WorldWideScience

Sample records for generation heating system

  1. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Duic, Neven; Østergaard, Poul Alberg

    2016-01-01

    This editorial gives an introduction to the important relationship between Smart Energy Systems and 4th Generation District Heating and presents a number of selected papers from the 1st International Conference on the topic. All of the papers elaborate on or otherwise contribute to the theoretical...... for the active inclusion of the heating and cooling sectors. The concept of 4th Generation District Heating emphasizes that district heating and cooling are both important elements but also technologies that have to be developed further into a 4th generation version to be able to fulfil their roles in future...

  2. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  3. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, PA

    2003-01-01

    . A lowered district heating demand and thereby lowered CHP-bound electricity generation would appear to increase the possibility of integration wind power but due to the ancillary services supplied by CHP plants, the situation is in fact the opposite. Heat savings may not be technically feasible......, if a certain production is required regardless of whether over-all electricity generation is sufficient. This article analyses this and although heat savings do have a negative impact on the amount of wind power the system may integrate a given moment in certain cases, associated fuel savings are notable......In Denmark, the integration of wind power is affected by a large amount of cogeneration of heat and power. With ancillary services supplied by large-scale condensation and combined heat and power (CHP) plants, a certain degree of large-scale generation is required regardless of momentary wind input...

  4. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  5. Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Date, Abhijit; Orr, Bradley; Ding, Lai Chet; Singh, Baljit; Affandi, Nor Dalila Nor; Akbarzadeh, Aliakbar

    2016-01-01

    Highlights: • A new passive combined heat recovery and power generation system was tested. • Heat pipes and thermoelectrics were used for recovering industrial waste heat. • The system could recover approximately 1079 W of heat and produce approximately 7 W of electric power. - Abstract: This paper explores a new method of recovering industrial waste heat and conversion to electricity using a Thermo-Electric Generator (TEG). For this purpose, a lab scale bench-top prototype of waste heat recovery and electricity conversion system was designed and fabricated. This bench top system consists of Bismuth Telluride (Bi 2 Te 3 ) based TEG sandwiched between two heat pipes. The first heat pipe was connected to the hot side of the TEG and the second to the cold side of TEG. The waste heat was simulated by using a 2 kW electric heater for heating the air in the system. Experiments were conducted to evaluate the system performance in terms of the heat transfer rate, heat exchanger effectiveness, and maximum output power. It was found that the highest heat exchanger effectiveness of 41% was achieved when the airspeed was set at 1.1 m/s. The system could recover around 1079 W of heat and produce around 7 W of electric power. This equated to 0.7% of thermal-to-electric conversion efficiency. The theoretical predictions showed good agreement compared to the experimental results.

  6. Heat savings in energy systems with substantial distributed generation

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2004-01-01

    The integration of flutuating wind power is an important issue for the future development of sustainable energy systems. In Denmark, the integration is affected by a large amount of cogeneration of heat and power. This gives possibilities as well as sets restraints. The paper shows...... that with ancillary services supplied by large-scale condensation and CHP-plants, a certain degree of large-scale generation is required regardless of momentary wind input....

  7. Next generation CANDU heat transport system parameter assessment

    International Nuclear Information System (INIS)

    Hau, K.F.; Love, J.W.; Vadera, M.; Vecchiarelli, J.

    2001-01-01

    AECL has initiated an innovative program to develop the next generation of technologies for CANDU reactors, and to apply them to a highly cost-effective new family of next generation power plants. Four major design changes were considered in the present conceptual design of the Heat Transport System (HTS) for the Next Generation (NG) CANDU. These include: light water replacement of heavy water as coolant, a compact core design resulting from a fuel channel lattice pitch reduction, use of Slightly Enriched Uranium (SEU) CANFLEX fuel bundles, and higher HTS and Turbine Generator (TG) operating pressures and temperatures. In designing the HTS, the goal is to reduce the capital cost while meeting the design and safety requirements with robust safety margins. This paper describes the studies to optimize key HTS parameters, including the assessment methodology and the basis of proposed design conditions for the NG CANDU HTS. (author)

  8. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. A. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  9. Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System

    Science.gov (United States)

    Zhao, Lili; Chen, Qiao; Zhang, Yamin; Zhao, Lina

    2015-01-01

    We study the heat generation in ferromagnet-quantum dot-ferromagnet system by the non-equilibrium Green’s functions method. Heat generation under the influence of ferromagnet leads is very different compared with a system with normal metal leads. The significant effects in heat generation are caused by the polarization angle θ associated with the orientation of polarized magnetic moment of electron in the ferromagnetic terminals. From the study of heat generation versus source drain bias (Q-eV) curves, we find that the heat generation decreases as θ increases from 0 to 0.7π. The heat generation versus gate voltage (Q-eVg) curves also display interesting behavior with increasing polarization angle θ. Meanwhile, heat generation is influenced by the relative angle θ of magnetic moment in the ferromagnetic leads. These results will provide theories to this quantum dot system as a new material of spintronics. PMID:28793411

  10. Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2015-06-01

    Full Text Available We study the heat generation in ferromagnet-quantum dot-ferromagnet system by the non-equilibrium Green’s functions method. Heat generation under the influence of ferromagnet leads is very different compared with a system with normal metal leads. The significant effects in heat generation are caused by the polarization angle θ associated with the orientation of polarized magnetic moment of electron in the ferromagnetic terminals. From the study of heat generation versus source drain bias (Q-eV curves, we find that the heat generation decreases as θ increases from 0 to 0.7π. The heat generation versus gate voltage (Q-eVg curves also display interesting behavior with increasing polarization angle θ. Meanwhile, heat generation is influenced by the relative angle θ of magnetic moment in the ferromagnetic leads. These results will provide theories to this quantum dot system as a new material of spintronics.

  11. Smart energy systems and 4th generation district heating

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2015-01-01

    District heating and cooling are here to stay, but the district heating technology has to change. It has to adjust to the requirements of a future smart energy development. Therefore, research is essential, but not only research in university laboratories. Demonstration projects and innovation an...... and collaboration between industry and universities are important, not only in terms of technical improvements, but also institutional and organizational aspects.......District heating and cooling are here to stay, but the district heating technology has to change. It has to adjust to the requirements of a future smart energy development. Therefore, research is essential, but not only research in university laboratories. Demonstration projects and innovation...

  12. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems

    International Nuclear Information System (INIS)

    Sornek, Krzysztof; Filipowicz, Mariusz; Rzepka, Kamila

    2016-01-01

    Highlights: • Application of thermoelectric generators in the stove-fireplace with accumulation. • Construction of the thermoelectric generator is limited by the heat accumulation. • Variants of the heat exchanger’s construction are discussed. • The control method is related on velocity of flue gas and water cooling. • The power limit of 30 W for self-sufficient operation is sufficient. - Abstract: A significant part of the world’s population (about 40%) cooks their meals and provides heating for their homes using wood-burning heating devices. Due to the relatively low cost of fuel and their aesthetic design, solid fuel stoves capable of heat accumulation are convenient and common. The use of dedicated small-scale power generators provides also additional benefits. This paper presents the results of a study conducted to verify the possibility of generating power using stove-fireplaces with heat accumulation systems. In such units, the temperature of the flue gas should be kept at a certain level for the purposes of storing heat, which results from certain limitations of the thermoelectric generators. To verify the possibility of applying thermoelectric modules in such heating devices, a dedicated system with thermoelectric generators was selected from among various microcogeneration systems and implemented. Three types of heat exchangers were studied and the most efficient unit was selected for further testing. Two types of generators, with maximum operating temperatures of 320 and 175 °C, were compared. Subsequently, the characteristics of the latter were determined. The conducted tests allowed to determine the performance and the total efficiency of the generators that were used. It has been demonstrated that the maximum power of the generator would not exceed ca. 30 W e and that there is no economic justification for such a device. However, providing a self-powered and self-sufficient operation of stove-fireplaces with heat accumulation systems

  13. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  14. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  15. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  16. An experimental investigation of a thermoelectric power generation system with different cold-side heat dissipation

    Science.gov (United States)

    Li, Y. H.; Wu, Z. H.; Xie, H. Q.; Xing, J. J.; Mao, J. H.; Wang, Y. Y.; Li, Z.

    2018-01-01

    Thermoelectric generation technology has attracted increasing attention because of its promising applications. In this work, the heat transfer characteristics and the performance of a thermoelectric generator (TEG) with different cold-side heat dissipation intensity has been studied. By fixing the hot-side temperature of TEG, the effects of various external conditions including the flow rate and the inlet temperature of the cooling water flowing through the cold-sided heat sink have been investigated detailedly. It was showed that the output power and the efficiency of TEG increased with temperature different enlarged, whereas the efficiency of TEG reduced with flow rate increased. It is proposed that more heat taken by the cooling water is attributed to the efficiency decrease when the flow rate of the cooling water is increased. This study would provide fundamental understanding for the design of more refined thermoelectric generation systems.

  17. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  18. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  19. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  20. District heating system of Belgrade supplied from the co-generation plant 'Obrenovac' (Yugoslavia)

    International Nuclear Information System (INIS)

    Tomic, P.; Dobric, Z.; Studovic, M.

    2000-01-01

    The paper presents most relevant technical and economic features of the Project called 'System for supplying Belgrade with heat' (SDGB) from the thermal power plant 'Obrenovac', based on domestic coal and reconstruction of condensing power plant for combined generation of electricity and heat for the needs of municipal energy consumption. The system is designed for transport thermal energy, with capacity of 730 MJ/s from the Thermal Power Plant 'Nikola Tesla' / A to the existing heat plant 'Novi Beograd' based on the natural gas. The paper also gives the comparison of most important technical and economic features of 'SDGB' Project with the similar Project of District Heating System for supplying Prague with the thermal energy from Thermal Power Plant Melnik. (Author)

  1. Water experiment on phased array acoustic leak detection system for sodium-heated steam generator

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Yoshiuji, Takahiro

    2015-01-01

    Highlights: • An acoustic leak detection system for sodium heated steam generator is proposed. • The new system can separate leak source from steam generator background noise. • Performance of the new system has been confirmed in water experiments. - Abstract: A phased array acoustic leak detection system for sodium heated steam generator has been proposed. The major advantage of the new system is it could provide information of acoustic source direction. An acoustic source of a sodium–water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the new system could separate the target leak source from steam generator background noise. In the previous study, the methodology was proposed and basic performance was confirmed by numerical analysis. However, in the numerical analysis, acoustic transportation through the SG tube bundle was not modeled. In the present study, performance the proposed system has been confirmed in water experiments with mockup tube bundles

  2. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  3. Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units

    International Nuclear Information System (INIS)

    Knizley, Alta A.; Mago, Pedro J.; Smith, Amanda D.

    2014-01-01

    The benefits of using a combined cooling, heating, and power system with dual power generation units (D-CCHP) is examined in nine different U.S. locations. One power generation unit (PGU) is operated at base load while the other is operated following the electric load. The waste heat from both PGUs is used for heating and for cooling via an absorption chiller. The D-CCHP configuration is studied for a restaurant benchmark building, and its performance is quantified in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Cost spark spread, PEC spark spread, and CDE spark spread are examined as performance indicators for the D-CCHP system. D-CCHP system performance correlates well with spark spreads, with higher spark spreads signifying greater savings through implementation of a D-CCHP system. A new parameter, thermal difference, is introduced to investigate the relative performance of a D-CCHP system compared to a dual PGU combined heat and power system (D-CHP). Thermal difference, together with spark spread, can explain the variation in savings of a D-CCHP system over a D-CHP system for each location. The effect of carbon credits on operational cost savings with respect to the reference case is shown for selected locations. - Highlights: • We investigate benefits from using combined cooling, heating, and power systems. • A dual power generation unit configuration is considered for CCHP and CHP. • Spark spreads for cost, energy, and emissions correlate with potential savings. • Thermal difference parameter helps to explain variations in potential savings. • Carbon credits may increase cost savings where emissions savings are possible

  4. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  5. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  6. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  7. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    International Nuclear Information System (INIS)

    Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F.

    2010-01-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam 3 ). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  8. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  9. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  10. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  11. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  12. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    Science.gov (United States)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  13. Book of abstracts: 3rd International Conference on Smart Energy Systems and 4th Generation District Heating

    DEFF Research Database (Denmark)

    everyone for your valuable contributions. The aim is to present and discuss scientific findings and industrial experiences related to the development of Smart Energy Systems and future 4th Generation District Heating Technologies and Systems (4GDH). This development is fundamental to the implementation....... The Smart Energy System concept is essential for 100% renewable energy systems to harvest storage synergies and exploit low-value heat sources. The most effective and least-cost solutions are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transport sector....... Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. In its research on low-temperature district heating, the Strategic Research Centre for 4th Generation District Heating Technologies and Systems enhances...

  14. Optimum design of heat exchanger for environmental control system of an aircraft using entropy generation minimization (EGM) technique

    CSIR Research Space (South Africa)

    Bello-Ochende, T

    2016-07-01

    Full Text Available In this paper, the geometrical parameters of two heat exchangers in a typical commercial aircraft’s ECS system are designed using the Entropy Generation Minimization (EGM) design technique. The irreversibilities of all the thermodynamic devices...

  15. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  16. The Role of Distributed Generation and Combined Heat and Power (CHP) Systems in Data Centers

    Science.gov (United States)

    This report reviews how distributed generation (DG) resources such as fuel cells, reciprocating engines, and gas turbines can offer powerful energy efficiency savings in data centers, particularly when configured in combined heat and power (CHP) mode.

  17. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  18. IEEE recommended practice for the design and installation of electric pipe heating systems for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The realization that electric pipe heating systems play an important role in the normal operation of both nuclear and non-nuclear processes in nuclear power generating stations is now coming of age. This is apparent by the increased amount of space being devoted to electric pipe heating in station technical specifications, system descriptions, and operating criteria. Such electric pipe heating systems are applied on borated water systems and on water treatment systems such as caustic. Since boric acid and caustics in water will crystalize or precipitate out of the solution, depending on their concentrations at temperatures above ambient, and since such crystallization can make the piping system inoperable for normal operation, electric pipe heating systems are required to keep the solutions and piping systems in a state to perform their intended functions. Electric pipe heating systems may also be applied on piping located outdoors at nuclear generating stations for the purpose of preventing the piping systems from freezing. It should be noted that each and all of these piping systems can include valves, pumps, strainers, tanks, and instrumentation components that can be rendered inoperable due to solutions crystalizing or freezing. Therefore, a definite need exists within the nuclear power industry for recommendations that provide a uniform method for the design and installation of electric pipe heating systems that meet the requirements for rendering reliable operation of the piping system. Without such recommendations, station reliability may be jeopardized

  19. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating

    International Nuclear Information System (INIS)

    Xu, Zelin; Kleinstreuer, Clement

    2014-01-01

    Highlights: • Pilot study for improved CPV/T system efficiencies when using nanofluids as coolant. • Validated computational efficiency analysis of a 2-D combined CPV/T model. • Use of a new thermal conductivity model for nanofluids. • Nanofluid-based co-generation system a preferable to water-based systems. - Abstract: New designs of dual concentration photovoltaic–thermal (CPV/T) systems can provide both electrical and thermal energy, while reducing solar cell material usage via optical techniques. The overall system efficiency can be improved by using advanced dual-purpose liquids with enhanced heat transfer characteristics, such as nanofluids. In this paper the use of nanofluids, i.e., dilute nanoparticle suspensions in liquids, are considered for improved efficiency of a CPV/T system for the first time. Specifically, a 2-D model coupling thermal analysis and computational fluid dynamics simulations has been developed to calculate efficiencies of individual subsystems as well as the overall system. A new thermal conductivity model for nanofluids, which was validated with experimental data sets, was employed. The electrical and thermal performances of the system were evaluated for different climatic conditions. The results show that using nanofluids improves the electrical and total efficiencies of the system, especially when using silicon solar cells. For example, if the nanofluid outlet temperature of the solar cell is set to 62 °C via a controlled flow rate, the system overall efficiency could reach 70% with electrical and thermal contributions amounting to 11% and 59%, respectively. In summary, a nanofluid-based system is preferable to water-based systems in the long run

  20. Heating and co-generative systems in urban settlements and industry. Symposium proceedings - Book 1

    International Nuclear Information System (INIS)

    2000-01-01

    The aim of the symposium is to present cogeneration systems for energy production and the district heating systems normally connected to them. Nowadays, it is the most exploited topic with the most potential in the field of energy in general. The reason for this is the expansion of the implementation of natural gas, ecological limitations imposed upon the local and global polluters and the need for such energy sources in the power systems. Divided into topical wholes it is analysed potential sources of heat, transport system, distribution and regulation of the delivered energy to the consumers, manners of rational use of heat in the urban settlements and manners of ownership transformation of heat supplying systems of the urban settlements. Papers relevant to INIS are indexed separately

  1. A review of solar energy based heat and power generation systems

    DEFF Research Database (Denmark)

    Modi, Anish; Bühler, Fabian; Andreasen, Jesper Graa

    2017-01-01

    The utilization of solar energy based technologies has attracted increased interest in recent times in order to satisfy the various energy demands of our society. This paper presents a thorough review of the open literature on solar energy based heat and power plants. In order to limit the scope...... of the review, only fully renewable plants with at least the production of electricity and heat/hot water for end use are considered. These include solar photovoltaic and solar thermal based plants with both concentrating and non-concentrating collectors in both solar-only and solar-hybrid configurations....... The paper also presents a selection of case studies for the evaluation of solar energy based combined heat and power generation possibility in Denmark. The considered technologies for the case studies are (1) solar photovoltaic modules, (2) solar flat plate collectors, (3) a ground source heat pump, (4...

  2. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  3. Thermal gain of CHP steam generator plants and heat supply systems

    Science.gov (United States)

    Ziganshina, S. K.; Kudinov, A. A.

    2016-08-01

    Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.

  4. Snow melting system with electric heating using photovoltaic power generation; Solar yusetsuko

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M.; Fujita, S.; Kaga, T.; Koyama, N. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    This paper clarifies the solar characteristics in Hachinohe district, to investigate a possibility of the snow melting system with electric heating using solar energy. Power demand for snow melting, power generated by the photovoltaic (PV) array, area of PV array, and working conditions of the system, as to temperature, precipitation and snowfall, were investigated. The percentage of sunshine is 44% in Hachinohe district, which has more fortunate natural condition for utilizing solar radiation compared with that of 20% in Aomori prefecture. The intensity of solar radiation in winter from December to March is around 500 W/m{sup 2} in average, which is equivalent to the quantity of solar radiation, around 2 kWh/m{sup 2} a day. When assuming that snow on the road surface is frozen at the snowfall under the air temperature below -3{degree}C, the occurrence frequency is 50% during January and February in Hachinohe district, which means one frozen day for two days and is equivalent to the occurrence frequency of frozen days, 34% in average during winter. The electric application ratio is 0.34 at the maximum in winter. That is, days of 34% for one month are required for snow melting. 3 figs., 3 tabs.

  5. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  6. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    DEFF Research Database (Denmark)

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume

    2013-01-01

    In this paper a system consisting of an SOFC system for cogeneration of heat and power and vapour absorption heat pump for cooling and freezing is assessed and performance is evaluated. Food industry where demand includes four forms of energy simultaneously is a relevant application such a system....... The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators which are working at two different pressures. Thus, the heat pump will operate at tree pressure level...... with natural gas. The natural gas is first converted to a mixture of H2 and CO which feed the anode after a preheating step. The cathode is supplied with preheated air and gives, as output, electrical energy. The anode output is the exhaust gas which represents the thermal energy reservoir for heating...

  7. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  8. Design and Numerical Simulation of a Symbiotic Thermoelectric Power Generation System Fed by a Low-Grade Heat Source

    Science.gov (United States)

    Faraji, Amir Yadollah; Singh, Randeep; Mochizuki, Masataka; Akbarzadeh, Aliakbar

    2014-06-01

    All liquid heating systems, including solar thermal collectors and fossil-fueled heaters, are designed to convert low-temperature liquid to high-temperature liquid. In the presence of low- and high-temperature fluids, temperature differences can be created across thermoelectric devices to produce electricity so that the heat dissipated from the hot side of a thermoelectric device will be absorbed by the cold liquid and this preheated liquid enters the heating cycle and increases the efficiency of the heater. Consequently, because of the avoidance of waste heat on the thermoelectric hot side, the efficiency of heat-to-electricity conversion with this configuration is better than that of conventional thermoelectric power generation systems. This research aims to design and analyze a thermoelectric power generation system based on the concept described above and using a low-grade heat source. This system may be used to generate electricity either in direct conjunction with any renewable energy source which produces hot water (solar thermal collectors) or using waste hot water from industry. The concept of this system is designated "ELEGANT," an acronym from "Efficient Liquid-based Electricity Generation Apparatus iNside Thermoelectrics." The first design of ELEGANT comprised three rectangular aluminum channels, used to conduct warm and cold fluids over the surfaces of several commercially available thermoelectric generator (TEG) modules sandwiched between the channels. In this study, an ELEGANT with 24 TEG modules, referred to as ELEGANT-24, has been designed. Twenty-four modules was the best match to the specific geometry of the proposed ELEGANT. The thermoelectric modules in ELEGANT-24 were electrically connected in series, and the maximum output power was modeled. A numerical model has been developed, which provides steady-state forecasts of the electrical output of ELEGANT-24 for different inlet fluid temperatures.

  9. 4th Generation District Heating (4GDH)

    DEFF Research Database (Denmark)

    Lund, Henrik; Werner, Sven; Wiltshire, Robin

    2014-01-01

    This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part...... of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems – including 100 percent renewable energy systems – but the present generation of district heating and cooling technologies will have...

  10. Two-stage absorber systems - Economically viable combined heat and cold generation; Wirtschaftlicher Kraft-Waerme-Kaelte-Verbund

    Energy Technology Data Exchange (ETDEWEB)

    Biniossek, H. [Giesecke und Devrient, Muenchen (Germany); Schmid, W. [Technische Gebaeudeausruestung, Muenchen (Germany)

    2008-07-01

    This article takes a look at how the possibilities of optimising power, heat and cold generation for the German Giesecke and Devrient company were examined and implemented. The company, which produces banknotes and chip-cards, chose the combination of a Combined Heat and Power (CHP) Unit and a two-stage absorber refrigeration system. The company's old system is briefly described and the reasons for replacing it are discussed. The careful dimensioning of the new system and the search for appropriate equipment are described. Intelligent power flows and a cooling system with two different temperature levels are described. Costs saved and emergency power generation are also looked at, as are the complex demands placed on the control of the system. The system's functioning is briefly described.

  11. Choice of insulation standard for pipe networks in 4th generation district heating systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mohammadi, Soma

    2016-01-01

    and smart gas grids. Improving DH pipes by improving the insulation standard results in decreasing the heat and temperature losses from the pipe networks. When reducing heat losses from DH pipes, there is a trade-off between the increasing cost of pipe insulation and the associated savings in the heat...... by implementing different pipe insulation standards. In the second step, the specific grid losses found in the first step are analysed in an integrated energy systems model where all main energy sectors and their interrelations are included. The outcome of the study can provide decision support when planning...... investments in DH systems today and in the future. The results from the case of Denmark shows that pipes with higher insulation standard (series 3) is generally preferable, but the highest insulation standard available today (series 4) might be preferable in the future if fuel prices or increase or investment...

  12. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste-heat

  13. Simulation and Design of Vehicle Exhaust Power Generation Systems: The Interaction Between the Heat Exchanger and the Thermoelectric Modules

    Science.gov (United States)

    Tao, Cong; Chen, Gang; Mu, Yu; Liu, Lisheng; Zhai, Pengcheng

    2015-06-01

    Vehicle exhaust power generation systems (VEPGS), mainly consisting of a heat exchanger, cooling system, thermoelectric modules (TEMs), and clamping device, have attracted wide interest and attention for power generation from waste heat. In this work, systematical research was conducted to investigate the thermal performance, power output, and thermal stress of a VEPGS by using the multifield coupling method. Different from previous research, this work simulates a model that integrates the heat exchanger and TEMs, focusing on the effect of the TEMs on the thermal performance of the heat exchanger. It is found that the TEMs have a significant effect on the thermal performance of the heat exchanger. When not considering the effects of the TEMs, the hot-end temperature of the TEMs would be seriously underestimated, which would result in underestimation of the power output of the VEPGS and the level of thermal stress of the TEMs. Meanwhile, when considering the effect of the TEMs, the hot-end temperature distribution exhibits significant changes, and its temperature uniformity is significantly improved. The results suggest that, in VEPGS design and optimization, the interaction between the heat exchanger and TEMs should be considered. This study also contributes to a more accurate assessment method for VEPGS design and simulation.

  14. Combined heat and power generation with a HCPV system at 2000 suns

    International Nuclear Information System (INIS)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio; Salinari, Piero; Agnello, Simonpietro; Gelardi, Franco M.; Sciortino, Luisa; Cannas, Marco; Bonsignore, Gaetano; Barbera, Marco; Collura, Alfonso; Lo Cicero, Ugo

    2015-01-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%

  15. Toward 4th generation district heating

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend; Dalla Rosa, Alessandro

    2014-01-01

    In many countries, district heating (DH) has a key role in the national strategic energy planning. However, tighter legislation on new and future buildings requires much less heating demand which subsequently causes relative high network heat loss. This will make current DH system uneconomical...... comparing with other local heat generation units. The design and operation of DH systems therefore needs to be re-examined, part of the solution being low operational temperature. The 3-years IEA DHC Annex X project ‘Towards 4th Generation District Heating: Experience and Potential of Low......-Temperature District Heating (LTDH)’ aims to document experiences gained in mature DH countries with low temperature systems serving highly energyefficient new buildings and existing buildings. The potential to supply DHW at temperature close to 50oC without the risk of Legionella was investigated. Information...

  16. Chances for nuclear district heat generation

    International Nuclear Information System (INIS)

    Winkens, H.P.

    1986-01-01

    Nuclear power plants in the FRG or other European countries so far have not been intended for heat generation, as for reasons of safety they have to be sited too far away from urban agglomerations to make heat transport competible. In addition, heat generation costs of fossil-fueled power plants have not been so much higher than those of nuclear power stations that the extra cost for heat transport over large distances could have been justified. This situation is expected to gradually change over the next decade, as the heat from fossil-fueled power stations will become more expensive, as a result of this heat capacity being more and more used for medium-load and peak-load supply only, and with more efficient heat distribution systems becoming available in the near future. (orig.) [de

  17. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  18. A research on thermoelectric generator's electrical performance under temperature mismatch conditions for automotive waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Z.B. Tang

    2015-03-01

    Full Text Available The thermoelectric generators recover useful energy by the function of thermoelectric modules which can convert waste heat energy into electricity from automotive exhaust. In the actual operation, the electrical connected thermoelectric modules are operated under temperature mismatch conditions and then the problem of decreased power output causes due to the inhomogeneous temperature gradient distribution on heat exchanger surface. In this case study, an individual module test system and a test bench have been carried out to test and analyze the impact of thermal imbalance on the output electrical power at module and system level. Variability of the temperature difference and clamping pressure are also tested in the individual module measurement. The system level experimental results clearly describe the phenomenon of thermoelectric generator's decreased power output under mismatched temperature condition and limited working temperature. This situation is improved with thermal insulation on the modules and proved to be effective.

  19. Book of abstracts: International Conference on Smart Energy Systems and 4th Generation District Heating

    DEFF Research Database (Denmark)

    with a particular focus on renewable energy in the transport system in a context with limited access to bioenergy. The Smart Energy System concept is essential for 100% renewable energy systems to harvest storage synergies and exploit low-value heat sources. As opposed to, for instance, the smart grid concept......, which takes a sole focus on the electricity sector, the smart energy systems approach includes the entire energy system in its identification of suitable energy infrastructure designs and operation strategies. Focusing solely on the smart electricity grid often leads to the definition of transmission...... lines, flexible electricity demands, and electricity storage as the primary means to dealing with the integration of fluctuating renewable sources. However, these measures are neither very effective nor cost-efficient considering the nature of wind power and similar sources. The most effective and least...

  20. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  1. Design and System Analysis of Quad-Generation Plant Based on Biomass Gasification Integrated with District Heating

    DEFF Research Database (Denmark)

    Rudra, Souman

    This thesis presents the development of energy system for simulation, techno-economic optimization and design of a quad-generation energy system based on biomass gasification. An efficient way of reducing CO2 emission from the environment is by increasing the use of biomass in the energy sector...... alternative by upgrading existing district heating plant. It provides a generic modeling framework to design flexible energy system in near future. These frameworks address the three main issues arising in the planning and designing of energy system: a) socio impact at both planning and proses design level; b...

  2. Plenary lecture 1: thermoelectric technology as renewable energy source for power generation and heating & cooling systems

    OpenAIRE

    SHAMMAS, Noel

    2011-01-01

    This paper will review the latest research and current status of thermoelectric power generation, and will also demonstrate, using electronic design, semiconductor simulation and practical laboratory experimentation, the application of thermoelectric technology for use in energy harvesting and scavenging systems. Ongoing research and advances in thermoelectric materials and manufacturing techniques, enables the technology to make a greater contribution to address the growing requirement for l...

  3. Development of Fuel Cell Co-generation System with Heat-pump System in Consideration of Transient Response of Electric Power

    Science.gov (United States)

    Obara, Shinya; Kudo, Kazuhiko

    The transient response characteristics of electric power output of the fuel cell system for individual houses were investigated, and relation between system control parameters and transient response characteristics were clarified. Furthermore, the transient response characteristics of coefficient of performance (COP) and electric power output of the system which makes heat pump an auxiliary heat source were investigated. Moreover, the relation between COP of heat pump and the transient response characteristics of the system were considered. Analysis of operation cost of system components and annual operation cost balance was performed supposing introducing a fuel cell co-generation system installs to individual house in Sapporo and Tokyo. Relation between COP of heat pump and operation cost, relation of reformer time-constant and operation cost, operation cost of the system with town gas boiler instead of heat pump, were investigated. The fuel cell cogeneration system introduced into Tokyo does not have the necessity of using heat pump and boiler, and it is thought that energy demand is filled with installing a thermal storage tank of small capacity. Moreover, it is more advantageous for operation cost to introduce a town gas boiler rather than introduces about COP=2. 0 heat pump into Sapporo.

  4. A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC system

    DEFF Research Database (Denmark)

    Rudra, Souman; Lee, Jinwook; Rosendahl, Lasse

    2010-01-01

    efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges...... describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam...... turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough...

  5. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  6. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  7. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas

    International Nuclear Information System (INIS)

    Zhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2009-01-01

    In this study, a small scale hybrid solar heating, chilling and power generation system, including parabolic trough solar collector with cavity receiver, a helical screw expander and silica gel-water adsorption chiller, etc., was proposed and extensively investigated. The system has the merits of effecting the power generation cycle at lower temperature level with solar energy more efficiently and can provide both thermal energy and power for remote off-grid regions. A case study was carried out to evaluate an annual energy and exergy efficiency of the system under the climate of northwestern region of China. It is found that both the main energy and exergy loss take place at the parabolic trough collector, amount to 36.2% and 70.4%, respectively. Also found is that the studied system can have a higher solar energy conversion efficiency than the conventional solar thermal power generation system alone. The energy efficiency can be increased to 58.0% from 10.2%, and the exergy efficiency can be increased to 15.2% from 12.5%. Moreover, the economical analysis in terms of cost and payback period (PP) has been carried out. The study reveals that the proposed system the PP of the proposed system is about 18 years under present energy price conditions. The sensitivity analysis shows that if the interest rate decreases to 3% or energy price increase by 50%, PP will be less than 10 years.

  8. Design and System Analysis of Quad-Generation Plant Based on Biomass Gasification Integrated with District Heating

    DEFF Research Database (Denmark)

    Rudra, Souman

    ) technical impact to select different technologies and types of equipment from available options; and c) economic concern to validate new technology with existing one. To achieve the above issues a life cycle assessment (LCA) analysis and techno-economic analysis of quad-generation system have also included...... in this study. The overall aim of this work is to provide a complete assessment of the technical potential of biomass gasification for local heat and power supply in Denmark and replace of natural gas for the production. This study also finds and defines the future areas of research in the gasification...

  9. Heat radiation approach for harnessing heat of the cook stove to generate electricity for lighting system and charging of mobile phone

    Science.gov (United States)

    Muñoz, Rodrigo C., Jr.; Manansala, Chad Deo G.

    2018-01-01

    This study is based on the potential of thermoelectric coupling such as the thermoelectric cooler module. A thermoelectric cooler converts the heat coming from the cook stove into electricity and store in a battery. A dc-dc boost converter will be used to produce enough voltage to light a minimum house dwelling or charge phone battery. This device will be helpful to those that faces a problem on electricity especially in the isolated areas. The study aims (1) to harness heat from the cook stove up to 110 °C (2) To automatically cool-off the system to protect the thermoelectric cooler from damage due to excessive heat using an electronic solenoid; (3) To store energy harnessed in the battery; (4) To amplify the output voltages of the battery using DC to DC boost converter for lighting system and charging of mobile phone battery. From various tests conducted, it can fully charge a mobile phone in 3 hours observing the unit’s battery voltage drop from 4.06V to 3.98V. In the testing it used different orientation of steel rod by conduction to transfer heat and by radiation through tubular steel with its different dimensions. Most recent testing proved that the 2x2x9 tubular steel by radiation had the best result. The temperature reached more than a hundred degree Celsius that met the objective. The test resulted of boosting the voltage of the battery output from 3.7V to 4.96V on the average. The boosted voltage decrease as the system’s cool-off mechanism operated when the temperature reached above 110 degree Celsius decreasing output voltage to 0.8V resulting the boosted voltage to drop to zero. Therefore, the proponents concluded that heat waste can be converted to electrical energy by harnessing heat through radiation, with the help of TEC that generates voltage for lighting and can be boosted to be used for mobile charging. Furthermore, the study proved that the excess heat can damaged the TEC which was prevented by using of cooling-off mechanism, making it more

  10. Heat transfer system

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1983-01-01

    An intermediate heat exchanger that provides the required physical isolation between the primary reactor coolant loops and a secondary liquid loop in which steam is generated was developed. The intermediate heat exchanger is contained within a sealed vapor chamber that includes a bottom interior portion and an adjacent upper interior portion in vertical communication with one another. The chamber is exhausted of all noncondensible gases at ambient temperature. A heat transfer medium within the chamber maintains a two phase liquid-vapor-liquid system at the design heat transfer temperature. A first set of tubes in the bottom portion of the vapor chamber is supplied with primary reactor coolant. A second set of tubes in the upper portion of the chamber is supplied with water or steam. A thermal linkage is provided between the two sets of tubes by the heat transfer medium, which is evaporated in the vicinity of the first set and is condensed in the vicinity of the second set. This results in a latent heat transport system, condensate return being accomplished by gravity

  11. The Potential of Combined Heat and Power Generation, Wind Power Generation and Load Management Techniques for Cost Reduction in Small Electricity Supply Systems.

    Science.gov (United States)

    Bass, Jeremy Hugh

    Available from UMI in association with The British Library. Requires signed TDF. An evaluation is made of the potential fuel and financial savings possible when a small, autonomous diesel system sized to meet the demands of an individual, domestic consumer is adapted to include: (1) combined heat and power (CHP) generation, (2) wind turbine generation, (3) direct load control. The potential of these three areas is investigated by means of time-step simulation modelling on a microcomputer. Models are used to evaluate performance and a Net Present Value analysis used to assess costs. A cost/benefit analysis then enables those areas, or combination of areas, that facilitate and greatest savings to be identified. The modelling work is supported by experience gained from the following: (1) field study of the Lundy Island wind/diesel system, (2) laboratory testing of a small diesel generator set, (3) study of a diesel based CHP unit, (4) study of a diesel based direct load control system, (5) statistical analysis of data obtained from the long-term monitoring of a large number of individual household's electricity consumption. Rather than consider the consumer's electrical demand in isolation, a more flexible approach is adopted, with consumer demand being regarded as the sum of primarily two components: a small, electricity demand for essential services and a large, reschedulable demand for heating/cooling. The results of the study indicate that: (1) operating a diesel set in a CHP mode is the best strategy for both financial and fuel savings. A simple retrofit enables overall conversion efficiencies to be increased from 25% to 60%, or greater, at little cost. (2) wind turbine generation in association with direct load control is a most effective combination. (3) a combination of both the above areas enables greatest overall financial savings, in favourable winds resulting in unit energy costs around 20% of those of diesel only operation.

  12. Current generation by minority-species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    It is proposed that electric currents be generated from the preferential heating of ions travelling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, travelling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor. (author)

  13. Current generation by minority species heating

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1980-07-01

    It is proposed that electric currents be generated from the preferential heating of ions traveling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, traveling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor

  14. Intelligent design of waste heat recovery systems using thermoelectric generators and optimization tools

    DEFF Research Database (Denmark)

    Goudarzi, A. M.; Mozaffari, Ahmad; Samadian, Pendar

    2014-01-01

    , the authors have developed some intelligent tools to elaborate on the performance of their proposed model. Firstly, an artificial neural network has been utilized to estimate the potential power generation of the thermoelectric modules. At the second step, computational fluid dynamic solver, FLUENT is used...... to determine the variation of the temperature through the length of the thermoelectric module assembly. Based on the gained results, an intelligent multi-objective optimization algorithm called Pareto based mutable smart bee is developed to optimize the properties of the thermoelectric component....

  15. A Novel, Ultra-Light, Heat Rejection System for Nuclear Power Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For lunar-based fission power systems that will support In-Situ Resource Utilization (ISRU) or Mars robotic and manned missions, power requirements may vary from 10s...

  16. A Novel, Ultra-Light, Heat Rejection System for Nuclear Power Generation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For lunar-based fission power systems that will support In-Situ Resource Utilization (ISRU) or Mars robotic and manned missions, power requirements may vary from 10s...

  17. Performance evaluation of solar aided feedwater heating of coal-fired power generation (SAFHCPG) system under different operating conditions

    International Nuclear Information System (INIS)

    Hong-juan, Hou; Zhen-yue, Yu; Yong-ping, Yang; Si, Chen; Na, Luo; Junjie, Wu

    2013-01-01

    Highlights: • The performance of a SAFHCPG system at design point is analyzed. • The solar radiation intensity and the electrical load demand on the grid side are considered in the annual performance analysis. • The optimum aperture area of the solar field has been discussed based on the annual performance. - Abstract: Integrating solar energy with a coal-fired power plant or other power systems has been proved to be an efficient way to utilize solar energy for power generation. Solar aided feedwater heating of a coal-fired power generation (SAFHCPG) system, which is mainly discussed in this paper, is chosen as an option for its easy operation and flexible control nature. The performance of a SAFHCPG system at design point is analyzed under various load conditions in the paper. As the results show in Table 4, the lower load of coal-fired unit that solar aid, the lower solar-to-electric efficiency will be. For a SAFHCPG system, its performance is influenced by the solar radiation intensity and the electrical load demand on the grid side. The correlation between the annual performance of a SAFHCPG plant and the two key factors is discussed and then the optimal aperture area of solar field is derived. The result shows that, for the case studied the optimal aperture area of solar field and the lowest LEC (Levelized Electricity Costs) are: 115395 m 2 and 0.472 ¥/kW h in a typical year; 138945 m 2 and 1.010 ¥/kW h in an extremely low radiation year; 91845 m 2 and 0.426 ¥/kW h in an extremely high radiation year respectively

  18. The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz; Sobolewski, Aleksander; Iluk, Tomasz; Remiorz, Leszek

    2014-01-01

    This paper analyzes the possibility and the cost of using gas from biomass gasification in the production of electricity and generation of heat using a piston engine in which the power in the supplied biomass is no more than 50 MW. A mathematical model that allows for thermodynamic and economic analysis was designed. The input data regarding the gas generator and the process gas were collected in real experiments on the research installation. Electricity and heat production efficiencies and the electric and heat power of the system were primarily used as indicators of the thermodynamic effectiveness. For the economic analysis, discount methods were adopted that consider the legal and economic environment of such investments. Given the assumptions, the analysis shows that positive economic indicators can characterize the considered systems. The work also included sensitivity analysis of change of the selected characteristic quantities on the evaluation indices. The economic viability of such systems is strongly influenced by many factors, mainly price of fuel and green certificates. When the price of fuel is higher than 9.62 €/GJ or the price of certificates lower than 26.75 €/MWh the NPV (net present value) and NPVR (net present value ratio) indices do not reach positive values for any size of installation. - Highlights: • CHP systems integrated with biomass gasification and piston engine(s) were examined. • An experiment with a biomass-fed gasifier was conducted and the data were used for calculations. • The conditions for economic profitability were determined. • Sensitivity analyses of the influence of the selected quantities were performed. • Price of green certificates and price of fuel are the most important for economic viability

  19. Development of Next Generation Heating System for Scale Free Steel Reheating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  20. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  1. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  2. Heat loss and thermoelectric generator design

    International Nuclear Information System (INIS)

    Thacher, E.F.

    1985-01-01

    With the object of evaluating its importance to thermoelectric generator design, heat loss is introduced into the standard thermoelectric generator design theory. The theory for both the constant hot and cold junction temperatures model and the constant heat input model are so modified. The modification is first order and, therefore, is limited to small leg heat-transfer coefficients. Numerical results using representative properties show that significant differences can exist between the optimum geometry and performance of a generator idealized as lossless and those of a generator designed by the modified theory. The largest differences occur with the constant heat input model. (author)

  3. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  4. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  5. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  6. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: Addressing Higher Latitude, Cold Season, and Synoptic Systems

    Science.gov (United States)

    Wu, D.; Tao, W. K.; Lang, S. E.

    2016-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm is used to retrieve estimates of cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (or GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. The current CSH LUTs are differentiated with respect to surface rainfall characteristics, which is effective for tropical and continental summertime environments. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics and mid-latitudes to higher latitudes, including cold season and synoptic weather systems. Accordingly, the CSH algorithm and LUTs need to be updated for higher latitude events. In this study, NU-WRF was employed at 1 km to simulate winter systems in the US. A, new methodology has been adopted to construct LUTs utilizing satellite-observable 3D intensity fields, such as radar reflectivity. The new methodology/LUTs can be then applied to simulated radar fields to derive cloud heating for comparison against the model simulated heating. The model heating is treated as the `truth' as it is self-consistent with the simulated radar fields. This `consistency check' approach is a common well-established first step in algorithm development (e.g., the earlier CSH). The LUTs will be improved by iterating the consistency checks to quantitatively evaluate the similarities between the retrieved and simulated heating. The evaluations will be performed for different weather events, including northeast winter storms and atmospheric rivers.

  7. Heat recovery system series arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  8. Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Akisawa, Atsushi; Miyazaki, Takahiko [Tokyo University of Agriculture and Technology, Institute of Symbiotic Science and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588 (Japan); Kashiwagi, Takao [Tokyo Institute of Technology, Integrated Research Institute, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-10-15

    This study aims at exploiting optimal configurations of technologies combined with co-generation theoretically based on a linear optimization model. With the objective function defining primary energy consumption to be minimized, optimal solutions are derived analytically. They describe the technological configurations as well as associated conditions depending on their final energy demand. An interesting finding is that the essential parameters to determine the configurations are heat, cooling and steam demands normalized by power demand. The optimal solutions are also applied to investigate the competitiveness of co-generation related technologies. The optimal solutions yield critical conditions theoretically, which is useful to understand the priority of the technologies. A sensitivity analysis numerically indicates that absorption chillers can be superior to compression chillers even though the former has lower COP than the latter. Actual data of various types of co-generation are also examined to show the practical competitiveness. (author)

  9. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency.

    Science.gov (United States)

    Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance

  10. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  11. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  12. Heat Generation by Irradiated Complex Composite Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan; Tian, Pengfei; Pello, Josselin

    2014-01-01

    Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results...

  13. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  14. Heat-shrinkable splicing materials for Class 1E wire and cable systems in nuclear power generating stations

    International Nuclear Information System (INIS)

    Handa, Katsue; Maruyama, Masahiro; Kanno, Mikio; Ohya, Shingo; Nagakawa, Seiji; Sugimori, Mikihiro

    1987-01-01

    This report describes the shapes of heat-shrinkable splicing materials (cable sleeve and breakout, and round end cap) made of polyolefine resin, their application to cable splicing, and the properties of the materials as well as of the splice using them. Particularly, the report features introduction of their properties as determined by tests under the same conditions as used in Japan in qualifying tests on wires and cables for nuclear power generating stations. The heat-shrinkable splicing materials proved to be equal in properties to flame-retardant cables for nuclear power plants when tested for oxygen index and subjected to a vertical flame test on ''insulated wire'' and a vertical tray flame test on the cable splice. It was also confirmed that Class 1E cable using these splicing materials could stand the most rigorous environmental test in Japan. Therefore they can be used for splicing Class 1E wires and cables and the splice formed with them can be regarded as Class 1E specified in IEEE Std. 383. (author)

  15. Valve stem packing seal test results for primary heat transport system conditions in Canadian nuclear generating stations

    International Nuclear Information System (INIS)

    Dixon, D.F.; Farrell, J.M.; Coutinho, R.F.

    1978-06-01

    Valve stem packing tests were done to obtain performance data on packing already in CANDU-PHW reactor service and on alternative packings. Most of the tests were replicated. Results are presented for ten packings tested under two stem cycle modes; leakage, packing consolidation and packing friction were the main responses. Packing tests were performed with water at close to CANDU-PHW reactor primary heat transport (PHT) system conditions (288 deg C and 10 MPa), but without ionizing radiation. The test rigs had rising, rotating stems. Stuffing box dimensions were typical of a standard Velan valve; packings were spring loaded to control applied packing stress

  16. Heat Pipe Systems

    Science.gov (United States)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  17. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    Science.gov (United States)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  18. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  19. Heating Systems Specialist.

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  20. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  1. Finned Tube With Vortex Generators For A Heat Exchanger.

    Science.gov (United States)

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  2. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    Science.gov (United States)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  3. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes....... When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity...

  4. Solar steam generation by heat localization.

    Science.gov (United States)

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-07-21

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  5. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  6. Heat wave generates questions about Ontario's generation capacity

    International Nuclear Information System (INIS)

    Horne, D.

    2005-01-01

    Concerns regarding Ontario's power generation capacity were raised following a major blackout which occurred in August 2003. Power demand reached 26,170 MW during the weeks leading to the blackout, forcing the Independent Electricity System Operator (IESO) to ask residents to reduce electricity use during the day. The grid operator had also issued a forecast that Toronto could face rolling blackouts during times of heavy power demand. Ontario power consumption records were set in June and July of 2003 due to a heat wave, with hourly demand exceeding 25,000 MW on 53 occasions. Ontario was forced to import up to 3,400 MW (13 per cent of its power needs) from neighbouring provinces and the United States. During that period, the price of power had risen sharply to over 30 cents a kilowatt hour, although household consumers were still charged in the 5 to 10 cent range per kilowatt hour. However, it was noted that taxpayers will eventually bear the cost of importing power. The IESO noted that importing electricity is cheaper than the generation available in Ontario and that it is more economical to import, based on the market clearing price of all generators. In 2004, the IESO purchased 6 per cent of their electricity from the United States. That figure is expected to increase for 2005. Ontario generators produced 26.9 million MWh more in the summer of 2005 than during the same period in 2004 to meet electricity demand levels. It was noted that although importing power presently meets peak demand, the IESO agrees there is a need for new generation within Ontario. In addition to restarting Ontario's Pickering and Bruce nuclear facilities, more than 3,300 MW of new gas-fired generation is under construction or approved, and more than 9,000 MW are in various stages of approval. This paper discussed the effect of high energy costs on industry and Ontario's ability to meet future electricity demand in comparison to neighbouring jurisdictions. Issues regarding grid maintenance

  7. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  8. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  9. Combined heat and power generation: encouraged insertion plan systemic appraisal; Cogeracao no setor eletrico: avaliacao sistemica de um plano de insercao incentivada

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio P.; Sauer, Ildo L. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia

    2004-07-01

    The principal objective of this paper is to evaluate the potential for self-production of combined heat and power - CHP generation - in the expansion of the Brazilian electric power supply system. The potential was determined by simulating operation of CHP plants in industries which had previously used oil derivates to supply process heat, as well as of plants for service sectors, which had consumed electricity for air conditioning. The final part of the thesis describes the policy incentives which should be implemented so that CHP can make a significant contribution at the national level, permitting better use of natural resources and leverage the penetration of natural gas in the energy market, with favorable impacts on national development. (author)

  10. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-07-01

    This report is based on an emplacement techniques review prepared for the Department of the Environment in February 1983, which appeared as Chapter III of the Nuclear Energy Agency, Seabed Working Group's Status Report. The original document (DOE/RW/83.032) has been amended to take account of the results of field trials carried out in March 1983 and to better reflect current UK Government policy on ocean disposal of HGW. In particular Figure 7 has been redrawn using more realistic drag factors for the calculation of the terminal velocity in water. This report reviews the work conducted by the SWG member countries into the different techniques of emplacing heat generating radioactive waste into the deep ocean sediments. It covers the waste handling from the port facilities to final emplacement in the seabed and verification of the integrity of the canister isolation system. The two techniques which are currently being considered in detail are drilled emplacement and the free fall penetrator. The feasibility study work in progress for both techniques as well as the mathematical and physical modelling work for embedment depth and hole closure behind the penetrator are reviewed. (author)

  11. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  12. Combined heat and power generation with fuel cells in residential buildings in the future energy system; Kraft-Waerme-Kopplung mit Brennstoffzellen in Wohngebaeuden im zukuenftigen Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, C.H.

    2007-04-27

    Combined heat and power generation (CHP) is regarded as one of the cornerstones of a future sustainable energy system. The application of this approach can be substantially extended by employing fuel cell technologies in small units for supplying heat to residential buildings. This could create an additional market for combined heat and power generation corresponding to approx. 25% of the final energy demand in Germany today. In parallel, the extensive application of distributed fuel cell systems in residential buildings would have substantial effects on energy infrastructures, primary energy demand, the energy mix and greenhouse gas emissions. It is the aim of the present study to quantify these effects via scenario modelling of energy demand and supply for Germany up to the year 2050. Two scenarios, reference and ecological commitment, are set up, and the application and operation of fuel cell plants in the future stock of residential buildings is simulated by a bottom-up approach. A model of the building stock was developed for this purpose, consisting of 213 types of reference buildings, as well as detailed simulation models of the plant operation modes. The aim was, furthermore, to identify economically and ecologically optimised plant designs and operation modes for fuel cells in residential buildings. Under the assumed conditions of the energy economy, economically optimised plant sizes for typical one- or two-family homes are in the range of a generating capacity of a few hundred watts of electrical power. Plant sizes of 2 to 4.7 kW{sub el} as discussed today are only economically feasible in multifamily dwellings. The abolition of the CHP bonus reduces profitability, especially for larger plants operated by contractors. In future, special strategies for power generation and supply can be an economically useful addition for the heat-oriented operation mode of fuel cells. On the basis of the assumed conditions of the energy economy, a technical potential for

  13. Distributed Generation with Heat Recovery and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  14. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  15. Heat exchanger, particularly liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    Robin, Marcel; Tillequin, Jean.

    1977-01-01

    This invention relates to a liquid sodium heated steam generator the characteristic of which is an annular distribution chamber fed by two independent and diametrically opposed manifolds on a common horizontal axis, issuing respectively into two adjacent compartments made in the chambers on both sides of a vertical transversal partition containing the axis of the casing and extending perpendicularly to the manifolds, each compartment being itself divided into a number of adjacent sectors marked by folded metal sheets fixed to the distributor and shaped so as to present in pairs and with the chamber opposite the manifold issuing into a compartment two independent ducts for distributing the sodium flow [fr

  16. The optimization of longitudinal convective fins with internal heat generation

    International Nuclear Information System (INIS)

    Razelos, P.

    1979-01-01

    The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)

  17. Light bulb heat exchanger for magnetohydrodynamic generator applications - Preliminary evaluation

    Science.gov (United States)

    Smith, J. M.; Hwang, C. C.; Seikel, G. R.

    1974-01-01

    The light-bulb heat-exchanger concept is investigated as a possible means of using a combustion heat source to supply energy to an inert gas MHD power generator system. In this concept, combustion gases flow through a central passage which consists of a duct with transparent walls through which heat is transferred by radiation to a radiation receiver which in turn heats the inert gas by convection. The effects of combustion-gas emissivity, transparent-wall-transmissivity, radiation-receiver emissivity, and the use of fins in the inert gas coolant passage are studied. The results indicate that inert gas outlet temperatures of 2500 K are possible for combustion temperatures of 3200 K and that sufficient energy can be transferred from the combustion gas to reduce its temperature to approximately 2000 K. At this temperature more conventional heat exchangers can be used.

  18. District heating and combined heat and power generation from biomass

    International Nuclear Information System (INIS)

    Veski, Rein

    1999-01-01

    An Altener programme seminar District Heating and Combined Heat and Power Generation from Biomass. Minitraining seminar and study tours and also Business forum, Exhibition and Short company presentations were held in Tallinn on March 21-23, 1999. The Seminar was organised by the VTT Energy, the Estonian Bioenergy Association and the Estonian Heat and Power Association in co-operation with the AFB-net. The Agricultural and Forestry Biomass Network (AFB-net) is part of the ALTENER programme. The Network aims at promoting and stimulating the implementation and commercial utilisation of energy from biomass and waste, through the initiation of business opportunities. This includes national and international co-operation and the exchange of the personnel. The Seminar was attended by consulting companies, scientists, municipal authorities and representatives of co-ordinating bodies engaged in renewable energy management as well as DH and CHP plant managers, equipment manufacturers and local energy planners from Finland, Estonia, Latvia, Lithuania, Sweden, Denmark, Belgium, Slovenia and Slovak Republic. At the Seminar minitraining issues were dealt with: the current situation and future trends in biomass DH in the Baltic Sea countries, and biomass DH and CHP in Eastern and Central Europe, planning and construction of biomass-based DH plants, biomass fuel procurement and handling technology, combustion technology, DH networks, financing of biomass projects and evaluating of projects, and case projects in Eastern and Central European countries. The following were presented: boilers with a capacity of 100 kW or more, stoker burners, wood and straw handling equipment, wood fuel harvesters, choppers, pelletisers, district heating pipelines and networks. (author)

  19. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  20. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  1. Economic evaluation of geothermal power generation, heating, and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kanoglu, Mehmet; Cengel, Yunus A. [Nevada Univ., Dept. of Mechanical Engineering, Reno, NV (United States)

    1999-06-01

    Economic analysis of a typical geothermal resource shows that potential revenues from geothermal heating or cooling can be much larger than those from power generation alone. Geothermal heating may generate up to about 3.1 times and geothermal absorption cooling 2.9 times as much revenue as power generation alone. Similarly, combined power generation and heating may generate about 2.1 times and combined power generation and cooling about 1.2 times as much revenue as power generation alone. Cost and payback period comparison appear to favor power generation, followed by district heating. (Author)

  2. Investigation of Heat Generation from Biomass Fuels

    Directory of Open Access Journals (Sweden)

    Naoharu Murasawa

    2015-06-01

    Full Text Available New biomass fuels are constantly being developed from renewable resources in an effort to counter global warming and to create a sustainable society based on recycling. Among these, biomass fuels manufactured from waste are prone to microbial fermentation, and are likely to cause fires and explosions if safety measures, including sufficient risk assessments and long-term storage, are not considered. In this study, we conducted a series of experiments on several types of newly developed biomass fuels, using combinations of various thermal- and gas-analysers, to identify the risks related to heat- and gas-generation. Since a method for the evaluation of the relative risks of biomass fuels is not yet established in Japan, we also such a method based on our experimental results. The present study found that in cases where safety measures are not thoroughly observed, biomass fuels manufactured from waste materials have a higher possibility of combusting spontaneously at the storage site due to microbial fermentation and heat generation.

  3. Waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  4. Development of micro-thermophotovoltaic power generator with heat recuperation

    International Nuclear Information System (INIS)

    Yang, W.M.; Chua, K.J.; Pan, J.F.; Jiang, D.Y.; An, H.

    2014-01-01

    Highlights: • Recuperator can significantly increase the wall temperature of micro combustor. • A prototype micro-thermophotovoltaic power generator is assembled and tested. • The output power of the micro-TPV system is increased by 83% with recuperator. - Abstract: A high and uniform wall temperature distribution is desirable for Micro-TPV system application. In this work, numerical simulation combined with experimental test is conducted to study the combustion of hydrogen–air mixture in a microcylindrical combustor with and without a heat recuperator. The results indicate that the temperature distribution along the wall of the micro combustor with a heat recuperator is more uniform and the mean wall temperature is increased by up to 123 K compared to that without a heat recuperator. A micro-TPV system is also prototyped and the performance is tested under various operating conditions, and the results indicate that the electrical power of the system is significantly increased for the micro-TPV system with a heat recuperator. When H 2 flow rate is 4.02 g/h and H 2 /air equivalence ratio is 0.8, the electrical power of the micro-TPV system with a heat recuperator is increased from 0.74 W to 1.26 W, corresponding to an increase of 70%

  5. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell

    Science.gov (United States)

    Grillo, Olivia; Magistri, Loredana; Massardo, Aristide F.

    In this paper, different pressurisation and heat recovering techniques for an existing 100 kW molten carbonate fuel cell developed by Ansaldo fuel cells (formerly Ansaldo Ricerche) such as electrically driven compressors for anode (fuel) and cathode side (air), turbocharger, simple cycle gas turbine and regenerated gas turbine are analysed and discussed. The analysis has been carried out using for the FCS-MCFC stack simulation a model developed by the Thermochemical Power Group of the University of Genoa carefully tested with available experimental design point data. The design point hybrid system configurations have been analysed in detail using the code HS-MCFC based on the cited MCFC stack model and developed using Simulink language [Master Thesis, University of Genoa, 2001]. The different hybrid systems design point performance are presented and discussed in great detail, taking into account efficiency, specific power, costs, feasibility, and the need of modification of the existing FC-MCFC systems. Due to the size of the hybrid systems investigated (100-150 kW) they are very interesting for distributed power generation applications.

  6. Small power and heat generation systems on the basis of propulsion and innovative reactor technologies. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    2000-09-01

    In the future for developing regions and remote areas one or two power reactors in the 50 MWe to 100 MWe range could be appropriately applied for electricity and heat generation. Introducing and managing such a small program with conventional reactor systems would require a mature supporting technological infrastructure and many skilled highly-trained staff at the site, which might be a problem in some countries. An increased number of small conventional reactors would increase the burden and expenditure for assuring security and non-proliferation. To this end, the time has come to develop an innovative small reactor concept which meets the following requirements: reliable, safe operation with a minimum maintenance and supporting infrastructure, economic competitiveness with alternative energy sources available to the candidate sites, and significant improvements in proliferation resistance relative to existing reactor systems. Successful resolution of such a problem requires a comprehensive system approach that considers all aspects of manufacturing, transportation, operation and ultimate disposal. Some elements of this approach have been used previously in the development of propulsion nuclear power systems, with consideration given to many diverse requirements such as highly autonomous operation for a long period of time, no planned maintenance, no on-site refueling and ultimate disposition. It is with this focus that the IAEA convened the Advisory Group on Propulsion Reactor technologies for Civilian Applications

  7. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...... could reach up to 20% with utilisation of solar energy as supplement energy source in traditional fossil fuel based district heating systems. In this work, the performance of hybrid district energy system for a particular location will be analysed. For performance analysis, mathematical model......District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...

  8. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  9. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  10. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  11. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    In the current Danish energy system, the majority of electricity and heat is produced in combined heat and power (CHP) plants. With increasing shares of intermittent renewable power production, it becomes a challenging task to match power and heat production to its demand curves, as production...... that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas....... Six vapour compression heat pump (VCHP) systems were considered along with the ammonia-water hybrid absorption compression heat pump (HACHP), corresponding to an upper limit of the sink temperature of up to 150 °C. The best available technology was determined for each set of heat sink and source...

  12. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  13. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  14. Liquid metal MHD generator systems

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.

    1985-01-01

    Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)

  15. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  16. Analysis of the Integral Response of CAREM Reactor and the Residual Heat Removal System During a Failure of the Steam Generators Feed Water System

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Zanocco, Pablo; Schlamp, Miguel

    2000-01-01

    A global analysis of the behavior of Carem-25 Reactor and Residual Heat Removal System (RHRS) to mitigate a loss of heat sink accident is done in the present work.The proposed RHRS removes 2 MW of power and is duplicated to fulfill the redundancy criteria.It consists of two condensers with two tubes in a parallel array.Each tube has 2 S CH 160 TP 347 SS and 2 m 2 of area.The RHRS design requierements (for this accidental sequence) are: Short-term: primary circuit pressure must remain below the safety valves opening set point and the condensers must not flood in order to avoid instabilities. Long-term: reach hot-shutdown condition (primary circuit pressure below 2.3 MPa) at least before 48 hrs. Short-term reactor behavior is simulated using RELAP5 with a detail nodalization of the primary circuit and RHRS.Long term performance is simulated with a simple and conservative model, assuming a saturated primary circuit. This condition is expected during RHRS operation

  17. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  18. Improving the performance of district heating systems by utilization of local heat boosters

    DEFF Research Database (Denmark)

    Falcone, A.; Dominkovic, D. F.; Pedersen, A. S.

    LTDH grid as they will have the strategical role of connecting the heating system with the electrical energy coming from the intermittent and fluctuating renewable energy sources such as wind and solar power. In this paper a case study of district heating system is presented and analysed. The goal......-50°C with return temperatures of 20-30 °C. This kind of heating system has many advantages and among all of them, it allows utilization of the heat coming from low exergy heat sources, as well as to decrease the grid heat losses. Electrical energy driven heat sources are also integrated into the future......District Heating (DH) plays an important role into the Danish energy green transition towards the future sustainable energy systems. The new, 4 th generation district heating network, the so called Low Temperature District Heating (LTDH), tends to lower the supply temperature of the heat down to 40...

  19. Towards modeling of combined cooling, heating and power system with artificial neural network for exergy destruction and exergy efficiency prognostication of tri-generation components

    International Nuclear Information System (INIS)

    Taghavifar, Hadi; Anvari, Simin; Saray, Rahim Khoshbakhti; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid

    2015-01-01

    The current study is an attempt to address the investigation of the CCHP (combined cooling, heating and power) system when 10 input variables were chosen to analyze 10 most important objective output parameters. Moreover, ANN (artificial neural network) was successfully applied on the tri-generation system on account of its capability to predict responses with great confidence. The results of sensitivity analysis were considered as foundation for selecting the most suitable and potent input parameters of the supposed cycle. Furthermore, the best ANN topology was attained based on the least amount of MSE and number of iterations. Consequently, the trainlm (Levenberg–Marquardt) training approach with 10-9-10 configuration has been exploited for ANN modeling in order to give the best output correspondence. The maximum MRE = 1.75% (mean relative error) and minimum R 2  = 0.984 represents the reliability and outperformance of the developed ANN over common conventional thermodynamic analysis carried out by EES (engineering equation solver) software. - Highlights: • Exergy analysis is undertaken for CCHP components based on operative factors. • ANN tool is applied to obtained database from thermodynamic analyses session. • The best ANN topology is detected at 10-9-10 with trainlm learning algorithm. • The input and output layer parameters were selected based on sensitivity analysis.

  20. Solar Heating Systems: Student Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  1. Solar Heating Systems: Instructor's Guide.

    Science.gov (United States)

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  2. Heat exchanger for power generation equipment

    Science.gov (United States)

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  3. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  4. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  5. Emissions of soot particles from heat generators

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  6. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  7. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-12-01

    A study of container designs for heat generating radioactive waste disposal in the deep ocean sediments is presented. The purpose of the container would be to isolate the waste from the environment for a period of 500 to 1000 years. The container designs proposed are based on the use of either corrosion allowance or corrosion resistant metals. Appropriate overpack wall thicknesses are suggested for each design using the results of corrosion studies and experiments but these are necessarily preliminary and data relevant to corrosion in deep ocean sediments remain sparse. It is concluded that the most promising design concept involves a thin titanium alloy overpack in which all internal void spaces are filled with lead or cement grout. In situ temperatures for the sediment adjacent to the emplaced 50 year cooled waste containers are calculated to reach about 260 deg C. The behaviour of the sediments at such a high temperature is not well understood and the possibility of 100 years interim storage is recommended for consideration to allow further cooling. Further corrosion data and sediment thermal studies would be required to fully confirm the engineering feasibility of these designs. (author)

  8. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  9. Heat generation during plunge stage in friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2013-01-01

    Full Text Available This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW. A three-dimensional finite element model (FEM is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb’s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.

  10. Entropy and heat generation of lithium cells/batteries

    International Nuclear Information System (INIS)

    Wang Songrui

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary. (topical review)

  11. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    , locks, meter readers. Many FC installations operate the world over in : hospitals, hotels, office buildings, banks, schools, police stations, airport terminals etc. as base sources or back assurance. FC is ideal for residential power generation either connected to electric grid (to provide supplemental power and back assurance) or installed as grid independent generator (in areas that are inaccessible for power lines). FC is now using the methane gas produced by wastewater treatment plants and landfills; the pollutant emissions are decreased too. FC are very efficient: the efficiency of the generating only power FCs reaches 60% (even 70% for AFC), higher than conventional power generation systems. Overall efficiency of FC that generates power and heat reaches 80 to 85% (probably 90%). Stationary CHP plants operate in residential, commercial and industrial applications. The developing and bringing in of this new technology are a main goal for both government and private sector around the world: government agencies, universities, national laboratories, FC manufacturers, FC components manufacturers, commercial developers etc. The result of their cooperative effort will be the developing of low-cost, high power density, solid-state FC. Many countries have developing FC programs, particularly USA, Canada, Japan and Germany. They are stimulated by special guaranties offered by the FC, namely important reducing of: dependence on oil, chemical emissions in atmosphere and greenhouse gas emission. It is most probably that in the first decades of this century FC use could be dramatically enlarged in all the fields of activity, even though, in the beginning, a government support will be necessary

  12. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  13. Solar Thermal Electricity Generating System

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  14. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  15. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  16. Automated drawing generation system

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Kawahata, Junichi; Yoshida, Naoto; Ono, Satoru

    1991-01-01

    Since automated CAD drawing generation systems still require human intervention, improvements were focussed on an interactive processing section (data input and correcting operation) which necessitates a vast amount of work. As a result, human intervention was eliminated, the original objective of a computerized system. This is the first step taken towards complete automation. The effects of development and commercialization of the system are as described below. (1) The interactive processing time required for generating drawings was improved. It was determined that introduction of the CAD system has reduced the time required for generating drawings. (2) The difference in skills between workers preparing drawings has been eliminated and the quality of drawings has been made uniform. (3) The extent of knowledge and experience demanded of workers has been reduced. (author)

  17. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  18. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  19. Investigation on the performance of a prototype of thermo-electric generation with heat pipe-heat sink

    Directory of Open Access Journals (Sweden)

    Elghool Ali

    2017-01-01

    Full Text Available A significant problem in thermo-electric generators is the thermal design of the heat sink because it affects the performance of thermo-electric modules. As compared to conventional cooling systems, heat pipe heat sink have numerous advantages. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (passive system. This paper presents the analysis of power generation using the combination of heat pipes and thermo-electric generators. The aim is to improve power output by an appropriate design of the heat sink. The average geometrical parameters of heat sink (fin height, fin space and fin thickness were obtained from data collected from previous studies closely similar to this prototype. The prototype was tested and the temperature, voltage and current data were collected. All data were recorded by using a temperature data recorder, power meter and multimeter. It was found that the highest maximum power output was 1.925 watts at a temperature difference of 85°C. However, the prototype did not achieve the maximum output expected. This was a result of limitation of TEG model (where only one TEG was used and the limitation of the performance of the prototype. The prototype successfully generated enough power to charge a cell phone and laptop when connected to two or three TEGs. Moreover the heat pipe heat sink needs optimization to meet the design output from the manufacturer of the TEG at hot side temperature and cold side temperature

  20. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  1. Design of biomass district heating systems

    International Nuclear Information System (INIS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2009-01-01

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions

  2. Design of biomass district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Vallios, Ioannis [Energy Applications Mgr., METRON Ltd Engineering Company (Greece); Tsoutsos, Theocharis [Department of Environmental Engineering, Technical University of Crete, GR-73100 Chania (Greece); Papadakis, George [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens (Greece)

    2009-04-15

    The biomass exploitation takes advantage of the agricultural, forest, and manure residues and in extent, urban and industrial wastes, which under controlled burning conditions, can generate heat and electricity, with limited environmental impacts. Biomass can - significantly - contribute in the energy supplying system, if the engineers will adopt the necessary design changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this paper is to present a methodology of the design of biomass district heating systems taking into consideration the optimum design of building structure and urban settlement around the plant. The essential energy parameters are presented for the size calculations of a biomass burning-district heating system, as well as for the environmental (i.e. Greenhouse Gas Emissions) and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of the biomass system, the economic details of the boiler, the heating distribution network, the heat exchanger and the Greenhouse Gas Emissions. (author)

  3. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  4. Effects of the Spin Heat Accumulation on the Heat Generation in a Quantum Dot Coupled to Leads

    Science.gov (United States)

    Liu, Jia; Zhou, Yun; Chi, Feng; Ma, Yong-Hong

    2018-01-01

    Heat generation by a spin-polarized current in a single-level quantum dot (QD) subjected to spin heat accumulation (SHA), which denotes the spin-dependent electron temperature, is studied by using the nonequilibrium Green's function technique. The heat generation originates from the energy exchange between the conduction electrons and the phonon reservoir coupled to the QD. Due to the SHA, the spin-up and spin-down heat generations are opposite in sign, and each has a maximum when the QD level is aligned to the chemical potentials of the leads, where the electric current is zero. Under a magnetic field, the maxima of the spin-up and spin-down heat generations are shifted to different dot level regimes. Now total negative heat generation emerges, indicating that the electron absorbs heat from the phonon reservoir to the dot. By tuning the dot levels and the system temperature, the magnitude of the negative heat generation can be enhanced accompanied by weakened electric current, an ideal condition for the realization of nanorefrigerator.

  5. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  6. Critical Heat Flux in Nanofluids at Quasi-Stationary and Stepwise Heat Generation

    Directory of Open Access Journals (Sweden)

    Moiseev Mikhail

    2016-01-01

    Full Text Available In this paper results of an experimental study on critical heat flux in nanofluid at quasi-stationary and stepwise heat generation are presented. Freon R21 with addition of 0.0077 vol.% of SiO2 nanoparticles was used as test fluid. Boiling curves, critical heat fluxes and temperatures of boiling initiation were obtained for pure fluid and for nanofluid. It was shown that the addition of nanoparticles didn’t affect heat transfer at pool boiling, but critical heat fluxes at quasi-stationary and stepwise heat generation were increased.

  7. Pestel study: system comparison of the generation of electric current and heating energy in coupled and uncoupled plants; Pestel Studie: Systemvergleich der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, K.P.

    1995-12-31

    A system comparison of the generation of electric current and heating energy in coupled and uncoupled plants was carried out in the years 1983/84 at the Eduard Pestel Institute for system research in Hannover. A report is given on the main focus of the investigation which was the comparison of cogeneration power plant for cogeneration with the current generation in modern condensation power plants and the corresponding generation of heating energy in modern gas boilers. The primary energy consumption for generating electric current was compared by means of four examples to the consumption for heating energy generation. The costs of this generation in terms of national economy and industrial management were also compared to each other by means of four examples. (orig.) [Deutsch] Am Eduard Pestel Institut fuer Systemforschung e.V. in Hannover wurde in den Jahren 1983/1984 ein Systemvergleich zwischen der Strom- und Heizenergieerzeugung in gekoppelten und ungekoppelten Anlagen durchgefuehrt. Schwerpunkt der Untersuchung, ueber den heute berichtet werden soll, war der Vergleich von - Blockheizkraftwerken zur gekoppelten Erzeugung mit - einer Stromerzeugung in modernene Kondensationskraftwerken und der entsprechenden Heizwaermeerzeugung in modernen Gaskesseln. Dabei wurden anhand von vier konkreten Fallbeispielen jeweils - die Primaerenergieverbraeuche fuer die Strom- und Heizwaermeerzeugung sowie - die volkswirtschaftlichen und betriebswirtschaftlichen Kosten dieser Erzeugung miteinander verglichen. (orig.)

  8. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  9. Electrical power generating system. [for windpowered generation

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  10. Waste water heat recovery system

    OpenAIRE

    Markovi?, G.; Vranayov?, Z.; K?posztasov?, D.

    2016-01-01

    After heating and cooling, water heating is typically the second largest user of energy in the home. There are a lot of purposes and uses of hot water in buildings - showers, tubs, sinks, dishwashers and clothes washers etc. In most cases, these hot waste waters are discarded direct to sewer system. When we take into the account all of these purposes in every households, the wastewater retains a considerable portion of its initial energy ? energy that could be recovered and use...

  11. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  12. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  13. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  14. Heat diffusion and magnetic field generation

    International Nuclear Information System (INIS)

    Holstein, P.A.

    1983-10-01

    In the report of CECAM workshop in 1982 some results of heat diffusion, when the spontaneous B-field is calculated, have been given. Separately, a similar code (magneto-calo-dynamic or MCD code) has been built and it was interesting to compare them. Comparisom has been made during the workshop of October 1983

  15. Heat pump having improved defrost system

    Science.gov (United States)

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  16. Application of heated inlet extensions to the TSI 3306/3321 system: comparison with the Andersen cascade impactor and next generation impactor.

    Science.gov (United States)

    Myrdal, Paul B; Mogalian, Erik; Mitchell, Jolyon; Nagel, Mark; Wright, Charlie; Kiser, Brent; Prell, Mark; Woessner, Mike; Stein, Stephen W

    2006-01-01

    Pharmaceutical aerosol size distribution analysis based on multi-stage inertial impaction is well accepted, though laborious. The TSI 3306 Impactor Inlet/3321 time-of-flight (TOF) Aerodynamic Particle Size Analyzer (APS) has been evaluated for its ease of use and potential for time savings during product development. However, instrument inlet modifications may be necessary for increased correlation with equivalent measurements obtained by inertial impaction following pharmacopeial methods. A heated inlet extension tube was located between the USP/Ph.Eur. throat and the Single-Stage Impactor (SSI) to promote evaporation of residual ethanol from aerosol droplets, generated from two formulations containing ethanol as semi-volatile solubilizer (8 and 20% w/w) for the active pharmaceutical ingredient. As temperature and extension length increased, the SSI-measured fine particle fraction (aerosol < 4.7 microm aerodynamic diameter) also increased, for the aerosols used in this study. These values correlated quite closely with equivalent measures made by multi-stage cascade impactor equipped with the same throat. Particle size distribution profiles measured with the APS for either formulation did not significantly change utilizing the heated extensions, suggesting that ethanol evaporation was largely complete at any condition by the time the aerosol entered the measurement zone of the TOF analyzer. The addition of a heated inlet extension may be useful to facilitate evaporation of residual semi-volatile species, especially when an agreement of APS-derived particle size mass distribution data from the SSI with multi-stage cascade impactors is desired. However, complete evaporation of the semi-volatile species may not be necessary for SSI-generated mass distribution to match conventionally used cascade impactors.

  17. Propagation of Fire Generated Smoke and Heat Transfer in Shipboard Spaces with a Heat Source

    National Research Council Canada - National Science Library

    Vegara, Billy

    2000-01-01

    The propagation of fire generated smoke and heat transfer into a shipboard space has been computationally modeled using a commercial code generated by Computational Fluid Dynamics Research Corporation (CFDRC...

  18. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance......Low temperature hydronic heating and cooling systems connected to renewable energy sources have gained more attention in the recent decades. This is due to the growing public awareness of the adverse environmental impacts of energy generation using fossil fuel. Radiant hydronic sub-floor heating...... pipes and radiator panels are two examples of such systems that have reputation of improving the quality of indoor thermal comfort compared to forced-air heating or cooling units. Specifically, a radiant water-based sub-floor heating system is usually combined with low temperature heat sources, among...

  19. Evaluating Thermoelectric Power Generation Device Performance Using a Rectangular Microchannel Heat Sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2011-01-01

    In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m and that of t......In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m...... and thermal parameters are considered for both laminar and turbulent regimes in the channels. Furthermore, using the temperature difference through each TEG, the system efficiency is calculated. The results show that the microchannel heat sink gives a higher pressure drop, but the heat flow across the TEG...

  20. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  1. Heat exchanger bypass system for an absorption refrigeration system

    Science.gov (United States)

    Reimann, Robert C.

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  2. Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer

    International Nuclear Information System (INIS)

    Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I.

    2011-01-01

    Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

  3. Investigation of passive residual heat removal system for VVERs: Effects of finned type heat exchanger tubes

    International Nuclear Information System (INIS)

    Ayhan, Hüseyin; Sökmen, Cemal Niyazi

    2016-01-01

    Highlights: • Performance of passive residual heat removal system (PRHRS) of VVER type nuclear power plants is investigated. • Unit heat exchanger of PRHRS is designed to reject 4 MW heat amount from reactor via steam generator. • This study shows that decay heat can be rejected by 16 heat exchangers of PRHRS without any operator actions. - Abstract: After nuclear reactor shutdown, decay heat generation continues in the reactor core and it has the possibility to cause a severe accident. This residual heat has to be removed from the core sufficiently. In Water-Water Energetic Reactors (WWER) or VVERs, passive residual heat removal system is designed to remove decay heat after reactor shutdown. This system does not need any power operation, since ambient air is used as the cooling fluid in heat exchanger. The steam that is generated in the steam generators due to the heat released in the reactor core condenses and rejects its heat to the ambient air within this heat exchanger. The condensed liquid is returned back to the steam generator. The motion of the cooling medium occurs due to natural circulation. In the presented study, the original geometric design of passive residual heat removal system of VVER type nuclear power plants is introduced. The performance of this system is investigated. In the previous study, geometric design parameters for this system was determined for plain tubes of heat exchanger. Heat exchanger tubes were positioned as a helical in the previous study. With the knowledge of enhancing heat transfer using finned surfaces, geometrical design is modified in presented study. Circular type fin structures (having rectangular cross-section) are added to the outer surface of heat exchanger tubes. In the present heat exchanger model, tubes are positioned as a staggered bank. As the fin parameters, fin thickness, fin radius and total fin number are investigated in this study. Results are compared with the one obtained with plane tube (in tube

  4. Thermoelectric power generation system optimization studies

    Science.gov (United States)

    Karri, Madhav A.

    A significant amount of energy we consume each year is rejected as waste heat to the ambient. Conservative estimates place the quantity of energy wasted at about 70%. Converting the waste heat into electrical power would be convenient and effective for a number of primary and secondary applications. A viable solution for converting waste heat into electrical energy is to use thermoelectric power conversion. Thermoelectric power generation is based on solid state technology with no moving parts and works on the principle of Seebeck effect. In this work a thermoelectric generator (TEG) system simulator was developed to perform various parametric and system optimization studies. Optimization studies were performed to determine the effect of system size, exhaust and coolant ow conditions, and thermoelectric material on the net gains produced by the TEG system and on the optimum TEG system design. A sports utility vehicle was used as a case study for the application of TEG in mobile systems.

  5. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  6. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    Science.gov (United States)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  7. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  8. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    DEFF Research Database (Denmark)

    Krenk, Steen

    1981-01-01

    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....

  9. Development of an integrated system for a SOFC for combined heat and power generation; Entwicklung eines integrierten Systems fuer eine SOFC mit Kraft-Waerme-Stoffkopplung

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, J.; Meyer-Pittroff, R.

    2002-06-01

    The feasibility of CO2 removal from the exhaust of a 250 kW{sub e} SOFC module, with recirculation of the liquefied CO2 is discussed for the example of a German brewery (Bayerische Staatsbrauerei Weihenstephan). An electric efficiency of 50% can be achieved provided that the liquefied CO2 is utilized to substitute CO2 liquefaction in another point of the process. The high-temperature waste heat of the 250 kW SOFC is fed into the brewer's copper via feedwater preheating. [German] In dieser Studie werden die Moeglichkeiten einer technischen Rueckgewinnung von CO{sub 2} aus dem Abgasstrom eines SOFC-Moduls mit 250 kW elektrischer Leistung und Rueckfuehrung des verfluessigten CO{sub 2} in den Wertschoepfungsprozess am Beispiel der Bayerischen Staatsbrauerei Weihenstephan untersucht. Unter der Voraussetzung, dass dieses verfluessigte CO{sub 2} als Produkt Verwendung findet und die CO{sub 2}-Verfluessigung an anderer Stelle substituiert, kann der von der SOFC gelieferte Energiebeitrag zur CO{sub 2}-Verfluessigung dem Gesamtsystem gutgeschrieben werden, so dass der elektrische Wirkungsgrad bei 50% bleibt. Die Hochtemperaturabwaerme der 250 kW-SOFC wird ueber eine Speisewasservorwaermung in den Dampfkessel der Brauerei eingekoppelt.

  10. Prototype solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete air-collector system to meet needs of single-family dwelling is designed to operate in any region of United States except extreme north and south. Design can be scaled up or down to accomodate wide range of heating and hot-water requirements for single-family, multi-family, or commercial buildings without significantly changing design concept.

  11. Heat Pumping in Nanomechanical Systems

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  12. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  13. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  14. Gas Generation of Heated PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Matthew David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-07

    Uniaxially pressed samples of PBX 9502 were heated until self-ignition (cookoff) in order to collect pressure and temperature data relevant for model development. Samples were sealed inside a small gas-tight vessel, but were mechanically unconfined. Long-duration static pressure rise, as well as dynamic pressure rise during the cookoff event, were recorded. Time-lapse photography of the sample was used to measure the thermal expansion of the sample as a function of time and temperature. High-speed videography qualitatively characterized the mechanical behavior and failure mechanisms at the time of cookoff. These results provide valuable input to modeling efforts, in order to improve the ability to predict pressure output during cookoff as well as the effect of pressure on time-toignition.

  15. Next generation information systems

    International Nuclear Information System (INIS)

    Limback, Nathan P.; Medina, Melanie A.; Silva, Michelle E.

    2010-01-01

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  16. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  17. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  18. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  19. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  20. Measurement of heat generation from simulated bituminized product

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yoshiyuki; Yoneya, Masayuki [TRP Safety Evaluation and Analysis team, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    1999-09-01

    The fire and explosion incident occurred at Bituminization Demonstration Facility of PNC Tokai Works on March 11, 1997. In order to ascertain the cause of incident, the investigation has been pushed forward. For the investigation, we prepared simulated bituminized product of measurement of heat generation in low temperature region less than 200degC. We used calvet Calorimeter MS80 for the heat generation measurement. Result of measurement, we were able to catch the feeble heat generation from bituminized product. The maximum calorific value that was able to detect it in isothermal measurement was approximately 1 mW/g in 160degC. It was approximately 2 mW/g in 200degC. And, as the another measurement, the measurement condition went heat rate by 0.01degC/minute, the highest temperature 190degC. As a result, the maximum generation of heat value that was able to detect it was approximately 0.5 mW/g. I changed simulated bituminized products and measured these. A difference of condition is salt particle size, salt content rate (45%, 60%), addition of the simulated precipitate. But there was not a difference in the generation of heat characteristic detected. (author)

  1. Study of the relation between evaluation of strain distribution on superconducting coil and mechanical heat generation

    Science.gov (United States)

    Seino, Hiroshi; Kurihara, Minoru; Herai, Toshiki; Suzuki, Eiji

    2002-10-01

    In the superconducting Maglev system, on-board superconducting magnets (SCMs) are vibrated at various frequencies according to the train speed by the electromagnetic disturbance which is caused when the train passes over ground coils. Then a mechanical loss is generated inside the inner vessel in the SCM. This phenomenon increases the heat load on the cryogenic equipment in the SCM. It has been surmised that the mechanical heat inside the inner vessel is generated by the frictional heat caused by the relative microscopic slips between fasteners and superconducting coil (SC coil). Nevertheless, heat generation mechanisms inside the inner vessel have not been studied sufficiently. In this study, we suggest a hypothesis that the frictional heat generated by the relative microscopic slips between fasteners and a SC coil will be indicated if the calculated strain distribution on the SC coil is evaluated. The results of this study supported this hypothesis.

  2. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    Science.gov (United States)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  3. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    Increasing the building energy efficiency in recent years results in noticeably reduction in their heating demand. Combined with the current trend for utilizing low temperature heat sources, it raises the necessity of introducing a new generation of district heating [DH] systems with lowered...... km pipelines (supply and return pipes). At the first stage, the Studstrup DH system is developed in TERMIS, which is commercial software for district heating system simulation, and then the developed model is validated and compared with the results obtained from TERMIS and measurements. The TERMIS...

  4. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  5. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  6. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  7. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers

    International Nuclear Information System (INIS)

    Araiz, M.; Martínez, A.; Astrain, D.; Aranguren, P.

    2017-01-01

    Highlights: • Thermosyphon with phase change heat exchanger computational model. • Construction and experimentation of a prototype. • ±9% of maximum deviation from experimental values of the main outputs. • Influence of the auxiliary equipment on the net power generation. - Abstract: An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (because fans or pumps are not required); and the fact that these systems are wickless. A computational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the computational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [−8.09; 7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.

  8. Two-phase dynamics of gas-heated steam generators

    International Nuclear Information System (INIS)

    Schittke, H.J.

    1977-01-01

    The dynamic behavior of a once-through steam generator plant operating in the secondary loop of a gas-cooled high-temperature reactor is considered. The mathematical model used for the description of the thermohydraulics of the problem comprises not only the dynamic behavior of the primary heating gas flow and the tube wall temperatures but especially the effects of pressure dynamics in the secondary fluid and the relevant two-phase flow phenomena: using an additional momentum balance equation for the dynamics of the slip velocity it is shown that the analytical computation of the slip velocity it is shown that the analytical computation of slip and two-phase pressure drop effects from the model equations is possible without the use of external correlations. Based on this mathematical model a generally applicable computer model is used to simulate the dynamic response of a given system

  9. KSTAR RF heating system development

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Kim, S. K.; Hwang, C. K. (and others)

    2007-10-15

    Design, high-voltage test, and installation of 6 MW ICRF heating system for KSTAR is completed. The antenna demonstrated satisfactory standoff at high voltages up to 41 kV for 300 sec. The result indicates good power handling capabilities of the antenna as high as 10 MW/m2. This power density is equivalent to RF power coupling of 6 MW into a 4 {omega}/m target plasma, and is typical of advanced tokamak heating scenarios. In addition, vacuum feed through, DC break, and liquid stub developed for 300 sec operation are installed, as well as a 2 MW, 30-60MHz transmitter. The transmitter successfully produced output powers of 600 kW continuously, 1.5{approx}1.8 MW for 300 sec, and 2 MW for 100 msec or shorter pulses. A realtime control system based on DSP and EPICS is developed, installed, and tested on the ICRF system. Initial results from feasibility study indicate that the present antenna and the transmission lines could allow load-resilient operation on KSTAR. Until the KSTAR tokamak start to produce plasmas in 2008, however, hands-on operational experiences are obtained from participating in ICRF heating experiments at ASDEX and DIII-D tokamaks arranged through international cooperation.

  10. Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)

    Science.gov (United States)

    Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.

  11. A Bayesian reliability study on motorized valves for the emergency core cooling, heat transport isolation and shutdown cooling systems at Gentilly-2 Nuclear Generating Station

    International Nuclear Information System (INIS)

    Smith, J.E.; Rennick, D.F.; Nainer, A.

    1996-01-01

    The objective of this is to examine operational data on 32 motorized valves in the emergency core cooling, shutdown cooling and heat transport isolation systems and determine if the evidence would support a reduction in testing frequency of these valves. The methodology used is to examine the data which has accumulated on motorized valve failures since Gentilly-2 first entered service, compare these data with similar data from other sources, and determine whether the evidence indicate that demand-based, wear out type failure mechanisms play a significant role in the recorded failures. The statistical data are then updated, using a Bayesian updating procedure, to obtain revised time based failure rates and demand based probabilities of failure on demand for the motorized valves. The revised failure rates and probabilities are then applied to the fault tree models for the systems of interest to determine what effects there would be, with the current test intervals and with extended test intervals, on the probability of failure of the systems. (author)

  12. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  13. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  14. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  15. Flow visualization in heat-generating porous media

    International Nuclear Information System (INIS)

    Lee, D.O.; Nilson, R.H.

    1977-11-01

    The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models

  16. Coherent mode generation during EBW heating in TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti Morales, Rennan; Koehn, Alf; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany)

    2014-07-01

    Electron Bernstein waves (EBWs) can be used to heat overdense plasmas when the plasma cut-off frequency is higher than the frequency of the injected microwaves. EBWs are electrostatic waves, which cannot propagate in vacuum and, therefore, need to be generated by mode conversion processes. The generation of EBWs is possible when the microwave heating power is high enough to increase the plasma density beyond the cut-off density. At this stage, the EBW mode conversion takes place and heating at the electron cyclotron resonance frequency (ECRF) and its harmonics is achieved. This heating scheme is successfully used in the stellarator TJ-K to heat overdense plasmas in low magnetic fields at ECRF harmonics. Recent discharges using this heating scenario showed a quasi-coherent mode in density and potential fluctuations. This mode at approximately 4 kHz is dominant in the power spectrum and is evident from the center to the edge of the plasma, peaking at the separatrix region. In the presence of the coherent mode, the broadband turbulent fluctuations appear to be suppressed. This feature is more pronounced during discharges with the lower neutral gas pressures. In this contribution, the generation of this mode and its impact on the ambient turbulence is studied by means of Langmuir probe measurements.

  17. Sealing and monitoring a container containing heat generating materials

    International Nuclear Information System (INIS)

    Bourrelly, P.; Monier, J.; Parin, H.; Sanson, C.; Schoepp, R.

    1986-01-01

    The sealing system includes one or several seals on the container wall. These seals comprise resistors electrically connected and thermally insulated for monitoring heat transfer between the seal and the container or the environment by producing an electric signal to a remote monitor. Opening the container changes the heat flux which is detected. Application is made for monitoring radioactive waste containers [fr

  18. Proceedings of heat transfer in space systems

    International Nuclear Information System (INIS)

    Chan, S.H.; Anderson, E.E.; Simoneau, R.J.; Chan, C.K.; Pepper, D.W.; Blackwell, B.F.

    1990-01-01

    This book contains the proceedings of heat transfer in space systems. Topics covered include: High-Power Electronics; Two-Phase Thermal Systems: Heat Exchangers; Arc Welding; Microgravity Thaw Experiment

  19. Steady flow and heat transfer analysis of third grade fluid with porous medium and heat generation

    Directory of Open Access Journals (Sweden)

    Akinbowale T. Akinshilo

    2017-12-01

    Full Text Available In this study, flow and heat transfer of a non Newtonian third grade fluid with porous medium and internal heat source conveyed through parallel plates held horizontally against each other are investigated. The nonlinear ordinary equations arising due to visco-elastic effects from the mechanics of the fluid are analysed using the adomian decomposition method (ADM adopting Vogel’s temperature dependent model based viscosity. Thermal fluidic parameters effects such as pressure gradient, heat generation parameter and porosity term are examined on the flow and heat transfer. Increasing porosity term shows slight decreasing effect on velocity distribution, as increasing heat generation term demonstrates significant increase on temperature distribution towards the upper plate. Obtained solutions in this paper may be used to advance studies in thin film flow, energy conservation, coal-water mixture, polymer solution and oil recovery application. Also Results from analyses compared against the fourth order Runge kutta numerical solution proves to be in satisfactory agreement.

  20. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    Science.gov (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  1. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  2. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  3. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  4. Application possibilities for nuclear heating plants in the energy system of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Kohler, T.

    1991-01-01

    The field of application for nuclear heating plants is the so-called low-temperature heating market. It includes the energy demand for space heating, hot water an low-temperature process heat. The analysis of technical potentials for heating reactors considers two different levels. The structure of the district heating system determines the technical potential in the now existing energy system, it amounts to a total power of 9,8 to 14,3 GW th of heating reactors. For a possible extended use of heating reactors in future which goes beyond the existing district heating system the technical circumstances and the local distribution of the low-temperature heating market define the technical potential which ranges from 126 to 160 GW th on todays basis. The chance of implementing nuclear heating plants is strongly influenced by the economy of their heat generation. The economic situation of heat generation with heating reactors is estimated in comparison to current fossil district heating production systems. In the low-temperature heating market the heat supply by nuclear fed district heating systems is compared to the heat production in houses. Considering the assumptions the analysis indicates that nuclear heating plants can compete with existing fossil heat sources. The analysis shows that heating reactors are an interesting and powerful option for the supply of the district heating market in future. The underlying economic assumptions would allow the use of nuclear heating plants and it seems that they could contribute to reduce the environmental stress. (orig.) [de

  5. 14 CFR 27.859 - Heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heating systems. 27.859 Section 27.859... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Fire Protection § 27.859 Heating systems. (a) General. For each heating system that involves the passage of cabin air over, or close to, the exhaust...

  6. Heat-Transfer Enhancement by Artificially Generated Streamwise Vorticity

    Science.gov (United States)

    Ghanem, Akram; Habchi, Charbel; Lemenand, Thierry; Della Valle, Dominique; Peerhossaini, Hassan

    2012-11-01

    Vortex-induced heat transfer enhancement exploits longitudinal and transverse pressure-driven vortices through the deliberate artificial generation of large-scale vortical flow structures. Thermal-hydraulic performance, Nusselt number and friction factor are experimentally investigated in a HEV (high-efficiency vortex) mixer, which is a tubular heat exchanger and static mixer equipped with trapezoidal vortex generators. Pressure gradients are generated on the trapezoidal tab initiating a streamwise swirling motion in the form of two longitudinal counter-rotating vortex pairs (CVP). Due to the Kelvin-Helmholtz instability, the shear layer generated at the tab edges, which is a production site of turbulence kinetic energy (TKE), becomes unstable further downstream from the tabs and gives rise to periodic hairpin vortices. The aim of the study is to quantify the effects of hydrodynamics on the heat- and masstransfer phenomena accompanying such flows for comparison with the results of numerical studies and validate the high efficiency of the intensification process implementing such vortex generators. The experimental results reflect the enhancement expected from the numerical studies and confirm the high status of the HEV heat exchanger and static mixer.

  7. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    International Nuclear Information System (INIS)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    The trade-off between investing in energy savings and investing in individual heating technologies with high investment and low variable costs in single family houses is modelled for a number of building and consumer categories in Denmark. For each group the private economic cost of providing heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due to a combination of low costs of primary fuel and low environmental performance of woodstoves today, included health costs lead to decreased use of secondary heating. Overall the interdependence of heat generation technology- and heat saving-choice is significant. The total optimal level of heat savings for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. - Highlights: • Heat saving investment and heat technology choice are interdependent. • Health damage costs should be included in private heating choice optimisation. • Flexibility in heating technology choice reduce the optimal level of saving investments. • Models of private and socioeconomic optimal heating produce different technology mix. • Rebound effects are moderate but varies greatly among consumer categories

  8. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  9. Technical-economical study of heat and energy generation and distribution systems: application to the tertiary sector; Etude technico-economique des systemes de production et distribution de chaleur et de force: application au tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Romary, D.

    2001-10-01

    The liberalization of energy markets and the related competition between energy suppliers has led to the introduction of a multitude of tariff offers, among which the end-user encounters difficulties to find his way. The aim of this work is to model this problem and to develop a 'global' control tool which integrates the hot water and electricity consumptions of the user, his energy generation and distribution facilities and his gas and power subscriptions. The potential cost saving is evidenced by three types of studies: the first one consists in determining the optimal subscriptions with the existing consumption profiles; the second one proposes a peak shaving of part of the consumptions and defines the optimal operations and subscriptions; the third one proposes a partial obliteration of the consumptions through the integration of a cogeneration system and localizes the optimal operations and subscriptions. The results of these three studies are discussed according to sensibility studies which integrate energy consumptions and prices disturbances. The databases included in the model allow to analyze different examples taken in the tertiary sector (office building, hospital, university, airport, supermarket, district heating system, small industry etc..). The results obtained demonstrate the relevance for the end-user of this decision-aid tool. (J.S.)

  10. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  11. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  12. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  13. Fuzzy comprehensive evaluation of district heating systems

    International Nuclear Information System (INIS)

    Wei Bing; Wang Songling; Li Li

    2010-01-01

    Selecting the optimal type of district heating (DH) system is of great importance because different heating systems have different levels of efficiency, which will impact the system economics, environment and energy use. In this study, seven DH systems were analysed and evaluated by the fuzzy comprehensive evaluation method. The dimensionless number-goodness was introduced into the calculation, the economics, environment and energy technology factors were considered synthetically, and the final goodness values were obtained. The results show that if only one of the economics, environment or energy technology factors are considered, different heating systems have different goodness values. When all three factors were taken into account, the final ranking of goodness values was: combined heating and power>gas-fired boiler>water-source heat pump>coal-fired boiler>ground-source heat pump>solar-energy heat pump>oil-fired boiler. The combined heating and power system is the best choice from all seven systems; the gas-fired boiler system is the best of the three boiler systems for heating purpose; and the water-source heat pump is the best of the three heat pump systems for heating and cooling.

  14. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  15. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    Science.gov (United States)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  16. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  17. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  18. The effect of heat generation in inclined slats on the natural convective heat transfer from an isothermal heated vertical plate

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Sun, L.; Naylor, D.

    2003-01-01

    Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. There is, in general, a uniform heat generation in the slats. The slats are pivoted about their centre-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation in the slats in this situation is the result of solar radiation passing through the window and falling on and being absorbed by the slats of the blind. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless heat generation rate in the slats per unit frontal area (4) the dimensionless distance of the slat center point (the pivot point) from the surface (5) the dimensionless slat size (6) the dimensionless slat spacing (7) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated vertical surface has been examined. (author)

  19. Cogeneration in breweries analysis and simulation of systems for simultaneous generation of power, heat and refrigeration using natural gas; Sistemas de refrigeracao a partir da cogeracao: analise e simulacao de propostas para o caso de cervejarias utilizando gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido

    1998-07-01

    The present work analyses some proposals of cogeneration systems for the simultaneous generation of power, heat and refrigeration in a brewery. The requirements of steam, refrigeration and electricity, as well as the production of beer in a plant of the Antarctica Company, located in Jaguariuna - SP were collected monthly for the year of 1997. Three conceptions of systems using two gas turbines with heat recovery steam generator were then proposed to meet the surveyed demand. The proposals differ in the refrigeration system: the first one uses a traditional ammonia compression system while the second uses an ammonia absorption system, the third proposal is a combination of the compression and absorption systems. These proposals are compared to the present configuration which purchases electricity from the Public Utility for power and refrigeration (using an ammonia compression)system, and fuel oil to generate steam for process heat. The technical, economical and environmental feasibility of the proposals, as well as of the present configuration are discussed on the basis of mass balances, energy balances (first law of Thermodynamics), exergy fluxes (second law analysis), operational and capital cost, based on simulation of the performance of each configuration proposed to meet the monthly electricity, steam and refrigeration requirements for the referred plant. The turbines were chosen so as to meet the peek energy demand of the plant and two cases were simulated for each proposal: turbine operational meets only the demand of the plant and turbine operates at full load, selling electricity for the Public utility. Results obtained show that the current operational costs are higher than any of the proposals presented. The high capital costs of the proposals, though,make them less interesting financially. The simulation of the case of excess electricity to the Public Utility is very attractive, considering the cost of natural gas 3,38 U$/M btu and the fare of 40 U

  20. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  1. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  2. Faroe Islands Wind-Powered Space Heating Microgrid Using Self-Excited 220 kW Induction Generator

    DEFF Research Database (Denmark)

    Thomsen, Bjarti; Guerrero, Josep M.; Thogersen, Paul

    2014-01-01

    energy and required space heating and mismatches can be reduced by using simple water tanks as heat storages. A traditional Danish induction generator wind turbine has been erected on the island of Nólsoy to produce energy for space heating. The system is designed as a stand-alone Microgrid which needs...

  3. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a...

  4. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  5. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  6. Cooling with heat. New generation of compact chillers; Mit Waerme kuehlen. Eine neue Generation kompakter Kaeltemaschinen fuehlt und heizt mit Niedertemperaturwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2012-11-01

    The economic and ecological success of many CHP plants, district heating networks and large-scale solar power systems very much depends on the utilisation of heat outside of the heating periods. An increasingly interesting market for low-temperature heat is cooling and air-conditioning buildings as well as generating process cooling energy with thermally driven chillers. Scientists from Berlin and Bavaria have developed a new generation of particularly compact, efficient absorption chillers with small capacities for cooling and heating operations. (orig.)

  7. Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A Rankine cycle-driven heat pump system is modeled for district heating applications with superheated steam and hot water as products. Energy and exergy analyses are performed, followed by parametric studies to determine the effects of varying operating conditions and environmental parameters on the system performance. The district heating section is observed to be the most inefficient part of system, exhibiting a relative irreversibility of almost 65%, followed by the steam evaporator and the condenser, with relative irreversibilities of about 18% and 9%, respectively. The ambient temperature is observed to have a significant influence on the overall system exergy destruction. As the ambient temperature decreases, the system exergy efficiency increases. The electricity generated can increase the system exergy efficiency at the expense of a high refrigerant mass flow rate, mainly due to the fact that the available heat source is low quality waste heat. For instance, by adding 2 MW of excess electricity on top of the targeted 6 MW of product heat, the refrigerant mass flow rate increases from 12 kg/s (only heat) to 78 kg/s (heat and electricity), while the production of 8 MW of product heat (same total output, but in form of heat) requires a refrigerant mass flow rate of only 16 kg/s. - Highlights: • A new integrated heat pump system is developed for district heating applications. • An analysis and assessment study is undertaken through exergy analysis methodology. • A comparative efficiency evaluation is performed for practical applications. • A parametric study is conducted to investigate how varying operating conditions and state properties affect energy and exergy efficiencies.

  8. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  9. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  10. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    In this study, a typical office room with a radiant heating system and a mechanical ventilation system was selected as the research subject. Indoor temperature formulas for calculating the room heat loss (including transmission heat loss and ventilation heat loss) and heating capacity of the hybrid...... for calculating ventilation heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems. (C) 2015 Elsevier B.V. All rights reserved....... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  11. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  12. Prospects Pertaining to Application of Heat-and-Pump Technology in Power-and-Hear generation Complex

    Directory of Open Access Journals (Sweden)

    A. V. Ovsiannik

    2008-01-01

    Full Text Available The existing conditions of heat supply operation create favorable possibilities for repeat involvement of large capabilities of low-potential heat at power objects of heat supply system in the fuel and energy balance of urban power engineering facilities and, first of all, it is possible due to introduction of power-saving heat-and-pump technology.Diversity of conditions concerning organization of heat supply and sources of low-potential heat which can be used with the help of heat-and-pump technology in the system of centralized heat-supply reveals the necessity to take more serious approach to investigation of real possibilities of their application, owing to them it is possible to involve repeatedly used heat in the technological cycle of the urban power-and-heat generation complex.

  13. Composite electric generator equipped with steam generator for heating reactor coolant

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Masaharu; Soman, Yoshindo; Kawanishi, Kohei; Ota, Masato

    1997-08-12

    The present invention concerns a composite electric generator having coolants, as a heating source, of a PWR type reactor or a thermonuclear reactor. An electric generator driving gas turbine is disposed, and a superheater using a high temperature exhaust gas of the gas turbine as a heating source is disposed, and main steams are superheated by the superheater to elevate the temperature at the inlet of the turbine. This can increase the electric generation capacity as well as increase the electric generation efficiency. In addition, since the humidity in the vicinity of the exit of the steam turbine is reduced, occurrence of loss and erosion can be suppressed. When cooling water of the thermonuclear reactor is used, the electric power generated by the electric generator driven by the gas turbine can be used upon start of the thermonuclear reactor, and it is not necessary to dispose a large scaled special power source in the vicinity, which is efficient. (N.H.)

  14. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  15. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  16. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    Energy Technology Data Exchange (ETDEWEB)

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  17. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    Science.gov (United States)

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  18. Fiscal 1974 Sunshine Project result report. R and D on solar heat power generation system (R and D on curved reflector light collection system); 1974 nendo taiyonetsu hatsuden system no kenkyu kaihatsu seika hokokusho. kyokumen shuko hoshiki system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This report composed of 6 parts summarizes the fiscal 1974 Sunshine Project research result on the solar heat power generation system with a curved reflector light collection system. Part 1 outlines the research target, research result and research system. Part 2 describes each research item in detail. This part on system and hardware researches is composed of (1) study on 1,000kW system, (2) development of plane/parabolic reflector light collection equipment, (3) development of parabolic reflector light collection equipment, (4) development of selective transparent membrane and selective absorption surface, and (5) study on heat storage equipment and heat exchange equipment. Part 3 describes the future R and D plan for every year focusing the fiscal 1975 R and D plan. Part 4 describes various cooperative activities with other research groups such as various committees related to the Sunshine Project, universities and Electrotechnical Laboratory. Part 5 describes several patents produced during this R and D. Part 6 summarizes the results on this R and D. (NEDO)

  19. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  20. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  1. Nuclear district heating system with a high-temperature reactor

    International Nuclear Information System (INIS)

    Schroeder, G.; Barnert, H.; Wischnewski, R.

    1978-01-01

    From the demand viewpoint, the connection of an installed nuclear thermal capacity of 290 MJ/s for district heating purposes would be possible in the central Ruhr District by 1982-1983. The nuclear district heating system is made up of several subsystems, for instance, a smaller size high-temperature reactor [500 MW(thermal)] as a nuclear heat-and-power plant and an interconnected district heating system with a feed temperature of 453 K (180 0 C). The expenditure for additional investments, additional fuel costs, and costs for substitute power capacity are charged to the thermal energy generation costs of the nuclear heat-and-power plant. For the nuclear district heating system, the district heating costs to the consumer will vary over wide limits, depending on local conditions, between 7.8 and 12.2 $/GJ at the commissioning date in 1983, assuming that all subsystems have to be newly installed. These costs can be lower than district heating costs in a conventional district heating system with fossil-fired heating stations

  2. Economic aspects of electricity and industrial heat generating reactors

    International Nuclear Information System (INIS)

    Gaussens, J.; Moulle, N.; Dutheil, F.

    1964-01-01

    The economic advantage of electricity-generating nuclear stations decreases when their size decreases. However, when a counter-pressure turbine is joined on to a reactor and the residual heat can be properly used, it can be shown that fairly low capacity nuclear equipment may compete with conventional equipment under certain realistic enough conditions. The aim of this paper is to define these special conditions under which nuclear energy can be profitable. They are connected with the location and the general economic environment of the station, the pattern of the electricity and heat demands it must meet, the level of fuel and specific capital costs, nuclear and conventional. These conditions entail certain technical and economic specifications for the reactors used in this way otherwise they are unlikely to be competitive. In addition, these results are referred to the potential steam and electricity market, which leads us to examine certain uses for the heat generated by double purpose power stations; for example, to supply combined industrial plants, various types of town heating and for removal of salt from sea water. (authors) [fr

  3. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  4. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  5. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  6. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    of performance and sustainability. The fluid was novel and generated through the framework. In the second case study, waste heat recovery from a milk powder production spray dryer was addressed. A heat pump was designed with a mixed working fluid for the optimal heat recovery and transfer for the low-grade waste...... heat from effluent spray dryer air. 25% isobutene and 75% 1,3-difluoropropane and a process with a coefficient of performance of 3.22 was designed. The design provided new binary mixture and optimized cycle process that was an improvement compared to conventional systems. Furthermore, the fluids were...

  7. Car companies look to generate power from waste heat

    Science.gov (United States)

    Schirber, Michael

    2008-04-01

    You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.

  8. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  9. Control challenges in domestic heating systems

    DEFF Research Database (Denmark)

    Thybo, Honglian; Larsen, Lars F. S.; Weitzmann, Peter

    2007-01-01

    The objective of this paper is to analyze domestic heating applications and identify unfavorable building constructions and control challenges to be addressed by high performance heating control systems. Heating of domestic houses use a large amount of the total energy consumption in Scandinavia....... Hence the potential of reducing energy consumption by applying high performance control is vast. Indoor climate issues are becoming more in focus, which also leads to a demand for high performance heating systems. The paper presents an analysis of how the building elements of today's domestic houses...... with water based floor heating affect the control challenge. The analysis is documented with simulation results....

  10. Performance Analysis of Photovoltaic Water Heating System

    OpenAIRE

    Matuska, Tomas; Sourek, Borivoj

    2017-01-01

    Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized loa...

  11. Future aspects for liquid metal heated steam generators

    International Nuclear Information System (INIS)

    Jansing, W.; Ratzel, W.; Vinzens, K.

    1975-01-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  12. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    Science.gov (United States)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  13. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery

    International Nuclear Information System (INIS)

    Meng, Jing-Hui; Wang, Xiao-Dong; Chen, Wei-Hsin

    2016-01-01

    Highlights: • A new model for automobile exhaust thermoelectric generator system is proposed. • Based on the system reliability, the counter flow cooling pattern is recommended. • There exists an optimal thermoelectric unit number to maximize system output power. • Better performance is predicted with less thermoelectric materials consumption. - Abstract: This work develops a multiphysics thermoelectric generator model for automobile exhaust waste heat recovery, in which the exhaust heat source and water-cooling heat sink are actually modeled. Special emphasis is put on the non-uniformity of temperature difference across thermoelectric units along the streamwise direction, which may affect the performance of exhaust thermoelectric generator systems significantly. The main findings are: (1) The counter flow cooling pattern is recommended, although it cannot elevate the overall output power as compared with the parallel flow counterpart, it reduces the temperature non-uniformity effectively, and hence ensures the system reliability. (2) The temperature non-uniformity strikingly deteriorates the output power of thermoelectric unit along the streamwise direction; meanwhile, an additional lateral heat conduction effect exists within the exhaust channel wall, the both mechanisms leads to that the maximum output power of the system is not enhanced but is actually reduced when too many thermoelectric units are adopted. (3) When the exhaust channel length is fixed, the maximum output power of the system can be elevated by increasing the thermoelectric unit number but keeping thermoelectric unit spacing unchanged. This means that the system performance can be improved under the condition of less thermoelectric materials consumption.

  14. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  15. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  16. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  17. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  18. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  19. Co-optimized design of microchannel heat exchangers and thermoelectric generators

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Yazawa, K.; Rosendahl, Lasse

    2013-01-01

    Designs of heat exchangers have mostly been disconnected to the performance of thermoelectric generator (TEG) systems. The development work, mostly focused on thermoelectric materials, required a significant amount of engineering parametric analysis. In this work, a micro plate-fin heat exchanger...... applied to a TEG is investigated and optimized to maximize the output power and the cost performance of generic TEG systems. The cost per performance is counted by a measure of price per power output ($/W). The channel width, channel height, fin thickness of heat exchanger, and fill factor of TEG...... are theoretically optimized for a wide range of pumping power. In conjunction with effective numeric tests, the model discusses the optimum size of the system components’ dimensions at two area sizes of the substrate plate of heat exchanger. Results show that at every pumping power, there are particular values...

  20. Proposal for a district heat supply system

    International Nuclear Information System (INIS)

    Alefeld, G.

    1976-01-01

    A district heating scheme is proposed which makes it possible to use the waste heat from power stations for the supply of households and industry. The heat is stored by evaporation of ammonia salts or liquids with dissolved salts. Both substances are transported on existing rail- or waterways to heating stations near the consumers, and the heat recovered by reaction of the two components. Then the product of reaction is transported back to the power stations, and reactivated by heat again. Based on a cost estimation, it can be shown that the proposed heat transport with heat trains or ships, at distances up to 100 km, results in heat costs which are to-day already below that of heat from fuel oil. The investment required for the heat transport system is unusually low due to the use of transport ways which already exist. The district heating system is not only favourable in respect of the environment, but actually reduces its present strain, both at the consumer and at the power stations. The technical advantages of the suggested concept, especially the possibility of introducing it in stages, are discussed. The consequences for the national economy regarding the safety of supply and the trade balance, as well as for the public transport undertakings, are obvious, and therefore not included in the paper. (orig.) [de

  1. Large Efficient Intelligent Heating Relay Station System

    Science.gov (United States)

    Wu, C. Z.; Wei, X. G.; Wu, M. Q.

    2017-12-01

    The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.

  2. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  3. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.

    2016-02-05

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  4. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...... heating and cooling with pipes embedded in room surfaces (floor, wall, and ceiling), the application increased significantly worldwide. Earlier application of radiant heating systems was mainly for residential buildings because of its comfort and free use of floor space without any obstruction from...

  5. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    Tsoutsou, Sapfo; Infante Ferreira, Carlos; Krieg, Jan; Ezzahiri, Mohamed

    2014-01-01

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  6. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  7. Heat exchanger with auxiliary cooling system

    Science.gov (United States)

    Coleman, John H.

    1980-01-01

    A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

  8. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  9. Numerical Investigation of Heat Transfer Augmentation through Geometrical Optimization of Vortex Generators

    DEFF Research Database (Denmark)

    Gorji, Mofid; Mirgolbabaei, Hessam; Barari, Amin

    2010-01-01

    In this paper a two-dimensional numerical simulation of a steady incompressible and turbulent model has been carried out to study the effects of vortex generators in a compact heat exchanger in a curvilinear coordinate system. The mesh which is applied in this study is boundary fitted and has been...

  10. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  11. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  12. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  13. Standard monitoring system for domestic heat pumps

    NARCIS (Netherlands)

    Geelen, C.P.J.M.; Oostendorp, P.A.

    1999-01-01

    In the years to come many domestic heat pump systems are to be installed in the Netherlands. The Dutch agency for energy and environment, NOVEM, and the association of energy utility companies, EnergieNed, give high priority to the monitoring of heat pump systems. The results of the projects,

  14. Benefits of Integrating Geographically Distributed District Heating Systems

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, I.; Sveinbjörnsson, Dadi Þorsteinn

    2016-01-01

    was reduced by 1.76 %. For the year 2029, in which intermittent renewable energy sources are dominating the energy generation, total socio-economic costs were reduced by 5.9 %, CO2 emissions by 7.1 % and primary energy supply by 8.4 % after the adjacent district heating systems were connected. Hence......Although liberalization of the electricity day-ahead markets has gained pace throughout the Europe, district heating markets are often dominated by lack of competition between suppliers, which curbs the potential of having cheaper systems in terms of socio-economic costs, and technically better...... system in terms of CO2 emissions. In order to assess the financial and technical outcome of connecting five adjacent district heating systems, a linear continuous optimization model that minimizes total socio-economic costs was developed. Geographical distribution of different district heating systems...

  15. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  16. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...

  17. Next Generation Target Control System

    National Research Council Canada - National Science Library

    1995-01-01

    Our objective was to evaluate the allegations concerning the Next Generation Target Control System Program and to determine whether the Program is the most cost effective solution to meet the target...

  18. Steam generator blowdown system upgrades

    International Nuclear Information System (INIS)

    Lee, Tien P.; Kim, David H.; Jindal, Krishan K.

    2004-01-01

    The steam generator blowdown (SGBD) system is used to remove impurities from the steam generators in order to maintain steam generator (SG) water chemistry within specifications. The original SGBD systems at Diablo Canyon power plant (DCPP) were designed in the early 1970s, and since that time the industry has changed its practices regarding water chemistry. DCPP has operated its SGBD system above its design flow rate. This resulted in a history of high maintenance and unreliable operation. Subsequently, DCPP implemented extensive modifications in order to accommodate the higher industry standard flow rates. These modifications resulted in a more reliable and rugged system. Additionally, significant savings were realized due to an increase in net plant output and a reduction in the required plant makeup water by recovering steam generator blowdown. (author)

  19. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    a complete combustion for wood. In addition, thermoelectric generators (TEG) produce power that can be used to satisfy all basic needs. In this study, a water-base cooling system is designed to increase the efficiency of TE generators that also produces hot water for residential uses. Through a range....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  20. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  1. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    of complementing this reasoning methodology. Domestic heating systems, as the main resource to meet the thermal requirements of end-users, have different implementations in Europe in order to achieve various degrees of controllability and heating efficiencies. As all the heating systems serve the same basic needs...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...... components e.g. storage tanks, are modeled using the MFM methodology. Both the goals and functions of material and energy processes and the control functions of the heating systems are represented in the MFM models. It is found that varying the physical system setup results in only little differences among...

  2. Generative electronic background music system

    International Nuclear Information System (INIS)

    Mazurowski, Lukasz

    2015-01-01

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions

  3. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  4. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  5. Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation

    Directory of Open Access Journals (Sweden)

    M.G. Sobamowo

    2017-03-01

    Full Text Available In this study, analysis of heat transfer in a longitudinal rectangular fin with temperature-dependent thermal conductivity and internal heat generation was carried out using finite difference method. The developed systems of non-linear equations that resulted from the discretization using finite difference scheme were solved with the aid of MATLAB using fsolve. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin. Also, for the solution to be thermally stable, the fin thermo-geometric parameter must not exceed a specific value. However, it was established that the increase in temperature-dependent properties and internal heat generation values increases the thermal stability range of the thermo-geometric parameter. The results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem.

  6. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    Lister, D.H.

    1980-06-01

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  7. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  8. A heat transfer study for vertical straight-tube steam generators heated by liquid metal

    International Nuclear Information System (INIS)

    Valette, M.

    1984-04-01

    A single-tube mockup of a vertical straight-tube steam generator heated by sodium-potassium alloy NaK was submitted to thermal and hydraulic testing in conditions representative of fast breeder reactor operation. The mockup consisted of a 10mm I.D. ferritic steel heat exchange tube centered inside a cylindrical stainless steel shell. The complete assembly was 20.9 meters long. Water flowed upward inside the exchange tube, and NaK flowed downward in the annular gap between the tube and the shell. The steam outlet pressure ranged from 90 to 195 bars, while the liquid metal temperature at the mockup inlet was between 480 and 580 0 C. The water flowrate in the tube ranged from 153 to 2460 kg.m -2 .s -1 . During the tests the fluid inlet and outlet temperatures, flowrate and pressures were measured, as was the NaK temperature profile over the full length of the device. The test results were subsequently compared with heat exchange and pressure drop values calculated using the standard formulas for straight-tube heat exchangers. The heat exchange coefficients predicted by these correlations in the boiling zone were found to be largely overestimated, while the calculated pressure drop values proved satisfactory. A set of modified correlations is proposed to account for the observed phenomena, and for use in designing commercial units, provided the sodium flow in the tube bundle is adequately distributed

  9. Oscillating heat pipe cooler for heat-generating elements of electronics

    Directory of Open Access Journals (Sweden)

    Alekseik E. S.

    2013-02-01

    Full Text Available The article presents a newly-developed compact heat removal system (HRS with water used for coolant, operable in any position in space. In conditions of forced convection at output power of 120 Wt (160 Wt input power thermal resistance of the HRS is 0.1 K/Wt and the system provides the average temperature of the cooled object over the range of 58 to 60°C. Heat transfer characteristics of the HRS can be improved, as there is potential for its modification.

  10. Cloud-generated radiative heating and its generation of available potential energy

    Science.gov (United States)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  11. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  12. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  13. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade...... of the building....

  14. Safety characteristics of decay heat removal systems

    International Nuclear Information System (INIS)

    Hofmann, F.

    1991-01-01

    Safety features of the decay heat removal systems including power sunply and final heat sink are described. A rather high reliability and an utmost degree of independence from energy supply are goals to be attained in the design of the European Fast Reactor (EFR) decay heat removal scheme. Natural circulation is an ambitious design goal for EFR. All the considerations are performed within the frame of risk minimization

  15. High-Temperature Reactor For Power Generation and District Heating

    International Nuclear Information System (INIS)

    Herzberger, Karlheinz

    1987-01-01

    The multinational BBC Brown Brave Group, which has its head-quarters in Baden/Switzerland, was founded in 1891. Its German company is Brown, Brave and CIEs AGM, Mannheim. The field of operation covers wide areas of electrical engineering: These includes mainly the manufacture of installations and equipment for the generation, conversion, distribution and utilization of electric power, with special emphasis on the capital goods sector. BBC erects turnkey power plants and manufactures electrical equipment for industrial plants and urban transport and main line trains. Also of major importance are standard electrical products such as motors, switches, cables, semiconductor devices as well as measuring and control equipment. In the field of nuclear power BBC is engaged in particular in the development and construction of high-temperature reactors for the generation of electric power and process heat. The following presentation gives a short view on the milestones of the HTR development achieved in 1987

  16. National district-heating program: generic city district-heating and cooling system from cogeneration retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.; Grammel, S.; Kuzanek, J.; Levine, E.

    1981-02-01

    A study, designed to aid in evaluating the feasibility of a district heating and cooling system that uses heat supplied by existing electric generating plants retrofitted for cogeneration, is presented. Based on thermal demands of a metropolitan area, the District Heating and Cooling System (DHCS) model estimates the cost of the retrofit. Environmental impact and the potential for scarce-fuel savings also are assessed by this model. The computer program used is the District Heating Strategy Model (DHSM). Section 2 identifies metropolitan demand sectors and describes the data acquisition method. Section 3 defines thermal energy supply sources and shows how each is located. Program output is summarized in terms of financial data, electrical and thermal loads, and a ranking of existing power plants. Section 4 assesses air pollutant emissions and DHCS fuel-use requirements. Finally, Sec. 5 considers the economics of the DHCS and its costs vs benefits.

  17. The experimental design of solar heating thermoelectric generator with wind cooling chimney

    International Nuclear Information System (INIS)

    Özdemir, Ali Ekber; Köysal, Yavuz; Özbaş, Engin; Atalay, Tahsin

    2015-01-01

    Highlights: • We model an experimental design of thermal electrical generator. • Electrical parameters were collected under the solar radiation. • All the calculated values were obtained from collected data. • Generated power and electrical efficiency were changed by thermal gradient. - Abstract: In this paper we present an experimental design of new solar based thermoelectric generator with wind chimney. Presented generator mainly consists of four parts: a heat pipe with solar collector tube for solar heating, a wind chimney for cooling, a thermoelectric (TE) module for electricity generation and measurement devices-sensors. Presented generator based on experimental design. Aim of this experimental design is to show an alternative way for cheap and efficiently renewable energy producing. The most important features of presented generator are uncomplicated structure, efficiently and cheapness. This experimental design can be improved and used for domestic and commercial application. For this reason, main parts of system can be enhanced and system can be improved. To evaluate of presented generator we collected some experimental data on designed system. Then maximum output power, electrical efficiency and Seebeck coefficient are calculated from obtained data. Results of the measurement are displayed in the form of graphs and tables. Our experiment was carried out on 16th and 21th August, in Samsun, on the north coast of Turkey with the exact location 41°14′N 36°26′E with sea level. Collection of the data was performed from 8:30 a.m. to 4 p.m

  18. Thermal mechanical analysis of applications with internal heat generation

    Science.gov (United States)

    Govindarajan, Srisharan Garg

    The radioactive tracer Technetium-99m is widely used in medical imaging and is derived from its parent isotope Molybedenum-99 (Mo-99) by radioactive decay. The majority of Molybdenum-99 (Mo-99) produced internationally is extracted from high enriched uranium (HEU) dispersion targets that have been irradiated. To alleviate proliferation risks associated with HEU-based targets, the use of non-HEU sources is being mandated. However, the conversion of HEU to LEU based dispersion targets affects the Mo-99 available for chemical extraction. A possible approach to increase the uranium density, to recover the loss in Mo-99 production-per-target, is to use an LEU metal foil placed within an aluminum cladding to form a composite structure. The target is expected to contain the fission products and to dissipate the generated heat to the reactor coolant. In the event of interfacial separation, an increase in the thermal resistance could lead to an unacceptable rise in the LEU temperature and stresses in the target. The target can be deemed structurally safe as long as the thermally induced stresses are within the yield strength of the cladding and welds. As with the thermal and structural safety of the annular target, the thermally induced deflection of the BORALRTM-based control blades, used by the University of Missouri Research Reactor (MURRRTM ), during reactor operation has been analyzed. The boron, which is the neutron absorber in BORAL, and aluminum mixture (BORAL meat) and the aluminum cladding are bonded together through powder metallurgy to establish an adherent bonded plate. As the BORAL absorbs both neutron particles and gamma rays, there is volumetric heat generation and a corresponding rise in temperature. Since the BORAL meat and aluminum cladding materials have different thermal expansion coefficients, the blade may have a tendency to deform as the blade temperature changes and the materials expand at different rates. In addition to the composite nature of the

  19. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  20. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  1. Entropy generation in the flow system generated in between two ...

    Indian Academy of Sciences (India)

    filled with the fluid becomes essential. Considerable research studies were carried out to examine entropy generation in parallel plates for various applications. The entropy generation minimization in parallel plates in rela- tion to the counter-flow heat exchangers was carried out by Ordonez & Bejan (2000). They. 455 ...

  2. Selection of values of design peak heat flux to reduce the risk of waterside corrosion in F.R. steam generators

    International Nuclear Information System (INIS)

    Bolt, P.R.; Garnsey, R.

    1975-01-01

    Attention is drawn to the high levels of peak heat Flux that can exist in sodium heated steam generators. The strength of the relationship between heat, flux and both deposition rate and the concentration of salts is discussed. Relevant steam generator operational experience obtained on the C.E.G.B. system is described and tentative proposals are made for limits to he to the peak heat flux values used in F.R. steam generator design. (author)

  3. District Heating Systems Performance Analyses. Heat Energy Tariff

    Science.gov (United States)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  4. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  5. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can......Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... be self-made to keep the price down. The system is working, but heat exchange from plastic piping to sand is rather poor. The dimensioning of the volume is rather difficult based on common knowledge. Passive heating, hence reduction of heat demand, due to the storage and especially due to the oversized...

  6. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  7. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer...... in the combined solar heating/heat pump system type when the heat pump makes use of a horizontal ground source heat exchanger. The knowledge is gained by experimental investigations on a solar heating/heat pump system and forms the basis for improved marketed combined solar heating/heat pump systems....

  8. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant h...... installations. For similar reasons, as well as possible peak load reduction and energy savings, radiant systems are being widely applied in commercial and industrial buildings....

  9. Optimising corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.; Andersen, A.

    2002-01-01

    A three-year project - financially supported by the Nordic Industrial Fund - on monitoring of corrosion in district heating systems has been initiated with participation of researchers and industrial partners in Denmark, Finland, Iceland, Norway and Sweden. The primary objective of the project...... is to improve the quality control in district heating systems by corrosion monitoring. In Danish systems electrochemical impedance spectroscopy (EIS), linear polarisation resistance (LPR), high-sensitive electrical resistance (ER) technology, crevice corrosion probes, as well as weight loss coupons...

  10. The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer

    International Nuclear Information System (INIS)

    Caldas, Miguel; Semiao, Viriato

    2007-01-01

    The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence

  11. Are modern heating systems ruining older chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, W.

    1989-03-01

    When it is a question of saving energy, burners, heating boilers and chimneys must be optimally suited to one another. Only: Older chimneys were not built for thrifty energy consumption. For which reason modern, energy-saving low-temperature heating does not find the upward lift that it needs in older chimneys. And since natural gas produces about 50% more steam in the waste gas than oil-fired heating, chimney trouble is almost pre-programmed in the conversion. The author of this article maintains that the problems can be solved. Older chimneys can also cope with modern heating systems if precautionary measures are taken in time.

  12. A New Heat Supply System of Cogeneration for the Local Community

    Science.gov (United States)

    Yamaguchi, Hideki; Hisazumi, Yoshinori; Asano, Hitoshi; Morita, Hikaru; Hori, Toshihiro; Matsumoto, Toshiki; Abiko, Tetsuo

    In order for economically viable distributed generation systems for local communities to be widely accepted, it is essential to develop an efficient and low-cost heat supply system. For this purpose, we propose a new heat supply system which we already presented at the ICOPE-05 Chicago. The key technology for the system is to connect compact heat supply units with a heat storage function installed in all the households of the local community, such as condominiums, by a single-loop of hot water pipe. A phase change material was used for the heat supply unit as the heat storage material. However, for easier handling and reducing the cost of the unit, we have developed a new heat supply unit whose heat storage tank is made of plastic. Hot water for space heating is used as the heat storage material. Further we constructed a heat supply system for 7 lived-in households with a 5 kW gas engine and a 42 kW boiler as the heat sources. Some experiments with a heat supply unit and a heat supply system, such as for heat storage and heat supply for peak demand were conducted. Additionally, dynamic simulations of heat demand by 50 households and a COP evaluation of a new CO2 heat pump system using low-temperature exhaust gas from the gas engine were also conducted.

  13. Numerical research on natural convection in molten salt reactor with non-uniformly distributed volumetric heat generation

    International Nuclear Information System (INIS)

    Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi

    2010-01-01

    Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.

  14. Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process

    Science.gov (United States)

    Kuroki, Takashi; Murai, Ryota; Makino, Kazuya; Nagano, Kouji; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi

    2015-06-01

    In Japan, integrated steelworks have greatly lowered their energy use over the past few decades through investment in energy-efficient processes and facilities, maintaining the highest energy efficiency in the world. However, in view of energy security, the steelmaking industry is strongly required to develop new technologies for further energy saving. Waste heat recovery can be one of the key technologies to meet this requirement. To recover waste heat, particularly radiant heat from steel products which has not been used efficiently yet, thermoelectric generation (TEG) is one of the most effective technologies, being able to convert heat directly into electric power. JFE Steel Corporation (JFE) implemented a 10-kW-class grid-connected TEG system for JFE's continuous casting line with KELK Ltd. (KELK), and started verification tests to generate electric power using radiant heat from continuous casting slab at the end of fiscal year 2012. The TEG system has 56 TEG units, each containing 16 TEG modules. This paper describes the performance and durability of the TEG system, which has been investigated under various operating conditions at the continuous casting line.

  15. A concept of heat dissipation coefficient for thermal cloak based on entropy generation approach

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2016-09-01

    Full Text Available In this paper, we design a 3D spherical thermal cloak with eight material layers based on transformation thermodynamics and it worked at steady state before approaching ‘static limit’. Different from the present research, we introduce local entropy generation to present the randomness in the cloaking system and propose the concept of a heat dissipation coefficient which is used to describe the capacity of heat diffusion in the ‘cloaking’ and ‘protected’ region to characterize the cloaking performance on the basis of non-equilibrium thermodynamics. We indicate the ability of heat dissipation for the thermal cloak responds to changes in anisotropy (caused by the change in the number of layers and differential temperatures. In addition, we obtain a comparison of results of different cloaks and believe that the concept of a heat dissipation coefficient can be an evaluation criterion for the thermal cloak.

  16. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  17. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    . The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...... of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed.......Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral...

  18. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    Science.gov (United States)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  19. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kasmani, Ruhaila Md; Bhuvaneswari, M. [Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sivasankaran, S.; Siri, Zailan [Institute of Mathematical Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  20. Mechanism of heat generation from loading gaseous hydrogen isotopes into palladium nanoparticles

    Science.gov (United States)

    Dmitriyeva, Olga

    I have carried out the study of hydrogen isotope reactions in the presence of palladium nanoparticles impregnated into oxide powder. My goal was to explain the mechanisms of heat generation in those systems as a result of exposure to deuterium gas. Some researchers have associated this heating with a nuclear reaction in the Pd lattice. While some earlier experiments showed a correlation between the generation of excess heat and helium production as possible evidence of a nuclear reaction, the results of that research have not been replicated by the other groups and the search for radiation was unsuccessful. Therefore, the unknown origin of the excess heat produced by these systems is of great interest. I synthesized different types of Pd and Pt-impregnated oxide samples similar to those used by other research groups. I used different characterization techniques to confirm that the fabrication method I used is capable of producing Pd nanoparticles on the surface of alumina support. I used a custom built gas-loading system to pressurize the material with hydrogen and deuterium gas while measuring heat output as a result of these pressurizations. My initial study confirmed the excess heat generation in the presence of deuterium. However, the in-situ radiometry and alpha-particle measurements did not show any abnormal increase in counts above the background level. In the absence of nuclear reaction products, I decided to look for a conventional chemical process that could account for the excess heat generation. It was earlier suggested that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. To prove the chemical nature of the observed phenomena I demonstrated that the reaction can be either exo- or endothermic based on the water isotope trapped in the material and the type of gas provided to the system. The H/D exchange was confirmed by RGA, NMR and FTIR analysis. I quantified the amount of energy that can be released due

  1. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V oc ) and short circuit current (I sc ) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO 2 /Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  2. Heating systems with PLC and frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, S.; Abu-Malouh, R. [Applied Science Univ., Amman (Jordan). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    Heat treatment involves the controlled heating and cooling of metals to alter their physical and mechanical properties without changing the product shape. Heat treatment is frequently associated with increasing the strength of material, but it can also be utilized to alter certain manufacturability objectives such as improve machining, improve formability, and restoring ductility after a cold working operation. Heat treatment is an enabling process that can help other manufacturing processes, as well as improve product performance by increasing strength or other desirable characteristics. This paper discussed the design and construction of a medium capacity controlled heating system. The programming method of control of the heating process was achieved using an integrated programmable logic controller (PLC) and frequency inverter. An experimental study was performed to investigate the effect of temperature and tempering time on hardness and fatigue resistance of 0.4 per cent carbon steel. The paper discussed the heating system design and control and provided a mathematical description of the frequency controlled heating system. The modeling of the frequency converter and of the furnace was explained. It was concluded that increasing the tempering temperature above 550 degrees Celsius or tempering time decreased the hardness of the material. 26 refs., 16 figs.

  3. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  4. Study of heat transfer through a cavity receiver for a solar powered advanced Stirling engine generator

    International Nuclear Information System (INIS)

    Hussain, T.; Islam, M.D.; Kubo, I.; Watanabe, T.

    2016-01-01

    Stirling engine operated by concentrated solar energy can be a great mean to generate power. Highly concentrated solar radiations with minimum heat loss from cavity receiver are required to operate the Stirling engine. Therefore, heat transfer study of the cavity receiver is required for the maximum utilization of solar energy with minimum heat losses for the efficient Stirling engine generator. In this study, experiments were performed to find the most suitable cavity receiver configuration for maximum solar radiation utilizations by an Advanced Stirling Engine Generator (ADSEG). Dimensionless parameter: aperture ration (AR = d/D) and aperture position (AP = H/D) were used to characterize the different configurations of cylindrical cavity receiver. Experimental heat loss analysis (Convection, radiation and total heat loss) as well as air film temperature profiles along the wall height (H) of the receiver for different configurations of the cavity receiver was performed in this experiment for its selection. Based on experimental results, among the four different configurations of cylindrical cavity receiver, Type IV (AR = 0.5 AP = 0.53) was found to be the most suitable receiver for the ADSEG system.

  5. Optimal Control of Solar Heating System

    KAUST Repository

    Huang, Bin-Juine

    2017-02-21

    Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.

  6. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  7. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems......, the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  8. LPV Identification of a Heat Distribution System

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon

    2010-01-01

    This paper deals with incremental system identification of district heating systems to improve control performance. As long as various parameters, e.g. valve settings, are kept fixed, the dynamics of district heating systems can be approximated well by linear models; however, the dynamics change...... significantly when these parameters change. For this reason, we attempt to identify the system using linear parameter varying models. We demonstrate how the so-called ``Hansen Scheme," for linear time-invariant systems, can be employed for incremental identification of linear parameter varying systems as well....... The approach is tested on a laboratory setup emulating a district heating system, where local controllers regulate pumps connected to a common supply. Experiments show that cross-couplings in the system can indeed be identified in closed-loop operation....

  9. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  10. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  11. “Walczak’s Pipes” in the Greenhouse Heating System

    Directory of Open Access Journals (Sweden)

    Kazimierz Rutkowski

    2016-01-01

    Full Text Available Diversified heating circuits inertia is particularly important by high variability of external conditions were the greenhouse is often overheated or large heat losses are noted. To meet these needs a new generation of heating pipes were used. They are hexagram-shaped pipes called “Walczak’s pipe”. Tubes of such shape have several times smaller volume in comparison with traditional heating pipes of the same outer diameter and higher stiffness. The preliminary assessment of the “Walczak’s pipe” installed in the greenhouse is highly positive. Compared with the traditional system it enables better heat management. In the first research stage, the thermal efficiency was defined in different ambient conditions at selected flow parameters and various water temperatures. With regard to the accepted flow values, it is notable that “Walczak’s pipe” has greater thermal efficiency per unit of power comparing with traditional tube. During the study, there was also a thermographic analysis of pipes’ surface performed and the heat flow distribution was determined. Analyzing the temperature distribution on the “Walczak’s pipe” remarkable are the areas with higher values ​​comparing with standard tube. It can be concluded that in the heating system with “Walczak’s pipe” energy transferred by radiation increases. This is particularly advantageous solution to use in greenhouses. It allows to obtain a higher leafs temperature with respect to the ambient temperature (vegetation heating. This parameter has a beneficial effect on the vegetative growth of cultivated plants.

  12. SIMS prototype system 1: Design data brochure. [solar heating system

    Science.gov (United States)

    1978-01-01

    A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.

  13. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  14. Study of heat and mass transfer in a steam generator with chemically reacting coolant

    International Nuclear Information System (INIS)

    Lemeshev, V.U.; Mikhalevich, A.A.; Nemtsev, V.A.; Nesterenko, V.B.

    1983-01-01

    A one-dimensional mathematical model is represented once-through type and heat and mass transfer steam generator with turbulent flow of chemically reacting N 2 O 4 -NO coolant is investigated. During development of the mathematical model it has been assumed that the process of heating and boiling of liquid N 2 O 4 -NO coolant as well as superheating of produced vapour at subcritical parameters or heating of pseudo-liquid and superheating of produced pseudovapour at supercritical parameters (the heated side) is carried out at the expense of gaseous N 2 O 4 -NO coolant cooling (the heating side). The process of heating and cooling of the N 2 O 4 -NO system is followed by N 2 O 4 reversible 2NO 2 (1); 2NO 2 reversible 2NO+O 2 (2); N 2 O 3 reVersible NO 2 +NO (3) reactions, whereas the reactions (1) and (3) are practically equilibrium and the reaction (2) proceeds for the time comparable with the coolant residence time in the reactor circuit and the reaction rate is to be taken into account at mathematical modelling of the heat and mass transfer processes in the equipment. The modelling of thermal and hydrodynamic processes in the elements of a powergenerating components is needed for developing power plants with a dissociating coolant

  15. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  16. The RTSS Image Generation System

    NARCIS (Netherlands)

    Alvermann, K.; Graeber, S.; Mager, J.W.L.J.; Smith, M.H.

    1996-01-01

    Main market demands for the visual system of a simulator are photorealism and low latency time. RTSS, a general purpose image generation module developed within the European ESPRIT project HAMLET, can meet these demands through the use of High Performance Computing technology. This technology

  17. SNAP-8 electrical generating system development program

    Science.gov (United States)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology has been demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  18. Milliwatt generator heat source. Progress report, July-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Mershad, E.A.

    1982-04-08

    As part of the Milliwatt Generator (MWG) Program, a second series of pressure burst capsules welded offsite was tested; the resulting data indicate that the welds are very similar to those in the first series of capsules. Sufficient hardware was fabricated to meet all scheduled commitments. To provide a unit for feasibility testing, a heat source clad with Hastelloy C was reclad with Inconel 600. Forming development tests on Inconel 600 were conducted with favorable results. A QAS-3 survey was conducted and a satisfactory rating was received. Lot 11 qualification began on T-111 materials. The production period ended with an overall process yield of 99.6%, and a dollar percent defective rate of 0.60%.

  19. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  20. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    OpenAIRE

    Yanfeng Liu; Tao Li; Yaowen Chen; Dengjia Wang

    2017-01-01

    This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces th...

  1. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  2. Stead-state characteristic study of heat exchanger in water-cooled passive heat removal system for molten salt reactor

    International Nuclear Information System (INIS)

    Fa Dan; Yan Changqi; Sun Licheng; Sun Lu; Zhao Hangbin

    2013-01-01

    Background: In the water-cooled passive heat removal system for molten salt reactor, the decay heat generated in molten salt can finally be transferred to the heat exchanger placed in water tank by natural circulation. Purpose: Based on the principles of high safety and simplification, there is a need to transfer the decay heat passively without using external power. Methods: The heat exchanger consists of a set of bundles submerged into the water tank with a tube header at each side. Based on the flow process, corresponding numerical model was constructed in the code of C++. Then the total heat exchange coefficient is got and the heat transfer area is calculated. Continually iterate the heat transfer area until the iteration stopping criterion is met, after that the dimensions of water tank are figured out. Results: While the decay power is 100 kW in the initial of the operation, the power of heat exchanger reaches the maximum value of 130 kW due to the low-temperature water in water tank. Then it drops quickly for the decrease of heat exchanger pressure and the rise of water temperature in water tank. When the heat exchanger pressure begins to rise, the heat exchanger power drops slower than before. The heat transfer ability begins to decrease quickly as the temperature difference between inside and outside of heat exchanger tubes lowers. Then it drops gradually as a result of the slowly changed pressure. During early operation, the heat exchanger pressure decreases because the steam generation rate is lower than the steam condensation rate. Then the condition varies as the heat exchanger power declines gradually. When boiling happens inside the water tank, the steam condensation rate raises due to the increasing heat transfer ability which makes the pressure of heat exchanger drops quickly. Afterwards, the heat exchanger pressure changes very slowly as the steam generation rate is approximate to the steam condensation rate. The mass of water in water tank

  3. Next generation surveillance system (NGSS)

    International Nuclear Information System (INIS)

    Aparo, Massimo

    2006-01-01

    Development of 'functional requirements' for transparency systems may offer a near-term mode of regional cooperation. New requirements under development at the IAEA may provide a foundation for this potential activity. The Next Generation Surveillance System (NGSS) will become the new IAEA remote monitoring system Under new requirements the NGSS would attempt to use more commercial components to reduce cost, increase radiation survivability and further increase reliability. The NGSS must be available in two years due to rapidly approaching obsolescence in the existing DCM family. (author)

  4. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    The paper examines implementation of heat saving measures in buildings in 2050, under the assumption that heat and power supply comes solely from renewable resources in Denmark.Balmorel – a linear optimisation model of heat and power sectors in Denmark is used for investigating economically viable...... levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating....... A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...

  5. Investigation of Battery Heat Generation and Key Performance Indicator Efficiency Using Isothermal Calorimeter

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    , and the heat flux of the battery cell at the same time. Temperatures on the surface of the cell are measured using contact thermocouples, whereas, the heat flux is measured simultaneously by the isothermal calorimeter. This heat flux measurement is used for determining the heat generation inside the cell...

  6. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    Science.gov (United States)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  7. Dual energy use systems: District heating survey

    Science.gov (United States)

    1980-07-01

    The current status of and problems facing district heating systems operated by electric utilities were identified. The technical and economic factors which can affect the present and future success of district heating systems in the United States were evaluated. A survey of 59 district heating electric utilities was conducted to determine the current status of the industry. Questions developed to obtain data on technical, economic, regulator, and marketing factors were included in the survey. Literature on district heating in the U.S. and abroad was collected from governments, industry and foreign sources and reviewed to aid in evaluating the current and future potential of the industry. Interviews were held with executives of 16 utilities that operate district heating systems in order to determine corporate attitudes. A summary of the literature obtained is provided. Survey results are tabulated and described. The interviews and survey data were used to compile 10 case studies of utilities operating district heating systems under a braod range of circumstances.

  8. CAREM-25: Residual heat removal system

    International Nuclear Information System (INIS)

    Arvia, Roberto P.; Coppari, Norberto R.; Gomez de Soler, Susana M.; Ramilo, Lucia B.

    2000-01-01

    The objective of this work was the definition and consolidation of the residual heat removal system for the CAREM 25 reactor. The function of this system is cool down the primary circuit, removing the core decay heat from hot stand-by to cold shutdown and during refueling. In addition, this system heats the primary water from the cold shutdown condition to hot stand-by condition during the reactor start up previous to criticality. The system has been designed according to the requirements of the standards: ANSI/ANS 51.1 'Nuclear safety criteria for the design of stationary PWR plants'; ANSI/ANS 58.11 'Design criteria for safe shutdown following selected design basis events in light water reactors' and ANSI/ANS 58.9 'Single failure criteria for light water reactor safety-related fluid systems'. The suggested design fulfills the required functions and design criteria standards. (author)

  9. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  10. Solar Powered Heat Control System for Cars

    OpenAIRE

    Abin John; Jithin Thomas

    2014-01-01

    It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by mean...

  11. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  12. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

  13. A 12-month, randomized, controlled study to evaluate exposure and cardiovascular risk factors in adult smokers switching from conventional cigarettes to a second-generation electrically heated cigarette smoking system.

    Science.gov (United States)

    Roethig, Hans J; Feng, Shixia; Liang, Qiwei; Liu, Jianmin; Rees, William A; Zedler, Barbara K

    2008-05-01

    This randomized, controlled, forced-switching, open-label, parallel-group study in 97 adult male and female smokers of conventional cigarettes evaluated biomarkers of tobacco smoke exposure and cardiovascular risk factors. After baseline measurements, smokers were either switched to a second-generation electrically heated cigarette smoking system (EHCSS) or continued smoking conventional cigarettes for 12 months. Biomarkers of exposure and cardiovascular risk factors were measured at 0.5, 1, 2, 3, 4, 5, 6, 9, and 12 months. There was a rapid and sustained reduction in all biomarkers of exposure after switching to the EHCSS, with statistically significant reductions from baseline in nicotine equivalents (-18%), plasma cotinine (-16%), total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (-73%), total 1-hydroxypyrene (-53%), urine mutagenicity (-52%), 4-aminobiphenyl hemoglobin adducts (-43%), carboxyhemoglobin AUC7-23 h (-80%), and 3-hydroxypropylmercapturic acid (-35%). These reductions in exposure in the EHCSS group were associated with statistically significant and pathophysiologically favorable changes in several cardiovascular risk factors, including white blood cell count (-0.78 x 10(3)/microL), hemoglobin (-0.16 g/dL), hematocrit (-0.44%), urine 11-dehydrothromboxane B2 (-374 ng/24 h), and high-density lipoprotein cholesterol (+5 mg/dL).

  14. Dynamic behavior of district heating systems. 1. Report

    International Nuclear Information System (INIS)

    Kunz, J.

    1993-01-01

    In this study a comprehensive model simulating the dynamic behavior of an entire district heating system has been developed. The model consists of four partial models, namely a model of the hydraulic behavior of a heat distribution network, another model of the thermal behavior of this network, a model of the heat generation plants and one of the heat consumers connected to the system. For the hydraulic simulation of the distribution network, a classical steady state approach has proved to be sufficient. The evolution of the temperatures in the network is given by the equation of transport. A numerical resolution scheme, which is adapted to the special case of a heat distribution network was developed for this equation. The model developed for the heating plant is simple but it is sufficiently detailed to determine the operation of its elements. A more complex model would take much more calculation time, but with such a simple model, it is possible to include it in the global model of the entire system. Each heat consumer is represented by a simple one cell model. The difficulty in such an approach is to determine the characteristics of each building in a simple manner. A classification, which allows to find the essential parameters from few and easily available data, has been defined. This model is not sufficiently accurate to calculate the thermal behavior of one specific building but it allows to determine the average dynamic evolution of the heat demand for a set of buildings with a good precision.The developed models have been programmed on a personal computer and the entire district heating network of the city of Lausanne has been simulated with this calculation code. Measurements have been taken on this network and the comparison with calculated results has allowed to calibrate the model. The comparison of measurements and calculations shows, that each part of the system is simulated realistically by the proposed model. (author) figs., tabs., refs

  15. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  16. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  17. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for... the heating capacity to meet § 154.174(b)(2) or § 154.176(b)(2); (b) Have stand-by heating to provide...

  18. Towards Next Generation BI Systems

    DEFF Research Database (Denmark)

    Varga, Jovan; Romero, Oscar; Pedersen, Torben Bach

    2014-01-01

    Next generation Business Intelligence (BI) systems require integration of heterogeneous data sources and a strong user-centric orientation. Both needs entail machine-processable metadata to enable automation and allow end users to gain access to relevant data for their decision making processes....... Although evidently needed, there is no clear picture about the necessary metadata artifacts, especially considering user support requirements. Therefore, we propose a comprehensive metadata framework to support the user assistance activities and their automation in the context of next generation BI systems....... This framework is based on the findings of a survey of current user-centric approaches mainly focusing on query recommendation assistance. Finally, we discuss the benefits of the framework and present the plans for future work....

  19. Integrated system of nuclear reactor and heat exchanger

    International Nuclear Information System (INIS)

    McDonald, B.N.; Schluderberg, D.C.

    1977-01-01

    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level with the transversal separation [fr

  20. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  1. On the spectrum of vertically propagating gravity waves generated by a transient heat source

    Directory of Open Access Journals (Sweden)

    M. J. Alexander

    2004-01-01

    Full Text Available It is commonly believed that cumulus convection preferentially generates gravity waves with tropospheric vertical wavelengths approximately twice the depth of the convective heating. Individual cumulonimbus, however, act as short term transient heat sources (duration 10 to 30min. Gravity waves generated by such sources have broad frequency spectra and a wide range of vertical scales. The high-frequency components tend to have vertical wavelengths much greater than twice the depth of the heating. Such waves have large vertical group velocities, and are only observed for a short duration and at short horizontal distances from the convective source. At longer times and longer distances from the source the dominant wave components have short vertical wavelengths and much slower group velocities, and thus are more likely to be observed even though their contribution to the momentum flux in the upper stratosphere and mesosphere may be less than that of the high frequency waves. These properties of convectively generated waves are illustrated by a linear numerical model for the wave response to a specified transient heat source. The wave characteristics are documented through Fourier and Wavelet analysis, and implications for observing systems are discussed.

  2. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  3. Upgrade of ICRF heating system on EAST

    International Nuclear Information System (INIS)

    Chen Gen; Zhao Yanpin; Mao Yuzhou

    2013-01-01

    ICRF (Ion Cyclotron Range of Frequency) heating is an essential heating and current drive tool on EAST (Experimental Advanced Superconducting Tokamak). The high-power steady-state transmitters were designed as a part of research and development of ICRF heating system which aimed at output power of 1.5 MW for 1000 s in a frequency range of 25 to 70 MHz. There are 3 stage power amplifiers for each transmitter. Tube TH525A and TH535 were chosen for drive power amplifier (DPA) and final power amplifier (FPA), respectively. The power supply system of DPA and FPA were upgraded by using reliable PSM high voltage sources, whose response time is less than 5 μs. The ICRF system, which consists of 8 transmitters, will give out more than 10 MW total output power in the future. Four of them have been already fabricated, and another four are under construction. Three liquid stub tuners are used for impedance matching between antennas and transmitters, which can be only tuned shot to shot. There are two fast wave heating antennas which are assembled at I port and B port on EAST. Several projects are in progress including fast response impedance matching, distributed data acquisition and control system and so on for EAST ICRF heating system. (author)

  4. DOS-HEATING6: A general conduction code with nuclear heat generation derived from DOT-IV transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.L.; Yuecel, A.; Nadkarny, S.

    1988-05-01

    The HEATING6 heat conduction code is modified to (a) read the multigroup particle fluxes from a two-dimensional DOT-IV neutron- photon transport calculation, (b) interpolate the fluxes from the DOT-IV variable (optional) mesh to the HEATING6 control volume mesh, and (c) fold the interpolated fluxes with kerma factors to obtain a nuclear heating source for the heat conduction equation. The modified HEATING6 is placed as a module in the ORNL discrete ordinates system (DOS), and has been renamed DOS-HEATING6. DOS-HEATING6 provides the capability for determining temperature distributions due to nuclear heating in complex, multi-dimensional systems. All of the original capabilities of HEATING6 are retained for the nuclear heating calculation; e.g., generalized boundary conditions (convective, radiative, finned, fixed temperature or heat flux), temperature and space dependent thermal properties, steady-state or transient analysis, general geometry description, etc. The numerical techniques used in the code are reviewed and the user input instructions and JCL to perform DOS-HEATING6 calculations are presented. Finally a sample problem involving coupled DOT-IV and DOS-HEATING6 calculations of a complex space-reactor configurations described, and the input and output of the calculations are listed. 10 refs., 11 figs., 6 tabs.

  5. Nonstationary Heat Conduction in Atomic Systems

    Science.gov (United States)

    Singh, Amit K.

    Understanding heat at the atomistic level is an interesting exercises. It is fascinating to note how the vibration of atoms result into thermodynamic concept of heat. This thesis aims to bring insights into different constitutive laws of heat conduction. We also develop a framework in which the interaction of thermostats to the system can be studied and a well known Kapitza effect can be reduced. The thesis also explores stochastic and continuum methods to model the latent heat release in the first order transition of ideal silicon surfaces into dimers. We divide the thesis into three works which are connected to each other: 1. Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. In this thesis, we first propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to

  6. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar...

  7. Ion cyclotron resonance heating system on Aditya

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. An ion cyclotron resonance heating (ICRH) system has been designed, fabricated indigenously and commissioned on Tokamak Aditya. The system has been commissioned to operate between 20·0 and 47·0 MHz at a maximum power of 200 kW continuous wave (CW). Duration of 500 ms is sufficient for operation.

  8. Solar-heating system design package

    Science.gov (United States)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  9. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  10. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...

  11. Evaluation of Next Generation Nuclear Power Plant (NGNP) Intermediate Heat Exchanger (IHX) Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    E. A. Harvego

    2006-04-01

    This report summarizes results of a preliminary evaluation to determine the operating conditions for the Next Generation Nuclear Plant (NGNP) Intermediate Heat Exchanger (IHX) that will transfer heat from the reactor primary system to the demonstration hydrogen production plant(s). The Department of Energy is currently investigating two primary options for the production of hydrogen using a high temperature reactor as the power source. These options are the High Temperature Electrolysis (HTE) and Sulfur-Iodine (SI) thermochemical hydrogen production processes. However, since the SI process relies entirely on process heat from the reactor, while the HTE process relies primarily on electrical energy with only a small amount of process heat required, the design of the IHX is dictated by the SI process heat requirements. Therefore, the IHX operating conditions were defined assuming 50 MWt is available for the production of hydrogen using the SI process. Three configurations for the intermediate loop were evaluated, including configurations for both direct and indirect power conversion systems. The HYSYS process analysis software was used to perform sensitivity studies to determine the influence of reactor outlet temperatures, intermediate loop working fluids (helium and molten salt), intermediate loop pressures, and intermediate loop piping lengths on NGNP performance and IHX operating conditions. The evaluation of NGNP performance included assessments of overall electric power conversion efficiency and estimated hydrogen production efficiency. Based on these evaluations, recommended IHX operating conditions are defined.

  12. High temperature technological heat exchangers and steam generators with helical coil assembly tube bundle

    International Nuclear Information System (INIS)

    Korotaev, O.J.; Mizonov, N.V.; Nikolaevsky, V.B.; Nazarov, E.K.

    1990-01-01

    Analysis of thermal hydraulics characteristics of nuclear steam generators with different tube bundle arrangements and waste heat boilers for ammonia production units was performed on the basis of operating experience results and research and development data. The present report involves the obtained information. The estimations of steam generator performances and repair-ability are given. The significant temperature profile of the primary and secondary coolant flows are attributed to all steam generator designs. The intermediate mixing is found to be an effective means of temperature profile overcoming. At present the only means to provide an effective mixing in heat exchangers of the following types: straight tubes, field tubes, platen tubes and multibank helical coil tubes (with complicated bend distribution along their length) are section arrangements in series in conjunction with forced and natural mixing in connecting lines. Development of the unificated system from mini helical coil assemblies allows to design and manufacture heat exchangers and steam generators within the wide range of operating conditions without additional expenses on the research and development work

  13. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  14. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  15. Thermoelectric generator cooling system and method of control

    Science.gov (United States)

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  16. Comparison of the heat generation of light curing units.

    Science.gov (United States)

    Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda

    2008-02-01

    The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (p<.05). The least temperature increase (11.8+/-1.3 degrees C) occurred with a LED curing unit for each tested period except for the measurement of the temperature rise using the QTH curing unit at the tenth second interval (p<.05). These results indicate the choice of light activation unit and curing time is important when polymerizing light activated resin based restorations to avoid any thermal damage to the pulp.

  17. House-internal heating systems; Husinterna vaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof; Wollerstrand, Janusz [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2005-07-01

    In this report the placement of the circulation-pump in of waterborne radiator systems, as well as their filling and deairation are investigated. The study was done by literature studies and interviews with consultants and companies active on the HVAC-market. It was concluded that different placements of the pump in relationship to the heat exchanger exist, and the arguments for the choice of placement are varying. The main explanation of the choice of placement is that it is based on experience/or by practical reasons. The most important factor influencing the placement of the pump found, was how the pump is situated in relation to the expansion-tank. To maintain pressure in the whole system the expansion-tank should be placed on the suction side of the pump without any intermediate pressure-dropping devices in between. This placement ensures overpressure in the whole radiator-system and reduces the risk of unwanted leak in of air. To avoid cavitation sufficient static pressure on the suction side of the pump is necessary. The pressure increases with the temperature, which must be taken into consideration if the pump is placed on the warm side of the heat-exchanger. From this point of view a placement in the return-pipe from the radiator-system is to be preferred. Before advices for HVAC-branch regarding placement of the circulation-pump in the heating systems can be implemented, it is of big importance to analyse and clearly specify the advantages and disadvantages of a certain placement of the pump. There is a need of directions to get house-internal systems to operate properly together with district heating system. This is especially important when older heating systems with burners and shunt valves are being connected. Filling and deairation of the radiator system is of great importance for the function of the system. A radiator-system with significant level of air remains is difficult to adjust and will not work properly. Air in the radiators leads to

  18. Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat

    International Nuclear Information System (INIS)

    Wang, Kai; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Recovering cold energy generated in the regasification process of liquefied natural gas (LNG) can help to improve the energy efficiency of LNG power generation systems, meanwhile, abundant low-grade waste heat can also be exploited from the exhaust gas of gas turbines. This study proposes to apply the thermoacoustic Stirling electric generator to recover LNG cold energy and waste heat simultaneously. A pair of linear alternators is directly coupled with the thermoacoustic loop by replacing the long and bulky resonator completely. Numerical simulation is conducted on the basis of the thermoacoustic theory to characterize and optimize the operations of the system. The effects of the back volumes of linear alternators, feedback tube length and regenerator length on the output performances are investigated. The distributions of key parameters, including pressure, volume flow rate, phase difference, acoustic power and exergy flow, are further studied. One design of the thermoacoustic Stirling electric generator operated with 4 MPa helium gas is capable of generating 2.3 kW electric power with the highest exergy efficiency of 0.253 when the cold and hot ends are maintained at 110 K and 500 K. Performances can be further improved if the conversion efficiency of the linear alternators is further increased. - Highlights: • Thermoacoustic Stirling generator for LNG cold energy and waste heat is proposed. • Linear alternators are directly coupled with the thermoacoustic loop. • Back volume of linear alternators and feedback tube length are critical. • Electric power of 2.3 kW with a highest exergy efficiency of 0.253 is achieved. • Exergy efficiency of acoustic power is around 0.4.

  19. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  20. Self-Sustained Flameless Heat Generator Based on Catalytic Oxidation of Methane or Propane-Butane Mixture for Various Object Heating Including Field Heating

    Directory of Open Access Journals (Sweden)

    Strizhak, P.Ye.

    2016-09-01

    Full Text Available An effective catalyst based on ceramic block support with honeycomb structure made of synthetic cordierite with low coefficient of temperature linear expansion has been developed. Flameless heat generator based on oxidation of methane or propane-butane mixture has been designed. Laboratory and bench testing revealed that the effectiveness of the generators is identical to foreign analogues. The production of self-sustained flameless heat catalytic generators and the catalysts have been adjusted.

  1. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  2. CFD ANALYSIS OF EXHAUST HEAT EXCHANGER FOR THERMO-ELECTRIC POWER GENERATION

    OpenAIRE

    Ravi Bhatt*1, Surendra Bharti2 & Abhishek Shahi3

    2017-01-01

    In thermo-electric power generation an exhaust heat exchanger is used for recovering exhaust heat and a thermo-electric module is used for converting heat into electricity.This research work focus on optimization of the design of exhaust heat exchanger by removing the internal fins and changing the cross-sectional area of heat exchanger to minimize the problem of pressure drop.The designs of exhaust heat exchangers used in the previous research works recovers maximum heat from an engine exhau...

  3. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    Science.gov (United States)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  4. Bivalent heating systems - Potential for savings through system optimisation

    International Nuclear Information System (INIS)

    Good, J.; Jenni, A.; Nussbaumer, T.

    2005-01-01

    This article tales a look at the potential for optimising bivalent heating installations for district heating systems fired with oil and wood. The influence of increases in the price of heating oil as compared to wood fuels is discussed. The authors comment that the proportion of expensive heating oil used in such installations is often too high. Price developments for both classes of fuel in 2005 are discussed. Factors influencing the proportions of oil and wood fuel used are listed and discussed, as is the mode of operation of the district heating systems, their extension and the consumers connected to them. The article provides information on the performance of 30 installations examined. Measures that can be taken to reduce the amount of heating oil used and to increase installation efficiency are presented and discussed

  5. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  6. Heat-Flux Gage thermophosphor system

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  7. A study of heat removal system for CNS of Hanaro

    International Nuclear Information System (INIS)

    Cho, Man-Soon; Park, Kook-Nam; Sohn, Jae-Min; Park, Sun-Hee; Choi, Chang-Oong; Mityukhlyaev, V.A.; Zakharov, A.A.; Serebrov, A.P.

    1998-01-01

    KAERI is going to build up Cold Neutron Source facility in its 30 MW reactor Hanaro in order to provide its scientific community a full range of neutron experimental devices. The first phase of the project was a conceptual study carried out by KAERI through the collaboration with PNPI aiming at defining the main scientific and design option. The heat removal system considered in this conceptual study is the thermosyphon loop with single phase liquid circulation. The liquid moderator thermosyphon removes the radiation heat of about 1000 W from the source cell. Cold helium is supplied by 50 g from the cryogenic refrigerator, which is enough to remove the heat generated in the in-pile assembly. Thermosyphon running range is up to 1,500 W with liquid hydrogen, deuterium or their mixture. In this report design of heat removal system has been considered such as the decision of minimum diameter of cold loop, the overall heat transfer coefficient and the surface area of the heat exchanger, and thermosyphon running range etc. (author)

  8. Solar Heating in Uppsala : A case study of the solar heating system in the neighbourhood Haubitsen in Uppsala

    OpenAIRE

    Blomqvist, Emelie; Häger, Klara; Wiborgh, Malin

    2012-01-01

    The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar heating system is expectedto generate and which factors could improve theefficiency. Simulations suggest that the solar heatingsystem can to cover about 22 per cent of the domestichot water demand in Haubitsen, which corresponds to50 MWh for a year. If some factors, such as the tilt ofthe solar collectors would have be...

  9. Solar heating system installed at Stamford, CT. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    Information is provided on the solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut. The information consists of description of system and components, operation and maintenance manual, as-built drawings and manufacturer's component data. The solar system was designed to provide approximately 50 percent of the heating requirements. The solar facility has 2,561 sq. ft. of liquid flat plate collectors and a 6000 gallon, stone lined, well-insulated storage tank. Freeze protection is provided by a 50 percent glycol/water mixture in the collector loop. From the storage tank, solar heated water is fed into the building's distributed heat pump loop via a modulating three-way valve. If the storage tank temperature drops below 80/sup 0/F, the building loop may be supplied from the existing electrical hot water boilers. The Executive East Office Building is of moderate size, 25,000 sq. ft. of heated space in 2 1/2 stories. The solar system makes available for other users up to 150 KVA of existing electrical generating capacity.

  10. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  11. A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine

    Science.gov (United States)

    Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro

    2017-05-01

    In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.

  12. A heat pipe solar collector system for winter heating in Zhengzhou city, China

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2017-01-01

    Full Text Available A heat pipe solar collector system for winter heating is investigated both experimentally and theoretically. The hourly heat collecting capacity, water temperature and contribution rate of solar collector system based on Zhengzhou city typical sunshine are calculated. The study reveals that the heat collecting capacity and water temperature increases initially and then decreases, and the solar collector system can provide from 40% to 78% heating load for a 200 m2 villa with in Zhengzhou city from November to March.

  13. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  14. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  15. Linear heating system for measurement of thermoluminescence ...

    Indian Academy of Sciences (India)

    Unknown

    scence intensity is monitored. The theory of TL usually assumes that the sample temperature varies linearly with time, although more general theories have been formu- lated and calculations made for non-linear heating system. Previous descriptions of apparatus for the measurement of TL have been published elsewhere ...

  16. Solar Heating Systems: Progress Checks & Tests Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This manual contains Progress Checks and Tests for use in a Solar Heating Systems curriculum (see note). It contains master copies of all Progress Checks and Unit Tests accompanying the curriculum, organized by unit. (The master copies are to be duplicated by each school so that adequate copies are available for student use in a self-paced student…

  17. An investigation of heat recovery of submarine diesel engines for combined cooling, heating and power systems

    International Nuclear Information System (INIS)

    Daghigh, Roonak; Shafieian, Abdellah

    2016-01-01

    Highlights: • The power output of the cycle is about 53 kW in the mass flow rate of 0.6 kg/s. • The output cooling water temperature of evaporator is 3.64 °C. • The absorption chiller has a coefficient of performance equal to 0.94. - Abstract: High temperature and mass flow rate of the exhaust gases of submarine diesel engines provide an appropriate potential for their thermal recovery. The current study introduces a combined cooling, heating and power system for thermal recovery of submarine diesel engines. The cooling system is composed of a mixed effect absorption chiller with two high and low pressure generators. The exhaust of the diesel engine is used in the high pressure generator, and the low pressure generator was divided into two parts. The required heat for the first and second compartments is supplied by the cooling water of the engine and condensation of the vapor generated in the high pressure generator, respectively. The power generation system is a Rankine cycle with an organic working fluid, which is considered a normal thermal system to supply hot water. The whole system is encoded based on mass stability, condensation and energy equations. The obtained findings showed that the maximum heat recovery for the power cycle occurs in exhaust gas mass ratio of 0.23–0.29 and working fluid mass flow rate of 0.45–0.57 kg/s. Further, for each specific mass ratio of exhaust gas, only a certain range of working fluid mass flow rate is used. In the refrigerant mass flow rate of 0.6 kg/s and exhaust gas mass ratio of 0.27, the power output of the cycle is 53 kW, which can also be achieved by simultaneous increase of refrigerant mass flow rate and exhaust gas mass ratio in a certain range of higher powers. In the next section, the overall distribution diagram of output water temperature of the thermal system is obtained according to the exhaust gas mass ratio in various mass flow rates, which can increase the potential of designing and controlling the

  18. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  19. Nonlinear thermal interaction between a heat-generating particulate bed and a solid

    International Nuclear Information System (INIS)

    Cheung, F.B.; Stein, R.P.; Epstein, M.; Gabor, J.D.; Bingle, J.D.

    1980-01-01

    The process of combined conduction and radiation in a large, heat-generating, dry particulate bed in sudden contact with a semi-infinite solid is studied analytically by a successive approximation method and numerically by a finite difference method. The transient behavior of the system, in particular, the behavior of the temperature at the particulate bed-solid interface, is obtained as a function of two dimensionless controlling parameters. Also obtained are the conditions leading to incipient melting of the system. Based upon the finite difference solution, the present approximate method, which is shown to be rather simple and convenient to use, is found to yield rapidly converging and sufficiently accurate results

  20. Effects of Fluid Directions on Heat Exchange in Thermoelectric Generators

    DEFF Research Database (Denmark)

    Suzuki, Ryosuke; Sasaki, Yuto; Fujisaka, Takeyuki

    2012-01-01

    Thermal fluids can transport heat to the large surface of a thermoelectric (TE) panel from hot and/or cold sources. The TE power thus obtainable was precisely evaluated using numerical calculations based on fluid dynamics and heat transfer. The commercial software FLUENT was coupled with a TE model...

  1. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  2. Advanced marine reactor MRX and its application for electricity and heat co-generation

    International Nuclear Information System (INIS)

    Ishida, T.; Ochiai, M.; Hoshi, T.

    2000-01-01

    The basic concept of an innovative advanced marine reactor MRX has been established by design study toward the goals of light-weightiness, compactness, and safety and reliability improvement with adoption of several new technologies. The MRX is the integral-type PWR aimed for use of ship propulsion. Adoption of a water-filled containment makes the reactor light-weighted and compact greatly. The total weight and volume of the reactor are 1600 tons and 1210 m 3 , which are equivalent to halves of the Mutsu, although the reactor power of MRX is three times greater. An engineered safety system of the MRX is a simplified passive system, function of which is confirmed by the safety analysis to be able to keep the reactor integrity even in a case of accident. Reliability of the system is evaluated by the PSA and revealed to have two orders smaller core damage occurrence frequency than existing PWRs. The MRX can be applied to an energy supply system of electricity and heat co-generation. Concept of the nuclear energy supply system is designed to generate electricity, heat and fresh water. The nuclear barge is shown to be a possible nuclear energy supply system with advantage of being easily moveable. (author)

  3. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  4. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materia...

  5. From Modules to a Generator: An Integrated Heat Exchanger Concept for Car Applications of a Thermoelectric Generator

    Science.gov (United States)

    Bosch, Henry

    2016-03-01

    A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.

  6. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...... is a tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys...

  7. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  8. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  9. Method of controlling steam temperature of a fluid heating separation type steam generator

    International Nuclear Information System (INIS)

    Iwashita, Tsuyoshi; Monta, Kazuo.

    1975-01-01

    Object: To keep constant the stability and normal deviation in the entire control system by connecting an element of variable gain substantially in proportion to a preset load in series with the ordinary PID type control system. Structure: Changes in steam temperature at an evaporator outlet due to changes in sodium flow rate are detected by a thermocouple. The resultant detection signal is compared with a preset value of the steam generator output temperature, and a portion proportional to the difference between them is added as an operating signal, the operating signal also being used as a sodium flow rate control signal coupled to a sodium flow rate control means. In this method of control of vapor temperature of a fluid heating separation type steam generator, a control gain variable means is connected in series with a temperature control system to obtain control substantially proportional to the preset load. (Kamimura, M.)

  10. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  11. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  12. Thermoelectric Generators on Satellites—An Approach for Waste Heat Recovery in Space

    Directory of Open Access Journals (Sweden)

    Marian von Lukowicz

    2016-07-01

    Full Text Available Environmental radiation in space (from the Sun, etc. and operational thermal loads result in heat flows inside the structure of satellites. Today these heat flows remain unused and are collected, transported to a radiator and emitted to space to prevent the satellite from overheating, but they hold a huge potential to generate electrical power independently of solar panels. Thermoelectric generators are a promising approach for such applications because of their solid state characteristics. As they do not have any moving parts, they do not cause any vibrations in the satellite. They are said to be maintenance-free and highly reliable. Due to the expected small heat flows modern devices based on BiTe have to be considered, but these devices have no flight heritage. Furthermore, energy harvesting on space systems is a new approach for increasing the efficiency and reliability. In this paper, different systems studies and applications are discussed based some experimental characterisation of the electrical behaviour and their dependence on thermal cycles and vibration.

  13. Miniature Heat Transport System for Nanosatellite Technology

    Science.gov (United States)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  14. Zirconium diboride nanofiber generation via microwave arc heating.

    Science.gov (United States)

    Baldridge, Tyson; Gupta, Mool C

    2008-07-09

    Ultrahigh temperature zirconium diboride nanofibers were produced by microwave arc heating using micron-sized raw powder. While microwave heating the ZrB(2) powder, the development of local arcing led to rapid heating and solidification of the samples, along with the creation of nanofibers. The morphology of these high aspect ratio nanofibers was characterized using scanning electron microscopy and transmission electron microscopy. Energy dispersive x-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction showed the composition to contain zirconium, boron, nitrogen, aluminum and oxygen as well as the crystallographic orientation. ZrB(2) nanofiber applications include aerospace and other harsh environments.

  15. An analytical model for the heat generation in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2004-01-01

    The objective of this work is to establish an analytical model for heat generation by friction stir welding (FSW), based on different assumptions of the contact condition between the rotating tool surface and the weld piece. The material flow and heat generation are characterized by the contact...

  16. Estimation of shutdown heat generation rates in GHARR-1 due to ...

    African Journals Online (AJOL)

    Fission products decay power and residual fission power generated after shutdown of Ghana Research Reactor-1 (GHARR-1) by reactivity insertion accident were estimated by solution of the decay and residual heat equations. A Matlab program code was developed to simulate the heat generation rates by fission product ...

  17. Experimental observation of current generation by asymmetrical heating of ions in a tokamak plasma

    International Nuclear Information System (INIS)

    Gahl, J.; Ishihara, O.; Wong, K.L.; Kristiansen, M.; Hagler, M.

    1986-01-01

    The first experimental observation of current generation by asymmetrical heating of ions is reported. Ions were asymmetrically heated by a unidirectional fast Alfven wave launched by a slow wave antenna inside a tokamak. Current generation was detected by measuring the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column

  18. Application of thermohydraulic dispatcher in low temperature district heating systems for decreasing heat carrier transportation energy cost and increasing reliability of heat supply

    Science.gov (United States)

    Yavorovsky, Y. V.; Romanov, D. O.; Sennikov, V. V.; Sultanguzin, I. A.; Malenkov, A. S.; Zhigulina, E. V.; Lulaev, A. V.

    2017-11-01

    Low pressure district heating systems have low breakdown rate and allow decreasing heat carrier transportation energy cost by means of avoiding throttling of available water head. One of the basic elements of such systems is thermohydraulic dispatcher (THD) which separates primary circuit and secondary circuit (or circuits) that allows avoiding mutual hydraulic influence of circuits on each other and reducing water heads of network pumps. Analysis of perspective ways of using thermohydraulic dispatcher (THD) in low temperature district heating systems is made in this paper. Principal scheme and mathematical model of low pressure and temperature district heating system based on CHP generation with THD are considered. The main advantages of such systems are pointed out.

  19. Thermal power generation during heat cycle near room temperature

    Science.gov (United States)

    Shibata, Takayuki; Fukuzumi, Yuya; Kobayashi, Wataru; Moritomo, Yutaka

    2018-01-01

    We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different electrochemical thermoelectric coefficients (S EC ≡ ∂V/∂T V and T are the redox potential and temperature, respectively) produces electrical energy during heat cycles. The device produces an electrical energy of 2.3 meV/PBA per heat cycle between 295 K (= T L) and 323 K (= T H). The ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16 meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

  20. Single-phase convection heat transfer characteristics of pebble-bed channels with internal heat generation

    International Nuclear Information System (INIS)

    Meng Xianke; Sun Zhongning; Xu Guangzhan

    2012-01-01

    Graphical abstract: The core of the water-cooled pebble bed reactor is the porous channels which stacked with spherical fuel elements. The gaps between the adjacent fuel elements are complex because they are stochastic and often shift. We adopt electromagnetic induction heating method to overall heat the pebble bed. By comparing and analyzing the experimental data, we get the rule of power distribution and the rule of heat transfer coefficient with particle diameter, heat flux density, inlet temperature and working fluid's Re number. Highlights: ► We adopt electromagnetic induction heating method to overall heat the pebble bed to be the internal heat source. ► The ball diameter is smaller, the effect of the heat transfer is better. ► With Re number increasing, heat transfer coefficient is also increasing and eventually tends to stabilize. ► The changing of heat power makes little effect on the heat transfer coefficient of pebble bed channels. - Abstract: The reactor core of a water-cooled pebble bed reactor includes porous channels that are formed by spherical fuel elements. This structure has notably improved heat transfer. Due to the variability and randomness of the interstices in pebble bed channels, heat transfer is complex, and there are few studies regarding this topic. To study the heat transfer characters of pebble bed channels with internal heat sources, oxidized stainless steel spheres with diameters of 3 and 8 mm and carbon steel spheres with 8 mm diameters are used in a stacked pebble bed. Distilled water is used as a refrigerant for the experiments, and the electromagnetic induction heating method is used to heat the pebble bed. By comparing and analyzing the experimental results, we obtain the governing rules for the power distribution and the heat transfer coefficient with respect to particle diameter, heat flux density, inlet temperature and working fluid Re number. From fitting of the experimental data, we obtain the dimensionless average

  1. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    OpenAIRE

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the tran...

  2. Performance Analysis of a Hybrid District Heating System: a Case Study of a Small Town in Croatia

    Directory of Open Access Journals (Sweden)

    Robert Mikulandric

    2015-09-01

    Full Text Available Hybridisation of district heating systems can contribute to more efficient heat generation through cogeneration power plants or through the share increase of renewable energy sources in total energy consumption while reducing negative aspects of particular energy source utilisation. In this work, the performance of a hybrid district energy system for a small town in Croatia has been analysed. Mathematical model for process analysis and optimisation algorithm for optimal system configuration has been developed and described. The main goal of the system optimisation is to reduce heat production costs. Several energy sources for heat production have been considered in 8 different simulation cases. Simulation results show that the heat production costs could be reduced with introduction of different energy systems into an existing district heating system. Renewable energy based district heating systems could contribute to heat production costs decrease in district heating systems up to 30% in comparison with highly efficient heat production technologies based on conventional fuels.

  3. Entropy generation in the flow system generated in between two ...

    Indian Academy of Sciences (India)

    Thermodynamic irreversibility in the flow system provides information on the energy and power losses in the system. Minimization of entropy generation in the flow system enables for the parametric optimization of the system operation. In the present study, parallel plates, in between, filled with the fluid are considered.

  4. Entropy generation in the flow system generated in between two ...

    Indian Academy of Sciences (India)

    MS received 18 October 2007; revised 20 March 2009. Abstract. Thermodynamic irreversibility in the flow system provides infor- mation on the energy and power losses in the system. Minimization of entropy generation in the flow system enables for the parametric optimization of the system operation. In the present study, ...

  5. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  6. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  7. Preliminary business plan: Plzen district heating system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  8. Heat-pipe heat transport system for Stirling space power converter

    Science.gov (United States)

    Alger, Donald L.

    Life issues relating to a sodium-heat-pipe heat transport system are discussed. The heat-pipe system provides heat, at a temperature of 1050 K, to a 50-kWe Stirling engine/linear alternator power converter called the Stirling space power converter. Because corrosion of heat-pipe materials in contact with sodium can affect the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion processes likely to be operative in the heat pipe. Approaches that are being taken to minmize these corrosion processes are discussed.

  9. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  10. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  11. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated...

  12. Critical heat flux and transition boiling characteristics for a sodium-heated steam generator tube for LMFBR applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S.; Holmes, D.H.

    1977-04-01

    An experimental program was conducted to characterize critical heat flux (CHF) in a sodium-heated steam generator tube model at a proposed PLBR steam generator design pressure of 7.2 MPa. Water was circulated vertically upward in the tube and the heating sodium was flowing counter-current downward. The experimental ranges were: mass flux, 110 to 1490 kg/s.m/sup 2/ (0.08 to 1.10 10/sup 6/ lbm/h.ft/sup 2/); critical heat flux, 0.16 to 1.86 MW/m/sup 2/ (0.05 to 0.59 10/sup 6/ Btu/h.ft/sup 2/); and critical quality, 0.48 to 1.0. The CHF phenomenon for the experimental conditions is determined to be dryout as opposed to departure from nucleate boiling (DNB). The data are divided into high- and low-mass flux regions.

  13. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials

    DEFF Research Database (Denmark)

    Ahmadi Atouei, Saeed; Ranjbar, Ali Akbar; Rezaniakolaei, Alireza

    2017-01-01

    experimentally. In the first stage, a TEG module installed between a phase change material (PCM) heat sink, as cooling system, and an electrical heater, as the heat source. Because of the inherent characteristics of PCMs to save the thermal energy as latent heat, the PCM heat sink is used as the heat source...... of the second stage TEGs. In the second stage, five smaller TEG modules are installed around the PCM with individual heat sinks for cooling with natural convection. In order to have a comparison between a common TEG system and the proposed two-stage TEG system, a one-stage thermoelectric generator with forced...

  14. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rhythm R. [Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL (United States); Davis, Todd P.; Glover, Amanda L.; Nikles, David E. [Department of Chemistry, The University of Alabama, Tuscaloosa, AL (United States); Brazel, Christopher S., E-mail: cbrazel@eng.ua.edu [Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL (United States)

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe{sub 3}O{sub 4}) and maghemite (γ-Fe{sub 2}O{sub 3}) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1–47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. - Highlights: • Heating was tested in seven iron oxide nanoparticles for different magnetic fields. • Confirms an optimal nanoparticle size for heating that agrees with the literature. • Verifies Rosenweig's equation to predict the effect of field frequency on heating. • Reports reduced heating in high viscosity environments.

  15. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  16. Assessment of NJOY generated neutron heating factors based on JEF/EFF-1

    International Nuclear Information System (INIS)

    Vontobel, P.

    1990-01-01

    Using the NJOY nuclear data processing system, a coupled neutron-photon multigroup MATXS-formatted nuclear data library was generated based on the files JEF/EFF-1. The neutron heating factors contained in this VITAMIN-J structured library are compared with those of MACLIB-IV. The main differences are due to the included decay heat of shortlived reaction products in MACKLIB-IV and/or due to too high/low photon production data of some JEF/EFF-1 isotopes. It is recommended to check carefully the energy balance of new evaluations containing photon production data. How this can be done with the help of the NJOY HEATR module is shown in an example. (author) 35 figs., 9 refs

  17. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    -CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system......In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro...

  18. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  19. Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit

    International Nuclear Information System (INIS)

    He, Wei; Su, Yuehong; Riffat, S.B.; Hou, JinXin; Ji, Jie

    2011-01-01

    Highlights: → An analytical model of SHP-TEG unit for the condition of constant solar irradiation. → Simulation of maximum power output and conversion efficiency of SHP-TEG. → Design optimization of SHP-TEG. -- Abstract: This paper describes a solar heat pipe thermoelectric generator (SHP-TEG) unit comprising an evacuated double-skin glass tube, a finned heat pipe and a TEG module. The system takes the advantage of heat pipe to convert the absorbed solar irradiation to a high heat flux to meet the TEG operating requirement. An analytical model of the SHP-TEG unit is presented for the condition of constant solar irradiation, which may lead to different performance characteristics and optimal design parameters compared with the condition of constant temperature difference usually dealt with in other studies. The analytical model presents the complex influence of basic parameters such as solar irradiation, cooling water temperature, thermoelement length and cross-section area and number of thermoelements, etc. on the maximum power output and conversion efficiency of the SHP-TEG. Simulation based on the analytical model has been carried out to study the performance and design optimization of the SHP-TEG.

  20. Heat generation in lithium-thionyl chloride and lithium-SO2 cells

    Science.gov (United States)

    Cohen, R.; Melman, A.; Livne, N.; Peled, E.

    1992-09-01

    The effects of current density, temperature, depth of discharge (DOD), and storage on the heat generation rate and faradaic efficiency of Li/Tc and Li/SO2 cells have been determined. Several C-size commercial cells from different manufacturers have been tested. The faradaic efficiency for both systems was found to be very high, typically 96-100 percent even at high current density and high temperatures (55 C). It does not change much with DOD and decreases only slightly with the increase of current density and high temperature (tested up to 4.5 mA/sq cm at 50 percent DOD and 55 C). A performance degradation problem was found for some Li/TC cells. The heat factor, the ratio between the useful electric power and the thermal power generated by the cell, is about the same for fresh Li/TC cells and Li/SO2 cells. However, some Li/TC cells stored for 3 years showed a poor heat factor. It was confirmed that the maximum thermoneutral voltage for the Li/TC and Li/SO2 cells is 3.80 and 3.22 V, respectively.

  1. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  2. Heating systems with PLC and frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Salah; Abu-Mallouh, Riyad [Department of Mechanical and Industrial Engineering, Applied Science University, Amman 11931 (Jordan)

    2008-11-15

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was. (author)

  3. Heating systems with PLC and frequency control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Abu-Mallouh, Riyad

    2008-01-01

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 deg. C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was

  4. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  5. Heat generation in lithium/thionyl chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, H.F.

    1980-01-01

    The flow of heat from lithium/thionyl chloride batteries has been measured in two conduction calorimeters. Several types of cells have been studied, both at rest and during low- and high-rate discharge. In contrast with other reports in the literature, no conditions were found under which the discharge of lithium/thionyl chloride batteries was endothermic. Results at low currents, which are described in terms of the thermodynamic formalism developed previously, are consistent with measurements of the temperature dependence of the open-circuit potential. Cells discharged at higher currents produced more heat flux than predicted by the simple thermodynamic treatment. The current and time variation of the additional heat is consistent with a current-dependent corrosion of the lithium electrode. 14 refs.

  6. Self-generated stochastic heating in an rf discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.

    1992-01-01

    We have studied the nonlinear dynamics of stochastic heating arising from the reflection of electrons from moving sheaths as an underlying mechanism for electron power deposition in r.f. discharges. We examined the dynamics of the electron collision with the sheaths in the regime in which the sheath motion is small compared to the average electron velocity to de rive a mop that describes the electron motion. We have shown that for high frequency, ({omega}/2{pi}{approx gt}50MHz), the electrons will strike the moving wall with random phase. At low pressures this stochasticity is an intrinsic property of the dynamics. The stochastic electron heating leads to a power law electron distribution. The stochastic heating was determined in both the slow sheath and fast sheath velocity regimes assuming an incident Maxwellian distribution.

  7. A new test procedure to evaluate the performance of substations for collective heating systems

    Science.gov (United States)

    Baetens, Robin; Verhaert, Ivan

    2017-11-01

    The overall heat demand of a single dwelling, existing out of space heating and domestic hot water production, decreases due to higher insulation rates. Because of this, investing in efficient and renewable heat generation becomes less interesting. Therefore, to incorporate renewables or residual heat on a larger scale, district heating or collective heating systems grow in importance. Within this set-up, the substation is responsible for the interaction between local demand for comfort and overall energy performance of the collective heating system. Many different configurations of substations exist, which influence both local comfort and central system performance. Next to that, also hybrids exist with additional local energy input. To evaluate performance of such substations, a new experimental-based test procedure is developed in order to evaluate these different aspects, characterized by the two roles a substation has, namely as heat generator and as heat consumer. The advantage of this approach is that an objective comparison between individual and central systems regarding performance on delivering local comfort can be executed experimentally. The lab set-up consists out of three different subsystems, namely the central system, the domestic hot water consumption and the local space heating. The central system can work with different temperature regimes and control strategies, as these aspects have proven to have the largest influence on actual performance. The domestic hot water system is able to generate similar tap profiles according to eco-design regulation for domestic hot water generation. The space heating system is able to demand a modular heat load.

  8. A new test procedure to evaluate the performance of substations for collective heating systems

    Directory of Open Access Journals (Sweden)

    Baetens Robin

    2017-01-01

    Full Text Available The overall heat demand of a single dwelling, existing out of space heating and domestic hot water production, decreases due to higher insulation rates. Because of this, investing in efficient and renewable heat generation becomes less interesting. Therefore, to incorporate renewables or residual heat on a larger scale, district heating or collective heating systems grow in importance. Within this set-up, the substation is responsible for the interaction between local demand for comfort and overall energy performance of the collective heating system. Many different configurations of substations exist, which influence both local comfort and central system performance. Next to that, also hybrids exist with additional local energy input. To evaluate performance of such substations, a new experimental-based test procedure is developed in order to evaluate these different aspects, characterized by the two roles a substation has, namely as heat generator and as heat consumer. The advantage of this approach is that an objective comparison between individual and central systems regarding performance on delivering local comfort can be executed experimentally. The lab set-up consists out of three different subsystems, namely the central system, the domestic hot water consumption and the local space heating. The central system can work with different temperature regimes and control strategies, as these aspects have proven to have the largest influence on actual performance. The domestic hot water system is able to generate similar tap profiles according to eco-design regulation for domestic hot water generation. The space heating system is able to demand a modular heat load.

  9. The research of heating efficiency of different induction heating systems

    Directory of Open Access Journals (Sweden)

    Konesev Sergey

    2017-01-01

    Full Text Available Computer models of tape and coil inductors are described, and a comparison of the heating efficiency depending on various parameters is made. The developed computer model was made in the ELCUT 6.0. As a result of the simulation, data on the heating characteristics (depending on the various parameters of the heating elements are obtained. The average statistical data of a series of experiments with a tape inductor are given. It is shown that for the same parameters (values of inductance and number of wires, the tape version inductor heats up a pipe to a higher temperature (by 5.08% than the inductor in the coil version in 10 minutes.

  10. Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Klinge Jacobsen, Henrik

    2015-01-01

    their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine...

  11. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2015-04-01

    Full Text Available The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of hydraulic connection of solar collector modules as the new result of our work have been proposed. The results of numerical simulation of thermal efficiency of solar heat source for boiler of combined heat supply system with the account of design features of the circuit; regime parameters of thermal generators that allow establishing rational conditions of its functioning have been worked out. The conditions of functioning that provide required temperature of heat carrier incoming to boiler and value of flow rate at which the slippage of heat carrier is not possible for different hydraulic circuits of solar modules have been established.

  12. Milliwatt generator heat source. Progress report, July-December 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1984-01-01

    All LANL hardware requirements were met during the reporting period as scheduled. Lot 12 of T-111 alloy sheet and Lot 8 of yttrium platelets were procured to meet future WR production needs. The GEND IP schedule requirements for 49 fueled MC2893 heat sources were met. Pressure burst surveillance activities continued to be conducted in accordance with SNLA document BB328965. Final results of evaluations of two pressure-burst capsules were normal, suggesting that the corresponding heat sources should be in good condition. The hardware production period ended with an overall hardware process yield of 98.4%

  13. Milliwatt generator heat source. Progress report, July-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Mershad, E.A.

    1984-03-02

    All LANL hardware requirements were met during the reporting period as scheduled. Lot 12 of T-111 alloy sheet and Lot 8 of yttrium platelets were procured to meet future WR production needs. The GEND IP schedule requirements for 49 fueled MC2893 heat sources were met. Pressure burst surveillance activities continued to be conducted in accordance with SNLA document BB328965. Final results of evaluations of two pressure-burst capsules were normal, suggesting that the corresponding heat sources should be in good condition. The hardware production period ended with an overall hardware process yield of 98.4%.

  14. Analysis of a helical coil once-through molten salt steam generator: Experimental results and heat transfer evaluation

    Science.gov (United States)

    Seubert, B.; Rojas, E.; Rivas, E.; Gaggioli, W.; Rinaldi, L.; Fluri, T.

    2016-05-01

    A molten salt helical coil steam generator is an alternative to kettle- or drum-type evaporators which are currently used in commercial-scale solar thermal power plants. A 300 kW prototype was tested during the OPTS project at ENEA. The experimental results presented in this paper have been used to validate a detailed heat transfer analysis of the whole system. The heat transfer analysis deals with the study of both the overall heat transfer coefficient and the shell-side heat transfer coefficient. Due to the specific features of this type of system, no correlations were available in the literature. A new numerical model to predict the performance of large-scale systems is also presented.

  15. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  16. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  17. Heat generation rates in lithium thionyl chloride cells

    Science.gov (United States)

    Frank, H.

    1982-03-01

    An empirical equation that is useful for good first approximation in thermal modeling is presented. Indications and measurements of electrochemical heat effects were investigated. The particular cells of interest are of the D size, with spiral wound configuration and were instrumented with a thermocouple. It is found that cathode limited cells can explode on reversal at moderate temperatures.

  18. Parametric System Model for a Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  19. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    Mahapatra, K.; Gustavsson, L.

    2006-01-01

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  20. Modeling of emergency heat removal system of the IRIS

    International Nuclear Information System (INIS)

    Mendoza G, G.; Viais J, J.; Maioli, A.; Finnicum, D.

    2004-01-01

    Westinghouse is currently pursuing the pre-application licensing of the International Reactor Innovative and Secure (IRIS) on behalf of the IRIS Consortium. As part of this effort, an IRIS Probabilistic Risk Assessment (PRA) is being generated. The frontline system models have been developed based on the current system design information. To the extent practicable, AP1000 information was used to support the development of the models because of the degree of similarity between the non-safety active system functions of the two reactors as well as some passive safety functions. The AP1000 PRA is also the key source of failure rate information for IRIS. Standard modeling techniques were used to develop the fault tree models for the Emergency Heat Removal System (EHRS). The models include pumps, valves, heat exchangers, motive and control power, and actuation signals. Modeled failure modes include demand failures, run failures, standby failures and common cause failures, as appropriate. For the fluid support systems such as cooling water, the PRA analysts developed simplified system design diagrams based on system descriptions in the Safety Analysis report and the system P and IDs from the equivalent AP1000 systems. These PRA designs were reviewed by the system designers to ensure that they were consistent with the designers understanding of the intended design and operation of the system. The PRA designs were then used to develop the needed fault tree models. (Author)

  1. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  2. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  3. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    DEFF Research Database (Denmark)

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers...

  4. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    . With the increasing number of wind turbines (WTs) connected to distribution systems, network operators are concerned about how such a stochastic generation affects power losses of the network. Furthermore, the operators need to estimate how much and when the stochastic generation can reduce the loading of substation...... be achieved through a probabilistic analysis that takes into account the stochastic behavior of wind power generation (WPG) and load demand. Such a probabilistic analysis may help network operators to cut down the cost associated with system planning. Thus, the objective of this thesis is to develop...... stochastic models of renewable generation and load demand for the optimal operation and planning of modern distribution systems through a probabilistic approach. On the basis of statistical data, stochastic models of WPG, load and combined heat and power (CHP) generation are developed. The stochastic wind...

  5. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM 5. FUNDING NUMBERS 6...release. Distribution is unlimited. ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM Aaron R. VanDenBerg Lieutenant, United...HEAT RECOVERY DEVICES Ships mainly extract heat and energy from exhaust gases by using a waste heat boiler located in the actual exhaust duct. The

  6. Innovative system for delivery of low temperature district heating

    OpenAIRE

    Ianakiev, A; Cui, JM; Garbett, S; Filer, A

    2017-01-01

    An innovative low temperature district heating (LTDH) local network is developed in Nottingham, supported by the REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the existing district heating system in Nottingham would be created to use low temperature heating for the first time on such scale in the UK. The development is aimed to extract unused heat from existing district heating system and to mak...

  7. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-01-01

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by

  8. Individual Heating systems vs. District Heating systems: What will consumers pay for convenience?

    International Nuclear Information System (INIS)

    Yoon, Taeyeon; Ma, Yongsun; Rhodes, Charles

    2015-01-01

    For Korea's two most popular apartment heating systems – Individual Heating (IH) and District Heating (DH), – user convenience rests heavily on location of the boiler, availability of hot water, administration of the system, and user control of indoor temperature. A double-bounded dichotomous choice method estimates consumer value for convenience, in a hypothetical market. Higher-income more-educated consumers in more expensive apartments prefer DH. Cost-conscious consumers, who use more electrical heating appliances and more actively adjust separate room temperatures, prefer IH. With willingness-to-pay (WTP) defined as the price ratio between IH and DH, 800 survey respondents indicate a WTP of 4.0% for DH over IH. IH users unfamiliar with DH expect little greater convenience (0.1% WTP), whereas the WTP for DH users runs to 7.9%, demonstrating consumer loyalty. Quantified estimates of consumer preference and convenience can inform design of a full-cost-plus pricing system with a price cap. Results here indirectly predict the effect of abolishing regulations that exclusively establish district heating zones. Strategies to foster the many external benefits of DH systems should stress not their lower cost, but convenience, comfort, and safety. Higher installation costs still hamper DH expansion, so policy-makers could set policies to lower cost barriers to entry. - Highlights: • District Heating (DH) and Individual Heating (IH) systems differ in user convenience. • Difference of convenience is evaluated by a double-bounded dichotomous choice method. • Consumers are willing to pay a 4.03–12.52% higher rate to use DH rather than IH. • Consumers with high living standards prefer DH to IH, and show high consumer loyalty. • Strategies to foster DH systems should stress DH convenience over its lower cost.

  9. Heat Saving Strategies in Sustainable Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Henrik Lund

    2014-06-01

    Full Text Available This paper investigates to which extent heat should be saved rather than produced and to which extent district heating infrastructures, rather than individual heating solutions, should be used in future sustainable smart energy systems. Based on a concrete proposal to implement the Danish governmental 2050 fossil-free vision, this paper identifies marginal heat production costs and compares these to marginal heat savings costs for two different levels of district heating. A suitable least-cost heating strategy seems to be to invest in an approximately 50% decrease in net heat demands in new buildings and buildings that are being renovated anyway, while the implementation of heat savings in buildings that are not being renovated hardly pays. Moreover, the analysis points in the direction that a least-cost strategy will be to provide approximately 2/3 of the heat demand from district heating and the rest from individual heat pumps.

  10. CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System

    Science.gov (United States)

    Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi

    We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.

  11. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  12. Prototype solar heating and combined heating and cooling systems. Quarterly report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-06

    The General Electric Company is developing eight prototype solar heating and combined heating and cooling systems. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  13. Heat Driven Acoustic Power Source Coupled to an Electric Generator

    OpenAIRE

    Hofler, Thomas J.

    1999-01-01

    Patent The electricity generating engine has modest efficiency, but may be attractive in remote applications where highreliability or low cost or low environmental noise or solar powering is important. The generator is likely to be most attractive in capacities of a few kW to below 100 W where a tiny engine would be impractical using other technologies.

  14. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  15. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  16. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  17. Heat Generation Effects on U-Mo/Al through ABAQUS FEM Simulation

    International Nuclear Information System (INIS)

    Cho, Taewon; Jeong, Gwan Yoon; Lee, Cheol Min; Sohn Dongseong

    2014-01-01

    U-Mo/Al dispersion fuels have been considered a most promising candidate for a replacement of Highly Enriched Uranium (HEU) fuel in many research reactors. Coulson developed a FEM model which show the fuel meat realistically and compared the thermal conductivity results of two and three dimensional model. Williams also developed a FEM model which are different from the former in that it use regularly meshed unit cells. He showed a heat generation effects through FEM simulation and the effective thermal conductivity of the fuel with heat generated in the fuel particles is a little lower than that of the fuel with no heat generated. In the current work, the heat generation effects are analyzed and discussed in a wider range of volume fraction with more realistic models by using ABAQUS finite element package. The FEM model is used to determine the effective thermal conductivity of U-Mo/Al and to simulate the heat generation effects in the study. This model reflected the microscopic morphology of the fuel very well by making random distribution particles although the particle shape is considered as sphere. All simulation results show the heat generation effects although the effects are small when the volume fraction of fuels are high. When the particles are surrounded with interaction layers, the heat transfer from the particle to matrix is disturbed by interaction layers due to the low thermal conductivity of interaction layers. However this effects decreases when the sum of the volume fraction of fuels and interaction layers exceeds 40-50 vol% because a great portion of the heat must pass through fuels and interaction layers although the heat is applied on the surface. Therefore particle size and initial particle volume fractions will be the important factors for the heat generation effects when interaction layers grow during irradiations

  18. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any househol