEN-IV SFR system, it needs to enhance the domestic technical backgrounds associated with the corresponding R and D items even for a very short period by 2005. This study provides the R and D results for i) Development of assessment methodology for dissimilar metal weld and ii) Development of multi-dimensional simulation methodology for a SWR event in a SFR steam generator

  8. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    International Nuclear Information System (INIS)

    Shin, Jung Ho; Roh, Myung Sub

    2013-01-01

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by

  9. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  10. Generation 4 and the Nea

    International Nuclear Information System (INIS)

    Dujardin, T.

    2002-01-01

    In the previous edition of NEA News, W. D. Magwood of the US Department of Energy (DOE) outlined the future of nuclear energy in the context of the new US national energy policy. He cited the Generation IV initiative as a mechanism to implement a longer-term aspect of this policy. Although initiated in the US, the Generation IV initiative has quickly become an international effort and today ten countries are participating in the Generation IV International Forum (GIF). This article briefly reviews the context of Generation IV and describes NEA involvement in the Generation IV process. (author)

  11. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  12. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  13. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3{sup rd} through 5{sup th} BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6{sup th} BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3{sup th}, 4{sup th}, 5{sup th} entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then

  14. Fuelling innovation: Countries look to the next generation of nuclear power

    International Nuclear Information System (INIS)

    Perera, Judith

    2004-01-01

    The past few years have seen several multinational initiatives looking at the prospects for the medium and long-term development of nuclear energy. These include: the US-led Generation IV International Forum (GIF), the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), and the European Michelangelo network for competitiveness and sustainability of nuclear energy in the EU (Micanet). There have also been two major studies - a joint investigation by the IAEA together with the OECD's International Energy Agency (IEA) and Nuclear Energy Agency (NEA), Innovative Nuclear Reactor Development; Opportunities for International Co-operation; and an interdisciplinary study by the Massachusetts Institute of Technology (MIT) on The Future of Nuclear Energy. All these cover much of the same ground, looking at innovative nuclear systems including reactors and fuel cycles. But, while they were prompted by the same set of underlying imperatives, they also differ to some extent, not least in the importance they attach to the nuclear fuel cycle. GIF and INPRO are two initiatives where enhanced international cooperation could emerge

  15. A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology

    International Nuclear Information System (INIS)

    T. A. Bjornard; M. D. Zentner

    2006-01-01

    The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR and PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR and PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is not. This paper will examine the Proliferation Resistance (PR) evaluation methodology being developed by the PR group, which is largely a new approach and compare it to generally accepted nuclear facility safety evaluation methodologies. Safety evaluation methods have been the subjects of decades of development and use. Further, safety design and analysis is fairly broadly understood, as well as being the subject of federally mandated procedures and requirements. It is therefore extremely instructive to compare and contrast the proposed new PR evaluation methodology process with that used in safety analysis. By so doing, instructive and useful conclusions can be derived from the comparison that will help to strengthen the PR methodological approach as it is developed further. From the comparison made in this paper it is evident that there are very strong parallels between the two processes. Most importantly, it is clear that the proliferation resistance aspects of nuclear energy systems are best considered beginning at the very outset of the design process. Only in this way can the designer identify and cost effectively incorporate intrinsic features that might be difficult to implement at some later stage. Also, just like safety, the process to implement proliferation resistance should be a dynamic

  16. Generation 4 - nuclear reactors and an approach to secure public acceptance and access to energy for everyone

    International Nuclear Information System (INIS)

    Pahladsingh, R.

    2001-01-01

    The aim of this paper is to bring the Pebble Bed Modular Reactor (PBMR) and a few interesting Light Water Passive nuclear reactor designs under your attention. The PBMR is under further development in South Africa and Asia. The philosophy behind the PBMR concept has been to develop a nuclear reactor which is so safe that it could be called inherently safe. Its concept is so completely different, see figure 2, that it can easily pass strictest safety regulations. Consequently it is a good Generation IV candidate. Good promotion of the gas-turbine direct cycle PBMR design is a main task to the nuclear technology and industry and could be the challenge that the young generation needs to consider a career in nuclear technology. (authors)

  17. European Nuclear Young Generation. Position Paper on Nuclear Energy and the Environment

    International Nuclear Information System (INIS)

    2015-01-01

    predictable and provides base-load electricity with high reliability to the end-user. It is not subject to variations in fuel availability as uranium is largely available from diverse politically stable countries that secure its supply. Nuclear power is therefore a key asset for energy security and independence. Nuclear energy is part of the solution. The European Nuclear Society Young Generation Network believes that nuclear is part of the solution. Current nuclear power plants operate safely with negligible CO 2 emissions and provide energy to millions of people. Existing and future nuclear reactors will help humanity to overcome energy challenges whilst respecting the environment. Research is still on-going for more efficient use of nuclear fuel and the transmutation of high activity long-term waste. These objectives are carried out by the promising implementation of Generation IV of nuclear power plants with commercial prospects by 2030-2040. Research on nuclear fusion such as the ITER project aims to provide an almost inexhaustible source of energy while suppressing the issue of handling long-lived radioactive waste. This is the future of the nuclear industry. Our belief is that fighting climate change cannot discard, on ideological background and judgment, such promising technologies. It is our duty to inform the public in an objective and scientific way of the benefits of nuclear power. COP21 is a unique opportunity to internationally develop a low-carbon society in which nuclear power will have a key role to play. (authors)

  18. JRC-IE's research of safety of Gen IV systems

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ranguelova, V.; Feutterer, M.; Ammirabile, L.; Carlsson, J.; D'Agata, E.; Laurie, M.; Magallon, D.

    2010-01-01

    The Institute for Energy (IE), one of the seven scientific Institutes of the Joint Research Centre (JRC) of the European Commission, has the mission to provide scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. To accomplish its mission, IE performs research in the areas of renewable energies, safety and sustainability of nuclear energy for current and future reactor systems, energy technic/economic assessment, and security of energy supply. The Generation IV International Forum (GIF) is a cooperative international endeavour organized to carry out R and D needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems and support the progress towards their realization. The EU, represented by EURATOM and with the JRC as implementing agent, is working together with other GIF partners to perform pre-competitive R and D on key technologies to be implemented in future nuclear systems. IE is engaged in experimental research, simulation and modeling, scientific, feasibility and engineering studies on innovative nuclear reactor systems needed to support the EURATOM contribution to GEN IV initiative, in particular in assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions and knowledge management and preservation. IE's research activities on Generation IV reactor systems are focused on the assessment of the potential of such systems to meet long term EU energy needs with respect to economical advantages, enhanced safety, sustainability, and proliferation resistance. IE participates in international collaborations and has bilateral research cooperation both with European and non-European partners. This paper gives an overview of IE's current research activities on the Gen IV reactor systems related to safety. (authors)

  19. Developing new nuclear curricula for GEN IV needs

    International Nuclear Information System (INIS)

    Ghitescu, P.; Pavel, G.L.

    2014-01-01

    States who wish to start and develop a nuclear program must take into consideration a strong proven strategy for developing a sustainable program. A complete nuclear research program must include: a good national strategy and support on the topic; strong research laboratories supported by good personnel; education component to provide sustainable and qualified workforce; national/international interest from stakeholders and governments and a well informed society. New demonstrators are foreseen for the next period to be built in Europe and skilled supporting personnel is strongly needed. Current situation in nuclear higher education with perspective will be analysed. EURATOM strongly supports development of multidisciplinary co-operational projects in order to built such novel initiatives. An example of such program supported by European Commission, ARCADIA, will be given. The project is based on the cooperation of a large number of participants all over Europe and the main purpose is to develop a road-map for Gen IV reactor. (authors)

  20. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  1. Redox reactions of U(IV) and Pu(IV) with H2O2 generated in nitric acid media by power ultrasound

    International Nuclear Information System (INIS)

    Moisy, P.; Venault, L.; Madic, C.; Nikitenko, S.

    1998-01-01

    Power ultrasound causes water molecule dissociation on H o and OH o radicals due to high local temperatures and pressures generated in the cavitation threshold. In nitric acid media scavenging of OH o radicals with NO 3 - followed by NO 3 o radicals hydrolysis leads to H 2 O 2 formation. It was shown that H 2 O 2 generated under the effect of ultrasound with the frequency 20 kHz and intensity 1-3 Wcm -2 (Ar atmosphere) oxidizes U(IV) to U(VI) or reduces Pu(IV) to Pu(III) in 1-4 M HNO 3 in the presence of antinitrous reagents ( N 2 H 5 NO 3 or NH 2 SO 3 H). The effect of HNO 3 concentration and ultrasonic intensity on the kinetics of U(IV) oxidation and Pu(IV) reduction was studied. (author)

  2. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  3. MACK/MACKLIB system for nuclear response functions

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.M.

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hydrids, and fission applications

  4. MACK/MACKLIB system for nuclear response functions

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV, and ENDF/B-IV, and is suitable for fusion, fusion--fission hybrids, and fission applications. 3 figures, 4 tables

  5. MACK/MACKLIB system for nuclear response functions

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A.; Gohar, Y.M.

    1978-03-15

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hydrids, and fission applications.

  6. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  7. Modeling of Pu(IV) extraction and HNO3 speciation in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    De-Sio, S.

    2012-01-01

    The PUREX process is a solvent extraction method dedicated to the reprocessing of irradiated nuclear fuel in order to recover pure uranium and plutonium from aqueous solutions of concentrated nitric acid. The tri-n-butylphosphate (TBP) is used as the extractant in the organic phase. The aim of this thesis work was to improve the modeling of liquid-liquid extraction media in nuclear fuel reprocessing. First, Raman and 14 N NMR measurements, coupled with theoretical calculations based on simple solutions theory and BIMSA modeling, were performed in order to get a better understanding of nitric acid dissociation in binary and ternary solutions. Then, Pu(IV) speciation in TBP after extraction from low nitric acid concentrations was investigated by EXAFS and vis-NIR spectroscopies. We were able to show evidence of the extraction of Pu(IV) hydrolyzed species into the organic phase. A new structural study was conducted on An(VI)/TBP and An(IV)/TBP complexes by coupling EXAFS measurements with DFT calculations. Finally, extraction isotherms modeling was performed on the Pu(IV)/HNO 3 /H 2 O/TBP 30%/dodecane system (with Pu at tracer scale) by taking into account deviation from ideal behaviour in both organic and aqueous phases. The best modeling was obtained when considering three plutonium (IV) complexes in the organic phase: Pu(OH) 2 (NO 3 ) 2 (TBP) 2 , Pu(NO 3 ) 4 (TBP) 2 and Pu(NO 3 ) 4 (TBP) 3 . (author) [fr

  8. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  9. Wien Automatic System Planning (WASP) Package. A computer code for power generating system expansion planning. Version WASP-IV. User's manual

    International Nuclear Information System (INIS)

    2001-01-01

    As a continuation of its efforts to provide methodologies and tools to Member States to carry out comparative assessment and analyse priority environmental issues related to the development of the electric power sector, the IAEA has completed a new version of the Wien Automatic System Planning (WASP) Package WASP-IV for carrying out power generation expansion planning taking into consideration fuel availability and environmental constraints. This manual constitutes a part of this work and aims to provide users with a guide to use effectively the new version of the model WASP-IV. WASP was originally developed in 1972 by the Tennessee Valley Authority and the Oak Ridge National Laboratory in the USA to meet the IAEA needs to analyse the economic competitiveness of nuclear power in comparison to other generation expansion alternatives for supplying the future electricity requirements of a country or region. Previous versions of the model were used by Member States in many national and regional studies to analyse the electric power system expansion planning and the role of nuclear energy in particular. Experience gained from its application allowed development of WASP into a very comprehensive planning tool for electric power system expansion analysis. New, improved versions were developed, which took into consideration the needs expressed by the users of the programme in order to address important emerging issues being faced by the electric system planners. In 1979, WASP-IV was released and soon after became an indispensable tool in many Member States for generation expansion planning. The WASP-IV version was continually upgraded and the development of version WASP-III Plus commenced in 1992. By 1995, WASP-III Plus was completed, which followed closely the methodology of the WASP-III but incorporated new features. In order to meet the needs of electricity planners and following the recommendations of the Helsinki symposium, development of a new version of WASP was

  10. Innovation in the Safety of nuclear systems: fundamental aspects

    International Nuclear Information System (INIS)

    Herranz, L. E.

    2009-01-01

    Safety commercial nuclear reactors has been an indispensable condition for future enlargement of power generation based on nuclear technology. Its fundamental principle, defence in depth, far from being outdated, is still adopted as a key foundation in the advanced nuclear system (generations III and IV). Nevertheless, the cumulative experience gained in the operation and maintenance of nuclear reactors, the development of methodologies like the probabilistic safety analysis, the use of passive safety systems and, even, the inherent characteristics of some new design (which exclude accident scenarios), allow estimating safety figures of merit even more outstanding that those achieved in the second generation of nuclear reactors. This safety innovation of upcoming nuclear reactors has entailed a huge investigation program (generation III) that will be focused on optimizing and demonstrating the postulated safety of future nuclear systems (Generation IV). (Author)

  11. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2..., DPR-70, and DPR-75 for an additional 20 years of operation for the Hope Creek Generating Station (HCGS...

  12. Euratom research and training in generation IV systems with emphasis on V/HTR

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Fuetterer, M.

    2006-01-01

    In this overview paper, the following questions are addressed: (1) What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2) What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle: Education, Research, and Innovation') respond to the S/T challenges: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is principally under the responsibility of the 2 Directorates Generals (DG) DG Research (RTD, located in Brussels), which implements and manages the programme of 'indirect actions', and the DG Joint Research Centre (JRC, headquarters in Brussels and 7 scientific institutes in 5 Member States) which carries out 'direct actions' in their own laboratories. In this HTR-2006 introductory paper, the emphasis is on the indirect and direct actions of the 6 th Euratom research framework programme 2003-2006, FP-6, with special emphasis on V/HTR Generation IV research. (orig.)

  13. Green technology into nuclear industry Eligibility of Ambidexter nuclear complex for a generation IV nuclear power system

    International Nuclear Information System (INIS)

    Park, Kwangheon; Koh, Moosung; Ryu, Jeongdong; Kim, Yangeun; Lee, Bumsik; Park, Hyuntack

    2000-01-01

    Green power is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied green technology into nuclear industry. 1) Nuclear laundry: A laundry machine that uses liquid and supercritical Co 2 as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All CO 2 used in cleaning is fully recovered and reused in next cleaning, resulting in no production

  14. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  15. Improved methods for prediction of creep-fatigue in next generation conventional and nuclear plant

    International Nuclear Information System (INIS)

    Payten, Warwick

    2012-01-01

    Materials technology poses a major challenge in the design and construction of next generation super critical/ultra super critical power plant (SC/USC) and Generation IV (GenIV) nuclear plant. New plant is expected to have in the order of a 60 year life-time, imposing complex design difficulties in areas of creep rupture and creep fatigue damage. For SC/USC plant, the main goal is the enhancement of performance by raising the steam pressure and temperatures. In order to achieve these goals materials with acceptable creep rupture strength at design temperatures and pressures must be used. In GenIV designs, the issue is more complex, with both low and high tempera-ture designs. A key requirement in the majority of the designs, however, will be acceptable resistance to creep rupture, fatigue cracking, creep fatigue interactions, with the additional effects of void swelling and irradiation creep. The accumulation of creep fatigue damage over time in both SC/USC and GenIV plant will be one of the principal damage mechanisms. This will eventually lead to crack initiation in critical high temperature equipment. Hence, improved knowledge of creep and fatigue interactions is a necessary development as components in power-generating plants move to operate at high temperature under cyclic conditions. The key to safe, reliable operation of these high-energy plants will depend on understanding the factors that affect damage initiation and propagation, as well as developing and validating technologies to predict the accumulation of damage in systems and components.

  16. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  17. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  18. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications

  19. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  20. Situation of nuclear power generation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [Swedish Atomic Forum

    1978-01-01

    In Sweden, nuclear power generation was received initially favorably. In the end of 1960s, however, nuclear power generation got involved in the activities of environment preservation. Then, political parties became opposed to nuclear power generation, and now, the need of nuclear power generation itself is regarded as questionable. In the general election in 1976, the Government opposing the nuclear power generation won. As the result, the conditional nuclear power development law and the energy committee were set up. The committee composed of parliament members, experts, and representatives of enterprises and trade unions is to submit its report so that the parliament can prepare a new energy program in the fall of 1978. Meanwhile, the nuclear fuel safety project formed newly has studied to satisfy the conditions of the law. In Sweden, which has developed nuclear reactors independently from the technology of USA, the oppositions are on the decrease, however. It is awaited what decision will be made by the Government in this fall.

  1. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  2. 1L Mark-IV Target Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.

  3. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  4. Hepatic imaging in stage IV-S neuroblastoma

    International Nuclear Information System (INIS)

    Franken, E.A. Jr.; Smith, W.L.; Iowa Univ., Iowa City; Cohen, M.D.; Kisker, C.T.; Platz, C.E.

    1986-01-01

    Stage IV-S neuroblastoma describes a group of infants with tumor spread limited to liver, skin, or bone marrow. Such patients, who constitute about 25% of affected infants with neuroblastoma, may expect spontaneous tumor remission. We report 18 infants with Stage IV-S neuroblastoma, 83% of whom had liver involvement. Imaging investigations included Technetium 99m sulfur colloid scan, ultrasound, and CT. Two patterns of liver metastasis were noted: ill-defined nodules or diffuse tumor throughout the liver. Distinction of normal and abnormal liver with diffuse type metastasis could be quite difficult, particularly with liver scans. We conclude that patients with Stage IV-S neuroblastoma have ultrasound or CT examination as an initial workup, with nuclear medicine scans reserved for followup studies. (orig.)

  5. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  6. Examination of nuclear systems of fourth generation

    International Nuclear Information System (INIS)

    2015-01-01

    This report proposes a detailed discussion of the six nuclear systems selected by the Generation IV International Forum with the objective of coordinating research and development activities which should result in the deployment of nuclear systems (reactors and associated fuel cycle installations) of fourth generation by the second half of the 21. century. These systems are: sodium cooled fast reactors (SFR), very high temperature reactors (VHTR), gas cooled fast reactors (GFR), lead cooled fast reactors (LFR) or lead bismuth eutectic reactors (LBE), molten salt reactors (MSR), and supercritical water reactors (SCWR). Fast systems are interesting as they favour the transmutation of fertile materials into fissile materials. History and perspectives of development, main characteristics, management of safety functions, risk analysis, impact on the environment, radiation protection and decommissioning, concept maturity and R and D needs are discussed for each of these systems. A comparison is reported in terms of main characteristics of reactors, of neutron characteristics and reactivity control, of sensitivity to cooling losses, of confinement function, of exploitation safety, of in-service inspection, of behaviour in case of severe accident, of toxicity of chemical substances, of sensitivity to aggressions (seism), of concept maturity and technological difficulties. The report also proposes a review of the various fuels which can be used in these different systems and which have been considered as eligible by the International Forum: oxides, carbides, nitrides, metals, waste processing. The last part addresses the transmutation of long life radioactive elements: physics, context, assessment of scenarios soundness, influence of transmutation on installations and transports

  7. 75 FR 6223 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311 and 50-354; NRC-2010-0043] PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1 and 2...-70, and DPR-75, issued to PSEG Nuclear LLC (PSEG, the licensee), for operation of the Hope Creek...

  8. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2017-01-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the 56 Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the 242 Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  9. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the {sup 56}Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the {sup 242}Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  10. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su

    1997-12-01

    The major contents in this study are as follows : - long-term forecast to the year of 2040 is provided for nuclear electricity generating capacity by means of logistic curve fitting method. - the role of nuclear power in a national economy is analyzed in terms of environmental regulation. To do so, energy-economy linked model is developed. By using this model, the benefits from the introduction of nuclear power in Korea are estimated. Study on inter-industry economic activity for nuclear industry is carried out by means of an input-output analysis. Nuclear industry is examined in terms of inducement effect of production, of value-added, and of import. - economic analysis of nuclear power generation is performed especially taking into consideration wide variations of foreign currency exchange rate. The result is expressed in levelized generating costs. (author). 27 refs., 24 tabs., 44 figs

  11. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    International Nuclear Information System (INIS)

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-01-01

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups

  12. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-11-26

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.

  13. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  14. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  15. Conscience of Japanese on nuclear power generation

    International Nuclear Information System (INIS)

    Hayashi, Chikio

    1995-01-01

    There are considerably many investigations and researches on the attitude of general public to nuclear power generation, but those which analyzed the contents of attitude or the research which got into the problem of what method is desirable to obtain the understanding of nuclear power generation for power generation side is rarely found. Therefore, the research on where is its cause was begun. As the result, since the attitude to nuclear power generation is related to the attitudes to many things that surround nuclear power generation in addition to that directly to nuclear power generation, it is necessary to elucidate the problem synthetically. The social investigation was carried out for the public of from 18 to 79 years old who live in the supply area of Kansai Electric Power Co., Inc. The data were obtained from those selected by probabilistic sampling, 1000 in urban area (rate of recovery 76%) and 440 in country area (rate of recovery 77%). The way of thinking on making questionnaire is shown. The investigation and the analysis of the obtained data were carried out. What do you recollect as a dangerous matter, the attitude to nuclear power generation, the structure of the conscience to nuclear power generation and its significance, the type classification of people and its features are reported and discussed. (K.I.)

  16. Generation 4 International Forum. 2008 annual report

    International Nuclear Information System (INIS)

    2008-01-01

    This 2008 Annual Report is the second annual report issued by GIF (Generation IV International Forum). It provides an update on the GIF organization, membership, and participation in research and development (R-D) projects for each Generation IV system. It summarizes the milestones for development of each system and progress of the R-D toward their accomplishment. Finally, it includes a brief description of the cooperation between GIF and other international endeavors for the development of nuclear energy. Chapter 2 describes the membership and organization of the GIF, the structure of its cooperative research and development arrangements, and the status of Member participation in those arrangements. Chapter 3 provides a summary of the GIF R-D plans, and its activities and achievements during 2008. It highlights the R-D challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made regarding the development of methodologies for assessing Generation IV systems with respect to the established goals of GIF. Chapter 4 reviews other major international collaborative projects in the field of nuclear energy and explains how the GIF interacts and cooperates with them. Appendix 1 provides an overview on the goals of Generation IV nuclear energy systems and outlines the main characteristics of the six systems selected for joint development by GIF. The list of abbreviations and acronyms given at the end of the report defines terms used in the various chapters including various nuclear energy systems and international programs referred to in connection with GIF R-D activities. Some bibliographical references are given in order to facilitate access to public information about R-D progress and achievements on specific technical issues for GIF systems

  17. Thermohidraulic model for a typical steam generator of PWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Braga, C.V.M.

    1980-06-01

    A model of thermohidraulic simulation, for steady state, considering the secondary flow divided in two parts individually homogeneous, and with heat and mass transferences between them is developed. The quality of the two-phase mixture that is fed to the turbine is fixed and, based on this value, the feedwater pressure is determined. The recirculation ratio is intrinsically determined. Based on this model it was developed the GEVAP code, in Fortran-IV language. The model is applied to the steam generator of the Angra II nuclear power plant and the results are compared with KWU'S design parameters, being considered satisfactory. (Author) [pt

  18. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    International Nuclear Information System (INIS)

    Burchell, Timothy D.; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-01-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version (a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version (a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  20. Sargent-IV Project. Development of new methodologies for safety analysis of Generation IV reactors; Proyecto SARGEB-IV. Desarrollo de nuevas metodologias de analisis de seguridad para reactores de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Gallego, E.; Jimenez, G.

    2013-07-01

    The main result of this paper is the proposal for the addition of new ingredients in the safety analysis methodologies for Generation-IV reactors that integrates the features of probabilistic safety analysis within deterministic. This ensures a higher degree of integration between the classical deterministic and probabilistic methodologies.

  1. Consolidated nuclear steam generator

    International Nuclear Information System (INIS)

    Jabsen, F.S.; Schluderberg, D.C.; Paulson, A.E.

    1978-01-01

    An improved system of providing power has a unique generating means for nuclear reactors with a number of steam generators in the form of replaceable modular units of the expendable type to attain the optimum in effective and efficient vaporization of fluid during the generating power. The system is most adaptable to undrground power plants and marine usage

  2. Fear of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D.J. [Paddington, NSW (Australia)

    2014-07-01

    Communicating the benefits of nuclear power generation, although essential, is unlikely to be sufficient by itself to counter the misconceptions which hinder the adoption of this technology, viz: that it is unsafe, generates intractable waste, facilitates the proliferation of nuclear weapons, etc. Underlying most of these objections is the fear of radiation, engendered by misunderstandings of the effects of exposure - not the actual risks of radiation exposure themselves. Unfortunately, some aspects of current radiation protection practices promote the misconception that there is no safe dose. A prime purpose of communications from the nuclear industry should be to dispel these misconceptions. (author)

  3. Situation of nuclear power generation in Europe

    International Nuclear Information System (INIS)

    Toukai, Kunihiro

    2003-01-01

    Nuclear power plants began to be built in Europe in the latter half of 1960. 146 plants are operating and generating about 33% of total power in 2002. France is top of Europe and operating 59 plants, which generate about 75% of power generation in the country. Germany is second and 30%. England is third and 30%. However, Germany decided not to build new atomic power plant in 2000. Movement of non-nuclear power generation is decreasing in Belgium and Switzerland. The liberalization of power generation decreased the wholesale price and BE Company in England was financial difficulties. New nuclear power generation is planning in Finland and France. (S.Y.)

  4. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  5. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  6. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  7. A spectrophotometric study of cerium IV and chromium VI species in nuclear fuel reprocessing process streams

    International Nuclear Information System (INIS)

    Nickson, I D; Boxall, C; Jackson, A; Whillock, G O H

    2010-01-01

    Nuclear fuel reprocessing schemes such as PUREX and UREX utilise HNO 3 media. An understanding of the corrosion of process engineering materials such as stainless steel in such media is a major concern for the nuclear industry. Two key species are cerium and chromium which, as Ce(IV), Cr(VI), may act as corrosion accelerants. An on-line analytical technique for these quantities would be useful for determining the relationship between corrosion rate and [Ce(IV)] and [Cr(VI)]. Consequently, a strategy for simultaneous quantification of Ce(IV), Cr(VI) and Cr(III) in the presence of other ions found in average burn-up Magnox / PWR fuel reprocessing stream (Fe, Mg, Nd, Al) is being developed. This involves simultaneous UV-vis absorbance measurement at 620, 540, 450 nm, wavelengths where Ce and Cr absorb but other ions do not. Mixed solutions of Cr(VI) and Ce(IV) are found to present higher absorbance values at 540 nm than those predicted from absorbances recorded from single component solutions of those ions. This is attributed to the formation of a 3:1 Cr(VI)-Ce(IV) complex and we report on the complexation and UV-visible spectrophotometric characteristics of this species. To the best of our knowledge this is the first experimental study of this complex in aqueous nitric acid solution systems.

  8. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  9. Nuclear power generation: challenge in the 1980s

    International Nuclear Information System (INIS)

    Eklund, S.A.

    1981-01-01

    In the lecture ''Nuclear power generation - challenge in the 1980s'', attempt is made to predict the events arising in 1980s on the basis of the data available in the International Atomic Energy Agency. By the term ''challenge'', emphasis is placed on the potentiality of nuclear power for solving the world energy problem. This is indicated clearly by nuclear power currently accounting for 8%, of the total power generation in the world. The explanation in the above connection with figures and tables is made, including geographical distribution of reactors, nuclear power generation and total power generation in various countries, future capacity of nuclear power generation, situation of reactor operation, future installation of nuclear power plants, uranium demand/supply situation, spent fuel storage, etc. Then, discussion and analysis are made on such problems as waste management, economy, safety, and safeguards. (J.P.N.)

  10. Report on generation IV technical working group 3 : liquid metal reactors

    International Nuclear Information System (INIS)

    Lineberry, M. J.; Rosen, S. L.; Sagayama, Y.

    2002-01-01

    This paper reports on the first round of R and D roadmap activities of the Generation IV (Gen IV) Technical Working Group (TWG) 3, on liquid metal-cooled reactors. Liquid metal coolants give rise to fast spectrum systems, and thus the reactor systems considered in this TWG are all fast reactors. Gas-cooled fast reactors are considered in the context of TWG 2. As is noted in other Gen IV papers, this first round activity is termed ''screening for potential'', and includes collecting the most complete set of liquid metal reactor/fuel cycle system concepts possible and evaluating the concepts against the Gen IV principles and goals. Those concepts or concept groups that meet the Gen IV principles and which are deemed to have reasonable potential to meet the Gen IV goals will pass to the next round of evaluation. Although we sometimes use the terms ''reactor'' or ''reactor system'' by themselves, the scope of the investigation by TWG 3 includes not only the reactor systems, but very importantly the closed fuel recycle system inevitably required by fast reactors. The response to the DOE Request for Information (RFI) on liquid metal reactor/fuel cycle systems from principal investigators, laboratories, corporations, and other institutions, was robust and gratifying. Thirty three liquid metal concept descriptions, from eight different countries, were ultimately received. The variation in the scope, depth, and completeness of the responses created a significant challenge for the group, but the TWG made a very significant effort not to screen out concepts early in the process

  11. NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Aug 15, 2002 to Nov. 15, 2002) - DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Lawrence Townsend; Martin Williamson; Rupy Sawhney; Jacob Fife

    2002-01-01

    The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. This report covers the ninth quarter of the project. The three reactor concept teams have completed initial plant concept development, evaluation and layout. A significant design effort has proceeded with substantial change and evolution from original ideas. The concepts have been reviewed by the industry participants and improvements have been implemented. The third phase, industrial engineering simulation of reactor fabrication has begun

  12. New Materials for NGNP/Gen IV

    International Nuclear Information System (INIS)

    Swindeman, Robert W.; Marriott, Douglas L.

    2009-01-01

    The bounding conditions were briefly summarized for the Next Generation Nuclear Plant (NGNP) that is the leading candidate in the Department of Energy Generation IV reactor program. Metallic materials essential to the successful development and proof of concept for the NGNP were identified. The literature bearing on the materials technology for high-temperature gas-cooled reactors was reviewed with emphasis on the needs identified for the NGNP. Several materials were identified for a more thorough study of their databases and behavioral features relative to the requirements ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH.

  13. Nuclear Energy Center Site Survey, 1975. Part IV. Practical issues of implementation

    International Nuclear Information System (INIS)

    1976-01-01

    The objective of Part IV is to assemble, organize, and present facts, analyses, and responsible viewpoints with respect to issues going beyond technical and technical-economic tradeoff considerations that bear on NECs; to identify options; and to analyze and comment on merits of alternative options. Five broad groups of issues addressed include jurisdictional and institutional; economic; social and political; accident risk; national security; and nuclear material safeguards

  14. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  15. The nuclear industry and the young generation

    International Nuclear Information System (INIS)

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  16. Nuclear power generation and automation technology

    International Nuclear Information System (INIS)

    Korei, Yoshiro

    1985-01-01

    The proportion of nuclear power in the total generated electric power has been increasing year after year, and the ensuring of its stable supply has been demanded. For the further development of nuclear power generation, the heightening of economical efficiency which is the largest merit of nuclear power and the public acceptance as a safe and stable electric power source are the important subjects. In order to solve these subjects, in nuclear power generation, various automation techniques have been applied for the purpose of the heightening of reliability, labor saving and the reduction of radiation exposure. Meeting the high needs of automation, the automation technology aided by computers have been applied to the design, manufacture and construction, operation and maintenance of nuclear power plants. Computer-aided design and the examples of design of a reactor building, pipings and a fuel assembly, an automatic welder for pipings of all position TIG welding type, a new central monitoring and control system, an automatic exchanger of control rod-driving mechanism, an automatic in-service inspection system for nozzles and pipings, and a robot for steam generator maintenance are shown. The trend of technical development and an intelligent moving robot, a system maintenance robot and a four legs walking robot are explained. (Kako, I.)

  17. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  18. Is there a tomorrow for nuclear power generation?

    International Nuclear Information System (INIS)

    Kanoh, T.

    1996-01-01

    Critical comments are publicly made about nuclear power generation and the nuclear fuel cycle. This criticism is directed at three areas of concern: accidents, radioactive waste disposal, and proliferation of nuclear weapons. In addition, there are other comments that ask 'Why are there countries pushing for nuclear power generation when other countries around the world are giving it up?' and 'Will further efforts to develop new energy sources and energy conservation not eliminate the nneed for nuclear power generation?' Such critical comments appear in some media more often than those expressing other opinions. Is there really no tomorrow for nuclear power? This question is studied below. (author)

  19. World nuclear power once again in the spotlight. Comments on the 13th Pacfic Basin Nuclear Conference

    International Nuclear Information System (INIS)

    Zang Mingchang; Ruan Keqiang

    2004-01-01

    This paper comments on The 13th Pacific Basin Nuclear Conference held in Shenzhen, China, on October 21/25, 2002 and summarizes some key papers presented in the Conference and viewpoints from their following discussions, which indicates that nuclear power in the world is once again in the spotlight. The Conference shows that in the coming 50 years the roadmap to develop nuclear energy would be divided into two stages: Near-Term Deployment by 2010-2015, some advanced designs were developed for Utilities; Generation IV Program, its overall goal is to identify and develop next-generation nuclear power systems that could be deployed over the next 30 years to help meet the world's energy needs throughout the 21st century. Some visions is the future, such as co-generation of electricity and space heating or desalination, and combination of Generation IV and so-called Hydrogen Economy-the use of hydrogen in vehicle transport to replace petroleum, were presented. As a primary energy source nuclear power is particularly well suited to hydrogen production, offering the almost unique position of large-scale hydrogen production with near-zero emissions. (authors)

  20. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  1. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  2. Gen IV International Forum - GIF, 2010 Annual Report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The Generation IV International Forum (GIF), created in 2000 to foster international collaboration at a detailed level of actual R and D, is a cooperative international endeavor, organized to develop the research necessary to test the feasibility and performance capabilities of fourth generation nuclear systems, with the goal of making such systems deployable in large numbers around 2030. Since its beginning, GIF members stated the following goals for the fourth generation of nuclear power plants when compared to previous generations: a) improve sustainability (including effective fuel utilization and minimization of waste); b) improve economics (competitiveness with respect to other energy sources); c) improve safety and reliability (e.g. no need for offsite emergency response); and d) improve proliferation resistance and physical protection. After an in-depth analysis of the different available concepts, whatever their level of development, the Forum selected six concepts as the most promising, and decided to focus R and D on these systems: - the very-high-temperature reactor (VHTR); - the sodium-cooled fast reactor (SFR); - the supercritical-water-cooled reactor (SCWR); - the gas-cooled fast reactor (GFR); - the lead-cooled fast reactor (LFR); - the molten salt reactor (MSR). Active members of the GIF are Canada, Euratom, France, Japan, People's Republic of China, Republic of Korea, Republic of South Africa, Russian Federation, Switzerland and the United States. Altogether, they represent around 90% of the world installed nuclear capacity for producing electricity, and all key technology holders. The forum is led by the policy group, where all members are represented, and currently chaired by Japan since December 2009, assisted by vice-chairs from France and United States. The year 2010 has seen some important achievements and decisions regarding these six systems. For example, two sodium-cooled fast reactors (re)started this year: Monju in Japan restarted after

  3. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  4. Situation of nuclear power generation in Sweden: swaying nuclear energy policy and conversion from nuclear phase-out policy

    International Nuclear Information System (INIS)

    Kuroda, Yuji

    2017-01-01

    In Sweden, fossil fuels cannot be produced domestically, and most of them depend on foreign imports. For this reason, together with hydropower generation using abundant water resources, nuclear power generation was introduced and used since the early stage. Nuclear power generation in 2015 reached 35% of total generated power energy. As of 2016, Sweden was steadily constructing the world's second final disposal site of high-level radioactive waste. On the other hand, this country is known as the one that decided nuclear phase-out policy earliest in the world. However, the country's nuclear policy is swaying together with changes in political party power due to election results. In 1980, they decided the policy of abolishing all nuclear power generation by 2010. Thereafter, the nuclear phase-out policy was frozen and maximum 10 units of nuclear plants were accepted. The goal of the latest policy is to allow new construction up to 10 units as replacement, and to use 100% of renewable energy in 2040. However, the year of 2040 is not a deadline for the abolishment of nuclear power generation. In Sweden's public opinion on nuclear power generation, the early abolition was dominant at about 50% during 1986∼1995, but this opinion decreased to about 10% in the 2000s. There is an increasing number of opinions saying that the existing nuclear plants should be continuously operated for a while, and phased out step by step in the future. (A.O.)

  5. Managing nuclear predominant generating capacity

    International Nuclear Information System (INIS)

    Bouget, Y.H.; Carbonnier, D.

    1999-01-01

    The most common believe, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires to take various actions, ranging from a daily basis to a multi-annual prospective standpoint. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary. The coordination systems implemented by EDF aim to control these parameters for the benefit of electricity consumers. (author)

  6. Nuclear renaissance in Asia. Energy security and development of nuclear power generation system

    International Nuclear Information System (INIS)

    Nakasugi, Hideo

    2009-01-01

    The energy policy and strategy of development of nuclear power generation system of China, India and Korea are stated on the basis of use of light water reactors (LWRs). The conditions of power generation and introduction plans of nuclear energy of other Asian countries such as Vietnam, Thailand, Indonesia, Malaysia and Philippines are described. The power plant capacity of China increased from 50,500 MW in 2004, to 65,000 MW in 2005, and the target value is 40,000 MW of operating nuclear plants and 18,000 MW in building in 2020. China is lagging behind in peaceful use of nuclear energy technologies. A plan for the reform of nuclear industry and nuclear power generation projects of China are summarized. Total power plant capacity of India is 145,000 MW, but the nuclear plant capacity is 4,120 MW in 2008 and 63,000 MW of the target in 2032. Development of nuclear power, circumstance, and cooperation with other countries' industries are explained. 17,716 MW of nuclear power is in operation, 6,800 MW in building and 2,800 MW in the planning stage in Korea. History of development of national reactors and the subjects of development of the fourth generation reactor of Korea are stated. Management system of nuclear power plants in China, technical bases of nuclear power plants in China, development system of nuclear power generation in India, the conditions of power production of Korea in 2008, the capacity factor of Korea, Japan and world from 1998 to 2008, and comparison of nuclear industries in China, India and Korea are illustrated. (S.Y.)

  7. The different generation of nuclear reactors from Generation-1 to Generation-4

    International Nuclear Information System (INIS)

    Cognet, G.

    2010-01-01

    In this work author deals with the history of the development of nuclear reactors from Generation-1 to Generation-4. The fuel cycle and radioactive waste management as well as major accidents are presented, too.

  8. Third generation nuclear plants

    Science.gov (United States)

    Barré, Bertrand

    2012-05-01

    After the Chernobyl accident, a new generation of Light Water Reactors has been designed and is being built. Third generation nuclear plants are equipped with dedicated systems to insure that if the worst accident were to occur, i.e. total core meltdown, no matter how low the probability of such occurrence, radioactive releases in the environment would be minimal. This article describes the EPR, representative of this "Generation III" and a few of its competitors on the world market.

  9. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  10. Instruction by virtual reality to operation and security of a nuclear power plant of IV generation

    International Nuclear Information System (INIS)

    Neri O, J. C.; Baltasar M, J.; Valle H, J.

    2009-10-01

    The purpose of LaNuVi project which is developing in the Engineering Faculty of National Autonomous University of Mexico, to have a virtual laboratory of nuclear reactors as tool of multidisciplinary education at basic and advanced levels in nuclear engineering area, involves training resources in audio visual and interactive form that allow to form a comprehension more realistic of operation of different systems and components. In this work is proposed to use educational resources, as the employees in the U.S. Army and in some centers of advanced education of medicine, where have been come proving concepts like projected reality, increased reality, tele transparency and others that present big benefits to learning-education process. The proposal here is to include the resource knew as serious game based learning. The focal point of stage that is presented is of a nuclear reactor PBMR like desalination and generator of controlled alternating energy and efficient that should put on in operation to allow the subsistence of a community in a desolated region of beginning second quarter of X XI century. For this purpose the designs are initiated and programmed several subsystems that allow the three-dimensional modeling of main components of a PBMR as well as of surrounding facilities. The obtained results and reaches of this design are presented. The product is in tests for a first version and it is hope to achieve a free and integral resource of national distribution for different cultural groups, interested in this type of advanced technology. (Author)

  11. Generation IV concepts - Presentation at ACRS workshop 'Regulatory challenges for future nuclear power plants'

    International Nuclear Information System (INIS)

    Versluis, Rob M.

    2001-01-01

    The concept of the Near-Term Deployment Working Group was to define a technical approach for Generation IV system with enough detail to allow evaluation against the goal, bur broad enough to allow for optional features and trade. The following concepts were taken into account: water coolant (water or heavy water), gas coolant, liquid metal coolants. Concepts were grouped according to concept sets of technology base share and design approach. Water coolant concepts were grouped as follows: PWR loop reactors, integral primary system PWRs, Integral BWRs, pressure tube reactors, high conversion cores, supercritical water reactors, advanced fuel cycle concepts. Gas coolant concepts were grouped as follows: pebble bed modular reactors; prismatic modular reactors, very high temperature reactors, fast spectrum reactors, others (fluidized bed, moving ignition zone concept). Liquid metal concepts were grouped in four major categories: Medium-to-large oxide-fueled systems; Medium-sized metal-fueled systems; Medium-sized Pb/Pb-Bi systems; Small-sized Pb/Pb-Bi systems. The three supporting technology areas were examined: Fuels (oxide, metal, nitride); Coolants (Na, Pb/Pb-Bi); Fuel Cycle (advanced aqueous, pyroprocess). Non-classical concepts were also grouped as follows: Eutectic metallic fuel; Molten salt fuel; Gas core reactor; Molten salt cooled/solid fuel; Organic cooled reactor; Solid conduction/heat pipe; Fission product direct energy conversion. The Technical working Groups are analyzing the candidate concepts for performance potential relative to the goals; and technology gaps

  12. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  13. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  14. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  15. Fourth Generation Reactor Concepts

    International Nuclear Information System (INIS)

    Furtek, A.

    2008-01-01

    Concerns over energy resources availability, climate changes and energy supply security suggest an important role for nuclear energy in future energy supplies. So far nuclear energy evolved through three generations and is still evolving into new generation that is now being extensively studied. Nuclear Power Plants are producing 16% of the world's electricity. Today the world is moving towards hydrogen economy. Nuclear technologies can provide energy to dissociate water into oxygen and hydrogen and to production of synthetic fuel from coal gasification. The introduction of breeder reactors would turn nuclear energy from depletable energy supply into an unlimited supply. From the early beginnings of nuclear energy in the 1940s to the present, three generations of nuclear power reactors have been developed: First generation reactors: introduced during the period 1950-1970. Second generation: includes commercial power reactors built during 1970-1990 (PWR, BWR, Candu, Russian RBMK and VVER). Third generation: started being deployed in the 1990s and is composed of Advanced LWR (ALWR), Advanced BWR (ABWR) and Passive AP600 to be deployed in 2010-2030. Future advances of the nuclear technology designs can broaden opportunities for use of nuclear energy. The fourth generation reactors are expected to be deployed by 2030 in time to replace ageing reactors built in the 1970s and 1980s. The new reactors are to be designed with a view of the following objectives: economic competitiveness, enhanced safety, minimal radioactive waste production, proliferation resistance. The Generation IV International Forum (GIF) was established in January 2000 to investigate innovative nuclear energy system concepts. GIF members include Argentina, Brazil, Canada, Euratom, France Japan, South Africa, South Korea, Switzerland, United Kingdom and United States with the IAEA and OECD's NEA as permanent observers. China and Russia are expected to join the GIF initiative. The following six systems

  16. Generation 4 International Forum. 2007 annual report

    International Nuclear Information System (INIS)

    2007-01-01

    This annual report is the first to be issued by GIF (Generation IV International Forum). It summarizes the GIF goals and accomplishments throughout 2007, describes its membership and organization, and provides an overview of its cooperation with other international endeavors for the development of nuclear energy. Future editions will focus on technical progress. Chapter 2 provides an overview on the goals of Generation IV nuclear energy systems and outlines the main characteristics of the six systems selected for joint development by GIF (VHTR - Very High Temperature Reactor; SFR - Sodium-cooled Fast Reactor; SCWR - Super-Critical Water cooled Reactor; GFR - Gas-cooled Fast Reactor; LFR - Lead-cooled Fast Reactor; and MSR - Molten Salt Reactor). Chapter 3 describes the membership and organization of the GIF, the structure of its cooperative research and development (R-D) arrangements, and the status of Member participation in these arrangements. Chapter 4 summarizes the R-D plans and achievements of the Forum until now. It highlights the R-D challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made regarding the development of methodologies for assessing Generation IV systems with respect to the established goals. Chapter 5 reviews other major international collaborative projects in the field of nuclear energy and explains how the GIF interacts and cooperates with them. Bibliographical references are provided in each chapter in order to facilitate access to public information about the GIF objectives, goals and outcomes

  17. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants

    DEFF Research Database (Denmark)

    de Sousa, David P; Miller, Christopher J; Chang, Yingyue

    2017-01-01

    The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....

  18. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  19. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  20. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  1. Present state and prospect of nuclear power generation

    International Nuclear Information System (INIS)

    Fukushima, Akira

    1980-01-01

    Energy resources are scarce in Japan, therefore Japan depends heavily on imported petroleum. However, the international situation of petroleum became more unstable recently, and the promotion of the development and utilization of nuclear power generation was agreed upon in the summit meeting and the IEA. In order to achieve the stable growth of economy and improve the national welfare in Japan, it is urgent subject to accelerate the development of nuclear power generation. Japan depends the nuclear fuel also on import, but the stable supply is assured by the contract of long term purchase. It is not necessary to replace nuclear fuel usually for three years, and the transport and storage of nuclear fuel are easy because the quantity is not very large. By establishing the independent nuclear fuel cycle in Japan, it is possible to give the character similar to domestically produced energy to nuclear fuel. Moreover, uranium resources can be effectively utilized by the development of nuclear reactors of new types, such as FBRs. The cost of generating 1 kWh of electricity was about 8 yen in case of nuclear power and 15 yen in petroleum thermal power as of January, 1980. 21 nuclear power plants of about 15 million kW capacity are in operation in Japan, and about 30 million kW will be installed by 1985. The measures to promote the development of nuclear power generation are discussed. (Kako, I.)

  2. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  3. France and nuclear proliferation: the new generation of nuclear submarines

    International Nuclear Information System (INIS)

    Barrillot, B.

    2001-01-01

    Ten years after the end of the 'cold war' the French government has pursued its national defense program with the construction of a new generation of nuclear submarines with new type of missiles and nuclear heads. This book analyzes the possible solutions for a step by step elimination of nuclear weapons from the French weapons stock. (J.S.)

  4. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Lim, Chae Young

    1998-12-01

    An energy security index was developed to measure how the introduction of nuclear power generation improved the national security of energy supply in Korea. Using the developed index, a quantitative effort was made to analyze the relationship between the nuclear power generation and the national energy security. Environmental impacts were evaluated and a simplified external cost of a specific coal-fired power plant in Korea was estimated using the QUERI program, which was developed by IAEA. In doing so, efforts were made to quantify the health impacts such as mortality, morbidity, and respiratory hospital admissions due to particulates, SOx, and Nox. The effects of CO 2 emission regulation on the national economy were evaluated. In doing so, the introduction of carbon tax was assumed. Several scenarios were established about the share of nuclear power generation and an effort was made to see how much contribution nuclear energy could make to lessen the burden of the regulation on the national economy. This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods. (author). 24 refs., 44 tabs., 9 figs

  5. Present status and problems of nuclear power generation

    International Nuclear Information System (INIS)

    Harada, Hiroshi.

    1984-01-01

    The nuclear power generation in Japan began in 1963 with the successful power generation in the JPDR of the Japan Atomic Energy Research Institute, and since then, more than 20 years have elapsed. The Japan Atomic Power Co. started the operation of an imported Calder Hall type gas-cooled reactor with 166,000 kWe output in Tokai Nuclear Power Station in July, 1966. In 1983, the quantity of nuclear power generation was 113.1 billion kWh, which was equivalent to 21.4 % of the total power generation in Japan. As of April 1, 1984, 25 nuclear power plants with 18.28 million kW output were in operation, 12 plants of 11.8 million kW were under construction, and 7 plants of 6.05 million kW were in preparation phase. Besides, the ATR ''Fugen'' with 165,000 kW output has been in operation, and the FBR ''Monju'' with 280,000 kW output is under construction. The capacity ratio of Japanese nuclear power stations attained 71.5 % in 1983. According to the ''Long term energy demand and supply outlook'' revised in November, 1983, the nuclear power generation in 2000 will be about 62 million kW to cater for about 16 % of primary energy supply. The problems are the improvement of economy, the establishment of independent nuclear fuel cycle, the decommissioning of nuclear reactors and so on. (Kako, I.)

  6. The Transportable Nuclear Plant for Multi Purpose Applications

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that have to be much better developed for safety, economy and public acceptance. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements [1,2] to be used for future nuclear reactors. Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. The focus in this paper is on the changing and emerging global energy-markets and how the nuclear industry can anticipate in the coming Digital Society. (authors)

  7. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  8. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  9. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  10. The concepts of liquid metal of IV generation

    International Nuclear Information System (INIS)

    Carbonnier, J. L.

    2005-01-01

    The concepts of liquid metals, due to their large spectrum, show important possibility of sustainable development: two concepts of liquid metal (Sodium and Lead) were engaged in the frame of the IV generation. The reactors with sodium benefit from considerable background of experience and of important work on projects to aim at the price diminution and the increase of safety (EFR, JSFR). The commitment of Japan as a leader of this concept and the support by France allow to contemplate an industrial deployment from 2015. The lead reactors offer some advantages in the domain of safety but otherwise require a highly important research and development binded to the control of the corrosion, the perspective of deployment of this concept are more hypothetical

  11. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  12. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    External costs of nuclear power include: future financial liabilities arising from decommissioning and dismantling of nuclear facilities, health and environmental impacts of radioactivity releases in routine operation, radioactive waste disposal and effects of severe accidents. The nuclear energy industry operates under regulations that impose stringent limits to atmospheric emissions and liquid effluents from nuclear facilities as well as requiring the containment and confinement of solid radioactive waste to ensure its isolation from the biosphere as long as it may be harmful for human health and the environment. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the above-mentioned potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The externality related to potential health and environmental impacts of radioactive releases during routine operations have been assessed in a large number of comprehensive studies, in particular the ExternE project that was created in the framework of the European Commission. With regard to effects of severe nuclear accidents, a special legal regime, the third-party liability system, has been implemented to provide limited third party liability coverage in the event of a nuclear accident. The nuclear plant owners are held liable for some specified first substantial part of damages to third parties, and must secure insurance coverage adequate to cover this part. The Government provides coverage for some specified substantial second part of the damages, with any remaining damages to be considered by the national legislation. Thus, the costs of an incident or accident are fully internalized in the costs borne by the nuclear plant owners. Externalities of energy are not limited to environmental and health related impacts, but may result also from macro-economic, policy or strategic factors not reflected

  13. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  14. Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket (Gryllodes sigillatus) proteins.

    Science.gov (United States)

    Nongonierma, Alice B; Lamoureux, Candice; FitzGerald, Richard J

    2018-01-24

    Tropical banded crickets (Gryllodes sigillatus) were studied for their ability to yield hydrolysates with dipeptidyl peptidase IV (DPP-IV) inhibitory properties. A cricket protein isolate (CPI) was prepared following extraction of the water soluble proteins from G. sigillatus powder (CP). The extraction yield and purity were 20.90 ± 0.35% and 57.0 ± 2.23%, respectively. Endogenous proteinase activities were detected in the CP, which were linked to the significant protein breakdown seen in this sample. Fifteen CPI hydrolysates (H1-H15) were generated with Protamex™ using a design of experiments (DOE) approach combining three parameters, temperature (40, 50 and 60 °C), enzyme to substrate ratio (E : S, 0.50, 1.25 and 2.00% (w/w)) and hydrolysis time (60, 150 and 240 min). The DPP-IV half maximal inhibitory concentrations (IC 50 ) of the CPI hydrolysates ranged from 0.40 ± 0.03/0.40 ± 0.02 (H2/H3) to 1.01 ± 0.07 mg mL -1 (H7). Following simulated gastrointestinal digestion (SGID), the DPP-IV IC 50 of CPI decreased (>3.57 vs. 0.78 ± 0.04 mg mL -1 ) while that of H5 increased (0.47 ± 0.03 vs. 0.71 ± 0.06 mg mL -1 ). This study has demonstrated for the first time that G. sigillatus protein hydrolysates are able to inhibit DPP-IV. The study of these hydrolysates in vivo is needed to evaluate their potential role in glycaemic management.

  15. The status of proliferation resistance evaluation methodology development in GEN IV international forum

    International Nuclear Information System (INIS)

    Inoue, Naoko; Kawakubo, Yoko; Seya, Michio; Suzuki, Mitsutoshi; Kuno, Yusuke; Senzaki, Masao

    2010-01-01

    The Generation IV Nuclear Energy Systems International Forum (GIF) Proliferation Resistance and Physical Protection Working Group (PR and PP WG) was established in December 2002 in order to develop the PR and PP evaluation methodology for GEN IV nuclear energy systems. The methodology has been studied and established by international consensus. The PR and PP WG activities include development of the measures and metrics; establishment of the framework of PR and PP evaluation, the demonstration study using Example Sodium Fast Reactor (ESFR), which included the development of three evaluation approaches; the Case Study using ESFR and four kinds of threat scenarios; the joint study with GIF System Steering Committees (SSCs) of the six reactor design concepts; and the harmonization study with the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). This paper reviews the status of GIF PR and PP studies and identifies the challenges and directions for applying the methodology to evaluate future nuclear energy systems in Japan. (author)

  16. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  17. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  18. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  19. Global outlook for nuclear power

    International Nuclear Information System (INIS)

    Southworth, F.H.

    2010-01-01

    'Full text:' The global nuclear power forecast, the North American outlook and the effect of nuclear power growth on greenhouse gas emissions in North America will be discussed. The construction of Generation III reactors will replace aging power plants and, further, add capacity that is environmentally sustainable. The outlook for Generation IV reactors also may significantly improve the environmental balance after 2030, both in electrical markets, waste reduction, and in non-traditional markets such as process heat. (author)

  20. Nuclear performance standards: Promoting efficient generation

    International Nuclear Information System (INIS)

    Nagelhout, M.

    1990-01-01

    Nuclear plant performance standards are designed to share the risks of operation associated with nuclear generation. Such standards often shift risks from ratepayers to utility shareholders, even without a finding of imprudence or mismanagement. The rationale underlying nuclear performance standards is that ratepayers should not be responsible for excessive replacement power costs incurred as a result of unreasonable decisions by utility management, especially because the high fixed costs of nuclear plants are already included in base rates. In addition, performance standards can be designed to provide incentives to reward utilities that achieve superior nuclear performance, for the benefit of both ratepayers and shareholders

  1. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IV. Commercial potential

    International Nuclear Information System (INIS)

    1979-12-01

    Volume IV provides time and cost estimates for positioning new nuclear power systems for commercial deployment. The assessment also estimates the rates at which the new systems might penetrate the domestic market, assuming the continuing viability of the massive light-water reactor network that now exists worldwide. This assessment does not recommend specific, detailed program plans and budgets for individual systems; however, it is clear from this analysis that any of the systems investigated could be deployed if dictated by national interest

  2. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  3. Comparative analysis of power conversion cycles optimized for fast reactors of generation IV

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2011-01-01

    For the study, which is presented here, has been chosen as the specific parameters of each reactor, which are today the three largest projects within generation IV technology development: ESFR for the reactor's sodium, LEADER for the lead reactor's and finally, GoFastR in the case of reactor gas-cooled.

  4. Hydride generation atomic fluorescence spectrometric determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter using multivariate optimization

    International Nuclear Information System (INIS)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario

    2004-01-01

    A highly sensitive and simple method, based on hydride generation and atomic fluorescence detection, has been developed for the determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter samples. Atmospheric particulates matter was collected on glass fiber filters using a medium volume sampler (PM1 particulate matter). Two-level factorial designs have been used to optimise the hydride generation atomic fluorescence spectrometry (HG-AFS) procedure. The effects of several parameters affecting the hydride generation efficiency (hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations and flow rates) have been evaluated using a Plackett-Burman experimental design. In addition, parameters affecting the hydride measurement (delay, analysis and memory times) have been also investigated. The significant parameters obtained (sodium tetrahydroborate concentration, sodium tetrahydroborate flow rate and analysis time for As; hydrochloric acid concentration and sodium tetrahydroborate flow rate for Se(IV); and sodium tetrahydroborate concentration and sodium tetrahydroborate flow rate for Te(IV)) have been optimized by using 2 n + star central composite design. Hydrochloric acid concentration and sodium tetrahydroborate flow rate were the significant parameters obtained for Sb and Bi determination, respectively. Using a univariate approach these parameters were optimized. The accuracy of methods have been verified by using several certified reference materials: SRM 1648 (urban particulate matter) and SRM 1649a (urban dust). Detection limits in the range of 6 x 10 -3 to 0.2 ng m -3 have been achieved. The developed methods were applied to several atmospheric particulate matter samples corresponding to A Coruna city (NW Spain)

  5. World nuclear generating capacity 1993/94

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the annual summary of world nuclear generating capacity for 1994. A global summary is first provided, reviewing total installed capacity and growth in installed capacity over the next five years. A more detailed discussion of the nuclear efforts in 34 countries follows, with a tabular listing of nuclear projects in each of these countries. The listing includes reactor supplier, reactor type, size, current status, and date of commercial operation

  6. Generation 4 International Forum (GIF). 2015 Annual Report

    International Nuclear Information System (INIS)

    2016-01-01

    This ninth edition of the Generation IV International Forum (GIF) Annual Report highlights the main achievements of the Forum in 2015. On 26 February 2015, the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems was extended for another ten years, thereby paving the way for continued collaboration among participating countries. GIF organised the 3. Symposium in Makuhari Messe, Japan in May 2015 to present progress made in the development of the six generation IV systems: the gas-cooled fast reactor, the sodium-cooled fast reactor, the supercritical-water-cooled reactor, the very-high-temperature reactor, the lead-cooled fast reactor and the molten salt reactor. The report gives a detailed description of progress made in the 11 existing project arrangements. It also describes the development of safety design criteria and guidelines for the sodium-cooled fast reactor, in addition to the outcome of GIF engagement with regulators on safety approaches for generation IV systems. (authors)

  7. Outlook of nuclear power generation and international situation

    Energy Technology Data Exchange (ETDEWEB)

    Ekulund, S [International Atomic Energy Agency, Vienna (Austria)

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, Nuclear energy has larger economic advantages over petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonable. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contributions largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial.

  8. Nigeria nuclear power generation programme: Suggested way forward

    International Nuclear Information System (INIS)

    Adesanmi, C.A.

    2007-01-01

    It has now been established worldwide that nuclear power generation is needed to meet growing energy demands. The gases emitted from fossil fuel have serious adverse effects on the environment. The message from the 50th Annual General Conference of the International Atomic Energy Agency (IAEA) held in Vienna, September 2006 was very clear on this issue. There was a unanimous support for more nuclear power generation to meet the world energy demand. All the member states that can afford the nuclear power technology and willing to abide by the international regulations and safeguards were encouraged to do so. The requirements to participate in the nuclear power generation programme are political will and organized diplomacy, legislative and statutory framework, international safety obligations, institutional framework, public acceptability, capacity building and technology transfer, environmental concern , waste management and financing. Nigeria's performance on all the criteria was evaluated and found satisfactory. All these coupled with Nigeria's dire need for more power and better energy mix, are sufficient and undisputable reasons for the whole world to support Nigeria nuclear power generation programme. Definitely the programme poses serious challenges to the Nigerian Physicists. Therefore, Departments of Physics should endeavour to include nuclear physics option in their programme and work in collaboration with the faculty of Engineering in their various tertiary institutions in order to attain the necessary critical human capacity that will be needed to man the nuclear power industry within the next 10 years

  9. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  10. JSFR design progress related to development of safety design criteria for Generation IV sodium-cooled fast reactors. (1) Overview

    International Nuclear Information System (INIS)

    Kamide, Hideki; Ando, Masato; Ito, Takaya

    2015-01-01

    JAEA, JAPC and MFBR have been conducting design study for the Japan Sodium-cooled Fast Reactor (JSFR), which is a design concept aiming at future commercial use as sustainable electric power source. As the result of the design study and R and D activity related the innovative technologies incorporated in the design in the Fast Reactor Cycle Technology Development (FaCT) project up to 2010, basic design concept of JSFR was established and its development process to the commercialization including construction and operation of a demonstration version of JSFR was outlined. JSFR is a looptype next generation sodium-cooled fast reactor (SFR), which is aiming at achieving development targets of Generation IV reactors concerning sustainability, safety and reliability, economics and proliferation resistance and physical protection by introducing the innovative technologies such as shortened high-chromium steel piping. The output power is assumed for the design study as 1,500 MWe for the commercial version and 750 MWe for the demonstration version. In FaCT phase I up to 2010, in order to evaluate feasibility to achieve the development targets, the design study has been conducted on the main components and systems. Since 2011, in order to contribute to the development of safety design criteria (SDC) and safety design guideline (SDG), which include the lessons learned from the TEPCO's Fukushima Dai-ichi nuclear power plants accident, in the frame work of Generation IV International Forum (GIF), the design study is focusing on the design measures against severe external events such as earthquake and tsunami. At the same time, the design study is going into detail and paying much attention to the maintenance and repair to make surer its feasibility. This paper summarizes the design concept of the demonstration version of JSFR in which progress of design work was incorporated for the safety issues on SDC and SDG of a SFR. (author)

  11. Algorithm for the generation of nuclear spin species and nuclear spin statistical weights

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A set of algorithms for the computer generation of nuclear spin species and nuclear spin statistical weights potentially useful in molecular spectroscopy is developed. These algorithms generate the nuclear spin species from group structures known as generalized character cycle indices (GCCIs). Thus the required input for these algorithms is just the set of all GCCIs for the symmetry group of the molecule which can be computed easily from the character table. The algorithms are executed and illustrated with examples

  12. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  13. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  14. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  15. Instruction by virtual reality to operation and security of a nuclear power plant of IV generation; Instruccion por realidad virtual a la operacion y seguridad de una central nuclear de generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Neri O, J. C.; Baltasar M, J.; Valle H, J. [Facultad de Ingenieria, Division de Estudios de Posgrado, Campus Morelos, UNAM, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)], e-mail: neriunam@ieee.org

    2009-10-15

    The purpose of LaNuVi project which is developing in the Engineering Faculty of National Autonomous University of Mexico, to have a virtual laboratory of nuclear reactors as tool of multidisciplinary education at basic and advanced levels in nuclear engineering area, involves training resources in audio visual and interactive form that allow to form a comprehension more realistic of operation of different systems and components. In this work is proposed to use educational resources, as the employees in the U.S. Army and in some centers of advanced education of medicine, where have been come proving concepts like projected reality, increased reality, tele transparency and others that present big benefits to learning-education process. The proposal here is to include the resource knew as serious game based learning. The focal point of stage that is presented is of a nuclear reactor PBMR like desalination and generator of controlled alternating energy and efficient that should put on in operation to allow the subsistence of a community in a desolated region of beginning second quarter of X XI century. For this purpose the designs are initiated and programmed several subsystems that allow the three-dimensional modeling of main components of a PBMR as well as of surrounding facilities. The obtained results and reaches of this design are presented. The product is in tests for a first version and it is hope to achieve a free and integral resource of national distribution for different cultural groups, interested in this type of advanced technology. (Author)

  16. Nuclear power generation as seen from construction aspect

    International Nuclear Information System (INIS)

    Osaki, Yorihiko

    1984-01-01

    The measures to vitalize atomic energy industry in low economical growth age are grasped from the viewpoint of heightening the quality of technology, and the improvement of the economical efficiency of nuclear power generation as seen from construction aspect is discussed. By 2000, the nuclear power generation in Japan will be increased by about four times to 62 million kW, and the proportion of nuclear power increases steadily. Recently, the nuclear power stations in Japan have been stably operated at high level, and the capacity ratio has exceeded 70 %. However, the power generation cost tends to rise, and it is feared that the economical advantage over thermal power will be lost. Recently, the construction cost of nuclear power plants has continued to rise, which causes the high cost of nuclear power. The reason of the high construction cost is in short too much quantity of materials and long construction period. As the proposal to reduce the construction cost, three stages of the rationalization are discussed, such as the rationalization of simulated earthquake for design and the improvement of reactor building design. The promotion of technical development is indispensable for the cost reduction. (Kako, I.)

  17. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  18. Prediction of future dispute concerning nuclear power generation

    International Nuclear Information System (INIS)

    1981-04-01

    This investigation is the third research on the public acceptance of nuclear power generation by the National Congress on Social Economics. In this study, how the energy dispute including that concerning nuclear power generation will develop in 1980s and 1990s, how the form of dispute and the point of controversy will change, were predicted. Though the maintenance of the concord of groups strongly regulates the behavior of people, recently they have become to exercise individual rights frequently. The transition to the society of dispute is the natural result of the modernization of society and the increase of richness. The proper prediction of social problems and the planning and execution of proper countermeasures are very important. The background, objective, basic viewpoint, range and procedure of this investigation, the change of social dispute, the history of the dispute concerning nuclear power generation, the basic viewpoint in the prediction of the dispute concerning nuclear power generation, the social situation in 1980s, the prediction and avoidance of the dispute in view of social and energy situations, and the fundamental strategy for seeking a clue to the solution in 1980s and 1990s are described. The establishment of neutral mediation organs and the flexible technologies of nuclear reactors are necessary. (Kako, I.)

  19. Process of public attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1993-01-01

    The Japanese public attitudes toward nuclear power generation had become negative year by year. After the Chernobyl accident, a percentage of the unfavorable respondent toward nuclear power generation has dramatically increased, and a new type of anti-nuclear movement has been observed. On the basis of our public opinion polls, the reason for this increase was found to be primarily decrease of sense of usefulness rather than increase of sense of nueasiness about nuclear safety. Particularly, social factors (change of life style, progress of civilian consciousness, credibility of the existing institutional system etc.) have influence on the attitude of either pro or anti-nuclear. Based on the above observation, we have inferred that process of the public attitudes has two flows arising from the above social factors, one is the usefulness and the other is the easiness about nuclear safety, and have formulated a model representing the process of public attitudes toward nuclear power. (author)

  20. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  1. Prerequisites for successful nuclear generation in southern Africa

    International Nuclear Information System (INIS)

    Semark, P.

    1990-01-01

    The prerequisites and the requisites for successful nuclear powered electricity generation in southern Africa are explored. There are four elements essential to success, namely, the mission or vision; the appropriate means; the right and sufficient time, and the skilled, committed executor. The ongoing success of nuclear powered electricity generation in South Africa is discussed in the light of these four elements. 2 ills

  2. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  3. Development of Basic Key Technologies for Gen IV SFR

    International Nuclear Information System (INIS)

    Han, Do Hee; Kim, Young In; Won, Byung Chool

    2008-11-01

    Technical specifications such as power capacity, type of core, clad alloy, clad barrier material, number of loops, type of SG tube have been evaluated and a optimal design concept has been identified to satisfy the technology goals of Generation IV nuclear systems. The concept for breakeven design is featured by the heat capacity of 1,200 MWe, enrichment-separated core, 2-loop, double-walled SG tube, and a long-life sensor system for in-service inspection

  4. Risk of nuclear power generation as business (continued)

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2017-01-01

    This paper described the following: (1) fleet formation of power companies that operate nuclear power plants in the U.S., (2) collaboration, competition, and merger between plant makers, (3) stress corrosion cracking of stream generators for PWR and their thin heat transfer tubes, especially stress corrosion cracking under primary cooling water environment (PWSCC), and (4) replacement project from Inconel 600 MA to Inconel 600 TT or 690 TT of steam generator thin heat transfer tubes of PWR plants in the U.S. and others. In addition, it described the troubles at San Onofre Nuclear Power Station in California: wear of steam generator thin tubes of Units 2 and 3, and leakage from primary system to secondary system of Unit 3, and permanent shutdown. It also described the detail of damages compensation talks between South California Edison Company that operates San Onofre nuclear power plant and Mitsubishi Heavy Industries Ltd. which supplied the steam generator. Although the operation of the 1.7 million kW plant became impossible due to the bud shedding of nuclear power renaissance, these troubles might have saved the nightmare of drifting on the way. (A.O.)

  5. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    International Nuclear Information System (INIS)

    Seneda, Jose A.; Lainetti, Paulo E.O.

    2013-01-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope 233 U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO 2 because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO 2 has higher corrosion resistance than UO 2 , besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt

  6. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Seneda, Jose A.; Lainetti, Paulo E.O., E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope {sup 233}U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO{sub 2} because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO{sub 2} has higher corrosion resistance than UO{sub 2}, besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the

  7. Relationship between students' interests in science and attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiya, Izumi; Torii, Hiroyuki; Fujii, Yasuhiko; Hayashizaki, Noriyosu

    2008-01-01

    In order to study the following two points, we conducted an attitude survey among senior high school students. Study 1 The differences in attitudes between nuclear power generation and other science and technologies. Study 2 The relationship between student's interest in science and attitudes toward nuclear power generation. In the questionnaire, the attitude toward nuclear power generation consisted of four questions: (1) pros and cons, (2) safety, (3) necessity, (4) reliability of scientists and engineers who are involved in nuclear power; and we treat four science and technology issues: (1) genetically modified foods, (2) nuclear power generation, (3) humanoid and pet robots, (4) crone technology. From study 1, on attitude to security toward nuclear power generation, about 80% of respondents answered negatively and on attitude to necessity toward it, about 75% of respondents answered positively. Therefore, we found that the structure of attitude was complicated and that it was specific to nuclear power generation. From study 2, we found students' interests in science that influence the attitude toward nuclear power generation. (author)

  8. Nuclear data banks generation by interpolation

    International Nuclear Information System (INIS)

    Castillo M, J. A.

    1999-01-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks

  9. Generation IV reactors and the ASTRID prototype: lessons from the Fukushima accident

    International Nuclear Information System (INIS)

    Gauche, F.

    2012-01-01

    In France, the ASTRID prototype is an industrial demonstrator of a sodium-cooled fast neutron reactor (SFR), fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for third generation reactors, and it takes into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, it will take advantage of the large thermal inertia of SFR for decay heat removal, and will provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place. (author)

  10. Availability analysis of United States BWR IV electrical generation plants

    International Nuclear Information System (INIS)

    Renick, D.H.; Li, F.; Todreas, N.E.

    1998-01-01

    Availability, as quantified by power output levels, from all active U.S. BWR IV plants were analyzed over a seven and a half year period to determine the operational characteristics of these plants throughout an operating cycle. The operational data were examined for infant mortality, end of cycle decreased availability, and seasonal availability variations. Scheduled outages were also examined to determine the industry's current approach to planning maintenance outages. The results of this study show that nuclear power plants do suffer significant infant mortality following a refueling outage. And while they do not suffer an end of cycle decrease in availability, a mid-cycle period of decreased availability is evident. This period of decreased availability is due to a combination of increased forced unavailability and seasonally scheduled maintenance and refueling outages. These findings form the start of a rational approach to increasing plant availability. (author)

  11. Three-dimensional modeling of nuclear steam generator

    International Nuclear Information System (INIS)

    Bogdan, Z.; Afgan, N.

    1985-01-01

    In this paper mathematical model for steady-state simulation of thermodynamic and hydraulic behaviour of U-tube nuclear steam generator is described. The model predicts three-dimensional distribution of temperatures, pressures, steam qualities and velocities in the steam generator secondary loop. In this analysis homogeneous two phase flow model is utilized. Foe purpose of the computer implementation of the mathematical model, a special flow distribution code NUGEN was developed. Calculations are performed with the input data and geometrical characteristics related to the D-4 (westinghouse) model of U-tube nuclear steam generator built in Krsko, operating under 100% load conditions. Results are shown in diagrams giving spatial distribution of pertinent variables in the secondary loop. (author)

  12. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-06-15

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D.

  13. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Chang, Moon Hee; Kim, H. R.; Kim, H. J.; Chang, J. H.; Hahn, D. H.; Bae, Y. Y.; Kim, W. W.; Jeong, I.; Lee, D. S.; Lee, J. H.

    2008-06-01

    Generation IV International Forum(GIF), where 13 countries including Korea collaborate to develop future nuclear energy systems, put into force 'Generation IV International Forum Project Arrangement' in 2007 for the international research and development of Gen IV Systems, following the entry into force of Framework Agreement in 2005. The International Nuclear Research Initiative(I-NERI) between Korea and United States and the International Project on Innovative Nuclear Energy Systems and Fuel Cycles(INPRO) of IAEA are continued in this year, produced lots of visible outcomes. These international activities have a common goal of the collaborative development of advanced nuclear system technologies but differ in the main focusing areas and aspects, so Korea needs to establish the integrated strategy based on the distinguished and complementary approach for the participation of each international programs, as examples the GIF for the advanced system technology development, INPRO for the set-up of institution and infra-structure, and I-NERI for the access of the core technologies and acquisition of the transparency of nuclear R and D

  14. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  15. The Birth of Nuclear-Generated Electricity

    International Nuclear Information System (INIS)

    Claflin, D.J. POC

    1999-01-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public

  16. Promotion of public awareness relating nuclear power in young generation

    International Nuclear Information System (INIS)

    Kobayashi, Yoko

    2011-01-01

    Although nuclear power presents problems of waste, safety and non-proliferation, many people understand that it is an essential energy for addressing the global climate and reducing CO2. However, a vague negative-image to the radiation and nuclear power is deep-rooted among the public. Young generation is not an exception. It is very important to transfer many information from the experienced generation in the industry to young generations. In this paper, the research that applied the information intelligence to nuclear power, which involves of the nuclear fuel cycle, and the communication related activities for the social acceptance and improvement. (author)

  17. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  18. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  19. New nuclear power generation in the UK: Cost benefit analysis

    International Nuclear Information System (INIS)

    Kennedy, David

    2007-01-01

    This paper provides an economic analysis of possible nuclear new build in the UK. It compares costs and benefits of nuclear new build against conventional gas-fired generation and low carbon technologies (CCS, wind, etc.). A range of scenarios are considered to allow for uncertainty as regards nuclear and other technology costs, gas prices and carbon prices. In the base case, the analysis suggests that there is a small cost penalty for new nuclear generation relative to conventional gas-fired generation, but that this is offset by environmental and security of supply benefits. More generally nuclear new build has a positive net benefit for a range of plausible nuclear costs, gas prices and carbon prices. This supports the UK policy of developing an enabling framework for nuclear new build in a market-based context. To the extent that assumptions in the analysis are not borne out in reality (e.g. as regards nuclear cost), this is a no regrets policy, given that the market would not invest in nuclear if it is prohibitively costly. (author)

  20. Liquid liquid extraction of Th(IV) and its complexation study by Calix(4)pyrole

    International Nuclear Information System (INIS)

    Rathod, N.V.; Kamble, J.H.; Malkhede, D.D.

    2015-01-01

    Due to increased demand for carbon-free energy, accelerated growth of nuclear power is foreseen in several countries, especially in China and India. This has made the sustainable use of fuel resources such as uranium and thorium very important. Today, uranium is the main-stay of the present generation of nuclear power plants. However, the anticipated growth in nuclear energy may require introducing thorium as a fuel in future. Meso-octamethyl calix(4)pyrole is known for anion receptor however the present study evaluate the effect of cation for complexation of thorium by liquid liquid extraction technique. Calix(4)pyrole was evaluated for extraction of Th(IV), and 97% extraction efficiency was obtained. Th(IV) was determine with arsenazo(III) at 655 nm. The effect of acid molarity of 0.1 M, 1:5 metal to ligand ratio found efficient for maximum extraction. The stoichiometry ratio 1:2 between metal to ligand is established

  1. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  2. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  3. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  4. Future of nuclear energy for electricity generation in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro

    2015-01-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  5. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  6. Treatment of Nuclear Data Covariance Information in Sample Generation

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adams, Brian M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wieselquist, William [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2017-10-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  7. Treatment of Nuclear Data Covariance Information in Sample Generation

    International Nuclear Information System (INIS)

    Swiler, Laura Painton; Adams, Brian M.; Wieselquist, William

    2017-01-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  8. The Japanese attitude towards nuclear power generation. Changes as seen through time series

    International Nuclear Information System (INIS)

    Kitada, Atsuko; Hayashi, Chikio

    1999-01-01

    This study is intended to determine people's attitudes toward nuclear power generation, shedding light on the changed and unchanged structures of attitudes by comparing data on nuclear power generation for 1993 and 1998. Although some nuclear facility accidents occurred during the last five years, public attitudes toward nuclear power generation remain almost the same. For the utilization of nuclear power generation, there was a slight increase in passive affirmation. The percentage of active affirmation was less than 10 percent, but if passive affirmation is included a high percentage exceeding 70 percent acknowledged the utilization of nuclear power. It was found that people's attitudes toward the utilization of nuclear power became slightly more positive in 1998 than in 1993. The difference was found in the general measure of attitudes based on many questions about nuclear power generation, and in the importance and the utility of nuclear power generation including the purpose of nuclear power generation. People are not conscious of the anxiety about nuclear power generation in ordinary life. However, when people were made to think about nuclear power generation, the degree of anxiety increases even if provided with data that prove its safety. On the other hand, it was revealed that the degree of anxiety about nuclear facility accidents remains the same in the last five years, that is, it has not increased, although a growing interest in the disposal and treatment of radioactive wastes was seen. As a result of a comparison of the structure of attitudes, based on the study by Hayashi 1994, it was found that the group that had no interest in nuclear power generation offered the most noticeable features in answering pattern in both 1993 and 1998. Moreover, it was found also that the latter group of respondents were characterized by a little opportunity to have information. A similarity in the relationship between people's attitudes toward nuclear power generation

  9. A strategy study on the technology development for key nuclear structural materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Jeong, Youg Hwan; Kim, Tae Kyu

    2012-01-01

    In order to realize the advanced long-life PWRs and new Generation-IV nuclear systems, it is pre-requisite to establish or ensure the several key materials technology. In this study, we proposed the several key needs and directions for the key materials issues. Each issue is envisioned and described below. 1) Development of innovative nuclear structural materials with extreme environment-resistance for advanced G-IV systems 2) Improvement/development of key reactor materials for advanced and long -life PWRs. 3) Development of technologies against nuclear materials aging degradation

  10. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  11. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  12. Business environment change and decision making mechanism of nuclear generators

    International Nuclear Information System (INIS)

    Yamashita, Hiroko

    2010-01-01

    Change magnitude of business environment for Japanese nuclear generators is significant. It is rapidly growing in the last several years. There are possibilities that the change might impact to management model of nuclear generators. In the paper, the impact to management model, especially, decision making mechanism of the generators is discussed. (author)

  13. A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Carlos H.; Stefani, Giovanni L.; Santos, Thiago A., E-mail: carlos.yamaguchi@usp.br, E-mail: giovanni.stefani@ipen.br, E-mail: thiago.santos@ufabc.edu.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2017-07-01

    The molten salt reactors (MSRs) make use of fluoride salt as primary cooler, at low pressure. Although considered a generation IV reactor, your concept isn't new, since in the 1960 years the Oak Ridge National Laboratory created a little prototype of 8MWt. Over the 20{sup th} century, other countries, like UK, Japan, Russia, China and France also did research in the area, especially with the use of thorium as fuel. This goes with the fact that Brazil possess the biggest reserve of thorium in the world. In the center of nuclear engineering at IPEN is being created a study group connected to thorium reactors, which purpose is to investigate reactors using thorium to produce {sup 233}U and tailing burn, thus making the MSR using thorium as fuel, an object of study. This present work searches to do a general summary about the researches of MSR's, having as focus the utilization of thorium with the goal being to show it's efficiency and utilization is doable. (author)

  14. Young generation in Romanian nuclear system - Romanian nuclear organizations implication in nuclear knowledge management at University 'Politehnica' of Bucharest - Results and expectations

    International Nuclear Information System (INIS)

    Ghizdeanu, E.N.; Dumitrescu, M.C.; Budu, A.R.; Pavelescu, A.O.

    2004-01-01

    The knowledge management should be assumed by the major players within the nuclear community: government, industry and university. Starting from these problems this article gives an overview about Romanian nuclear knowledge management and the Young Generation implications. In Romania there are many government and non-government nuclear institutions such: CNCAN (Romanian Regulatory Body), ROMATOM (Romanian Atomic Forum), AREN (Romanian 'Nuclear Energy' Association), and companies: SNN ('Nuclearelectrica' SA National Company), CITON (Centre of Technology and Engineering for Nuclear Projects), SCN (Institute for Nuclear Research), ROMAG - PROD (Romanian Heavy Water Plant). All these institutes and companies are sustaining the national nuclear program and promoting the new technologies in the nuclear industry according with CNCAN and ROMATOM regulations. University 'POLITEHNICA' of Bucharest - Power Engineering Faculty - through Nuclear Power Plant Department is the promoter of nuclear knowledge management. It is implied in assuring and maintaining a high-quality training for young staff. Young Generation is implicated in nuclear knowledge management through University 'Politehnica' of Bucharest - Power Engineering Faculty - Nuclear Power Plant Department and AREN (Romanian 'Nuclear Energy' Association). Young Generation Department has special educational programs for attracting and supporting students. It provides adequate information and interacts with potential students. Moreover the article gives results about Romanian nuclear engineers since 1970 till now. An analysis of these data is done. Also it is discussed how University 'Politehnica' of Bucharest, the Romanian Government and the Industry work together to co-ordinate more effectively their efforts to encourage the young generation. (author)

  15. Safeguards and security by design support for the next generation nuclear plant project - Progress in safeguards by design (SBD) by the United States National Nuclear Security Administration (NNSA)

    International Nuclear Information System (INIS)

    Bjornard, T.; Casey Durst, P.

    2013-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized by the United States Energy Policy Act of 2005 with the principal objective of designing, licensing, and building a Generation IV nuclear plant capable of producing both high-temperature process heat and electricity. The two candidate NGNP reactor concepts are pebble- and prismatic-fueled high-temperature gas reactors that will be licensed by the U.S. Nuclear Regulatory Commission (NRC). The conceptual design phase of the project was completed in December 2010. This paper summarizes support provided to the NGNP project to facilitate consideration of international safeguards during the design phase, or safeguards by design (SBD). Additional support was provided for domestic safeguards (material control and accounting) and physical protection, or safeguards and security by design (2SBD). The main focus of this paper is on SBD and international safeguards. Included is an overview of the international safeguards guidance contained in guidance reports for SBD. These reports contain guidance and suggestions intended to be useful to the industry design teams, but they do not contain ready-made solutions. Early and frequent interaction of design stakeholders with the International Atomic Energy Agency and the NRC are essential to a successful endeavor. The paper is followed by the slides of the presentation. (author)

  16. A realistic way for graduating from nuclear power generation

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After Fukushima Daiichi Nuclear Power Plant accident, fundamental reform of Japanese energy policy was under way. As for reform of power generation share for the future, nuclear power share should be decided by three independent elements of the progress: (1) extension of power generation using renewable energy, (2) reduction of power usage by electricity saving and (3) technical innovation toward zero emission of coal-fired thermal power. In 2030, nuclear power share would still remain about 20% obtained by the 'subtraction' but in the long run nuclear power would be shutdown judging from difficulties in solution of backend problems of spent fuel disposal. (T. Tanaka)

  17. Biologically relevant mono- and di-nuclear manganese II/III/IV complexes of mononegative pentadentate ligands

    DEFF Research Database (Denmark)

    Baffert, Carole; Collomb, Marie-Nöelle; Deronzier, Alain

    2003-01-01

    were characterised by UV-visible spectroscopy, ESI mass spectrometry and cyclic voltammetry. In addition, III-IV and II-III species were electrochemically generated. Thus the new mononegative pentadentate ligand systems display significant flexibility in the range of Mn oxidation states and species...

  18. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, Han Myung; Song, Ki Dong; Lee, Man Ki; Kim, Seung Su; Moon, Kee Hwan; Chung, Whan Sam; Kim, Kyung Pyo; Cho, Sang Goo

    1992-01-01

    The purpose of this study is to clarify the role of nuclear power generation under the circumstances of growing concerns about environmental impact and to help decision making in electricity sector. In this study, efforts are made to estimate electricity power generation cost of major power options by incorporating additional cost to reduce environmental impact and to suggest an optimal plant mix in this case. (Author)

  19. Nuclear energy in medium and long term energy generation of Turkey

    International Nuclear Information System (INIS)

    Sarici, L. E.; Yilmaz, S.; Guray, B. S.

    2001-01-01

    In this study; objectives and activities of Nuclear Power Plants Department and Turkish Electricity Generation and Transmission Corporation is briefly mentioned. A brief history of electricity generation, development of Turkish electrical energy sector and development of the installed capacity of country is presented. The history and future perspectives of AKZuyu Nuclear Power Plant Project is sharply outlined. In the light of the current situation in electricity generation and demand projections, importance of nuclear power among the other future electricity generation alternatives of Turkey is underlined

  20. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  1. MEHODOLOGY FOR PROLIFERATION RESISTANCE FOR ADVANCE NUCLEAR ENERGY SYSTEMS

    International Nuclear Information System (INIS)

    YUE, M.; CHANG, L.Y.; BARI, R.

    2006-01-01

    The Technology Goals for Generation IV nuclear energy systems highlight Proliferation Resistance and Physical Protection (PRandPP) as one of the four goal areas for Generation 1V nuclear technology. Accordingly, an evaluation methodology is being developed by a PRandPP Experts Group. This paper presents a possible approach, which is based on Markov modeling, to the evaluation methodology for Generation IV nuclear energy systems being developed for PRandPP. Using the Markov model, a variety of proliferation scenarios can be constructed and the proliferation resistance measures can be quantified, particularly the probability of detection. To model the system with increased fidelity, the Markov model is further developed to incorporate multiple safeguards approaches in this paper. The approach to the determination of the associated parameters is presented. Evaluations of diversion scenarios for an example sodium fast reactor (ESFR) energy system are used to illustrate the methodology. The Markov model is particularly useful because it can provide the probability density function of the time it takes for the effort to be detected at a specific stage of the proliferation effort

  2. Potential applications for nuclear energy besides electricity generation: A global perspective

    International Nuclear Information System (INIS)

    Gauthier, Jean Claude; Ballot, Bernard; Lebrun, Jean Philippe; Lecomte, Michel; Hittner, Dominique; Carre, Frank

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat sources free of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  3. Generation 4 International Forum. 2009 annual report

    International Nuclear Information System (INIS)

    2009-01-01

    This 2009 Annual Report is the third annual report issued by GIF (Generation 4. International Forum). It includes 3 chapters in addition to an introduction plus 4 appendices, as follows. Chapter 2 describes the membership and organization of GIF, the structure of its cooperative research and development arrangements as well as the status of Members' participation in such arrangements. Chapter 3 summarizes GIF research and development plans, activities and achievements during 2009. It highlights the scientific and technical challenges facing the teams developing Generation IV systems and the major milestones towards the development of these systems. It also describes the progress made on the development of methodologies for assessing Generation IV systems with respect to the established goals of GIF. Chapter 4 reviews the cooperation between GIF and other international programs dealing with the development of nuclear energy. Appendix 1 provides an overview on the goals of Generation IV nuclear energy systems and an outline of the main characteristics of the six systems selected for joint development by GIF. Appendix 2 presents the objectives that have been set for the various System Steering Committees and the associated Project Management Boards for the next 5 years. Appendix 3 reproduces the Table of Contents of the Proceedings from the GIF Symposium held in Paris (France) in 2009. Appendix 4 provides a list of abbreviations and acronyms (with the corresponding definitions) which are used in this report or are relevant to GIF activities

  4. Benchmarking of nuclear economics tools

    International Nuclear Information System (INIS)

    Moore, Megan; Korinny, Andriy; Shropshire, David; Sadhankar, Ramesh

    2017-01-01

    Highlights: • INPRO and GIF economic tools exhibited good alignment in total capital cost estimation. • Subtle discrepancies in the cost result from differences in financing and the fuel cycle assumptions. • A common set of assumptions was found to reduce the discrepancies to 1% or less. • Opportunities for harmonisation of economic tools exists. - Abstract: Benchmarking of the economics methodologies developed by the Generation IV International Forum (GIF) and the International Atomic Energy Agency’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), was performed for three Generation IV nuclear energy systems. The Economic Modeling Working Group of GIF developed an Excel based spreadsheet package, G4ECONS (Generation 4 Excel-based Calculation Of Nuclear Systems), to calculate the total capital investment cost (TCIC) and the levelised unit energy cost (LUEC). G4ECONS is sufficiently generic in the sense that it can accept the types of projected input, performance and cost data that are expected to become available for Generation IV systems through various development phases and that it can model both open and closed fuel cycles. The Nuclear Energy System Assessment (NESA) Economic Support Tool (NEST) was developed to enable an economic analysis using the INPRO methodology to easily calculate outputs including the TCIC, LUEC and other financial figures of merit including internal rate of return, return of investment and net present value. NEST is also Excel based and can be used to evaluate nuclear reactor systems using the open fuel cycle, MOX (mixed oxide) fuel recycling and closed cycles. A Super Critical Water-cooled Reactor system with an open fuel cycle and two Fast Reactor systems, one with a break-even fuel cycle and another with a burner fuel cycle, were selected for the benchmarking exercise. Published data on capital and operating costs were used for economics analyses using G4ECONS and NEST tools. Both G4ECONS and

  5. The safety R and D for GEN-IV reactors in the European nuclear energy technology platform strategic research agenda

    International Nuclear Information System (INIS)

    Bruna, G.

    2009-01-01

    In the fall 2007 EC launched the Sustainable Nuclear Energy Technology Platform (SNE-TP). The SNE-TP governing board set-up three working groups (WG): 1) Strategic Research Agenda (SRA) WG, in charge of drafting road-maps to support research, development and demonstration for current and future NPPs; 2) Deployment Strategy (DS) WG, in charge of defining the research road-map implementation and 3) Education, Training and Knowledge management (ETKM) WG, which was aimed at issuing proposal to reinforce European education and attract young in the nuclear field. The SRA WG was mandated to prepare the SRA vision document based on the preliminary road-map sketched in the document published by the Commission earlier in 2007. The SRA WG was originally organized in 5 sub-groups covering specific topics (1) GEN II and III, III+, including Advanced LWR, 2) Advanced Fuel Cycle for waste minimization and resource optimization; 3) GEN IV Fast Systems (SFR, LFR, GFR, ADS); 4) GEN IV (V) HTR and non-electricity-production applications; 5) New Nuclear Large Research Infrastructures) and 5 other sub-groups dealing with more generic cross-cutting research activities applicable to many specific topics, namely: 1) Structural material research; 2) modeling, simulation and methods, including physical data and tools and means for qualification and validation; 3) Reactor Safety, including severe accidents and human factor; 4) Advanced Driver and Minor Actinide Fuels: science and properties; 5) Pre-normative Research, Codes and Standards.The present paper is mainly aimed at summarizing the content of the SRA Safety sub-chapter focusing on GEN-IV aspects

  6. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    Science.gov (United States)

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  7. Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Adrien; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge [Laboratoire de Genie Chimique, 5 rue Paulin Talabot, 31700 Toulouse Cedex 1 (France); Latge, Christian [CEA Cadarache, DEN/DTN/DIR, Bat. 710, 13108 Saint Paul Lez Durance (France); Haubensack, David [CEA Cadarache, DEN/DER/SESI/LCSI, Bat. 212, 13108 Saint Paul Lez Durance (France)

    2010-04-15

    Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules. (author)

  8. Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

    International Nuclear Information System (INIS)

    Gomez, Adrien; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge; Latge, Christian; Haubensack, David

    2010-01-01

    Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules.

  9. Young Generation in Nuclear Initiative to Promote Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Kilavi Ndege, P.K.

    2015-01-01

    The Kenyan Young Generation in Nuclear (KYGN) is a recently founded not to profit organization. Its mandate is to educate, inform, promote and transfer knowledge on the peaceful, safe and secure users of nuclear science and technology in Kenya. It brings on board all scientist and students with special interest in nuclear science and related fields. KYGN is an affiliate of International Youth Nuclear Congress (YNC) whose membership with IYNC whose membership is drawn from member state of United Nations. Through our membership with IYNC, KYGN members have been able to participate in different forums. In this paper, we discuss KYGN’s prime roles opportunities as well as the challenges of the organization

  10. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  11. Economics issues - nuclear power generation in North America

    International Nuclear Information System (INIS)

    Jones, R.; Taylor, J.; Santucci, J.

    1996-01-01

    The structure of the US utility industry is in transition. Political, social, and economic factors are contributing to a rapid shift from a monopoly structure (captive markets, cost-plus prices, negotiated rate of return on capital) to a highly competitive one (choices for customers, prices determined by the market place, earnings based on market price less cost). The rate of change has been accelerating. For example, what just two years ago would have been thought of as highly unlikely -- competition for the individual electric customer -- is now part of the plan in California and other states. In our view, technology is at the root of many of these structural changes with more to come. Yet another round of technological change is afoot, involving even more efficient gas turbines, new methods of utilizing transmission lines, distributed generation, and new opportunities for electricity use and service. It can be argued that the restructuring of the marketplace reflects, in some measure, anticipation for these advances. For the foreseeable future, nuclear energy will continue to play a significant role in the generating grid of North America. However, new nuclear generation will be held to standards of competition that are dictated by market forces, and by advances in competing technologies for base load generation. It is important to understand these forces, and devise a response which ensures that nuclear energy will continue to provide a viable, competitive, and environmentally superior option for generating electricity in the 21st century. The EPRI Nuclear Power program is focused on achieving these goals. (author)

  12. Advanced Ceramic Materials For Next-Generation Nuclear Applications

    International Nuclear Information System (INIS)

    Marra, J.

    2010-01-01

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  13. Major issues associated with nuclear power generation cost and their evaluation

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Shimogori, Kei; Suzuki, Atsuhiko

    2015-01-01

    This paper discusses the evaluation of power generation cost that is an important item for energy policy planning. Especially with a focus on nuclear power generation cost, it reviews what will become a focal point on evaluating power generation cost at the present point after the estimates of the 'Investigation Committee on Costs' that was organized by the government have been issued, and what will be a major factor affecting future changes in costs. This paper firstly compared several estimation results on nuclear power generation cost, and extracted/arranged controversial points and unsolved points for discussing nuclear power generation cost. In evaluating nuclear power generation cost, the comparison of capital cost and other costs can give the understanding of what can be important issues. Then, as the main issues, this paper evaluated/discussed the construction cost, operation/maintenance cost, external cost, issue of discount rate, as well as power generation costs in foreign countries and the impact of fossil fuel prices. As other issues related to power generation cost evaluation, it took up expenses for decommissioning, disposal of high-level radioactive waste, and re-processing, outlined the evaluation results by the 'Investigation Committee on Costs,' and compared them with the evaluation examples in foreign countries. These costs do not account for a large share of the entire nuclear power generation costs. The most important point for considering future energy policy is the issue of discount rate, that is, the issue of fund-raising environment for entrepreneurs. This is the factor to greatly affect the economy of future nuclear power generation. (A.O.)

  14. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  15. Metrology for New Generation Nuclear Power Plants - MetroFission

    International Nuclear Information System (INIS)

    Johansson, Lena; Dinsdale, Alan; Keightley, John; Filtz, Jean-Remy; Hay, Bruno; DeFelice, Pierino; Sadli, Mohamed; Plompen, Arjan; Heyse, Jan; Pomme, Stefaan; Cassette, Philippe

    2013-06-01

    MetroFission project has been looking at solving metrological problems related to a new generation of NPPs. The proposed Gen. IV NPPs are designed to run safely, make efficient use of natural resources, minimize the waste and maintain proliferation resistance. In order to reach these goals, the reactor operation involves higher temperatures, high-energy neutron fluence, different types of fuel where the minor actinides are included etc. The work has focused on improved temperature measurements, investigation of thermal properties of advanced materials, determination of new and relevant nuclear data and development of measurement techniques for radionuclides suitable for Gen. IV NPPs. The improved temperature measurement for nuclear power plant applications includes the development of a new Fe-C fixed point. Robust, repeatable and versatile cells have been constructed and compared with success among the project participants and their melting temperatures have been determined. Methodology of self-validating thermocouples has proven efficient at several fixed point temperatures using different designs. A practical acoustic thermometer has been tested at 1000 deg. C with success thanks to the use of innovative signal processing methods. Mo/Nb thermocouples have been obtained with different sheath materials and tested with the aim to achieve for the first time a reference function determined with the best possible uncertainties. Following reviews of designs and technology proposed for fourth generation nuclear plants effort within this project, with regards to thermal properties of advanced materials for nuclear design, has concentrated on provision of thermodynamic data to support the development of the sodium cooled fast reactor. Data has been critically assessed to represent the potential interaction between the Na coolant and the nuclear fuel taken to be based on (U, Pu)O 2 but incorporating minor actinides such as Np and Am. Data for the fission products and

  16. Nuclear generation cost management and economic benefits

    International Nuclear Information System (INIS)

    Horton, E.P.; Sepa, T.R.

    1989-01-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report discusses the cost management principles used for Ontario Hydro's CANDU-PHW program, current cost management initiatives, and the economic benefits of nuclear power to the provinces of Ontario and New Brunswick, in Canada

  17. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  18. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. The carbonate complexation of plutonium(IV)

    International Nuclear Information System (INIS)

    Hobart, D.E.; Palmer, P.D.; Newton, T.W.

    1985-01-01

    Plutonium(IV) carbonate complexes are expected to be of particular importance in typical groundwaters at the Yucca Mountain site of the candidate nuclear waste repository being studied by the Nevada Nuclear Waste Storage Investigations Project. The chemistry of these complexes is also important in the areas of nuclear fuel reprocessing and purification, actinide separations, and environmental studies. This report describes initial experiments performed to determine the identity and equilibrium quotients of plutonium(IV) carbonate complexes. These experiments were performed at pH values between 7.2 and 9.6 using a spectrophotometric method. In addition, a brief review of the published literature on Pu(IV) carbonate complexes is presented. Since Pu(IV) exhibits low solubility in the near-neutral pH range, a complex-competition reaction where citrate ligands compete with carbonate ions for the plutonium will be employed. This will permit us to study the pure carbonate system; study the mixed carbonate/citrate system, and confirm and extend the literature work on the pure citrate system. The current experiments have demonstrated the existence of at least three distinct species in the pH region studied. This work will continue in the extended study of the pure citrate system, followed by the investigation of the citrate/carbonate complex/competition reaction. 9 refs., 4 figs., 2 tabs

  20. The trend of the public opinion upon nuclear power generation in internet blog

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko; Ueda, Yoshitaka

    2011-01-01

    The authors pay attention to and survey internet information which is called 'blog' to grasp how nuclear power generation information is treated in internet and forms public opinion. Examples of the outcomes are as follows. 1) Numbers of blog reference will change by public opinion upon nuclear power generation. A lot of blog references about nuclear power plants are conducted when a big earthquake occurred. 2) As a feature of the report, numbers of the references against nuclear power generation exceed those which are positive for nuclear power. There are a lot of blog reports which are against nuclear power generation and easy to make readers believe that they are true even if they are based on misunderstanding. It is worried that such reports give people too much negative influence for the public opinion upon nuclear power generation. The authors survey short term trend of the internet public opinion after TEPCO's Fukushima Daiichi Power Plants Accident too. As a result, it is made clear that people's concern upon nuclear power became very high and the ratio of the supporters of nuclear power generation changed after the accident. (author)

  1. Commercial grade item (CGI) dedication of generators for nuclear safety related applications

    International Nuclear Information System (INIS)

    Das, R.K.; Hajos, L.G.

    1993-01-01

    The number of nuclear safety related equipment suppliers and the availability of spare and replacement parts designed specifically for nuclear safety related application are shrinking rapidly. These have made it necessary for utilities to apply commercial grade spare and replacement parts in nuclear safety related applications after implementing proper acceptance and dedication process to verify that such items conform with the requirements of their use in nuclear safety related application. The general guidelines for the commercial grade item (CGI) acceptance and dedication are provided in US Nuclear Regulatory Commission (NRC) Generic Letters and Electric Power Research Institute (EPRI) Report NP-5652, Guideline for the Utilization of Commercial Grade Items in Nuclear Safety Related Applications. This paper presents an application of these generic guidelines for procurement, acceptance, and dedication of a commercial grade generator for use as a standby generator at Salem Generating Station Units 1 and 2. The paper identifies the critical characteristics of the generator which once verified, will provide reasonable assurance that the generator will perform its intended safety function. The paper also delineates the method of verification of the critical characteristics through tests and provide acceptance criteria for the test results. The methodology presented in this paper may be used as specific guidelines for reliable and cost effective procurement and dedication of commercial grade generators for use as standby generators at nuclear power plants

  2. Generation of nuclear data banks through interpolation

    International Nuclear Information System (INIS)

    Castillo M, J.A.

    1999-01-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, used to generate Nuclear Data Banks employing bi cubic polynomial interpolation, taking as independent variables the uranium and gadolinium percents. Two proposals were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed to obtain the interpolating polynomial and later, the corresponding linear equations system. In the solution of this system the Gaussian elimination method with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validations test, a comparison was made between the values obtained with INTPOLBI and INTERTEG (created at the Instituto de Investigaciones Electricas with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks. (Author)

  3. Generation of ENDF/B-IV based 35 group neutron cross-section library and its application in criticality studies

    International Nuclear Information System (INIS)

    Garg, S.B.; Sinha, A.

    1985-01-01

    A 35 group cross-section library with P/sub 3/-anisotropic scattering matrices and resonance self-shielding factors has been generated from the basic ENDF/B-IV cross-section files for 57 elements. This library covers the neutron energy range from 0.005 ev to 15 MeV and is well suited for the neutronics and safety analysis of fission, fusion and hybrid systems. The library is contained in two well known files, namely, ISOTXS and BRKOXS. In order to test the efficacy of this library and to bring out the importance of resonance self-shielding, a few selected fast critical assemblies representing large dilute oxide and carbide fueled uranium and plutonium based systems have been analysed. These assemblies include ZPPR/sub 2/, ZPR-3-48, ZPR-3-53, ZPR-6-6A, ZPR-6-7, ZPR-9-31 and ZEBRA-2 and are amongst those recommended by the US Nuclear Data Evaluation Working Group for testing the accuracy of cross-sections. The evaluated multiplication constants of these assemblies compare favourably with those calculated by others

  4. Aiming at the rebirth of the nuclear generation

    International Nuclear Information System (INIS)

    Uematsu, M.M.

    2000-01-01

    A half century has passed since Japan began an industrialization of nuclear energy. The nuclear industries of today have a variety of branches and each industry functions independently. Young professionals need opportunities for communications among industries, utilities and institutes, and also nuclear experts. We, young professionals, are in the motion of organizing the 'Young Generation Network (YGN) of Japan,' and also foresee to organize 'YGN in Asia' in the future

  5. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  6. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  7. The economic viability of nuclear power in a fossil-fuel-rich country: Australia

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Anthony

    2010-09-15

    This paper assesses the economic viability of investment in nuclear power generation in Australia and factors which may influence government policy towards such investments. It argues that the structure of the grid in Eastern Australia and the nature of the existing generator mix require nuclear technology that has similar attributes to combined cycle gas technology; i.e. modular construction of generating units, load following capability, low unit capital cost, and a general acceptance by the Australian public. The paper concludes that it is only Generation IV nuclear technology that has the potential to be part of Australia's energy mix after 2030.

  8. Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism.

    Science.gov (United States)

    Fu, Fenglian; Lu, Jianwei; Cheng, Zihang; Tang, Bing

    2016-03-01

    In this paper, the performance and application of zero-valent iron (ZVI) assisted by ultrasonic irradiation for the removal of selenite (Se(IV)) in wastewater was evaluated and reaction mechanism of Se(IV) with ZVI in such systems was investigated. A series of batch experiments were conducted to determine the effects of ultrasound power, pH, ZVI concentration, N2 and air on Se(IV) removal. ZVI before and after reaction with Se(IV) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ultrasound can lead to a significant synergy in the removal of Se(IV) by ZVI because ultrasound can promote the generation of OH and accelerate the advanced Fenton process. The primary reaction products of ZVI and Se(IV) were Se(0), ferrihydrite, and Fe2O3. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  10. Nuclear power generation in Chile, possibility or utopia

    International Nuclear Information System (INIS)

    Vergara Aimone, Julio

    2000-01-01

    Regardless the pressure of several groups, nuclear power stands for one sixth of worldwide electricity supply, produced from a resource that well managed could be available for centuries beyond the exhaustion of oil and natural gas. Such power option could support a macro power system with low environmental impact. The Chilean power demand is growing at a high rate. Without fossil supplies, our potential hydraulic capacity would become exhausted at an early date and our country would face a severe energy dependence, without control of generation costs and with increased atmospheric emissions, some of which would be responsible for global environmental effects. Nuclear power would stabilize generation costs in the near and mid terms and would also arrest gaseous emissions. This paper discusses the current status of the nuclear industry and those pending issues, compared to other power options. It also discusses the estimated year for the operation the of first nuclear power plant. Although nuclear power technology seems to be in a mature stage, it is suggested that the aggressive use of advanced and moreover innovative reactor designs would result in a greater nuclear technology penetration. Several of such designs or concepts await commercial demonstration within the decade. Those would also extend the benefits of nuclear power to countries with reduced or moderate power grids, as is our case. (author)

  11. The young generation - guarantors for the future of the nuclear industry

    International Nuclear Information System (INIS)

    Broy, Y.

    2000-01-01

    The concept of the 'Young Generation' has been meeting with considerable interest in many European countries for a number of years already. On the basis of the Young Generation Network initiated by Jan Runermark, Sweden, Young Generation networks have been created in a number of European countries, including Germany. Since October 1998, Germany's Young Generation has worked in a changed political environment: As a result of the outcome of the elections to the federal parliament in 1998 and the establishment of a federal government by SPD (the Social Democratic Party) and Alliance 90/The Greens, opting out of the peaceful uses of nuclear power has become one of the guiding principles and goals. Hence, the qualified and highly motivated young employees of nuclear companies are bound to ask themselves whether there is any future for them in nuclear engineering. The Young Generation will work for the future of nuclear technology by embarking on a series of activities. Discussions with the public, transfer of know-how, and also an intensification of contacts among all companies active in the nuclear field are only some of the items of their agenda. The purpose of the activities, and the principle, of the Young Generation is this: The Young Generation is aware of its responsibility for the future, and is ready to meet the challenges. (orig.) [de

  12. The young generation - guarantors for the future of the nuclear industry

    International Nuclear Information System (INIS)

    Broy, Y.

    2001-01-01

    For several years the 'YOUNG GENERATION' has been attracting great interest all over Europe. Based on the Young Generation Network of the European Nuclear Society (ENS) founded by Jan Runermark, in a lot of European countries a national Young Generation Network has been established, as well in Germany. Since October 1998 the Young Generation in Germany has been working in the frame of a difficult political situation after the decision was made about the phasing out of nuclear energy in Germany. Nowadays, our highly qualified and motivated young people who have been working for a couple of years in the nuclear field and already took over a lot of knowledge and experiences, have to decide: Is there a future for us in the nuclear industry? The paper will briefly summarise the wide range of activities of the German Young Generation. A selection of them will be chosen to highlight our fight for the future of nuclear energy in Germany, e.g. communication with the public, know-how-transfer, improvement of links between the fuel vendor and their customers. The main purpose is to point out: There is a young generation who is ready to take over the knowledge and the responsibility for the future. (author)

  13. Facts against nuclear electricity generation. 2. enlarged ed.

    International Nuclear Information System (INIS)

    Buechele, C.

    1986-01-01

    The book destroys a legend. The nuclear cartel still goes on telling the tale of safety, environmental compatibility and economic efficiency of nuclear electricity generation. But nothing in this story stands the test: Bare facts destroy the legend. Up to now, only insiders have been able to state counterarguments. The book in hand now presents in a nutshell all results and experience and facts to be brought forward against nuclear electricity generation. The material is presented in a problem-oriented, reliable and comprehensible manner. Anyone who long since suspected lies and malinformation of the public will step by step find the arguments justifying his suspicion. In an annex, Harald Gaber explains the Chernobyl disaster and its consequences. A literature index with comments is a helpful guide for further reading. (orig.) [de

  14. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  15. Meeting EU's energy needs through nuclear fission: synergy of public and private research in an international context

    International Nuclear Information System (INIS)

    Bamberger, Yves

    2010-01-01

    For Generation II reactors, R and D is mainly oriented towards solving issues arising from operating experience. For Generation IV systems, R and D is mainly dedicated to concepts, design and safety demonstrations. For Generation III, one could consider that there is no real need for R and D because it is too late with respect to design choices and too early with respect to operating experience issues. But in fact, the Generation III plants which will be built between 2020 and 2050 will represent a large part of the fleet operated worldwide during most of the 21st century so that there is room for developments and innovations in a 'more sustainable' light water reactor. EDF has defined a two-step nuclear strategy: deployment of Generation III reactors in a first phase and, if necessary, of Generation IV systems in a second phase. Such a strategy is flexible thanks to the diversification of the energy mix and to the possibility to evolve from Generation III to Generation. IV nuclear systems. This flexibility is an asset to overcome the uncertainties of the long term future, as energy and electricity are major long term issues and require huge investments. It is particularly true for nuclear energy where the lifespan of equipment is very long. Finally, to prepare a future competitive, safe and sustainable nuclear energy, to enhance its public acceptation, huge and continuous R and D efforts are needed and expertise must be renewed. No country can face these challenges alone

  16. Hardening techniques for nuclear generated EMPs: Pt. 1

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This article is intended as an introduction to the protection of electronic equipment against the effects of the electromagnetic pulse (EMP) generated by a nuclear explosion. For explosions at heights above 100 km the energy in the pulse is considerable over areas of many thousands of square metres. This constitutes a major threat to electronic equipments which have not been exposed to the consequences of closer nuclear explosions (namely blast, thermal and nuclear radiation)

  17. Nuclear energy: The role of innovation. Vienna, 23 June 2003. Conference on innovative technologies for nuclear fuel cycles and nuclear power

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    month approved the Phase 1A report, and made a number of recommendations for moving forward, including the pursuit of case studies that would enable Member States and independent analysts to apply INPRO methodology in specific situations. But the Committee also recommended - as I have been encouraging for some time - that INPRO strengthen its co-operation with other initiatives on innovative nuclear energy systems, including the US-initiated Generation IV project. The results of INPRO's efforts to date will be presented later in this conference, as will the results of Generation IV and other projects. It is my hope that these presentations will make evident more opportunities for collaboration among these projects - collaboration that will be of mutual benefit to all concerned. Fourth, it should be emphasized that innovation efforts must be more than purely technical. The evaluation of new design aspects by the nuclear industry should be accompanied, throughout the nuclear community, by a re-evaluation of technology policy issues

  18. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  19. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  20. Potential growth of nuclear and coal electricity generation in the US

    International Nuclear Information System (INIS)

    Bloomster, C.H.; Merrill, E.T.

    1989-08-01

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs

  1. Simulation on effect of stopping nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki; Kumakura, Osamu; Sakurai, Norihisa; Nagata, Yutaka; Hattori, Tsuneaki

    1990-01-01

    The effects that the stopping of nuclear power generation exerts on the price of primary energy such as petroleum, LNG and coal and the trend of Japanese energy and economy are analyzed by using the medium term economy forecasting system. In the simulation, the case of stopping nuclear power generation in seven countries of OECD is supposed, and as for the process of stopping, two cases of immediate stopping and stopping by gradual reduction are set up. The models used for the simulation are the world energy model, the competition among energies model and the multiple category model. By the decrease of nuclear power generation, thermal power generation increases, and the demand of fossil fuel increases. As the result, the price of fossil fuel rises (the world energy model), and the price of fossil fuel imported to Japan rises. Also the quantity of fossil fuel import to Japan increase. These price rise and quantity increase exert deflation effect to Japanese economy (the multiple category model). The price rise of fossil fuel affects the competition among energies in Japan through the relative change of secondary energy price (the competition among energies model). The impact to the world and to Japan is discussed. (K.I.)

  2. Digital simulation for nuclear once-through steam generators

    International Nuclear Information System (INIS)

    Chen, A.T.

    1976-01-01

    Mathematical models for calculating the dynamic response of the Oconee type once through steam generator (OTSG) and the integral economizer once through steam generator (IEOTSG) was developed and presented in this dissertation. Linear and nonlinear models of both steam generator types were formulated using the state variable, lumped parameter approach. Transient and frequency responses of system parameters were calculated for various perturbations from both the primary coolant side and the secondary side. Transients of key parameters, including primary outlet temperature, superheated steam outlet temperature, boiling length/subcooled length and steam pressure, were generated, compared and discussed for both steam generator types. Frequency responses of delta P/sub s//deltaT/sub pin/ of the linear OTSG model were validated by using the dynamic testing results obtained at the Oconee I nuclear power station. A sensitivity analysis in both the time and the frequency domains was performed. It was concluded that the mathematical and computer models developed in this dissertation for both the OTSG and the IEOTSG are suitable for overall plant performance evaluation and steam generator related component/system design analysis for nuclear plants using either type of steam generator

  3. AMZ, multigroup constant library for EXPANDA code, generated by NJOY code from ENDF/B-IV

    International Nuclear Information System (INIS)

    Chalhoub, E.S.; Moraes, Marisa de

    1985-01-01

    It is described a library of multigroup constants with 70 energy groups and 37 isotopes to fast reactor calculation. The cross sections, scattering matrices and self-shielding factors were generated by NJOY code and RGENDF interface program, from ENDF/B-IV'S evaluated data. The library is edited in adequated format to be used by EXPANDA code. (M.C.K.) [pt

  4. Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw's Environment

    International Nuclear Information System (INIS)

    Baurski, J.

    2010-01-01

    In 2009 the Polish Government made a decision to introduce nuclear power to Poland. Two nuclear power plants (NPPs) will be constructed nearly at the same time - the first unit should start operation in 2020, and by 2030 there should be about 6000 MWe added to the national electrical grid. The Commissioner of the Government was nominated to introduce the Polish Nuclear Power Program (PNPP). One of the four vertically integrated - the biggest energy company (PGE - the Polish Energy Group with headquarters in Warsaw) was appointed to prepare investments. These activities are planned in four stages: I. up to 31.12.2010 - The PNPP will be prepared and the program must then be accepted by the Government. II. 2011 - 2013 - Sites will be determined, and the contract for construction of the first NPP will be closed. III. 2014 - 2015 - Technical specifications will be prepared and accepted according the law. IV. 2016 - 2020 - The first NPP in Poland will be constructed. At present, the Government is receiving proposals from some regions of Poland asking that they be chosen for the NPP. One of the obvious locations for the NPP is a 40-kilometer vicinity of Warsaw (1.8 mln inhabitants). The need for both electric power and heat is increasing because of the rapidly growing town. It gives the extremely valuable chance for a very high thermodynamic efficiency of 80% in co-generation instead of 33% (max 36% for EPR-1600) for NPP generated electric power only. The Warsaw heating system has a capacity of 3950 MWt and is the biggest among EU countries. It is the third biggest in the world. Two NPPs, each of 2 x 1000 MWe could be built on the Vistula River up and down the town. In 2005, UE calculated losses caused by gas emissions at 24 mld eur, and the span of human lives was six months shorter in western countries and 8 months shorter in Poland. Warsaw's atmosphere is very polluted also because there are four heat and power generating plants: three coal and one oil -fired. In these

  5. KOREAN STUDENTS' BEHAVIORAL CHANGE TOWARD NUCLEAR POWER GENERATION THROUGH EDUCATION

    Directory of Open Access Journals (Sweden)

    EUN OK HAN

    2014-10-01

    Full Text Available As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017, safety (p<0.000, information acquisition (p<0.000, and subjective knowledge (p<0.000, objective knowledge (p<0.000, attitude (p<0.000, and behavior (p<0.000 were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  6. Nuclear steam generator tubesheet shield

    International Nuclear Information System (INIS)

    Nickerson, J.H.D.; Ruhe, A.

    1982-01-01

    The invention involves improvements to a nuclear steam generator of the type in which a plurality of U-shaped tubes are connected at opposite ends to a tubesheet and extend between inlet and outlet chambers, with the steam generator including an integral preheater zone adjacent to the downflow legs of the U-shaped tubes. The improvement is a thermal shield disposed adjacent to an upper face of the tubesheet within the preheater zone, the shield including ductile cladding material applied directly to the upper face of the tubesheet, with the downflow legs of the U-shaped tubes extending through the cladding into the tubesheet

  7. Nuclear heat generating plants - technical concepts and market potentials. Chapter 8

    International Nuclear Information System (INIS)

    Thoene, E.

    1988-01-01

    To determine the advantages and disadvantages of different heat generating systems, a comparison is made between nuclear heat generating plants and competing heat generating systems. Nuclear heat generating plant concepts in practice have to compete with a wide range of existing and new fossil heat generating technologies of the most different capacities, ranging from combined heat and power generation to individual heating in one-family houses. Heat generation costs are calculated by means of a dynamic annuity method from an economic point of view. The development of real prices of fossil energy sources is based on two scenarios characterized as follows: scenario I - insignificant price increase by the year 2000, then stagnant; scenario II - moderate price increase by the year 2010, then stagnant. As a result of that systems comparison it can be stated that the considered nuclear heat generating plants may be an interesting competitive heat generation option, provided the assumptions on which the study is based can be implemented. This applies especially to investment costs. At the same time those plants contribute to a diversification of energy source options on the heat market. Their use leads to a reduction of fossil fuel imports, increasing at the same time short- and long-term supply guarantees. If nuclear heat generating plants substitute fossil heat generating plants, or render the construction of new ones superfluous, they contribute to avoiding chemical air pollutants. (orig./UA) [de

  8. The nuclear electricity generating industry in England and Wales post-privatisation

    International Nuclear Information System (INIS)

    Johnson, C.B.

    1992-01-01

    This paper presents an overview of the new legal framework within which the nuclear generating industry has operated in England and Wales since 31 March 1990. It describes the formation of Nuclear Electric plc and the licensing arrangements, including the various obligations which have been placed upon Nuclear Electric by virtue of its Generation Licence. The impact of competition law is outlined, together with the commercial arrangements including electricity pooling and some of the other more important agreements which Nuclear Electric has entered into. Finally, the Paper discusses some of the constraints under which Nuclear Electric operates, and summarises Government policy towards nuclear power and its future prospects in the United Kingdom. (author)

  9. Developing the next generation of nuclear workers at OPG

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    This presentation is about developing the next generation of nuclear workers at Ontario Power Generation (OPG). Industry developments are creating urgent need to hire, train and retain new staff. OPG has an aggressive hiring campaign. Training organization is challenged to accommodate influx of new staff. Collaborating with colleges and universities is increasing the supply of qualified recruits with an interest in nuclear. Program for functional and leadership training have been developed. Knowledge retention is urgently required

  10. A New Approach for Nuclear Data Covariance and Sensitivity Generation

    International Nuclear Information System (INIS)

    Leal, L.C.; Larson, N.M.; Derrien, H.; Kawano, T.; Chadwick, M.B.

    2005-01-01

    Covariance data are required to correctly assess uncertainties in design parameters in nuclear applications. The error estimation of calculated quantities relies on the nuclear data uncertainty information available in the basic nuclear data libraries, such as the U.S. Evaluated Nuclear Data File, ENDF/B. The uncertainty files in the ENDF/B library are obtained from the analysis of experimental data and are stored as variance and covariance data. The computer code SAMMY is used in the analysis of the experimental data in the resolved and unresolved resonance energy regions. The data fitting of cross sections is based on generalized least-squares formalism (Bayes' theory) together with the resonance formalism described by R-matrix theory. Two approaches are used in SAMMY for the generation of resonance-parameter covariance data. In the evaluation process SAMMY generates a set of resonance parameters that fit the data, and, in addition, it also provides the resonance-parameter covariances. For existing resonance-parameter evaluations where no resonance-parameter covariance data are available, the alternative is to use an approach called the 'retroactive' resonance-parameter covariance generation. In the high-energy region the methodology for generating covariance data consists of least-squares fitting and model parameter adjustment. The least-squares fitting method calculates covariances directly from experimental data. The parameter adjustment method employs a nuclear model calculation such as the optical model and the Hauser-Feshbach model, and estimates a covariance for the nuclear model parameters. In this paper we describe the application of the retroactive method and the parameter adjustment method to generate covariance data for the gadolinium isotopes

  11. Development of the control assembly pattern and dynamic analysis of the Generation IV large gas-cooled fast reactor (GFR)

    Energy Technology Data Exchange (ETDEWEB)

    Girardin, G.

    2009-07-15

    During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed interest in nuclear technology. In this context, the Generation IV International Forum (GIF) launched the initiative to collaborate on the research and development efforts needed for the next generation of nuclear reactors. A particular goal set for Generation IV systems is closure of the nuclear fuel cycle; they are expected to offer a better utilization of natural resources, as also a minimization of long-lived radioactive wastes. Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. The principal aim of the present research is to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for the 2400 MWth reference GFR design. The work has been carried out in three successive phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behaviour studies for hypothetical CA driven transients. The deterministic code system ERANOS and its associated nuclear data libraries for fast reactors were developed and validated for sodium-cooled reactors. In order to validate ERANOS for GFR applications, a systematic reanalysis of the GFR-relevant integral data generated at PSI during the GCFR-PROTEUS experimental program of the 1970’s was undertaken. The reference PROTEUS test lattice has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. For the main reaction rate ratios, the new analysis of the GCFR

  12. Development of the control assembly pattern and dynamic analysis of the Generation IV large gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Girardin, G.

    2009-07-01

    During the past ten years, different independent factors, such as the rapidly increasing worldwide demand in energy, societal concerns about greenhouse gas emissions, and the high and volatile prices for fossil fuels, have contributed to the renewed interest in nuclear technology. In this context, the Generation IV International Forum (GIF) launched the initiative to collaborate on the research and development efforts needed for the next generation of nuclear reactors. A particular goal set for Generation IV systems is closure of the nuclear fuel cycle; they are expected to offer a better utilization of natural resources, as also a minimization of long-lived radioactive wastes. Among the systems selected by the GIF, the Gas-cooled Fast Reactor (GFR) is a highly innovative system with advanced fuel geometry and materials. The principal aim of the present research is to develop and qualify the control assembly (CA) pattern and corresponding CA implementation scheme for the 2400 MWth reference GFR design. The work has been carried out in three successive phases: (1) validation of the neutronics tools, (2) the CA pattern development and related static analysis, and (3) dynamic core behaviour studies for hypothetical CA driven transients. The deterministic code system ERANOS and its associated nuclear data libraries for fast reactors were developed and validated for sodium-cooled reactors. In order to validate ERANOS for GFR applications, a systematic reanalysis of the GFR-relevant integral data generated at PSI during the GCFR-PROTEUS experimental program of the 1970’s was undertaken. The reference PROTEUS test lattice has been analyzed with ERANOS-2.0 and its associated, adjusted nuclear data library ERALIB1. Benchmark calculations were performed with the Monte Carlo code MCNPX, allowing one to both check the deterministic results and to analyze the sensitivity to different modern data libraries. For the main reaction rate ratios, the new analysis of the GCFR

  13. Report on Darlington nuclear generating station

    International Nuclear Information System (INIS)

    1985-12-01

    The Select Committee on Energy was appointed on July 10, 1985 by the Legislative Assembly of the Province of Ontario in order to inquire into and report on Ontario Hydro affairs within ten months. Two sessions were planned the first of which was a review of the Darlington Nuclear Generating Station. Darlington is a large, 4 unit nuclear-powered electricity generating station currently under construction on the shore of Lake Ontario in the town of Newcastle. At the time the Committee met, construction had been underway for over four years. The first two units are scheduled to become operational in 1988 and 1989 with the second two scheduled to become operational in 1991 and 1992. The total estimated cost of the station is $10.895 billion of which $3.66 billion has been spent and $3.385 billion has been committed. Though the nuclear industry has been a major area of investment in Ontario over the past decade, the demand for electrical power from nuclear stations has been significantly decreased. This report focusses on the need for Darlington and public policy issues involved in planning and completing it. The Committee proposed the following recommendations: 1) The relationship between the Government of Ontario and Ontario Hydro and their individual responsibilities should be clarified. 2) An independent review of the Ontario Hydro demand/supply options should be carried out. 3) No further significant contracts for Darlington units 3 and 4 should be let for materials not required for construction during the next 6 months while the Committee studies demand and supply options

  14. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  15. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  16. Reflexions on the expansion of nuclear generation in Brazil

    International Nuclear Information System (INIS)

    Freitas, Juliana de Moraes Marreco de

    2006-01-01

    This article analyses the pros and cons of the nuclear generation in Brazil, involving in a large discussion the technological perspectives both economic, social and environmental. The objective is to rise the main questions about the polemical nuclear expansion in Brazil

  17. Overview of the US nuclear industry; Le panorama nucleaire aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    This article makes a brief summary of the nuclear industry activity in the USA: present day nuclear park availability, next generation of nuclear reactors (Generation IV), nuclear power 2010 initiative (early site permit, design certification, construction and operating licence), fuel cycle (enrichment, USEC company, USA-Russia highly-enriched uranium (HEU) agreement, SILEX and centrifugation separation processes, Louisiana Energy Services (LES) consortium and the National Enrichment Facility project, waste management, problem of storage and disposal sites for low-level radioactive wastes, trans-uranian wastes, and the Yucca Mountain project (Nevada) of disposal site for high level radioactive wastes). (J.S.)

  18. Ontario Power Generation Nuclear: results and opportunities

    International Nuclear Information System (INIS)

    Dermarkar, F.

    2006-01-01

    This paper describes the accomplishments of Ontario Power Generation (OPG) Nuclear and outlines future opportunities. OPG's mandate is to cost effectively produce electricity, while operating in a safe, open and environmentally responsible manner. OPG's nuclear production has been increasing over the past three years - partly from the addition of newly refurbished Pickering A Units 1 and 4, and partly from the increased production from Darlington and Pickering B. OPG will demonstrate its proficiency and capability in nuclear by continuing to enhance the performance and cost effectiveness of its existing operations. Its priorities are to focus on performance excellence, commercial success, openness, accountability and transparency

  19. Nuclear power generation costs in the United States of America

    International Nuclear Information System (INIS)

    Willis, W.F.

    1983-01-01

    Increasing world energy prices and shortages of fuel resources make the utilization of nuclear power extremely important. The United States nuclear power industry represents the largest body of nuclear power experience in the world. Analysis of the recent United States experience of substantial increases in the cost of nuclear power generation provides good insight into the interdependence of technological, financial, and institutional influences and their combined impact on the economic viability of nuclear power generation. The various factors influencing ultimate generation costs, including construction cost, fuel cost, regulatory reviews, and siting considerations are discussed, and their relative impacts are explored, including discussion of design complexity and related regulatory response. A closer look into the recent relatively high escalation of nuclear plant construction costs shows how differing economic conditions can affect the relative cost effectiveness of various methods of power generation. The vulnerability of capital-intensive, long-lead-time projects to changes in economic conditions and uncertainty in future power demands is discussed. Likewise, the pitfalls of new designs and increased sophistication are contrasted to the advantages which result from proven designs, reliable engineering, and shorter lead times. The value of reliable architect-engineers experienced in the design and construction of the plant is discussed. A discussion is presented of additional regulatory requirements stemming from public safety aspects of nuclear power. These include recognition of requirements for the very large effort for quality assurance of materials and workmanship during plant construction and operation. Likewise, a discussion is included of the demanding nature of operations, maintenance, and modification of plants during the operational phase because of the need for highly qualified operations and maintenance personnel and strict quality assurance

  20. Environmental and health effects of fossil fuel and nuclear power generation

    International Nuclear Information System (INIS)

    Naqvi, S.J.; Black, D.B.; Phillips, C.R.

    1978-03-01

    The objective of this study was to identify and assess the present and future dimensions of environmental effects and impacts of various energy generation alternatives, and to place safety and environmental risks associated with the nuclear industry in Canada in perspective with the risks from other sources. It was found that nuclear power generation involves a comparable risk to that of conventional methods of thermoelectric power generation

  1. New steam generators slated for nuclear units

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a brief discussion of Duke Power's plans to replace steam generators at its McGuire and Catawba nuclear units. A letter of intent to purchase (from Babcock and Wilcox) the 12 Westinghouse steam generators has been signed, but no constructor has been selected at this time. This action is brought about by the failures of more than 3000 tubes in these units

  2. Nuclear cycle of thorium and molt salts reactors. PE 5.8

    International Nuclear Information System (INIS)

    Doubre, H.

    2004-01-01

    In the framework of the nuclear industry development, many scenario are studied from the standard reactors using enriched uranium to the IV generation reactors. The study of new systems for the future of the nuclear needs to develop new simulation tools. The research programs of the IPN of Orsay are presented. (A.L.B.)

  3. Microscopy investigation on the corrosion of Canadian generation IV SCWR materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [CanmetMATERIALS, Hamilton, ON (Canada); Huang, X. [Carleton Univ., Ottawa, ON (Canada); Zeng, Y.; Zheng, W. [CanmetMATERIALS, Hamilton, ON (Canada); Woo, O.T.; Guzonas, D. [Atomic Energy Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Selection of fuel cladding materials for the Canadian Generation-IV Supercritical Water-cooled Reactor (SCWR) concept faces major challenges due to the severe operating conditions (650 {sup o}C and 25 MPa). High temperature microstructure stability and excellent resistance to general corrosion and stress corrosion cracking are key criteria. While corrosion resistance are generally assessed using weight change measurements and surface oxide examinations by optical and Scanning Electron Microscope (SEM) techniques, for materials exposed to SCW conditions, advanced analytical techniques that involve the use of Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) techniques are required. This paper provides examples of such work conducted at CanmetMATERIALS and AECL to provide an in-depth understanding of the corrosion mechanisms of alloys exposed under SCW conditions. (author)

  4. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  5. Main orientations of the JRC nuclear fission programme

    International Nuclear Information System (INIS)

    Haas, Didier

    2009-01-01

    Full text: The European Union has taken the lead in responding to climate change, announcing far-reaching initiatives from promoting energy efficient light bulbs and cars to new building codes, carbon trading schemes, the development of low carbon technologies and greater competition in energy markets. Nuclear energy remains central to the energy debate in Europe. One third of EU electricity is produced via nuclear fission, and eight new reactors are under construction. Traditionally non-nuclear countries are manifesting an interest in building nuclear power plants while the clock is ticking down on Belgium, Germany and the UK's decision to renew or close existing nuclear infrastructures. Sustainability in nuclear energy production is ensured in the medium term due to the large and diverse uranium resources available in politically stable countries around the world. The quantities available with high probability ensure more than hundred year of nuclear energy production. This extrapolation depends however on the forecast for the future nuclear energy production. The use of fast neutron breeder reactors would lead to a much more efficient utilisation of the uranium, extending the sustainable energy production to several thousands of years. The presentation will outline the fast reactors of the new generation currently being developed within the 'Generation IV' initiative. Broad conclusions of the presentation will be that: -There is a growing nuclear renaissance in Europe for good reason; - Nuclear energy is a green and sustainable option for Europe and indeed the world's energy needs; - Nuclear energy is a competitive energy that makes economic sense; - Nuclear fission reactors have a safety and environmental track record that is second to none, yet public misperceptions persist and must be tackled; - Waste management solutions exist while new developments hold great promise; - The evolution and promise of nuclear technologies must also be examined against the

  6. Location condition of nuclear power generation at a viewpoint of location area

    International Nuclear Information System (INIS)

    Kawase, Kazuharu

    1999-01-01

    In the thirty years memorial meeting of the National Nuclear Power Generation located Commune Conference (NNGC) held in October, 1998, an extremely important fact was clarified, relation deeply to main aim of NNGC that permanent development was not promised at the location area even if a nuclear power plant was constructed there. Therefore, it is required that Japan government receives operation of three laws on electric source development as soon as possible, establishes a basic target on permanent area promotion in the nuclear power generation located commune, realizes some examples on development of the commune together with nuclear power generation and intends to promoted its location. (G.K.)

  7. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  8. The Carem reactor: Bridging the gap to nuclear power generation

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1998-01-01

    An idea is presented as an alternative for the introduction of nuclear power in presently non-nuclear countries. This idea involves going through an intermediate step between the traditional research reactor and the first commercial nuclear power plant. This intermediate step would consist of a very small nuclear power plant, with the principal goal of gaining in experience in the country on all the processes involved in introducing commercial nuclear generation. (author)

  9. Recognition of people with an opinion that nuclear power generation causes global warming

    International Nuclear Information System (INIS)

    Fukue, Chiyokazu

    2004-01-01

    Almost a half of the people are thinking that nuclear power generation causes global warming. We conducted a survey in order to explore the recognition and background for the thinking of people. Consequently, the existence of the right knowledge ''nuclear power generation does not discharge carbon dioxide at the time of power generation'' influenced most the idea which nuclear power generation prevents global warming. On the other hand, the misunderstanding as ''the radioactive material produced from a nuclear power plant advances global warming'' has influenced the idea considered as a cause, and it is though that this misunderstanding depend on the negative image to nuclear power generation. Moreover, many people do not recognize the mechanism of global warming, and it is thought that they confuse global warming with the other global environment problems, such as acid rain or ozone layer destruction. Therefore, it is required to spread the knowledge that nuclear power generation does not discharge carbon dioxide, and to promote the understanding that a radioactive material is not related to global warming. Furthermore, it is required to distinguish global warming from the other global environment problems, and to explain them intelligibly. (author)

  10. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  11. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  12. Safety approach and research and development presentation for the selected systems of the International forum Generation IV

    International Nuclear Information System (INIS)

    Fiorini, G.L.

    2003-01-01

    This paper deals with the six projects of the Generation IV forum: Sodium Fast reactor, lead fast reactor, gas fast reactor, very high temperature reactor, supercritical water reactor, molten salt reactor. The technical objectives of the reactor safety and the design/evaluation approach are discussed. (A.L.B.)

  13. Efficient generation of volatile cadmium species using Ti(III) and Ti(IV) and application to determination of cadmium by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    Science.gov (United States)

    Arslan, Zikri; Yilmaz, Vedat; Rose, LaKeysha

    2015-01-01

    In this study, a highly efficient chemical vapor generation (CVG) approach is reported for determination of cadmium (Cd). Titanium (III) and titanium (IV) were investigated for the first time as catalytic additives along with thiourea, L-cysteine and potassium cyanide (KCN) for generation of volatile Cd species. Both Ti(III) and Ti(IV) provided the highest enhancement with KCN. The improvement with thiourea was marginal (ca. 2-fold), while L-cysteine enhanced signal slightly only with Ti(III) in H2SO4. Optimum CVG conditions were 4% (v/v) HCl + 0.03 M Ti(III) + 0.16 M KCN and 2% (v/v) HNO3 + 0.03 M Ti(IV) + 0.16 M KCN with a 3% (m/v) NaBH4 solution. The sensitivity was improved about 40-fold with Ti(III) and 35-fold with Ti(IV). A limit of detection (LOD) of 3.2 ng L−1 was achieved with Ti(III) by CVG-ICP-MS. The LOD with Ti(IV) was 6.4 ng L−1 which was limited by the blank signals in Ti(IV) solution. Experimental evidence indicated that Ti(III) and Ti(IV) enhanced Cd vapor generation catalytically; for best efficiency mixing prior to reaction with NaBH4 was critical. The method was highly robust against the effects of transition metal ions. No significant suppression was observed in the presence of Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II) and Zn(II) up to 1.0 μg mL−1. Among the hydride forming elements, no interference was observed from As(III) and Se(IV) at 0.5 μg mL−1 level. The depressive effects from Pb(II) and Sb(III) were not significant at 0.1 μg mL−1 while those from Bi(III) and Sn(II) were marginal. The procedures were validated with determination of Cd by CVG-ICP-MS in a number certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4), Mussel tissue (SRM 2976) and Domestic Sludge (SRM 2781). PMID:26251554

  14. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  15. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    International Nuclear Information System (INIS)

    Streit, Marco; Bichsel, Thomas; Fassbender, Andre; Horvath, Matthias

    2008-01-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely there will

  16. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  17. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  18. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  19. Nuclear and conventional baseload electricity generation cost experience

    International Nuclear Information System (INIS)

    1993-04-01

    The experienced costs of electricity generation by nuclear and conventional plants and the expected costs of future plants are important for evaluating the economic attractiveness of various power projects and for planning the expansion of electrical generating systems. The main objective of this report is to shed some light on recent cost experience, based on well authenticated information made available by the IAEA Member States participating in this study. Cost information was provided by Canada (Ontario Hydro), Czechoslovakia, Hungary, India, the Republic of Korea and Spain. Reference is also made to information received from Brazil, China, France, Russia and the United States of America. The part of the report that deals with cost experience is Section 2, where the costs of both nuclear and fossil fired plants are reviewed. Other sections give emphasis to the analysis of the major issues and relevant cost elements influencing the costs of nuclear power plants and to a discussion of cost projections. Many of the conclusions can also be applied to conventional plants, although they are usually less important than in the case of nuclear plants. 1 ref., figs and tabs

  20. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  1. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Renaud, E.; Brennenstuhl, A.M.; Stewart, D.R.; Gonzalez, F.

    2000-01-01

    Degradation of steam generator tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced outages, unit derating, steam generator replacement or even the permanent shutdown of a reactor. In response to the onset of steam generator degradation at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for steam generator tubing repair and the unique properties of the advanced sleeve material. The successful installation of fourteen Electrosleeves that have been in service for more than six years in Alloy 400 tubing at the Pickering-S CANDU unit, and the more recent (Nov. 99) extension of the technology to Alloy 600 by the installation of 57 sleeves in a U.S. pressurized water reactor (PWR) at Callaway, is presented. The Electrosleeve process has been granted a conditional license by the U.S. Nuclear Regulatory Commission (NRC). In Canada, the process of licensing Electrosleeve with the CNSC / TSSA has begun. (author)

  2. Complexation of the An(IV) by NTA; Complexation des An(IV) par le NTA

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L. [Paris-11 Univ., 91 - Orsay (France)]|[CEA Valrho, Lab. de Chimie des Actinides (LCA), 30 - Marcoule (France)

    2006-07-01

    In the framework of the Nuclear and Environmental Toxicology program, developed in France, it has been decided to take again the studies concerning the actinides decorporation. A similar study of the neptunium complexation by the citrate ions has been carried out on the complexation of Np(IV) with the nitrilotriacetic acid (NTA). The NTA can be considered as a model molecule of the de-corporating molecules (amino-carboxy- ligand). The results of the spectrophotometric measurements being encouraging, the behaviour of several actinides at the same oxidation state (+IV) (Th(IV), U(IV), Np(IV), and Pu(IV)) has been determined. The experimental results are presented. In order to determine the structure of the complexes of stoichiometry 1:2 An(IV)-(NTA){sub 2} in solution, quantic chemistry calculations and EXAFS measurements have been carried out in parallel. These studies confirm the presence of An(IV)-nitrogen bonds whose length decreases from thorium to plutonium and indicate the presence of a water molecule bound to the thorium and the uranium (coordination number 8 for Np/Pu, 9 for Th/U). The evolution of the complexation constants determined in this study in terms of 1/r (r ionic radius of the cation taking into account its coordination number 8 or 9) confirms the change of the coordination number between Th/U and Np/Pu. (O.M.)

  3. Steam generator and condenser design of WWER-1000 type of nuclear power plant

    International Nuclear Information System (INIS)

    Zare Shahneh, Abolghasem.

    1995-03-01

    Design process of steam generator and condenser at Russian nuclear power plant type WWER-1000 is identified. The four chapter of the books are organized as nuclear power plant, types of steam generators specially horizontal steam generator, process of steam generator design and the description of condenser and its process design

  4. Nuclear power plants and their position in the competitive generation industry of the USA

    International Nuclear Information System (INIS)

    Petroll, M.R.

    2000-01-01

    One effect to be observed in the USA is that power trading in the deregulated electricity sector initiates a 'comeback' of the nuclear power stations, reputed to be dead by anti-nuclear power policy followers. Quite to the contrary, growing competition in the generation industry and the resulting upward pressure on costs increasingly induce power generation companies to enter into competitive buying of nuclear power stations, which offer better availability and prolonged service life. The article gives the technical details and explains the economic reasons for this trend in an analysis comparing nuclear power generation with conventional or new non-nuclear generation technologies. (orig./CB) [de

  5. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  6. Iran's nuclear program - for power generation or nuclear weapons?

    International Nuclear Information System (INIS)

    Kippe, Halvor

    2008-11-01

    would withdraw from the Nuclear Non-proliferation Treaty (NPT), has generated enough concern among several of the dominant nations in the world, that they have gone to great lengths to try to dissuade Tehran from the continued pursuit of its in principle legal nuclear activities. As this report is issued, Iran still has some way ahead before its infrastructure can readily provide it with nuclear weapons on demand. But Iran seems almost to have overcome the presumably highest technological threshold, namely full-scale uranium enrichment. Today's infrastructure is far from sufficiently developed to be able to fully support Iran's planned nuclear power developments, but on the other hand the need for indigenously produced nuclear fuel is also several years ahead, as long as Iran's first self-constructed nuclear power plant is far from completion. The known and assumed uranium deposits, however, are of minute proportions compared to the stated ambitions of their nuclear power programme (20 GWe within 2030). Iran's future reactors will hardly be able to go online before they become dependent on fuel from abroad. The uranium deposits are, on the other hand, abundant for the future production of several thousands of nuclear weapons. And if the infrastructure that is arising today is actually directed towards that purpose, Iran will in theory some day be able to produce more than a hundred nuclear weapons a year. (Author)

  7. Radiation and physical protection challenges at advanced nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pickett, Susan E.

    2008-01-01

    Full text: The purpose of this study is to examine challenges and opportunities for radiation protection in advanced nuclear reactors and fuel facilities proposed under the Generation IV (GEN IV) initiative which is examining and pursuing the exploration and development of advanced nuclear science and technology; and the Global Nuclear Energy Partnership (GNEP), which seeks to develop worldwide consensus on enabling expanded use of economical, carbon-free nuclear energy to meet growing energy demand. The International Energy Agency projects nuclear power to increase at a rate of 1.3 to 1.5 percent a year over the next 20 years, depending on economic growth. Much of this growth will be in Asia, which, as a whole, currently has plans for 40 new nuclear power plants. Given this increase in demand for new nuclear power facilities, ranging from light water reactors to advanced fuel processing and fabrication facilities, it is necessary for radiation protection and physical protection technologies to keep pace to ensure both worker and public health. This paper is based on a review of current initiatives and the proposed reactors and facilities, primarily the nuclear fuel cycle facilities proposed under the GEN IV and GNEP initiatives. Drawing on the Technology Road map developed under GEN IV, this work examines the potential radiation detection and protection challenges and issues at advanced reactors, including thermal neutron spectrum systems, fast neutron spectrum systems and nuclear fuel recycle facilities. The thermal neutron systems look to improve the efficiency of production of hydrogen or electricity, while the fast neutron systems aim to enable more effective management of actinides through recycling of most components in the discharged fuel. While there are components of these advanced systems that can draw on the current and well-developed radiation protection practices, there will inevitably be opportunities to improve the overall quality of radiation

  8. Nuclear data processing and multigroup cross section generation

    International Nuclear Information System (INIS)

    Kim, Jeong Do; Kil, Chung Sub

    1996-01-01

    The multigroup constants for WIMS/CASMO were updated with ENDF/B-VI and were tested. The continuous energy MCNP library developed last year was validated against the LWR-simulated critical experiments. The MCNP library will be used to design and analyze nuclear and shielding facilities. The system for generation of MATXS multigroup library and TRANSX code, which is able to prepare the data for the discrete ordinates and diffusion codes from the MATXS library, was established. The MATXS libraries for analyses of thermal and fast critical experiments were generated and tested. The MATXS/TRANSX system for the discrete ordinates and diffusion codes will be useful for nuclear analyses. 10 tabs., 5 figs., 17 refs. (Author)

  9. Prerequisites for successful nuclear generation in Southern Africa

    International Nuclear Information System (INIS)

    Semark, P.M.

    1990-01-01

    In this paper, the General Manager (Generation) of Eskom shares his view of what is required to be addressed to ensure the ongoing success of nuclear powered electricity generation in South Africa. The task, the means, the timing and the human factors are discussed from the practical viewpoint of the plant owner and operator. (author)

  10. Prerequisites for successful nuclear generation in Southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Semark, P M [ESKOM, Johannesburg (South Africa)

    1990-06-01

    In this paper, the General Manager (Generation) of Eskom shares his view of what is required to be addressed to ensure the ongoing success of nuclear powered electricity generation in South Africa. The task, the means, the timing and the human factors are discussed from the practical viewpoint of the plant owner and operator. (author)

  11. World nuclear generating capacity and uranium requirements to 2005

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The outlook for the world nuclear power industry through 2005 is more positive than some may believe. Installed nuclear electric generating capacity is forecast to grow at an average rate of 2.4 percent per year, and reach 448 gigawatts electric (GWe) by 2005. Consequently, annual world uranium requirements also will grow, reaching over 200 million pounds equivalent U 3 O 8 by 2005. This article presents data and summarizes installed nuclear generating capacity and charts its increase as a function of time through the year 2005. This data is also charted by reactor type as well as reactor status: under construction, planned, or estimated future construction. In a similar fashion, the data is also charted by country and continent. Historical and projected data is also given for capacity factor

  12. Attitude changes toward nuclear power generation. Analysis of data from a longitudinal survey

    International Nuclear Information System (INIS)

    Matsuda, Toshihiro

    1998-01-01

    The Attitude changes toward nuclear power generation in response to incidents/accidents at the nuclear facilities were examined, using a longitudinal survey. A replicated survey was conducted in Kansai area following the incidents in 1995 and 1997, and a panel survey was conducted in 1997, using the same subjects as those in the survey conducted by C. Hayashi in 1993 about the attitude toward nuclear power generation. The results of the panel survey showed that an anxiety about a nuclear incident/accident tended to increase and that the number of those who decreased an anxiety about a nuclear incident/accident was relatively small, compared to an anxiety about other incidents/accidents. Using the quantification theory to analyze the group that showed changes in attitude toward nuclear power generation, it was suggested that the increase or decrease in the level of anxiety about a nuclear power incident/accident had an influence on the changes in attitude. However, the influence was not the most significant one compared to other factors. With the inclusion of the group that showed no change in attitude, the general population structure that the approval for nuclear power generation because of inevitable use of nuclear energy accounted for sixty percent remained with no significant change. (author)

  13. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  14. Regional projections of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors

  15. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  16. Korean students' behavioral change toward nuclear power generation through education

    International Nuclear Information System (INIS)

    Han, Eun Ok; Kim, Jae Rok; Choi, Yoon Seok

    2014-01-01

    As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017), safety (p<0.000), information acquisition (p<0.000), and subjective knowledge (p<0.000), objective knowledge (p<0.000), attitude (p<0.000), and behavior (p<0.000) were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  17. Korean students' behavioral change toward nuclear power generation through education

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Kim, Jae Rok; Choi, Yoon Seok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2014-10-15

    As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017), safety (p<0.000), information acquisition (p<0.000), and subjective knowledge (p<0.000), objective knowledge (p<0.000), attitude (p<0.000), and behavior (p<0.000) were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  18. Present status and future outlook of nuclear power generation in Japan

    International Nuclear Information System (INIS)

    Kunikazu Aisaka

    1987-01-01

    The structure of energy consumption in Japan is heavily dependent on imported oil, therefore Japan has been making its greatest effort in developing nuclear power among other alternatives of oil. The capacity factor of the nuclear power plants in Japan marked 76% in FY 1986, exceeding 70% level for the past several years. The share of nuclear power is expected to increase steadily in the future. Future scale of the nuclear power generation is projected as 62,000 MW in year 2000 and as 137,000 MW in 2030. Nuclear power is expected to produce 58% of the nation's total power generation in 2030. Under the present circumstances, Janpan is executing a nuclear energy policy based on the following guidelines: 1. Promoting the safety advancement program; 2. Improving LWR technologies; 3. Program on use of plutonium in thermal reactors; 4. Advanced thermal reactors (ATRs); 5. Promotion of FBR development; 6. Nuclear fuel cycle. (Liu)

  19. Revalidation program for nuclear standby diesel generators

    International Nuclear Information System (INIS)

    Muschick, R.P.

    1985-01-01

    This paper describes the program which Duke Power Company carried out to revalidate the diesel engines used in diesel generators for nuclear standby service at Unit 1 of the Catawba Nuclear Station. The diesels operated satisfactorily during the tests, and only relatively minor conditions were noted during the test and inspections, with one exception. This exception was that cracks were detected in the piston skirts. The piston skirts have been replaced with improved design skirts. The diesels have been fully revalidated for their intended service, and have been declared operable

  20. Benchmarking of nuclear reactors selected in the frame of GIF project

    International Nuclear Information System (INIS)

    Azpitarte, O; Villanueva, A; Ramos, R; Ramilo, L; Alvarez, M; Yorio, D; Herrero, V

    2012-01-01

    In this article a comparative assessment of the six reactor concepts selected in the frame of the Generation IV International Forum (GIF) project is presented. The assessment was carried out in the areas of Viability of the concept, Design and nuclear safety, Economics, Sustainability, Proliferation resistance, Nuclear fuel, Reprocessing, Materials and Balance of Plant, by means of qualification of chosen performance indicators (author)

  1. Fuel research for subcritical and critical GEN-IV systems cooled by heavy liquid metal

    International Nuclear Information System (INIS)

    Sobolev, V.; Verwerft, M.

    2009-01-01

    The participation of the Belgian Nuclear Research Centre SCK-CEN in the worldwide GEN-IV research can be considered as an opportunity. Today's GEN-IV research at SCK-CEN is mainly driven by the interests of the project MYRRHA (Multipurpose hYbrid Research Reactor for High-tech Applications). The main goal of this project is to build at SCK-CEN in Mol a new generation fast spectrum, subcritical, research and materials testing reactor MYRRHA driven by a high-energy proton accelerator. This GEN-IV MTR is cooled by heavy liquid metal (Pb-Bi) and will be used for the ADS concept demonstration, testing and qualification of new fuels, transmutation targets and innovative materials. On the European scale, MYRRHA is integrated in the Euratom FP6 Integrated Project (IP) EUROTRANS (EUROpean research programme for TRANSmutation of high level nuclear waste in an accelerator driven system), as the small-scale experimental machine for transmutation demonstration called XT-ADS. Last but not least, this experimental facility will also demonstrate the technological feasibility of the LFR (Lead-cooled Fast Reactor) GEN-IV concept; in EU the LFR design studies are performed in the framework of the Euratom FP6 ELSY (European Lead-cooled SYstem) project, where SCK-CEN is a partner. Among the research needed to ensure a safe and reliable operation of the MYRRHA/XT ADS reactor, the development and qualification of fuel and cladding materials have been recognized as one of the main key issues to be addressed

  2. Comparative analysis of power conversion cycles optimized for fast reactors of generation IV; Analisis comparativo de ciclos de conversion de potencia optimizados para reactores rapidos de generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pichel, G. D.

    2011-07-01

    For the study, which is presented here, has been chosen as the specific parameters of each reactor, which are today the three largest projects within generation IV technology development: ESFR for the reactor's sodium, LEADER for the lead reactor's and finally, GoFastR in the case of reactor gas-cooled.

  3. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  4. Strain measurements of nuclear power plant steam generator antiseismic supports

    International Nuclear Information System (INIS)

    Kulichevsky, R.

    1997-01-01

    The nuclear power plants steam generators have different types of structural supports. One of these types are the antiseismic supports, which are intended to be under stress only if a seismic event takes place. Nevertheless, the antiseismic supports lugs, that are welded to the steam generator vessel, are subjected to thermal fatigue because of the temperature cycles related with the shut down and start up operations performed during the life of the nuclear power plant. In order to evaluate the stresses that the lugs are subjected to, several strain gages were welded on two supports lugs, positioned at two heights of one of the Embalse nuclear power plant steam generators. In this paper, the instrumentation used and the strain measurements obtained during two start up operations are presented. The influence of the plant start up operation parameters on the lugs strain evolution is also analyzed. (author) [es

  5. Research on the response of various persons to information about nuclear power generation

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko

    2014-01-01

    The author surveyed blogs readily available on the Internet for three purposes: (1) to grasp the public response to nuclear problems after the accident at the Fukushima Daiichi Nuclear Power Station, (2) to determine changes in the number of blogs based on an article search, and (3) to identify the stance of bloggers on the necessity of nuclear power generation based on reading contribution contents. Furthermore the author conducted a questionnaire survey of public response in reference to the results of the blog survey. From the blog survey, it was found that immediately after the accident, the number of blogs which were negative toward nuclear power generation drastically increased, but as time has passed, blogs which are positive are increasing in number somewhat in expectation of stabilized economic and living conditions. The main results of the questionnaire survey are as follows. (1) Many persons want power generation that is non-nuclear; this is because they have good expectations for renewable energy sources or new thermal power generation as an alternative energy and they strongly feel anxious about the issue of disposal of spent nuclear fuel. (2) Because of the risk of negative impacts which electricity shortages bring on the economy and lifestyles, some persons do not want immediate decommissioning of nuclear power reactors, they favor a phase-out of nuclear power generation. Though public opinion about nuclear problems includes the expectation that one alternative energy can be selected, there is a possibility that this opinion will shift to find an optimum energy mix of plural energy sources. (author)

  6. BIBGTR: nuclear data libraries for the programs Unimug and Anisn

    International Nuclear Information System (INIS)

    Ono, S.; Caldeira, A.D.

    1989-11-01

    Nuclear data libraries generable by the NJOY for the programs UNIMUG and ANISN, using evaluated data from ENDF/B-IV and ENDF/B-V are described. These libraries will be used by Radioisotope Thermoelectric Generators Project of Instituto de Estudos Avancados. (author) [pt

  7. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    International Nuclear Information System (INIS)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive

  8. Aging mitigation and improved programs for nuclear service diesel generators

    International Nuclear Information System (INIS)

    Hoopingarner, K.R.; Zaloudek, F.R.

    1989-12-01

    Recent NRC sponsored aging research work on nuclear service diesel generators has resulted in a recommendation that an improved engine management program should be adopted for aging mitigation and reliability improvement. The center of attention should be to ensure diesel-generator operational readiness. This report emphasizes a ''healthy engine concept'' and recommends parameters to be monitored to determine engine condition. The proposed program and approach recommended in this report represent balanced management where diesel generator testing, inspections, monitoring, trending, training, and maintenance all have appropriate importance. Fast-starting and fast-loading test of nuclear service diesels causes very rapid wear of certain engine components. This report documents this aging and wear mechanism and recommends ways to largely eliminate this unique aging stressor. Current periodic intrusive maintenance and engine overhaul practice have been found to be less favorable for safety assurance than engine overhauls based on monitoring and trending results or on a need to correct specific engine defects. This report recommends that the periodic overhaul requirements be re-evaluated. Diesel generator research on aging and wear is sponsored by the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research. The research reported in this report was conducted by Pacific Northwest Laboratory (PNL), which is operated for the Department of Energy by Battelle Memorial Institute. 23 refs., 3 figs., 8 tabs

  9. Investigations of the unit generation costs of the nuclear power plants

    International Nuclear Information System (INIS)

    Guntay, S.

    1977-01-01

    An extensive study has been carried out to investigate the unit generation costs of different reactor types. The study analyzes the following: i) development of capital costs, ii) Fuel cycle costs, iii) operation and maintenance costs, iv) local and foreign finance requirements for an arbitrary reactor type

  10. Proceedings of NUCLEAR 2013 the 6th annual international conference on sustainable development through nuclear research and education. Part 2/3

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2013-01-01

    The proceedings of the NUCLEAR 2013 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 22-24 2013 contain 79 communications presented in two plenary sessions. The sections of conferecnce are adressing the following items: Section I.1 Nuclear Safety & Severe Accidents (15 papers), Section I.2 Nuclear Reactors & Generation IV (15 papers), Section I.3 Nuclear Technologies & Materials (28 papers), Section II.1 Radioprotection (6 papers), Section II.2 Radioactive Waste Management (8 papers), Section II.3 Air, Water & Soil Protection (5 papers) and Section III Sustainable Development (4 papers) These papers are presented as abstracts in 'Nuclear 2013 - BOOK of ABSTRACTS', separately processed

  11. Proceedings of NUCLEAR 2013 the 6th annual international conference on sustainable development through nuclear research and education. Part 3/3

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2013-01-01

    The proceedings of the NUCLEAR 2013 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 22-24 2013 contain 79 communications presented in two plenary sessions. The sections of conferecnce are adressing the following items: Section I.1 Nuclear Safety & Severe Accidents (15 papers), Section I.2 Nuclear Reactors & Generation IV (15 papers), Section I.3 Nuclear Technologies & Materials (28 papers), Section II.1 Radioprotection (6 papers), Section II.2 Radioactive Waste Management (8 papers), Section II.3 Air, Water & Soil Protection (5 papers) and Section III Sustainable Development (4 papers) These papers are presented as abstracts in 'Nuclear 2013 - BOOK of ABSTRACTS', separately processed

  12. Facing the challenges of nuclear power at Ontario Power Generation

    International Nuclear Information System (INIS)

    Howes, H.

    1999-01-01

    Nuclear power represents a major portion of Ontario Power Generation's generation mix and it will be the bedrock upon which we build a successful, competitive company. Our nuclear units offer many environmental and economic benefits, the one most relevant to this meeting is their significant contribution to the relatively low carbon intensity of Ontario's and Canada's electricity supply. In recent weeks, we have listened with great interest to the endorsement by our federal Minister of the Environment of nuclear technology as a means of reducing global warming. But endorsements of this type alone are not sufficient to ensure that nuclear remains an acceptable option for managing greenhouse gas emissions. Without public acceptance and support, the entire nuclear investment is endangered. At OPG we face three challenges to building this public support: we must continue to improve our safety margins and operating performance; we must continue to improve the environmental performance at our stations; and we must increase our community outreach. Today I would like to focus on the last two challenges and the actions that we are taking to maintain our social and environmental 'licence to operate.' But before I describe these initiatives, I will tell you about: the new company - Ontario Power Generation; the changes in store for Ontario's electricity sector; and our greenhouse gas emissions - the legacy from Ontario Hydro. (author)

  13. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  14. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  15. Generation of Matxs-formated nuclear data libraries

    International Nuclear Information System (INIS)

    Vontobel, P.

    1989-01-01

    Using the NJOY nuclear data processing system, three multigroup MATXS-formated nuclear data libraries were generated based on the European data files JEF-1 and EFF-1. After processing with TRAMIX, TRANSX, or TRANSX-CTR these libraries can be red into most transport and diffusion codes. For the neutron analysis of gas-cooled or water moderated thermal reactor systems (including high converter PWR's) a 70-group WIMS-BOXER structured library was generated. A general purpose fine group library in 308 groups is provided for thermal as well as for fast reactor systems. A coupled 175 neutron/42 photon-group library in VITAMIN-J structure was created for the analysis of shielding problems and fusion blanket design. A problem found when using CRAY's CFT77 compiler to implement NJOY87 is discussed. The problem of irregular selfshielding factors from UNRESR for some isotopes and (σ 0 , material temperature)-combinations in the unresolved resonance range is addressed

  16. Wavelet network controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Habibiyan, H; Sayadian, A; Ghafoori-Fard, H

    2005-01-01

    Poor control of steam generator water level is the main cause of unexpected shutdowns in nuclear power plants. Particularly at low powers, it is a difficult task due to shrink and swell phenomena and flow measurement errors. In addition, the steam generator is a highly complex, nonlinear and time-varying system and its parameters vary with operating conditions. Therefore, it seems that design of a suitable controller is a necessary step to enhance plant availability factor. The purpose of this paper is to design, analyze and evaluate a water level controller for U-tube steam generators using wavelet neural networks. Computer simulations show that the proposed controller improves transient response of steam generator water level and demonstrate its superiority to existing controllers

  17. Change of public awareness on nuclear power generation in 2010

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    2011-01-01

    The eighth attitude survey for nuclear power generation was carried out by two methods (the written questionnaire survey and online survey), from 22nd in October to 22nd in November, 2010. The survey population of the first method was 500, 250 of male and 250 female from over twenty years old lived within 30 km from Tokyo station. That of second method was 500 from over twenty years old lived in the Metropolitan area. The questionnaire consisted of four items such as awareness on the general public and life, energy problems, nuclear power generation and others. The written questionnaire survey showed almost same results as the previous surveys. New results showed some subjects (23%) thought the nuclear power generation was useful at that time but not useful in the future. Outline of survey, the main results, the analytical results and comparison between the written questionnaire survey and online survey were reported. (S.Y.)

  18. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  19. Basic recognition on safety of nuclear electric power generation

    International Nuclear Information System (INIS)

    Miyazaki, Keiji

    1995-01-01

    The safety of nuclear electric power generation is not to inflict radiation damage on public. Natural radiation is about 1 mSv every year. As far as the core melting on large scale does not occur, there is not the possibility of exerting serious radiation effect to public. The way of thinking on ensuring the safety is defense in depth. The first protection is the prevention of abnormality, the second protection is the prevention of accidents, and the third protection is the relaxation of effect. As design base accidents, the loss of coolant accident due to the breakdown of inlet pipings of reactors and the breaking of fine tubes in steam generators are included. The suitability of location is evaluated. As the large scale accidents of nuclear power stations in the past, Chernobyl accident and Three Mile Island accident are explained. The features of the countermeasures to the accident in Mihama No. 2 plant are described. The countermeasures to severe accidents, namely accident management and general preventive maintenance are explained. The background of the nonconfidence feeling to nuclear electric power generation and the importance of opening information to public are shown. (K.I.)

  20. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Min, Byung Joo; Lee, Jong Tai [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-01-01

    In nuclear or shielding design analysis for reactors or other facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multi-group constant library using the newly compiled data files and the code systems. As the results of this project, the latest version of NJOY nuclear data processing system, NJOY91.38 which is capable of processing data in ENDF-6 format, was compiled and installed in Cyber 960-31(OS : NOS/VE) and HP710 workstation. A 50-group constant library for fast reactor was generated with NJOY91.38 using evaluated data from JEF-1 and benchmark test of this library was performed. The newly generated library has been found to do an excellent job of calculating integral quantities for fast critical assemblies and is expected to be positively used to develop fast reactors. (Author).

  1. Nuclear data banks generation by interpolation; Generacion de bancos de datos nucleares mediante interpolacion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J A

    1999-07-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks.

  2. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  3. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop

    International Nuclear Information System (INIS)

    Hoopingarner, K.R.; Vause, J.W.

    1987-08-01

    Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system

  4. Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV: IER-148 CED-2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Heinrichs, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beller, Tim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burch, Jennifer [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cummings, Rick [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Duluc, Matthieu [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Gadd, Milan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McAvoy, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rathbone, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Randy [Savannah River Site (SRS), Aiken, SC (United States); Trompier, Francois [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Veinot, Ken [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, Dann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Will, Rashelle [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Wilson, Chris [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Zieziulewicz, Thomas [Knolls Atomic Power Lab. (KAPL), Niskayuna, NY (United States)

    2014-09-30

    This document is the Final Design (CED-2) Report for IER-148, “International Inter-comparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV.” The report describes the structure of the exercise consisting of three irradiations; identifies the participating laboratories and their points of contact; provides the details of all dosimetry elements and their placement in proximity to Godiva-IV on support stands or phantoms ; and lists the counting and spectroscopy equipment each laboratory will utilize in the Mercury NAD Lab. The exercise is tentatively scheduled for one week in August 2015.

  5. A Qualitative Assessment of Diversion Scenarios for a GEN IV Example Sodium Fast Reactor Using the GEN IV PR and PP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, M.D.; Coles, G.A. [PNNL, P.O. Box 999, 902 Battelle Boulvard, Richland, WA 99336 (United States); Therios, I.U. [Argonne National Lab. - ANL (United States)

    2009-06-15

    An experts working group was created in 2002 by The Generation IV International Forum for the purpose of developing an internationally accepted methodology for assessing the proliferation resistance of a nuclear energy system (NES) and its individual elements. A two year case study was performed by the working group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information to designers at various levels of details, including pre-conceptual design stage. The study analyzes the response of the ESFR entire nuclear energy system to different proliferation and theft strategies. The challenges considered comprise concealed diversion, concealed misuse and abrogation strategies. This paper describes the work done in performing a qualitative assessment of potential concealed diversion scenarios from the ESFR, and includes an evaluation of the potential effect of changes in the conversion ratio on diversion strategies. (authors)

  6. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  7. Improving nuclear generating station response for electrical grid islanding

    International Nuclear Information System (INIS)

    Chou, Q.B.; Kundur, P.; Acchione, P.N.; Lautsch, B.

    1989-01-01

    This paper describes problems associated with the performance characteristics of nuclear generating stations which do not have their overall plant control design functions co-ordinated with the other grid controls. The paper presents some design changes to typical nuclear plant controls which result in a significant improvement in both the performance of the grid island and the chances of the nuclear units staying on-line following the disturbance. This paper focuses on four areas of the overall unit controls and turbine governor controls which could be modified to better co-ordinate the control functions of the nuclear units with the electrical grid. Some simulation results are presented to show the performance of a typical electrical grid island containing a nuclear unit with and without the changes

  8. Assessment of NJOY generated neutron heating factors based on JEF/EFF-1

    International Nuclear Information System (INIS)

    Vontobel, P.

    1990-01-01

    Using the NJOY nuclear data processing system, a coupled neutron-photon multigroup MATXS-formatted nuclear data library was generated based on the files JEF/EFF-1. The neutron heating factors contained in this VITAMIN-J structured library are compared with those of MACLIB-IV. The main differences are due to the included decay heat of shortlived reaction products in MACKLIB-IV and/or due to too high/low photon production data of some JEF/EFF-1 isotopes. It is recommended to check carefully the energy balance of new evaluations containing photon production data. How this can be done with the help of the NJOY HEATR module is shown in an example. (author) 35 figs., 9 refs

  9. Radioactive release data from Canadian nuclear generating stations 1872-1987

    International Nuclear Information System (INIS)

    1989-03-01

    All nuclear generating stations emit small quantities of radioactive effluent both into the atmosphere and in the form of liquid effluent, into the adjoining water body, be it river, lake or sea. The purpose of this document is to report on the magnitude of these emissions for each nuclear generating station in Canada and to indicate how these emissions compare with the relevant limitations imposed by the Atomic Energy Control Board as part of its regulatory and licensing program. This report incorporates histograms indicating the annual releases of tritium in air, noble gases, iodine-131, airborne particulates, tritium in water and waterborne gross beta activity for each nuclear generating station. In addition, for Pickering NGS 'A', annual released of carbon-14 are depicted for the years 1986 and 1987. In each case the emission data are compared to the Derived Emission Limit (DEL) in order that the data may be placed in perspective. At present, only Pickering NGS 'A' is required to monitor and report carbon-14 emissions. Environmental monitoring for C-14 is conducted around the Bruce site to determine the environmental impact of its emission and whether effluent monitoring will be necessary in future years. Three nuclear generating stations have been permanently taken out of service during the last few years (Gentilly NGS-1, Douglas Point NGS and NPD NGS). Some small emissions from these sites do still occur, however, due to decontamination and decommissioning operations. (11 tabs., 26 figs.)

  10. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  11. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  12. Production of gel 99mTc generators for Nuclear Medicine at the Nuclear Power Institute of China, Chengdu

    International Nuclear Information System (INIS)

    Boyd, R.E.

    1996-07-01

    The development and testing of the gel-type 99m Tc generator technology has been going on for several years at the Nuclear Power Institute of China. This generator type has already been licensed by the Ministry of Health. With the co-operation of the IAEA, under Model Project CPR/2/006,it is intended to upgrade and optimise the existing facility for large scale production and continue to improve the generator performance in terms of quality and reliability of its use in nuclear medicine. The expert mission objective was to carry out final laboratory tests to assess the performance of the gel- type 99m Tc, locally produced, as well as to assess the suitability of the corresponding 99m Tc eluate for nuclear medicine studies. In particular, the expert tested the suitability of the 99m Tc for the labelling of sensitive biomolecules and its general performance in a nuclear medicine service

  13. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  14. Nuclear power - strategic planning for the next generation

    International Nuclear Information System (INIS)

    Turner, K.H.

    1989-01-01

    Regardless of the real or perceived causes of the nuclear power industry's current difficulties, a number of recent trends-increasing electricity demand, foreign oil dependency, and attention paid to acid rain and the greenhouse effect-taken together, point of the most favorable atmosphere in recent history for nuclear power. Already, serious public discussion of its advantages have begun anew. Thus, the time is ripe to consider the developmental structure of nuclear power's next generation. Although much uncertainty still surrounds the nuclear industry, valuable lessons have been learned, and the evolution of the industry from this point cannot be left to chance. The purpose of this paper is to discuss a framework for nuclear power strategic planning activities. The strategic planning objectives outlined in this paper span issues that affect virtually every aspect of the nuclear power industry. Piecemeal responses to the vagaries of random stimuli will not be adequate. A proactive, integrated, industry-wide initiative-an Institute of Nuclear Power Planning, actively supported by the members of the industry-should be undertaken immediately to fill the strategic planning role. In so doing, the industry will not only be acting in its own best interest but will also be helping the nation realize the real and important benefits of its nuclear power technology

  15. Nuclear grade and DNA ploidy in stage IV breast cancer with only visceral metastases at initial diagnosis.

    Science.gov (United States)

    De Lena, M; Barletta, A; Marzullo, F; Rabinovich, M; Leone, B; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriguez, R; Schittulli, F; Paradisco, A

    1996-01-01

    The presence of early metastases to distant sites in breast cancer patients is an infrequent event whose mechanisms are still not clear. The aim of this study was to evaluate the biologic and clinical role of DNA ploidy and cell nuclear grade of primary tumors in the metastatic process of a series of stage IV previously untreated breast cancer patients with only visceral metastases. DNA flow cytometry analysis on paraffin-embedded material and cell nuclear grading of primary tumors was performed on a series of 50 breast cancer patients with only visceral metastases at the time of initial diagnosis. Aneuploidy was found in 28/46 (61%) of evaluable cases and was independent of site of involvement, clinical response, time of progression and overall survival of patients. Of the 46 cases evaluable for nuclear grade, 5 (11%), 16 (35%) and 25 (54%) were classified as G1 (well-differentiated) G2 and G3, respectively. Nuclear grade also was unrelated to response to therapy and overall survival, whereas time to progression was significantly longer in G1-2 than G3 tumors with the logrank test (P < 0.03) and multivariate analysis. Our results seem to stress the difficulty to individualize different prognostic subsets from a series of breast cancer patients with only visceral metastases at initial diagnosis according to DNA flow cytometry and nuclear grade.

  16. The competitive economics of a middle aged multi unit nuclear generating station

    International Nuclear Information System (INIS)

    Talbot, K.H.

    1994-01-01

    In 1992 Ontario Hydro's 15 year old 4 x 850 MWe Candu, Bruce A Nuclear Generating Station was predicted to need considerable capital investment to replace pressure tubes, steam generators and other prematurely ageing equipment in order to restore the station to high performance. Over the subsequent two years the station has undergone 2 major economic assessment studies which have confirmed the economic viability of continued operation of the plant. Declining demand for electricity in Ontario combined with a excess of generating capacity and a need to stabilise electricity rates have however forced significant operational cost reductions and reduced capital availability for rehabilitation work, it's medium and long term future remains in question. This presentation offers a practical illustration of the need to maintain steady high performance from nuclear generating plant via the appropriate life management techniques. The avoidance of mid life infusion of capital is considered as essential if nuclear generation is to successfully survive major changes in economic conditions. 2 tabs., 7 figs

  17. Design option of heat exchanger for the next generation nuclear plant - HTR2008-58175

    International Nuclear Information System (INIS)

    Oh, C. H.; Kim, E. S.

    2008-01-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. (authors)

  18. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  19. Nuclear fuel cycle and sustainable development: strategies for the future

    International Nuclear Information System (INIS)

    Bouchard, J.

    2004-01-01

    In this presentation, the author aims to define the major role of the nuclear energy in the future, according a sustainable development scenario. The today aging park and the new Generation IV technologies are presented. The transition scenario from Pu mono-recycling in PWRs to actinide global recycling in fast neutron Gen IV systems is also developed. Closed cycles and fast reactors appear as the appropriate answer to sustainable objectives in a vision of a large expansion. (A.L.B.)

  20. Nuclear power - a business driver for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.R. [American Nuclear Society, La Grange Park, Illinois (United States)

    2013-07-01

    This paper the business aspects of nuclear power. It gives a snapshot of energy sources in the US and the distribution of electricity generation between coal, natural gas, hydropower, renewables such as biomass, geothermal, solar, wind, petroleum and other gases. Nuclear power continues to be an important source of electricity. It outlines the impact of new construction in creating jobs, economics and price stability of electricity.

  1. Background submission to the Royal Commission on Nuclear Power Generation

    International Nuclear Information System (INIS)

    1976-12-01

    The Royal Commission on Nuclear Power Generation in New Zealand is required to inquire into and report upon the likely consequences of a nuclear power programme. The New Zealand Electricity Department would have prime responsibilty for implementing the construction, operation and maintenance of nuclear power plants should the need be established and should this be acceptable to the Government. In this submission the Department has attempted to present the issues raised by the introduction of nuclear power in relatively simple terms on the assumption that elaboration can be provided later if necessary

  2. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  3. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  4. Testing and economical evaluation of U(IV) in Purex

    International Nuclear Information System (INIS)

    Hoisington, J.E.; Hsu, T.C.

    1983-01-01

    The use of uranous nitrate, U(IV), as a plutonium reductant in the Purex solvent extraction process could significantly reduce the waste generation at the Savannah River Plant. The current reductant is a ferrous sulfamate (FS)/hydroxylamine nitrate (HAN) mixture. The iron and sulfate in the FS are major contributors to waste generation. The U(IV) reductant oxidizes to U(VI) producing no waste. The Savannah River Laboratory has developed an efficient electrochemical cell for U(IV) production and has demonstrated the effectiveness of U(IV) as a plutonium reductant. Plant tests and economic analyses are currently being conducted to determine the cost effectiveness of U(IV) implementation. The results of recent studies are presented

  5. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    Energy Technology Data Exchange (ETDEWEB)

    Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, CH-4601 Olten (Switzerland); Bichsel, Thomas [BKW FMB Energie AG, NPP Muehleberg, CH-3203 Muehleberg (Switzerland); Fassbender, Andre [NPP Goesgen-Daeniken AG, CH-4658 Daeniken (Switzerland); Horvath, Matthias [National Emergency Operations Centre, CH-8044 Zurich (Switzerland)

    2008-07-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely

  6. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  7. Nuclear power for the next generation. Proceedings. Kernenergie fuer die naechste Generation. Berichte

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The Chernobyl reactor accident was just the last but not the only occasion that threw out the question of whether nuclear power generation has reached its peak, or probably already is on the decline, or whether there will be new chances for nuclear energy on the power market. The answer to these questions depends on a variety of factors, among which the development of demand for energy, and especially electrical energy, certainly is the decisive factor. The summarizing statements published in the proceedings in hand have been written in January 1986, i.e. before the Chernobyl reactor accident; but they still are relevant, as the long-term problems of energy policy persist, and nuclear energy has to tackle the same problems as before.

  8. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  9. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  10. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  11. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  12. Study on the leaching behavior of actinides from nuclear fuel debris

    Science.gov (United States)

    Kirishima, Akira; Hirano, Masahiko; Akiyama, Daisuke; Sasaki, Takayuki; Sato, Nobuaki

    2018-04-01

    For the prediction of the leaching behavior of actinides contained in the nuclear fuel debris generated by the Fukushima Daiichi nuclear power plant accident in Japan, simulated fuel debris consisting of a UO2-ZrO2 solid solution doped with 137Cs, 237Np, 236Pu, and 241Am tracers was synthesized and investigated. The synthesis of the debris was carried out by heat treatment at 1200 °C at different oxygen partial pressures, and the samples were subsequently used for leaching tests with Milli-Q water and seawater. The results of the leaching tests indicate that the leaching of actinides depends on the redox conditions under which the debris was generated; for example, debris generated under oxidative conditions releases more actinide nuclides to water than that generated under reductive conditions. Furthermore, we found that, as Zr(IV) increasingly substituted U(IV) in the fluorite crystal structure of the debris, the actinide leaching from the debris decreased. In addition, we found that seawater leached more actinides from the debris than pure water, which seems to be caused by the complexation of actinides by carbonate ions in seawater.

  13. Effects of the accident at Mihama Nuclear Power Plant Unit 3 on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2005-01-01

    As part of an ongoing public opinion survey regarding nuclear power generation, which started in 1993, a survey was carried out in the Kansai and Kanto regions two months after the accident at Unit 3 of the Mihama Nuclear Power Plant. In addition to analyzing the statistically significant changes that have taken place since the previous survey (taken in 2003), increase and decrease of the ratio of answers to all the questions related to nuclear power before and after the two accidents were compared in the case of the accidents which occurred in the Mihama Unit 3 and the JCO company's nuclear-fuel plant. In the Kansai region, a feeling of uneasiness about the risky character of nuclear power generation increased to some extent, while the public's trust in the safety of nuclear power plants decreased somewhat. After a safety-related explanation on ''Early detection of troubles'' and Accident prevention'' was given from a managerial standpoint, people felt a little less at ease than they had before. Uneasiness, however, did not increase in relation to the overall safety explanation given about the engineering and technical functioning of the plant. There was no significant negative effect on the respondents' evaluation of or attitude toward nuclear power generation. It was found that the people's awareness about the Mihama Unit 3 accident was lower and the effect of the accident on their awareness of nuclear power generation was more limited and smaller when compared with the case of the JCO accident. In the Kanto region, people knew less about the Mihama Unit 3 accident than those living in the Kansai region, and they remembered the JCO accident, the subsequent cover-up by Tokyo Electric Power Company, and the resulting power shortage better than those living in Kansai. This suggested that there was a little difference in terms of psychological distance in relation to the accidents an incidents depending on the place where the events occurred and the company which

  14. Nuclear steam generator tube to tubesheet joint optimization

    International Nuclear Information System (INIS)

    McGregor, Rod

    1999-01-01

    Industry-wide problems with Stress Corrosion Cracking in the Nuclear Steam Generator tube-to-tubesheet joint have led to costly repairs, plugging, and replacement of entire vessels. To improve corrosion resistance, new and replacement Steam Generator developments typically employ the hydraulic tube expansion process (full depth) to minimize tensile residual stresses and cold work at the critical transition zone between the expanded and unexpanded tube. These variables have undergone detailed study using specialized X-ray diffraction and analytical techniques. Responding to increased demands from Nuclear Steam Generator operators and manufacturers to credit the leak-tightness and strength contributions of the hydraulic expansion, various experimental tasks with complimentary analytical modelling were applied to improve understanding and control of tube to hole contact pressure. With careful consideration to residual stress impact, design for strength/leak tightness optimization addresses: Experimentally determined minimum contact pressure levels necessary to preclude incipient leakage into the tube/hole interface. The degradation of contact pressure at surrounding expansions caused by the sequential expansion process. The transient and permanent contact pressure variation associated with tubesheet hole dilation during Steam Generator operation. An experimental/analytical simulation has been developed to reproduce cyclic Steam Generator operating strains on the tubesheet and expanded joint. Leak tightness and pullout tests were performed during and following simulated Steam Generator operating transients. The overall development has provided a comprehensive understanding of the fabrication and in-service mechanics of hydraulically expanded joints. Based on this, the hydraulic expansion process can be optimized with respect to critical residual stress/cold work and the strength/leakage barrier criteria. (author)

  15. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  16. Design and construction features of steam generators at a nuclear power station

    International Nuclear Information System (INIS)

    Chakrabarti, A.K.; Gupta, K.N.; Bapat, C.N.; Sharma, V.K.

    1996-01-01

    The Indian nuclear power programme is based on Pressurised Heavy Water Reactors (PHWRs) using natural uranium as fuel and heavy water as reactor coolant as well as moderator. The nuclear heat is generated in the fuel located in the pressure tubes. Pressurised heavy water in the primary heat transport (PHT) system is circulated through the tubes which picks up the heat from the fuel and transfers it to ordinary water in steam generators (SGs) to produce steam. The steam is used for providing power to the turbine. The steam generator is a critical equipment in the nuclear steam supply system (NSSS) of a nuclear reactor. SG tube surface area constitute about 80% of total primary circuit surface area. A typical value in a 220 MWe reactor is 9000 m 2 which can release considerable amount of corrosion products unless very low corrosion rates are achieved by proper design, material selection and water chemistry control. Design and construction features of SGs are given. 1 tab

  17. The role of nuclear energy in the generation of electricity in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1981-01-01

    A comparative calculation of the potential of conventional electricity-generating energy sources-hydroelectric, coal, nuclear - according to different cost levels of generated energy is presented. Assuming a plausible estimate of the demand increase for electricity in the country, calculations show that nuclear energy will have an important role in Brazil only in the second decade of the next century. The potential of some other alternative electricity generating sources is calculated - shale and biomass (bagasse and biogas of vinhoto are discussed) - indicating that by that time nuclear energy will indeed be an option, but not necessarily the only one or the best. Finally a chronological table has been worked out indicating a construction schedule for the reactors in case the option is for nuclear energy - keeping in mind that this option does not depend exclusively on technical and economic but also political criteria and therefore requires a democratic decision-making process. (Author) [pt

  18. A new potentiometric determination of hydrazine in the presence of uranium(IV)

    International Nuclear Information System (INIS)

    Singh, N.S.; Mohan, S.V.

    1996-01-01

    The present method describes the determination of hydrazine by making use of potentiometric titration technique. The underlying principle is back titration of unreacted excess cerium remaining after the complete oxidation of hydrazine. Standardized ferrous ammonium sulfate was used for titration. This method was applied to 'real samples' generated from a nuclear reprocessing plant wherein control of hydrazine is of paramount importance. The interference of U(IV), Cr(III), U(VI), nitrite, and chloride was studied and of all these ions the way to eliminate the interference of U(IV) was only attempted. The relative standard deviations (RSD) for synthetic as well as 'real samples' were determined. The method gives RSD of less than 1% in the range of 1 mg to 20 mg of hydrazine. The error in the range 3 mg to 17 mg was found to be less than 1%. (author). 5 refs., 3 tabs

  19. A century of nuclear science. Important contributions of early generation Chinese physicist to nuclear science

    International Nuclear Information System (INIS)

    Zheng Chunkai; Xu Furong

    2003-01-01

    The great discoveries and applications of nuclear science have had tremendous impact on the progress and development of mankind over the last 100 years. In the 1920's to 1940's, many young Chinese who yearned to save the country through science and education went to west Europe and north America to study science, including physics. Studying and working with famous physicists throughout the world, they made many important contributions and discoveries in the development of nuclear science. This paper describes the historical contributions of the older generation of Chinese physicists to nuclear science

  20. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  1. Why nuclear power generation must be developed? A many-faceted verification of its irreplaceable role

    International Nuclear Information System (INIS)

    Kawai, Yuichi; Oda, Toshiyuki

    1998-01-01

    Given the poor public acceptance right now, the future of nuclear power development is not necessarily bright. Yet, from the energy security aspect, the role of nuclear power, already responsible for about 30% of Japan's generated output, is never negligible. Also, Japan could hardly meet the GHG reduction target under the Kyoto Protocol without carbon-free nuclear power generation. While Japan is required to deal with both energy security and global warming from now on, to satisfy the two concurrently without nuclear power development is nearly impossible in practical terms. We have to consider calmly how nuclear power generation should be understood and treated in our effort to ensure energy supply and mitigate global warming. With this study, the need for nuclear power development was verified anew by reevaluating nuclear power generation from many facets, which are energy (electricity) supply and demand, environmental measures, energy security, and cost. Verification results showed: On supply and demand, the absence of nuclear power causes an electricity shortage during peak hours; On environment, no GHG-free power sources but nuclear currently have a sufficient supply capacity; On energy security, nuclear fuel procurement sources are diverse and located in relatively stable areas; On cost, the strong yen and cheap oil favors fossil fuels, and the weak yen and dear oil does nuclear power, though depending on unpredictable elements to send their cost up, typically waste disposal cost incurred in nuclear power, and CO 2 reduction cost in fossil fuels. With all these factors taken into consideration, the best mix of power sources should be figured out. From the verification results, we can conclude that nuclear power is one of irreplaceable energy sources for Japan. To prepare for growing electricity demand and care the environment better, Japan has few choices but to increase the installed capacity of nuclear power generation in the years to come. (author)

  2. Generation IV SFR Nuclear Reactors: Under Sodium Robotics for ASTRID

    International Nuclear Information System (INIS)

    Jouan-de-Kervenoael, T.; Rey, F.; Baque, F.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. The maintenance of future ASTRID nuclear reactor prototype (inspection, repair) will be performed during shut down periods with some robotic carriers which have to be introduced within the main vessel, in primary 200 deg. C sodium coolant with argon gas cover. Inspection campaigns will be 20 days long. These robots (or carriers) will allow bringing inspection and repairing tools up to concerned components and structures. The needed degrees of freedom associated to these operations will be assumed either directly by the carrier itself or by specifics lower end carrier device for accurate local positioning. Several carriers will be designed, well adapted to specific needs: type of maintenance operation and location of inspection and repair sites. Feedback experience was gained during Superphenix SFR operation with the MIR robot which allowed to successfully make the Non Destructive Examination of main vessel welding joints, the carrier being outside bulk sodium. Operating conditions for the ASTRID robots will be harder from those of the MIR robot: temperature ranging from 180 deg. C to 200 deg. C, radiation dose ranging from 105 to 106 Gy, but mainly direct immersion within liquid sodium coolant. At the design phase of

  3. Validation of a new library of nuclear constants of the WIMS code; Validacion de una nueva biblioteca de constantes nucleares del Codigo WIMS

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F [Departamento de Experimentacion, Gerencia del Reactor, ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1991-10-15

    The objective of the present work is to reproduce the experimental results of the thermal reference problems (benchmarks) TRX-1, TRX-2 and BAPL-1 to BAPL-3 with the WIMS code. It was proceeded in two stages, the first one consisted on using the original library of the code, while in the second one, a library that only contains the present elements in the benchmarks: H{sup 1}, O{sup 16}, Al{sup 27}, U{sup 235} and U{sup 238} was generated. To generate the present nuclear data in the WIMS library, it was used the ENDF/B-IV database and the Data processing system of Nuclear Data NJOY, the library was generated using the FIXER code. (Author)

  4. Steam Generator control in Nuclear Power Plants by water mass inventory

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)

    2008-04-15

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.

  5. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  6. Socio-economic impacts of nuclear generating stations: summary report on the NRC post-licensing studies

    International Nuclear Information System (INIS)

    Chalmers, J.; Pijawka, D.; Branch, K.; Bergmann, P.; Flynn, J.; Flynn, C.

    1982-07-01

    Information is presented concerning the conceptual framework for the assessment of socioeconomic impacts; methodology for the post-licensing case studies; socioeconomic changes due to the construction and operation of nuclear generating stations; public response to the construction and operation of nuclear generating stations; socioeconomic consequences of the accident at Three Mile Island; the significance of socioeconomic change due to the construction and operation of nuclear generating stations; findings of the post-licensing studies relative to the nuclear station impact literature; and implications of the findings for projective assessments and planning studies

  7. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  8. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    International Nuclear Information System (INIS)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  9. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  10. Market share scenarios for Gen-DIII and gen-IV reactors in Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Heek, A. V.; Durpel, L. V. D.

    2008-01-01

    Nuclear energy is back on the agenda worldwide in order to meet growing energy demand and especially the growth in electricity demand. Many objectives direct to an increased use of nuclear energy, i.e. minimising energy costs, reducing climate change effects and others. In the light of the potential renewed growth of nuclear energy, the public demands a clear view on what nuclear energy may contribute towards meeting these objectives and especially how nuclear energy may address some socio-political obstructions with respect to economics, radioactive waste, safety and proliferation of fissile materials. To address these questions, the future nuclear reactor park mix in Europe has been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options. In the analyses, it is assumed that different types of new reactors may be built, taking into account the introduction date of considered Gen-Ill (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, and the economic evaluation of the complete fuel cycle. The assessment was undertaken using the DANESS code (Dynamic Analysis of Nuclear Energy System Strategies). The analyses show that given the considered realistic nuclear energy demand and given a limited number of available Gen-III and Gen-IV reactor types, the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. The analyses also highlight the triggers influencing the choice between different nuclear energy deployment scenarios. (authors)

  11. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  12. US central station nuclear electric generating units: significant milestones

    International Nuclear Information System (INIS)

    1979-09-01

    Listings of US nuclear power plants include significant dates, reactor type, owners, and net generating capacity. Listings are made by state, region, and utility. Tabulations of status, schedules, and orders are also presented

  13. Nuclear the next generation. 34th Annual Canadian Nuclear Society conference and 37th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The 34th Annual Canadian Nuclear Society Conference and 37th CNS/CNA Student Conference was held in Toronto, Ontario, Canada on June 10-13, 2013. With the theme of the conference, 'Nuclear the Next Generation{sup ,} the conference actively engaged 400 participants in the many facets of this well-rum event. The conference combined excellent plenary speakers, a full set of technical papers, challenging student poster competitions, and interesting exhibits. The plenary session focussed on the themes: 'Nuclear Power - a Business Driver for the Next Generation'; and, 'Designing - the Next Generation'. The technical session titles were: Reactor and Radiation Physics; Environment and Spent Fuel Management; Operations and Maintenance; Fusion Science and Technology; Advanced Reactors and Fuels; Plant Life Extension, Refurbishment and Aging; Safety and Licensing; Chemistry and Materials; and, Thermalhydraulics. The student conference session was well attended and completed the 4 day event.

  14. Knowledge Transfer and Leadership Development in Coordination with Young Generation in Nuclear (YGN) Societies

    International Nuclear Information System (INIS)

    Batra, Chirayu; Janin, Denis

    2017-01-01

    IYNC in a Nutshell: The mission - IYNC (International Youth Nuclear Congress) is the global network of a new generation of nuclear professionals to: •Communicate the benefits of nuclear science and applications •Promote the peaceful use of nuclear power •Provide a platform for networking •Facilitate knowledge transfer between generations and across boundaries; The structure - IYNC is a non-profit organization run by: •11 Officers •Board of Directors •50 National Representatives (e.g. YGN) •20 Members at Large •Dedicated committees and team for projects (30+) → more than 80 volunteers; The activities - •Biannual Congress (IYNCWiN18) •Grants Committee •YGN Startup & Support •Bulletin, Newsletter – sign up www.iync.org •Innovation4Nuclear (I4N) •Nuclear4Climate •Annual Board of Directors. YGN (Young Generation Network): What is a YGN? • A group of young professionals and students interested in nuclear science and technology; Benefits: •Knowledge transfer •Train the future international leaders •Networking •Attracts, develops and retains young professionals

  15. Regional comparison of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Bowers, H.I.

    1984-01-01

    Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures

  16. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  17. Reducing Risk for the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, John M. II; Heydt, Harold J.; Opare, Emmanuel O.; Oswald, Kyle B.

    2010-01-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  18. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  19. Cytomorphologic features distinguishing Bethesda category IV thyroid lesions from parathyroid

    Directory of Open Access Journals (Sweden)

    Simon Sung

    2017-01-01

    Full Text Available Background: Thyroid follicular cells share similar cytomorphological features with parathyroid. Without a clinical suspicion, the distinction between a thyroid neoplasm and an intrathyroidal parathyroid can be challenging. The aim of this study was to assess the distinguishing cytomorphological features of parathyroid (including intrathyroidal and Bethesda category IV (Beth-IV thyroid follicular lesions, which carry a 15%–30% risk of malignancy and are often followed up with surgical resection. Methods: A search was performed to identify “parathyroid” diagnoses in parathyroid/thyroid-designated fine-needle aspirations (FNAs and Beth-IV thyroid FNAs (follicular and Hurthle cell, all with diagnostic confirmation through surgical pathology, immunocytochemical stains, Afirma® analysis, and/or clinical correlation. Unique cytomorphologic features were scored (0-3 or noted as present versus absent. Statistical analysis was performed using R 3.3.1 software. Results: We identified five FNA cases with clinical suspicion of parathyroid neoplasm, hyperthyroidism, or thyroid lesion that had an eventual final diagnosis of the parathyroid lesion (all female; age 20–69 years and 12 Beth-IV diagnoses (11 female, 1 male; age 13–64 years. The following cytomorphologic features are useful distinguishing features (P value: overall pattern (0.001, single cells (0.001, cell size compared to red blood cell (0.01, nuclear irregularity (0.001, presence of nucleoli (0.001, nuclear-to-cytoplasmic ratio (0.007, and nuclear chromatin quality (0.028. Conclusions: There are cytomorphologic features that distinguish Beth-IV thyroid lesions and (intrathyroidal parathyroid. These features can aid in rendering correct diagnoses and appropriate management.

  20. MACK-IV, a new version of MACK: a program to calculate nuclear response functions from data in ENDF/B format

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.; Wright, R.Q.

    1978-07-01

    MACK-IV calculates nuclear response functions important to the neutronics analysis of nuclear and fusion systems. A central part of the code deals with the calculation of the nuclear response function for nuclear heating more commonly known as the kerma factor. Pointwise and multigroup neutron kerma factors, individual reactions, helium, hydrogen, and tritium production response functions are calculated from any basic nuclear data library in ENDF/B format. The program processes all reactions in the energy range of 0 to 20 MeV for fissionable and nonfissionable materials. The program also calculates the gamma production cross sections and the gamma production energy matrix. A built-in computational capability permits the code to calculate the cross sections in the resolved and unresolved resonance regions from resonance parameters in ENDF/B with an option for Doppler broadening. All energy pointwise and multigroup data calculated by the code can be punched, printed and/or written on tape files. Multigroup response functions (e.g., kerma factors, reaction cross sections, gas production, atomic displacements, etc.) can be outputted in the format of MACK-ACTIVITY-Table suitable for direct use with current neutron (and photon) transport codes

  1. A Review of Alloy 800H for Applications in the Gen IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Ren, Weiju; Swindeman, Robert W.

    2010-01-01

    Alloy 800H is currently under consideration for applications in the Next Generation Nuclear Plant at operational temperatures above 750 C. To provide supporting information in this paper at the attempt to facilitate the consideration, service requirements of the nuclear system for structural materials is first described; and then an extensive review of Alloy 800H is given on its codification with respect to development and research history, mechanical behavior and design allowables, metallurgical aging resistance, environmental effect considerations, data requirements and availability, weldments, as well as many other aspects relevant to the intended nuclear application; an finally further research and development activities to support the materials qualification are suggested.

  2. GC Side Event: Future of Nuclear Energy: Engaging the Young Generation. Presentations

    International Nuclear Information System (INIS)

    2017-01-01

    This event presented the IAEA’s programmes for the education and training of a new generation of nuclear professionals. It also featured the annual European Master of Science in Nuclear Engineering (EMSNE) award ceremony

  3. The nuclear safety regulation in Japan and the response to changes of circumstances surrounding the nuclear electricity generation

    International Nuclear Information System (INIS)

    Hombu, K.; Hirota, M.; Taniguchi, T.; Tanaka, N.; Akimoto, S.

    2001-01-01

    The influences of external factors on nuclear safety are discussed in this paper, based on the views on the circumstances of nuclear electricity generation. The following external factors, which might have some potential impacts on nuclear safety, are selected for discussion: (1) The deregulation in the electricity generation industry; (2) The modification of approval/certification system in the regulation of electricity generation; (3) The influences on social atmosphere due to the occurrence of a series of troubles; (4) The government reform and the structural adjustment of industry and (5) Others. Our further discussion seems to focus on the following 2 issues: (a) Whether nuclear power and the other electrical sources should compete with each other for short term economical cost, or whether factors of cost stability and competitiveness as well as longer term energy supply security and global environmental issues ranging over several decades should be considered; (b) How to realize the appropriate regulation from the perspective of public acceptance and confidence (when a series of troubles occur) without imposing unnecessary burdens on industry and without jeopardizing safety. These issues may be common among many countries and can be widely discussed. (author)

  4. A linear current injection generator for the generation of electrons in a nuclear reactor

    International Nuclear Information System (INIS)

    Kar, Moutushi; Thakur, Satish Kumar; Agiwal, Mamta; Sholapurwala, Zarir H.

    2011-01-01

    While, operating a nuclear reactor it is absolutely necessary for generating a chain reaction or fission. A chain reaction can be initiated by bombardment of a heavy nucleus with fast moving particles. One of the common methods used for generating a fast moving particle is injecting a very high voltage into a particle accelerator and accelerating high energy particle beams using machine like cyclotron, synchrotron, linear accelerators i.e. linac and similar equipment. These equipment generated and run by several high voltage applications like simple high voltage DC systems and supplies or pulsed electron systems. (author)

  5. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  6. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  7. Adoption of nuclear power generation

    International Nuclear Information System (INIS)

    Sommers, P.

    1980-01-01

    This article develops a model of the innovation-adoption decision. The model allows the economic situation of a utility and its perception of uncertainty associated with an innovation to affect the probability of adopting it. This model is useful when uncertainties affecting decisions about adoption persist throughout the diffusion process, thereby making the usual adoption model implicit in rate-of-diffusion studies inappropriate. An empirical test of the model finds that firm size, power pool size, and selected aspects of uncertainty about the innovation are significant predictors of US utility companies' decisions on whether or not to adopt nuclear power generation. 17 references, 2 tables

  8. International project GT-MHR - New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Vasyaev, A.; Kodochigov, N.; Kuzavkov, N.; Kuznetsov, L.

    2001-01-01

    Gas turbine-modular helium reactor (GT-MHR) is the reactor of new generation, which satisfies the requirements of the progressing large-scale nuclear power engineering. The activities in GT-MHR Project started in 1995. In 1997 the Conceptual Design was developed under four-side Agreement (MINATOM, General Atomics, FRAMATOME, Fuji Electric); it has passed through the internal and international reviews, has been approved and recommended for further development as one of new trends in creation of new generation plants. Starting from 1999, the activities in the development of the Preliminary Design of the plant were deployed under the Agreement between the Government of the United States of America and the Government of the Russian Federation on Scientific and Technical Cooperation in the Management of Plutonium That Has Been Withdrawn From Nuclear Military Programs dated July 24, 1998. The activities are established under the Contract between MINATOM and OKBM Russia, and under the General Agreement between Department of Energy (DOE), USA and OKBM. The GT-MHR Project is included into 'Development Strategy of Russian Nuclear Power in the first Half of the XXI-st Century' providing for 'the participation in an international project on the development and construction of GT-MHR nuclear power plant till year 2010 and 'operation of GT-MHR prototype unit and creation of fuel fabrication facility (within framework of International Project) till year 2030'. (author)

  9. Study on economic potential of nuclear-gas combined cycle power generation in Chinese market

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Bian Zhiqiang; Yang Mengjia

    2004-01-01

    Facing the challenges of separation of electric power plant and grid, and the deregulation of Chinese electricity supplying market in near future, nuclear power plants mainly operated as based load at the present regulated market should look for new operation mode. The economics of electric generation with nuclear-natural gas combined cycle is studied based on current conditions of natural gas and nuclear power plants in China. The results indicate that the technology development of nuclear-natural gas combined cycle for power generation is of potential prospects in Chinese electric market. (authors)

  10. ASN’s actions in GEN IV reactors and Sodium Fast Reactors (SFR)

    International Nuclear Information System (INIS)

    Belot, Clotilde

    2013-01-01

    The ASN is involved in 3 actions concerning GEN IV: • Overview of nuclear reactor GEN IV systems; • Specific analysis about transmutation; • Prototype reactor ASTRID (SFR). Furthermore theses actions are in the beginning (no conclusions or results available)

  11. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    Ennison, I.; Dzobo, M.

    2011-01-01

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  12. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates.

    Science.gov (United States)

    Nongonierma, Alice B; Paolella, Sara; Mudgil, Priti; Maqsood, Sajid; FitzGerald, Richard J

    2018-04-01

    Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC 50 ) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-01-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R and D) Program is responsible for performing R and D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R and D Program includes the following elements: (1) Developing a specific approach, program plan and other project management

  15. The feature of emergency diesel generator relaying protection in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Jiang Xiaopeng; Shi Yan; Li Cong

    2014-01-01

    This paper mainly introduces the function and feature of emergency diesel generator in nuclear power plant, which plays an important role in nuclear accident. It minutely tells about the feature and configuration of relay protection and discusses the rationality of protection scheme, which shows that it can be completely contented all kinds of operation states. It is an analysis and argument about the principle of relay protection in detail, that would operate correctly when emergency diesel generator be in abnormal operating and serious fault conditions, such as cut off emergency diesel generator in order to avoid more harm to emergency diesel generator. It analyzes how the relay responses quickly and locks up the protection action under perturbations in the external power, so it can avoid unnecessary resection of emergency diesel generator to emergency power supply loss and effect of nuclear safety. It also analyzes the flexible use of protection setting of the protective relay to meet various operating status. It elaborates the particularity of relay protection which is due to the particularity of nuclear safety. It analyses the possibility of relay protection which has to be applied to other equipment and the protection setting that was provided by design institute, and puts forward the author's viewpoints. (authors)

  16. Aiming at the rebirth of the nuclear generation

    International Nuclear Information System (INIS)

    Uematsu, M.M.

    2001-01-01

    The nuclear industries of today have a variety of branches and each industry functions independently, and young professionals need opportunities for communicating among themselves across the different fields of industries, utilities and institutes. We, young professionals, are in the motion of organizing the 'Young Generation Network (YGN) of Japan'. (authors)

  17. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  18. Operating performance of LWR nuclear generating units

    International Nuclear Information System (INIS)

    Pia, S.

    1984-01-01

    This work aims at reviewing, on the basis of historical data, the operational problem areas which explain the degree of availability and productivity achieved up to now by nuclear power plants in commercial operation in the world. The operating performance data of nuclear power plants area analysed with respect to plant type, size and other significant reference parameters and they are evaluated also by comparison with fossil generating unit data. Major performance indices data are presented for both nuclear and fossil units type and distribution of outage causes. Unplanned full outages caused by nuclear power plant equipment and components failure are particulary emphasized. The trend for unplanned full outages due to the failure of components shows decreasing numerical values in 1981 with respect to the previous years. But this result should be weighed with the increasing plant unavailability hours needed for maintenance and repair action (chiefly preventive maintenance on critical components). This means that the number and downtime of forced outage must be drastically reduced for economic reasons (production losses and problems associated with the unavailable unit unplanned replacement) as well as for plant safe and reliable operation (sudden unavailability of key components and frequency of transients associated with plant shutdown and routine startup operation)

  19. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  20. NNSA Program Develops the Next Generation of Nuclear Security Experts

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  1. Chance for young nuclear professionals in Slovenske Elektrarne, member of Enel Group

    International Nuclear Information System (INIS)

    Zlatnansky, Jozef

    2014-01-01

    Main areas and opportunities for young nuclear professionals: → Further increase of safety of NPPs in operation and → Construction of two new NPP units; → Safety and efficiency of NPP decommissioning and radwaste treatment; → CENTA and R&D; → Prototype of gas cooled fast-breader reactor - ALLEGRO. Gas-cooled fast reactor (GFR) is one of the Generation IV reactor concepts and represents one of the three European candidate for fast reactor types. Conclusions: • Human resources are key assets for nuclear organization; • Knowledge of nuclear technology be managed as a resource; • Support of young nuclear professionals is our commitment

  2. Steam generator for use in nuclear power plants

    International Nuclear Information System (INIS)

    Cella, A.

    1980-01-01

    An improved steam generator is described for use in a nuclear power plant of the pressurized water type in which a turbine generator is driven by the steam output of the steam generator to provide electrical power therefrom. The improvement comprises providing a vertically movable grid structure vertically extending within the interior of the lower housing portion of the steam generator through which individual tubes comprising a vertically extending tube bundle extend. The tube bundle has a tube sheet at one end thereof supporting the tube bundle for the tubes extending through the tube sheet in flow through communication with a heat exchange fluid inlet. The grid structure defines grid apertures therein through which the individual tubes extend with each of the grid apertures being in surrounding relationship with a portion of an associated one of the tubes. The grid structure is movable for a predetermined vertical extent, such as by hydraulic means, such as a piston, along the tubes for vertically displacing the means defining the grid apertures by a sufficient amount for removing the previously surrounded portion of each of the tubes from the associated grid apertures whereby an enhanced reading of the condition of the tubes at the previously surrounded portion is enabled. The steam generator may comprise vertically assemblable modules which are removably mounted together in sealing relationship, with the modules comprising a base module, a tube bundle module removably mountable on the base module in sealing relationship therewith and an uppermost drier module removably mountable on the tube bundle module in sealing relationship therewith whereby ready access to removal of the tube bundle module in situ from the nuclear power plant steam generator is facilitated

  3. Strategic thinking about nuclear energy: implications of the emerging market structure in electric generation

    International Nuclear Information System (INIS)

    Bodde, D.L.

    1998-01-01

    Global environmental concerns provide strong motivation for electric generating technologies that reduce greenhouse gas emissions. By itself however, this incentive is probably not sufficient to reverse the long-term decline in the market share of nuclear energy. This is because the power plants now offered by the nuclear vendors mesh poorly with the needs of competitive generating markets. Where managers of generating companies are held accountable to share owners in a competitive environment, the nuclear power plants now offered in the market for new generating capacity are at a distinct disadvantage. As much of the world moves toward the competitive model, this disadvantage will become increasingly limiting. An alternative nuclear power plant concept and fuel cycle is needed, a radical departure from current practice, designed with the competitive marketplace in mind. To accomplish this, a new kind of institution is required: multinational in scope, oriented toward the market, and able to master the politics of the fuel cycle. (author)

  4. Diagnostic knowledge generation of nuclear power plants using knowledge compilers

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Ikeda, Mitsuru; Mizoguchi, Riichiro

    1994-01-01

    This paper discusses a method to generate diagnostic knowledge of nuclear power plants, from commonly accepted physical knowledge and design information about plant configuration. This method is based on qualitative reasoning, which is advantageous to numerical information processing in the sense that system can explain why and how directly applicable knowledge is correctly generated, and that knowledge base is highly reusable and expandable because it is independent on detailed numerical design specifications. However, reasoning ambiguity has been found as the largest problem in applying the technique to nuclear power plants. The proposed approach mainly consists of a knowledge representation scheme, reasoning algorithm, and qualitative model construction method. (author). 4 refs, 8 figs, 1 tab

  5. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  6. 76 FR 45301 - PSEG Nuclear LLC, Hope Creek Generating Station; Notice of Issuance of Renewed Facility Operating...

    Science.gov (United States)

    2011-07-28

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-354 [NRC-2009-0391] PSEG Nuclear LLC, Hope Creek... operator of the Hope Creek Generating Station (HCGS). Renewed Facility Operating License No. NPF- 57... Renewal of Nuclear Power Plants, Supplement 45, Regarding Hope Creek Generating Station and Salem Nuclear...

  7. Tritium in groundwater investigation at the Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Wootton, R.; Belanger, D.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radionuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identity the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  8. Validation of a new library of nuclear constants of the WIMS code

    International Nuclear Information System (INIS)

    Aguilar H, F.

    1991-10-01

    The objective of the present work is to reproduce the experimental results of the thermal reference problems (benchmarks) TRX-1, TRX-2 and BAPL-1 to BAPL-3 with the WIMS code. It was proceeded in two stages, the first one consisted on using the original library of the code, while in the second one, a library that only contains the present elements in the benchmarks: H 1 , O 16 , Al 27 , U 235 and U 238 was generated. To generate the present nuclear data in the WIMS library, it was used the ENDF/B-IV database and the Data processing system of Nuclear Data NJOY, the library was generated using the FIXER code. (Author)

  9. Quantum information generation, storage and transmission based on nuclear spins

    Science.gov (United States)

    Zaharov, V. V.; Makarov, V. I.

    2018-05-01

    A new approach to quantum information generation, storage and transmission is proposed. It is shown that quantum information generation and storage using an ensemble of N electron spins encounter unresolvable implementation problems (at least at the present time). As an alternative implementation we discuss two promising radical systems, one with N equivalent nuclear spins and another with N nonequivalent nuclear spins. Detailed analysis shows that only the radical system containing N nonequivalent nuclei is perfectly matched for quantum information generation, storage and transmission. We develop a procedure based on pulsed electron paramagnetic resonance (EPR) and we apply it to the radical system with the set of nonequivalent nuclei. The resulting EPR spectrum contains 2N transition lines, where N is the number of the atoms with the nuclear spin 1/2, and each of these lines may be encoded with a determined qudit sequence. For encoding the EPR lines we propose to submit the radical system to two magnetic pulses in the direction perpendicular to the z axis of the reference frame. As a result, the radical system impulse response may be measured, stored and transmitted through the communications channel. Confirming our development, the ab initio analysis of the system with three anion radicals was done showing matching between the simulations and the theoretical predictions. The developed method may be easily adapted for quantum information generation, storage, processing and transmission in quantum computing and quantum communications applications.

  10. 76 FR 1197 - Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of...

    Science.gov (United States)

    2011-01-07

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-528, 50-529, 50-530; NRC-2009-0012] Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of the Final Supplement 43... of operation for the Palo Verde Nuclear Generating Station (PVNGS). Possible alternatives to the...

  11. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-12-01

    In nuclear or shielding design analysis for reactors including nuclear facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multigroup constant library using the newly compiled data files and the code systems. As the results of this project, JEF-2.2 which is latest version of Joint Evaluated File developed at OECD/NEA was compiled and COMPLOT and EVALPLOT utility codes were installed in personal computer, which are able to draw ENDF/B-formatted nuclear data for comparison and check. Computer system (NJOY/ACER) for generating continuous energy Monte Carlo code MCNP library was established and the system was validated by analyzing a number of experimental data. (Author).

  12. Current Status and Future Outlook of Nuclear Power Generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuro; Yoshii, Ryosuke

    2007-07-01

    For Japan, a country poor in natural resources, in light of the tough energy situation in recent times, a National Energy Strategy with energy security at its core was established in May 2006. The key point of the Strategy is nuclear power generation, and the aim is to ensure that nuclear power generation continues to account for 30 to 40 percent or more of total electricity generated even after 2030. The first step to achieving this goal is to make maximum use of existing plants (55 plants, 49580MWe), and the aim is to achieve a 60-year service life by making improvements to plant operation and maintenance, such as extending current monitoring and maintenance of plant condition, and the implementation of plant aging management. In Japan, plant construction has been continuous since the 1970s. The current new plant construction plan (13 plants, 17230MWe) is to be achieved with a concerted, cohesive national effort. In addition, in order to complete the nuclear fuel cycle, a reprocessing plant is being constructed strictly for peaceful use, and construction of a site for disposing of high-level radioactive waste is also proceeding. Development of the next generation light water reactors and fast breeder reactor cycle is also underway. (auth)

  13. Public attitudes toward nuclear power generation. Focusing on measurement of attitude intensity

    International Nuclear Information System (INIS)

    Nagai, Yasuko; Hayashi, Chikio

    1999-01-01

    The purpose of the present study was to 1) examine the differences of the perception between nuclear power generation (NPG) and electric power generation by nuclear fusion, 2) find the structural characteristics of the attitude toward NPG, 3) shed light on the characteristics of knowledge about NPG, and 4) develop a scale to measure the intensity in attitude toward NPG. Subjects (N = 1,582) were randomly assigned into 4 groups and were asked to answer a questionnaire including public attitudes toward NPG and related matters. The results were as follows: 1) the perception of electric power generation by nuclear fusion was less favorable than that of NPG; 2) Items which correlated with attitudes toward NPG were: 'sense of anxiety,' sensitivity to risk,' 'trust in science and technology,' 'evaluation of Japan's nuclear policy', 'evaluation of electric power companies,' and interest in life and environmental issues.' Moreover, people with a strong attitude tended to be rational and had a better knowledge of NPG; 3) The evaluation of the amount of subjective knowledge concerning nuclear power and electric power generation was reliable as a measure of objective knowledge; 4) The measurement method used in this study was characterized by the use of biased questions(ten positively and ten negatively biased questions) which were shown to the subjects using the split-half method. An attempt was made to measure the attitude and its intensity taking into consideration gender, positive or negative attitude toward NPG, level of knowledge about NPG, age, and occupation. As a result, differences in intensity between different attributes were found. (author)

  14. Generation and tests of the new version 88 library for HAMMER system

    International Nuclear Information System (INIS)

    Chalhoub, E.S.; Anaf, J.

    1988-08-01

    A new library, version 88, for the HAMMER system, was generated using the ENDF/B-IV FRENDL evaluated nuclear data libraries. It is composed of epithermal and thermal libraries obtained by processing the new versions of ETOG-3 and FLANGE-II codes, respectively. Test results for two benchmark critical assemblies are presented. (author) [pt

  15. Environmental impact of power generation

    International Nuclear Information System (INIS)

    Hester, R.E.; Harrison, R.M.

    1999-01-01

    A series of articles offers answers to questions on the environmental consequences and impact on man of the power generation industry. Subjects discussed in detail include: (i) acid rain and climate change and how the generators of electricity have been expected to play a role disproportionate to their deleterious contributions in improving the situation; (ii) recently adopted air quality management approaches with regard to airborne emissions from power stations and motor vehicles; (iii) the evolution of the UK power industry towards sustainability through considerations for the environment and use of resources in a liberalised market; (iv) the Best Practicable Environmental Option approach to the design and siting of power stations; (v) the environmental impact of nuclear power generation and (vi) electromagnetic fields and the possible effects on man of transmitting electricity in overhead power lines

  16. Nuclear power generation and nuclear nonproliferation

    International Nuclear Information System (INIS)

    Walske, C.

    1978-01-01

    In the future outlook around year 2000 of nuclear power, thought must be given to fuel reprocessing and plutonium utilization. The adverse utilization of plutonium may be prevented by the means balanced with its economical value. As the method of less cost with lower effect of nonproliferation, combination of fuel reprocessing and fuel fabrication facilities and mixed plutonium/uranium processing are possible. As the method of more cost with higher effect of nonproliferation the maintenance of high radioactivity and inaccessibility of plutonium is conceivable. As for the agreeable methods in 2000, seven principles may be mentioned, such as the dependence upon the agreements among major nations and upon nuclear exporting countries. These are still inadequate, however. What is important is to provide with the sufficient safeguards to countries concerned to negate the need for nuclear weapons. Efforts are then necessary for leading nuclear countries to extend aids to other nuclear-oriented countries. (Mori, K.)

  17. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  18. Emergency makeup of nuclear steam generators in blackout conditions

    International Nuclear Information System (INIS)

    Korolev, A.V.; Derevyanko, O.V.

    2014-01-01

    The paper describes an original solution for using steam energy to organize makeup of NPP steam generators in blackout conditions. The proposed solution combines a disk friction turbine and an axial turbine in a single housing to provide a high overall technical effect enabling the replenishment of nuclear steam generators with steam using the pump turbine drive assembly. The application of the design is analyzed and its efficiency and feasibility are shown

  19. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  20. Method and system of nuclear energy generation

    International Nuclear Information System (INIS)

    Wilke, W.

    1975-01-01

    The method is based on the nuclear reaction Li 6 (n,α)H 3 . Thermal neutrons, whose generation require a power reactor, are fed to a lithium deuterite target in such a manner that part of the tritons produced in this reaction undergo nuclear fusion of the kind d(T,n)α with the deuterons of the target. The remaining tritons are reacted with additional deuterons. The tritium produced in this reaction is processed and fed back to the lithium target over a triton source. It is also possible to process the tritium to a target, feed deuterons to it, and in addition to give the neutrons produced from the T(d,n)α reaction after slowing down to thermal energy to the lithium target. (DG/LH) [de