WorldWideScience

Sample records for generation free electron

  1. Gain of harmonic generation in high gain free electron laser

    Institute of Scientific and Technical Information of China (English)

    DENG Hai-Xiao; DAI Zhi-Min

    2008-01-01

    In a planar undulator employed free electron laser(FEL),each harmonic radiation starts from linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the fundamental radiation.In this paper,we investigate the harmonic generation based on the dispersion relation driven from the coupled Maxwell-Vlasov equations,taking into account the effects due to energy spread,emittance,betatron oscillation of electron beam as well as diffraction guiding of the radiation field.A 3D universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for gain of the nonlinear harmonic generation are presented,which promise rapid computation in FEL design and optimization.The analytical approaches have been validated by 3D simulation results in large range.

  2. Microwave Undulators and Electron Generators for New-Generation Free-Electron Lasers

    Science.gov (United States)

    Abubakirov, E. B.; Bandurkin, I. V.; Vikharev, A. A.; Kuzikov, S. V.; Rozental, R. M.; Savilov, A. V.; Fedotov, A. E.

    2016-03-01

    We discuss possible applications of relativistic pulsed microwave electronic devices in physics and engineering of modern free-electron lasers. In particular, the possibilities of using high-power millimeter-wave radiation pulses for electron pitching in the operating space of the laser (in a microwave undulator), as well as for cooling and focusing of electron bunches, are considered.

  3. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  4. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  5. First microwave generation in the FOM free-electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Pluygers, J.; Shmelyov, M. Y.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1998-01-01

    A free-electron maser (FEM) has been built as a pilot experiment for a millimetre-wave source for applications on future fusion research devices such as ITER, the International Tokamak Experimental Reactor. A unique feature of the Dutch fusion FEM is the possibility to tune the frequency over the en

  6. Two-colour generation in a chirped seeded Free-Electron Laser

    CERN Document Server

    Mahieu, B; Castronovo, D; Danailov, M B; Demidovich, A; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Fröhlich, L; Gauthier, D; Giannessi, L; Mahne, N; Penco, G; Raimondi, L; Spampinati, S; Spezzani, C; Svetina, C; Trovò, M; Zangrando, M

    2013-01-01

    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

  7. Two-colour generation in a chirped seeded free-electron laser: a close look.

    Science.gov (United States)

    Mahieu, Benoît; Allaria, Enrico; Castronovo, Davide; Danailov, Miltcho B; Demidovich, Alexander; De Ninno, Giovanni; Di Mitri, Simone; Fawley, William M; Ferrari, Eugenio; Fröhlich, Lars; Gauthier, David; Giannessi, Luca; Mahne, Nicola; Penco, Giuseppe; Raimondi, Lorenzo; Spampinati, Simone; Spezzani, Carlo; Svetina, Cristian; Trovò, Mauro; Zangrando, Marco

    2013-09-23

    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

  8. Generation of Phase-Locked Pulses from a Seeded Free-Electron Laser.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca

    2016-01-15

    In a coherent control experiment, light pulses are used to guide the real-time evolution of a quantum system. This requires the coherence and the control of the pulses' electric-field carrier waves. In this work, we use frequency-domain interferometry to demonstrate the mutual coherence of time-delayed pulses generated by an extreme ultraviolet seeded free-electron laser. Furthermore, we use the driving seed laser to lock and precisely control the relative phase between the two free-electron laser pulses. This new capability opens the way to a multitude of coherent control experiments, which will take advantage of the high intensity, short wavelength, and short duration of the pulses generated by seeded free-electron lasers.

  9. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-05-15

    CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)

  10. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  11. Generation of high harmonic free electron laser with phase-merging effect

    Science.gov (United States)

    Li, Heting; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  12. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Science.gov (United States)

    Tanaka, Takashi; Kinjo, Ryota

    2017-08-01

    We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs), which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  13. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  14. Comparison of short pulse generation schemes for a soft x-ray free electron laser

    Science.gov (United States)

    Martin, I. P. S.; Bartolini, R.

    2011-03-01

    In this paper we study the performance of two complementary short pulse generation schemes as applied to a soft x-ray free electron laser. The first scheme, recently proposed by Saldin et al., makes use of a laser pulse consisting of only a few optical cycles to give an energy chirp to a short section of an electron bunch and tapers the main radiator undulator in order to compensate the chirped region. The second scheme investigated takes a low-charge, high brightness electron bunch and compresses it to ˜1fs in order to operate in the so-called “single-spike” regime. We perform start-to-end simulations of both these schemes, assess the sensitivity of each scheme to realistic jitter sources, and provide a direct comparison of the respective strengths and drawbacks.

  15. Comparison of short pulse generation schemes for a soft x-ray free electron laser

    Directory of Open Access Journals (Sweden)

    I. P. S. Martin

    2011-03-01

    Full Text Available In this paper we study the performance of two complementary short pulse generation schemes as applied to a soft x-ray free electron laser. The first scheme, recently proposed by Saldin et al., makes use of a laser pulse consisting of only a few optical cycles to give an energy chirp to a short section of an electron bunch and tapers the main radiator undulator in order to compensate the chirped region. The second scheme investigated takes a low-charge, high brightness electron bunch and compresses it to ∼1  fs in order to operate in the so-called “single-spike” regime. We perform start-to-end simulations of both these schemes, assess the sensitivity of each scheme to realistic jitter sources, and provide a direct comparison of the respective strengths and drawbacks.

  16. Start-to-end simulations for a seeded harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    S. Thorin

    2007-11-01

    Full Text Available This paper shows how the MAX linac injector and transport system can be efficiently retuned to suit free electron laser (FEL performance. In a collaboration between MAX-lab and BESSY, a seeded harmonic generation free electron laser is being constructed at MAX-lab. The setup uses the existing MAX-lab facility upgraded with a new low emittance photocathode gun, a Ti∶Sa 266 nm laser system used for both the gun and seeding and an FEL undulator system. To produce the high quality electron beam needed, it is shown how the magnet optics in an achromatic dogleg can be tuned to create an optimum bunch compression and how a good quality beam can be maintained through the beam transport and delivered to the FEL undulators. In extensive start-to-end simulations from the cathode of the gun to the generation of photons in the undulators, FEL performance and stability has been calculated using simulation tools like ASTRA, ELEGANT, and GENESIS. This has been done for both the third and fifth harmonic of the seed laser. The results from the calculation are 30 fs light pulses with a power of 11 MW at 88 nm and 1.4 MW at 53 nm.

  17. Intense ultrashort pulse generation using the JAERI far-infrared free electron laser

    CERN Document Server

    Nagai, R; Nishimori, N; Kikuzawa, N; Sawamura, M; Minehara, E J

    2002-01-01

    An intense ultrashort optical pulse has been quasi-continuously generated using a superconducting RF linac-based free-electron laser at a wavelength of 22.5 mu m. The pulse shape and width are measured by second-order optical autocorrelation with a birefringent Te crystal. At synchronism of the optical resonator, the pulse shape is a smooth single pulse with an FWHM width of 255 fs and energy of 74 mu J. A train of subpulses is developed by increasing the desynchronism of the optical resonator. The measured results are in good agreement with numerical simulation.

  18. First lasing of a high-gain harmonic generation free- electron laser experiment

    CERN Document Server

    Yu, L H; Ben-Zvi, I; Di Mauro, Louis F; Doyuran, A; Graves, W; Johnson, E; Krinsky, S; Malone, R; Pogorelsky, I V; Skaritka, J; Rakowsky, G; Solomon, L; Wang, X J; Woodle, M; Yakimenko, V; Biedron, S G; Galayda, J N; Gluskin, E; Jagger, J; Sajaev, Vadim; Vasserman, I

    2000-01-01

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2x10 sup 7 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (approx 2 m) through the same wiggler. This means the HGHG signal is 2x10 sup 6 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  19. Analytic model of bunched beams for harmonic generation in thelow-gain free electron laser regime

    Energy Technology Data Exchange (ETDEWEB)

    Penn, G.; Reinsch, M.; Wurtele, J.S.

    2006-02-20

    One scheme for harmonic generation employs free electron lasers (FELs) with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beamline in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast X-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  20. Slippage effect on laser phase error amplification in seeded harmonic generation free-electron lasers

    CERN Document Server

    Feng, Chao; Wang, Guanglei; Wang, Dong; Xiang, Dao; Zhao, Zhentang

    2013-01-01

    Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in soft x-ray region. However, it has been pointed out that the initial seed laser noise will be amplified by the frequency up-conversion process, which may degrade the quality of the output radiation produced by a harmonic generation scheme. In this paper, theoretical and simulation studies for laser phase error amplification in seeded FEL schemes with slippage effect taken into account are presented. It is found that, the seed laser imperfection experienced by the electron beam can be significantly smoothed by the slippage effect in the modulator when the slippage length is comparable to the laser pulse length. This smoothing effect allows one to preserve the excellent temporal coherence of seeded FELs in presence of large laser phase errors. For ultra-short UV seed lasers with FWHM around 16 fs, the slippage length in a modulator with ~30 undulator periods i...

  1. Analysis of Coherence Properties of 3-rd Generation Synchrotron Sources and Free-Electron Lasers

    CERN Document Server

    Vartanyants, I A

    2009-01-01

    A general theoretical approach based on the results of statistical optics is used for the analysis of the transverse coherence properties of 3-rd generation synchrotron sources and x-ray free-electron lasers (XFEL). Correlation properties of the wavefields are calculated at different distances from an equivalent Gaussian Schell-model source. This model is used to describe coherence properties of the five meter undulator source at the synchrotron storage ring PETRA III. In the case of XFEL sources the decomposition of the statistical fields into a sum of independently propagating transverse modes is used for the analysis of the coherence properties of these new sources. A detailed calculation is performed for the parameters of the SASE1 undulator at the European XFEL. It is demonstrated that only a few modes contribute significantly to the total radiation field of that source.

  2. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC

    2012-02-15

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  3. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Pernet, Pierre-Louis [Swiss Federal Institute of Technology, Lausanne (Switzerland)

    2010-06-24

    With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.

  4. Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    Science.gov (United States)

    Crowe, I. F.; Papachristodoulou, N.; Halsall, M. P.; Hylton, N. P.; Hulko, O.; Knights, A. P.; Yang, P.; Gwilliam, R. M.; Shah, M.; Kenyon, A. J.

    2013-01-01

    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb-centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth.

  5. First mm-wave generation in the FOM free electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Plomp, J.; Savilov, A. V.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1999-01-01

    A free electron maser (FEM) has been built as a pilot mm-wave source for applications on future fusion research devices such as international tokamak experimental reactor (ITER), A unique feature of the Dutch FEM is the possibility to tune the frequency over the entire range from 130 to 260 GHz at a

  6. First mm-wave generation in the FOM free electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Plomp, J.; Savilov, A. V.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1999-01-01

    A free electron maser (FEM) has been built as a pilot mm-wave source for applications on future fusion research devices such as international tokamak experimental reactor (ITER), A unique feature of the Dutch FEM is the possibility to tune the frequency over the entire range from 130 to 260 GHz at

  7. Bremsstrahlung and Line Spectroscopy of Warm Dense Aluminum Plasma Generated by EUV Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Zastrau, U; Fortmann, C; Faustlin, R; Bornath, T; Cao, L F; Doppner, T; Dusterer, S; Forster, E; Glenzer, S H; Gregori, G; Holl, A; Laarmann, T; Lee, H; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Tiggesbaumker, J; Thiele, R; Truong, N X; Uschmann, I; Toleikis, S; Tschentscher, T; Wierling, A

    2008-03-07

    We report on the novel creation of a solid density aluminum plasma using free electron laser radiation at 13.5 nm wavelength. Ultrashort pulses of 30 fs duration and 47 {micro}J pulse energy were focused on a spot of 25 {micro}m diameter, yielding an intensity of 3 x 10{sup 14} W/cm{sup 2} on the bulk Al-target. The radiation emitted from the plasma was measured using a high resolution, high throughput EUV spectrometer. The analysis of both bremsstrahlung and line spectra results in an estimated electron temperature of (30 {+-} 10) eV, which is in very good agreement with radiation hydrodynamics simulations of the laser-target-interaction. This demonstrates the feasibility of exciting plasmas at warm dense matter conditions using EUV free electron lasers and their accurate characterization by EUV spectroscopy.

  8. High Repetition Rate Electron Beam RF-Acceleration and Sub-Millimeter Wave Generation Via a Free Electron Laser.

    Science.gov (United States)

    1986-02-14

    Period, Including Journal References: (a) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A High Duty Cycle, Compact 94 GHz Free Electron Laser...34 submitted to Journal IR and am-Waves. (b) W.J. Nunan , D.B. McDermott and N.C. Luhmann, Jr., "A High Repetition *Rate, Compact 94 GHz Free Electron Laser...34 Bulletin of the American Phy- * ) sical Society 30, 1543 (1985). L J (c) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A High RepetitionLL

  9. Generation of ultrahigh harmonics with a two-stage free electron laser and a seed laser

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1997-01-01

    We consider the possibility to premodulate an ultrarelativistic electron beam on the nanometer length scale, so that it can produce coherent spontaneous radiation in the x-ray range. The scheme that uses the same basic elements as the high gain harmonic generation (HGHG) scheme, two wigglers and a c

  10. Generation of large-bandwidth x-ray free-electron-laser pulses

    Directory of Open Access Journals (Sweden)

    Angela Saa Hernandez

    2016-09-01

    Full Text Available X-ray free-electron lasers (XFELs are modern research tools in disciplines such as biology, material science, chemistry, and physics. Besides the standard operation that aims at minimizing the bandwidth of the produced XFEL radiation, there is a strong scientific demand to produce large-bandwidth XFEL pulses for several applications such as nanocrystallography, stimulated Raman spectroscopy, and multiwavelength anomalous diffraction. We present a self-consistent method that maximizes the XFEL pulse bandwidth by systematically maximizing the energy chirp of the electron beam at the undulator entrance. This is achieved by optimizing the compression scheme and the electron distribution at the source in an iterative back-and-forward tracking. Start-to-end numerical simulations show that a relative bandwidth of 3.25% full-width can be achieved for the hard x-ray pulses in the SwissFEL case.

  11. Generation of ultra-large-bandwidth X-ray free-electron-laser pulses with a transverse-gradient undulator.

    Science.gov (United States)

    Prat, Eduard; Calvi, Marco; Reiche, Sven

    2016-07-01

    A new and simple method to generate X-ray free-electron-laser radiation with unprecedented spectral bandwidth above the 10% level is presented. The broad bandwidth is achieved by sending a transversely tilted beam through a transverse-gradient undulator. The extent of the bandwidth can easily be controlled by variation of the beam tilt or the undulator gradient. Numerical simulations confirm the validity and feasibility of this method.

  12. Half-period optical pulse generation using a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A.; Chaix, P.; Piovella, N. [Commissariat a l`Energie Atomique, Bruycres-le-Chatel (France)

    1995-12-31

    Recently there has been growth, in interest in non-equilibrium interaction of half-period long optical pulses with matter. To date the optical pulses have been produced by chopping out a half-period long segment from a longer pulse using a semiconductor switch driven by a femtosecond laser. In this paper we present new methods for producing tunable ultra-short optical pulses as short as half an optical period using a free-electron laser driven by electron bunches with a duration a fraction of an optical period. Two different methods relying on the production of coherent spontaneous emission will be described. In the first method we show that when a train of ultra-short optical pulses as short as one half period. We present calculations which show that the small signal gain is unimportant in the early stages of radiation build up in the cavity when the startup process is dominated by coherent spontaneous emission. To support our proposed method we present encouraging experimental results from the FELIX experiment in the Netherlands which show that interference effects between the coherent spontaneous optical pulses at start-up are very important. The second proposed method relies on the fact that coherent spontaneous emission mimics the undulations of electrons as they pass through the undulator. We show that ultra-short optical pulses are produced by coherent spontaneous emission when ultra-short electron bunches pass through an ultra-short undulator. We discuss the interesting case of such undulator radiation in the presence of an optical cavity and show that the optical pulse can be {open_quotes}taylored{close_quotes} by simply adjusting the optical cavity desynchronism. The proposed methods may be realisable using existing rf driven FELs in the far-infrared.

  13. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  14. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime.

    Science.gov (United States)

    Ayvazyan, V; Baboi, N; Bohnet, I; Brinkmann, R; Castellano, M; Castro, P; Catani, L; Choroba, S; Cianchi, A; Dohlus, M; Edwards, H T; Faatz, B; Fateev, A A; Feldhaus, J; Flöttmann, K; Gamp, A; Garvey, T; Genz, H; Gerth, Ch; Gretchko, V; Grigoryan, B; Hahn, U; Hessler, C; Honkavaara, K; Hüning, M; Ischebeck, R; Jablonka, M; Kamps, T; Körfer, M; Krassilnikov, M; Krzywinski, J; Liepe, M; Liero, A; Limberg, T; Loos, H; Luong, M; Magne, C; Menzel, J; Michelato, P; Minty, M; Müller, U-C; Nölle, D; Novokhatski, A; Pagani, C; Peters, F; Pflüger, J; Piot, P; Plucinski, L; Rehlich, K; Reyzl, I; Richter, A; Rossbach, J; Saldin, E L; Sandner, W; Schlarb, H; Schmidt, G; Schmüser, P; Schneider, J R; Schneidmiller, E A; Schreiber, H-J; Schreiber, S; Sertore, D; Setzer, S; Simrock, S; Sobierajski, R; Sonntag, B; Steeg, B; Stephan, F; Sytchev, K P; Tiedtke, K; Tonutti, M; Treusch, R; Trines, D; Türke, D; Verzilov, V; Wanzenberg, R; Weiland, T; Weise, H; Wendt, M; Will, I; Wolff, S; Wittenburg, K; Yurkov, M V; Zapfe, K

    2002-03-11

    Experimental results are presented from vacuum-ultraviolet free-electron laser (FEL) operating in the self-amplified spontaneous emission (SASE) mode. The generation of ultrashort radiation pulses became possible due to specific tailoring of the bunch charge distribution. A complete characterization of the linear and nonlinear modes of the SASE FEL operation was performed. At saturation the FEL produces ultrashort pulses (30-100 fs FWHM) with a peak radiation power in the GW level and with full transverse coherence. The wavelength was tuned in the range of 95-105 nm.

  15. Matching-based fresh-slice method for generating two-color x-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    Weilun Qin

    2017-09-01

    Full Text Available Two-color high intensity x-ray free-electron lasers (FELs provide powerful tools for probing ultrafast dynamic systems. A novel concept of realizing fresh-slice two-color lasing through slice-dependent transverse mismatch has been proposed by one of the authors [Y. Chao, SLAC Report No. SLAC-PUB-16935, 2016]. In this paper we present a feasible example following this concept based on the Linac Coherent Light Source parameters. Time-dependent mismatch along the bunch is generated by a passive dechirper module and controlled by downstream matching sections, enabling FEL lasing at different wavelength with a split undulator configuration. Simulations for soft x-ray FELs show that tens of gigawatts pulses with femtosecond duration can be generated.

  16. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    Directory of Open Access Journals (Sweden)

    G. Penn

    2006-06-01

    Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  17. Misconceptions regarding Second Harmonic Generation in X-Ray Free-Electron Lasers

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M V

    2005-01-01

    Nonlinear generation of coherent harmonic radiation is an important option in the operation of a X-ray FEL facility since it broadens the spectral range of the facility itself, thus allowing for a wider scope of experimental applications. We found that up-to-date theoretical understanding of second harmonic generation is incorrect. Derivation of correct radiation characteristics will follow our criticism.

  18. Generation of induced Smith-Purcell radiation: free-electron laser in open system

    Science.gov (United States)

    Klochkov, Dmitry N.; Oganesyan, Koryun B.; Ayryan, Edik A.; Izmailian, Nikolay Sh.

    2016-04-01

    We have used the framework of the dispersion equation to study coherent Smith-Purcell (SP) radiation induced by a relativistic magnetized electron beam in the absence of a resonator. As an important example of the application of the obtained results of our previous paper JMO v.57, 2060, (2010) the growth rate of SP FEL in the case with a rectangular grating was calculated. The growth rate of the instability is proportional to the square root of the electron beam current. The calculated results are consistent with the experimental data obtained by Urata et al. [Phys. Rev. Lett. 80, 516 (1998)].

  19. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  20. Generation of Frequency-Chirped Pulses in the Far-Infrared by Means of a Subpicosecond Free-Electron Laser and an External Pulse Shaper

    NARCIS (Netherlands)

    Knippels, G.M.H.; van der Meer, A. F. G.; Mols, Rfxam; van Amersfoort, P. W.; Vrijen, R. B.; Maas, D. J.; Noordam, L. D.

    1995-01-01

    The generation of frequency-chirped optical pulses in the far-infrared is reported. The pulses are produced by the free-electron laser FELIX. The chirp is induced by means of an external shaping device consisting of a grating and a telescope. The shaper is based on reflective optics to permit operat

  1. Power generation in a resonant cavity using a beam bunched at 35 GHz by a free electron laser

    Science.gov (United States)

    Donohue, J. T.; Gardelle, J.; Lefevre, T.; Rullier, J. L.; Vermare, C.; Lidia, S. M.; Meurdesoif, Y.

    2000-05-01

    An intense beam of relativistic electrons (800 A, 6.7 MeV) has been bunched at 35 GHz by a free-electron laser, in which output power levels exceeding 100 MW were obtained. The beam was then extracted and transported through a resonant cavity, that was excited by its passage. Microwave power levels of 10 MW were extracted from the cavity, in reasonable agreement with a simple formula which relates power output to known properties of the both beam and cavity.

  2. In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?

    Science.gov (United States)

    Gallat, François-Xavier; Matsugaki, Naohiro; Coussens, Nathan P; Yagi, Koichiro J; Boudes, Marion; Higashi, Tetsuya; Tsuji, Daisuke; Tatano, Yutaka; Suzuki, Mamoru; Mizohata, Eiichi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Park, Jaehyun; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nango, Eriko; Itoh, Kohji; Coulibaly, Fasséli; Tobe, Stephen; Ramaswamy, S; Stay, Barbara; Iwata, So; Chavas, Leonard M G

    2014-07-17

    The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography.

  3. Free Electron Laser in Poland

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The idea of building a new IVth generation of light sources of high luminosity, which use accelerators, arose in the 80ties of XXth century. Now, in a numerable synchrotron and laser laboratories in Europe, there is carried out, since a couple of years, intense applied research on free electron lasers (FEL) [17,18]. Similarly, in this country, free electron laser in Poland – POLFEL [9] is, in a design, a coherent light source of the IVth generation, characterized by very short pulses in the range of 10-100fs, of big power 0,2GW and UV wavelength of 27nm, of average power 1W, with effective high power third harmonic of 9nm. The laser consists of a linear superconducting accelerator 100m in length, undulator and experimental lines. It generates a monochromatic and coherent radiation and can be tuned from THz range via IR, visible to UV, and potentially to X-rays. The linac works in quasi-CW or real-CW mode. It is planned by IPJ [9,10] and XFEL-Poland Consortium [16] as a part of the ESFRI [1] priority EuroFEL...

  4. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  5. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Kaishang Zhou

    2017-01-01

    Full Text Available We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based on the coherent harmonic generation (CHG and superradiant principles. A CHG scheme is first used to generate a coherent signal at ultrahigh harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of a realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultrashort (∼20  fs coherent radiation pulses in the water window can be achieved by using a 1.6 GeV electron beam based on the proposed technique.

  6. Owl: electronic datasheet generator.

    Science.gov (United States)

    Appleton, Evan; Tao, Jenhan; Wheatley, F Carter; Desai, Devina H; Lozanoski, Thomas M; Shah, Pooja D; Awtry, Jake A; Jin, Shawn S; Haddock, Traci L; Densmore, Douglas M

    2014-12-19

    Owl ( www.owlcad.org ) is a biodesign automation tool that generates electronic datasheets for synthetic biological parts using common formatting. Data can be retrieved automatically from existing repositories and modified in the Owl user interface (UI). Owl uses the data to generate an HTML page with standard typesetting that can be saved as a PDF file. Here we present the Owl software tool in its alpha version, its current UI, its description of input data for generating a datasheet, its example datasheets, and the vision of the tool's role in biodesign automation.

  7. Generating Isolated Terawatt-Attosecond X-ray Pulses via a Chirped Laser Enhanced High-Gain Free-electron Laser

    CERN Document Server

    Wang, Zhen; Zhao, Zhentang

    2016-01-01

    A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually-varied spacing current enhancement of the electron beam and a series of spatiotemporal shifters are applied between the undulator sections to amplify a chosen ultra-short radiation pulse from self-amplified spontaneous emission. Three-dimensional start-to-end simulations have been carried out and the calculation results demonstrated that 0.15 nm x-ray pulses with peak power over 1TW and duration of several tens of attoseconds could be achieved by using the proposed technique.

  8. Generating isolated terawatt-attosecond x-ray pulses via a chirped-laser-enhanced high-gain free-electron laser

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-04-01

    Full Text Available A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually varied spacing current enhancement of the electron beam, and a series of spatiotemporal shifters are applied between the undulator sections to amplify a chosen ultrashort radiation pulse from self-amplified spontaneous emission. Three-dimensional start-to-end simulations have been carried out, and the calculation results demonstrated that 0.15 nm x-ray pulses with a peak power over 1 TW and a duration of several tens of attoseconds could be achieved by using the proposed technique.

  9. A high brightness electron beam for Free Electron Lasers

    NARCIS (Netherlands)

    Oerle, van Bartholomeus Mathias

    1997-01-01

    In a free electron laser, coherent radiation is generated by letting an electron beam propagate through an alternating magnetic field. The magnetic field is created by a linear array of magnets, which is called an undulator or a wiggler. The wavelength of the laser radiation depends on the amplitude

  10. Generating coherent soft x-ray pulses in the water window with a high-brightness seeded free-electron laser

    CERN Document Server

    Zhou, Kaishang; Deng, Haixiao; Wang, Dong

    2016-01-01

    We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based the coherent harmonic generation (CHG) and superradiant principles. A CHG scheme is first used to generate coherent signal at ultra-high harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultra-short coherent radiation pulses in the water window can be achieved by using the proposed technique.

  11. Well-Known Mediators of Selective Oxidation with Unknown Electronic Structure: Metal-Free Generation and EPR Study of Imide-N-oxyl Radicals.

    Science.gov (United States)

    Krylov, Igor B; Kompanets, Mykhailo O; Novikova, Katerina V; Opeida, Iosip O; Kushch, Olga V; Shelimov, Boris N; Nikishin, Gennady I; Levitsky, Dmitri O; Terent'ev, Alexander O

    2016-01-14

    Nitroxyl radicals are widely used in chemistry, materials sciences, and biology. Imide-N-oxyl radicals are subclass of unique nitroxyl radicals that proved to be useful catalysts and mediators of selective oxidation and CH-functionalization. An efficient metal-free method was developed for the generation of imide-N-oxyl radicals from N-hydroxyimides at room temperature by the reaction with (diacetoxyiodo)benzene. The method allows for the production of high concentrations of free radicals and provides high resolution of their EPR spectra exhibiting the superhyperfine structure from benzene ring protons distant from the radical center. An analysis of the spectra shows that, regardless of the electronic effects of the substituents in the benzene ring, the superhyperfine coupling constant of an unpaired electron with the distant protons at positions 4 and 5 of the aromatic system is substantially greater than that with the protons at positions 3 and 6 that are closer to the N-oxyl radical center. This is indicative of an unusual character of the spin density distribution of the unpaired electron in substituted phthalimide-N-oxyl radicals. Understanding of the nature of the electron density distribution in imide-N-oxyl radicals may be useful for the development of commercial mediators of oxidation based on N-hydroxyimides.

  12. The Potential for the Development of the X-ray Free Electron Laser Generation of SASE Radiation

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We present a concept of a universal FEL beamline covering continuously wavelength range from 0.1 to 1.6 nm at a fixed energy of the electron beam. FEL beamline accommodates three undulators (SASE1-3) installed one after another. The first undulator, SASE1, is optimized for operation at the wavelength range 0.1-0.15 nm. Our study shows that such tunability range almost does not affect operation at the shortest wavelength of 0.1 nm. Operation of two other FELs (SASE2 and SASE3) is not so critical, and nominal tunability range is chosen to be by a factor of two (2-4 nm, and 8-16 nm, respectively). The length of the undulators is chosen such that continuous wavelength tunability can be provided by means of extra opening the undulator gaps, or by tuning to the frequency doubler mode of operation. Changing of undulator gaps in different parts of SASE2 and SASE3 undulators allows one to tune the modes with high output power (sub-TW level), or for effective generation of the second harmonic. The latter feature might ...

  13. Transform-Limited X-Ray Pulse Generation from a High Brightness Self-Amplified Spontaneous Emission Free-Electron Laser

    CERN Document Server

    McNeil, B W J; Dunning, D J

    2012-01-01

    A method to achieve High-Brightness Self-Amplified Spontaneous Emission (HB-SASE) in the Free Electron Laser (FEL) is described. The method uses repeated non-equal electron beam delays to de-localise the collective FEL interaction and break the radiation coherence length dependence on the FEL cooperation length. The method requires no external seeding or photon optics and so is applicable at any wavelength or repetition rate. It is demonstrated using linear theory and numerical simulations that the radiation coherence length can be increased by approximately two orders of magnitude over SASE with a corresponding increase in spectral brightness. Examples are shown of HB-SASE generating transform-limited FEL pulses in the soft X-ray and near transform-limited pulses in the hard X-ray. Such pulses may greatly benefit existing applications and may also open up new areas of scientific research.

  14. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Science.gov (United States)

    Adams, B. W.; Kim, K.-J.

    2015-03-01

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as 57Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as 181Ta or 45Sc.

  15. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  16. X-Ray Comb Generation from Nuclear-Resonance-Stabilized X-Ray Free-Electron Laser Oscillator for Fundamental Physics and Precision Metrology

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B. W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as Fe-57 as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as Ta-181 or Sc-45.

  17. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  18. Generation of frequency-chirped pulses in the far-infrared by means of a sub-picosecond free-electron laser and an external pulse shaper

    Science.gov (United States)

    Knippels, G. M. H.; van der Meer, A. F. G.; Mols, R. F. X. A. M.; van Amersfoort, P. W.; Vrijen, R. B.; Maas, D. J.; Noordam, L. D.

    1995-02-01

    The generation of frequency-chirped optical pulses in the far-infrared is reported. The pulses are produced by the free-electron laser FELIX. The chirp is induced by means of an external shaping device consisting of a grating and a telescope. The shaper is based on reflective optics to permit operation in a wide spectral range. The present experiments were made at 8.2 μm wavelength. The fwhm duration of the incident pulse was 0.50 ps, which corresponds to a bandwidth of 2.2%. It has been checked that a linear chirp is produced, for the case that the frequency increases from the leading edge of the pulse to the trailing edge, as well as for the reverse case. This is accompanied by an increase of the fwhm pulse duration which ranges up to 16.5 ps.

  19. Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling

    Institute of Scientific and Technical Information of China (English)

    H.Tomizawa; T.Sato; K.Ogawa; K.Togawa; T.Tanaka; T.Hara; M.Yabashi; H.Tanaka; T.Ishikawa; T.Togashi; S.Matsubara; Y.Okayasu; T.Watanabe; E.J.Takahashi; K.Midorikawa; M.Aoyama; K.Yamakawa; S.Owada; A.Iwasaki; K.Yamanouchi

    2015-01-01

    A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength.

  20. Dynamics of a multi-beam photonic free electron laser

    NARCIS (Netherlands)

    Lee, J.H.H.; van Dijk, M.W.; Denis, T.; van der Slot, Petrus J.M.; Boller, Klaus J.

    2012-01-01

    A photonic free-electron laser (pFEL) uses free electrons streaming through a photonic crystal (PhC) to generate tunable coherent radiation. Here, we consider a pFEL driven by a set of three low energy (~ 10 keV), low perveance (< 0.1 μP) electron beams. Using a particle-in- cell code, we numericall

  1. Quantum aspects of the free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gaiba, R.

    2007-03-15

    We study the role of Quantum Mechanics in the physics of Free Electron Lasers. While the Free Electron Laser (FEL) is usually treated as a classical device, we review the advantages of a quantum formulation of the FEL. We then show the existence of a regime of operation of the FEL that can only be described using Quantum Mechanics: if the dimensionless quantum parameter anti {rho} is smaller than 1, then in the 1-dimensional approximation the Hamiltonian that describes the FEL becomes equivalent to the Hamiltonian of a two-level system coupled to a radiation field. We give analytical and numerical solutions for the photon statistics of a Free Electron Laser operating in the quantum regime under various approximations. Since in the quantum regime the momentum of the electrons is discrete, we give a description of the electrons in phase space by introducing the Discrete Wigner Function. We then drop the assumption of a mono-energetic electron beam and describe the general case of a initial electron energy spread G({gamma}). Numerical analysis shows that the FEL quantum regime is observed only when the width of the initial momentum distribution is smaller than the momentum of the emitted photons. Both the analytical results in the linear approximation and the numerical simulations show that only the electrons close to a certain resonant energy start to emit photons. This generates the so-called Hole-burning effect in the electrons energy distribution, as it can be seen in the simulations we provide. Finally, we present a brief discussion about a fundamental uncertainty relation that ties the electron energy spread and the electron bunching. (orig.)

  2. Progress toward the Wisconsin Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, Joseph; Eisert, D; Fisher, M V; Green, M A; Jacobs, K; Kleman, K J; Kulpin, J; Rogers, G C; Lawler, J E; Yavuz, D

    2011-03-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.

  3. Radioprotective thermally generated free-radical dextrins

    Institute of Scientific and Technical Information of China (English)

    Piotr TOMASIK; Oskar MICHALSKI; Ewa BIDZINSKA; Antonina CEBULSKA-WASILEWSKA; Krystyna DYREK; Maciej FIEDOROWICZ; Pawel OLKO

    2008-01-01

    Effect of doses of the X-ray radiation from 0 to 400 Gy upon granular cornstarch and dextrins (British gums, BG) thermally generated from it at 230-300℃ was recognized with quantitative EPR and IR ab-sorption spectroscopy, molecular mass distribution in the depolymerization products, Scanning Elec-tron Microscopy, and X-ray diffractometry. Fractal analysis of the profiles of molecular mass distribu-tion showed that the depolymerization involved debranching of amylopectin. Roasting of cornstarch produced BG which differed in concentration and EPR parameters of stable free radicals from BG generated by X-ray radiation. Two types of stable free radicals, with Gaussian and Lorentzian shapes of EPR signals, were recognized. The shapes of the signals and temperature dependence on free radical intensity indicated exchanging interactions of the antiferromagnetic type, causing partial quenching of the spins at -196℃ (77K). Upon X-ray irradiation, new radicals were generated, the number and stability of which strongly depended on the types of radicals present before irradiation. These radicals slowly ceased because of a repolymerization of BG on storage.

  4. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  5. Holographic free-electron light source

    Science.gov (United States)

    Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2016-12-01

    Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing.

  6. Holographic generation of highly twisted electron beams

    CERN Document Server

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic momen...

  7. The FERMI free-electron lasers.

    Science.gov (United States)

    Allaria, E; Badano, L; Bassanese, S; Capotondi, F; Castronovo, D; Cinquegrana, P; Danailov, M B; D'Auria, G; Demidovich, A; De Monte, R; De Ninno, G; Di Mitri, S; Diviacco, B; Fawley, W M; Ferianis, M; Ferrari, E; Gaio, G; Gauthier, D; Giannessi, L; Iazzourene, F; Kurdi, G; Mahne, N; Nikolov, I; Parmigiani, F; Penco, G; Raimondi, L; Rebernik, P; Rossi, F; Roussel, E; Scafuri, C; Serpico, C; Sigalotti, P; Spezzani, C; Svandrlik, M; Svetina, C; Trovó, M; Veronese, M; Zangrando, D; Zangrando, M

    2015-05-01

    FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.

  8. Limitations of electron beam conditioning for free-electron lasers

    Directory of Open Access Journals (Sweden)

    P. Emma

    2003-03-01

    Full Text Available Several ideas have been proposed to “condition” an electron beam prior to the undulator of a free-electron laser (FEL by increasing each particle’s energy in proportion to the square of its transverse betatron amplitude. This conditioning enhances FEL gain by reducing the axial velocity spread within the electron bunch. We demonstrate that for symplectic beam lines, and independent of the method, this conditioning is always accompanied by a large head-tail focusing variation which, for short-wavelength FELs, is so severe as to make conditioning completely impractical. We furthermore find that any system added to correct the head-tail focusing variation will also remove the conditioning. As an example, a new method for conditioning is presented and shown to generate exactly the same head-tail focusing problems as in previously published work.

  9. Free electron laser and superconductivity

    CERN Document Server

    Iwata, A

    2003-01-01

    The lasing of the first free-electron laser (FEL) in the world was successfully carried out in 1977, so the history of FELs as a light source is not so long. But FELs are now utilized for research in many scientific and engineering fields owing to such characteristics as tunability of the wavelength, and short pulse and high peak power, which is difficult utilizing a common light source. Research for industrial applications has also been carried out in some fields, such as life sciences, semiconductors, nano-scale measurement, and others. The task for the industrial use of FEL is the realization of high energy efficiency and high optical power. As a means of promoting realization, the combining of an FEL and superconducting linac is now under development in order to overcome the thermal limitations of normal-conducting linacs. Further, since tuning the wavelength is carried out by changing the magnetic density of the undulator, which is now induced by moving part of the stack of permanent magnets, there is un...

  10. Airborne Tactical Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  11. Solving X-ray protein structures without a crystal: using X-ray Free Electron Laser, the fourth generation synchrotron light sources

    Institute of Scientific and Technical Information of China (English)

    Bo Huang

    2010-01-01

    @@ A synchrotron light source is a source of electromagnetic radiation artificially produced by specialized electron accelerators. Compared to the commonly used in-house X-ray sources, it is wavelength adjustable, much stronger and more focused. In the last two decades, synchrotron usage has become the mainstream for X-ray protein structure determination. Taking the advantage of micro-focus light beams of the third generation synchrotron, the size of a usable protein crystal for data collection decreases to micron level, which increases the rate of macromolecular structure determination to about 10 new protein data bank entries per day.

  12. Modelling elliptically polarised Free Electron Lasers

    CERN Document Server

    Henderson, J R; Freund, H P; McNeil, B W J

    2016-01-01

    A model of a Free Electron Laser operating with an elliptically polarised undulator is presented. The equations describing the FEL interaction, including resonant harmonic radiation fields, are averaged over an undulator period and generate a generalised Bessel function scaling factor, similar to that of planar undulator FEL theory. Comparison between simulations of the averaged model with those of an unaveraged model show very good agreement in the linear regime. Two unexpected results were found. Firstly, an increased coupling to harmonics for elliptical rather than planar polarisarised undulators. Secondly, and thought to be unrelated to the undulator polarisation, a signficantly different evolution between the averaged and unaveraged simulations of the harmonic radiation evolution approaching FEL saturation.

  13. Physics of Superpulses in Storage Ring Free-Electron Lasers

    Directory of Open Access Journals (Sweden)

    Vladimir N. Litvinenko

    2008-01-01

    Full Text Available Contradictory to the widespread perception, storage ring free-electron lasers with substantial net gain can generate peak lasing power reaching GW levels in the so-called superpulse mode. This power level is sufficient for studies of nonlinear processes and efficient intracavity harmonic generation. This letter describes the physics of the superpulses and a phase-space refreshment in the electron beam responsible for this phenomenon.

  14. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  15. Free electron laser based on the Smith-Purcell radiation

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-hong; XIAO Xiao-guang; YU Hui-shan; MENG Xian-zhu

    2006-01-01

    A Smith-Purcell (SP) free electron laser (FEL) ,composed of a metallic diffraction flat grating,an open cylindrical mirror cavity and a relativistic sheet electron beam with moderate energy, is presented. The characteristics of this device are studied by theoretical analysis, experimental measurements and particle-in-cell (PIC) simulation method. Results indicate that the coherent radiation with an output peak power up to 50 MW at millimeter wavelengths can be generated by using relativistic electron beam of moderate energy.

  16. Runaway electron generation and control

    Science.gov (United States)

    Esposito, B.; Boncagni, L.; Buratti, P.; Carnevale, D.; Causa, F.; Gospodarczyk Martin-Solis, M., Jr.; Popovic, Z.; Agostini, M.; Apruzzese, G.; Bin, W.; Cianfarani, C.; De Angelis, R.; Granucci, G.; Grosso, A.; Maddaluno, G.; Marocco, D.; Piergotti, V.; Pensa, A.; Podda, S.; Pucella, G.; Ramogida, G.; Rocchi, G.; Riva, M.; Sibio, A.; Sozzi, C.; Tilia, B.; Tudisco, O.; Valisa, M.; FTU Team

    2017-01-01

    We present an overview of FTU experiments on runaway electron (RE) generation and control carried out through a comprehensive set of real-time (RT) diagnostics/control systems and newly installed RE diagnostics. An RE imaging spectrometer system detects visible and infrared synchrotron radiation. A Cherenkov probe measures RE escaping the plasma. A gamma camera provides hard x-ray radial profiles from RE bremsstrahlung interactions in the plasma. Experiments on the onset and suppression of RE show that the threshold electric field for RE generation is larger than that expected according to a purely collisional theory, but consistent with an increase due to synchrotron radiation losses. This might imply a lower density to be targeted with massive gas injection for RE suppression in ITER. Experiments on active control of disruption-generated RE have been performed through feedback on poloidal coils by implementing an RT boundary-reconstruction algorithm evaluated on magnetic moments. The results indicate that the slow plasma current ramp-down and the simultaneous reduction of the reference plasma external radius are beneficial in dissipating the RE beam energy and population, leading to reduced RE interactions with plasma facing components. RE active control is therefore suggested as a possible alternative or complementary technique to massive gas injection.

  17. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  18. Nonlinear optics with coherent free electron lasers

    Science.gov (United States)

    Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.

    2016-12-01

    We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.

  19. NASA DOD Lead Free Electronics Project

    Science.gov (United States)

    Kessel, Kurt R.

    2008-01-01

    The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  20. Electron injector for Iranian Infrared Free Electron Laser

    Science.gov (United States)

    Rajabi, A.; Jazini, J.; Fathi, M.; Khosravi, N.; Shokri, B.

    2016-12-01

    The quality of the electron beam for applications like free electron lasers (FELs) has a direct impact on the quality of the laser radiation. The electron injector considered for Iranian Infrared Free Electron Laser (IRIFEL) includes a thermionic RF electron gun plus a bunch compressor as the electron preinjector and a 50 MeV constant gradient traveling wave linac as the main accelerator of the electron injector. In the present work, a thermionic RF gun is designed and matched with an optimized linac to produce a high quality mono-energetic electron beam. The results show that the preinjector is capable of delivering an electron bunch with 1 ps bunch length and 3 mm-mrad emittance to the linac entrance which is desirable for IRIFEL operation. The results also show that by geometrical manipulation and optimization of the linac structure, the pattern of the RF fields in the linac will be more symmetric, which is important in order to produce high stable mono-energetic bunches.

  1. Free Electron Lasers using `Beam by Design'

    CERN Document Server

    Henderson, J R; McNeil, B W J

    2015-01-01

    Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design' with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.

  2. Applications for Energy Recovering Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  3. Undulators and free-electron lasers

    CERN Document Server

    Luchini, P

    1990-01-01

    This book is a reference text for all those working in free-electron laser research as well as being a learning aid for physicists and graduate students who wish an introduction to this field. Only a basic understanding of relativistic mechanics and electromagnetism is presupposed. After an overview of early developments and general principles of operation, the different models that can be used to describe free-electron lasers are presented, organized according to their range of applicability. The relevent conceptual and mathematical constructs are built up from first principles with attention to obtaining the practically important results in a simple but rigorous way. Interaction of the undulator with the driving electron accelerator and the laser cavity and design of undulator magnets are treated and an overview is given of some typical experiments.

  4. Lead-Free Electronics: Impact for Space Electronics

    Science.gov (United States)

    Sampson, Michael J.

    2010-01-01

    Pb is used as a constituent in solder alloys used to connect and attach electronic parts to printed wiring boards (PWBs). Similar Pbbearing alloys are electroplated or hot dipped onto the terminations of electronic parts to protect the terminations and make them solderable. Changing to Pb-free solders and termination finishes has introduced significant technical challenges into the supply chain. Tin/lead (Sn/Pb) alloys have been the solders of choice for electronics for more than 50 years. Pb-free solder alloys are available but there is not a plug-in replacement for 60/40 or 63/37 (Sn/Pb) alloys, which have been the industry workhorses.

  5. A wide bandwidth free-electron laser with mode locking using current modulation.

    Energy Technology Data Exchange (ETDEWEB)

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. (Accelerator Systems Division (APS)); (Univ. of California at Berkeley); (Univ. of Strathclyde); (STFC Daresbury Lab.); (LBNL)

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  6. New Free Electron Wire for Loss Free Utilization of Electrical Energy and Highly Energy Efficient Electrical Appliances

    Directory of Open Access Journals (Sweden)

    Sabyasachi Haldar

    2014-07-01

    Full Text Available New Free Electrons Wire will enable the use of electrical energy and also energy in various other forms, in a loss free way, at room temperature. Free Electrons confined in vacuum at the order of 10-4 torr or more, at the core of the wire, can move a distance as long as about, to a few kilometers without any collision. The vacuum is maintained in a tube made up of alternate layers of Teflon and Silicon Oxynitride. The columbic repulsion between these free electrons will actually conduct energy without any loss. The free electrons trapped in vacuum tube, should be at a particular density of around 2.02 x 108 electrons per unit area. A metal encapsulation(s over the wire is there to keep the electromagnetic field remain confined within the free electron wire, to make it harmless to the health of living creatures. Apart from loss free energy transportation, the free electron wire is also capable of generating very high electromagnetic field due to the free electrons, simply by removing the metal encapsulation(s, which can be used for various purposes. The materials and techniques adopted will make New Free Electron Wire producible commercially, at the cost of general copper wires.

  7. Chaos in free electron laser oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bruni, C. [Univ Paris 11, LAL, UMR 8607, F-91898 Orsay, (France); Bachelard, R.; Couprie, M.E. [Synchrotron SOLEIL, F-91192 Gif Sur Yvette, (France); Garzella, D. [CEA DSM DRECAM SPAM, F-91191 Gif Sur Yvette, (France); Orlandi, G.L. [CR Frascati FIM FISACC, ENEA, I-00044 Frascati, (Italy)

    2009-07-01

    The chaotic nature of a storage-ring free electron laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstrated, in some ranges of parameters, by a positive Lyapounov exponent. The route to chaos is then explored by tuning a single control parameter, and a period-doubling cascade is evidenced, as well as intermittence. (authors)

  8. Low-loss electron beam transport in a high-power, electrostatic free-electron maser

    NARCIS (Netherlands)

    Valentini, M.; van der Geer, C. A. J.; Verhoeven, A. G. A.; van der Wiel, M. J.; Urbanus, W. H.

    1997-01-01

    At the FOM Institute for Plasma Physics ''Rijnhuizen'', The Netherlands, the commissioning of a high-power, electrostatic free-electron maser is in progress. The design target is the generation of 1 MW microwave power in the frequency range 130-260 GHz. The foreseen application o

  9. Zolpidem, A Clinical Hypnotic that Affects Electronic Transfer, Alters Synaptic Activity Through Potential Gaba Receptors in the Nervous System Without Significant Free Radical Generation

    Directory of Open Access Journals (Sweden)

    Peter Kovacic

    2009-01-01

    Full Text Available Zolpidem (trade name Ambien has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET, pharmacodynamics, structure activity relationships (SAR and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action.

  10. Nearly free electron states in MXenes

    Science.gov (United States)

    Khazaei, Mohammad; Ranjbar, Ahmad; Ghorbani-Asl, Mahdi; Arai, Masao; Sasaki, Taizo; Liang, Yunye; Yunoki, Seiji

    2016-05-01

    Using a set of first-principles calculations, we studied the electronic structures of two-dimensional transition metal carbides and nitrides, so called MXenes, functionalized with F, O, and OH. Our projected band structures and electron localization function analyses reveal the existence of nearly free electron (NFE) states in a variety of MXenes. The NFE states are spatially located just outside the atomic structure of MXenes and are extended parallel to the surfaces. Moreover, we found that the OH-terminated MXenes offer the NFE states energetically close to the Fermi level. In particular, the NFE states in some of the OH-terminated MXenes, such as T i2C (OH) 2,Z r2C (OH) 2,Z r2N (OH) 2,H f2C (OH) 2,H f2N (OH) 2,N b2C (OH) 2 , and T a2C (OH) 2 , are partially occupied. This is in remarkable contrast to graphene, graphane, and Mo S2 , in which their NFE states are located far above the Fermi level and thus they are unoccupied. As a prototype of such systems, we investigated the electron transport properties of H f2C (OH) 2 and found that the NFE states in H f2C (OH) 2 provide almost perfect transmission channels without nuclear scattering for electron transport. Our results indicate that these systems might find applications in nanoelectronic devices. Our findings provide new insights into the unique electronic band structures of MXenes.

  11. Electronic power generators for ultrasonic frequencies

    Science.gov (United States)

    Ciovica, D.

    1974-01-01

    The design and construction of an ultrasonic frequency electronic power generator are discussed. The principle design elements of the generator are illustrated. The generator provides an inductive load with an output power of two kilowatts and a variable output frequency in the fifteen to thirty KiloHertz range. The method of conducting the tests and the results obtained with selected materials are analyzed.

  12. Synchrotron topographic evaluation of strain around craters generated by irradiation with X-ray pulses from free electron laser with different intensities

    Energy Technology Data Exchange (ETDEWEB)

    Wierzchowski, W., E-mail: wojciech.wierzchowski@itme.edu.pl [Institute of Electronic Materials Technology, Wólczyńska 133, Warsaw 01-919 (Poland); Wieteska, K. [National Centre for Nuclear Research, Soltana 7, Otwock-Świerk 05-400 (Poland); Sobierajski, R.; Klinger, D.; Pełka, J.; Żymierska, D. [Polish Academy of Sciences, Institute of Physics, al. Lotników 32/46, Warsaw 02-668 (Poland); Paulmann, C. [DESY HASYLAB, Notkestrasse 85, D-22607 Hamburg (Germany); Hau-Riege, S.P.; London, R.A.; Graf, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Burian, T.; Chalupský, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague 8 (Czech Republic); Gaudin, J. [European XFEL GmbH, Albert-Einstein-Ring 19 D-22761 Hamburg (Germany); Krzywinski, J.; Moeller, S.; Messerschmidt, M.; Bozek, J.; Bostedt, Ch. [National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2015-12-01

    The silicon sample irradiated with femtosecond soft X-ray pulses at the Linac Coherent Light Source has been studied with several synchrotron X-ray diffraction topographic methods at HASYLAB. The irradiations were performed for two different wavelengths combined with various impact energy controlled by means of the gas attenuator. The topographic investigation revealed characteristic images of the created craters included the inner region reflecting the X-rays at lower angle, coming most probably from part of the silicon melted during the irradiation. The melted region was surrounded by strained outer region, similar to those observed in the case of rod-like inclusion but less regular in view of some irregularity of the beam used for generation of the craters. It was observed that the higher impact energy higher dose of the irradiating pulses resulted in increasing diameter of the melted area of the crater and the range of the strained region around it. Some features of the monochromatic and white beam back reflection section images of the craters were reproduced in numerically simulated images approximating the strain field in the crater by a droplet containing uniformly distributed point inclusions.

  13. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation.

    Science.gov (United States)

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relationships (SAR) and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action. The pyridinium cation displays molecular electrostatic potential which may well play a role energetically or as a bridging mechanism. An SAR analysis points to analogy with other physiologically active xenobiotics, namely benzodiazepines and paraquat in the conjugated iminium category. Inactivity of metabolites indicates that the parent is the active form of zolpidem. Absence of reactive oxygen species and oxidative stress is in line with minor side effects. In contrast, generally, the prior literature contains essentially no discussion of these fundamental biochemical relationships. Pharmacodynamics may play an important role. Concerning behavior at the blood-brain barrier, useful insight can be gained from investigations of the related cationic anesthetics that are structurally related to acetyl choline. Evidently, the neutral form of the drug penetrates the neuronal membrane, with the salt form operating at the receptor. The pathways of zolpidem have several clinical implications since the agent affects sedation, electroencephalographic activity, oxidative metabolites and

  14. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  15. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    Science.gov (United States)

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  16. An Efficient Microwave Power Source: Free-electron Laser Afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Sessler, Andrew M.

    1993-03-04

    A kind of microwave power source, called a free-electron laser afterburner (FEL afterburner) which consists of a free-electron laser buncher and a slow-wave output structure sharing a magnetic wiggler field with the buncher, is proposed. The buncher and the slow-wave structure can operate in either a travelling-wave state or a standing-wave state. In the buncher, the wiggler field together with the radiation field makes an electron beam bunched, and in the slow-wave structure the wiggler field keeps the beam bunched while the bunched beam interacts strongly with the slow-wave structure and so produces rf power. The bunching process comes from the free-electron laser mechanism and the generating process of rf power is in a slow-wave structure. A three-dimensional, time-dependent code is used to simulate a particular standing-wave FEL afterburner and it is shown that rf power of up to 1.57 GW can be obtained, at 17.12 GHz, from a l-kA, 5-MeV electron beam.

  17. Attosecond Hard X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2013-03-01

    Full Text Available In this paper, several schemes of soft X-ray and hard X-ray free electron lasers (XFEL and their progress are reviewed. Self-amplified spontaneous emission (SASE schemes, the high gain harmonic generation (HGHG scheme and various enhancement schemes through seeding and beam manipulations are discussed, especially in view of the generation of attosecond X-ray pulses. Our recent work on the generation of attosecond hard X-ray pulses is also discussed. In our study, the enhanced SASE scheme is utilized, using electron beam parameters of an XFEL under construction at Pohang Accelerator Laboratory (PAL. Laser, chicane and electron beam parameters are optimized to generate an isolated attosecond hard X-ray pulse at 0.1 nm (12.4 keV. The simulations show that the manipulation of electron energy beam profile may lead to the generation of an isolated attosecond hard X-ray of 150 attosecond pulse at 0.1 nm.

  18. Kinetic theory of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, B. [Naval Research Lab., Washington, DC (United States); Roberson, C.W. [Office of Naval Research, Arlington, VA (United States)

    1995-12-31

    We have developed a relativistic kinetic theory of free electron lasers (FELs). The growth rate, efficiency, filling factor and radius of curvature of the radiation wave fronts are determined. We have used the theory to examine the effects of beam compression on growth rate. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The surprising result is that the self field contribution to the beam quality is opposite to the emittance contribution. Hence self fields can improve beam quality, particularly in compact, low voltage FELs.

  19. Electronic implementations of interaction-free measurements

    Science.gov (United States)

    Chirolli, L.; Strambini, E.; Giovannetti, V.; Taddei, F.; Piazza, V.; Fazio, R.; Beltram, F.; Burkard, G.

    2010-07-01

    Three different implementations of interaction-free measurements (IFMs) in solid-state nanodevices are discussed. The first one is based on a series of concatenated Mach-Zehnder interferometers, in analogy to optical-IFM setups. The second one consists of a single interferometer and concatenation is achieved in the time domain making use of a quantized electron emitter. The third implementation consists of an asymmetric Aharonov-Bohm ring. For all three cases we show that the presence of a dephasing source acting on one arm of the interferometer can be detected without degrading the coherence of the measured current. Electronic implementations of IFMs in nanoelectronics may play a fundamental role as very accurate and noninvasive measuring schemes for quantum devices.

  20. Heavy electrons: Electron droplets generated by photogalvanic and pyroelectric effects

    CERN Document Server

    Krasnoholovets, V; Kukhtareva, T

    2009-01-01

    Electron clusters, X-rays and nanosecond radio-frequency pulses are produced by 100 mW continuous-wave laser illuminating ferroelectric crystal of LiNbO_3. A long-living stable electron droplet with the size of about 100 mcm has freely moved with the velocity 0.5 cm/s in the air near the surface of the crystal experiencing the Earth gravitational field. The microscopic model of cluster stability, which is based on submicroscopic mechanics developed in the real physical space, is suggested. The role of a restraining force plays the inerton field, a substructure of the particles' matter waves, which a solitary one can elastically withstand the Coulomb repulsion of electrons. It is shown that electrons in the droplet are heavy electrons whose mass at least 1 million of times exceeds the rest mass of free electron. Application for X-ray imaging and lithography is discussed.

  1. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  2. Dynamical backaction cooling with free electrons.

    Science.gov (United States)

    Niguès, A; Siria, A; Verlot, P

    2015-09-18

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  3. A compact terahertz free-electron laser with two gratings driven by two electron-beams

    Science.gov (United States)

    Liu, Weihao; Lu, Yalin; Wang, Lin; Jia, Qika

    2017-02-01

    We proposed and investigated a novel terahertz free-electron laser, which is based on two gratings driven by two electron-beams. Two gratings are symmetrically arranged to form an open-cavity. Two electron-beams generate special Smith-Purcell radiations, respectively, from two gratings. When radiation interferes constructively, operation modes of the open-cavity are excited and then amplified by beam-wave interactions. By means of particle-in-cell simulations, we have shown that, with compact equipments and available electron-beams, this scheme can generate radiation with power and efficiency being higher than those of majority radiation sources in the vicinity region of 1 THz. It can promisingly be developed as a high-power, high-efficiency, and compact terahertz source for practice.

  4. Quantum entanglement in electron optics generation, characterization, and applications

    CERN Document Server

    Chandra, Naresh

    2013-01-01

    This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

  5. Deep Saturated Free Electron Laser Oscillators and Frozen Spikes

    CERN Document Server

    Ottaviani, P L; Dattoli, G; Sabia, E; Petrillo, V; Van Der Slot, P; Biedron, S; Milton, S

    2016-01-01

    We analyze the behavior of Free Electron Laser (FEL) oscillators operating in the deep saturated regime and point out the formation of sub-peaks of the optical pulse. They are very stable configurations, having a width corresponding to a coherence length. We speculate on the physical mechanisms underlying their growth and attempt an identification with FEL mode locked structures associated with Super Modes. Their impact on the intra-cavity nonlinear harmonic generation is also discussed along with the possibility of exploiting them as cavity out-coupler.

  6. Spray generation from free and half-free jets

    OpenAIRE

    Vaidyanathan, Rajan

    1999-01-01

    Approved for public release; distribution is unlimited This is an experimental investigation of the ligament and drop formation at the free surface of wall jets, flowing over sand-roughened plates, and on unbounded two-dimensional jets, discharging into atmosphere. Experiments were conducted with both fresh and simulated sea water. Measurements were made with several high-speed imagers and a pulsating laser system and analyzed through the use of appropriate software. The wall-jet Reynolds ...

  7. Workshop on scientific and industrial applications of free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, F.C. (Oak Ridge National Lab., TN (USA)); Perez, R.B. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA))

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics.

  8. The free-electron laser FLASH

    Institute of Scientific and Technical Information of China (English)

    Siegfried Schreiber; Bart Faatz

    2015-01-01

    FLASH at DESY, Hamburg, Germany is the first free-electron laser(FEL) operating in the extreme ultraviolet(EUV)and soft x-ray wavelength range. FLASH is a user facility providing femtosecond short pulses with an unprecedented peak and average brilliance, opening new scientific opportunities in many disciplines. The first call for user experiments has been launched in 2005. The FLASH linear accelerator is based on TESLA superconducting technology, providing several thousands of photon pulses per second to user experiments. Probing femtosecond-scale dynamics in atomic and molecular reactions using, for instance, a combination of x-ray and optical pulses in a pump and probe arrangement,as well as single-shot diffraction imaging of biological objects and molecules, are typical experiments performed at the facility. We give an overview of the FLASH facility, and describe the basic principles of the accelerator. Recently,FLASH has been extended by a second undulator beamline(FLASH2) operated in parallel to the first beamline, extending the capacity of the facility by a factor of two.

  9. Four-wave-mixing experiments with seeded free electron lasers.

    Science.gov (United States)

    Bencivenga, F; Calvi, A; Capotondi, F; Cucini, R; Mincigrucci, R; Simoncig, A; Manfredda, M; Pedersoli, E; Principi, E; Dallari, F; Duncan, R A; Izzo, M G; Knopp, G; Maznev, A A; Monaco, G; Di Mitri, S; Gessini, A; Giannessi, L; Mahne, N; Nikolov, I P; Passuello, R; Raimondi, L; Zangrando, M; Masciovecchio, C

    2016-12-16

    The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

  10. Spectrotemporal shaping of seeded free-electron laser pulses.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-09-11

    We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  11. On harmonic operation of Shanghai deep UV free electron laser

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By choosing parameters in the modulator,the dispersive section and the seed laser,the spatial bunching of the electron beam can be correlated to then-th harmonic of ther adiator radiation,instead of the fundamental radiation in conventional high-gain harmonic generation(HGHG).Thus,the radiator undulator is operated at high harmonic mode.In this paper,the possibility of harmonic operation of Shanghai deep ultraviolet(SDUV)free electron laser (FEL)is studied.Discussions on the principle of harmonic operation,the simulation code development,the simulation results.and the proposed experimental procedure for verification of harmonic operation at the SDUV FEL are also presented.

  12. Generate Uniform Transverse Distributed Electron Beam along a Beam Line

    CERN Document Server

    Jiao, Y

    2015-01-01

    It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping almost uniform transverse distributed (UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A concrete design is presented, and numerical simulations are done to verify the proposed method.

  13. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  14. Influence of an imperfect energy profile on a seeded free electron laser performance

    Directory of Open Access Journals (Sweden)

    Botao Jia

    2010-06-01

    Full Text Available A single-pass high-gain x-ray free electron laser (FEL calls for a high quality electron bunch. In particular, for a seeded FEL amplifier and for a harmonic generation FEL, the electron bunch initial energy profile uniformity is crucial for generating an FEL with a narrow bandwidth. After the acceleration, compression, and transportation, the electron bunch energy profile entering the undulator can acquire temporal nonuniformity. We study the influence of the electron bunch initial energy profile nonuniformity on the FEL performance. Intrinsically, for a harmonic generation FEL, the harmonic generation FEL in the final radiator starts with an electron bunch having energy modulation acquired in the previous stages, due to the FEL interaction at those FEL wavelengths and their harmonics. The influence of this electron bunch energy nonuniformity on the harmonic generation FEL in the final radiator is then studied.

  15. Application of Power Electronics on Hydropower Generation

    Science.gov (United States)

    Hell, Johann

    2017-04-01

    The developments in power electronics are offering new opportunities in operation of hydro power generating units. The applied load in pump and turbine operation cannot be changed easily. By using of frequency converters, the speed of the units can be changed in a defined range, without losing much efficiency. An additional benefit of such kind of concept is the improved transient performance of the entire system. In the presented paper the advantage of speed variable power generating system equipped with frequency converters are shown.

  16. Generation of Nondiffracting Electron Bessel Beams

    Directory of Open Access Journals (Sweden)

    Vincenzo Grillo

    2014-01-01

    Full Text Available Almost 30 years ago, Durnin discovered that an optical beam with a transverse intensity profile in the form of a Bessel function of the first order is immune to the effects of diffraction. Unlike most laser beams, which spread upon propagation, the transverse distribution of these Bessel beams remains constant. Electrons also obey a wave equation (the Schrödinger equation, and therefore Bessel beams also exist for electron waves. We generate an electron Bessel beam by diffracting electrons from a nanoscale phase hologram. The hologram imposes a conical phase structure on the electron wave-packet spectrum, thus transforming it into a conical superposition of infinite plane waves, that is, a Bessel beam. We verify experimentally that these beams can propagate for 0.6 m without measurable spreading and can also reconstruct their intensity distributions after being partially obstructed by an obstacle. Finally, we show by numerical calculations that the performance of an electron microscope can be increased dramatically through use of these beams.

  17. Protecting Free Expression in Electronic Communications.

    Science.gov (United States)

    O'Neil, Robert M.

    1996-01-01

    Examines First Amendment rights and protection as they relate to electronic communication. Topics include distinctions between print media and electronic media, analogies to more familiar technology, indecent versus obscene material, easier access to information via the Internet, and the need to design new policies that fit electronic media. (LRW)

  18. The importance of lead-free electronics processes

    Energy Technology Data Exchange (ETDEWEB)

    Meltzer, M

    1999-10-21

    The Environmental Protection Agency (EPA) is placing increased importance on reducing lead-bearing wastes. Toward this end, the EPA has proposed that reporting thresholds for the Toxic Release Inventory (TRI) be lowered to ten pounds of lead content per year. The US electronics industry is also placing a high priority on lead reduction or elimination. The Association of Connecting Electronics Industries, which is the major trade association for electronics packaging, including printed circuit (PC) board manufacturers, has launched a lead-free initiative that seeks to eliminate lead in solder, in PC board etch resists and finish coats, and as tinning for component leads. Europe and Japan are also considering various regulations that will phase out lead in the next few years. In response to EPA and electronics industry priorities, the DOE complex will soon need to address lead phase-out issues. LLNL is now developing approaches for eliminating lead from PC board etch-resist operations. LLNL is seeking funding to continue this work and to eliminate other major uses of lead in electronics operations, particularly in hot-air solder leveling as a PC board finish, and tin-lead solder for component assembly operations. LLNL seeks to take a proactive leadership role in the DOE complex with respect to the elimination of lead. The envisioned lead-elimination project will be approximately two years in length. During the first year, lead-free etch resists and finish coats will be analyzed, and the best ones identified for electronics assembly and PC board fabrication. During the second year, lead-free solders will be examined and tested for compatibility with alternative PC board finish coats. Cost avoidance opportunities resulting from lead elimination include avoided TRI reporting expenses and reduction in PC board fabrication-related wastes through implementation of more efficient fabrication processes. Integrated Safety Management considerations are also relevant. Handling

  19. Ionization By Impact Electrons in Solids: Electron Mean Free Path Fitted Over A Wide Energy Range

    Energy Technology Data Exchange (ETDEWEB)

    Ziaja, B; London, R A; Hajdu, J

    2005-06-09

    We propose a simple formula for fitting the electron mean free paths in solids both at high and at low electron energies. The free-electron-gas approximation used for predicting electron mean free paths is no longer valid at low energies (E < 50 eV), as the band structure effects become significant at those energies. Therefore we include the results of the band structure calculations in our fit. Finally, we apply the fit to 9 elements and 2 compounds.

  20. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Primož Rebernik Ribič

    2017-08-01

    Full Text Available Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 10^{14}  W/cm^{2}, paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  1. Study of Short Bunches at the Free Electron Laser CLIO

    CERN Document Server

    Delerue, Nicolas; Khodnevych, Vitalii; Berthet, Jean-Paul; Glotin, Francois; Ortega, Jean-Michel; Prazeres, Rui

    2016-01-01

    CLIO is a Free Electron Laser based on a thermionic electron gun. In its normal operating mode it delivers electron 8 pulses but studies are ongoing to shorten the pulses to about 1 ps. We report on simulations showing how the pulse can be shortened and the expected signal yield from several bunch length diagnostics (Coherent Transition Radiation, Coherent Smith Purcell Radiation).

  2. Optical Shaping of X-Ray Free-Electron Lasers

    Science.gov (United States)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  3. Wave Generated by the NACA4412 Hydrofoil near Free Surface

    Directory of Open Access Journals (Sweden)

    Hassan Ghassemi

    2013-01-01

    Full Text Available The generation of wave due to moving hydrofoil in steady streams close to a free surface is presented. The potential-based boundary element method is employed to the NACA4412 hydrofoil with linearized dynamic and kinematic boundary conditions on the free surface. The perturbation velocity potential is calculated using the Green formulation and Kutta condition. The numerical results of waves generated by the hydrofoil are presented and discussed at various Froude numbers and immersion depths.

  4. Biological applications of ultraviolet free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  5. Free-electron lasers: Echoes of photons past

    Science.gov (United States)

    Campbell, Lawrence T.; McNeil, Brian W. J.

    2016-08-01

    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source.

  6. Gain of double-slab Cherenkov free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Institute for laser Technology, suita, Osaka 565-0871 (Japan)], E-mail: dazhi_li@hotmail.com; Huo, G. [Petroleum development center, Shengli Oilfield, SINOPEC, Dongying 257001 (China); Imasak, K. [Institute for laser Technology, suita, Osaka 565-0871 (Japan); Asakawa, M. [Department of pure and applied physics, Faculty of Engineering Science, Kansai University, Osaka 564-8680 (Japan)

    2009-07-21

    A formula is derived for the small-signal gain of a double-slab Cherenkov free-electron laser. The simplified model is composed of a rectangular wave-guide partially filled with two lined parallel dielectric slabs and a sheet electron beam. The theory describes the electron beam as a plasma dielectric moving between the two dielectric slabs. With the help of hydrodynamic approximation, we derived the dispersion equation and the formula of small-signal gain. Through numerical computing, we studied an ongoing experiment of double-slab Cherenkov free-electron laser, and worked out the synchronous frequency and single-pass gain.

  7. Nanocopper Based Solder-Free Electronic Assembly

    Science.gov (United States)

    Schnabl, K.; Wentlent, L.; Mootoo, K.; Khasawneh, S.; Zinn, A. A.; Beddow, J.; Hauptfleisch, E.; Blass, D.; Borgesen, P.

    2014-12-01

    CuantumFuse nano copper material has been used to assemble functional LED test boards and a small camera board with a 48 pad CMOS sensor quad-flat no-lead chip and a 10 in flexible electronics demo. Drop-in replacement of solder, by use of stencil printing and standard surface mount technology equipment, has been demonstrated. Applications in space and commercial systems are currently under consideration. The stable copper-nanoparticle paste has been examined and characterized by scanning electron microscopy and high-resolution transmission electron microscopy; this has shown that the joints are nanocrystalline but with substantial porosity. Assessment of reliability is expected to be complicated by this and by the effects of thermal and strain-enhanced coarsening of pores. Strength, creep, and fatigue properties were measured and results are discussed with reference to our understanding of solder reliability to assess the potential of this nano-copper based solder alternative.

  8. Storage Ring Technology for Free Electron Lasers.

    Science.gov (United States)

    1984-04-01

    new starting mode, it is clear that an arbitrary third mode amplitude can be added 1ithout changing the result. It follows by induction that for an...du laser. On montre que la puissance moyenne est en accord avec la limite imposee par le chauffage du paquet d’electrons (limite de Renieri

  9. Free Electron Laser Research in Europe.

    Science.gov (United States)

    1983-03-03

    Comitato Nazionale Energia in the proceedings of various Co ato NrascatioCnae Eri conferences and schools. Marino is an experimentalist formerly...injection); modification to injection from Instituto Nazionale di Fisica within the cavity (Kapitza Nuclere injection) has increased the electron beam

  10. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  11. Automatic Caption Generation for Electronics Textbooks

    Directory of Open Access Journals (Sweden)

    Veena Thakur

    2014-12-01

    Full Text Available Automatic or semi-automatic approaches for developing Technology Supported Learning Systems (TSLS are required to lighten their development cost. The main objective of this paper is to automate the generation of a caption module; it aims at reproducing the way teachers prepare their lessons and the learning material they will use throughout the course. Teachers tend to choose one or more textbooks that cover the contents of their subjects, determine the topics to be addressed, and identify the parts of the textbooks which may be helpful for the students it describes the entities, attributes, role and their relationship plus the constraints that govern the problem domain. The caption model is created in order to represent the vocabulary and key concepts of the problem domain. The caption model also identifies the relationships among all the entities within the scope of the problem domain, and commonly identifies their attributes. It defines a vocabulary and is helpful as a communication tool. DOM-Sortze, a framework that enables the semi-automatic generation of the Caption Module for technology supported learning system (TSLS from electronic textbooks. The semiautomatic generation of the Caption Module entails the identification and elicitation of knowledge from the documents to which end Natural Language Processing (NLP techniques are combined with ontologies and heuristic reasoning.

  12. Carbonyl compounds generated from electronic cigarettes.

    Science.gov (United States)

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-10-28

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  13. Design and Analysis of an Electron Gun/Booster and Free Electron Laser Optical Theory

    Science.gov (United States)

    2010-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION DESIGN AND ANALYSIS OF AN ELECTRON GUN/BOOSTER AND FREE ELECTRON LASER OPTICAL THEORY by...298-102 September 2010 Dissertation Design and Analysis of an Electron Gun/Booster and Free Electron Laser Optical Theory Niles, Sean P. Naval...motor attached to a spool for adjusting the bead’s position in the cavity. The bead is a small piece of stainless steel hypodermic needle threaded

  14. Time-resolved electron spectrum diagnostics for a free-electron laser

    NARCIS (Netherlands)

    Gillespie, W. A.; MacLeod, A. M.; Martin, P. F.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1996-01-01

    Time-resolved electron-beam diagnostics have been developed for use with free-electron lasers (FELs) and associated electron sources, based on the techniques of secondary electron emission and optical transition radiation (OTR). The 32-channel OTR detector forms part of a high-resolution (0.18%) ele

  15. Generation of a spin-polarized electron beam by multipole magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Grillo, Vincenzo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada); Institute of Optics, University of Rochester, Rochester, NY 14627 (United States); Santamato, Enrico [Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, 80126 Napoli (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli (Italy)

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin–magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. - Highlights: • Theory of generating spin-polarized electron beams. • Interacting electron vortex beams with space-variant magnetic fields. • Bohr–Pauli impossibility of generating spin-polarized free electrons.

  16. The Free-Electron-Laser user facility FELIX

    Science.gov (United States)

    Oepts, D.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1995-01-01

    The Free Electron Laser for Infrared eXperiments FELIX presents to its users a versatile source of radiation in the infrared and far-infrared spectral regions. Presently, the wavelength range of operation extends from 5 to 110 μm (2000-90 cm -1). The wavelength is continuously tunable over an octave in a few minutes. The output normally consists of macropulses of 5-10 μs duration, formed by a train of micropulses of a few ps length. Average power in the macropulses is of order 10 kW, peak power in the micropulses is in the MW range. The temporal and spectral characteristics of the micropulses can be controlled by varying the synchronism between the electron pulses and the optical pulses circulating in the laser cavity. Transform-limited pulse lengths in the range 2-20 ps can be generated. Long-range coherence has been induced by phase-locking successive micropulses, and narrow-band, essentially single-mode, radiation has been selected from the output.

  17. European X-Ray Free Electron Laser (EXFEL): local implications

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  18. A free-electron laser in the pulsar magnetosphere

    NARCIS (Netherlands)

    Fung, P.K.; Kuijpers, J.M.E.

    2004-01-01

    We have studied systematically the free-electron laser in the context of high brightness pulsar radio emission. In this paper, we have numerically examined the case where a transverse electromagnetic wave is distorting the motion of a relativistic electron beam while travelling over one stellar radi

  19. A microtron accelerator for a free electron laser

    NARCIS (Netherlands)

    Botman, J.I.M.; Delhez, J.L.; Webers, G.A.; Hagedoorn, H.L.; Kleeven, W.J.G.M.; Timmermans, J.C.M.; Ernst, G.J.; Verschuur, J.W.J.; Witteman, W.J.; Haselhoff, E.H.

    1991-01-01

    A racetrack microtron as a source for a free electron laser is being constructed. It will accelerate electrons up to 25 MeV to provide 10 ¿m radiation in a hybrid undulator with a periodicity distance of 25 mm. The aim is to accelerate 100 A bunches of 30 ps pulse length at 81.25 MHz. This frequency

  20. Free-electron laser emission architecture impact on EUV lithography

    Science.gov (United States)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-03-01

    Laser-produced plasma (LPP) EUV sources have demonstrated approximately 125 W at customer sites, establishing confidence in EUV lithography as a viable manufacturing technology. However, beyond the 7 nm technology node existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multi-patterning (requiring increased wafer throughput proportional to the number of exposure passes. Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should free-electron lasers become the preferred next generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) selfamplified spontaneous emission (SASE), (2) regenerative amplification (RAFEL), or (3) self-seeding (SS-FEL). Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provide a framework for future FEL design and enablement for EUV lithography applications.

  1. Soviet Free-Electron Laser Research

    Science.gov (United States)

    1985-05-01

    Kondratenko and Saldin have been publishing theoretical papers on FEL since 1979, pursuing two aims: One was the development of a general theory of FEL... Saldin was the control of the axial motion of beam electrons in the undulator by means of an auxil- iary axial magnetic field. The latter made it...ZhETF, Pis’ma, Vol. 34, No. 9, 1981, p. 514. 38. Kondratenko, A. M., Ye. L. Saldin , ZhTF, Vol. 53, No. 3, 1983, p. 492. 39. Alferov, D. F., Yu. A

  2. Chaotic dynamics in a storage-ring Free Electron Laser

    CERN Document Server

    De Ninno, G; Bruni, C; Couprie, Marie Emmanuelle

    2002-01-01

    The temporal dynamics of a storage-ring Free Electron Laser is here investigated with particular attention to the case in which an external modulation is applied to the laser-electron beam detuning. The system is shown to produce bifurcations, multi-furcations as well as chaotic regimes. The peculiarities of this phenomenon with respect to the analogous behavior displayed by conventional laser sources are pointed out. Theoretical results, obtained by means of a phenomenological model reproducing the evolution of the main statistical parameters of the system, are shown to be in a good agreement with experiments carried out on the Super-ACO Free Electron Laser.

  3. RoHS/Pb-free Electronics for DoD?: Managing the Pb-free Electronics Transition

    Science.gov (United States)

    2010-06-14

    GEIA = Government Electronics & Information Technology Association AMC = Avionics Maintenance Conference Pb-free Electronics Risk Management PERM... AlA EMC PERM Consortium Management PERM International Beneficiaries ............... ?.~~~-~·i...elected) - AlA Liaison/Executive Secretary -DoD LSA4 for Soldering Technologies -Executive Committee Ex-Chair Task Team Leads International Advisory

  4. Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range

    Directory of Open Access Journals (Sweden)

    C. Sung

    2006-12-01

    Full Text Available A comprehensive analysis is presented that describes amplification of a seed THz pulse in a single-pass free-electron laser (FEL driven by a photoinjector. The dynamics of the radiation pulse and the modulated electron beam are modeled using the time-dependent FEL code, GENESIS 1.3. A 10-ps (FWHM electron beam with a peak current of 50–100 A allows amplification of a ∼1  kW seed pulse in the frequency range 0.5–3 THz up to 10–100 MW power in a relatively compact 2-m long planar undulator. The electron beam driving the FEL is strongly modulated, with some inhomogeneity due to the slippage effect. It is shown that THz microbunching of the electron beam is homogeneous over the entire electron pulse when saturated FEL amplification is utilized at the very entrance of an undulator. This requires seeding of a 30-cm long undulator buncher with a 1–3 MW of pump power with radiation at the resonant frequency. A narrow-band seed pulse in the THz range needed for these experiments can be generated by frequency mixing of CO_{2} laser lines in a GaAs nonlinear crystal. Two schemes for producing MW power pulses in seeded FELs are considered in some detail for the beam parameters achievable at the Neptune Laboratory at UCLA: the first uses a waveguide to transport radiation in the 0.5–3 THz range through a 2-m long FEL amplifier and the second employs high-gain third harmonic generation using the FEL process at 3–9 THz.

  5. Electron trajectories in free electron laser with realizable helical wiggler and ion channel guiding

    Directory of Open Access Journals (Sweden)

    S. Ebrahimi

    2004-12-01

    Full Text Available   A detailed analysis of electron trajectories in a realizable helical wiggler free electron laser with ion channel guiding using electron (single particle dynamics is presented. Conditions for stability of electron orbit have been investigated, calculations are made to illustrate. Conclusion shows that there are differences stable (unstable condition(s electron trajectories between ideal helical wiggler(2D and realizable helical wiggler (3D.

  6. Free piston variable-stroke linear-alternator generator

    Science.gov (United States)

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  7. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin

    Science.gov (United States)

    Herrling, Th.; Jung, K.; Fuchs, J.

    2006-03-01

    Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.

  8. Free form CMOS electronics: Physically flexible and stretchable

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-07

    Free form (physically flexible and stretchable) electronics can be used for applications which are unexplored today due to the rigid and brittle nature of the state-of-the-art electronics. Therefore, we show integration strategy to rationally design materials, processes and devices to transform advanced complementary metal oxide semiconductor (CMOS) electronics into flexible and stretchable one while retaining their high performance, energy efficiency, ultra-large-scale-integration (ULSI) density, reliability and performance over cost benefit to expand its applications for wearable, implantable and Internet-of-Everything electronics.

  9. Quantum regime of a free-electron laser: relativistic approach

    Science.gov (United States)

    Kling, Peter; Sauerbrey, Roland; Preiss, Paul; Giese, Enno; Endrich, Rainer; Schleich, Wolfgang P.

    2017-01-01

    In the quantum regime of the free-electron laser, the dynamics of the electrons is not governed by continuous trajectories but by discrete jumps in momentum. In this article, we rederive the two crucial conditions to enter this quantum regime: (1) a large quantum mechanical recoil of the electron caused by the scattering with the laser and the wiggler field and (2) a small energy spread of the electron beam. In contrast to our recent approach based on nonrelativistic quantum mechanics in a co-moving frame of reference, we now pursue a model in the laboratory frame employing relativistic quantum electrodynamics.

  10. Broad-Band Tunability of a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    Bakker, R. J.; van der Geer, C. A. J.; Jaroszynski, D. A.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1993-01-01

    A unique property of the free-electron laser (FEL) is its capability to be tuned continuously over a wide spectral range. This is a major difference with all other high-power lasers. However, the tunability of first-generation FELs used to be quite poor (typically 10% or less), due to constraints im

  11. Coherent spontaneous emission and spontaneous phase locking in a free-electron laser

    NARCIS (Netherlands)

    Weits, H. H.; Oepts, D.

    1999-01-01

    We present measurements that demonstrate the existence of spontaneous coherence between independently generated laser pulses in the FELIX free-electron laser, The experiments show that the interpulse coherence is caused by a high level of coherently enhanced spontaneous emission. We have been able t

  12. Broad-Band Tunability of a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    Bakker, R. J.; van der Geer, C. A. J.; Jaroszynski, D. A.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1993-01-01

    A unique property of the free-electron laser (FEL) is its capability to be tuned continuously over a wide spectral range. This is a major difference with all other high-power lasers. However, the tunability of first-generation FELs used to be quite poor (typically 10% or less), due to constraints

  13. A mirror-less, multi-beam photonic free-electron laser oscillator pumped far beyond threshold

    NARCIS (Netherlands)

    van der Slot, Petrus J.M.; Boller, Klaus J.; Strooisma, A.; Kang, Heung-Sik; Kim, Dong Eon; Schaa, Volker R.W.

    2015-01-01

    In a photonic free-electron laser electrons are transmitted through a photonic crystal in the form of one or multiple electron beams to generate coherent Cerenkov radiation. Here we consider a photonic-crystal slab consisting of a two-dimensional, periodic array of bars inside a rectangular waveguid

  14. A spectral unaveraged algorithm for free electron laser simulations

    Energy Technology Data Exchange (ETDEWEB)

    Andriyash, I.A., E-mail: igor.andriyash@gmail.com [Laboratoire d' Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France); P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Lehe, R.; Malka, V. [Laboratoire d' Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2015-02-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes.

  15. A spectral unaveraged algorithm for free electron laser simulations

    CERN Document Server

    Andriyash, Igor A; Malka, Victor

    2014-01-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field-particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional simulations of short-wavelength amplification. In this paper we describe the algorithm, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes.

  16. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  17. Electron-phonon coupling in quasi free-standing graphene

    DEFF Research Database (Denmark)

    Christian Johannsen, Jens; Ulstrup, Søren; Bianchi, Marco

    2013-01-01

    Quasi free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene is indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many......-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. Both...

  18. Electron-phonon coupling in quasi free-standing graphene

    DEFF Research Database (Denmark)

    Christian Johannsen, Jens; Ulstrup, Søren; Bianchi, Marco;

    2013-01-01

    Quasi free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene is indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many......-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. Both...

  19. Ramsey-type phase control of free electron beams

    CERN Document Server

    Echternkamp, Katharina E; Schäfer, Sascha; Ropers, Claus

    2016-01-01

    Interference between multiple distinct paths is a defining property of quantum physics, where "paths" may involve actual physical trajectories, as in interferometry, or transitions between different internal (e.g. spin) states, or both. A hallmark of quantum coherent evolution is the possibility to interact with a system multiple times in a phase-preserving manner. This principle underpins powerful multi-dimensional optical and nuclear magnetic resonance spectroscopies and related techniques, including Ramsey's method of separated oscillatory fields used in atomic clocks. Previously established for atomic, molecular and quantum dot systems, recent developments in the optical quantum state preparation of free electron beams suggest a transfer of such concepts to the realm of ultrafast electron imaging and spectroscopy. Here, we demonstrate the sequential coherent interaction of free electron states with two spatially separated, phase-controlled optical near-fields. Ultrashort electron pulses are acted upon in ...

  20. Vanderbilt free electron laser project in biomedical and materials research

    Science.gov (United States)

    Haglund, Richard F.; Tolk, N. H.

    1988-06-01

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the use of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.

  1. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [ed.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  2. LIPSS Free-Electron Laser Searches for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Afanaciev, Andrei; Beard, Kevin; Biallas, George; Boyce, James R; Minarni, M; Ramdon, R; Robinson, Taylor; Shinn, Michelle D

    2011-09-01

    A variety of Dark Matter particle candidates have been hypothesized by physics Beyond the Standard Model (BSM) in the very light (10{sup -6} - 10{sup -3} eV) range. In the past decade several international groups have conducted laboratory experiments designed to either produce such particles or extend the boundaries in parameter space. The LIght Pseudo-scalar and Scalar Search (LIPSS) Collaboration, using the 'Light Shining through a Wall' (LSW) technique, passes the high average power photon beam from Jefferson Lab's Free-Electron Laser through a magnetic field upstream from a mirror and optical beam dump. Light Neutral Bosons (LNBs), generated by coupling of photons with the magnetic field, pass through the mirror ('the Wall') into an identical magnetic field where they revert to detectable photons by the same coupling process. While no evidence of LNBs was evident, new scalar coupling boundaries were established. New constraints were also determined for hypothetical para-photons and for millicharged fermions. We will describe our experimental setup and results for LNBs, para-photons, and milli-charged fermions. Plans for chameleon particle searches are underway.

  3. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  4. Pair creation and an x-ray free electron laser.

    Science.gov (United States)

    Alkofer, R; Hecht, M B; Roberts, C D; Schmidt, S M; Vinnik, D V

    2001-11-05

    Using a quantum kinetic equation we study the possibility that focused beams at proposed x-ray free electron laser facilities can initiate spontaneous electron-positron pair production from the QED vacuum. Under conditions reckoned achievable at planned facilities, repeated cycles of particle creation and annihilation will take place in tune with the laser frequency. The peak particle number density is insensitive to this frequency, and one can anticipate the production of a few hundred particle pairs per laser period.

  5. High Harmonic Inverse Free Electron Laser Interaction at 800 nm

    Energy Technology Data Exchange (ETDEWEB)

    Sears, C

    2005-03-08

    We demonstrate for the first time an inverse free electron laser (IFEL) operating at 800 nm and observe multiple resonances of the IFEL interaction. The IFEL is tested at half its fundamental resonance electron energy and scanned through multiple harmonics by adjusting the undulator field strength. We obtain a peak modulation of {approx}50 keV FWHM and observe the 4th through 6th harmonics of the IFEL resonance.

  6. First high power experiments with the Dutch free electron maser

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Bratman, V. L.; Caplan, M.; Denisov, G. G.; van Dijk, G.; van der Geer, C. A. J.; Manintveld, P.; Poelman, A. J.; Pluygers, J.; Shmelyov, M. Y.; Smeets, P. H. M.; Sterk, A. B.; Urbanus, W. H.

    1998-01-01

    A free electron maser (FEM) has been built as a mm-wave source for applications on future fusion research devices such as ITER, the international tokamak experimental reactor [M. A. Makowski, F. Elio, and D. Loeser, April 97, Proc. 10th Workshop on ECE and ECRH, EC10, 549-559. World Scientific (1998

  7. Free electron lifetime achievements in liquid Argon imaging TPC

    Energy Technology Data Exchange (ETDEWEB)

    Baibussinov, B; Ceolin, M Baldo; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Varanini, F; Ventura, S [INFN, Sezione di Padova via Marzolo 8, I-35131 Padova (Italy); Calligarich, E [INFN, Sezione di Pavia via Bassi 6, I-27100 Pavia (Italy); Rubbia, C, E-mail: Carlo.Rubbia@cern.c [Laboratori Nazionali del Gran Sasso dell' INFN I-67010 Assergi (Italy)

    2010-03-15

    A key feature for the success of the liquid Argon imaging TPC (LAr-TPC) technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be continuously kept at an exceptionally low level by filtering and recirculating liquid Argon. Improved purification techniques have been applied to a 120 liters LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to determine the free electron lifetime in liquid Argon against electro-negative impurities. The short path length here observed (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic ray muons at sea level as a function of the drift distance. A free electron lifetime of tau {approx} (21.4{sup +7.3}{sub -4.3}) ms, namely > 15.8 ms at 90% C.L. has been observed over several weeks under stable conditions, corresponding to a residual Oxygen equivalent of {approx} 15 ppt (part per trillion). At 500 V/cm, the free electron speed is 1.5 mm/mus. In a LAr-TPC a free electron lifetime in excess of 15 ms corresponds for instance to an attenuation of less than 20% after a drift path of 5 m, opening the way to the operation of the LAr-TPC with exceptionally long drift distances.

  8. Applications of free electron lasers in the UV

    Energy Technology Data Exchange (ETDEWEB)

    Couprie, M.E.

    1994-12-31

    The first applications of the UV Free Electron Lasers (FEL) show the advance to a stage of maturity for such sources. Two-color experiments coupling storage ring FEL and synchrotron radiation offer the wide range of use. (TEC). 26 refs., 7 figs., 2 tabs.

  9. Cavity ring down spectroscopy with a free-electron laser

    NARCIS (Netherlands)

    Engeln, R.; van den Berg, E.; Meijer, G.; Lin, L.; Knippels, G.M.H.; van der Meer, A. F. G.

    1997-01-01

    A cavity ring down (CRD) absorption experiment is performed with a free-electron laser (FEL) operating in the 10-11 mu m region. A short infrared pulse of approximately 20 ns, sliced from the much longer FEL pulse, is used to measure CRD spectra of ethylene in two different ways. First, ''

  10. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  11. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; Slot, van der P.J.M.; Volokhine, I.V.; Verschuur, J.W.J.; Boller, K.J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for exam

  12. Resonator design for a visible wavelength free-electron laser (*)

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, A.; Lordi, N. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. (Brookhaven National Lab., Upton, NY (United States))

    1990-01-01

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  13. Design and Analysis of Megawatt Class Free Electron Laser Weapons

    Science.gov (United States)

    2015-12-01

    25 H. THERMAL BLOOMING .......................................................................25 V. FREE ELECTRON LASER AND... thermal blooming. .................................................26 Figure 11. FEL 4-D model simulating an FEL oscillator configuration...nanoseconds apart . By contrast, normal conducting linear accelerators can only operate with microseconds-long macro-pulses separated by milliseconds due to

  14. Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    C. Behrens

    2012-03-01

    Full Text Available The successful operation of x-ray free-electron lasers (FELs, like the Linac Coherent Light Source or the Free-Electron Laser in Hamburg (FLASH, makes unprecedented research on matter at atomic length and ultrafast time scales possible. However, in order to take advantage of these unique light sources and to meet the strict requirements of many experiments in photon science, FEL photon pulse durations need to be known and tunable. This can be achieved by controlling the FEL driving electron beams, and high-resolution longitudinal electron beam diagnostics can be utilized to provide constraints on the expected FEL photon pulse durations. In this paper, we present comparative measurements of soft x-ray pulse durations and electron bunch lengths at FLASH. The soft x-ray pulse durations were measured by FEL radiation pulse energy statistics and compared to electron bunch lengths determined by frequency-domain spectroscopy of coherent transition radiation in the terahertz range and time-domain longitudinal phase space measurements. The experimental results, theoretical considerations, and simulations show that high-resolution longitudinal electron beam diagnostics provide reasonable constraints on the expected FEL photon pulse durations. In addition, we demonstrated the generation of soft x-ray pulses with durations below 50 fs (FWHM after the implementation of the new uniform electron bunch compression scheme used at FLASH.

  15. Spin-polarizing interferometric beam splitter for free electrons

    CERN Document Server

    Dellweg, Matthias M

    2016-01-01

    A spin-polarizing electron beam splitter is described which relies on an arrangement of linearly polarized laser waves of nonrelativistic intensity. An incident electron beam is first coherently scattered off a bichromatic laser field, splitting the beam into two portions, with electron spin and momentum being entangled. Afterwards, the partial beams are coherently superposed in an interferometric setup formed by standing laser waves. As a result, the outgoing electron beam is separated into its spin components along the laser magnetic field, which is shown by both analytical and numerical solutions of Pauli's equation. The proposed laser field configuration thus exerts the same effect on free electrons like an ordinary Stern-Gerlach magnet does on atoms.

  16. Polydopamine Generates Hydroxyl Free Radicals under Ultraviolet-Light Illumination.

    Science.gov (United States)

    Wang, Zehuan; Tang, Feng; Fan, Hailong; Wang, Le; Jin, Zhaoxia

    2017-06-13

    Polydopamine (PDA) generally demonstrates as an efficient free-radical scavenger. However, its free-radical chemistry under illumination is unclear, which becomes important in view of growing studies of polydopamine applications in photoprotector and photothermal therapy. In this study, for the first time, we reported an experimental investigation of the generation of hydroxyl free radicals from ultraviolet (UV)-illuminated polydopamine in an aqueous environment. By using terephthalic acid as fluorescent probe, we measured hydroxyl radicals generated from UV-illuminated polydopamine with different shapes and sizes. The morphology of PDA shows significant influence on its productions of hydroxyl free radicals. Through characterizations of UV-vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectrometry, mass spectrometry, and thermogravimetric analysis, we demonstrated the change of PDA nanomaterials brought by UV-light illumination in composition and thermal stability. We proposed a tentative mechanism for interpreting the relationship between morphology and photostability of PDA nanomaterials. These results reveal underlying complexity of polydopamine chemistry under light illumination that will deepen our understanding and benefit its further application.

  17. Commensurators of non-free finitely generated Kleinian groups

    CERN Document Server

    Leininger, C J; Reid, A W

    2009-01-01

    Suppose G is a non-free finitely generated Kleinian group without parabolics which is not a lattice and let C(G) denote the commensurator in PSL(2,C). We prove that if the limit set of G is not a round circle, then C(G) is discrete. Furthermore, G has finite index in C(G) unless G is a fiber group in which case C(G) is a lattice.

  18. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    Science.gov (United States)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  19. W-Band Free Electron Laser for High Gradient Structure Research

    Science.gov (United States)

    Lidia, S. M.; Whittum, D. H.; Donohue, J. T.

    1997-05-01

    We discuss the use of a free electron laser in support of material stress studies of W-band high-gradient accelerating structures. We propose the use of the linear induction accelerator LELIA (CEA/CESTA, France) to generate a 1-kiloamp, 80-ns FWHM electron pulse. We present a design for a helical FEL TE_11 amplifier that will generate high peak power (100's MW) at 93 GHz. We support our design with analytical estimates of gain, and with numerical simulations of power and phase development.

  20. Electron trajectories and growth rates of the plasma wave pumped free-electron laser

    Science.gov (United States)

    Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.

    2014-12-01

    A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.

  1. Carbonyl compounds generated from electronic cigarettes

    National Research Council Canada - National Science Library

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-01-01

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes...

  2. Self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering.

    Science.gov (United States)

    Giannessi, L; Bacci, A; Bellaveglia, M; Briquez, F; Castellano, M; Chiadroni, E; Cianchi, A; Ciocci, F; Couprie, M E; Cultrera, L; Dattoli, G; Filippetto, D; Del Franco, M; Di Pirro, G; Ferrario, M; Ficcadenti, L; Frassetto, F; Gallo, A; Gatti, G; Labat, M; Marcus, G; Moreno, M; Mostacci, A; Pace, E; Petralia, A; Petrillo, V; Poletto, L; Quattromini, M; Rau, J V; Ronsivalle, C; Rosenzweig, J; Rossi, A R; Rossi Albertini, V; Sabia, E; Serluca, M; Spampinati, S; Spassovsky, I; Spataro, B; Surrenti, V; Vaccarezza, C; Vicario, C

    2011-04-08

    We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

  3. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  4. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  5. Imaging the dynamics of free-electron Landau states.

    Science.gov (United States)

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-08-08

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

  6. Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Free-Electron Laser Pulses

    NARCIS (Netherlands)

    Schlathölter, Thomas; Reitsma, Geert; Egorov, Dmitrii; Gonzalez-Magaña, Olmo; Bari, Sadia; Boschman, Leon; Bodewits, Erwin; Schnorr, Kirsten; Schmid, Georg; Schröter, Claus Dieter; Moshammer, Robert; Hoekstra, Ronnie

    2016-01-01

    The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions

  7. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  8. Electron beam generation from semiconductor photocathodes

    Science.gov (United States)

    Arneodo, F.; Cavanna, F.; De Mitri, I.; Mazza, D.; Nassisi, V.

    2001-01-01

    Several measurements on a variety of semiconductor photocathodes were performed in order to determine their photoelectric quantum efficiency. Two different excimer lasers (XeCl and KrCl) and a pulsed Xe lamp were used as light sources for electron photoextraction from doped and undoped samples of cadmiun telluride, indium antimonide, and indium phosphide. Large current densities were obtained up to the limit of the Child-Langmuir law. This suggests the use of these materials for the production of intense electron sources, which could also be used for purity measurements of noble liquids.

  9. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  10. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    Science.gov (United States)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  11. Free electron laser for gamma-gamma collider at TESLA

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2000-01-01

    The present paper contains the results of optimization of the free electron laser for the gamma-gamma collider at TESLA. A superconducting linear accelerator, similar to the TESLA test facility (TTF) accelerator, produces a driving electron beam for the FEL. The MOPA FEL scheme is studied when the radiation from a master oscillator is amplified in the FEL amplifier with tapered undulator. The FEL produces the radiation of TW level with a wavelength of 1 mu m. Optimization of the FEL amplifier is performed with three-dimensional, time-dependent simulation code FAST.

  12. Crystallographic data processing for free-electron laser sources

    Energy Technology Data Exchange (ETDEWEB)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Holton, James M. [University of California, San Francisco, CA 94158 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kirian, Richard A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287 (United States); Zatsepin, Nadia A. [Arizona State University, Tempe, AZ 85287 (United States); Chapman, Henry N. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  13. Nano Coated Lead Free Solders for Sustainable Electronic Waste Management

    Directory of Open Access Journals (Sweden)

    K. Arun Vasantha Geethan

    Full Text Available ABSTRACT Lead has been used in a wide range of applications, but in the past decades it became clear that its high toxicity could cause various problems. Studies indicate that exposure to high concentrations of lead can cause harmful damages to humans. To eliminate the usage of lead in electronic products as an initiative towards electronic waste management (e waste, lead free solders were produced with suitable methods by replacing lead. But lead free solders are not preferred as a substitute of lead because they are poor in their mechanical properties such as tensile strength, shear strength and hardness which are ultimately required for a material to resist failure.Nano-Structured materials and coatings offer the potential for Vital improvements in engineering properties based on improvements in physical and mechanical properties resulting from reducing micro structural features by factors of 100 to 1000 times compared to current engineering materials.

  14. The electronic structure of free aluminum clusters: metallicity and plasmons.

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mårtensson, Nils; Björneholm, Olle

    2012-05-28

    The electronic structure of free aluminum clusters with ∼3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  15. The electronic structure of free aluminum clusters: Metallicity and plasmons

    Science.gov (United States)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mârtensson, Nils; Björneholm, Olle

    2012-05-01

    The electronic structure of free aluminum clusters with ˜3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  16. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  17. Highly reactive free radicals in electronic cigarette aerosols.

    Science.gov (United States)

    Goel, Reema; Durand, Erwann; Trushin, Neil; Prokopczyk, Bogdan; Foulds, Jonathan; Elias, Ryan J; Richie, John P

    2015-09-21

    Electronic cigarette (EC) usage has increased exponentially, but limited data are available on its potential harmful effects. We tested for the presence of reactive, short-lived free radicals in EC aerosols by electron paramagnetic resonance spectroscopy (EPR) using the spin-trap phenyl-N-tert-butylnitrone (PBN). Radicals were detected in aerosols from all ECs and eliquids tested (2.5 × 10(13) to 10.3 × 10(13) radicals per puff at 3.3 V) and from eliquid solvents propylene glycol and glycerol and from "dry puffing". These results demonstrate, for the first time, the production of highly oxidizing free radicals from ECs which may present a potential toxicological risk to EC users.

  18. Component technologies for a recirculating linac free-electron laser

    Science.gov (United States)

    Litvinenko, Vladimir N.; Madey, John M. J.; Vinokurov, Nikolai A.

    1994-05-01

    The key component technologies required for a high average power free-electron laser (FEL) are described. Some basic aspects of approaches for high average power (scalable to megawatt level) accelerators and FELs are presented. A short description of the Novosibirsk 100 kW average power near infrared (IR) FEL driven by a race-track microtron-recuperator is given. The current status and plans for this facility are provided by Institute of Nuclear Physics (Novosibirsk).

  19. Naval electric weapons the electromagnetic railgun and free electron laser

    OpenAIRE

    Williams, Robert E.

    2004-01-01

    Approved for public release; distribution is unlimited Theory and simulations of the railgun and free electron laser are presented, as well as a suggestion for extending the railgun lifecycle. The theory, design, and analysis of an electromagnetic railgun using a numerical model are discussed. The effects of varying electrical pulse formations, rail materials and geometries are explored. The application of a metallurgical process to mitigate hypervelocity gouging in railgun rails is propos...

  20. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid.

    Directory of Open Access Journals (Sweden)

    Faten Shaeib

    Full Text Available Myeloperoxidase (MPO generated hypochlorous acid (HOCl formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.

  1. A ferroelectric electron gun in a free-electron maser experiment

    CERN Document Server

    Einat, M; Rosenman, G

    2002-01-01

    An electron-gun based on a ferroelectric cathode is studied in a free-electron maser (FEM) experiment. In this gun, the electrons are separated from the cathode surface plasma, and are accelerated in two stages. The electron energy-spread is reduced sufficiently for an FEM operation in the microwave regime. A 14 keV, 1-2 A e-beam is obtained in a 0.1-2.1 mu s pulse width. The pulse repetition frequency attains 3.1 MHz in approx 50% duty-cycle. This gun is implemented in an FEM oscillator experiment operating around 3 GHz. The paper presents experimental results and discusses the applicability of ferroelectric guns in free-electron laser devices.

  2. Hotter electron generation in doped clusters

    Energy Technology Data Exchange (ETDEWEB)

    Jha, J; Krishnamurthy, M [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India)], E-mail: mkrism@tifr.res.in

    2008-02-28

    We present electron energy measurements from nano-cluster plasmas that are formed when molecule-doped rare-gas clusters are irradiated by intense, 100 fs laser pulses of intensity {approx}10{sup 15} W cm{sup -2}. In pure Ar clusters the high temperature component (energy {approx}1400 eV) is less than 1% of the low temperature component (energy {approx}130 eV), while for water-doped Ar clusters the high temperature component is as high as 7% of the low temperature component. Numerical estimates based on collisional ionization and inverse bremsstrahlung absorption indicate that the easily ionizable dopant molecules enhance the propensity for ionization ignition by significantly altering the temporal profile of the inner-ionized electron density within the cluster. (fast track communication)

  3. Determination of Inelastic Mean Free Path by Electron Holography Along with Electron Dynamic Calculation

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    Off-axis electron holography in a field emission gun transmission-electron microscope and electron dynamic calculation are used to determine the absorption coefficient and inelastic mean free path (IMFP) of copper.Dependence of the phase shift of the exit electron wave on the specimen thickness is established by electron dynamic simulation. The established relationship makes it possible to determine the specimen thickness with the calculated phase shift by match of the phase shift measured in the reconstructed phase image. Based on the measured amplitudes in reconstructed exit electron wave and reference wave in the vacuum, the examined IMFP of electron with energy of 200kV in Cu is obtained to be 96nm.

  4. Electron Beam Spectrum Diagnostics with Optical Transition Radiation on the Beijing Free-Electron Laser

    Institute of Scientific and Technical Information of China (English)

    李泉凤; 吴频; 高建江; 吴刚

    2004-01-01

    A measurement system was developed to measure the electron beam spectrum of the Beijing free-electron laser based on the optical transition radiation (OTR). This paper describes the system, which consists of a 32-channel high resolution of 0.02% OTR detector, especially the spectrometer. The OTR angular-distribution pattern at the focal plane has two apexes, but the two apexes are smoothed out due to the electron beam energy distribution. The energy spectrum can be measured if the magnet energy resolution is higher than 0.7% to distinguish the electron beam energy distribution.

  5. Free Open Source Software in Electronics Engineering Education: A Survey

    Directory of Open Access Journals (Sweden)

    Vijay Nehra

    2014-05-01

    Full Text Available Since the last two decades, much attention has been paid to Electronics Engineering (EE education in India. Various commercial software tools and simulator such as mathematical application packages, electronics CAD tools, learning management systems, multimedia tools and general purpose tools supports EE education. Traditionally, proprietary software packages such as OrCAD Pspice, MATLAB, LabView, Multisim and others too are widely practiced and well integrated in electronics engineering curricula of various Universities nationwide. In today’s market, there are plenty of software tools and packages; however, most of them are expensive. The high cost of standard commercial packages is often hardship for students and faculties. Selecting various appropriate tools for academic use is considered as one of the key challenges in EE education. Over recent years, an alternative trend based on Free Open Source Software (FOSS has gained momentum in higher education due to several benefits such as cost, license management flexibility, access to source code, security and stability etc. Presently, a plethora of open source software tools and resource related to EE can be deployed in teaching and learning process of EE education. In this communication, a short exposition of Free Open Source Software useful in electronics engineering education and research is presented. A brief outlook of FOSS packages, their web addresses and major highlights are also presented. The overall aim of this paper is to create awareness among instructors and students to impart active and self learning using FOSS.

  6. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  7. Two-Generator Free Kleinian Groups and Hyperbolic Displacements

    CERN Document Server

    Yuce, Ilker S

    2009-01-01

    The $\\log 3$ Theorem, proved by Culler and Shalen, states that every point in the hyperbolic 3-space is moved a distance at least $\\log 3$ by one of the non-commuting isometries $\\xi$ or $\\eta$ provided that $\\xi$ and $\\eta$ generate a torsion-free, discrete group which is not co-compact and contains no parabolic. This theorem lies in the foundation of many techniques that provide lower estimates for the volumes of orientable, closed hyperbolic 3-manifolds whose fundamental group has no 2-generator subgroup of finite index and, as a consequence, gives insights into the topological properties of these manifolds. In this paper, we show that every point in the hyperbolic 3-space is moved a distance at least $(1/2)\\log(5+3\\sqrt{2})$ by one of the isometries in $\\{\\xi,\\eta,\\xi\\eta\\}$ when $\\xi$ and $\\eta$ satisfy the conditions given in the $\\log 3$ Theorem.

  8. Observation of Hanbury Brown-Twiss anticorrelations for free electrons.

    Science.gov (United States)

    Kiesel, Harald; Renz, Andreas; Hasselbach, Franz

    2002-07-25

    Fluctuations in the counting rate of photons originating from uncorrelated point sources become, within the coherently illuminated area, slightly enhanced compared to a random sequence of classical particles. This phenomenon, known in astronomy as the Hanbury Brown-Twiss effect, is a consequence of quantum interference between two indistinguishable photons and Bose Einstein statistics. The latter require that the composite bosonic wavefunction is a symmetric superposition of the two possible paths. For fermions, the corresponding two-particle wavefunction is antisymmetric: this excludes overlapping wave trains, which are forbidden by the Pauli exclusion principle. Here we use an electron field emitter to coherently illuminate two detectors, and find anticorrelations in the arrival times of the free electrons. The particle beam has low degeneracy (about 10(-4) electrons per cell in phase space); as such, our experiment represents the fermionic twin of the Hanbury Brown-Twiss effect for photons.

  9. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  10. Smith-Purcell free electron laser based on the semi-elliptical resonator

    Institute of Scientific and Technical Information of China (English)

    Meng xian-Zhu; Wang Ming-Hong; Ren Zhong-Min

    2011-01-01

    A novel Smith-Purcell (S-P) free electron laser composed of an electron gun, a semi-elliptical resonator, a metallic reflecting grating and a collector, is presented for the first time. This paper studies the characteristics of this device by theoretical analysis and particle-in-cell simulation method. Results indicate that tunable coherent S-P radiation with a high output peak power at millimeter wavelengths can be generated by adjusting the length of the grating period,or adjusting the voltage of the electron beam. The present scheme has the following advantages: the semi-elliptical resonator can reflect all radiation with the emission angle θ and random azimuthal angles, back onto the electron beam with same-phase and causes the electrons to be modulated, so the output power and efficiency are improved.

  11. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  12. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    Science.gov (United States)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  13. Status of polarization control experiment at Shanghai deep ultraviolet free electron laser

    CERN Document Server

    Deng, Haixiao; Feng, Lie; Liu, Bo; Chen, Jianhui; Dai, Zhimin; Fan, Yong; Feng, Chao; He, Yongzhou; Lan, Taihe; Song, Lin; Wang, Dong; Wang, Xingtao; Wang, Zhishan; Zhang, Jidong; Zhang, Meng; Zhang, Miao; Zhao, Zhentang

    2012-01-01

    A polarization control experiment by utilizing a pair of crossed undulators has been proposed for the Shanghai deep ultraviolet free electron laser test facility. Numerical simulations indicate that, with the electromagnetic phase-shifter located between the two crossed planar undulators, fully coherent radiation with 100 nJ order pulse energy, 5 picoseconds pulse length and circular polarization degree above 90% could be generated. The physical design study and the preparation status of the experiment are presented in the paper.

  14. Generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of oligopeptides.

    Science.gov (United States)

    Shi, X; Dalal, N S; Kasprzak, K S

    1992-11-15

    The generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of several oligopeptides was investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Incubation of Ni2+ with cumene hydroperoxide or t-butyl hydroperoxide did not generate any detectable free radical. In the presence of glycylglycylhistidine (GlyGlyHis), however, Ni2+ generated cumene peroxyl (ROO.) radical from cumene hydroperoxide, with the free radical generation reaching its saturation level within about 3 min. The reaction was first order with respect to both cumene hydroperoxide and Ni2+. Similar results were obtained using t-butyl hydroperoxide, but the yield of t-butyl peroxyl radical generation was about 7-fold lower. Other histidine-containing oligopeptides such as beta-alanyl-L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), and beta-alanyl-3-methyl-L-histidine (anserine) caused the generation of both cumene alkyl (R.) and cumene alkoxyl (RO.) radicals in the reaction of Ni2+ with cumene hydroperoxide. Similar results were obtained using t-butyl hydroperoxide. Glutathione also caused generation of R. and RO. radicals in the reaction of Ni2+ with cumene hydroperoxide but the yield was approximately 25-fold greater than that produced by the histidine-containing peptides, except GlyGlyHis. The ratio of DMPO/R. and DMPO/RO. produced with glutathione and cumene hydroperoxide was approximately 3:1. Essentially the same results were obtained using t-butyl hydroperoxide except that the ratio of DMPO/R. to DMPO/RO. was approximately 1:1. The free radical generation from cumene hydroperoxide reached its saturation level almost instantaneously while in the case of t-butyl hydroperoxide, the saturation level was reached in about 3 min. In the presence of oxidized glutathione, the Ni2+/cumene hydroperoxide system caused DMPO/.OH generation from DMPO without forming free hydroxyl radical. Since glutathione

  15. Chirped pulse amplification in an extreme-ultraviolet free-electron laser

    Science.gov (United States)

    Gauthier, David; Allaria, Enrico; Coreno, Marcello; Cudin, Ivan; Dacasa, Hugo; Danailov, Miltcho Boyanov; Demidovich, Alexander; di Mitri, Simone; Diviacco, Bruno; Ferrari, Eugenio; Finetti, Paola; Frassetto, Fabio; Garzella, David; Künzel, Swen; Leroux, Vincent; Mahieu, Benoît; Mahne, Nicola; Meyer, Michael; Mazza, Tommaso; Miotti, Paolo; Penco, Giuseppe; Raimondi, Lorenzo; Ribič, Primož Rebernik; Richter, Robert; Roussel, Eléonore; Schulz, Sebastian; Sturari, Luca; Svetina, Cristian; Trovò, Mauro; Walker, Paul Andreas; Zangrando, Marco; Callegari, Carlo; Fajardo, Marta; Poletto, Luca; Zeitoun, Philippe; Giannessi, Luca; de Ninno, Giovanni

    2016-12-01

    Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

  16. Chirped pulse amplification in an extreme-ultraviolet free-electron laser.

    Science.gov (United States)

    Gauthier, David; Allaria, Enrico; Coreno, Marcello; Cudin, Ivan; Dacasa, Hugo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Di Mitri, Simone; Diviacco, Bruno; Ferrari, Eugenio; Finetti, Paola; Frassetto, Fabio; Garzella, David; Künzel, Swen; Leroux, Vincent; Mahieu, Benoît; Mahne, Nicola; Meyer, Michael; Mazza, Tommaso; Miotti, Paolo; Penco, Giuseppe; Raimondi, Lorenzo; Ribič, Primož Rebernik; Richter, Robert; Roussel, Eléonore; Schulz, Sebastian; Sturari, Luca; Svetina, Cristian; Trovò, Mauro; Walker, Paul Andreas; Zangrando, Marco; Callegari, Carlo; Fajardo, Marta; Poletto, Luca; Zeitoun, Philippe; Giannessi, Luca; De Ninno, Giovanni

    2016-12-01

    Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

  17. Two-Colour Free Electron Laser with Wide Frequency Separation using a Single Monoenergetic Electron Beam

    CERN Document Server

    Campbell, L T; Reiche, S

    2014-01-01

    Studies of a broad bandwidth, two-colour FEL amplifier using one monoenergetic electron beam are presented. The two-colour FEL interaction is achieved using a series of undulator modules alternately tuned to two well-separated resonant frequencies. Using the broad bandwidth FEL simulation code Puffin, the electron beam is shown to bunch strongly and simultaneously at the two resonant frequencies. Electron bunching components are also generated at the sum and difference of the resonant frequencies.

  18. Optical Transition Radiation Measurement of Electron Beam for Beijing Free Electron Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiang; XIE Jia-Lin; LI Yong-Gui; ZHUANG Jie-Jia

    2001-01-01

    We used transition radiation techniques instead of the original phosphor targets to improve the electronic beam diagnostic system at Beijing Free Electron Laser. The beam profile, size (3.3 × 2.4 mm), position and divergence angle (σrms = 2.5 mrad) in transverse have been obtained from optical transition radiation. We also present the experimental set-up and some preliminary results.

  19. Free electron lifetime achievements in Liquid Argon Imaging TPC

    CERN Document Server

    Baibussinov, B; Calligarich, E; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Rubbia, C; Varanini, F; Ventura, S

    2010-01-01

    A key feature for the success of the Liquid Argon TPC technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be initially and continuously kept at an exceptional purity. New purification techniques have been applied to a 120 litres LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to monitor the LAr purity. The short path length used (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic rays muons at sea level. A free electron lifetime of (21.4+7.3-4.3) ms, namely > 15.8 ms at 90 % C.L. has been observed under stable conditions over several weeks, corresponding to about 15 ppt (part per trillion) of Oxygen equivalent. At 500 V/cm, where the electron speed is approximately of 1.5 mm/us, the free electron lifetime >15 ms corresponds to an attenuation <15 % for a drift path of 5 m, opening the way to reliable operation of LAr TPC for exceptionall...

  20. Materials Research with the Vanderbilt Free-Electron Laser

    Science.gov (United States)

    Tolk, Norman

    1997-11-01

    The Vanderbilt Free-Electron Laser's (FEL) tunability (2-10=B5m), high intensity (15 MW) and short pulse structure (1 ps) make it ideal for studying (a) the electronic and vibrational structure of small and wide band gap semiconductors, and (b) non-thermal wavelength-selective materials alteration (``Free-Electron Laser Wavelength-Selective Materials Alteration and Photoexcitation Spectroscopy,'' N.H. Tolk, R.G. Albridge, A.V. Barnes, B.M. Barnes, J.L. Davidson, V.D. Gordon, G. Margaritondo, J.T. McKinley, G.A. Mensing, and J. Sturmann, Appl. Surf. Sci. 106, 205-210 (1996).). Two-photon absorption measurements in Ge were the first verification of a two-decades old predictionby Bassani and Hassan that the indirect two-photon absorption in Ge would be an LO-phonon assisted process. The FEL has greatly facilitated internal photoemission (IPE) heterojunction band discontinuity measurements. This technique is a photocurrent excitation spectroscopy that provides a direct measurement of the discontinuity without resorting to complex modeling. Another important area of materials research at the FEL concerns identification of wavelength-selective mechanisms for materials alteration. We have used the FEL to demonstrate strongly wavelength-selective ablation near the C-H stretch vibrational mode in chemical vapor deposited (CVD) diamond.

  1. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  2. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    Science.gov (United States)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  3. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... better control performance under the unbalanced AC source. It is concluded that power electronics will play more important role and regulate all the generated power in the next generation wind turbine system. In this case, the stress in the converter components becomes more critical because the power...

  4. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    Directory of Open Access Journals (Sweden)

    E. Principi

    2016-03-01

    Full Text Available High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs.

  5. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  6. Raman free-electron laser with a coaxial wiggler

    Science.gov (United States)

    Farokhi, B.; Maraghechi, B.; Willett, J. E.

    2000-10-01

    A one-dimensional theory of the stimulated Raman scattering mechanism for a coaxial free-electron laser (FEL) is developed. The beam-frame FEL dispersion relation and a formula for the lab-frame spatial growth rate are derived. A numerical study of the growth rate for the coaxial wiggler is made and compared with that for the helical wiggler. Except for a part of the group II orbits, the growth rate is found to be less than the helical wiggler. Relativistic effects due to the transverse oscillation of electrons in the wiggler field prevent the FEL operation from approaching magnetoresonance. In the absence of these relativistic mass effects, the calculations show a magnetoresonance associated with the first spatial harmonic and a much narrower resonance at the third spatial harmonic.

  7. Čerenkov free-electron laser with side walls

    Science.gov (United States)

    Kalkal, Yashvir; Kumar, Vinit

    2016-08-01

    In this paper, we have proposed a Čerenkov free-electron laser (CFEL) with metallic side walls, which are used to confine an electromagnetic surface mode supported by a thin dielectric slab placed on top of a conducting surface. This leads to an enhancement in coupling between the optical mode and the co-propagating electron beam, and consequently, performance of the CFEL is improved. We set up coupled Maxwell-Lorentz equations for the system, in analogy with an undulator based conventional FEL, and obtain formulas for the small-signal gain and growth rate. It is shown that small signal gain and growth rate in this configuration are larger compared to the configuration without the side walls. In the nonlinear regime, we solve the coupled Maxwell-Lorentz equations numerically and study the saturation behaviour of the system. It is found that the Čerenkov FEL with side walls saturates quickly, and produces powerful coherent terahertz radiation.

  8. Čerenkov free-electron laser with side walls

    Energy Technology Data Exchange (ETDEWEB)

    Kalkal, Yashvir, E-mail: yashvirkalkal@gmail.com [Homi Bhabha National Institute, Mumbai 400094 (India); Accelerator and Beam Physics Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Kumar, Vinit [Homi Bhabha National Institute, Mumbai 400094 (India); Accelerator and Beam Physics Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-08-11

    In this paper, we have proposed a Čerenkov free-electron laser (CFEL) with metallic side walls, which are used to confine an electromagnetic surface mode supported by a thin dielectric slab placed on top of a conducting surface. This leads to an enhancement in coupling between the optical mode and the co-propagating electron beam, and consequently, performance of the CFEL is improved. We set up coupled Maxwell–Lorentz equations for the system, in analogy with an undulator based conventional FEL, and obtain formulas for the small-signal gain and growth rate. It is shown that small signal gain and growth rate in this configuration are larger compared to the configuration without the side walls. In the nonlinear regime, we solve the coupled Maxwell–Lorentz equations numerically and study the saturation behaviour of the system. It is found that the Čerenkov FEL with side walls saturates quickly, and produces powerful coherent terahertz radiation.

  9. High current racetrack microtron as a free electron laser driver

    Science.gov (United States)

    Kurakin, V. G.

    1994-03-01

    A racetrack microtron combines the best features of a linac and a classical microtron. It might serve as a basis for free electron lasers to make these promising devices more compact and relatively cheap and thus available for many laboratories. At the same time it is known that stable acceleration in a racetrack is broken up at high intensity by automodulation of the beam current. It is shown in this paper that such modulation originates from positive feedback arising at some frequencies between the system rf cavity and the electron beam. The beam-cavity interaction equations followed by a stability analysis are presented. A linear approximation is used to derive stability conditions, the latter being represented in an analytical form followed by numerical calculations and a stability diagram. Comparing the results obtained with experimentally measured values shows the validity of the approach used. The physical meaning of observed intensity modulation as well as some measures of their suppression are discussed.

  10. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  11. Free electron lasers with slowly varying beam and undulator parameters

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2005-04-01

    Full Text Available A self-consistent theory of a free electron laser (FEL with slowly varying beam and undulator parameters is developed using the WKB approximation. The theory is applied to study the performance of a self-amplified spontaneous emission (SASE FEL when the electron beam energy varies along the undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is tapered in the small signal regime before FEL saturation. We find that a small energy gain or an equivalent undulator taper slightly reduces the power gain length in the exponential growth regime and can increase the saturated SASE power by about a factor of 2. Power degradation away from the optimal performance can be estimated based upon knowledge of the SASE bandwidth. The analytical results, which agree with numerical simulations, are used to optimize the undulator taper and to evaluate wakefield effects.

  12. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  13. Post-selection free spatial Bell state generation

    CERN Document Server

    Kovlakov, E V; Straupe, S S; Kulik, S P

    2016-01-01

    Spatial states of single photons and spatially entangled photon pairs are becoming an important resource in quantum communication. This additional degree of freedom provides an almost unlimited information capacity, making the development of high-quality sources of spatial entanglement a well-motivated research direction. We report an experimental method for generation of photon pairs in a maximally entangled spatial state. In contrast to existing techniques the method does not require post-selection and allows one to use the full photon flux from the nonlinear crystal, providing a tool for creating high-brightness sources of pure spatially entangled photons. Such sources are a prerequisite for emerging applications in free-space quantum communication.

  14. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  15. Time-resolved electron spectrum diagnostics for a free-electron laser

    Science.gov (United States)

    Gillespie, W. A.; MacLeod, A. M.; Martin, P. F.; van der Meer, A. F. G.; van Amersfoort, P. W.

    1996-03-01

    Time-resolved electron-beam diagnostics have been developed for use with free-electron lasers (FELs) and associated electron sources, based on the techniques of secondary electron emission and optical transition radiation (OTR). The 32-channel OTR detector forms part of a high-resolution (0.18%) electron spectrometer with a time resolution of 50 ns. Variable-magnification optics allow the spectrometer to view single-macropulse spectra with widths in the range of 0.2%-7%; wider spectra are taken with several momentum settings. Design criteria for the spectrometer are presented, and experience of operating with the diagnostics over a range of FEL physics experiments is summarized. The spectrometer is used, in conjunction with optical diagnostics, in studies at FELIX of efficiency enhancement, pulse chirping, and stepped-undulator operation.

  16. Efficiency Enhancement in a Tapered Free Electron Laser by Varying the Electron Beam Radius

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yi; Wu, J.; Cai, Y.; Chao, A.W.; Fawley, W.M.; Frisch, J.; Huang, Z.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen

    2012-02-15

    Energy extraction efficiency of a free electron laser (FEL) can be increased when the undulator is tapered after the FEL saturation. By use of ray equation approximation to combine the one-dimensional FEL theory and optical guiding approach, an explicit physical model is built to provide insight to the mechanism of the electron-radiation coherent interaction with variable undulator parameters as well as electron beam radius. The contribution of variation in electron beam radius and related transverse effects are studied based on the presented model and numerical simulation. Taking a recent studied terawatt, 120 m long tapered FEL as an example, we demonstrate that a reasonably varied, instead of a constant, electron beam radius along the undulator helps to improve the optical guiding and thus the radiation output.

  17. Field Emitter Arrays for a Free Electron Laser Application

    CERN Document Server

    Shing-Bruce-Li, Kevin; Ganter, Romain; Gobrecht, Jens; Raguin, Jean Yves; Rivkin, Leonid; Wrulich, Albin F

    2004-01-01

    The development of a new electron gun with the lowest possible emittance would help reducing the total length and cost of a free electron laser. Field emitter arrays (FEAs) are an attractive technology for electron sources of ultra high brightness. Indeed, several thousands of microscopic tips can be deposited on a 1 mm diameter area. Electrons are then extracted by applying voltage to a first grid layer close to the tip apexes, the so called gate layer, and focused by a second grid layer one micrometer above the tips. The typical aperture diameter of the gate and the focusing layer is in the range of one micrometer. One challenge for such cathodes is to produce peak currents in the ampere range since the usual applications of FEAs require less than milliampere. Encouraging peak current performances have been obtained by applying voltage pulses at low frequency between gate and tips. In this paper we report on different tip materials available on the market: diamond FEAs from Extreme Devices Inc., ZrC single ...

  18. Optical guiding and beam bending in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations.

  19. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  20. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  1. Kinetic analysis-based quantitation of free radical generation in EPR spin trapping.

    Science.gov (United States)

    Samouilov, Alexandre; Roubaud, Valerie; Kuppusamy, Periannan; Zweier, Jay L

    2004-11-01

    Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.

  2. Visible-infrared self-amplified spontaneous emission amplifier free electron laser undulator

    Science.gov (United States)

    Carr, Roger; Cornacchia, Max; Emma, Paul; Nuhn, Heinz-Dieter; Poling, Ben; Ruland, Robert; Johnson, Erik; Rakowsky, George; Skaritka, John; Lidia, Steve; Duffy, Pat; Libkind, Marcus; Frigola, Pedro; Murokh, Alex; Pellegrini, Claudio; Rosenzweig, James; Tremaine, Aaron

    2001-12-01

    The visible-infrared self-amplified spontaneous emission amplifier (VISA) free electron laser (FEL) is an experimental device designed to show self-amplified spontaneous emission (SASE) to saturation in the near infrared to visible light energy range. It generates a resonant wavelength output from 800-600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is designed to show how SASE FEL theory corresponds with experiment in this wavelength range, using an electron beam with emittance close to that planned for the future Linear Coherent Light Source at SLAC. VISA comprises a 4 m pure permanent magnet undulator with four 99 cm segments, each of 55 periods, 18 mm long. The undulator has distributed focusing built into it, to reduce the average beta function of the 70-85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walk-off, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, we were able to control trajectory walk-off to less than +/-50 μm per field gain length.

  3. Visible-infrared self-amplified spontaneous emission amplifier free electron laser undulator

    Directory of Open Access Journals (Sweden)

    Roger Carr

    2001-12-01

    Full Text Available The visible-infrared self-amplified spontaneous emission amplifier (VISA free electron laser (FEL is an experimental device designed to show self-amplified spontaneous emission (SASE to saturation in the near infrared to visible light energy range. It generates a resonant wavelength output from 800–600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is designed to show how SASE FEL theory corresponds with experiment in this wavelength range, using an electron beam with emittance close to that planned for the future Linear Coherent Light Source at SLAC. VISA comprises a 4 m pure permanent magnet undulator with four 99 cm segments, each of 55 periods, 18 mm long. The undulator has distributed focusing built into it, to reduce the average beta function of the 70–85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walk-off, or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, we were able to control trajectory walk-off to less than ±50 μm per field gain length.

  4. Soybean Ferritin: Isolation, Characterization, and Free Radical Generation

    Institute of Scientific and Technical Information of China (English)

    Andrea Galatro; Elizabeth Robello; Susana Puntarulo

    2012-01-01

    The main aim of this work was to assess the multi-task role of ferritin (Ft) in the oxidative metabolism of soybean (Glycine max).Soybean seeds incubated for 24 h yielded 41 ± 5 μg Ft/g fresh weight.The rate of in vitro incorporation of iron (Fe) into Ft was tested by supplementing the reaction medium with physiological Fe chelators.The control rate,observed in the presence of 100 μM Fe,was not significantly different from the values observed in the presence of 100 μM Fe-his.However,it was significantly higher in the presence of 100 μM Fe-citrate (approximately 4.5-fold) or of 100 μM Fe-ATP (approximately 14-fold).Moreover,a substantial decrease in the Trp-dependent fluorescence of the Ft protein was determined during Fe uptake from Fe-citrate,as compared with the control.On the other hand,Ft addition to homogenates from soybean embryonic axes reduced endogenously generated ascorbyl radical,according to its capacity for Fe uptake.The data presented here suggest that Ft could be involved in the generation of free radicals,such as hydroxyl radical,by Fe-catalyzed reactions.Moreover,the scavenging of these radicals by Ft itself could then lead to protein damage.However,Ft could also prevent cellular damage by the uptake of catalytically active Fe.

  5. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    CERN Document Server

    Feng, Chao; Deng, Haixiao; Zhao, Zhentang

    2014-01-01

    In this letter, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the micro-bunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  6. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    Chao Feng

    2014-07-01

    Full Text Available In this paper, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the microbunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  7. Mode-selective phonon excitation in gallium nitride using mid-infrared free-electron laser

    Science.gov (United States)

    Kagaya, Muneyuki; Yoshida, Kyohei; Zen, Heishun; Hachiya, Kan; Sagawa, Takashi; Ohgaki, Hideaki

    2017-02-01

    The single-phonon mode was selectively excited in a solid-state sample. A mid-infrared free-electron laser, which was tuned to the target phonon mode, was irradiated onto a crystal cooled to a cryogenic temperature, where modes other than the intended excitation were suppressed. An A 1(LO) vibrational mode excitation on GaN(0001) face was demonstrated. Anti-Stokes Raman scattering was used to observe the excited vibrational mode, and the appearance and disappearance of the scattering band at the target wavenumber were confirmed to correspond to on and off switching of the pump free-electron laser and were fixed to the sample vibrational mode. The sum-frequency generation signals of the pump and probe lasers overlapped the Raman signals and followed the wavenumber shift of the pump laser.

  8. Design and experimental tests of free electron laser wire scanners

    Science.gov (United States)

    Orlandi, G. L.; Heimgartner, P.; Ischebeck, R.; Loch, C. Ozkan; Trovati, S.; Valitutti, P.; Schlott, V.; Ferianis, M.; Penco, G.

    2016-09-01

    SwissFEL is a x-rays free electron laser (FEL) driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs) will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH) and at FERMI (Elettra-Sincrotrone Trieste, Italy). In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al (99 )∶Si (1 ) and tungsten (W) wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  9. Hybrid planar free-electron maser in the magnetoresonance regime

    Directory of Open Access Journals (Sweden)

    Vitaliy A. Goryashko

    2009-10-01

    Full Text Available We study the operation regime of a hybrid planar free-electron maser (FEM amplifier near the magnetoresonant value of the uniform longitudinal (guide magnetic field. Using analytical expressions for individual test electron trajectories and normal frequencies of their three-dimensional oscillations in the magnetostatic field of the hybrid planar FEM, an analytical condition of chaotization of motion is established and shown to be given by the Chirikov resonance-overlap criterion applied to the normal undulator and cyclotron frequencies with respect to the coupling induced by the undulator magnetic field. It is also shown analytically that, in spite of the well-known drop for the exact magnetoresonance, the gain attains its maximal value in the zone of regular dynamics slightly above the magnetoresonant value of the guide magnetic field. Under the condition of undulator resonance, it is practically independent of the amplitude of the undulator magnetic field and the wavelength of amplified signal. To account for space-charge effects, we propose a theoretical model of a weakly relativistic FEM, which accommodates not only potential but also rotational parts of the nonradiated electromagnetic field of a moving charged particle. It turns out that the rotational part of nonradiated field diminishes the defocusing influence of the potential part on the beam bunching. Numeric simulation of the nonlinear stage of amplification is fulfilled, taking into consideration adiabatic entrance of the electron beam to the interaction region and initial electron velocity spread. We find that nonradiated field and initial electron velocity spread do not influence essentially the efficiency of hybrid planar FEM amplification if parameters of the beam-microwave interaction correspond to the operational regime in the zone of regular dynamics near the magnetoresonance.

  10. Towards jitter-free pump-probe measurements at seeded free electron laser facilities.

    Science.gov (United States)

    Danailov, Miltcho B; Bencivenga, Filippo; Capotondi, Flavio; Casolari, Francesco; Cinquegrana, Paolo; Demidovich, Alexander; Giangrisostomi, Erika; Kiskinova, Maya P; Kurdi, Gabor; Manfredda, Michele; Masciovecchio, Claudio; Mincigrucci, Riccardo; Nikolov, Ivaylo P; Pedersoli, Emanuele; Principi, Emiliano; Sigalotti, Paolo

    2014-06-02

    X-ray free electron lasers (FEL) coupled with optical lasers have opened unprecedented opportunities for studying ultrafast dynamics in matter. The major challenge in pump-probe experiments using FEL and optical lasers is synchronizing the arrival time of the two pulses. Here we report a technique that benefits from the seeded-FEL scheme and uses the optical seed laser for nearly jitter-free pump-probe experiments. Timing jitter as small as 6 fs has been achieved and confirmed by measurements of FEL-induced transient reflectivity changes of Si3N4 using both collinear and non-collinear geometries. Planned improvements of the experimental set-up are expected to further reduce the timing jitter between the two pulses down to fs level.

  11. Reversible electron beam heating for suppression of microbunching instabilities at free-electron lasers

    CERN Document Server

    Behrens, Christopher; Xiang, Dao

    2011-01-01

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future X-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., "heating" the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) in front and behind a magnetic bunch compressor chicane. The additional energy spread will be introduced in the first TDS, which suppresses the microbunching instability, and then will be eliminated in the second T...

  12. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser.

    Science.gov (United States)

    Hadmack, M R; Jacobson, B T; Kowalczyk, J M D; Lienert, B R; Madey, J M J; Szarmes, E B

    2013-06-01

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  13. Generation of Tin(II) Oxide Crystals on Lead-Free Solder Joints in Deionized Water

    Science.gov (United States)

    Chang, Hong; Chen, Hongtao; Li, Mingyu; Wang, Ling; Fu, Yonggao

    2009-10-01

    The effect of the anode and cathode on the electrochemical corrosion behavior of lead-free Sn-Ag-Cu and Sn-Ag-Cu-Bi solder joints in deionized water was investigated. Corrosion studies indicate that SnO crystals were generated on the surfaces of all lead-free solder joints. The constituents of the lead-free solder alloys, such as Ag, Cu, and Bi, did not affect the corrosion reaction significantly. In contrast to lead-free solders, PbO x was formed on the surface of the traditional 63Sn-37Pb solder joint in deionized water. A cathode, such as Au or Cu, was necessary for the electrochemical corrosion reaction of solders to occur. The corrosion reaction rate decreased with reduction of the cathode area. The formation mechanism of SnO crystals was essentially a galvanic cell reaction. The anodic reaction of Sn in the lead-free solder joints occurred through solvation by water molecules to form hydrated cations. In the cathodic reaction, oxygen dissolved in the deionized water captures electrons and is deoxidized to hydroxyl at the Au or Cu cathode. By diffusion, the anodic reaction product Sn2+ and the cathodic reaction product OH- meet to form Sn(OH)2, some of which can dehydrate to form more stable SnO· xH2O crystals on the surface of the solder joints. In addition, thermodynamic analysis confirms that the Sn corrosion reaction could occur spontaneously.

  14. Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Free-Electron Laser Pulses.

    Science.gov (United States)

    Schlathölter, Thomas; Reitsma, Geert; Egorov, Dmitrii; Gonzalez-Magaña, Olmo; Bari, Sadia; Boschman, Leon; Bodewits, Erwin; Schnorr, Kirsten; Schmid, Georg; Schröter, Claus Dieter; Moshammer, Robert; Hoekstra, Ronnie

    2016-08-26

    The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides.

  15. Reliability of lead-free solders in electronic packaging technology

    Science.gov (United States)

    Choi, Woojin

    The electromigration of flip chip solder bump (eutetic SnPb) has been studied at temperatures of 100, 125 and 150°C and current densities of 1.9 to 2.75 x 104 A/cm2. The under-bump-metallization on the chip side is thin film Al/Ni(V)/Cu and on the board side is thick Cu. By simulation, we found that current crowding occurs at the corner on the chip side where the electrons enter the solder ball. We are able to match this simulation to the real electromigration damage in the sample. The experimental result showed that voids initiated from the position of current crowding and propagated across the interface between UBM and the solder ball. The Cu-Sn intermetallic compounds formed during the reflow is known to adhere well to the thin film UBM, but they detached from the UBM after current stressing. Therefore, the UBM itself becomes part of the reliability problem of the flip chip solder joint under electromigration. Currently there is a renewed interest in Sn whisker growth owing to the introduction of Pb-free solder in electronic manufacturing. The leadframe is electroplated or finished with a layer of Pb-free solder. The solder is typically pure Sn or eutectic SnCu (0.7 atomic % Cu). It is a serious reliability concern in the use of the eutectic SnCu solder as leadframe surface finish due to the growth of long whiskers on it. The origin of the driving force of compressive stress can be mechanical, thermal, and chemical. Among them, the chemical force is the most important contribution to the whisker growth and its origin is due to the reaction between Sn and Cu to form intermetallic compound (IMC) at room temperature. For whisker or hillock growth, the surface cannot be free of oxide and it must be covered with oxide and the oxide must be a protective one so that it removes effectively all the vacancy sources and sinks on the surface. Hence, only those metals, which grow protective oxides such as Al and Sn, are known to have hillock growth or whisker growth. We

  16. Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping

    Directory of Open Access Journals (Sweden)

    C. Emma

    2014-11-01

    Full Text Available We study the dependence of the peak power of a 1.5 Å Terawatt (TW, tapered x-ray free-electron laser (FEL on the transverse electron density distribution. Multidimensional optimization schemes for TW hard x-ray free-electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to a Gaussian distribution. The optimizations are performed for a 200 m undulator and a resonant wavelength of λ_{r}=1.5  Å using the fully three-dimensional FEL particle code genesis. The study shows that the flatter transverse electron distributions enhance optical guiding in the tapered section of the undulator and increase the maximum radiation power from a maximum of 1.56 TW for a transversely Gaussian beam to 2.26 TW for the parabolic case and 2.63 TW for the uniform case. Spectral data also shows a 30%–70% reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the transverse coherence of the radiation shows the coherence area to be much larger than the beam spotsize for all three distributions, making coherent diffraction imaging experiments possible.

  17. Free Space Optics for Next Generation Cellular Backhaul

    KAUST Repository

    Zedini, Emna

    2016-11-01

    The exponential increase in the number of mobile users, coupled with the strong demand for high-speed data services results in a significant growth in the required cellular backhaul capacity. Optimizing the cost efficiency while increasing the capacity is becoming a key challenge to the cellular backhaul. It refers to connections between base stations and mobile switching nodes over a variety of transport technologies such as copper, optical fibers, and radio links. These traditional transmission technologies are either expensive, or cannot provide high data rates. This work is focused on the opportunities of free-space-optical (FSO) technology in next generation cellular back- haul. FSO is a cost effective and wide bandwidth solution as compared with the traditional radio-frequency (RF) transmission. Moreover, due to its ease of deployment, license-free operation, high transmission security, and insensitivity to interference, FSO links are becoming an attractive solution for next generation cellular networks. However, the widespread deployment of FSO links is hampered by the atmospheric turbulence-induced fading, weather conditions, and pointing errors. Increasing the reliability of FSO systems, while still exploiting their high data rate communications, is a key requirement in the deployment of an FSO-based backhaul. Therefore, the aim of this work is to provide different approaches to address these technical challenges. In this context, investigation of hybrid automatic repeat request (HARQ) protocols from an information-theoretic perspective is undertaken. Moreover, performance analysis of asymmetric RF/FSO dual-hop systems is studied. In such system models, multiple RF users can be multiplexed and sent over the FSO link. More specifically, the end-to-end performance metrics are presented in closed-form. This also has increased the interest to study the performance of dual-hop mixed FSO/RF systems, where the FSO link is used as a multicast channel that serves

  18. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  19. Medical free-electron laser: fact or fiction?

    Science.gov (United States)

    Bell, James P.; Ponikvar, Donald R.

    1994-07-01

    The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.

  20. Resurrection of beam conditioning for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ming

    2003-02-17

    Recently Emma and Stupakov identified a fatal flaw in a Free Electron Laser (FEL) beam conditioning scheme. They showed that the conditioning is always accompanied by a projected transverse emittance growth that is so large as to make the beam conditioning completely impractical for short wavelength FELs. Furthermore, they provided a general proof along with evidence of computer simulation and reached a conclusion that any beam conditioner, regardless of the method, would suffer from the same constraints and limitations. In this paper, the author proposes an easy surgical removal of the fatal flaw by making a critical yet simple modification to the very scheme analyzed, thus resurrect the beam conditioning for short wavelength FELs. More generally, the also explain why a general search for removing have failed, why the concept and definition of beam conditioning.

  1. Chirped pulse inverse free-electron laser vacuum accelerator

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  2. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    CERN Document Server

    Sydorenko, D; Chen, L; Ventzek, P L G

    2015-01-01

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...

  3. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  4. Generation and application of bessel beams in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Harris, Jérémie [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada); Gazzadi, Gian Carlo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Balboni, Roberto [CNR-IMM Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Dennis, Mark R. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W.; Karimi, Ebrahim [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2016-07-15

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  5. Generation and application of bessel beams in electron microscopy.

    Science.gov (United States)

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  7. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  8. The History of X-ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  9. Laser-Induced Linear Electron Acceleration in Free Space

    CERN Document Server

    Wong, Liang Jie; Carbajo, Sergio; Fallahi, Arya; Soljačić, Marin; Joannopoulos, John D; Kärtner, Franz X; Kaminer, Ido

    2016-01-01

    Linear acceleration in free space is a topic that has been studied for over 20 years, and its ability to eventually produce high-quality, high energy multi-particle bunches has remained a subject of great interest. Arguments can certainly be made that such an ability is very doubtful. Nevertheless, we chose to develop an accurate and truly predictive theoretical formalism to explore this remote possibility in a computational experiment. The formalism includes exact treatment of Maxwell's equations, exact relativistic treatment of the interaction among the multiple individual particles, and exact treatment of the interaction at near and far field. Several surprising results emerged. For example, we find that 30 keV electrons (2.5% energy spread) can be accelerated to 7.7 MeV (2.5% spread) and to 205 MeV (0.25% spread) using 25 mJ and 2.5 J lasers respectively. These findings should hopefully guide and help develop compact, high-quality, ultra-relativistic electron sources, avoiding conventional limits imposed ...

  10. Structural enzymology using X-ray free electron lasers.

    Science.gov (United States)

    Kupitz, Christopher; Olmos, Jose L; Holl, Mark; Tremblay, Lee; Pande, Kanupriya; Pandey, Suraj; Oberthür, Dominik; Hunter, Mark; Liang, Mengning; Aquila, Andrew; Tenboer, Jason; Calvey, George; Katz, Andrea; Chen, Yujie; Wiedorn, Max O; Knoska, Juraj; Meents, Alke; Majriani, Valerio; Norwood, Tyler; Poudyal, Ishwor; Grant, Thomas; Miller, Mitchell D; Xu, Weijun; Tolstikova, Aleksandra; Morgan, Andrew; Metz, Markus; Martin-Garcia, Jose M; Zook, James D; Roy-Chowdhury, Shatabdi; Coe, Jesse; Nagaratnam, Nirupa; Meza, Domingo; Fromme, Raimund; Basu, Shibom; Frank, Matthias; White, Thomas; Barty, Anton; Bajt, Sasa; Yefanov, Oleksandr; Chapman, Henry N; Zatsepin, Nadia; Nelson, Garrett; Weierstall, Uwe; Spence, John; Schwander, Peter; Pollack, Lois; Fromme, Petra; Ourmazd, Abbas; Phillips, George N; Schmidt, Marius

    2017-07-01

    Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

  11. Free electron lasers: Present status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, W A; Corlett, J N; Emma, P; Huang, Z; Kim, K -J; Lindberg, R; Murphy, J B; Neil, G P; Nguyen, D C; Pellegrini, C; Rimmer, R A; Sannibale, F; Stupakov, G; Walker, R P

    2010-06-01

    With the scientific successes of the soft X-ray FLASH facility in Germany and the recent spectacular commissioning of the Linac Coherent Light Source at SLAC, free electron lasers are poised to take center stage as the premier source of tunable, intense, coherent photons of either ultra-short time resolution or ultra-fine spectral resolution, from the far infrared to the hard X-ray regime. This paper examines the state of the art in FEL performance and the underlying enabling technologies. It evaluates the state of readiness of the three basic machine architectures—SASE FELs, seeded FELs, and FEL oscillators—for the major X-ray science user facilities on the 5–10 years time scale and examines the challenges that lie ahead for FELs to achieve their full potential throughout the entire spectral range. In soft and hard X-rays, high longitudinal coherence, in addition to full transverse coherence, will be the key performance upgrade; ideas using laser-based or self-seeding or oscillators can be expected to be qualitatively superior to today's SASE sources. Short pulses, from femtoseconds to attoseconds, can be realistically envisioned. With high repetition rate electron sources coupled to superconducting radiofrequency linear accelerators, unprecedented average beam brightness will be possible and many users would be served simultaneously by a single accelerator complex.

  12. Free electron lasers: Present status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, W.A. [Department of Physics, Massachusetts Institute of Technology, Bldg. 26-563, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Bisognano, J. [Synchrotron Radiation Center, 3731 Schneider Dr., Stoughton, WI 53589-3097 (United States); Corlett, J.N. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Emma, P.; Huang, Z. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kim, K.-J.; Lindberg, R. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Murphy, J.B., E-mail: jbm@bnl.go [National Synchrotron Light Source, Building 725C, Upton, NY 11973 (United States); Neil, G.R. [Thomas Jefferson National Accelerator Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Nguyen, D.C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pellegrini, C. [Department of Physics and Astronomy, University of California-Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Rimmer, R.A. [Thomas Jefferson National Accelerator Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sannibale, F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Stupakov, G. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Walker, R.P. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Zholents, A.A. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2010-06-21

    With the scientific successes of the soft X-ray FLASH facility in Germany and the recent spectacular commissioning of the Linac Coherent Light Source at SLAC, free electron lasers are poised to take center stage as the premier source of tunable, intense, coherent photons of either ultra-short time resolution or ultra-fine spectral resolution, from the far infrared to the hard X-ray regime. This paper examines the state of the art in FEL performance and the underlying enabling technologies. It evaluates the state of readiness of the three basic machine architectures-SASE FELs, seeded FELs, and FEL oscillators-for the major X-ray science user facilities on the 5-10 years time scale and examines the challenges that lie ahead for FELs to achieve their full potential throughout the entire spectral range. In soft and hard X-rays, high longitudinal coherence, in addition to full transverse coherence, will be the key performance upgrade; ideas using laser-based or self-seeding or oscillators can be expected to be qualitatively superior to today's SASE sources. Short pulses, from femtoseconds to attoseconds, can be realistically envisioned. With high repetition rate electron sources coupled to superconducting radiofrequency linear accelerators, unprecedented average beam brightness will be possible and many users would be served simultaneously by a single accelerator complex.

  13. Numerical Simulations of X-Ray Free Electron Lasers (XFEL)

    KAUST Repository

    Antonelli, Paolo

    2014-11-04

    We study a nonlinear Schrödinger equation which arises as an effective single particle model in X-ray free electron lasers (XFEL). This equation appears as a first principles model for the beam-matter interactions that would take place in an XFEL molecular imaging experiment in [A. Fratalocchi and G. Ruocco, Phys. Rev. Lett., 106 (2011), 105504]. Since XFEL are more powerful by several orders of magnitude than more conventional lasers, the systematic investigation of many of the standard assumptions and approximations has attracted increased attention. In this model the electrons move under a rapidly oscillating electromagnetic field, and the convergence of the problem to an effective time-averaged one is examined. We use an operator splitting pseudospectral method to investigate numerically the behavior of the model versus that of its time-averaged version in complex situations, namely the energy subcritical/mass supercritical case and in the presence of a periodic lattice. We find the time-averaged model to be an effective approximation, even close to blowup, for fast enough oscillations of the external field. This work extends previous analytical results for simpler cases [P. Antonelli, A. Athanassoulis, H. Hajaiej, and P. Markowich, Arch. Ration. Mech. Anal., 211 (2014), pp. 711--732].

  14. High-harmonic generation enhanced by dynamical electron correlation

    CERN Document Server

    Tikhomirov, Iliya; Ishikawa, Kenichi L

    2016-01-01

    We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron first-principles simulations for a one-dimensional (1D) model atom. In addition to usual plateau and cutoff (from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron nature in most cases.

  15. Development of High Performance Electron Beam Switching System for Swiss Free Electron Laser at PSI

    CERN Document Server

    Paraliev, M

    2012-01-01

    A compact X-ray Free Electron Laser (SwissFEL) is under development at the Paul Scherrer Institute. To increase facility efficiency the main linac will operate in two electron bunch mode. The two bunches are separated in time by 28 ns and sent to two undulator lines. The combination of two beam lines should produce short X-ray pulses covering wavelength range from 1 to 70 {\\AA} with submicron position stability. To separate the two bunches, a novel electron beam switching system is being developed. The total deflection is achieved with a combination of high Q-factor resonant deflector magnet, followed by a DC septum magnet. The shot-to-shot deflection stability of the entire switching system should be <+/-10 ppm in amplitude and +/-100 ps in time, values which present severe measurement difficulties. Deflection magnets requirements, development and results of the kicker prototype are presented.

  16. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    CERN Document Server

    Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

    2015-01-01

    The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

  17. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  18. Reversible electron beam heating for suppression of microbunching instabilities at free-electron lasers

    Directory of Open Access Journals (Sweden)

    Christopher Behrens

    2012-02-01

    Full Text Available The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam’s longitudinal phase space are discussed.

  19. Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

    2012-05-30

    The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

  20. Novosibirsk Free Electron Laser: Recent Achievements and Future Prospects

    Science.gov (United States)

    Shevchenko, O. A.; Arbuzov, V. S.; Vinokurov, N. A.; Vobly, P. D.; Volkov, V. N.; Getmanov, Ya. V.; Davidyuk, I. V.; Deychuly, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Knyazev, B. A.; Kolobanov, E. I.; Kondakov, A. A.; Kozak, V. R.; Kozyrev, E. V.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Krutikhin, S. A.; Medvedev, L. E.; Motygin, S. V.; Ovchar, V. K.; Osipov, V. N.; Petrov, V. M.; Pilan, A. M.; Popik, V. M.; Repkov, V. V.; Salikova, T. V.; Sedlyarov, I. K.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Tribendis, A. G.; Cheskidov, V. G.; Chernov, K. N.; Shcheglov, M. A.

    2017-02-01

    Free electron lasers (FELs) are unique sources of electromagnetic radiation with tunable wavelength. A high-power FEL has been created at the G. I.Budker Institute for Nuclear Physics. Its radiation frequency can be tuned over a wide range in the terahertz and infrared spectral ranges. As the source of electron bunches, this FEL uses a multi-turn energy-recovery linac, which has five straight sections. Three sections are used for three FELs which operate in different wavelength ranges (90-240 μm for the first, 37-80 μm for the second, and 5-20 μm for the third ones). The first and the second FELs were commissioned in 2003 and 2009, respectively. They are used for various applied and research problems now. The third FEL is installed on the last, forth accelerator loop, in which the electron energy is the maximum. It comprises three undulator sections and a 40 m optical cavity. The first lasing of this FEL was obtained in the summer of 2015. The radiation wavelength was 9 μm and the average power was about 100 W. The design power is 1 kW at a pulse repetition rate of 3.75 MHz. Radiation of the third FEL will be delivered to user stations from the protected hall in the near future. The third FEL commissioning results are presented and the current status of the first and second FELs as well as their future development prospects are described.

  1. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  2. VUV and X-ray coherent light with tunable polarization from single-pass free-electron lasers

    CERN Document Server

    Spezzani, C; Diviacco, B; Ferrari, E; Geloni, G; Karantzoulis, E; Mahieu, B; Vento, M; De Ninno, G

    2011-01-01

    Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in both condensed and low-density matter. Among new-generation sources, free-electron lasers possess a unique combination of very attractive features, as they allow to generate powerful and coherent ultra-short optical pulses in the VUV and X-ray spectral range. However, the question remains open about the possibility to freely vary the light polarization of a free-electron laser, when the latter is operated in the so-called nonlinear harmonic-generation regime. In such configuration, one collects the harmonics of the free-electron laser fundamental emission, gaining access to the shortest possible wavelengths the device can generate. In this letter we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and we demonstrate a method to obtain tunable polarization in the VUV and X-ray spectral range....

  3. Cluster sources for the low density matter beamline at the FERMI free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Katzy, Raphael; Lyamayev, Viktor; Mudrich, Marcel; Stienkemeier, Frank [Universitaet Freiburg, Physikalisches Institut, D-79104 Freiburg im Breisgau (Germany)

    2012-07-01

    Applying high gain harmonic generation process (HGHG) the new FERMI free electron laser in Trieste provides intense XUV pulses of high brilliance with tunable wavelength and excellent confinement in time. The LDM endstation has been designed to combine the FERMI XUV radiation with molecular beam experiments. In several exchangeable beam sources, atomic, molecular and cluster beams are generated and can be doped by the pick-up technique in oven cells or in a laser ablation unit. Detailed information about the interaction with the FEL light is gathered by combined VMI, TOF and X-ray imaging detectors. Design and characterization of two sources are presented: A versatile high temperature high pressure pulsed source is utilized for generation of atomic, molecular and cluster beams of various materials in a gas expansion or applying the seeded beams technique. A pulsed cryogenic source gives the opportunity to use helium droplets with their unique cold, superfluid properties.

  4. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  5. The effects of nuclear power generators upon electronic instrumentation

    Science.gov (United States)

    Miller, C. G.; Truscello, V. C.

    1970-01-01

    Radiation sensitivity of electronic instruments susceptible to neutron and gamma radiation is evaluated by means of a radioisotope thermoelectric generator /RTG/. The gamma field of the RTG affects instrument operation and requires shielding, the neutron field does not affect operation via secondary capture-gamma production.

  6. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  7. Coupling of Laser-Generated Electrons with Conventional Accelerator Devices

    CERN Document Server

    Antici, P; Benedetti, C; Chiadroni, E; Ferrario, M; Lancia, L; Migliorati, M; Mostacci, A; Palumbo, L; Rossi, A R; Serafini, L

    2011-01-01

    Laser-based electron acceleration is attracting strong interest from the conventional accelerator community due to its outstanding characteristics in terms of high initial energy, low emittance and high beam current. Unfortunately, such beams are currently not comparable to those of conventional accelerators, limiting their use for the manifold applications that a traditional accelerator can have. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both, a versatile electron source and a controllable beam. In this paper we show that some parameters commonly used by the particle accelerator community must be reconsidered when dealing with laser-plasma beams. Starting from the parameters of laser-generated electrons which can be obtained nowadays by conventional multi hundred TW laser systems, we compare different conventional magnetic lattices able to capture and transport those GeV...

  8. Optical synchronization of a free-electron laser with femtosecond precision

    Energy Technology Data Exchange (ETDEWEB)

    Loehl, F.

    2009-09-15

    High-gain free-electron lasers (FELs) are capable of generating sub-10 fs long light pulses. In order to take full advantage of these extremely short light pulses in time-resolved experiments, synchronization with a so far unprecedented timing accuracy is required. Within this thesis, an optical synchronization system providing sub-10 fs stability has been developed and was implemented at the ultra-violet and soft X-ray free-electron laser FLASH at DESY, Hamburg. The system uses a mode-locked laser as a timing reference. The laser pulses are distributed via length stabilized optical fiber-links to the remote locations. A key feature of the system is a bunch arrival-time monitor detecting the electron bunch arrival-time with an unrivaled resolution of 6 fs. A feedback system based on the arrival-time monitor was established, improving the arrival-time fluctuations from 200 fs in the unstabilized case to 25 fs with active feedback. In order to achieve the high peak current of several thousand amperes required for the FEL process, the electron bunches are longitudinally compressed in two magnetic chicanes. A second feedback system was developed stabilizing the bunch compression process based on measurements of diffraction radiation. The combination of both feedback systems improves the stability of the FEL radiation significantly. (orig.)

  9. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  10. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Weiwei He

    2014-03-01

    Full Text Available Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS. Electron spin resonance (ESR spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.

  11. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... semiconductors is emphasized and a multidisciplinary approach for the stress analysis is introduced. Based on the proposed criteria and tools, the electrical and thermal behaviors of wind power converters are investigated under both normal and fault conditions, where the factors of wind speeds, grid codes...

  12. First demonstration of a free-electron laser driven by electrons from a laser irradiated photocathode

    Science.gov (United States)

    Curtin, Mark; Bennett, Glenn; Burke, Robert; Benson, Stephen; Madey, J. M. J.

    Results are reported from the first observation of a free-electron laser (FEL) driven by an electron beam from a laser-irradiated photocathode. The Rocketdyne/Stanford FEL achieved sustained oscillations lasting over three hours and driven by photoelectrons accelerated by the Stanford Mark III radio-frequency linac. A LaB6 cathode, irradiated by a tripled Nd:YAG mode-locked drive laser, is the source of the photoelectrons. The drive laser, operating at 95.2 MHz, is phase-locked to the 30th subharmonic of the S-band linac. Peak currents in excess of 125 amps are observed and delivered to the Rocketdyne two-meter undulator, which is operated as a stand-alone oscillator. The electron beam has an energy spread of 0.8 percent (FWHM) at 38.5 MeV and an emittance, at the undulator, comparable to that observed for thermionic operation of the electron source. Small signal gain in excess of 150 percent is observed. Preliminary estimates of the electron beam brightness deliverable to the undulator range from 3.5 to 5.0 x 10 to the 11 amps/sq m.

  13. A doping-free approach to carbon nanotube electronics and optoelectronics

    Directory of Open Access Journals (Sweden)

    Lian-Mao Peng

    2012-12-01

    Full Text Available The electronic properties of conventional semiconductor are usually controlled by doping, which introduces carriers into the semiconductor but also distortion and scattering centers to the otherwise perfect lattice, leading to increased scattering and power consumption that becomes the limiting factors for the ultimate performance of the next generation electronic devices. Among new materials that have been considered as potential replacing channel materials for silicon, carbon nanotubes (CNTs have been extensively studied and shown to have all the remarkable electronic properties that an ideal electronic material should have, but controlled doping in CNTs has been proved to be challenging. In this article we will review a doping-free approach for constructing nanoelectronic and optoelectronic devices and integrated circuits. This technique relies on a unique property of CNTs, i.e. high quality ohmic contacts can be made to both the conduction band and valence band of a semiconducting CNT. High performance nanoelectronic and optoelectronic devices have been fabricated using CNTs with this method and performance approach to that of quantum limit. In principle high performance electronic devices and optoelectronic devices can be integrated on the same carbon nanotube with the same footing, and this opens new possibilities for electronics beyond the Moore law in the future.

  14. Free-free transitions in the presence of laser fields and Debye potential at very low incident electron energies

    Science.gov (United States)

    Bhatia, Anand

    2013-05-01

    We study the free-free transition in e-He+ system in the ground state and embedded in a Debye potential in the presence of an external laser field which is monochromatic, linearly polarized and homogeneous, at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function. The scattering function for the incident electron on the target is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transitions for absorption/emission of a single photon or no photon exchange. The cross sections for e-He+ system are much larger than e-H system. The results will be presented at the conference.

  15. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    Science.gov (United States)

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  16. Simulation of relativistically colliding laser-generated electron flows

    CERN Document Server

    Yang, Xiaohu; Sarri, Gianluca; Borghesi, Marco

    2012-01-01

    The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell (PIC) simulations. The simulations show that electrons accelerated to relativistic speeds, cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of ...

  17. Demonstration of Single-Crystal Self-Seeded Two-Color X-Ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lutman, A. A.; Decker, F. -J; Arthur, J.; Chollet, M.; Feng, Y.; Hastings, J.; Huang, Z.; Lemke, H.; Nuhn, H. -D.; Marinelli, A.; Turner, J. L.; Wakatsuki, S.; Welch, J.; Zhu, D.

    2014-12-18

    A scheme for generating two simultaneous hard-x-ray free-electron laser pulses with a controllable difference in photon energy is described and then demonstrated using the self-seeding setup at the Linac Coherent Light Source (LCLS). The scheme takes advantage of the existing LCLS equipment, which allows two independent rotations of the self-seeding diamond crystal. The two degrees of freedom are used to select two nearby crystal reflections, causing two wavelengths to be present in the forward transmitted seeding x-ray pulse. The free-electron laser system must support amplification at both desired wavelengths.

  18. Electronic Printed Ward Round Proformas: Freeing Up Doctors' Time

    Science.gov (United States)

    Fernandes, Darren; Eneje, Philip

    2017-01-01

    The role of a junior doctor involves preparing for the morning ward round. At a time when there are gaps on rotas and doctors' time is more stretched, this can be a source of significant delay and thus a loss of working time. We therefore looked at ways in which we could make the ward round a more efficient place by introducing specific electronic, printed ward round proformas. We used the average time taken to write proformas per patient and the average time taken per patient on the ward round. This would then enable us to make fair comparisons with future changes that were made using the plan, do, study, and act principles of quality improvement. Our baseline measurement found that the average time taken to write up the proforma for each patient was 1 minute 9 seconds and that the average time taken per patient on the ward round was 8 minutes 30 seconds. With the changes we made during our 3 PDSA cycles and the implementation of an electronic, printed ward round proforma, we found that we were able to reduce the average time spent per patient on the ward round to 6 minutes 32 seconds, an improvement of 1 min 58 seconds per patient. The project has thus enabled us to reduce the time taken per patient during the ward round. This improved efficiency will enable patients to be identified earlier for discharge. It will also aid in freeing up the time of junior doctors, allowing them to complete discharge letters sooner, order investigations earlier and enable them to complete their allocated tasks within contracted hours. PMID:28352467

  19. Short Electron Bunch Generation Using Single-Cycle Ultrafast Electron Guns

    CERN Document Server

    Fallahi, Arya; Yahaghi, Alireza; Arrieta, Miguel; Kärtner, Franz X

    2016-01-01

    We introduce a solution for producing ultrashort ($\\sim$fs) high charge ($\\sim$pC) from ultra-compact guns utilizing single-cycle THz pulses. We show that the readily available THz pulses with energies as low as 20 ?J are sufficient to generate multi-10 keV electron bunches. Moreover, It is demonstrated that THz energies of 2mJ are sufficient to generate relativistic electron bunches with higher than 2 MeV energy. The high acceleration gradients possible in the structures provide 30 fs electron bunches at 30 keV energy and 45 fs bunches at 2 MeV energy. These structures will underpin future devices for strong field THz physics in general and miniaturized electron guns, in which the high fields combined with the short pulse duration enable electron beams with ultrahigh brightness.

  20. Short electron bunch generation using single-cycle ultrafast electron guns

    Science.gov (United States)

    Fallahi, Arya; Fakhari, Moein; Yahaghi, Alireza; Arrieta, Miguel; Kärtner, Franz X.

    2016-08-01

    We introduce a solution for producing ultrashort (˜fs ) high charge (˜pC ) from ultracompact guns utilizing single-cycle THz pulses. We show that the readily available THz pulses with energies as low as 20 μ J are sufficient to generate multi-10 keV electron bunches. Moreover, it is demonstrated that THz energies of 2 mJ are sufficient to generate relativistic electron bunches with higher than 2 MeV energy. The high acceleration gradients possible in the structures provide 30 fs electron bunches at 30 keV energy and 45 fs bunches at 2 MeV energy. These structures will underpin future devices for strong field THz physics in general and miniaturized electron guns, in which the high fields combined with the short pulse duration enable electron beams with ultrahigh brightness.

  1. Beyond the Standard Model – Searches with a Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    A. Afanasev, O.K. Baker, K.B. Beard, G. Biallas, J. Boyce, M. Minarni, R. Ramdon, Michelle D. Shinn, P. Slocumb

    2010-02-01

    Much of the focus of Beyond the Standard Model physics searches is on the TeV scale, making use of hadron and lepton colliders. Additionally, however, there is the means to make these searches in different regions of parameter space using sub-electron volt photons from a Free Electron Laser, for example. We report on the experimental results of searches for opticalwavelength photons mixing with hypothetical hidden-sector paraphotons in the mass range between 10^-5 and 10^-2 electron volts for a mixing parameter greater than 10-7. We also report on the results of a sensitive search for scalar coupling of photons to light neutral bosons in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 10-6 GeV-1. These were generation-regeneration experiments using the “light shining through a wall” technique in which regenerated photons are searched for downstream of an optical barrier that separates it from an upstream generation region. The present results indicate no evidence for photon-paraphoton mixing or for scalar couplings of bosons to photons for the range of parameters investigated.

  2. Low-frequency wiggler modes in the free-electron laser with a dusty magnetoplasma medium

    Science.gov (United States)

    Jafari, S.

    2015-07-01

    An advanced incremental scheme for generating tunable coherent radiation in a free-electron laser has been presented: the basic concept is the use of a relativistic electron beam propagating through a magnetized dusty plasma channel where dust helicon, dust Alfven and coupled dust cyclotron-Alfven waves can play a role as a low-frequency wiggler, triggering coherent emissions. The wiggler wavelength at the sub-mm level allows one to reach the wavelength range from a few nm down to a few Å with moderately relativistic electrons of kinetic energies of a few tens/hundreds of MeV. The laser gain and the effects of beam self-electric and self-magnetic fields on the gain have been estimated and compared with findings of the helical magnetic and electromagnetic wigglers in vacuum. To study the chaotic regions of the electron motion in the dusty plasma wave wiggler, a time independent Hamiltonian has been obtained. The Poincare surface of a section map has been used numerically to analyze the nonintegrable system where chaotic regions in phase-space emerge. This concept opens a path toward a new generation of synchrotron sources based on compact plasma structures.

  3. Model-based optimization of tapered free-electron lasers

    Directory of Open Access Journals (Sweden)

    Alan Mak

    2015-04-01

    Full Text Available The energy extraction efficiency is a figure of merit for a free-electron laser (FEL. It can be enhanced by the technique of undulator tapering, which enables the sustained growth of radiation power beyond the initial saturation point. In the development of a single-pass x-ray FEL, it is important to exploit the full potential of this technique and optimize the taper profile a_{w}(z. Our approach to the optimization is based on the theoretical model by Kroll, Morton, and Rosenbluth, whereby the taper profile a_{w}(z is not a predetermined function (such as linear or exponential but is determined by the physics of a resonant particle. For further enhancement of the energy extraction efficiency, we propose a modification to the model, which involves manipulations of the resonant particle’s phase. Using the numerical simulation code GENESIS, we apply our model-based optimization methods to a case of the future FEL at the MAX IV Laboratory (Lund, Sweden, as well as a case of the LCLS-II facility (Stanford, USA.

  4. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  5. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Antici, P. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Bacci, A.; Chiadroni, E.; Ferrario, M.; Rossi, A. R. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); Benedetti, C. [University of Bologna and INFN - Bologna (Italy); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Serafini, L. [INFN-Milan and Department of Physics, University of Milan, Via Celoria 16, 20133 Milan (Italy)

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  6. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Science.gov (United States)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  7. Electron-beam confinement by rotational stabilization in a linear wiggler free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Friedland, L.; Shefer, R.E. (Science Research Laboratory, Inc., Somerville, MA (USA))

    1990-11-15

    Finite radius electron-beam transport in a linear wiggler free-electron laser with a guide magnetic field is investigated. The addition of a guide magnetic field improves the beam confinement, but also leads to a detrimental drift in the direction transverse to the wiggler magnetic field. The introduction of a rotational transformation of the wiggler magnetic field is proposed to further improve the beam confinement. It is shown that the transformation results in a stable, uniform, solid body rotation of the beam provided (a) the guide field is larger than the amplitude of the wiggler field, (b) the electron drift velocity is much smaller than the rotation speed of the wiggler field as seen by the beam, and (c) the wiggler field rotates in the direction opposite to the direction of the electron gyromotion in the guide field. Theoretical predictions of the improvement of the radial beam transport with the introduction of the rotation of the wiggler field are confirmed in numerical simulations.

  8. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  9. Spectro-temporal shaping of seeded free-electron laser pulses

    CERN Document Server

    Gauthier, David; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-01-01

    We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  10. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    Science.gov (United States)

    Baptiste, K.; Corlett, J.; Kwiatkowski, S.; Lidia, S.; Qiang, J.; Sannibale, F.; Sonnad, K.; Staples, J.; Virostek, S.; Wells, R.

    2009-02-01

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to ˜1 nC bunch charges with less than 1 mm mrad normalized emittance at high repetition rates (greater than ˜1 MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  11. Suppression of microbunching instability using bending magnets in free-electron-laser linacs.

    Science.gov (United States)

    Qiang, Ji; Mitchell, Chad E; Venturini, Marco

    2013-08-02

    The microbunching instability driven by collective effects of the beam inside an accelerator can significantly degrade the final electron beam quality for free electron laser (FEL) radiation. In this Letter, we propose an inexpensive scheme to suppress such an instability in accelerators for next generation FEL light sources. Instead of using an expensive device such as a laser heater or RF deflecting cavities, this scheme uses longitudinal mixing associated with the transverse spread of the beam through bending magnets inside the accelerator transport system to suppress the instability. The final uncorrelated energy spread increases roughly by the current compression factor, which is important in seeded FEL schemes in order to achieve high harmonic short-wavelength x-ray radiation.

  12. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Baptiste, K.; Corlett, J.; Kwiatkowski, S.; Lidia, S.; Qiang, J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Sannibale, F. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: fsannibale@lbl.gov; Sonnad, K.; Staples, J.; Virostek, S.; Wells, R. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States)

    2009-02-01

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to {approx}1nC bunch charges with less than 1 mm mrad normalized emittance at high repetition rates (greater than {approx}1MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  13. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Baptiste, Kenneth; Corlett, John; Kwiatkowski, Slawomir; Lidia, Steven; Qiang, Ji; Sannibale, Fernando; Sonnad, Kiran; Staples, John; Virostek, Steven; Wells, Russell

    2008-10-08

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to {approx} 1 nC bunch charges with less than 1 mmmrad normalized emittance at high repetition rates (greater than {approx} 1 MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  14. Application of FPGA's in Flexible Analogue Electronic Image Generator Design

    Directory of Open Access Journals (Sweden)

    Peter Kulla

    2006-01-01

    Full Text Available This paper focuses on usage of the FPGAs (Field Programmable Gate Arrays Xilinx as a part of our more complex workdedicated to design of flexible analogue electronic images generator for application in TV measurement technique or/and TV servicetechnique or/and education process. The FPGAs performs here the role of component colour R, G, B, synchronization and blanking signals source. These signals are next processed and amplified in other parts of the generator as NTSC/PAL source encoder and RF modulator. The main aim of this paper is to show the possibilities how with suitable development software use a FPGAs in analog TV technology.

  15. Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bozhenkov, S A; Lehnen, M; Finken, K H; Kantor, M; Marchuk, O V; Uzgel, E; Zimmermann, O; Reiter, D [Institute for Energy Research-Plasma Physics, Forschungzentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Jakubowski, M W; Wolf, R C [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany); Jaspers, R [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster PO BOX 1207, 3430 BE Nieuwegin (Netherlands); Wassenhove, G van [Laboratoire de Physique des Plasmas/Laboratorium voor Plasmafysica, LPP-ERM/KMS, Association EURATOM-Belgian State, Trilateral Euregio Cluster, Brussels (Belgium)], E-mail: s.bozhenkov@fz-juelich.de

    2008-10-15

    Runaway electrons represent a serious problem for the reliable operation of the future experimental tokamak ITER. Due to the multiplication factor of exp(50) in the avalanche even a few seed runaway electrons will result in a beam of high energetic electrons that is able to damage the machine. Thus suppression of runaway electrons is a task of great importance, for which we present here a systematic study of runaway electrons following massive gas injection in TEXTOR. Argon injection can cause the generation of runaways carrying up to 30% of the initial plasma current, while disruptions triggered by injection of helium or of mixtures of argon (5%, 10%, 20%) with deuterium are runaway free. Disruptions caused by argon injection finally become runaway free for very large numbers of injected atoms. The appearance/absence of runaway electrons is related to the fraction of atoms delivered to the plasma centre. This so-called mixing efficiency is deduced from a 0D model of the current quench. The estimated mixing efficiency is 3% for argon, 15% for an argon/deuterium mixture and about 40% for helium. A low mixing efficiency of high-Z impurities can have a strong implication for the design of the disruption mitigation system for ITER. However, a quantitative prediction requires a better understanding of the mixing mechanism.

  16. Three-dimensional model of small signal free-electron lasers

    Directory of Open Access Journals (Sweden)

    Stephen Webb

    2011-05-01

    Full Text Available Coherent electron cooling is an ultrahigh-bandwidth form of stochastic cooling which utilizes the charge perturbation from Debye screening as a seed for a free-electron laser. The amplified and frequency-modulated signal that results from the free-electron laser process is then used to give an energy-dependent kick on the hadrons in a bunch. In this paper, we present a theoretical description of a high-gain free-electron laser with applications to a complete theoretical description of coherent electron cooling.

  17. High pressure generation by hot electrons driven ablation

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A. R. [E.T.S.I. Industriales, CYTEMA, and Instituto de Investigaciones Energéticas, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Piriz, S. A. [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-11-15

    A previous model [Piriz et al. Phys. Plasmas 19, 122705 (2012)] for the ablation driven by the hot electrons generated in collisionless laser-plasma interactions in the framework of shock ignition is revisited. The impact of recent results indicating that for a laser wavelength λ = 0.35 μm the hot electron temperature θ{sub H} would be independent of the laser intensity I, on the resulting ablation pressure is considered. In comparison with the case when the scaling law θ{sub H}∼(Iλ{sup 2}){sup 1/3} is assumed, the generation of the high pressures needed for driving the ignitor shock may be more demanding. Intensities above 10{sup 17} W/cm{sup 2} would be required for θ{sub H}=25−30 keV.

  18. Triboelectric generators and sensors for self-powered wearable electronics.

    Science.gov (United States)

    Ha, Minjeong; Park, Jonghwa; Lee, Youngoh; Ko, Hyunhyub

    2015-04-28

    In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities.

  19. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  20. Electron Paramagnetic Resonance Imaging of the Spatial Distribution of Free Radicals in PMR-15 Polyimide Resins

    Science.gov (United States)

    Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.

    1997-01-01

    Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.

  1. CIF2Cell: Generating geometries for electronic structure programs

    Science.gov (United States)

    Björkman, Torbjörn

    2011-05-01

    The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF

  2. High current density sheet-like electron beam generator

    Science.gov (United States)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  3. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  4. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    Science.gov (United States)

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  5. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  6. Extension of the Free-Electron Laser-Amplifier Code Tda to Resonator Configurations

    NARCIS (Netherlands)

    Faatz, B.; Best, R. W. B.; Oepts, D.; van Amersfoort, P. W.; Tran, T. M.

    1993-01-01

    The investigation of many interesting, complex phenomena in a free-electron laser (FEL) requires the use of numerical computer codes. In this paper we describe the extension of one such code (TDA), which in its original form could only be used to study free-electron laser amplifiers, to include reso

  7. Extension of the Free-Electron Laser-Amplifier Code Tda to Resonator Configurations

    NARCIS (Netherlands)

    Faatz, B.; Best, R. W. B.; Oepts, D.; van Amersfoort, P. W.; Tran, T. M.

    1993-01-01

    The investigation of many interesting, complex phenomena in a free-electron laser (FEL) requires the use of numerical computer codes. In this paper we describe the extension of one such code (TDA), which in its original form could only be used to study free-electron laser amplifiers, to include

  8. Quantum random number generation for loophole-free Bell tests

    Science.gov (United States)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  9. Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas

    Science.gov (United States)

    2016-11-01

    the free electron density in USPL-created plasmas are limited in the number of space-time dimensions that can be measured simultaneously. One...profile, and c) parabolic density profile 2.1 Cylindrical Geometry This geometry is a first -order approximation of that created in the...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is

  10. Efficient Sorting of Free Electron Orbital Angular Momentum

    CERN Document Server

    McMorran, Benjamin J; Lavery, Martin P J

    2016-01-01

    We propose a method for sorting electrons by orbital angular momentum (OAM). Several methods now exist to prepare electron wavefunctions in OAM states, but no technique has been developed for efficient, parallel measurement of pure and mixed electron OAM states. The proposed technique draws inspiration from the recent demonstration of the sorting of OAM through modal transformation. We show that the same transformation can be performed with electrostatic electron optical elements. Specifically, we show that a charged needle and an array of electrodes perform the transformation and phase correction necessary to sort orbital angular momentum states. This device may enable the analysis of the spatial mode distribution of inelastically scattered electrons.

  11. Free Surface Influence on Low Head Hydro Power Generation

    Science.gov (United States)

    Pelz, Peter F.; Froehlich, Thibaud

    2016-11-01

    The free surface influence on the power extraction of turbines in open-channel flow is analyzed under use of continuity, momentum and energy equations. The approach differs of previous models by avoiding two drawbacks: the exceeding of the available power with the Betz definition and the inaccurate assumption of an undisturbed approaching flow. The result is an energetic optimization focusing on the energy dissipation due to wake and shock losses downstream of the turbine.

  12. Emittance studies at the Los Alamos National Laboratory Free-Electron Laser (FEL)

    Science.gov (United States)

    Carlsten, B. E.; Feldman, D. W.; Lumpkin, A. H.; Stein, W. E.; Warren, R. W.

    Recent emittance studies at the Los Alamos Free-Electron Laser (FEL) have indicated several areas of concern in the linac and beamline feeding the wiggler. Four emittance growth mechanisms of special importance have been studied. First, a rapid growth of the electron beam's emittance immediately after the spherical gridded Pierce gun resulted, in part, from the long time required for our pulsing electronics to ramp the grid voltage up at the start and down at the end of the pulse, which created a pulse with a cosine-like current distribution as a function of time. The growth was compounded by the extremely small radial beam size (almost a waist) leaving the gun. In addition, we saw evidence of electrostatic charging of the insulators in the gun, reducing the quality of the electron beam further. Second, the action of the solenoidal focusing fields in the low-voltage bunching region was studied, and criteria for a minimum emittance growth were established. Third, maximum misalignment angles and displacements for various elements of the beamline were calculated for the desired low emittance growth. Finally, emittance growth in the horizontal dimension through the nonisochronous bend caused by varying energy depression on the particles due to longitudinal wake fields was both calculated and observed. In addition, we measured energy depressions caused by the wake fields generated by various other elements in the beamline. Strategies were developed to relieve the magnitude of these wake-field effects.

  13. Electron acceleration and high harmonic generation by relativistic surface plasmons

    Science.gov (United States)

    Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team

    2016-10-01

    Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.

  14. Generation of Z mode radiation by diffuse auroral electron precipitation

    Science.gov (United States)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  15. High Power Electron Beam Injectors for 100 kW Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Alan; Bluem, Hans; Christina, Vincent; Cole, Michael; Rathke, John; Schultheiss, Tom; Colestock, Patrick; Kelley, J.P.; Kurennoy, Sergey; Nguyen, Dung; Russell, S.; Schrage, Dale; Wood, R.L.; Young, L.M.; Campisi, Isidoro; Daly, Edward; Douglas, David; Neil, George; Preble, Joseph; Rimmer, Robert; Rode, Claus; Sekutowicz, Jacek; Whitlatch, Timothy; Wiseman, Mark

    2003-05-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, highbrightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun [1] and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector [2,3] is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  16. Electronic structure of graphene: (Nearly) free electron bands versus tight-binding bands

    Science.gov (United States)

    Kogan, E.; Silkin, V. M.

    2017-09-01

    In our previous paper (Phys. Rev. B {\\bf 89}, 165430 (2014)) we have found that in graphene, in distinction to the four occupied bands, which can be described by the simple tight-binding model (TBM) with four atomic orbitals per atom, the two lowest lying at the $\\Gamma$-point unoccupied bands (one of them of a $\\sigma$ type and the other of a $\\pi$ type) can not be described by such model. In the present work we suggest a minimalistic model for these two bands, based on (nearly) free electrons model (FEM), which correctly describes the symmetry of these bands, their dispersion law and their localization with respect to the graphene plane.

  17. Hemostatic properties of the free-electron laser

    Science.gov (United States)

    Cram, Gary P., Jr.; Copeland, Michael L.

    1998-09-01

    We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam® (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam® or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely support previous

  18. Electromagnetic field generation by ATP-induced reverse electron transfer.

    Science.gov (United States)

    Steele, Richard H

    2003-03-01

    This paper describes a mechanism to explain low-level light emission in biology. A biological analog of the electrical circuitry, modeled on the parallel plate capacitor, traversed by a helical structure, required to generate electromagnetic radiation in the optical spectral range, is described. The charge carrier required for the emissions is determined to be an accelerating electron driven by an ATP-induced reverse electron transfer. The radial velocity component, the emission trajectory, of the moving charges traversing helical protein structures in a cyclotron-type mechanism is proposed to be imposed by the ferromagnetic field components of the iron in the iron-sulfur proteins. The redox systems NADH, riboflavin, and chlorophyll were examined with their long-wavelength absorption maxima determining the energetic parameters for the calculations. Potentials calculated from the axial velocity components for the riboflavin and NADH systems were found to equal the standard redox potentials of these systems as measured electrochemically and enzymatically. The mechanics for the three systems determined the magnetic moments, the angular momenta, and the orbital magnetic fluxes to be adiabatic invariant parameters. The De Broglie dual wave-particle equation, the fundamental equation of wave mechanics, and the key idea of quantum mechanics, establishes the wavelengths for accelerating electrons which, divided into a given radial velocity, gives its respective emission frequency. Electrons propelled through helical structures, traversed by biologically available electric and magnetic fields, make accessible to the internal environment the optical spectral frequency range that the solar spectrum provides to the external environment.

  19. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    Science.gov (United States)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  20. Electron beam generated plasmas for the processing of graphene

    Science.gov (United States)

    Walton, S. G.; Hernández, S. C.; Boris, D. R.; Petrova, Tz B.; Petrov, G. M.

    2017-09-01

    The Naval Research Laboratory (NRL) has developed a processing system based on an electron beam-generated plasma and applied it to the processing of graphene. Unlike conventional discharges produced by electric fields (DC, RF, microwave, etc), the plasma is driven by a high-energy (~few keV) electron beam, an approach that simplifies the relative production of species while providing comparatively high ion-to-radical production rates. The resulting plasmas are characterized by high charged particle densities (1010-1011 cm-3) and electron temperatures that are typically about 1.0 eV or lower. Accordingly, the flux to adjacent surfaces is generally dominated by ions with kinetic energies in the range of 1-5 eV, a value at or near the bond strength of most materials. This provides the potential for controllably engineering materials with monolayer precision, an attribute attractive for the processing of atomically thin material systems. This work describes the attributes of electron beam driven plasma processing system and its use in modification of graphene.

  1. A Thermoelectric Generation System and Its Power Electronics Stage

    Science.gov (United States)

    Gao, Junling; Sun, Kai; Ni, Longxian; Chen, Min; Kang, Zhengdong; Zhang, Li; Xing, Yan; Zhang, Jianzhong

    2012-06-01

    The electricity produced by a thermoelectric generator (TEG) must satisfy the requirements of specific loads given the signal level, stability, and power performance. In the design of such systems, one major challenge involves the interactions between the thermoelectric power source and the power stage and signal-conditioning circuits of the load, including DC-DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC-DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify the feasibility and effectiveness of the proposed design. Finally, the thermal-electric coupling effects caused by current-related heat source terms, such as the Peltier effect etc., are reported and discussed, and the potential influence on the power electronics design due to such coupling is analyzed.

  2. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    Science.gov (United States)

    Skender, Marina; Tsiklauri, David

    2014-05-01

    Super-thermal electron beams travelling away from the Sun on the open magnetic field lines are widely accepted to be the source of the Type-III bursts. The earliest idea of the generation of the Type-III bursts was based on the plasma emission mechanism. A fast moving electron beam excites Langmuir waves at the local plasma frequency, ωp. The Langmuir waves are partially transformed via scattering at ωp and 2ωp, with ion sound and oppositely propagating Langmuir waves, respectively, into electromagnetic waves. As the electron beam propagates away from the Sun, through less dense coronal and interplanetary environment, the frequency of the emitted electromagnetic radiation decreases, because plasma frequency is a function of the square root of the plasma density. Type-III bursts have been subject of theoretical, observational and numerical studies. The first detailed theory of the Type-III emission invoked coherent plasma waves, generated by a stream of fast particles, which are due to Rayleigh and combination scattering at ωp and 2ωp subsequently transformed into radio waves. Stochastic growth of the density irregularities was invoked in order to produce stochastically generated clumpy Langmuir waves, where the ambient density perturbations cause the beam to fluctuate around marginal stability. Other theories on the mechanism which generates the Type-III emission include: linear mode conversion of Langmuir waves, Langmuir waves producing electromagnetic radiation as antennas and non-gyroptropic electron beam emission [1] of commensurable properties to the Type-III bursts. In Refs. [2,3] it was found that the non-gyrotropic beam excites electromagnetic radiation by the current transverse to the magnetic field, which results in (ω,k)-space drift while propagating along the 1-dimensional spatial domain throughout the decreasing plasma density profile. The role of the electron beam pitch angle and the background density gradient profile was investigated in [4

  3. The Next-Generation Power Electronics Technology for Smart Grids

    Science.gov (United States)

    Akagi, Hirofumi

    This paper presents an overview of the next-generation power electronics technology for the Japanese-version smart grid. It focuses on a grid-level battery energy storage system, a grid-level STATCOM (STATic synchronous COMpensator), and a 6.6-kV BTB (Back-To-Back) system for power flow control between two power distribution feeders. These power electronic devices play an important role in achieving load frequency control and voltage regulation. Their circuit configurations based on modular multilevel cascade PWM converters are characterized by flexible system design, low voltage steps, and low EMI (Electro-Magnetic Interference) emission. Their downscaled laboratory models are designed, constructed, and tested to verify the viability and effectiveness of the circuit configurations and control methods.

  4. Analog electronic model of the lobster pyloric central pattern generator

    Energy Technology Data Exchange (ETDEWEB)

    Volkovskii, A [Institute for Nonlinear Science, University of California San Diego, CA (United States); Brugioni, S [Institute for Nonlinear Science, University of California San Diego, CA (United States); Istituto Nazionale di Ottica Applicata Largo E. Fermi 6 50125 Florence (Italy); Levi, R [Institute for Nonlinear Science, University of California San Diego, CA (United States); Rabinovich, M [Institute for Nonlinear Science, University of California San Diego, CA (United States); Selverston, A [Institute for Nonlinear Science, University of California San Diego, CA (United States); Abarbane, H D I [Institute for Nonlinear Science, University of California San Diego, CA (United States)

    2005-01-01

    An electronic circuit intended to simulate the nonlinear dynamics of a simplified 3-cell model of the pyloric central pattern generator in California spiny lobster stomato gastric ganglion is presented. The model employs the synaptic phase locked loop (SPLL) concept where the frequency of oscillations of a postsynaptic cell is mainly controlled by the synaptic current which depends on the phase shift between the oscillations. The theoretical study showed that the system has a stable steady state with correct phase shifts between the oscillations and that this regime is stable when the frequency of the pacemaker cell is varied over a wide range. The main bifurcations in the system were studied analytically, in computer simulations, and in experiments with the electronic circuit. The experimental measurements are in good agreement with the expectations of the theoretical model.

  5. Velocity dispersion of correlated energy spread electron beams in the free electron laser

    Science.gov (United States)

    Campbell, L. T.; Maier, A. R.

    2017-03-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the free electron laser (FEL), and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a ‘small’ chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is nonlinear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma driven FELs and low energy linac driven FEL test facilities.

  6. Monitoring the electron beam position at the TESLA test facility free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T.

    2000-06-14

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  7. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  8. Generation of sub-picosecond electron bunches from RF photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Zhang, R. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Pellegrini, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1997-03-11

    In this paper we discuss the possibility to generate sub-picosecond electron bunches directly from a photoinjector by illuminating a photo-cathode in an RF cavity with a phase-locked sub-picosecond laser pulse. In particular, we address all de-bunching effects taking place during acceleration and transport through a photoinjector. We provide analysis of the beam dynamics, as well as the comparison with numerical simulations. The possible performances of the present SATURNUS linac setup are presented, as well as the anticipated capabilities of a multi-cell RF gun structure based on the PWT linac presently in operation at UCLA. (orig.).

  9. Effective critical electric field for runaway electron generation

    CERN Document Server

    Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

    2014-01-01

    In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

  10. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Mezi, L.; Renieri, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Migliorati, M. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Energetica; Couprie, M.E.; Garzella, D.; Nutarelli, D.; Thomas, C.; De Ninno, G. [Service de Photons, Atomes et Molecules DSM/DRECAM, Gif Sur Yvette (France); Walker, R. [Sincrotrone, Basorizza, TS (Italy)

    2000-07-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources. [Italian] La qualita' di fascio di un anello di accumulazione e la sua stabilita' sono le caratteristiche cruciali di un anello di accumulazione dedicato a sorgenti di Luce di Sincrotrone o al Laser ad Elettroni Liberi. La gran parte di tali caratteristiche dipende dall'accoppiamento del fascio di elettroni con la macchina stessa, tale accoppiamento puo' essere descritto in termini di una impedenza caratteristica, il cui valore assoluto e struttura possono essere utilizzati per specificarne sia la stabilita' del fascio (longitudinale e trasversale) e le sue qualita' (dispersione di energia, lunghezza del pacchetto, corrente di picco ...). In questo articolo si considerano due esempi specifici di anelli di accumulazione utilizzati per l'operazione Laser ed Elettroni Liberi e si analizzano le loro caratteristiche per mezzo di metodi semianalitici e numerici. L'analisi e' essenzialmente dedicata a chiarire la dipendenza della dispersione di energia e della lunghezza del pacchetto dalla corrente media e a fornire un insieme di

  11. Active biopolymer networks generate scale-free but euclidean clusters

    CERN Document Server

    Sheinman, M; Alvarado, J; Koenderink, G H; MacKintosh, F C

    2014-01-01

    We report analytical and numerical modelling of active elastic networks, motivated by experiments on crosslinked actin networks contracted by myosin motors. Within a broad range of parameters, the motor-driven collapse of active elastic networks leads to a critical state. We show that this state is qualitatively different from that of the random percolation model. Intriguingly, it possesses both euclidean and scale-free structure with Fisher exponent smaller than $2$. Remarkably, an indistinguishable Fisher exponent and the same euclidean structure is obtained at the critical point of the random percolation model after absorbing all enclaves into their surrounding clusters. We propose that in the experiment the enclaves are absorbed due to steric interactions of network elements. We model the network collapse, taking into account the steric interactions. The model shows how the system robustly drives itself towards the critical point of the random percolation model with absorbed enclaves, in agreement with th...

  12. Design Studies for a VUV--Soft X-ray Free-Electron Laser Array

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.; Baptiste, K.; Byrd, J.M.; Denes, P.; Falcone, R.; Kirz, J.; McCurdy, W.; Padmore, H.; Penn, G.; Qiang, J.; Robin, D.; Sannibale, F.; Schoenlein, R.; Staples, J.; Steier, C.; Venturnini, M.; Wan, W.; Wells, R.; Wilcox, R.; Zholents, A.

    2009-08-04

    Several recent reports have identified the scientific requirements for a future soft X-ray light source [1, 2, 3, 4, 5], and a high-repetition-rate free-electron laser (FEL) facility responsive to them is being studied at Lawrence Berkeley National Laboratory (LBNL) [6]. The facility is based on a continuous-wave (CW) superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on the experimental requirements, the individualFELs may be configured for either self-amplified spontaneous emission (SASE), seeded highgain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG), or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format ranging from sub-femtoseconds to hundreds of femtoseconds. This new light source would serve a broad community of scientists in many areas of research, similar to existing utilization of storage ring based light sources. To reduce technical risks and constructioncosts, accelerator research, development, and design studies at LBNL target the most critical components and systems of the facility. We are developing a high-repetition-rate low-emittance electron gun, high quantum efficiency photocathodes, and have embarked on design and optimization of the electron beam accelerator, FEL switchyard, and array of FELs. We continue our work on precision timing and synchronization systems critical for time-resolved experiments using pump-probe techniques.

  13. Two-colour pump–probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser

    Science.gov (United States)

    Allaria, E.; Bencivenga, F.; Borghes, R.; Capotondi, F.; Castronovo, D.; Charalambous, P.; Cinquegrana, P.; Danailov, M. B.; De Ninno, G.; Demidovich, A.; Di Mitri, S.; Diviacco, B.; Fausti, D.; Fawley, W. M.; Ferrari, E.; Froehlich, L.; Gauthier, D.; Gessini, A.; Giannessi, L.; Ivanov, R.; Kiskinova, M.; Kurdi, G.; Mahieu, B.; Mahne, N.; Nikolov, I.; Masciovecchio, C.; Pedersoli, E.; Penco, G.; Raimondi, L.; Serpico, C.; Sigalotti, P.; Spampinati, S.; Spezzani, C.; Svetina, C.; Trovò, M.; Zangrando, M.

    2013-01-01

    Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity. PMID:24048228

  14. Two-colour pump-probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser.

    Science.gov (United States)

    Allaria, E; Bencivenga, F; Borghes, R; Capotondi, F; Castronovo, D; Charalambous, P; Cinquegrana, P; Danailov, M B; De Ninno, G; Demidovich, A; Di Mitri, S; Diviacco, B; Fausti, D; Fawley, W M; Ferrari, E; Froehlich, L; Gauthier, D; Gessini, A; Giannessi, L; Ivanov, R; Kiskinova, M; Kurdi, G; Mahieu, B; Mahne, N; Nikolov, I; Masciovecchio, C; Pedersoli, E; Penco, G; Raimondi, L; Serpico, C; Sigalotti, P; Spampinati, S; Spezzani, C; Svetina, C; Trovò, M; Zangrando, M

    2013-01-01

    Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.

  15. Divergence of laser-generated hot electrons generated in a cone geometry

    Science.gov (United States)

    Stephens, R. B.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Divol, L.; Fedosejevs, R.; Freeman, R. R.; Friesen, H.; Giraldez, E.; Hey, D. S.; Higginson, D. P.; Jarrot, C.; Kemp, G. E.; Key, M. H.; Krygier, A.; Larson, D.; Le Pape, S.; Link, A.; Ma, T. Y.; MacKinnon, A. J.; MacLean, H. S.; MacPhee, A. G.; Murphy, C.; Ovchinnikov, V.; Patel, P. K.; Ping, Y.; Sawada, H.; Schumacher, D.; Tsui, Y.; Wei, M. S.; Van Woerkom, L. D.; Westover, B.; Wilks, S. C.; Yabuuchi, T.

    2010-08-01

    Short-pulse, ultra-intense lasers generate hot electrons at the cone tip in a Fast Ignition target. Core heating and cone-wire experiments find that about 20% of the incident laser energy is coupled into a target, but do not characterize electron propagation direction, a critical parameter for ignition. Previous studies using flat foils suggest they propagate forward, diverging by ~40°. Buried cone targets-conical cavities in multilayer metal foils-were developed to allow divergence measurements in an FI relevant geometry. Preliminary results show increased electron divergence in a 30 μm diameter cone tip which disappears for 90 μm diameter tips. Implications of the experiment are discussed.

  16. Electron mean free path dependence of the vortex surface impedance

    Science.gov (United States)

    Checchin, M.; Martinello, M.; Grassellino, A.; Romanenko, A.; Zasadzinski, J. F.

    2017-03-01

    In the present study the radio-frequency complex response of trapped vortices in superconductors is calculated and compared to experimental data previously published. The motion equation for a magnetic flux line is solved assuming a bi-dimensional and mean-free-path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the unprecedented bell-shaped trend as a function of the mean-free-path observed in our previous experimental work. We demonstrate that such bell-shaped trend of the surface resistance as a function of the mean-free-path may be described as the interplay of the two limiting regimes of the surface resistance, for low and large mean-free-path values: pinning and flux-flow regimes respectively. Since the possibility of defining the pinning potential at different locations from the surface and with different strengths, we discuss how the surface resistance is affected by different configurations of pinning sites. By tackling the frequency dependence of the surface resistance, we also demonstrate that the separation between pinning- and flux-flow-dominated regimes cannot be determined only by the depinning frequency. The dissipation regime can be tuned either by acting on the frequency or on the mean-free-path value.

  17. Spectrometer for Hard X-Ray Free Electron Laser Based on Diffraction Focusing

    CERN Document Server

    Kohn, V G; Vartanyants, I A

    2012-01-01

    X-ray free electron lasers (XFELs) generate sequences of ultra-short, spatially coherent pulses of x-ray radiation. We propose the diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of $\\Delta E/E\\approx 2\\times 10^{-6}$. This is much better than for most modern x-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from the metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. We show that the DFS can be used in a wide energy range from 5 keV to 20 keV.

  18. Quantum effects with an x-ray free-electron laser.

    Science.gov (United States)

    Roberts, C D; Schmidt, S M; Vinnik, D V

    2002-10-07

    A quantum kinetic equation coupled with Maxwell's equation is used to estimate the laser power required at an x-ray free-electron laser (XFEL) facility to expose intrinsically quantum effects in the process of QED vacuum decay via spontaneous pair production. A 9 -TW-peak XFEL laser with photon energy of 8.3 keV could be sufficient to initiate particle accumulation and the consequent formation of a plasma of spontaneously produced pairs. The evolution of the particle number in the plasma will exhibit non-Markovian aspects of the strong-field pair production process, and the plasma's internal currents will generate an electric field whose interference with that of the laser leads to plasma oscillations.

  19. An automatic grid generation approach over free-form surface for architectural design

    Institute of Scientific and Technical Information of China (English)

    苏亮; 祝顺来; 肖南; 高博青

    2014-01-01

    An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics, but also the structural performance. Employing the main stress trajectories as the representation of force flows on a free-form surface, an automatic grid generation approach is proposed for the architectural design. The algorithm automatically plots the main stress trajectories on a 3D free-form surface, and adopts a modified advancing front meshing technique to generate the structural grid. Based on the proposed algorithm, an automatic grid generator named “St-Surmesh” is developed for the practical architectural design of free-form surface structure. The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach. Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.

  20. Experimental Characterization Of The Saturating, Near Infrared, Self-amplified Spontaneous Emission Free Electron Laser Analysis Of Radiation Properties And Electron Beam Dynamics

    CERN Document Server

    Murokh, A

    2002-01-01

    In this work, the main results of the VISA experiment (Visible to Infrared SASE Amplifier) are presented and analyzed. The purpose of the experiment was to build a state-of-the-art single pass self-amplified spontaneous emission (SASE) free electron laser (FEL) based on a high brightness electron beam, and characterize its operation, including saturation, in the near infrared spectral region. This experiment was hosted by Accelerator Test Facility (ATF) at Brookhaven National Laboratory, which is a users facility that provides high brightness relativistic electron beams generated with the photoinjector. During the experiment, SASE FEL performance was studied in two regimes: a long bunch, lower gain operation; and a short bunch high gain regime. The transition between the two conditions was possible due to a novel bunch compression mechanism, which was discovered in the course of the experiment. This compression allowed the variation of peak current in the electron beam before it was launched into the 4-m VISA...

  1. Integrating a Machine Protection System for High-Current Free Electron Lasers and Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Trent Allison; James Coleman; Richard Evans; Al Grippo; Kevin Jordan

    2002-09-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high-current accelerators. The MPS needs to monitor the status of all devices that could enter the beam path, the beam loss monitors (BLMs), magnet settings, beam dump status, etc. This information is then presented to the electron source controller, which must limit the beam power or shut down the beam completely. The MPS for the energy recovery linac (ERL) at the Jefferson Lab Free Electron Laser [1] generates eight different power limits, or beam modes, which are passed to the drive laser pulse controller (DLPC) (photocathode source controller). These range from no beam to nearly 2 megawatts of electron beam power. Automatic masking is used for the BLMs during low-power modes when one might be using beam viewers. The system also reviews the setup for the two different beamlines, the IR path or the UV path, and will allow or disallow operations based on magnet settings and valve positions. This paper will describe the approach taken for the JLab 10-kW FEL. Additional details can be found on our website http://laser.jlab.org [2].

  2. Scale Law of the High Power Free Electron Laser

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The scale law and design procedure of the high power FEL are discussed. It is pointed out that theextraction efficiency, which is the critical factor of the output power besides the power of the electron

  3. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  4. SASE自由电子激光%SASE free-electron lasers

    Institute of Scientific and Technical Information of China (English)

    张令翊; 庄杰佳; 赵夔; 陈佳洱

    2001-01-01

    SASE自由电子激光可以产生短至0.1nm的高亮度(峰值亮度比当前的第三代同步辐射高10个量级;平均亮度高3~5个量级)、短脉冲(脉冲长度小于2个量级,达到亚皮秒水平)硬X射线相干光。因而被称为是继第三代同步辐射之后的第四代光源。SASE依据的是高增益自由电子激光原理,利用了光阴极微波电子枪技术和电子直线加速器技术。综述了SASE的历史发展、基本原理、基本结构、主要物理特征和对电子束的要求。%As the fourth generation light source hard X-ray SASE free-electron laser has many unique properties superior to the 3rd synchrotron radiation: higher brightness (ten orders of magnitude of peak spectral bribhteness and three~five orders of magnitude of average brightness greater than the 3rd synchrotron radiation currently acjhieved), shorter pulse (two orders of magnitude of pulse duration shorter than the 3rd synchrotron radiation, down to sub-picosecond), shorter wavelength down to 0.1nm etc.. SASE is based on the principle of high gain free electron lasers, and technologies of photoinjector and linear accelerator. The development history of SASE, the basic theory, the typical configuration, the main physical characteristics and the requirements for electron beam is described.

  5. Somatic cell reprogramming-free generation of genetically modified pigs

    Science.gov (United States)

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-ichiro; Otoi, Takeshige

    2016-01-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs. PMID:27652340

  6. Random phase-free computer-generated hologram

    CERN Document Server

    Shimobaba, Tomoyoshi

    2015-01-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  7. Random phase-free computer-generated hologram.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-04-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  8. Somatic cell reprogramming-free generation of genetically modified pigs.

    Science.gov (United States)

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-Ichiro; Otoi, Takeshige

    2016-09-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs.

  9. NASA-DoD Lead-Free Electronics Project: Vibration Test

    Science.gov (United States)

    Woodrow, Thomas A.

    2010-01-01

    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  10. Antioxidant balance and free radical generation in vitamin e-deficient mice after dermal exposure to cumene hydroperoxide.

    Science.gov (United States)

    Shvedova, A A; Kisin, E R; Murray, A R; Kommineni, C; Castranova, V; Mason, R P; Kadiiska, M B; Gunther, M R

    2002-11-01

    Organic peroxides are widely used in the chemical industry as initiators of oxidation for the production of polymers and fiber-reinforced plastics, in the manufacture of polyester resin coatings, and pharmaceuticals. Free radical production is considered to be one of the key factors contributing to skin tumor promotion by organic peroxides. In vitro experiments have demonstrated metal-catalyzed formation of alkoxyl, alkyl, and aryl radicals in keratinocytes incubated with cumene hydroperoxide. The present study investigated in vivo free radical generation in lipid extracts of mouse skin exposed to cumene hydroperoxide. The electron spin resonance (ESR) spin-trapping technique was used to detect the formation of alpha-phenyl-N-tert-butylnitrone (PBN) radical adducts, following intradermal injection of 180 mg/kg PBN. It was found that 30 min after topical exposure, cumene hydroperoxide (12 mmol/kg) induced free radical generation in the skin of female Balb/c mice kept for 10 weeks on vitamin E-deficient diets. In contrast, hardly discernible radical adducts were detected when cumene hydroperoxide was applied to the skin of mice fed a vitamin E-sufficient diet. Importantly, total antioxidant reserve and levels of GSH, ascorbate, and vitamin E decreased 34%, 46.5%. 27%, and 98%, respectively, after mice were kept for 10 weeks on vitamin E-deficient diet. PBN adducts detected by ESR in vitamin E-deficient mice provide direct evidence for in vivo free radical generation in the skin after exposure to cumene hydroperoxide.

  11. High energy electron generation by the 15 mJ ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 (Japan); Nayuki, T; Oishi, Y; Fujii, T; Zhidkov, A [Central Research Institute of Electric Power Industry 2-6-1 Nagasaka, Yokosuka, Kanagawa, 240-0196 (Japan); Todoriki, M; Hasegawa, S [University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8654 (Japan)], E-mail: k-tn@plasma.es.titech.ac.jp

    2008-05-01

    We propose a small size high energy X-ray source utilizing ultrashort pulse lasers, and a new scheme for generating quasi-monoenergetic electrons. In this paper, we developed a compact laser electron generator and performed experiment that generated energetic electrons over 1 MeV electrons with only 15 mJ laser energy. The temperatures of emitted electrons were measured to be 0.2 MeV and 0.25 MeV without and with prepulse, respectively.

  12. Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination

    Science.gov (United States)

    Tallents, G. J.

    2016-09-01

    Collisional-radiative models enable average ionization and ionization populations, plus the rates of absorption and emission of radiation to be calculated for plasmas not in thermal equilbrium. At high densities and low temperatures, electrons may have a high occupancy of the free electron quantum states and evaluations of rate coefficients need to take into account the free electron degeneracy. We demonstrate that electron degeneracy can reduce collisional rate coefficients by orders-of-magnitude from values calculated neglecting degeneracy. We show that assumptions regarding the collisional differential cross-section can alter collisional ionization and recombination rate coefficients by a further factor two under conditions relevant to inertial fusion.

  13. Accelerator Layout and Physics of X-Ray Free-Electron Lasers

    CERN Document Server

    Decking, W

    2005-01-01

    X-ray Free-Electron Lasers facilities are planned or already under construction around the world. This talk covers the X-Ray Free-Electron Lasers LCLS (SLAC), European XFEL (DESY) and SCSS (Spring8). All aim for self-amplified spontaneous emission (SASE) FEL radiation of approximately 0.1 nm wavelengths. The required excellent electron beam qualities pose challenges to the accelerator physicists. Space charge forces, coherent synchrotron radiation and wakefields can deteriorate the beam quality. The accelerator physics and technological challenges behind each of the projects will be reviewed, covering the critical components low-emittance electron gun, bunch-compressors, accelerating structures and undulator systems.

  14. Influence of Electronic Factors on “Solvent-Free and Catalyst-Free Biginelli Reaction

    Directory of Open Access Journals (Sweden)

    Tanay Pramanik

    2013-12-01

    Full Text Available A series of Biginelli condensation were carried out employing urea, ethyl acetoacetate with a series of different derivatives of benzaldehyde. A green synthetic procedure was followed for performing the Biginelli reactions. The reaction conditions were found to be different for electron rich and electron deficient benzaldehydes. So the electronic effect has shown a significant impact on the reaction condition of the Biginelli condensation.

  15. A new horizon in secondary neutral mass spectrometry: post-ionization using a VUV free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Veryovkin, Igor V.; Calaway, Wallis F.; Moore, Jerry F.; Pellin, Michael J.; Lewellen, John W.; Li, Yuelin; Milton, Stephen V.; King, Bruce V.; Petravic, Mladen

    2004-06-15

    A new time-of-flight (TOF) mass spectrometer incorporating post-ionization of sputtered neutral species with tunable vacuum ultraviolet (VUV) light generated by a free electron laser (FEL) has been developed. Capabilities of this instrument, called SPIRIT, were demonstrated by experiments with photoionization of sputtered neutral gold atoms with 125 nm light generated by the VUV FEL located at Argonne National Laboratory (ANL). In a separate series of experiments with a fixed wavelength VUV light source, a 157 nm F{sub 2} laser, a useful yield (atoms detected per atoms sputtered) of about 12% and a mass resolution better than 1500 were demonstrated for molybdenum.

  16. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Bryon W. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Reid, Obadiah G. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Coffey, David C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Department of Chemistry and Physics, Warren Wilson College, Swannanoa NC 28778 USA; Avdoshenko, Stanislav M. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Popov, Alexey A. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Boltalina, Olga V. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Strauss, Steven H. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Kopidakis, Nikos [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Rumbles, Garry [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.

  17. Imaging Molecular Structure and Dynamics utilizing X-ray Free-Electron-Laser Sources

    OpenAIRE

    Küpper, Jochen

    2015-01-01

    Imaging controlled molecules with ultrashort x- ray pulses from free-electron lasers enables the recording of “molecular movies”, i.e., snapshots of molecules at work, with spatial (picometer) and temporal (femtosecond) atomic resolution.

  18. Proceedings of the workshop prospects for a 1 angstrom free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C. (ed.)

    1990-01-01

    This report contains papers on the following topics free-electron laser theory, scaling relations and simulations; micro-wigglers; photocathode and switched power gun; applications; and summary of working groups.

  19. Hot electron generation and transport using Kα emission

    Science.gov (United States)

    Akli, K. U.; Stephens, R. B.; Key, M. H.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Fedosejevs, R.; Freeman, R. R.; Friesen, H.; Giraldez, E.; Green, J. S.; Hey, D. S.; Higginson, D. P.; Hund, J.; Jarrott, L. C.; Kemp, G. E.; King, J. A.; Kryger, A.; Lancaster, K.; LePape, S.; Link, A.; Ma, T.; Mackinnon, A. J.; MacPhee, A. G.; McLean, H. S.; Murphy, C.; Norreys, P. A.; Ovchinnikov, V.; Patel, P. K.; Ping, Y.; Sawada, H.; Schumacher, D.; Theobald, W.; Tsui, Y. Y.; Van Woerkom, L. D.; Wei, M. S.; Westover, B.; Yabuuchi, T.

    2010-08-01

    We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40μm diameter wire emulating a 40μm fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of pre-pulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

  20. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    CERN Document Server

    Skender, Marina

    2014-01-01

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...

  1. Electron Production and Collective Field Generation in Intense Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  2. Generation of antitropic electron beams by self-generated electric field. Kinetic description

    CERN Document Server

    Stepanov, N S

    2016-01-01

    This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of electron beams generated in the plasma under the influence of a self-generated electric field. It is expressed as where is a wave potential, , and charge particle distribution functions satisfy the Vlasov equation. It is proved that its correct solution is characterized by sudden change in the resonant part of the distribution function. Hence, in particular, the incorrectness of the established in the literature point of view follows that the fast, with velocities over V, and slow, with velocities under V, trapped particles are described by the same distribution function. Also for the first time it is shown that the self-generated strong electric field always produces antitropic electron beams with the velocities much larger than the value V, including the cold plasma limit. The possibility of implementing a new class of self-consistent wave structures with a nonzero average potential is shown. Maximu...

  3. Free electron lasers for the XUV spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.B.; Pellegrini, C.

    1984-01-01

    Using the system described, an electron storage ring with an undulator in a special bypass section, we can obtain high intensity coherent radiation by sending the beam through the undulator and using the FEL collective instability to produce radiation. Compared to other systems, such as an FEL oscillator or a transverse optical klystron, this system has the advantage that it does not

  4. Super-radiance in a prebunched beam free electron maser

    CERN Document Server

    Arbel, M; Pinhasi, Y; Lurie, Y; Tecimer, M; Abramovich, A; Kleinman, H; Yakover, I M; Gover, A

    2000-01-01

    It is well known that electrons passing through a magnetic undulator emit partially coherent radiation: 'Undulator Synchrotron Radiation'. Radiation from electrons, entering the undulator at random, adds incoherently. If the electron beam is periodically modulated (bunched) to pulses shorter than the radiation wavelength, electrons radiate in phase with each other, resulting in super-radiant emission at the bunching frequency. Introduction of a signal at the input of the prebunched beam FEL, results in stimulated super-radiant emission. The interaction between the electromagnetic wave and a synchronous modulated e-beam results in amplification of the signal wave in addition to the spontaneous super-radiant emission. We demonstrated and measured the super-radiant emission in a wide band of frequencies from 3.15 to 5.5 GHz using the mini-FEM of Tel-Aviv University, wherein pre-bunching at the radiation frequency is accomplished with the aid of a traveling-wave prebuncher. The measured upper synchronous frequenc...

  5. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es; Siegel, Jan, E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, Javier; Solis, Javier [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2014-09-21

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  6. Current status of free radicals and electronically excited metastable species as high energy propellants

    Science.gov (United States)

    Rosen, G.

    1973-01-01

    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  7. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable with the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.

  8. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    Science.gov (United States)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  9. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    Science.gov (United States)

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine.

  10. Spectral Dynamics of a Free-Electron Maser with a Step-Tapered Undulator

    NARCIS (Netherlands)

    Eecen, P. J.; Schep, T. J.; Tulupov, A. V.

    1995-01-01

    The spectral behavior of a high-power, high-gain free-electron maser (FEM) is investigated. The maser has a step-tapered undulator consisting of two sections with different strengths and lengths and equal periodicities. The sections are separated by a field-free gap. The configuration is enclosed

  11. Maximizing spectral flux from self-seeding hard x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Xi Yang

    2013-12-01

    Full Text Available Fully coherent x rays can be generated by self-seeding x-ray free electron lasers (XFELs. Self-seeding by a forward Bragg diffraction (FBD monochromator has been recently proposed [G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011JMOPEW0950-034010.1080/09500340.2011.586473] and demonstrated [J. Amann et al., Nat. Photonics 6, 693 (2012NPAHBY1749-488510.1038/nphoton.2012.180]. Characteristic time T_{0} of FBD determines the power, spectral, and time characteristics of the FBD seed [Yu. Shvyd’ko and R. Lindberg, Phys. Rev. ST Accel. Beams 15, 100702 (2012PRABFM1098-440210.1103/PhysRevSTAB.15.100702]. Here we show that for a given electron bunch with duration σ_{e} the spectral flux of the self-seeding XFEL can be maximized, and the spectral bandwidth can be respectively minimized by choosing T_{0}∼σ_{e}/π and by optimizing the electron bunch delay τ_{e}. The choices of T_{0} and τ_{e} are not unique. In all cases, the maximum value of the spectral flux and the minimum bandwidth are primarily determined by σ_{e}. Two-color seeding takes place if T_{0}≪σ_{e}/π. The studies are performed, for a Gaussian electron bunch distribution with the parameters, close to those used in the short-bunch (σ_{e}≃5  fs and long-bunch (σ_{e}≃20  fs operation modes of the Linac Coherent Light Source XFEL.

  12. Maximizing spectral flux from self-seeding hard x-ray free electron lasers

    Science.gov (United States)

    Yang, Xi; Shvyd'ko, Yuri

    2013-12-01

    Fully coherent x rays can be generated by self-seeding x-ray free electron lasers (XFELs). Self-seeding by a forward Bragg diffraction (FBD) monochromator has been recently proposed [G. Geloni, V. Kocharyan, and E. Saldin, J. Mod. Opt. 58, 1391 (2011)JMOPEW0950-034010.1080/09500340.2011.586473] and demonstrated [J. Amann , Nat. Photonics 6, 693 (2012)NPAHBY1749-488510.1038/nphoton.2012.180]. Characteristic time T0 of FBD determines the power, spectral, and time characteristics of the FBD seed [Yu. Shvyd’ko and R. Lindberg, Phys. Rev. ST Accel. Beams 15, 100702 (2012)PRABFM1098-440210.1103/PhysRevSTAB.15.100702]. Here we show that for a given electron bunch with duration σe the spectral flux of the self-seeding XFEL can be maximized, and the spectral bandwidth can be respectively minimized by choosing T0˜σe/π and by optimizing the electron bunch delay τe. The choices of T0 and τe are not unique. In all cases, the maximum value of the spectral flux and the minimum bandwidth are primarily determined by σe. Two-color seeding takes place if T0≪σe/π. The studies are performed, for a Gaussian electron bunch distribution with the parameters, close to those used in the short-bunch (σe≃5fs) and long-bunch (σe≃20fs) operation modes of the Linac Coherent Light Source XFEL.

  13. Theory of gyroresonance and free-free emissions from non-Maxwellian quasi-steady-state electron distributions

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    Currently there is a concern about ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in solar atmosphere including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and $n$-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remote detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and $n$-distributions and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth $\\tau$ for kappa-distribution, but decreases with $\\tau$ for $n$-distribution. This property ...

  14. First lasing of the Darmstadt cw free electron laser

    CERN Document Server

    Brunken, M; Eichhorn, R; Genz, H; Gräf, H D; Loos, H; Richter, A; Schweizer, B; Stascheck, A; Wesp, T

    1999-01-01

    The Darmstadt CW FEL designed for wavelengths between 3 and 10 mu m driven by the superconducting electron accelerator S-DALINAC first lased on December 1st, 1996 and has operated thereafter successfully in the wavelength region between 6.6 and 7.8 mu m. The pulsed electron beam employed had a micro pulse length of about 2ps, with a repetition rate of 10 MHz and a peak current of 2.7 A while its energy was varied between 29.6 and 31.5 MeV. A wedged pole hybrid undulator, with 80 periods each of 0.032 m length and a magnetic field strength of 0.15-0.4T, was located in between a 15.01 m long optical cavity equipped with two high reflectivity (99.8) mirrors of 0.05 m diameter. Due to the low beam current special care with respect to the electron and optical beam properties was necessary to meet the stringent conditions in order to reach a minute small signal gain of at least a few percent resulting in amplification. Saturation was obtained after about 2000 repetitions of the photon pulse inside the cavity. The D...

  15. Polarization Effects in Two-Photon Free-Free Transitions in Laser-Assisted Electron-Hydrogen Collisions

    CERN Document Server

    Cionga, Aurelia

    2013-01-01

    Two-photon free-free transitions in elastic laser-assisted electron-hydrogen collisions are studied in the domain of high scattering energies and low or moderate field intensities, in the third order of perturbation theory, taking into account all the involved Feynman diagrams. Based on the analytical expressions of the transition amplitudes, the differential cross sections for two-photon absorption/emission are computed at impact energy $E_i=100$ eV. The effect of field polarizations on the angular distribution and on the frequency dependence of the differential cross section is analyzed.

  16. Digital in-line holography with femtosecond VUV radiation provided by the free-electron laser FLASH.

    Science.gov (United States)

    Rosenhahn, Axel; Staier, Florian; Nisius, Thomas; Schäfer, David; Barth, Ruth; Christophis, Christof; Stadler, Lorenz-M; Streit-Nierobisch, Simone; Gutt, Christian; Mancuso, Adrian; Schropp, Andreas; Gulden, Johannes; Reime, Bernd; Feldhaus, Josef; Weckert, Edgar; Pfau, Bastian; Günther, Christian M; Könnecke, René; Eisebitt, Stefan; Martins, Michael; Faatz, Bart; Guerassimova, Natalia; Honkavaara, Katja; Treusch, Rolf; Saldin, Evgueni; Schreiber, Siegfried; Schneidmiller, Evgeny A; Yurkov, Mikhail V; Vartanyants, Ivan; Grübel, Gerhard; Grunze, Michael; Wilhein, Thomas

    2009-05-11

    Femtosecond vacuum ultraviolet (VUV) radiation provided by the free-electron laser FLASH was used for digital in-line holographic microscopy and applied to image particles, diatoms and critical point dried fibroblast cells. To realize the classical in-line Gabor geometry, a 1 microm pinhole was used as spatial filter to generate a divergent light cone with excellent pointing stability. At a fundamental wavelength of 8 nm test objects such as particles and diatoms were imaged at a spatial resolution of 620 nm. In order to demonstrate the applicability to biologically relevant systems, critical point dried rat embryonic fibroblast cells were for the first time imaged with free-electron laser radiation.

  17. Label-free electronic detection of bio-toxins using aligned carbon nanotubes.

    Science.gov (United States)

    Palaniappan, Al; Goh, W H; Fam, D W H; Rajaseger, G; Chan, C E Z; Hanson, B J; Moochhala, S M; Mhaisalkar, S G; Liedberg, B

    2013-05-15

    A facile route for sensitive label-free detection of bio-toxins using aligned single walled carbon nanotubes is described. This approach involves patterning of a catalyst on the surface of a quartz substrate using a sub-100 μm stripe-patterned polydimethylsiloxane stamp for aligned carbon nanotube generation followed by fabrication of field effect transistor (FET). Atomic force microscopy, field emission scanning electron microscopy and Raman spectroscopy are employed to characterize the synthesized nanotubes. Unlike previous reports, the adopted approach enables direct electronic detection of bio-toxins with sensitivities comparable to ELISA. As a proof of concept, the fabricated FET responds to nM concentration levels (with a LOD of ∼2 nM) of epsilon toxin produced by Clostridium perfringens and a prominent food toxin. This facile approach could be customized to detect other classes of toxins and biomarkers upon appropriate functionalization of the aligned carbon nanotubes. Finally, we demonstrate the use of the FET-platform for detection of toxin in more complex matrices such as orange juice.

  18. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  19. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  20. A magnetic-free high-resolution parabolic mirror time-of-flight electron energy spectrometer

    Institute of Scientific and Technical Information of China (English)

    张戈; 沈鸿元; 曾瑞荣; 黄呈辉; 林文雄; 黄见洪

    2001-01-01

    The principle and structure of a magnetic-free high-resolution high-efficiency parabolic mirror time-offligght electron energy spectrometer are presented. The electron energy spectrum of Nz in a flight tube is measured using a 105 fs Ti:sappbire laser under different gas pressures.

  1. Rigorous bounds on the free energy of electron-phonon models

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel

    1997-01-01

    We present a collection of rigorous upper and lower bounds to the free energy of electron-phonon models with linear electron-phonon interaction. These bounds are used to compare different variational approaches. It is shown rigorously that the ground states corresponding to the sharpest bounds do no

  2. Short-Wavelength Free-Electron Lasers with Periodic Plasma Structures

    NARCIS (Netherlands)

    Bazylev, V. A.; Schep, T. J.; Tulupov, A. V.

    1994-01-01

    Concepts of compact free-electron lasers that are based on beam-plasma interactions and that operate in the vacuum ultraviolet and x-ray wavelength ranges are discussed. Coherent radiation can not only be produced by periodic transverse motions of an electron beam, but also by its longitudinal motio

  3. Instrumentation and data acquisition electronics for free-flight drop model testing

    Science.gov (United States)

    Carraway, Preston I., III

    1988-01-01

    This paper presents instrumentation and data acquisition electronics techniques used in free-flight drop model testing at the NASA Langley Research Center. Free-flight drop model testing is a technique for conducting complex aircraft controls research using reduced scale models of experimental aircraft. An introduction to the Free-Flight Drop Model Program is presented first. This is followed by a description of the recently upgraded airborne and ground based instrumentation and data acquisition electronics. Lastly current and future development efforts and opportunities are discussed.

  4. Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirscht, Julian

    2015-08-15

    Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the

  5. Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser.

    Science.gov (United States)

    Wabnitz, H; Bittner, L; de Castro, A R B; Döhrmann, R; Gürtler, P; Laarmann, T; Laasch, W; Schulz, J; Swiderski, A; von Haeften, K; Möller, T; Faatz, B; Fateev, A; Feldhaus, J; Gerth, C; Hahn, U; Saldin, E; Schneidmiller, E; Sytchev, K; Tiedtke, K; Treusch, R; Yurkov, M

    2002-12-05

    Intense radiation from lasers has opened up many new areas of research in physics and chemistry, and has revolutionized optical technology. So far, most work in the field of nonlinear processes has been restricted to infrared, visible and ultraviolet light, although progress in the development of X-ray lasers has been made recently. With the advent of a free-electron laser in the soft-X-ray regime below 100 nm wavelength, a new light source is now available for experiments with intense, short-wavelength radiation that could be used to obtain deeper insights into the structure of matter. Other free-electron sources with even shorter wavelengths are planned for the future. Here we present initial results from a study of the interaction of soft X-ray radiation, generated by a free-electron laser, with Xe atoms and clusters. We find that, whereas Xe atoms become only singly ionized by the absorption of single photons, absorption in clusters is strongly enhanced. On average, each atom in large clusters absorbs up to 400 eV, corresponding to 30 photons. We suggest that the clusters are heated up and electrons are emitted after acquiring sufficient energy. The clusters finally disintegrate completely by Coulomb explosion.

  6. Generation of nanometer structures on surfaces of ionic solids generated by laser and electron beam irradiation

    Science.gov (United States)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. Thomas

    2001-03-01

    Radiation effects on hydrated single crystals are poorly understood. We find that dense arrays of nanoscale conical structures, with aspect ratios on the order of 200, are produced when single crystal brushite (CaHPO_4^.2H_2O) is exposed to energetic electrons (2 keV). Other three dimensional nanostructures are generated by exposing brushite to excimer laser irradiation. We show that the mechanism involves: (a) photo/electron stimulated decomposition of the matrix, and (b) thermally stimulated migration of water (in this case, crystalline) and ionic material. We have isolated these factors to some extent and present plausible mechanisms for structure formation. In addition, we have recently exposed non-hydrated ionic crystals to radiation in the presence of background water (pp_water ~ 10-7 Torr), which produces exceedingly fine structures (sub-10 nm). The optical and luminescence properties of these features will be presented. An example of a “stealth surface” will be given with possible applications for the laser generation of x-rays.

  7. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    CERN Document Server

    Goldmann, Maximilian; West, Adam H C; Yoder, Bruce L; Signorell, Ruth

    2015-01-01

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  8. Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis.

    Science.gov (United States)

    Hensen, B; Kalb, N; Blok, M S; Dréau, A E; Reiserer, A; Vermeulen, R F L; Schouten, R N; Markham, M; Twitchen, D J; Goodenough, K; Elkouss, D; Wehner, S; Taminiau, T H; Hanson, R

    2016-08-11

    The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682-686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same experimental setup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting P-values of the second experiment and of the combined Bell tests. We provide an additional analysis of the distribution of settings choices recorded during the two tests, finding that the observed distributions are consistent with uniform settings for both tests. Finally, we analytically study the effect of particular models of random number generator (RNG) imperfection on our hypothesis test. We find that the winning probability per trial in the CHSH game can be bounded knowing only the mean of the RNG bias. This implies that our experimental result is robust for any model underlying the estimated average RNG bias, for random bits produced up to 690 ns too early by the random number generator.

  9. Characteristics of radiation safety for synchrotron radiation and X-ray free electron laser facilities.

    Science.gov (United States)

    Asano, Yoshihiro

    2011-07-01

    Radiation safety problems are discussed for typical electron accelerators, synchrotron radiation (SR) facilities and X-ray free electron laser (XFEL) facilities. The radiation sources at the beamline of the facilities are SR, including XFEL, gas bremsstrahlung and high-energy gamma ray and photo-neutrons due to electron beam loss. The radiation safety problems for each source are compared by using 8 GeV class SR and XFEL facilities as an example.

  10. Longitudinal and transverse heating of a relativistic electron bunch induced by a storage ring free electron laser

    Directory of Open Access Journals (Sweden)

    M. Labat

    2006-10-01

    Full Text Available The new trend is to operate storage ring based light sources in a “chromatic mode” with a distributed dispersive function in the straight sections for low emittance. The electron bunch heating induced by a storage ring free electron laser (FEL has been investigated for such optics, and exhibits a more complex saturation process as compared to a usual achromatic mode of operation without dispersion in the straight sections. The correlated measured FEL power is then interpreted in terms of the electron bunch heating and compared to theoretical expectations. Experiments performed at UVSOR-II are here reported. The theoretical interpretation of the new saturation phenomenon is then discussed.

  11. A Transition Radiation Experiment to Measure the Electron Beam Modulation Induced by the Free Electron Laser: A Design Study.

    Science.gov (United States)

    1987-12-01

    a detector of the phototube, TV camera, or reticon type. The characteristics of TR that will apply to the proposed experiment are: (1) The angular...January- February 1987. 4. Colson, W.B., and A.M. Sessler, "Free Electron Lasers," Annual Review of Nuclear Particle Science, v. 35, pp. 25-54, 1985

  12. Propagation of gamma rays and production of free electrons in air

    CERN Document Server

    Dimant, Y S; Sprangle, P; Penano, J; Romero-Talamas, C A; Granatstein, V L

    2012-01-01

    A new concept of remote detection of concealed radioactive materials has been recently proposed \\cite{Gr.Nusin.2010}-\\cite{NusinSprangle}. It is based on the breakdown in air at the focal point of a high-power beam of electromagnetic waves produced by a THz gyrotron. To initiate the avalanche breakdown, seed free electrons should be present in this focal region during the electromagnetic pulse. This paper is devoted to the analysis of production of free electrons by gamma rays leaking from radioactive materials. Within a hundred meters from the radiation source, the fluctuating free electrons appear with the rate that may exceed significantly the natural background ionization rate. During the gyrotron pulse of about 10 microsecond length, such electrons may seed the electric breakdown and create sufficiently dense plasma at the focal region to be detected as an unambiguous effect of the concealed radioactive material.

  13. Direct laser acceleration of electrons in free-space

    CERN Document Server

    Carbajo, Sergio; Wong, Liang Jie; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    Compact laser-driven accelerators are versatile and powerful tools of unarguable relevance on societal grounds for the diverse purposes of science, health, security, and technology because they bring enormous practicality to state-of-the-art achievements of conventional radio-frequency accelerators. Current benchmarking laser-based technologies rely on a medium to assist the light-matter interaction, which impose material limitations or strongly inhomogeneous fields. The advent of few cycle ultra-intense radially polarized lasers has materialized an extensively studied novel accelerator that adopts the simplest form of laser acceleration and is unique in requiring no medium to achieve strong longitudinal energy transfer directly from laser to particle. Here we present the first observation of direct longitudinal laser acceleration of non-relativistic electrons that undergo highly-directional multi-GeV/m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle accelerati...

  14. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  15. The vacuum system of the European X-ray free electron laser XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zapfe, K; Boehnert, M; Hensler, O; Hoppe, D; Mildner, N; Nagorny, B; Rehlich, K; Remde, H; Wagner, A; Wohlenberg, T; Wojtkiewicz, J [Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany)], E-mail: kirsten.zapfe@desy.de

    2008-03-01

    The European X-ray Free Electron Laser XFEL, a new international research facility, will be built at DESY/Hamburg. The XFEL will generate extremely brilliant and ultra short pulses of spatially coherent X-rays with tuneable wavelengths down to 0.1 nm, and exploit them for revolutionary scientific experiments at various disciplines. The basic process adopted to produce the X-ray pulses is SASE (Self-Amplified Spontaneous Emission). Therefore electron bunches are produced in a high-brightness gun, brought to high energy of about 20 GeV through a superconducting linear accelerator, and transported to up to 250 m long undulators, where the X-rays are generated. The beam vacuum system of the accelerator contains sections operated at room temperature as well as at 2 K in the areas of the superconducting accelerating structures, thus requiring an insulating vacuum system. In addition to standard UHV requirements, the vacuum system for this facility needs to preserve the cleanliness of the superconducting cavity surfaces. Therefore the preparation of all vacuum components for the 1.6 km long main linac includes cleaning of the components in a clean room to remove particles, installation into the accelerator in local clean rooms, and special procedures for pump down and venting. Further challenges are the undulator vacuum chambers filling more than 700 m, where a high surface quality with respect to surface roughness and thickness of oxide layers is mandatory to reduce wake field effects, and the vacuum systems for the various beam dumps, where exit windows acting as vacuum barriers of sufficient reliability need to be developed. In addition, a large amount of about 1.7 km of transport beam lines is required. The layout of the various vacuum sections as well as experience with prototype components will be described.

  16. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    Energy Technology Data Exchange (ETDEWEB)

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T. [Institute for Nuclear Chemistry and Technology, Warsaw (Poland)

    2008-08-15

    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  17. The Effective Lorentzian and Teleparallel Spacetimes Generated by a Free Electromagnetic Field

    CERN Document Server

    Notte-Cuello, E A; Rodrigues, W A; Notte-Cuello, Eduardo; Rocha, Roldao da; Rodrigues, Waldyr A.

    2006-01-01

    In this paper we show that a free electromagnetic field living in Minkowski spacetime generates an effective Weitzenbock or an effective Lorentzian spacetime (both equipped with a conformal metric) whose properties are determined in details. These results are possible because we found using the Clifford bundle formalism the noticeable result that the energy-momentum densities of a free electromagnetic field are sources of the Hodge duals of exact 2-form fields which satisfy Maxwell like equations.

  18. Free-electron masers vs. gyrotrons prospects for high-power sources at millimeter and submillimeter wavelengths

    CERN Document Server

    Thumm, M K

    2002-01-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in...

  19. Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator.

    Science.gov (United States)

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B

    2012-11-16

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent free-electron laser (FEL) radiation generation. We discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for self-amplified spontaneous emission and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  20. Generation of surface electrons in femtosecond laser-solid interactions

    Institute of Scientific and Technical Information of China (English)

    XU; Miaohua; LI; Yutong; YUAN; Xiaohui; ZHENG; Zhiyuan; LIANG; Wenxi; YU; Quanzhi; ZHANG; Yi; WANG; Zhaohua; WEI; Zhiyi; ZHANG; Jie

    2006-01-01

    The characteristics of hot electrons produced by p-polarized femtosecond laser-solid interactions are studied. The experimental results show that the outgoing electrons are mainly emitted in three directions: along the target surface, the normal direction and the laser backward direction. The electrons flowing along the target surface are due to the confinement of the electrostatic field and the surface magnetic field, while the electrons in the normal direction due to the resonant absorption.

  1. Packaging and Embedded Electronics for the Next Generation

    Science.gov (United States)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.

  2. Electron-Helium Scattering in Free-Free Transitions in a Bichromatic Laser Field

    Institute of Scientific and Technical Information of China (English)

    SUN Jin-Feng; LIANG Ming-Chao; ZHU Zun-Lue

    2007-01-01

    Theoretical calculation of the differential cross section (DCS) for elastic electron-helium scattering in the presence of a bichromatic CO2 laser field is carried out in the first Born approximation with a simple screening electric potential. The two components of the laser field have the frequencies ω and 2ω, which are out of phase by an arbitrary scale ψ. The variations of the differential cross section as a function of the phase angle ψ in the domain 0°≤ψ≤360° are presented. We discuss the influence of the number of photons exchanged on the phase-dependence effect. Moreover, for different scattering angles and incident electron energies, the DCS has outstanding differences. These illustrate that the two parameters have important effects on the differential cross section and the screening electric potential is effective.

  3. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    Science.gov (United States)

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1994-01-04

    A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.

  4. Test Writing Made Simple: Generate Tests and Worksheets Electronically.

    Science.gov (United States)

    Lodish, Erica

    1986-01-01

    Describes capabilities of test and worksheet generator software; discusses features to consider when evaluating the software for purchase; and presents reviews of eight test and worksheet generators: P.D.Q., Testmaster, Easy Quiz Maker, EA Mathematics Worksheet Generator, Mathematics Worksheet Generator, Earth Science Test Maker, Individualized…

  5. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  6. Comparison of three generations of ActiGraph activity monitors under free-living conditions

    DEFF Research Database (Denmark)

    Grydeland, May; Hansen, Bjørge Herman; Ried-Larsen, M.

    2014-01-01

    + in children in free-living conditions. The generations GT1M and GT3X+ provided comparable outputs. The differences between the old and the newer monitors were more complex when investigating time spent at different intensities. Comparisons of data assessed by the AM7164 with data assessed by newer generations......BACKGROUND: A recent review concludes that the agreement of data across ActiGraph accelerometer models for children and youth still is uncertain. The aim of this study was to evaluate the agreement of three generations of ActiGraph accelerometers in children in a free-living condition. METHODS......: Sixteen 9-year-olds wore the ActiGraph AM7164, GT1M and GT3X+ simultaneously for three consecutive days. We compared mean counts per minute (mcpm) and time spent at different intensities from the three generations of monitors, and the agreement of outputs were evaluated by intra-class correlation...

  7. Self-consistent time dependent vibrational and free electron kinetics for CO2 dissociation and ionization in cold plasmas

    Science.gov (United States)

    Capitelli, M.; Colonna, G.; D'Ammando, G.; Pietanza, L. D.

    2017-05-01

    A self-consistent time dependent model, based on the coupling between the Boltzmann equation for free electrons, the non equilibrium vibrational kinetics for the asymmetric mode of CO2 and simplified global models for the dissociation and ionization plasma chemistry, has been applied to conditions which can be met under pulsed microwave (MW), dielectric barrier discharge (DBD) and nanosecond pulsed discharges (NPD). Under MW discharge type conditions, the selected pulse duration generates large concentration of vibrational excited states, which affects the electron energy distribution function (eedf) through the superelastic vibrational collisions. Moreover, in discharge conditions, plateaux appear in the vibrational distribution function (vdf) through the vibrational-vibrational up pumping mechanism, persisting also in the post discharge. In post discharge conditions, also the eedf is characterized by plateaux due to the superelastic collisions between cold electrons and the CO2 electronic state at 10.5 eV. The plateau in vdf increases the dissociation of pure vibrational mechanism (PVM), which can become competitive with the dissociation mechanism induced by electron molecule collisions. The PVM rates increase with the decrease of gas temperature, generating a non-Arrhenius behaviour. The situation completely changes under DBD and NPD type conditions characterized by shorter pulse duration and higher applied E/N values. Under discharge conditions, both vdf and eedf plateaux disappear, reappering in the afterglow.

  8. Circular dichroism in free-free transitions of high energy electron-atom scattering

    CERN Document Server

    Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.62.063406

    2013-01-01

    We consider high energy electron scattering by hydrogen atoms in the presence of a laser field of moderate power and higher frequencies. If the field is a superposition of a linearly and a circularly polarized laser beam in a particular configuration, then we can show that circular dichroism in two photon transitions can be observed not only for the differential but also for the integrated cross sections, provided the laser-dressing of the atomic target is treated in second order perturbation theory and the coupling between hydrogenic bound and continuum states is involved.

  9. X-ray Free-Electron Lasers - Present and Future Capabilities [Invited

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John; Ratner, John Arthur:a Daniel F.; White, William E.; /SLAC

    2011-11-16

    The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550-10,000 eV X-rays of duration adjustable from <10 fsto500 fs. Typical peak power is in excess of 20 GW. The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

  10. X-ray free-electron lasers--present and future capabilities [Invited

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N.; Arthur, John; Ratner, Daniel F.; White, William E. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

    2010-11-15

    The Linac Coherent Light Source is now in operation as an X-ray free-electron laser (FEL) user facility. It produces coherent pulses of 550-10,000 eV X-rays of duration adjustable from <10 fs to 500 fs. Typical peak power is in excess of 20 GW. The facility will soon be joined by several X-ray FELs under construction around the world. This article will provide an abridged history of free-electron lasers, a description of some basic physics regarding free-electron laser light amplification, and an overview of the rapidly growing list of examples in which lasers will be used in the control and operation of X-ray FELs.

  11. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Behrens, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Coffee, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Decker, F. -J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Emma, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Field, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helml, W. [Technische Univ. Munchen, Garching (Germany); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krejcik, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krzywinski, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lutman, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  12. Bremsstrahlung {gamma}-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi [Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196, Japan and Photon Pioneers Center in Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan)

    2012-07-11

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free {gamma}-ray imaging systems. The calculated yield of {gamma}-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on {gamma}-ray imaging is also discussed.

  13. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Science.gov (United States)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-07-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  14. Design of FELiChEM, the first infrared free-electron laser user facility in China

    CERN Document Server

    Li, He-Ting; Zhang, Shan-Cai; Wang, Lin; Yang, Yong-Liang

    2016-01-01

    FELiChEM is a new experimental facility under construction at University of Science and Technology of China (USTC), whose core device is two free electron laser oscillators generating middle-infrared and far-infrared laser and covering the spectral range of 2.5-200 ?m. It will be a dedicated infrared light source aiming at energy chemistry research. We present the brief design of FEL oscillators with the emphasis put on the middle-infrared oscillator. Most of the basic parameters are determined and the anticipated performance of the output radiation is given. The first light of FELiChEM is targeted for the end of 2017.

  15. Spectral-phase interferometry for direct electric-field reconstruction applied to seeded extreme-ultraviolet free-electron lasers

    CERN Document Server

    Mahieu, Benoît; De Ninno, Giovanni; Dacasa, Hugo; Lozano, Magali; Rousseau, Jean-Philippe; Zeitoun, Philippe; Garzella, David; Merdji, Hamed

    2015-01-01

    We present a setup for complete characterization of femtosecond pulses generated by seeded free-electron lasers (FEL's) in the extreme-ultraviolet spectral region. Two delayed and spectrally shifted replicas are produced and used for spectral phase interferometry for direct electric field reconstruction (SPIDER). We show that it can be achieved by a simple arrangement of the seed laser. Temporal shape and phase obtained in FEL simulations are well retrieved by the SPIDER reconstruction, allowing to foresee the implementation of this diagnostic on existing and future sources. This will be a significant step towards an experimental investigation and control of FEL spectral phase.

  16. Detailed characterization of electron sources yielding first demonstration of European X-ray Free-Electron Laser beam quality

    Directory of Open Access Journals (Sweden)

    F. Stephan

    2010-02-01

    Full Text Available The photoinjector test facility at DESY, Zeuthen site (PITZ, was built to develop and optimize photoelectron sources for superconducting linacs for high-brilliance, short-wavelength free-electron laser (FEL applications like the free-electron laser in Hamburg (FLASH and the European x-ray free-electron laser (XFEL. In this paper, the detailed characterization of two laser-driven rf guns with different operating conditions is described. One experimental optimization of the beam parameters was performed at an accelerating gradient of about 43  MV/m at the photocathode and the other at about 60  MV/m. In both cases, electron beams with very high phase-space density have been demonstrated at a bunch charge of 1 nC and are compared with corresponding simulations. The rf gun optimized for the lower gradient has surpassed all the FLASH requirements on beam quality and rf parameters (gradient, rf pulse length, repetition rate and serves as a spare gun for this facility. The rf gun studied with increased accelerating gradient at the cathode produced beams with even higher brightness, yielding the first demonstration of the beam quality required for driving the European XFEL: The geometric mean of the normalized projected rms emittance in the two transverse directions was measured to be 1.26±0.13  mm mrad for a 1-nC electron bunch. When a 10% charge cut is applied excluding electrons from those phase-space regions where the measured phase-space density is below a certain level and which are not expected to contribute to the lasing process, the normalized projected rms emittance is about 0.9 mm mrad.

  17. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

    Science.gov (United States)

    Bente, Klaas; Weber, Matthias; Graeser, Matthias; Sattel, Timo F; Erbe, Marlitt; Buzug, Thorsten M

    2015-02-01

    It has been shown that magnetic particle imaging (MPI), an imaging method suggested in 2005, is capable of measuring the spatial distribution of magnetic nanoparticles. Since the particles can be administered as biocompatible suspensions, this method promises to perform well as a tracer-based medical imaging technique. It is capable of generating real-time images, which will be useful in interventional procedures, without utilizing any harmful radiation. To obtain a signal from the administered superparamagnetic iron oxide (SPIO) particles, a sinusoidal changing external homogeneous magnetic field is applied. To achieve spatial encoding, a gradient field is superimposed. Conventional MPI works with a spatial encoding field that features a field free point (FFP). To increase sensitivity, an improved spatial encoding field, featuring a field free line (FFL) can be used. Previous FFL scanners, featuring a 1-D excitation, could demonstrate the feasibility of the FFL-based MPI imaging process. In this work, an FFL-based MPI scanner is presented that features a 2-D excitation field and, for the first time, an electronic rotation of the spatial encoding field. Furthermore, the role of relaxation effects in MPI is starting to move to the center of interest. Nevertheless, no reconstruction schemes presented thus far include a dynamical particle model for image reconstruction. A first application of a model that accounts for relaxation effects in the reconstruction of MPI images is presented here in the form of a simplified, but well performing strategy for signal deconvolution. The results demonstrate the high impact of relaxation deconvolution on the MPI imaging process.

  18. Next Generation High Brightness Electron Beams From Ultra-High Field Cryogenic Radiofrequency Photocathode Sources

    CERN Document Server

    Rosenzweig, J B; Dolgashev, V; Emma, C; Fukusawa, A; Li, R; Limborg, C; Maxson, J; Musumeci, P; Nause, A; Pakter, R; Pompili, R; Roussel, R; Spataro, B; Tantawi, S

    2016-01-01

    Recent studies of the performance of radio-frequency (RF) copper structures operated at cryogenic temperatures have shown a dramatic increase in the maximum surface electric field that may be reached. We propose to utilize this development to enable a new generation of photoinjectors operated at cryogenic temperatures that may attain, through enhancement of the launch field at the photocathode by a factor of four, well over an order of magnitude increase in peak electron beam brightness. We present detailed studies of the beam dynamics associated with such a system, concentrating on an emittance-compensated S-band photoinjector that may directly substitute that of the LCLS X-ray free-electron laser. We show in this case that the increase in brightness leads directly to a factor of two reduction in gain length, with attendant increase in X-ray radiative efficiency. Extreme low emittance scenarios obtained at low operating charge, appropriate for dramatically pushing performance limits of ultrafast electron dif...

  19. Hierarchic electrodynamics and free electron lasers concepts, calculations, and practical applications

    CERN Document Server

    Kulish, Victor V

    2011-01-01

    Hierarchic Electrodynamics and Free Electron Lasers: Concepts, Calculations, and Practical Applications presents intriguing new fundamental concepts in the phenomenon of hierarchical electrodynamics as a new direction in physics. Concentrating on the key theory of hierarchic oscillations and waves, this book focuses on the numerous applications of nonlinear theory in different types of high-current Free Electron Lasers (FEL), including their primary function in the calculation methods used to analyze various multi-resonant, multi-frequency nonlinear FEL models. This is considered the first boo

  20. Model for nonlinear behavior in the self-amplified spontaneous-emission free-electron laser

    Science.gov (United States)

    Krinsky, S.

    2004-06-01

    We introduce a simplified model for the saturation of a self-amplified spontaneous-emission free-electron laser. Within this model, we determine the effect of nonlinearity upon the statistical properties of the output radiation. Comparing our results with the computer simulations of Saldin, Schneidmiller, and Yurkov [The Physics of Free Electron Lasers (Springer-Verlag, Berlin, 2000)], we find that the model provides a good description of the average intensity, field correlation function, and coherence time, but underestimates the intensity fluctuation. Asymmetric spectral broadening phenomena are not included in the model.

  1. Broadband tunability of a far-infrared free-electron laser

    Science.gov (United States)

    Bakker, R. J.; van der Geer, C. A. J.; Jaroszynski, D. A.; van der Meer, A. F. G.; Oepts, D.; van Amerstoort, P. W.

    1993-08-01

    Results obtained in operation of the long-wavelength free electron laser (FEL) of the FELIX facility are presented. These involve measurements of the spectral range covered (16-110 microns), the output power, and the influence of the cavity desynchronism. The free electron laser for infrared experiments (FELIX) uses an undulator with tunable field strength that enables a factor of 2 tunability of the radiation wavelength. Results show that the dependence of the small signal gain and output power on cavity length tuning and undulator strength can be estimated. The results are compared with numerical simulations.

  2. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets

    CERN Document Server

    Signorell, Ruth; Yoder, Bruce L; Bodi, Andras; Chasovskikh, Egor; Lang, Lukas; Luckhaus, David

    2016-01-01

    Angle-resolved photoelectron spectroscopy of aerosol droplets is a promising method for the determination of electron mean free paths in liquids. It is particularly attractive for volatile liquids, such as water. Here we report the first angle-resolved photoelectron images of droplets with defined sizes, viz. of water, glycerol, and dioctyl phthalate droplets. We present an approach that allows one to gradually vary the conditions from dominant shadowing to dominant nanofocusing to optimize the information content contained in the photoelectron images. Example simulations of water droplet photoelectron images and preliminary data for electron mean free paths for liquid water at low kinetic energy (<3eV) are provided.

  3. Fast Polarization Switching Demonstration Using Crossed-Planar Undulator in a Seeded Free Electron Laser

    CERN Document Server

    Deng, Haixiao; Feng, Lie; Feng, Chao; Chen, Jianhui; Liu, Bo; Wang, Xingtao; Lan, Taihe; Wang, Guanglei; Zhang, Wenyan; Liu, Xiaoqing; Zhang, Meng; Lin, Guoqiang; Zhang, Miao; Wang, Dong; Zhao, Zhentang

    2013-01-01

    Fast polarization switching of light sources is required over a wide spectral range to investigate the symmetry of matter. In this Letter, we report the first experimental demonstration of the crossed-planar undulator technique at a seeded free-electron laser, which holds great promise for the full control and fast switching of the polarization of short-wavelength radiation. In the experiment, the polarization state of the coherent radiation at the 2nd harmonic of the seed laser is switched successfully. The experiment results confirm the theory, and pave the way for applying the crossed-planar undulator technique for the seeded X-ray free electron lasers.

  4. Generating All Circular Shifts by Context-Free Grammars in Chomsky Normal Form (Abstract only)

    NARCIS (Netherlands)

    Asveld, P.R.J.

    2005-01-01

    Let Ln be the finite language of all n! strings that are permutations of n different symbols (n ¿ 1). We consider context-free grammars Gn in Chomsky normal form that generate Ln. In particular we study a few families {Gn}n ¿ 1, satisfying L(Gn) = Ln for n ¿ 1, with respect to their descriptional co

  5. Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles

    DEFF Research Database (Denmark)

    García Ortíz, César Eduardo; Coello, Victor; Han, Zhanghua

    2013-01-01

    We demonstrate experimentally generation of diffraction-free plasmonic beams with zeroth- and first-order Bessel intensity profiles using axicon-like structures fabricated on gold film surfaces and designed to operate at a wavelength of 700nm. The central beam features a very low divergence (∼8π...

  6. Collision free path generation in 3D with turning and pitch radius constraints for aerial vehicles

    DEFF Research Database (Denmark)

    Schøler, F.; La Cour-Harbo, A.; Bisgaard, M.

    2009-01-01

    assumes that most of the aircraft structural and dynamic limitations can be formulated as a turn radius constraint, and that any two consecutive waypoints have line-of-sight. The generated trajectories are collision free and also satisfy a constraint on the minimum admissible turning radius, while...

  7. Generating All Permutations by Context-Free Grammars in Greibach Normal Form

    NARCIS (Netherlands)

    Asveld, P.R.J.

    2007-01-01

    We consider context-free grammars $G_n$ in Greibach normal form and, particularly, in Greibach $m$-form ($m=1,2$) which generates the finite language $L_n$ of all $n!$ strings that are permutations of $n$ different symbols ($n\\geq 1$). These grammars are investigated with respect to their

  8. Induction of oxygen free radical generation in human monocytes by lipoprotein(a)

    DEFF Research Database (Denmark)

    Riis Hansen, P; Kharazmi, A; Jauhiainen, M

    1994-01-01

    The mechanism behind the association of elevated plasma lipoprotein(a) [Lp(a)] levels with atherosclerotic disease is unknown. In the present study, Lp(a) induced generation of oxygen free radicals by monocytes from selected healthy individuals in vitro. This observation may provide a link between...

  9. UNSTEADY FREE-SURFACE WAVES GENERATED BY BODIES IN A VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    LU Dong-qiang

    2004-01-01

    The interaction of laminar flows with free sur face waves generated by submerged bodies in an incompressible viscous fluid of infinite depth is investigated analytically.The analysis is based on the linearized Navier-Stokes equations for disturbed flows. The kinematic and dynamic boundary conditions are linearized for the small amplitude free-surface waves, and the initial values of the flow are taken to be those of the steady state cases. The submerged bodies are mathematically represented by fundamental singularities of viscous flows. The asymptotic representations for unsteady free-surface waves produced by the Stokeslets and Oseenlets are derived analytically. It is found that the unsteady waves generated by a body consist of steady-state and transient responses.As time tends to infinity, the transient waves vanish due to the presence of a viscous decay factor. Thus. an ultimate steady state can be attained.

  10. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    Science.gov (United States)

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  11. Attosecond interferometry with self-amplified spontaneous emission of a free-electron laser

    Science.gov (United States)

    Usenko, Sergey; Przystawik, Andreas; Jakob, Markus Alexander; Lazzarino, Leslie Lamberto; Brenner, Günter; Toleikis, Sven; Haunhorst, Christian; Kip, Detlef; Laarmann, Tim

    2017-05-01

    Light-phase-sensitive techniques, such as coherent multidimensional spectroscopy, are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to visible and ultraviolet wavelengths in nonlinear optics with table-top lasers. In these cases, the ability to tailor the phases of electromagnetic waves with high precision is essential. Here we achieve phase control of extreme-ultraviolet pulses from a free-electron laser (FEL) on the attosecond timescale in a Michelson-type all-reflective interferometric autocorrelator. By varying the relative phase of the generated pulse replicas with sub-cycle precision we observe the field interference, that is, the light-wave oscillation with a period of 129 as. The successful transfer of a powerful optical method towards short-wavelength FEL science and technology paves the way towards utilization of advanced nonlinear methodologies even at partially coherent soft X-ray FEL sources that rely on self-amplified spontaneous emission.

  12. Airborne megawatt class free-electron laser for defense and security

    Energy Technology Data Exchange (ETDEWEB)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  13. X-ray free-electron lasers: from dreams to reality

    Science.gov (United States)

    Pellegrini, C.

    2016-12-01

    The brightness of x-ray sources has been increased one to ten billion times by x-ray free-electron lasers (XFELs) that generate high intensity coherent photon pulses at wavelengths from nanometers to less than one angstrom and a duration of a few to 100 femtoseconds. For the first time XFELs allow for experimental exploration of the structure and dynamics of atomic and molecular systems at the angstrom-femtosecond space and time scale, creating new opportunities for scientific research in physics, chemistry, biology, material science and high energy density physics. This paper reviews the history of this development, concentrating on the Linac Coherent Light Source (LCLS), the world’s first hard x-ray XFEL. It also presents the physical principles on which XFELs are based, their present status and future developments, together with some recent experimental results in physics, chemistry and biology. LCLS success has spurred the worldwide construction of more XFELs; SACLA in Japan, XFEL and FLASH in Germany, Swiss FEL, Korean XFEL, Fermi in Italy. The characteristics of these other sources are also discussed.

  14. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  15. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser.

    Science.gov (United States)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-07-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  16. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

    Science.gov (United States)

    Hensen, B.; Bernien, H.; Dréau, A. E.; Reiserer, A.; Kalb, N.; Blok, M. S.; Ruitenberg, J.; Vermeulen, R. F. L.; Schouten, R. N.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M. W.; Markham, M.; Twitchen, D. J.; Elkouss, D.; Wehner, S.; Taminiau, T. H.; Hanson, R.

    2015-10-01

    More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in `loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 +/- 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S certification.

  17. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  18. Mitigation and Verification Methods for Sn Whisker Growth in Pb-Free Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chul Min; Kim, Do Seop

    2013-02-01

    This work describes mitigation methods against Sn whisker growth in Pb-free automotive electronics using a conformal coating technique, with an additional focus on determining an effective whisker assessment method. We suggest effective whisker growth conditions that involve temperature cycling and two types of storage conditions (high-temperature/humidity storage and ambient storage), and analyze whisker growth mechanisms. In determining an efficient mitigation method against whisker growth, surface finish and conformal coating have been validated as effective means. In our experiments, the surface finish of components comprised Ni/Sn, Ni/SnBi, and Ni/Pd. The effects of acrylic silicone, and rubber coating of components were compared with uncoated performance under high-temperature/humidity storage conditions. An effective whisker assessment method during temperature cycling and under various storage conditions (high temperature/humidity and ambient) is indicated for evaluating whisker growth. Although components were finished with Ni/Pd, we found that whiskers were generated at solder joints and that conformal coating is a useful mitigation method in this regard. Although whiskers penetrated most conformal coating materials (acrylic, silicone, and rubber) after 3500 h of high-temperature/humidity storage, the whisker length was markedly reduced due to the conformal coatings, with silicone providing superior mitigation over acrylic and rubber.

  19. Calorimetric and spectroscopic properties of small globular proteins (bovine serum albumin, hemoglobin) after free radical generation

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, N.; Belagyi, J.; Lorinczy, D

    2003-09-04

    Mild oxidation of -SH-containing proteins (serum albumin, hemoglobin) by Ce(IV)-ions in the presence of the spin trap phenyl-tert-butylnitrone (PBN) resulted in the appearance of strongly immobilized nitroxide free radicals which evidences the formation of thiyl radicals on the thiol site of the proteins. In hydroxyl free radical generating system a fraction of strongly immobilized nitroxide radicals was also detected in these proteins, which implies that the oxidation of a fraction of the thiol groups was also involved in the free radical reaction. According to the differential scanning calorimetry (DSC) experiments the melting processes of the proteins were calorimetrically irreversible, therefore the two-state kinetic model was used to evaluate the experiments. The results support the view that site-specific interaction of SH-containing proteins with hydroxyl and thiyl free radicals is able to modify the internal dynamics of proteins and affect the conformation of large molecules.

  20. First lasing at the high-power free electron laser at Siberian center for photochemistry research

    Science.gov (United States)

    Antokhin, E. A.; Akberdin, R. R.; Arbuzov, V. S.; Bokov, M. A.; Bolotin, V. P.; Burenkov, D. B.; Bushuev, A. A.; Veremeenko, V. F.; Vinokurov, N. A.; Vobly, P. D.; Gavrilov, N. G.; Gorniker, E. I.; Gorchakov, K. M.; Grigoryev, V. N.; Gudkov, B. A.; Davydov, A. V.; Deichuli, O. I.; Dementyev, E. N.; Dovzhenko, B. A.; Dubrovin, A. N.; Evtushenko, Yu. A.; Zagorodnikov, E. I.; Zaigraeva, N. S.; Zakutov, E. M.; Erokhin, A. I.; Kayran, D. A.; Kiselev, O. B.; Knyazev, B. A.; Kozak, V. R.; Kolmogorov, V. V.; Kolobanov, E. I.; Kondakov, A. A.; Kondakova, N. L.; Krutikhin, S. A.; Kryuchkov, A. M.; Kubarev, V. V.; Kulipanov, G. N.; Kuper, E. A.; Kuptsov, I. V.; Kurkin, G. Ya.; Labutskaya, E. A.; Leontyevskaya, L. G.; Loskutov, V. Yu.; Matveenko, A. N.; Medvedev, L. E.; Medvedko, A. S.; Miginsky, S. V.; Mironenko, L. A.; Motygin, S. V.; Oreshkov, A. D.; Ovchar, V. K.; Osipov, V. N.; Persov, B. Z.; Petrov, S. P.; Petrov, V. M.; Pilan, A. M.; Poletaev, I. V.; Polyanskiy, A. V.; Popik, V. M.; Popov, A. M.; Rotov, E. A.; Salikova, T. V.; Sedliarov, I. K.; Selivanov, P. A.; Serednyakov, S. S.; Skrinsky, A. N.; Tararyshkin, S. V.; Timoshina, L. A.; Tribendis, A. G.; Kholopov, M. A.; Cherepanov, V. P.; Shevchenko, O. A.; Shteinke, A. R.; Shubin, E. I.; Scheglov, M. A.

    2004-08-01

    The first lasing near wavelength 140 μm was achieved in April 2003 on a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper, we briefly describe the design of FEL driven by an accelerator-recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained at the first experiments, are also presented in the paper.

  1. 3-D numerical analysis of a high-gain free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.

    1988-10-19

    We present a novel approach to the 3-dimensional high-gain free- electron laser amplifier problem. The method allows us to write the laser field as an integral equation which can be efficiently and accurately evaluated on a small computer. The model is general enough to allow the inclusion of various initial electron beam distributions to study the gain reduction mechanism and its dependence on the physical parameters. 16 refs., 8 figs., 1 tab.

  2. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  3. About a family of C2 splines with one free generating function

    Directory of Open Access Journals (Sweden)

    Igor Verlan

    2005-01-01

    Full Text Available The problem of interpolation of discrete set of data on the interval [a, b] representing the function f is investigated. A family of C*C splines with one free generating function is introduced in order to solve this problem. Cubic C*C splines belong to this family. The required conditions which must satisfy the generating function in order to obtain explicit interpolants are presented and examples of generating functions are given. Mathematics Subject Classification: 2000: 65D05, 65D07, 41A05, 41A15.

  4. The next generation of electron cyclotron emission imaging diagnostics (invited)

    NARCIS (Netherlands)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  5. The next generation of electron cyclotron emission imaging diagnostics (invited)

    NARCIS (Netherlands)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  6. Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process

    Directory of Open Access Journals (Sweden)

    Yuxi Miao

    2016-08-01

    Full Text Available The free-piston gasoline engine linear generator (FPGLG is a new kind of power plant consisting of free-piston gasoline engines and a linear generator. Due to the elimination of the crankshaft mechanism, the piston motion process and the combustion heat release process affect each other significantly. In this paper, the combustion characteristics during the stable generating process of a FPGLG were presented using a numerical iteration method, which coupled a zero-dimensional piston dynamic model and a three-dimensional scavenging model with the combustion process simulation. The results indicated that, compared to the conventional engine (CE, the heat release process of the FPGLG lasted longer with a lower peak heat release rate. The indicated thermal efficiency of the engine was lower because less heat was released around the piston top dead centre (TDC. Very minimal difference was observed on the ignition delay duration between the FPGLG and the CE, while the post-combustion period of the FPGLG was significantly longer than that of the CE. Meanwhile, the FPGLG was found to operate more moderately due to lower peak in-cylinder gas pressure and a lower pressure rising rate. The potential advantage of the FPGLG in lower NOx emission was also proven with the simulation results presented in this paper.

  7. Sub-femtosecond absolute jitter microwaves generation from free-running mode-locked Er-fiber lasers

    CERN Document Server

    Jung, Kwangyun; Kim, Jungwon

    2013-01-01

    We demonstrate 10-GHz microwave signal generation from a free-running mode-locked Er-fiber laser with 1.5 fs absolute rms timing jitter integrated from 1 kHz to 5 GHz (Nyquist frequency) offset frequency. In the 10 kHz - 10 MHz integration bandwidth typically used for microwave generators, the rms integrated jitter is 0.49 fs. The Er-fiber laser is operated in the stretched-pulse regime at close-to-zero dispersion to minimize the intrinsic phase noise from the laser. In order to mitigate the excess phase noise in the optical-to-electronic conversion process, we synchronize a low-noise voltage-controlled oscillator to the fiber laser using a fiber Sagnac-loop-based optical-microwave phase detector. This result shows that one can generate sub-femtosecond-level jitter microwave signals from free-running mode-locked fiber lasers and commercially available dielectric resonator oscillators without stabilized optical references.

  8. Study of energy delivery and mean free path of low energy electrons in EUV resists

    Science.gov (United States)

    Bhattarai, Suchit; Neureuther, Andrew R.; Naulleau, Patrick P.

    2016-03-01

    The relative importance of secondary electrons in delivering energy in photoresist films was assessed by performing large area exposures and by quantifying the inelastic mean free path of electrons in a leading chemically amplified positive tone EUV resist. A low energy electron microscope was used to directly pattern large (~15μm x 20μm) features with 15-80 eV electrons followed by analyzing the resulting dissolution rate contrast curve data. In the 40 to 80 eV regime the energy delivery was found to scale roughly proportionally with electron energy. In 15 to 30 eV regime however, this energy scaling did not explain the resist thickness loss data. The dose required to lower the resist thickness down to 20 nm was found to be 2-5X larger for 15 eV electrons than for 20, 25 and 30 eV electrons. Using scattering models from the literature including phonon scattering and optical data deduced electron energy loss spectroscopy and optical reflectometry, the inelastic mean free path values at energies between 10 eV and 92 eV range between about 2.8 and 0.6 nm respectively.

  9. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  10. Numerical Simulation of a Spark Ignited Two-Stroke Free-Piston Engine Generator

    Institute of Scientific and Technical Information of China (English)

    MAO Jin-long; ZUO Zheng-xing; LIU Dong

    2009-01-01

    A numerical program is built to simulate the performance of a spark ignited two-stroke free-piston engine coupled with a linear generator. The computational model combines a series of dynamic and thermodynamic equations that are solved simultaneously to predict the performances of the engines. The dynamic analysis performed consists of an evaluation of the frictional force and load force introduced by the generator. The thermodynamic analysis used a single zone model to describe the engine's working cycle which includes intake, scavenging, compression, combustion and expansion, and to evaluate the effect of heat transfer based on the first law of thermodynamics and the ideal gas state equation. Because there is no crankshaft, a time based Wiebe equation was used to express the fraction of fuel burned in the combustion. The calculated results were validated by using the experimental data from another research group. The results indicate that the free-piston generator has some advantages over conventional engines.

  11. The EIS beamline at the seeded free-electron laser FERMI

    Science.gov (United States)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Raimondi, L.; Manfredda, M.; Mahne, N.; Gobessi, R.; Gerusina, S.; Fava, C.; Zangrando, M.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Masciovecchio, C.

    2017-05-01

    Among the fourth-generation light sources, the Italian free-electron laser (FEL) FERMI is the only one operating in the high-gain harmonic generation (HGHG) seeding mode. FERMI delivers pulses characterized by a quasi transform limited temporal structure, photon energies lying in the extreme ultra-violet (EUV) region, supreme transversal and longitudinal coherences, high peak brilliance, and full control of the polarization. Such state of the art performances recently opened the doors to a new class of time-resolved spectroscopies, difficult or even impossible to be performed using self-amplified spontaneous sources (SASE) light sources. FERMI is currently equipped with three operating beamlines opened to external users (DiProI, LDM and EIS), while two more are under commissioning (MagneDYN and TeraFERMI). Here, we present the recent highlights of the EIS (Elastic and Inelastic Scattering) beamline, which has been purposely designed to take full advantage from the coherence, the intensity, the harmonics content, and the temporal duration of the pulses. EIS is a flexible experimental facility for time-resolved EUV scattering experiments on condensed matter systems, consisting of two independent end-stations. The first one (EIS-TIMEX) aims to study materials in metastable and warm dense matter (WDM) conditions, while the second end-station (EIS-TIMER) is fully oriented to the extension of four-wave mixing (FWM) spectroscopies towards the EUV spectral regions, trying to reveal the behavior of matter in portions of the mesoscopic regime of exchanged momentum impossible to be probed using conventional light sources.

  12. Electronic-generated holograms by FPGA and monochromatic LCD

    Science.gov (United States)

    Castillo-Atoche, A.; Pérez-Cortés, M.; López, M. A.; Ortiz-Gutiérrez, M.

    2006-02-01

    The majority of holograms are made using interference of light and computer-generated holograms. In this work we propose a technique in real time to generate digital holograms with a VLSI digital component, being specific FPGA and a liquid crystal device. The digital design with FPGA presents great advantage for its parallel procesing that carry out by its flexible structure, high integration and velocity. The design was verified using the platform MathLab/Simulink and Xilinx System Generator.

  13. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  14. Electron beam generated whistler emissions in a laboratory plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  15. Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred E-mail: manfred.thumm@ihm.fzk.de

    2002-05-01

    The possible applications of high-power millimeter (mm) and sub-mm waves from free-electron masers (FEMs) and gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power mm waves generated by long pulse or continuous wave (CW) gyrotron oscillators and short pulse very high-power FEMs in the areas of RF-plasma production, heating, non-inductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as electron cyclotron resonance heating (28-170 GHz), electron cyclotron current drive , collective Thomson scattering , microwave transmission and heat-wave propagation experiments. Continuously frequency tunable FEMs could widen these fields of applications. Another important application of CW gyrotrons is industrial materials processing, e.g. sintering of high-performance functional and structural nanostructured ceramics. Sub-mm wave sources are employed in high-frequency broadband electron paramagnetic resonance and other types of spectroscopy. Future applications which await the development of novel high-power FEM amplifiers and gyro-amplifiers include high-resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of these recent applications of gyro-devices and FEMs and compares their specific advantages.

  16. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  17. Quantum confinement in perovskite oxide heterostructures: Tight binding instead of a nearly free electron picture

    OpenAIRE

    Zhong, Zhicheng; Zhang, Qinfang; Held, Karsten

    2013-01-01

    Most recently, orbital-selective quantum well states of $d$ electrons have been experimentally observed in SrVO$_3$ ultrathin films [K. Yoshimatsu et. al., Science 333, 319 (2011)] and SrTiO$_3$ surfaces [A. F. Santander-Syro et. al., Nature 469, 189 (2011)]. Hitherto, one tries to explain these experiments by a nearly free electron (NFE) model, an approach widely used for delocalized electrons in semiconductor heterostructures and simple metal films. We show that a tight binding (TB) model i...

  18. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    Science.gov (United States)

    Ding, Y.; Bane, K. L. F.; Colocho, W.; Decker, F.-J.; Emma, P.; Frisch, J.; Guetg, M. W.; Huang, Z.; Iverson, R.; Krzywinski, J.; Loos, H.; Lutman, A.; Maxwell, T. J.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; Zhou, F.

    2016-10-01

    A new operating mode has been developed for the Linac Coherent Light Source (LCLS) in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. We present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  19. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Leth, Henriette Astrup

    2011-01-01

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation...... of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O2 is studied as an example, and good...

  20. Gain enhancement in a two-frequency high-gain waveguide free-electron laser

    CERN Document Server

    Lefèvre, T; Rullier, J L; Gouard, P; Donohue, J T

    2002-01-01

    In a waveguide monomode free-electron laser (FEL), two resonant frequencies can be amplified by the electron beam. At the CEA/CESTA facility, single-pass high-gain FEL experiments have been performed over the last five years using relativistic electron beams provided by induction linacs. Most of the work was done in the amplifier regime (at the higher frequency) with the aim of producing a 35 GHz bunched beam. However, super-radiant measurements were also made and have shown that the FEL gain at the upper frequency is higher than in the amplifier regime and may be driven by the lower frequency FEL interaction.

  1. Improved performance of the JAERI injection and free electron laser system

    CERN Document Server

    Nishimori, N; Hajima, R; Shizuma, T; Sawamura, M; Kikuzawa, N; Minehara, E J

    2000-01-01

    Several modifications have been made for the JAERI Free Electron Laser (FEL) system in order to extract greater average lasing power. The electron gun was improved to produce an electron beam with 1 ns pulse width, 600 mA peak current, amplitude fluctuation less than 1% and timing jitter less than 0.1 ns. In addition, the 180 deg. bending arc was modified to match the beam envelope inside the undulator. After these modifications, we obtained an FEL power of 180 W in macro-pulse average at wavelength of 23 mu m.

  2. CMOS technology: a critical enabler for free-form electronics-based killer applications

    KAUST Repository

    Hussain, Muhammad Mustafa

    2016-05-17

    Complementary metal oxide semiconductor (CMOS) technology offers batch manufacturability by ultra-large-scaleintegration (ULSI) of high performance electronics with a performance/cost advantage and profound reliability. However, as of today their focus has been on rigid and bulky thin film based materials. Their applications have been limited to computation, communication, display and vehicular electronics. With the upcoming surge of Internet of Everything, we have critical opportunity to expand the world of electronics by bridging between CMOS technology and free form electronics which can be used as wearable, implantable and embedded form. The asymmetry of shape and softness of surface (skins) in natural living objects including human, other species, plants make them incompatible with the presently available uniformly shaped and rigidly structured today’s CMOS electronics. But if we can break this barrier then we can use the physically free form electronics for applications like plant monitoring for expansion of agricultural productivity and quality, we can find monitoring and treatment focused consumer healthcare electronics – and many more creative applications. In our view, the fundamental challenge is to engage the mass users to materialize their creative ideas. Present form of electronics are too complex to understand, to work with and to use. By deploying game changing additive manufacturing, low-cost raw materials, transfer printing along with CMOS technology, we can potentially stick high quality CMOS electronics on any existing objects and embed such electronics into any future objects that will be made. The end goal is to make them smart to augment the quality of our life. We use a particular example on implantable electronics (brain machine interface) and its integration strategy enabled by CMOS device design and technology run path. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is

  3. CMOS technology: a critical enabler for free-form electronics-based killer applications

    Science.gov (United States)

    Hussain, Muhammad M.; Hussain, Aftab M.; Hanna, Amir

    2016-05-01

    Complementary metal oxide semiconductor (CMOS) technology offers batch manufacturability by ultra-large-scaleintegration (ULSI) of high performance electronics with a performance/cost advantage and profound reliability. However, as of today their focus has been on rigid and bulky thin film based materials. Their applications have been limited to computation, communication, display and vehicular electronics. With the upcoming surge of Internet of Everything, we have critical opportunity to expand the world of electronics by bridging between CMOS technology and free form electronics which can be used as wearable, implantable and embedded form. The asymmetry of shape and softness of surface (skins) in natural living objects including human, other species, plants make them incompatible with the presently available uniformly shaped and rigidly structured today's CMOS electronics. But if we can break this barrier then we can use the physically free form electronics for applications like plant monitoring for expansion of agricultural productivity and quality, we can find monitoring and treatment focused consumer healthcare electronics - and many more creative applications. In our view, the fundamental challenge is to engage the mass users to materialize their creative ideas. Present form of electronics are too complex to understand, to work with and to use. By deploying game changing additive manufacturing, low-cost raw materials, transfer printing along with CMOS technology, we can potentially stick high quality CMOS electronics on any existing objects and embed such electronics into any future objects that will be made. The end goal is to make them smart to augment the quality of our life. We use a particular example on implantable electronics (brain machine interface) and its integration strategy enabled by CMOS device design and technology run path.

  4. Second Generation Low Cost Cryocooler Electronics (LCCE-2) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The LCCE-2 Program builds off the successes of the USAF "Low Cost Cryocooler Electronics for Space Missions" Program, extending the performance of the developed LCCE...

  5. Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection

    Science.gov (United States)

    DuBois, Ami M.; Almagri, Abdulgader F.; Anderson, Jay K.; Den Hartog, Daniel J.; Lee, John David; Sarff, John S.

    2017-02-01

    The first experimental evidence of anisotropic electron energization during magnetic reconnection that favors a direction perpendicular to the guide magnetic field in a toroidal, magnetically confined plasma is reported in this Letter. Magnetic reconnection plays an important role in particle heating, energization, and transport in space and laboratory plasmas. In toroidal devices like the Madison Symmetric Torus, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field. Fast x-ray measurements imply a non-Maxwellian, anisotropic energetic electron tail is formed at the time of reconnection. The tail is well described by a power-law energy dependence. The expected bremsstrahlung from an electron distribution with an anisotropic energetic tail (v⊥>v∥ ) spatially localized in the core region is consistent with x-ray emission measurements. A turbulent process related to tearing fluctuations is the most likely cause for the energetic electron tail formation.

  6. Second Generation Low Cost Cryocooler Electronics (LCCE-2) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The LCCE-2 Program builds off the successes of the USAF "Low Cost Cryocooler Electronics for Space Missions" Program, extending the performance of the developed LCCE...

  7. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    Science.gov (United States)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  8. Fireworks in noble gas clusters a first experiment with the new "free-electron laser"

    CERN Multimedia

    2002-01-01

    An international group of scientists has published first experiments carried out using the new soft X-ray free-electron laser (FEL) at the research center DESY in Hamburg, Germany. Using small clusters of noble gas atoms, for the first time, researchers studied the interaction of matter with intense X-ray radiation from an FEL on extremely short time scales (1 page).

  9. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (<100 fs) and intense (similar to 10(12) photons) pulses of hard X-rays, making them excellent sources for time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring hi...

  10. Status and research objectives of the Dutch free electron laser for infrared experiments

    Science.gov (United States)

    Van Amersfoort, P. W.; Best, R. W. B.; Van Buuren, R.; Delmee, P. F. M.; Faatz, B.; Van Der Geer, C. A. J.; Jaroszynski, D. A.; Manintveld, P.; Mastop, W. J.; Meddens, B. J. H.; Van Der Meer, A. F. G.; Oepts, D.; Pluygers, J.; Van Der Wiel, M. J.

    1990-10-01

    We review the status and research objectives of the free electron laser for infrared experiments (FELIX), which will be operated as a users facility for the far-infrared and submillimeter spectral regions. The spectral region between 8 and 80 μm will be covered in the first stage of the project.

  11. Status of the high power free electron laser using the race-track microtron-recuperator

    Science.gov (United States)

    Vinokurov, N. A.; Gavrilov, N. G.; Gorniker, E. I.; Kulipanov, G. N.; Kuptsov, I. V.; Kurkin, G. Ya.; Erg, G. I.; Levashov, Yu. I.; Oreshkov, A. D.; Petrov, S. P.; Petrov, V. M.; Pinayev, I. V.; Popik, V. M.; Sedlyarov, I. K.; Shaftan, T. V.; Skrinsky, A. N.; Sokolov, A. S.; Veshcherevich, V. G.; Vobly, P. D.

    1996-02-01

    The high power infrared free electron laser is under construction at the Novosibirsk Scientific Centre. The goal of this project is to provide a user facility for Siberian Centre of Photochemical Researches. The features of the installation and its status are described.

  12. Multi-dimensional free-electron laser simulation codes: a comparison study

    CERN Document Server

    Biedron, S G; Dejus, Roger J; Faatz, B; Freund, H P; Milton, S V; Nuhn, H D; Reiche, S

    2000-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  13. Three-dimensional, time-dependent simulation of a regenerative amplifier free-electron laser

    NARCIS (Netherlands)

    Freund, H.P.; Nguyen, D.C.; Sprangle, P.; Slot, van der P.J.M.

    2013-01-01

    Free-electron lasers have been designed to operate over virtually the entire electromagnetic spectrum from microwaves through x rays and in a variety of configurations including amplifiers and oscillators. Oscillators typically operate in the low-gain regime where the full spectral width is ð !=!Þ

  14. High energy gain of trapped electrons in a tapered, diffraction-dominated inverse-free-electron laser.

    Science.gov (United States)

    Musumeci, P; Tochitsky, S Ya; Boucher, S; Clayton, C E; Doyuran, A; England, R J; Joshi, C; Pellegrini, C; Ralph, J E; Rosenzweig, J B; Sung, C; Tolmachev, S; Travish, G; Varfolomeev, A A; Varfolomeev, A A; Yarovoi, T; Yoder, R B

    2005-04-22

    Energy gain of trapped electrons in excess of 20 MeV has been demonstrated in an inverse-free-electron-laser (IFEL) accelerator experiment. A 14.5 MeV electron beam is copropagated with a 400 GW CO2 laser beam in a 50 cm long undulator strongly tapered in period and field amplitude. The Rayleigh range of the laser, approximately 1.8 cm, is much shorter than the undulator length yielding a diffraction-dominated interaction. Experimental results on the dependence of the acceleration on injection energy, laser focus position, and laser power are discussed. Simulations, in good agreement with the experimental data, show that most of the energy gain occurs in the first half of the undulator at a gradient of 70 MeV/m and that the structure in the measured energy spectrum arises because of higher harmonic IFEL interaction in the second half of the undulator.

  15. Melatonin directly scavenges free radicals generated in red blood cells and a cell-free system: chemiluminescence measurements and theoretical calculations.

    Science.gov (United States)

    Zavodnik, I B; Domanski, A V; Lapshina, E A; Bryszewska, M; Reiter, R J

    2006-06-20

    Melatonin, a pineal secretory product, has properties of both direct and indirect powerful antioxidant. The aim of the present study was to compare the radical-scavenging, structural and electronic properties of melatonin and tryptophan, precursor of melatonin. Using the alkoxyl- and peroxyl radical-generating systems [the organic peroxide-treated human erythrocytes and a cell-free system containing the azo-initiator 2,2'-azobis(2-amidinopropane)dihydrochloride], we evaluated the radical-scavenging effects of melatonin and tryptophan. Melatonin rather than tryptophan at concentrations of 100-2000 microM markedly inhibited membrane lipid peroxidation in human erythrocytes treated with organic hydroperoxide as well as radical-induced generation of luminol-dependent chemiluminescence. The apparent Stern-Volmer constants for inhibition of membrane lipid peroxidation by melatonin and tryptophan were estimated to be (0.23+/-0.05) x 10(4) M(-1) and (0.02+/-0.005) x 10(4) M(-1), respectively. The apparent Stern-Volmer constants for inhibition of azo-initiator-derived peroxyl radical generation by melatonin and tryptophan were determined to be (0.42+/-0.05) x 10(4) M(-1) and (0.04+/-0.01) x 10(4) M(-1), respectively. The structural and electronic properties of melatonin and its precursor, tryptophan, were determined theoretically by performing semi-empirical and ab initio calculations. The high radical-scavenging properties of melatonin may be explained by the high surface area value and high dipole moment value. From the thermodynamic standpoint, based on our calculations, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), was the most stable end oxidative product of melatonin.

  16. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome

    DEFF Research Database (Denmark)

    Galley, H F; Davies, Michael Jonathan; Webster, N R

    1996-01-01

    OBJECTIVE: To determine xanthine oxidase activity, free radical concentrations, and lipid peroxidation in patients with sepsis syndrome compared with noninfected critically ill patients. DESIGN: A prospective observational study. SETTING: A nine-bed intensive care unit in a university teaching......). CONCLUSIONS: Patients with sepsis have xanthine oxidase activation, high free-radical concentrations, and evidence of free radical damage. The finding that xanthine oxidase activity was lower in those patients who died, coupled with increased lactate concentrations implies more severe ischemia with incomplete...... to the Acute Physiology and Chronic Health Evaluation (APACHE) II score or to the presence of organ dysfunction. The mean ascorbyl radical concentration (arbitrary units) determined by electron paramagnetic resonance following spin trapping was increased in patients compared with healthy subjects (p

  17. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission

    Institute of Scientific and Technical Information of China (English)

    S.H.Kim

    2009-01-01

    We find that the electron phase with respect to the incident laser radiation must be random in the first freeelectron laser (FEL) and, hence, the incident laser radiation works as a relaxation force to keep a Maxwellian distribution. We formulate the threshold laser intensity for amplification which agrees with the measured value in the order of magnitude in the first FEL. The magnetic wiggler must produce an electric wiggler whose period is the same as that of the magnetic wiggler. We find that net stimulated free-electron two-quantum Stark (FETQS)emission driven by this electric wiggler is the mechanism responsible t'or the measured ga/n and the measured laser intensity at the plateau in the first FEL.

  18. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    Science.gov (United States)

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-13

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  19. Direct and secondary nuclear excitation with x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gunst, Jonas; Wu, Yuanbin, E-mail: yuanbin.wu@mpi-hd.mpg.de; Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana, E-mail: Palffy@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2015-11-15

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of {sup 93}Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in {sup 57}Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  20. Crystalline phase of Y2O3:Eu particles generated in a substrate-free flame process

    Institute of Scientific and Technical Information of China (English)

    Bing Guo; Hoon Yim; Wonjoong Hwang; Matt Nowell; Zhiping Luo

    2011-01-01

    In this study, factors affecting the crystal structure of flame-synthesized Y2O3:Eu particles were investigated, especially the particle size effect and its interaction with Eu doping concentration. Polydisperse Y2O3:Eu (size range 200nm to 3 μm) powder samples with Eu doping concentrations from 2.5 mol% to 25 mol% were generated in either H2/air or H2/O2 substrate-free flames. The crystal structure of the powder samples was determined by powder X-ray diffraction (XRD),which was complemented by photoluminescence (PL) measurements. Single particle crystal structure was determined by single particle selected area electron diffraction (SAED),and for the first time,by electron backscatter diffraction (EBSD).H2/air flames resulted in cubic phase Y2O3:Eu particles with hollow morphology and irregular shapes.Particles from H2/O2 flames had dense and spherical morphology; samples with lower Eu doping concentrations had mixed cubic/monoclinic phases: samples with the highest Eu doping concentrations were phase-pure monoclinic. For samples generated from H2/O2 flames,a particle size effect and its interaction with Eu doping concentration were found: particles smaller than a critical diameter had the monoclinic phase,and this critical diameter increased with increasing Eu doping concentration. These findings suggest that the formation of monoclinic Y2O3:Eu is inevitable when extremely hot substrate-free flames are used,because typical flame-synthesized Y2O3:Eu particle sizes are well below the critical diameter.However,it may be possible to generate particles with dense,spherical morphology and the desired cubic structure by using a moderately high flame temperature that enables fast sintering without melting the particles.