WorldWideScience

Sample records for generation cosmological parameters

  1. Cosmological Parameters 2000

    OpenAIRE

    Primack, Joel R.

    2000-01-01

    The cosmological parameters that I emphasize are the age of the universe $t_0$, the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\

  2. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  3. Cosmological parameter estimation using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Prasad, J; Souradeep, T

    2014-01-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite

  4. Constraints on cosmological parameters in power-law cosmology

    International Nuclear Information System (INIS)

    Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.

    2015-01-01

    In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on and i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details

  5. Inflation and cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.

    2007-05-15

    In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)

  6. Cluster cosmology with next-generation surveys.

    Science.gov (United States)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3cosmological constraints for the considered next-generation surveys and introduce very preliminary results.

  7. Assumptions of the primordial spectrum and cosmological parameter estimation

    International Nuclear Information System (INIS)

    Shafieloo, Arman; Souradeep, Tarun

    2011-01-01

    The observables of the perturbed universe, cosmic microwave background (CMB) anisotropy and large structures depend on a set of cosmological parameters, as well as the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well-motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best-fit-parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best-fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free-form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS. (paper)

  8. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum

    Science.gov (United States)

    Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; hide

    2011-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),

  9. SCoPE: an efficient method of Cosmological Parameter Estimation

    International Nuclear Information System (INIS)

    Das, Santanu; Souradeep, Tarun

    2014-01-01

    Markov Chain Monte Carlo (MCMC) sampler is widely used for cosmological parameter estimation from CMB and other data. However, due to the intrinsic serial nature of the MCMC sampler, convergence is often very slow. Here we present a fast and independently written Monte Carlo method for cosmological parameter estimation named as Slick Cosmological Parameter Estimator (SCoPE), that employs delayed rejection to increase the acceptance rate of a chain, and pre-fetching that helps an individual chain to run on parallel CPUs. An inter-chain covariance update is also incorporated to prevent clustering of the chains allowing faster and better mixing of the chains. We use an adaptive method for covariance calculation to calculate and update the covariance automatically as the chains progress. Our analysis shows that the acceptance probability of each step in SCoPE is more than 95% and the convergence of the chains are faster. Using SCoPE, we carry out some cosmological parameter estimations with different cosmological models using WMAP-9 and Planck results. One of the current research interests in cosmology is quantifying the nature of dark energy. We analyze the cosmological parameters from two illustrative commonly used parameterisations of dark energy models. We also asses primordial helium fraction in the universe can be constrained by the present CMB data from WMAP-9 and Planck. The results from our MCMC analysis on the one hand helps us to understand the workability of the SCoPE better, on the other hand it provides a completely independent estimation of cosmological parameters from WMAP-9 and Planck data

  10. Planck 2013 results. XVI. Cosmological parameters

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cappellini, B.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chen, X.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Haissinski, J.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T.J.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-10-29

    We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the additi...

  11. Cosmological parameters from SDSS and WMAP

    International Nuclear Information System (INIS)

    Tegmark, Max; Strauss, Michael A.; Bahcall, Neta A.; Schlegel, David; Finkbeiner, Douglas; Gunn, James E.; Ostriker, Jeremiah P.; Seljak, Uros; Ivezic, Zeljko; Knapp, Gillian R.; Lupton, Robert H.; Blanton, Michael R.; Scoccimarro, Roman; Hogg, David W.; Abazajian, Kevork; Xu Yongzhong; Dodelson, Scott; Sandvik, Havard; Wang Xiaomin; Jain, Bhuvnesh

    2004-01-01

    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200 000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with Wilkinson Microwave Anisotropy Probe (WMAP) and other data. Our results are consistent with a 'vanilla' flat adiabatic cold dark matter model with a cosmological constant without tilt (n s =1), running tilt, tensor modes, or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble parameter from h≅0.74 -0.07 +0.18 to h≅0.70 -0.03 +0.04 , on the matter density from Ω m ≅0.25±0.10 to Ω m ≅0.30±0.04 (1σ) and on neutrino masses from 0 ≅16.3 -1.8 +2.3 Gyr to t 0 ≅14.1 -0.9 +1.0 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened

  12. Bias-limited extraction of cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Shimon, Meir; Itzhaki, Nissan; Rephaeli, Yoel, E-mail: meirs@wise.tau.ac.il, E-mail: nitzhaki@post.tau.ac.il, E-mail: yoelr@wise.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-03-01

    It is known that modeling uncertainties and astrophysical foregrounds can potentially introduce appreciable bias in the deduced values of cosmological parameters. While it is commonly assumed that these uncertainties will be accounted for to a sufficient level of precision, the level of bias has not been properly quantified in most cases of interest. We show that the requirement that the bias in derived values of cosmological parameters does not surpass nominal statistical error, translates into a maximal level of overall error O(N{sup −½}) on |ΔP(k)|/P(k) and |ΔC{sub l}|/C{sub l}, where P(k), C{sub l}, and N are the matter power spectrum, angular power spectrum, and number of (independent Fourier) modes at a given scale l or k probed by the cosmological survey, respectively. This required level has important consequences on the precision with which cosmological parameters are hoped to be determined by future surveys: in virtually all ongoing and near future surveys N typically falls in the range 10{sup 6}−10{sup 9}, implying that the required overall theoretical modeling and numerical precision is already very high. Future redshifted-21-cm observations, projected to sample ∼ 10{sup 14} modes, will require knowledge of the matter power spectrum to a fantastic 10{sup −7} precision level. We conclude that realizing the expected potential of future cosmological surveys, which aim at detecting 10{sup 6}−10{sup 14} modes, sets the formidable challenge of reducing the overall level of uncertainty to 10{sup −3}−10{sup −7}.

  13. Cosmological Constraints on Mirror Matter Parameters

    International Nuclear Information System (INIS)

    Wallemacq, Quentin; Ciarcelluti, Paolo

    2014-01-01

    Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter, 0.06≲Ω_m_i_r_r_o_rh"2≲0.12.

  14. Gravitational waves during inflation in presence of a decaying cosmological parameter from a 5D vacuum theory of gravity

    International Nuclear Information System (INIS)

    Gomez Martinez, Silvina Paola; Madriz Aguilar, Jose Edgar; Bellini, Mauricio

    2007-01-01

    We study gravitational waves generated during the inflationary epoch in presence of a decaying cosmological parameter on a 5D geometrical background which is Riemann flat. Two examples are considered, one with a constant cosmological parameter and the second with a decreasing one

  15. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  16. Planck 2015 results. XIII. Cosmological parameters

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Chluba, J.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Farhang, M.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Giusarma, E.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Martin, P.G.; Martinelli, M.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Serra, P.; Shellard, E.P.S.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints fr...

  17. Higgs field and cosmological parameters in the fractal quantum system

    Directory of Open Access Journals (Sweden)

    Abramov Valeriy

    2017-01-01

    Full Text Available For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift; temperature and anisotropy of the cosmic microwave background radiation were performed.

  18. Cosmological Parameters and Hyper-Parameters: The Hubble Constant from Boomerang and Maxima

    Science.gov (United States)

    Lahav, Ofer

    Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalise this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint likelihood function a set of `Hyper-Parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the Hyper-Parameters, is very simple to implement. We illustrate the method by estimating the Hubble constant H0 from different sets of recent CMB experiments (including Saskatoon, Python V, MSAM1, TOCO, Boomerang and Maxima). The approach can be generalised for a combination of cosmic probes, and for other priors on the Hyper-Parameters. Reference: Lahav, Bridle, Hobson, Lasenby & Sodre, 2000, MNRAS, in press (astro-ph/9912105)

  19. Impact of relativistic effects on cosmological parameter estimation

    Science.gov (United States)

    Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.

    2018-01-01

    Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.

  20. Offline analysis in SNLS: measurement of type-Ia supernovae explosion rate and cosmological parameters

    International Nuclear Information System (INIS)

    Lusset, Vincent

    2006-01-01

    The Supernova Legacy Survey is a second generation experiment for the measurement of cosmological parameters using type-la supernovae. Il follows the discovery of the acceleration of the expansion of the Universe, attributed to an unknown 'dark energy'. This thesis presents a type-la supernovae search using an offline analysis of SNLS data. It makes it possible to detect the supernovae that were missed online and to study possible selection biases. One of its principal characteristics is that it uses entirely automatic selection criteria. This type of automated offline analysis had never been carried out before for data reaching this redshift. This analysis enabled us to discover 73 additional SNIa candidates compared to those identified in the real time analysis on the same data, representing an increase of more than 50% of the number of supernovae. The final Hubble diagram contains 262 SNIa which gives us, for a flat ACDM model, the following values for the cosmological parameters: Ω_M = 0,31 ± 0,028 (stat) ± 0,036 (syst) et Ω_A = 0,69. This offline analysis of SNLS data opens new horizons, both by checking for possible biases in current measurements of cosmological parameters by supernovae experiments and by preparing the third generation experiments, on the ground or in space, which will detect thousands of SNIa. (author) [fr

  1. Data-constrained reionization and its effects on cosmological parameters

    International Nuclear Information System (INIS)

    Pandolfi, S.; Ferrara, A.; Choudhury, T. Roy; Mitra, S.; Melchiorri, A.

    2011-01-01

    We perform an analysis of the recent WMAP7 data considering physically motivated and viable reionization scenarios with the aim of assessing their effects on cosmological parameter determinations. The main novelties are: (i) the combination of cosmic microwave background data with astrophysical results from quasar absorption line experiments; (ii) the joint variation of both the cosmological and astrophysical [governing the evolution of the free electron fraction x e (z)] parameters. Including a realistic, data-constrained reionization history in the analysis induces appreciable changes in the cosmological parameter values deduced through a standard WMAP7 analysis. Particularly noteworthy are the variations in Ω b h 2 =0.02258 -0.00056 +0.00057 [WMAP7 (Sudden)] vs Ω b h 2 =0.02183±0.00054[WMAP7+ASTRO (CF)] and the new constraints for the scalar spectral index, for which WMAP7+ASTRO (CF) excludes the Harrison-Zel'dovich value n s =1 at >3σ. Finally, the electron-scattering optical depth value is considerably decreased with respect to the standard WMAP7, i.e. τ e =0.080±0.012. We conclude that the inclusion of astrophysical data sets, allowing to robustly constrain the reionization history, in the extraction procedure of cosmological parameters leads to relatively important differences in the final determination of their values.

  2. Improved constraints on cosmological parameters from SNIa data

    International Nuclear Information System (INIS)

    March, M.C.; Trotta, R.

    2011-02-01

    We present a new method based on a Bayesian hierarchical model to extract constraints on cosmological parameters from SNIa data obtained with the SALT-II lightcurve fitter. We demonstrate with simulated data sets that our method delivers considerably tighter statistical constraints on the cosmological parameters and that it outperforms the usual χ 2 approach 2/3 of the times. As a further benefit, a full posterior probability distribution for the dispersion of the intrinsic magnitude of SNe is obtained. We apply this method to recent SNIa data and find that it improves statistical constraints on cosmological parameters from SNIa data alone by about 40% w.r.t. the standard approach. From the combination of SNIa, CMB and BAO data we obtain Ω m =0.29±0.01, Ω Λ =0.72±0.01 (assuming w=-1) and Ω m =0.28±0.01, w=-0.90±0.04 (assuming flatness; statistical uncertainties only). We constrain the intrinsic dispersion of the B-band magnitude of the SNIa population, obtaining σ μ int =0.13±0.01 [mag]. Applications to systematic uncertainties will be discussed in a forthcoming paper. (orig.)

  3. Improved constraints on cosmological parameters from SNIa data

    Energy Technology Data Exchange (ETDEWEB)

    March, M.C.; Trotta, R. [Imperial College, London (United Kingdom). Astrophysics Group; Berkes, P. [Brandeis Univ., Waltham (United States). Volen Centre for Complex Systems; Starkman, G.D. [Case Western Reserve Univ., Cleveland (United States). CERCA and Dept. of Physics; Vaudrevange, P.M. [Case Western Reserve Univ., Cleveland (United States). CERCA and Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    We present a new method based on a Bayesian hierarchical model to extract constraints on cosmological parameters from SNIa data obtained with the SALT-II lightcurve fitter. We demonstrate with simulated data sets that our method delivers considerably tighter statistical constraints on the cosmological parameters and that it outperforms the usual {chi}{sup 2} approach 2/3 of the times. As a further benefit, a full posterior probability distribution for the dispersion of the intrinsic magnitude of SNe is obtained. We apply this method to recent SNIa data and find that it improves statistical constraints on cosmological parameters from SNIa data alone by about 40% w.r.t. the standard approach. From the combination of SNIa, CMB and BAO data we obtain {omega}{sub m}=0.29{+-}0.01, {omega}{sub {lambda}}=0.72{+-}0.01 (assuming w=-1) and {omega}{sub m}=0.28{+-}0.01, w=-0.90{+-}0.04 (assuming flatness; statistical uncertainties only). We constrain the intrinsic dispersion of the B-band magnitude of the SNIa population, obtaining {sigma}{sub {mu}}{sup int}=0.13{+-}0.01 [mag]. Applications to systematic uncertainties will be discussed in a forthcoming paper. (orig.)

  4. Constraining dynamical neutrino mass generation with cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2017-09-01

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.

  5. Effect of the early reionization on the cosmic microwave background and cosmological parameter estimates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing-Guo; Wang, Ke, E-mail: huangqg@itp.ac.cn, E-mail: wangke@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Zhong Guan Cun East Street 55 #, Beijing 100190 (China)

    2017-07-01

    The early reionization (ERE) is supposed to be a physical process which happens after recombination, but before the instantaneous reionization caused by the first generation of stars. We investigate the effect of the ERE on the temperature and polarization power spectra of cosmic microwave background (CMB), and adopt principal components analysis (PCA) to model-independently reconstruct the ionization history during the ERE. In addition, we also discuss how the ERE affects the cosmological parameter estimates, and find that the ERE does not impose any significant influences on the tensor-to-scalar ratio r and the neutrino mass at the sensitivities of current experiments. The better CMB polarization data can be used to give a tighter constraint on the ERE and might be important for more precisely constraining cosmological parameters in the future.

  6. A small cosmological constant and backreaction of non-finetuned parameters

    International Nuclear Information System (INIS)

    Krause, Axel

    2003-01-01

    We include the backreaction on warped geometry induced by non-finetuned parameters in a two domain-wall set-up to obtain an exponentially small Cosmological Constant Λ4. The mechanism to suppress the Cosmological Constant involves one classical fine-tuning as compared to an infinity of finetunings at the quantum level in standard D = 4 field theory. (author)

  7. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    Science.gov (United States)

    Kim, A. G.

    2011-02-01

    I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.

  8. Learn-as-you-go acceleration of cosmological parameter estimates

    International Nuclear Information System (INIS)

    Aslanyan, Grigor; Easther, Richard; Price, Layne C.

    2015-01-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly

  9. Constraining cosmological parameter with SN Ia

    International Nuclear Information System (INIS)

    Putri, A N Indra; Wulandari, H R Tri

    2016-01-01

    A type I supemovae (SN Ia) is an exploding white dwarf, whose mass exceeds Chandrasekar limit (1.44 solar mass). If a white dwarf is in a binary system, it may accrete matter from the companion, resulting in an excess mass that cannot be balanced by the pressure of degenerated electrons in the core. SNe Ia are highly luminous objects, that they are visible from very high distances. After some corrections (stretch (s), colour (c), K-corrections, etc.), the variations in the light curves of SNe Ia can be suppressed to be no more than 10%. Their high luminosity and almost uniform intrinsic brightness at the peak light, i.e. M B ∼ -19, make SNe Ia ideal standard candle. Because of their visibility from large distances, SNe Ia can be employed as a cosmological measuring tool. It was analysis of SNe Ia data that indicated for the first time, that the universe is not only expanding, but also accelerating. This work analyzed a compilation of SNe Ia data to determine several cosmological parameters (H 0 , Ω m , Ω a , and w ). It can be concluded from the analysis, that our universe is a flat, dark energy dominated universe, and that the cosmological constant A is a suitable candidate for dark energy. (paper)

  10. The Atacama Cosmology Telescope: cosmological parameters from three seasons of data

    International Nuclear Information System (INIS)

    Sievers, Jonathan L.; Appel, John William; Hlozek, Renée A.; Nolta, Michael R.; Battaglia, Nick; Bond, J. Richard; Acquaviva, Viviana; Addison, Graeme E.; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Ade, Peter A. R.; Aguirre, Paula; Barrientos, L. Felipe; Brown, Ben; Calabrese, Erminia; Chervenak, Jay; Crichton, Devin; Das, Sudeep; Devlin, Mark J.

    2013-01-01

    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ℓ 2 C ℓ /2π of the thermal SZ power spectrum at 148 GHz is measured to be 3.4±1.4  μK 2 at ℓ = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6  μK 2 . Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be N eff = 2.79±0.56, in agreement with the canonical value of N eff = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Σm ν < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Y p = 0.225±0.034, and measure no variation in the fine structure constant α since recombination, with α/α 0 = 1.004±0.005. We also find no evidence for any running of the scalar spectral index, dn s /dln k = −0.004±0.012

  11. Cosmological parameter estimation using particle swarm optimization

    Science.gov (United States)

    Prasad, Jayanti; Souradeep, Tarun

    2012-06-01

    Constraining theoretical models, which are represented by a set of parameters, using observational data is an important exercise in cosmology. In Bayesian framework this is done by finding the probability distribution of parameters which best fits to the observational data using sampling based methods like Markov chain Monte Carlo (MCMC). It has been argued that MCMC may not be the best option in certain problems in which the target function (likelihood) poses local maxima or have very high dimensionality. Apart from this, there may be examples in which we are mainly interested to find the point in the parameter space at which the probability distribution has the largest value. In this situation the problem of parameter estimation becomes an optimization problem. In the present work we show that particle swarm optimization (PSO), which is an artificial intelligence inspired population based search procedure, can also be used for cosmological parameter estimation. Using PSO we were able to recover the best-fit Λ cold dark matter (LCDM) model parameters from the WMAP seven year data without using any prior guess value or any other property of the probability distribution of parameters like standard deviation, as is common in MCMC. We also report the results of an exercise in which we consider a binned primordial power spectrum (to increase the dimensionality of problem) and find that a power spectrum with features gives lower chi square than the standard power law. Since PSO does not sample the likelihood surface in a fair way, we follow a fitting procedure to find the spread of likelihood function around the best-fit point.

  12. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  13. The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data

    Science.gov (United States)

    Seivers, Jonathan L.; Hlozek, Renee A.; Nolta, Michael R.; Acquaviva, Viviana; Addison, Graeme E.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; hide

    2013-01-01

    We present constraints on cosmological and astrophysical parameters from highresolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power l(sup 2)C(sub l)/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +/- 1.4 micro-K(sup 2) at l = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 micro-K(sup 2). Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be N(sub eff) = 2.79 +/- 0.56, in agreement with the canonical value of N(sub eff) = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be sigma(m?) is less than 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Y(sub p) = 0.225 +/- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha(sub 0) = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, derivative(n(sub s))/derivative(ln k) = -0.004 +/- 0.012.

  14. On estimating cosmology-dependent covariance matrices

    International Nuclear Information System (INIS)

    Morrison, Christopher B.; Schneider, Michael D.

    2013-01-01

    We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys

  15. Cosmological parameters from CMB and other data: A Monte Carlo approach

    International Nuclear Information System (INIS)

    Lewis, Antony; Bridle, Sarah

    2002-01-01

    We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent cosmic microwave background (CMB) experiments and provide parameter constraints, including σ 8 , from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m ν < or approx. 3 eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendixes we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters

  16. Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M D; Cole, S; Frenk, C S; Szapudi, I

    2011-02-14

    We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a power spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.

  17. Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope

    Science.gov (United States)

    Cai, Rong-Gen; Yang, Tao

    2017-02-01

    We investigate the constraint ability of the gravitational wave (GW) as the standard siren on the cosmological parameters by using the third-generation gravitational wave detector: the Einstein Telescope. The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a short and intense burst of γ rays; some fraction of those binary mergers could be detected both through electromagnetic radiation and gravitational waves. Thus we can determine both the luminosity distance and redshift of the source separately. We simulate the luminosity distances and redshift measurements from 100 to 1000 GW events. We use two different algorithms to constrain the cosmological parameters. For the Hubble constant H0 and dark matter density parameter Ωm, we adopt the Markov chain Monte Carlo approach. We find that with about 500-600 GW events we can constrain the Hubble constant with an accuracy comparable to Planck temperature data and Planck lensing combined results, while for the dark matter density, GWs alone seem not able to provide the constraints as good as for the Hubble constant; the sensitivity of 1000 GW events is a little lower than that of Planck data. It should require more than 1000 events to match the Planck sensitivity. Yet, for analyzing the more complex dynamical property of dark energy, i.e., the equation of state w , we adopt a new powerful nonparametric method: the Gaussian process. We can reconstruct w directly from the observational luminosity distance at every redshift. In the low redshift region, we find that about 700 GW events can give the constraints of w (z ) comparable to the constraints of a constant w by Planck data with type-Ia supernovae. Those results show that GWs as the standard sirens to probe the cosmological parameters can provide an independent and complementary alternative to current experiments.

  18. Testing general relativity at cosmological scales: Implementation and parameter correlations

    International Nuclear Information System (INIS)

    Dossett, Jason N.; Ishak, Mustapha; Moldenhauer, Jacob

    2011-01-01

    The testing of general relativity at cosmological scales has become a possible and timely endeavor that is not only motivated by the pressing question of cosmic acceleration but also by the proposals of some extensions to general relativity that would manifest themselves at large scales of distance. We analyze here correlations between modified gravity growth parameters and some core cosmological parameters using the latest cosmological data sets including the refined Cosmic Evolution Survey 3D weak lensing. We provide the parametrized modified growth equations and their evolution. We implement known functional and binning approaches, and propose a new hybrid approach to evolve the modified gravity parameters in redshift (time) and scale. The hybrid parametrization combines a binned redshift dependence and a smooth evolution in scale avoiding a jump in the matter power spectrum. The formalism developed to test the consistency of current and future data with general relativity is implemented in a package that we make publicly available and call ISiTGR (Integrated Software in Testing General Relativity), an integrated set of modified modules for the publicly available packages CosmoMC and CAMB, including a modified version of the integrated Sachs-Wolfe-galaxy cross correlation module of Ho et al. and a new weak-lensing likelihood module for the refined Hubble Space Telescope Cosmic Evolution Survey weak gravitational lensing tomography data. We obtain parameter constraints and correlation coefficients finding that modified gravity parameters are significantly correlated with σ 8 and mildly correlated with Ω m , for all evolution methods. The degeneracies between σ 8 and modified gravity parameters are found to be substantial for the functional form and also for some specific bins in the hybrid and binned methods indicating that these degeneracies will need to be taken into consideration when using future high precision data.

  19. Cosmological-model-parameter determination from satellite-acquired type Ia and IIP Supernova Data

    International Nuclear Information System (INIS)

    Podariu, Silviu; Nugent, Peter; Ratra, Bharat

    2000-01-01

    We examine the constraints that satellite-acquired Type Ia and IIP supernova apparent magnitude versus redshift data will place on cosmological model parameters in models with and without a constant or time-variable cosmological constant lambda. High-quality data which could be acquired in the near future will result in tight constraints on these parameters. For example, if all other parameters of a spatially-flat model with a constant lambda are known, the supernova data should constrain the non-relativistic matter density parameter omega to better than 1 (2, 0.5) at 1 sigma with neutral (worst case, best case) assumptions about data quality

  20. The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Thibaut [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Grace, Emily; Aiola, Simone; Choi, Steve K. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Hasselfield, Matthew [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lungu, Marius; Angile, Elio [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Maurin, Loïc [Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Addison, Graeme E. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales, CF24 3AA (United Kingdom); Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Battaglia, Nicholas [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bond, J Richard, E-mail: louis@iap.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); and others

    2017-06-01

    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013–14 using two detector arrays at 149 GHz, from 548 deg{sup 2} of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008–10, in combination with planck and wmap data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol data provide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  1. The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Science.gov (United States)

    Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Addison, Graeme E.; Adem Peter A. R.; Aiola, Simone; Allison, Rupert; Amiri, Mandana; hide

    2017-01-01

    We present the temperature and polarization angular power spectra measuredby the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time datacollected during 2013-14 using two detector arrays at 149 GHz, from 548 deg(exp. 2) of sky onthe celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the CDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol dataprovide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  2. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    International Nuclear Information System (INIS)

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K.

    2013-01-01

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N par . One of the main goals of the present paper is to determine how large N par can be, while still maintaining reasonable computational efficiency; we find that N par = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme

  3. Stochastic evolution of cosmological parameters in the early universe

    Indian Academy of Sciences (India)

    We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early ...

  4. Cosmology

    International Nuclear Information System (INIS)

    Novikov, I.D.

    1979-01-01

    Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)

  5. Cosmological evolution as squeezing: a toy model for group field cosmology

    Science.gov (United States)

    Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang

    2018-05-01

    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.

  6. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  7. Impact of Uncertainties in the Cosmological Parameters on the Measurement of Primordial non-Gaussianity

    CERN Document Server

    Liguori, M

    2008-01-01

    We study the impact of cosmological parameters' uncertainties on estimates of the primordial NG parameter f_NL in local and equilateral models of non-Gaussianity. We show that propagating these errors increases the f_NL relative uncertainty by 16% for WMAP and 5 % for Planck in the local case, whereas for equilateral configurations the correction term are 14% and 4%, respectively. If we assume for local f_NL a central value of order 60, according to recent WMAP 5-years estimates, we obtain for Planck a final correction \\Delta f_NL = 3. Although not dramatic, this correction is at the level of the expected estimator uncertainty for Planck, and should then be taken into account when quoting the significance of an eventual future detection. In current estimates of f_NL the cosmological parameters are held fixed at their best-fit values. We finally note that the impact of uncertainties in the cosmological parameters on the final f_NL error bar would become totally negligible if the parameters were allowed to vary...

  8. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2013-11-10

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.

  9. Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters.

    Science.gov (United States)

    Contaldi, Carlo R; Hoekstra, Henk; Lewis, Antony

    2003-06-06

    We use cosmic microwave background (CMB) observations together with the red-sequence cluster survey weak lensing results to derive constraints on a range of cosmological parameters. This particular choice of observations is motivated by their robust physical interpretation and complementarity. Our combined analysis, including a weak nucleosynthesis constraint, yields accurate determinations of a number of parameters including the amplitude of fluctuations sigma(8)=0.89+/-0.05 and matter density Omega(m)=0.30+/-0.03. We also find a value for the Hubble parameter of H(0)=70+/-3 km s(-1) Mpc(-1), in good agreement with the Hubble Space Telescope key-project result. We conclude that the combination of CMB and weak lensing data provides some of the most powerful constraints available in cosmology today.

  10. Integrated Sachs-Wolfe effect versus redshift test for the cosmological parameters

    Science.gov (United States)

    Kantowski, R.; Chen, B.; Dai, X.

    2015-04-01

    We describe a method using the integrated Sachs-Wolfe (ISW) effect caused by individual inhomogeneities to determine the cosmological parameters H0, Ωm , and ΩΛ, etc. This ISW-redshift test requires detailed knowledge of the internal kinematics of a set of individual density perturbations, e.g., galaxy clusters and/or cosmic voids, in particular their density and velocity profiles, and their mass accretion rates. It assumes the density perturbations are isolated and embedded (equivalently compensated) and makes use of the newly found relation between the ISW temperature perturbation of the cosmic microwave background (CMB) and the Fermat potential of the lens. Given measurements of the amplitudes of the temperature variations in the CMB caused by such clusters or voids at various redshifts and estimates of their angular sizes or masses, one can constrain the cosmological parameters. More realistically, the converse is more likely, i.e., if the background cosmology is sufficiently constrained, measurement of ISW profiles of clusters and voids (e.g., hot and cold spots and rings) can constrain dynamical properties of the dark matter, including accretion, associated with such lenses and thus constrain the evolution of these objects with redshift.

  11. DIRECTIONAL DEPENDENCE OF ΛCDM COSMOLOGICAL PARAMETERS

    International Nuclear Information System (INIS)

    Axelsson, M.; Fantaye, Y.; Hansen, F. K.; Eriksen, H. K.; Banday, A. J.; Gorski, K. M.

    2013-01-01

    We study hemispherical power asymmetry in the Wilkinson Microwave Anisotropy Probe 9 yr data. We analyze the combined V- and W-band sky maps, after application of the KQ85 mask, and find that the asymmetry is statistically significant at the 3.4σ confidence level for l = 2-600, where the data are signal-dominated, with a preferred asymmetry direction (l, b) = (227, –27). Individual asymmetry axes estimated from six independent multipole ranges are all consistent with this direction. Subsequently, we estimate cosmological parameters on different parts of the sky and show that the parameters A s , n s , and Ω b are the most sensitive to this power asymmetry. In particular, for the two opposite hemispheres aligned with the preferred asymmetry axis, we find n s = 0.959 ± 0.022 and n s = 0.989 ± 0.024, respectively

  12. Determination of the cosmological parameters and the nature of dark energy

    International Nuclear Information System (INIS)

    Linden, S.

    2010-04-01

    The measured properties of the dark energy component being consistent with a Cosmological Constant, Λ, this cosmological standard model is referred to as the Λ-Cold-Dark-Matter (ΛCDM) model. Despite its overall success, this model suffers from various problems. The existence of a Cosmological Constant raises fundamental questions. Attempts to describe it as the energy contribution from the vacuum as following from Quantum Field Theory failed quantitatively. In consequence, a large number of alternative models have been developed to describe the dark energy component: modified gravity, additional dimensions, Quintessence models. Also, astrophysical effects have been considered to mimic an accelerated expansion. The basics of the ΛCDM model and the various attempts of explaining dark energy are outlined in this thesis. Another major problem of the model comes from the dependencies of the fit results on a number of a priori assumptions and parameterization effects. Today, combined analyses of the various cosmological probes are performed to extract the parameters of the model. Due to a wrong model assumption or a bad parameterization of the real physics, one might end up measuring with high precision something which is not there. We show, that indeed due to the high precision of modern cosmological measurements, purely kinematic approaches to distance measurements no longer yield valid fit results except for accidental special cases, and that a fit of the exact (integral) redshift-distance relation is necessary. The main results of this work concern the use of the CPL parameterization of dark energy when coping with the dynamics of tracker solutions of Quintessence models, and the risk of introducing biases on the parameters due to the possibly prohibited extrapolation to arbitrary high redshifts of the SN type Ia magnitude calibration relation, which is obtained in the low-redshift regime. Whereas the risks of applying CPL shows up to be small for a wide range of

  13. Scalar-tensor cosmology with cosmological constant

    International Nuclear Information System (INIS)

    Maslanka, K.

    1983-01-01

    The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)

  14. Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters

    International Nuclear Information System (INIS)

    Huffenberger, Kevin M.; Seljak, Uros; Makarov, Alexey

    2004-01-01

    We use multifrequency information in first year Wilkinson microwave anisotropy probe (WMAP) data to search for the Sunyaev-Zeldovich (SZ) effect. WMAP has sufficiently broad frequency coverage to constrain the SZ effect without the addition of higher frequency data: the SZ power spectrum amplitude is expected to increase 50% from W to Q frequency band. This, in combination with the low noise in WMAP, allows us to strongly constrain the SZ contribution. We derive an optimal frequency combination of WMAP cross-spectra to extract the SZ effect in the presence of noise, cosmic microwave background (CMB), and radio point sources, which are marginalized over. We find that the SZ contribution is less than 2% (95% C.L.) at the first acoustic peak in W band. Under the assumption that the removed radio point sources are not correlated with the SZ effect this limit implies σ 8 <1.07 at 95% C.L. We investigate the effect on the cosmological parameters of allowing an SZ component. We run Monte Carlo Markov chains with and without an SZ component and find that the addition of the SZ effect does not affect any of the cosmological conclusions. We conclude that the SZ effect does not contaminate the WMAP CMB or change cosmological parameters, refuting the recent claims that they may be corrupted

  15. Measuring Cosmological Parameters with Photometrically Classified Pan-STARRS Supernovae

    Science.gov (United States)

    Jones, David; Scolnic, Daniel; Riess, Adam; Rest, Armin; Kirshner, Robert; Berger, Edo; Kessler, Rick; Pan, Yen-Chen; Foley, Ryan; Chornock, Ryan; Ortega, Carolyn; Challis, Peter; Burgett, William; Chambers, Kenneth; Draper, Peter; Flewelling, Heather; Huber, Mark; Kaiser, Nick; Kudritzki, Rolf; Metcalfe, Nigel; Tonry, John; Wainscoat, Richard J.; Waters, Chris; Gall, E. E. E.; Kotak, Rubina; McCrum, Matt; Smartt, Stephen; Smith, Ken

    2018-01-01

    We use nearly 1,200 supernovae (SNe) from Pan-STARRS and ~200 low-z (z energy equation of state parameter w to be -0.986±0.058 (stat+sys). If we allow w to evolve with redshift as w(a) = w0 + wa(1-a), we find w0 = -0.923±0.148 and wa = -0.404±0.797. These results are consistent with measurements of cosmological parameters from the JLA and from a new analysis of 1049 spectroscopically confirmed SNe Ia (Scolnic et al. 2017). We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling the CC SN contamination, finding that none of these variants gives a w that differs by more than 1% from the baseline measurement. The systematic uncertainty on w due to marginalizing over the CC SN contamination, σwCC = 0.019, is approximately equal to the photometric calibration uncertainty and is lower than the systematic uncertainty in the SN\\,Ia dispersion model (σwdisp = 0.024). Our data provide one of the best current constraints on w, demonstrating that samples with ~5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.

  16. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS

    International Nuclear Information System (INIS)

    Hinshaw, G.; Halpern, M.; Larson, D.; Bennett, C. L.; Weiland, J. L.; Komatsu, E.; Spergel, D. N.; Dunkley, J.; Nolta, M. R.; Hill, R. S.; Odegard, N.; Page, L.; Jarosik, N.; Smith, K. M.; Gold, B.; Kogut, A.; Wollack, E.; Limon, M.; Meyer, S. S.; Tucker, G. S.

    2013-01-01

    We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter ΛCDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities, Ω b h 2 , Ω c h 2 , and Ω Λ , are each determined to a precision of ∼1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5σ level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional ΛCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their ΛCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r k = -0.0027 +0.0039 -0.0038 ; the summed mass of neutrinos is limited to Σm ν eff = 3.84 ± 0.40, when the full data are analyzed. The joint constraint on N eff and the primordial helium abundance, Y He , agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe

  17. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.; Kravtsov, A. V.; Burenin, R. A.; Voevodkin, A.; Ebeling, H.; Hornstrup, A.; Nagai, D.; Quintana, H.

    2009-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with (z) = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ∼ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = -1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = -0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Σm ν M h and σ 8 from the low-redshift cluster mass function.

  18. Duality gives rise to Chaplygin cosmologies with a big rip

    International Nuclear Information System (INIS)

    Chimento, Luis P; Lazkoz, Ruth

    2006-01-01

    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe

  19. Inflationary cosmology from quantum conformal gravity

    International Nuclear Information System (INIS)

    Jizba, Petr; Kleinert, Hagen; Scardigli, Fabio

    2015-01-01

    We analyze the functional integral for quantum conformal gravity and show that, with the help of a Hubbard-Stratonovich transformation, the action can be broken into a local quadratic-curvature theory coupled to a scalar field. A one-loop effective-action calculation reveals that strong fluctuations of the metric field are capable of spontaneously generating a dimensionally transmuted parameter which, in the weak-field sector of the broken phase, induces a Starobinsky-type f(R)-model with a gravi-cosmological constant. A resulting non-trivial relation between Starobinsky's parameter and the gravi-cosmological constant is highlighted and implications for cosmic inflation are briefly discussed and compared with the recent PLANCK and BICEP2 data. (orig.)

  20. Separating the early universe from the late universe: Cosmological parameter estimation beyond the black box

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We present a method for measuring the cosmic matter budget without assumptions about speculative early Universe physics, and for measuring the primordial power spectrum P * (k) nonparametrically, either by combining CMB and LSS information or by using CMB polarization. Our method complements currently fashionable 'black box' cosmological parameter analysis, constraining cosmological models in a more physically intuitive fashion by mapping measurements of CMB, weak lensing and cluster abundance into k space, where they can be directly compared with each other and with galaxy and Lyα forest clustering. Including the new CBI results, we find that CMB measurements of P(k) overlap with those from 2dF galaxy clustering by over an order of magnitude in scale, and even overlap with weak lensing measurements. We describe how our approach can be used to raise the ambition level beyond cosmological parameter fitting as data improves, testing rather than assuming the underlying physics

  1. On the cosmological gravitational waves and cosmological distances

    Science.gov (United States)

    Belinski, V. A.; Vereshchagin, G. V.

    2018-03-01

    We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.

  2. Determination of Cosmological Parameters from GRB Correlation between E_iso (gamma) and Afterglow Flux

    Science.gov (United States)

    Hannachi, Zitouni; Guessoum, Nidhal; Azzam, Walid

    2016-07-01

    Context: We use the correlation relations between the energy emitted by the GRBs in their prompt phases and the X-ray afterglow fluxes, in an effort to constrain cosmological parameters and construct a Hubble diagram at high redshifts, i.e. beyond those found in Type Ia supernovae. Methods: We use a sample of 128 Swift GRBs, which we have selected among more than 800 ones observed until July 2015. The selection is based on a few observational constraints: GRB flux higher than 0.4 photons/cm^2/s in the band 15-150 keV; spectrum fitted with simple power law; redshift accurately known and given; and X-ray afterglow observed and flux measured. The statistical method of maximum likelihood is then used to determine the best cosmological parameters (Ω_M, Ω_L) that give the best correlation between the isotropic gamma energies E_{iso} and the afterglow fluxes at the break time t_{b}. The χ^2 statistical test is also used as a way to compare results from two methods. Results & Conclusions: Although the number of GRBs with high redshifts is rather small, and despite the notable dispersion found in the data, the results we have obtained are quite encouraging and promising. The values of the cosmological parameters obtained here are close to those currently used.

  3. Planck 2015 results: XIII. Cosmological parameters

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.

    2016-01-01

    is constrained to w =-1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints...... of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to â'mν

  4. Big Bang Nucleosynthesis and Cosmological Constraints on Neutrino Oscillation Parameters

    CERN Document Server

    Kirilova, Daniela P; Kirilova, Daniela; Chizhov, Mihail

    2001-01-01

    We present a review of cosmological nucleosynthesis (CN) with neutrino oscillations, discussing the different effects of oscillations on CN, namely: increase of the effective degrees of freedom during CN, spectrum distortion of the oscillating neutrinos, neutrino number density depletion, and growth of neutrino-antineutrino asymmetry due to active-sterile oscillations. We discuss the importance of these effects for the primordial yield of helium-4. Primordially produced He-4 value is obtained in a selfconsistent study of the nucleons and the oscillating neutrinos. The effects of spectrum distortion, depletion and neutrino-antineutrino asymmetry growth on helium-4 production are explicitly calculated. An update of the cosmological constraints on active-sterile neutrino oscillations parameters is presented, giving the values: delta m^2 sin^8 (2 theta) 0, and |delta m^2| < 8.2 x 10^{-10} eV^2 at large mixing angles for delta m^2 < 0. According to these constraints, besides the active-sterile LMA solution,...

  5. Combination and interpretation of observables in Cosmology

    Directory of Open Access Journals (Sweden)

    Virey Jean-Marc

    2010-04-01

    Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but

  6. Evolution of the Brans—Dicke Parameter in Generalized Chameleon Cosmology

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Momeni, D.

    2011-01-01

    Motivated by an earlier study of Sahoo and Singh [Mod. Phys. Lett. A 17 (2002) 2409], we investigate the time dependence of the Brans-Dicke parameter ω(t) for an expanding Universe in the generalized Brans-Dicke Chameleon cosmology, and obtain an explicit dependence of ω(t) in different expansion phases of the Universe. Also, we discuss how the observed accelerated expansion of the observable Universe can be accommodated in the present formalism. (geophysics, astronomy, and astrophysics)

  7. Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters

    Science.gov (United States)

    Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Rest, A.; Kirshner, R. P.; Berger, E.; Kessler, R.; Pan, Y.-C.; Foley, R. J.; Chornock, R.; Ortega, C. A.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Tonry, J.; Wainscoat, R. J.; Waters, C.; Gall, E. E. E.; Kotak, R.; McCrum, M.; Smartt, S. J.; Smith, K. W.

    2018-04-01

    We use 1169 Pan-STARRS supernovae (SNe) and 195 low-z (z used to infer unbiased cosmological parameters by using a Bayesian methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as many SNe as the largest previous SN Ia compilation. Combining SNe with cosmic microwave background (CMB) constraints from Planck, we measure the dark energy equation-of-state parameter w to be ‑0.989 ± 0.057 (stat+sys). If w evolves with redshift as w(a) = w 0 + w a (1 ‑ a), we find w 0 = ‑0.912 ± 0.149 and w a = ‑0.513 ± 0.826. These results are consistent with cosmological parameters from the Joint Light-curve Analysis and the Pantheon sample. We try four different photometric classification priors for Pan-STARRS SNe and two alternate ways of modeling CC SN contamination, finding that no variant gives a w differing by more than 2% from the baseline measurement. The systematic uncertainty on w due to marginalizing over CC SN contamination, {σ }wCC}=0.012, is the third-smallest source of systematic uncertainty in this work. We find limited (1.6σ) evidence for evolution of the SN color-luminosity relation with redshift, a possible systematic that could constitute a significant uncertainty in future high-z analyses. Our data provide one of the best current constraints on w, demonstrating that samples with ∼5% CC SN contamination can give competitive cosmological constraints when the contaminating distribution is marginalized over in a Bayesian framework.

  8. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    Science.gov (United States)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  9. Magnetogenesis in matter—Ekpyrotic bouncing cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Ratna; Samtani, Sidhartha, E-mail: ratna.physics@presiuniv.ac.in, E-mail: samtanisidhartha@gmail.com [Department of Physics, Presidency University, 86/1 College Street, Kolkata, 700073 (India)

    2017-04-01

    In the recent past there have been many attempts to associate the generation of primordial magnetic seed fields with the inflationary era, but with limited success. We thus take a different approach by using a model for nonsingular bouncing cosmology. A coupling of the electromagnetic Lagrangian F {sub μν} F {sup μν} with a non background scalar field has been considered for the breaking of conformal invariance. We have shown that non singular bouncing cosmology supports magnetogenesis evading the long standing back reaction and strong coupling problems which have plagued inflationary magnetogenesis. In this model, we have achieved a scale invariant power spectrum for the parameter range compatible with observed CMB anisotropies. The desired strength of the magnetic field has also been obtained that goes in accordance with present observations. It is also important to note that no BKL instability arises within this parameter range. The energy scales for different stages of evolution of the bouncing model are so chosen that they solve certain problems of standard Big Bang cosmology as well.

  10. FORECASTING COSMOLOGICAL PARAMETER CONSTRAINTS FROM NEAR-FUTURE SPACE-BASED GALAXY SURVEYS

    International Nuclear Information System (INIS)

    Pavlov, Anatoly; Ratra, Bharat; Samushia, Lado

    2012-01-01

    The next generation of space-based galaxy surveys is expected to measure the growth rate of structure to a level of about one percent over a range of redshifts. The rate of growth of structure as a function of redshift depends on the behavior of dark energy and so can be used to constrain parameters of dark energy models. In this work, we investigate how well these future data will be able to constrain the time dependence of the dark energy density. We consider parameterizations of the dark energy equation of state, such as XCDM and ωCDM, as well as a consistent physical model of time-evolving scalar field dark energy, φCDM. We show that if the standard, specially flat cosmological model is taken as a fiducial model of the universe, these near-future measurements of structure growth will be able to constrain the time dependence of scalar field dark energy density to a precision of about 10%, which is almost an order of magnitude better than what can be achieved from a compilation of currently available data sets.

  11. Cosmological evidence for leptonic asymmetry after Planck

    Energy Technology Data Exchange (ETDEWEB)

    Caramete, A.; Popa, L.A., E-mail: acaramete@spacescience.ro, E-mail: lpopa@spacescience.ro [Institute of Space Science, 409 Atomistilor Street, Magurele, Ilfov 077125 (Romania)

    2014-02-01

    Recently, the PLANCK satellite found a larger and most precise value of the matter energy density, that impacts on the present values of other cosmological parameters such as the Hubble constant H{sub 0}, the present cluster abundances S{sub 8}, and the age of the Universe t{sub U}. The existing tension between PLANCK determination of these parameters in the frame of the base ΛCDM model and their determination from other measurements generated lively discussions, one possible interpretation being that some sources of systematic errors in cosmological measurements are not completely understood. An alternative interpretation is related to the fact that the CMB observations, that probe the high redshift Universe are interpreted in terms of cosmological parameters at present time by extrapolation within the base ΛCDM model that can be inadequate or incomplete. In this paper we quantify this tension by exploring several extensions of the base ΛCDM model that include the leptonic asymmetry. We set bounds on the radiation content of the Universe and neutrino properties by using the latest cosmological measurements, imposing also self-consistent BBN constraints on the primordial helium abundance. For all asymmetric cosmological models we find the preference of cosmological data for smaller values of active and sterile neutrino masses. This increases the tension between cosmological and short baseline neutrino oscillation data that favors a sterile neutrino with the mass of around 1 eV. For the case of degenerate massive neutrinos, we find that the discrepancies with the local determinations of H{sub 0}, and t{sub U} are alleviated at ∼ 1.3σ level while S{sub 8} is in agreement with its determination from CFHTLenS survey data at ∼ 1σ and with the prediction of cluster mass-observation relation at ∼ 0.5σ. We also find 2σ statistical preference of the cosmological data for the leptonic asymmetric models involving three massive neutrino species and neutrino direct

  12. BMS in cosmology

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2016-01-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  13. BMS in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-05-25

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  14. Remapping dark matter halo catalogues between cosmological simulations

    Science.gov (United States)

    Mead, A. J.; Peacock, J. A.

    2014-05-01

    We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.

  15. Time variation of the cosmological redshift in Dicke-Brans-Jordan cosmologies

    International Nuclear Information System (INIS)

    Ruediger, R.

    1982-01-01

    In this paper the time variation z of the cosmological redshift z is discussed for Dicke-Brans-Jordan (DBJ) cosmologies. We determine the general z-z relation in the functional form zH -1 0 = F(z; q 0 , sigma 0 ,xi 0 , ω) for small values of z, where all the symbols have their conventional meanings. For certain combinations of cosmological parameters, which are within the present observational limitations, the DBJ terms in the function F can dominate the general relativistic terms. Furthermore, zH -1 0 can be positive in DBJ cosmologies in contrast to general relativistic cosmologies with q 0 >0

  16. Weak lensing cosmology beyond ΛCDM

    International Nuclear Information System (INIS)

    Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de

    2012-01-01

    Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies

  17. Axion cold dark matter in nonstandard cosmologies

    International Nuclear Information System (INIS)

    Visinelli, Luca; Gondolo, Paolo

    2010-01-01

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  18. Cosmological production of noncommutative black holes

    International Nuclear Information System (INIS)

    Mann, Robert B.; Nicolini, Piero

    2011-01-01

    We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.

  19. Exploring cosmic origins with CORE: Cosmological parameters

    Science.gov (United States)

    Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed

  20. Cosmology

    CERN Document Server

    García-Bellido, J

    2015-01-01

    In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.

  1. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  2. Fast optimization algorithms and the cosmological constant

    Science.gov (United States)

    Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad

    2017-11-01

    Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.

  3. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y

    2008-01-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency

  4. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.

    2008-07-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.

  5. Cosmological principle

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution

  6. Wormholes and cosmology

    International Nuclear Information System (INIS)

    Klebanov, I.; Susskind, L.

    1988-10-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs

  7. Regional averaging and scaling in relativistic cosmology

    International Nuclear Information System (INIS)

    Buchert, Thomas; Carfora, Mauro

    2002-01-01

    Averaged inhomogeneous cosmologies lie at the forefront of interest, since cosmological parameters such as the rate of expansion or the mass density are to be considered as volume-averaged quantities and only these can be compared with observations. For this reason the relevant parameters are intrinsically scale-dependent and one wishes to control this dependence without restricting the cosmological model by unphysical assumptions. In the latter respect we contrast our way to approach the averaging problem in relativistic cosmology with shortcomings of averaged Newtonian models. Explicitly, we investigate the scale-dependence of Eulerian volume averages of scalar functions on Riemannian three-manifolds. We propose a complementary view of a Lagrangian smoothing of (tensorial) variables as opposed to their Eulerian averaging on spatial domains. This programme is realized with the help of a global Ricci deformation flow for the metric. We explain rigorously the origin of the Ricci flow which, on heuristic grounds, has already been suggested as a possible candidate for smoothing the initial dataset for cosmological spacetimes. The smoothing of geometry implies a renormalization of averaged spatial variables. We discuss the results in terms of effective cosmological parameters that would be assigned to the smoothed cosmological spacetime. In particular, we find that on the smoothed spatial domain B-bar evaluated cosmological parameters obey Ω-bar B-bar m + Ω-bar B-bar R + Ω-bar B-bar A + Ω-bar B-bar Q 1, where Ω-bar B-bar m , Ω-bar B-bar R and Ω-bar B-bar A correspond to the standard Friedmannian parameters, while Ω-bar B-bar Q is a remnant of cosmic variance of expansion and shear fluctuations on the averaging domain. All these parameters are 'dressed' after smoothing out the geometrical fluctuations, and we give the relations of the 'dressed' to the 'bare' parameters. While the former provide the framework of interpreting observations with a 'Friedmannian bias

  8. Cosmological applications in Kaluza—Klein theory

    International Nuclear Information System (INIS)

    Wanas, M.I.; Nashed, Gamal G. L.; Nowaya, A.A.

    2012-01-01

    The field equations of Kaluza—Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, Λ(t), up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed. (geophysics, astronomy, and astrophysics)

  9. Stability analysis in tachyonic potential chameleon cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-05-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.

  10. Stability analysis in tachyonic potential chameleon cosmology

    International Nuclear Information System (INIS)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.

    2011-01-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations

  11. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zeldovich Effect

    International Nuclear Information System (INIS)

    Sehgal, N.

    2011-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives σ 8 = 0.851 ± 0.115 and w = -1.14 ± 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find σ 8 = 0.821 ± 0.044 and w = -1.05 ± 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give σ 8 = 0.802 ± 0.038 and w = -0.98 ± 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  12. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  13. Constraining cosmological parameters with observational data including weak lensing effects

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong [Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)], E-mail: hongli@mail.ihep.ac.cn; Liu Jie [Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049 (China); Xia Junqing [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Sun Lei; Fan Zuhui [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Tao Charling; Tilquin, Andre [Centre de Physique des Particules de Marseille, CNRS/IN2P3-Luminy and Universite de la Mediterranee, Case 907, F-13288 Marseille Cedex 9 (France); Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2009-05-11

    In this Letter, we study the cosmological implications of the 100 square degree Weak Lensing survey (the CFHTLS-Wide, RCS, VIRMOS-DESCART and GaBoDS surveys). We combine these weak lensing data with the cosmic microwave background (CMB) measurements from the WMAP5, BOOMERanG, CBI, VSA, ACBAR, the SDSS LRG matter power spectrum and the Type Ia Supernoave (SNIa) data with the 'Union' compilation (307 sample), using the Markov Chain Monte Carlo method to determine the cosmological parameters, such as the equation-of-state (EoS) of dark energy w, the density fluctuation amplitude {sigma}{sub 8}, the total neutrino mass {sigma}m{sub {nu}} and the parameters associated with the power spectrum of the primordial fluctuations. Our results show that the {lambda}CDM model remains a good fit to all of these data. In a flat universe, we obtain a tight limit on the constant EoS of dark energy, w=-0.97{+-}0.041 (1{sigma}). For the dynamical dark energy model with time evolving EoS parameterized as w{sub de}(a)=w{sub 0}+w{sub a}(1-a), we find that the best-fit values are w{sub 0}=-1.064 and w{sub a}=0.375, implying the mildly preference of Quintom model whose EoS gets across the cosmological constant boundary during evolution. Regarding the total neutrino mass limit, we obtain the upper limit, {sigma}m{sub {nu}}<0.471 eV (95% C.L.) within the framework of the flat {lambda}CDM model. Due to the obvious degeneracies between the neutrino mass and the EoS of dark energy model, this upper limit will be relaxed by a factor of 2 in the framework of dynamical dark energy models. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, within the {lambda}CDM model, we find that the upper limit on the ratio of the tensor to scalar is r<0.35 (95% C.L.) and the inflationary models with the slope n{sub s}{>=}1 are excluded at more than 2{sigma} confidence level. In this Letter we pay particular attention to the contribution from the weak lensing data and

  14. Markov chain beam randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation

    Science.gov (United States)

    Rocha, G.; Pagano, L.; Górski, K. M.; Huffenberger, K. M.; Lawrence, C. R.; Lange, A. E.

    2010-04-01

    We introduce a new method to propagate uncertainties in the beam shapes used to measure the cosmic microwave background to cosmological parameters determined from those measurements. The method, called markov chain beam randomization (MCBR), randomly samples from a set of templates or functions that describe the beam uncertainties. The method is much faster than direct numerical integration over systematic “nuisance” parameters, and is not restricted to simple, idealized cases as is analytic marginalization. It does not assume the data are normally distributed, and does not require Gaussian priors on the specific systematic uncertainties. We show that MCBR properly accounts for and provides the marginalized errors of the parameters. The method can be generalized and used to propagate any systematic uncertainties for which a set of templates is available. We apply the method to the Planck satellite, and consider future experiments. Beam measurement errors should have a small effect on cosmological parameters as long as the beam fitting is performed after removal of 1/f noise.

  15. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; hide

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  16. Mass generation, the cosmological constant problem, conformal symmetry, and the Higgs boson

    Science.gov (United States)

    Mannheim, Philip D.

    2017-05-01

    In 2013 the Nobel Prize in Physics was awarded to Francois Englert and Peter Higgs for their work in 1964 along with the late Robert Brout on the mass generation mechanism (the Higgs mechanism) in local gauge theories. This mechanism requires the existence of a massive scalar particle, the Higgs boson, and in 2012 the Higgs boson was finally discovered at the Large Hadron Collider after being sought for almost half a century. In this article we review the work that led to the discovery of the Higgs boson and discuss its implications. We approach the topic from the perspective of a dynamically generated Higgs boson that is a fermion-antifermion bound state rather than an elementary field that appears in an input Lagrangian. In particular, we emphasize the connection with the Bardeen-Cooper-Schrieffer theory of superconductivity. We identify the double-well Higgs potential not as a fundamental potential but as a mean-field effective Lagrangian with a dynamical Higgs boson being generated through a residual interaction that accompanies the mean-field Lagrangian. We discuss what we believe to be the key challenge raised by the discovery of the Higgs boson, namely determining whether it is elementary or composite, and through study of a conformal invariant field theory model as realized with critical scaling and anomalous dimensions, suggest that the width of the Higgs boson might serve as a suitable diagnostic for discriminating between an elementary Higgs boson and a composite one. We discuss the implications of Higgs boson mass generation for the cosmological constant problem, as the cosmological constant receives contributions from the very mechanism that generates the Higgs boson mass in the first place. We show that the contribution to the cosmological constant due to a composite Higgs boson is more tractable and under control than the contribution due to an elementary Higgs boson, and is potentially completely under control if there is an underlying conformal

  17. Modified geodetic brane cosmology

    International Nuclear Information System (INIS)

    Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín

    2012-01-01

    We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)

  18. Effects of self-calibration of intrinsic alignment on cosmological parameter constraints from future cosmic shear surveys

    International Nuclear Information System (INIS)

    Yao, Ji; Ishak, Mustapha; Lin, Weikang; Troxel, Michael

    2017-01-01

    Intrinsic alignments (IA) of galaxies have been recognized as one of the most serious contaminants to weak lensing. These systematics need to be isolated and mitigated in order for ongoing and future lensing surveys to reach their full potential. The IA self-calibration (SC) method was shown in previous studies to be able to reduce the GI contamination by up to a factor of 10 for the 2-point and 3-point correlations. The SC method does not require the assumption of an IA model in its working and can extract the GI signal from the same photo-z survey offering the possibility to test and understand structure formation scenarios and their relationship to IA models. In this paper, we study the effects of the IA SC mitigation method on the precision and accuracy of cosmological parameter constraints from future cosmic shear surveys LSST, WFIRST and Euclid. We perform analytical and numerical calculations to estimate the loss of precision and the residual bias in the best fit cosmological parameters after the self-calibration is performed. We take into account uncertainties from photometric redshifts and the galaxy bias. We find that the confidence contours are slightly inflated from applying the SC method itself while a significant increase is due to the inclusion of the photo-z uncertainties. The bias of cosmological parameters is reduced from several-σ, when IA is not corrected for, to below 1-σ after SC is applied. These numbers are comparable to those resulting from applying the method of marginalizing over IA model parameters despite the fact that the two methods operate very differently. We conclude that implementing the SC for these future cosmic-shear surveys will not only allow one to efficiently mitigate the GI contaminant but also help to understand their modeling and link to structure formation.

  19. Effects of self-calibration of intrinsic alignment on cosmological parameter constraints from future cosmic shear surveys

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Ji; Ishak, Mustapha; Lin, Weikang [Department of Physics, The University of Texas at Dallas, Dallas, TX 75080 (United States); Troxel, Michael, E-mail: jxy131230@utdallas.edu, E-mail: mxi054000@utdallas.edu, E-mail: wxl123830@utdallas.edu, E-mail: michael.a.troxel@gmail.com [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)

    2017-10-01

    Intrinsic alignments (IA) of galaxies have been recognized as one of the most serious contaminants to weak lensing. These systematics need to be isolated and mitigated in order for ongoing and future lensing surveys to reach their full potential. The IA self-calibration (SC) method was shown in previous studies to be able to reduce the GI contamination by up to a factor of 10 for the 2-point and 3-point correlations. The SC method does not require the assumption of an IA model in its working and can extract the GI signal from the same photo-z survey offering the possibility to test and understand structure formation scenarios and their relationship to IA models. In this paper, we study the effects of the IA SC mitigation method on the precision and accuracy of cosmological parameter constraints from future cosmic shear surveys LSST, WFIRST and Euclid. We perform analytical and numerical calculations to estimate the loss of precision and the residual bias in the best fit cosmological parameters after the self-calibration is performed. We take into account uncertainties from photometric redshifts and the galaxy bias. We find that the confidence contours are slightly inflated from applying the SC method itself while a significant increase is due to the inclusion of the photo-z uncertainties. The bias of cosmological parameters is reduced from several-σ, when IA is not corrected for, to below 1-σ after SC is applied. These numbers are comparable to those resulting from applying the method of marginalizing over IA model parameters despite the fact that the two methods operate very differently. We conclude that implementing the SC for these future cosmic-shear surveys will not only allow one to efficiently mitigate the GI contaminant but also help to understand their modeling and link to structure formation.

  20. Cosmology and the early universe

    CERN Document Server

    Di Bari, Pasquale

    2018-01-01

    This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students.

  1. Effects of the interaction between dark energy and dark matter on cosmological parameters

    International Nuclear Information System (INIS)

    He, Jian-Hua; Wang, Bin

    2008-01-01

    We examine the effects of possible phenomenological interactions between dark energy and dark matter on cosmological parameters and their efficiency in solving the coincidence problem. We work with two simple parameterizations of the dynamical dark energy equation of state and the constant dark energy equation of state. Using observational data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, we perform a statistical joint analysis of different forms of phenomenological interaction between dark energy and dark matter

  2. Cosmology and the Bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York

    2006-04-01

    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.

  3. Taylor expansion of luminosity distance in Szekeres cosmological models: effects of local structures evolution on cosmographic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Villani, Mattia, E-mail: villani@fi.infn.it [Sezione INFN di Firenze, Polo Scientifico Via Sansone 1, 50019, Sesto Fiorentino (Italy)

    2014-06-01

    We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.

  4. Wormholes and the cosmological constant problem.

    Science.gov (United States)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  5. Axions in inflationary cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1991-01-01

    The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)

  6. New Challenges for Cosmology

    NARCIS (Netherlands)

    van de Weygaert, Rien; van Albada, Tjeerd S.

    1996-01-01

    A detailed account of the ways in which a square kilometer array could further cosmological research. Observational and theoretical studies of the large scale structure and morphology of the local universe are reviewed against the potential capabilities of a new generation telescope. Cosmological

  7. Determining cosmological parameters with the latest observational data

    International Nuclear Information System (INIS)

    Xia Junqing; Li Hong; Zhao Gongbo; Zhang Xinmin

    2008-01-01

    In this paper, we combine the latest observational data, including the WMAP five-year data (WMAP5), BOOMERanG, CBI, VSA, ACBAR, as well as the baryon acoustic oscillations (BAO) and type Ia supernovae (SN) ''union'' compilation (307 sample), and use the Markov Chain Monte Carlo method to determine the cosmological parameters, such as the equation of state (EoS) of dark energy, the curvature of the universe, the total neutrino mass, and the parameters associated with the power spectrum of primordial fluctuations. In a flat universe, we obtain the tight limit on the constant EoS of dark energy as w=-0.977±0.056(stat)±0.057(sys). For the dynamical dark energy models with the time evolving EoS parametrized as w de (a)=w 0 +w 1 (1-a), we find that the best-fit values are w 0 =-1.08 and w 1 =0.368, while the ΛCDM model remains a good fit to the current data. For the curvature of the universe Ω k , our results give -0.012 k de =-1. When considering the dynamics of dark energy, the flat universe is still a good fit to the current data, -0.015 k s ≥1 are excluded at more than 2σ confidence level. However, in the framework of dynamical dark energy models, the allowed region in the parameter space of (n s ,r) is enlarged significantly. Finally, we find no strong evidence for the large running of the spectral index.

  8. Properties of the stars of early generations in the scale covariant cosmology

    International Nuclear Information System (INIS)

    Maeder, A.

    1978-01-01

    We examine here some consequences of cosmological propositions which accept that further invariances exist in the theory of gravitation. Several astrophysical tests have already been performed, with the noticeable and worrying results that astrophysics only supports scale invariance if matter creation still occurs in the Universe. Within this cosmological framework, stars being very different from the present ones would have existed in the past with higher rate of nuclear transformation and higher luminosity per unit of mass. The basic properties of these stars at an early epoch (t = 1/5 t 0 ) are examined with numerical models: the zero-age sequence, the central conditions in stars, the various critical stellar masses, the mass- and gravity-luminosity relation, the paths in the HR diagram, the changes of lifetimes, the evolution in the log Tsub(c) vs log rhosub(c) diagram. Useful expressions are also given for deriving by scaling the above properties at epochs other than the one considered in numerical applications. A major change occurs for the problem of the helium synthesis. In the scale covariant cosmology, the big-bang He-synthesis seems to be only of very marginal importance and the essential of the present He-content of the Universe could be accounted by stellar processes at the early generations of stars. This has for consequence that the ratio ΔY/ΔZ of Helium to the metals synthetized during the history of the Galaxy would be much larger than as predicted by standard cosmology. (orig.) [de

  9. Nonsingular electrovacuum solutions with dynamically generated cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, E.I., E-mail: guendel@bgumail.bgu.ac.il [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia – CSIC, Universidad de Valencia, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: drubiera@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, Paraíba (Brazil); Vasihoun, M., E-mail: maharyw@gmail.com [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2013-11-04

    We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R{sup 2} and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.

  10. Forecast and analysis of the cosmological redshift drift

    Energy Technology Data Exchange (ETDEWEB)

    Lazkoz, Ruth; Leanizbarrutia, Iker [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Sczcecin (Poland)

    2018-01-15

    The cosmological redshift drift could lead to the next step in high-precision cosmic geometric observations, becoming a direct and irrefutable test for cosmic acceleration. In order to test the viability and possible properties of this effect, also called Sandage-Loeb (SL) test, we generate a model-independent mock data set in order to compare its constraining power with that of the future mock data sets of Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO). The performance of those data sets is analyzed by testing several cosmological models with the Markov chain Monte Carlo (MCMC) method, both independently as well as combining all data sets. Final results show that, in general, SL data sets allow for remarkable constraints on the matter density parameter today Ω{sub m} on every tested model, showing also a great complementarity with SNe and BAO data regarding dark energy parameters. (orig.)

  11. Forecast and analysis of the cosmological redshift drift.

    Science.gov (United States)

    Lazkoz, Ruth; Leanizbarrutia, Iker; Salzano, Vincenzo

    2018-01-01

    The cosmological redshift drift could lead to the next step in high-precision cosmic geometric observations, becoming a direct and irrefutable test for cosmic acceleration. In order to test the viability and possible properties of this effect, also called Sandage-Loeb (SL) test, we generate a model-independent mock data set in order to compare its constraining power with that of the future mock data sets of Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO). The performance of those data sets is analyzed by testing several cosmological models with the Markov chain Monte Carlo (MCMC) method, both independently as well as combining all data sets. Final results show that, in general, SL data sets allow for remarkable constraints on the matter density parameter today [Formula: see text] on every tested model, showing also a great complementarity with SNe and BAO data regarding dark energy parameters.

  12. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  13. Integrated cosmological probes: concordance quantified

    Energy Technology Data Exchange (ETDEWEB)

    Nicola, Andrina; Amara, Adam; Refregier, Alexandre, E-mail: andrina.nicola@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland)

    2017-10-01

    Assessing the consistency of parameter constraints derived from different cosmological probes is an important way to test the validity of the underlying cosmological model. In an earlier work [1], we computed constraints on cosmological parameters for ΛCDM from an integrated analysis of CMB temperature anisotropies and CMB lensing from Planck, galaxy clustering and weak lensing from SDSS, weak lensing from DES SV as well as Type Ia supernovae and Hubble parameter measurements. In this work, we extend this analysis and quantify the concordance between the derived constraints and those derived by the Planck Collaboration as well as WMAP9, SPT and ACT. As a measure for consistency, we use the Surprise statistic [2], which is based on the relative entropy. In the framework of a flat ΛCDM cosmological model, we find all data sets to be consistent with one another at a level of less than 1σ. We highlight that the relative entropy is sensitive to inconsistencies in the models that are used in different parts of the analysis. In particular, inconsistent assumptions for the neutrino mass break its invariance on the parameter choice. When consistent model assumptions are used, the data sets considered in this work all agree with each other and ΛCDM, without evidence for tensions.

  14. Nonlocal gravity. Conceptual aspects and cosmological predictions

    Science.gov (United States)

    Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele

    2018-03-01

    Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free

  15. Quasars and cosmology

    International Nuclear Information System (INIS)

    Fliche, H.-H.; Souriau, J.-M.

    1978-03-01

    On the basis of colorimetric data a composite spectrum of quasars is established from the visible to the Lyman's limit. Its agreement with the spectrum of the quasar 3C273, obtained directly, confirms the homogeneity of these objects. The compatibility of the following hypotheses: negligible evolution of quasars, Friedmann type model of the universe with cosmological constant, is studied by means of two tests: a non-correlation test adopted to the observation conditions and the construction of diagrams (absolute magnitude, volume) using the K-correction deduced from the composite spectrum. This procedure happens to give relatively well-defined values of the parameters; the central values of the density parameter, the reduced curvature and the reduced cosmological constant are: Ω 0 =0.053, k 0 =0.245, lambda-zero=1.19, which correspond to a big bang model, eternally expanding, spatially finite, in which Hubble's parameter H is presently increasing. This model responds well to different cosmological tests: density of matter, diameter of radio sources, age of the universe. Its characteristics suggest various cosmogonic mechanisms, espacially mass formation by growth of empty spherical bubbles [fr

  16. Parameterized post-Newtonian cosmology

    International Nuclear Information System (INIS)

    Sanghai, Viraj A A; Clifton, Timothy

    2017-01-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC). (paper)

  17. Parameterized post-Newtonian cosmology

    Science.gov (United States)

    Sanghai, Viraj A. A.; Clifton, Timothy

    2017-03-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).

  18. Conformal Cosmology and Supernova Data

    OpenAIRE

    Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis

    2000-01-01

    We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.

  19. Fisher matrix forecast on cosmological parameters from the dark energy survey 2-point angular correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Sobreira, F.; Rosenfeld, R. [Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Sao Paulo, SP (Brazil). Inst. Fisica Teorica; Simoni, F. de; Costa, L.A.N. da; Gaia, M.A.G.; Ramos, B.; Ogando, R.; Makler, M. [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: We study the cosmological constraints expected for the upcoming project Dark Energy Survey (DES) with the full functional form of the 2-point angular correlation function. The angular correlation function model applied in this work includes the effects of linear redshift-space distortion, photometric redshift errors (assumed to be Gaussian) and non-linearities prevenient from gravitational infall. The Fisher information matrix is constructed with the full covariance matrix, which takes the correlation between nearby redshift shells in a proper manner. The survey was sliced into 20 redshift shells in the range 0:4 {<=} z {<=} 1:40 with a variable angular scale in order to search only the scale around the signal from the baryon acoustic oscillation, therefore well within the validity of the non-linear model employed. We found that under those assumptions and with a flat {Lambda}CDM WMAP7 fiducial model, the DES will be able to constrain the dark energy equation of state parameter w with a precision of {approx} 20% and the cold dark matter with {approx} 11% when marginalizing over the other 25 parameters (bias is treated as a free parameter for each shell). When applying WMAP7 priors on {Omega}{sub baryon}, {Omega} c{sub dm}, n{sub s}, and HST priors on the Hubble parameter, w is constrained with {approx} 9% precision. This shows that the full shape of the angular correlation function with DES data will be a powerful probe to constrain cosmological parameters. (author)

  20. Generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase

    International Nuclear Information System (INIS)

    Finelli, Fabio; Brandenberger, Robert

    2002-01-01

    In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of pre-big-bang nor of the ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past

  1. Unimodular-mimetic cosmology

    International Nuclear Information System (INIS)

    Nojiri, S; Odintsov, S D; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity. (paper)

  2. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  3. Cosmology with MATLAB

    CERN Document Server

    Green, Dan

    2016-01-01

    This volume makes explicit use of the synergy between cosmology and high energy physics, for example, supersymmetry and dark matter, or nucleosynthesis and the baryon-to-photon ratio. In particular the exciting possible connection between the recently discovered Higgs scalar and the scalar field responsible for inflation is explored.The recent great advances in the accuracy of the basic cosmological parameters is exploited in that no free scale parameters such as h appear, rather the basic calculations are done numerically using all sources of energy density simultaneously. Scripts are provided that allow the reader to calculate exact results for the basic parameters. Throughout MATLAB tools such as symbolic math, numerical solutions, plots and 'movies' of the dynamical evolution of systems are used. The GUI package is also shown as an example of the real time manipulation of parameters which is available to the reader.All the MATLAB scripts are made available to the reader to explore examples of the uses of ...

  4. Topics in inflationary cosmologies

    International Nuclear Information System (INIS)

    Mahajan, S.

    1986-04-01

    Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs

  5. The cosmological constant in theories with finite spacetime

    International Nuclear Information System (INIS)

    Kummer, Janis

    2014-08-01

    We study the role of the cosmological constant in different theories with finite spacetime. The cosmological constant appears both as an initial condition and as a constant of integration. In the context of the cosmological constant problem a new model will be presented. This modification of general relativity generates a small, non-vanishing cosmological constant, which is radiatively stable. The dynamics of the expansion of the universe in this model will be analyzed. Eventually, we try to solve the emergent problems concerning the generation of accelerated expansion using a quintessence model of dark energy.

  6. The importance of local measurements for cosmology

    CERN Document Server

    Verde, Licia; Jimenez, Raul

    2013-01-01

    We explore how local, cosmology-independent measurements of the Hubble constant and the age of the Universe help to provide a powerful consistency check of the currently favored cosmological model (flat LambdaCDM) and model-independent constraints on cosmology. We use cosmic microwave background (CMB) data to define the model-dependent cosmological parameters, and add local measurements to assess consistency and determine whether extensions to the model are justified. At current precision, there is no significant tension between the locally measured Hubble constant and age of the Universe (with errors of 3% and 5% respectively) and the corresponding parameters derived from the CMB. However, if errors on the local measurements could be decreased by a factor of two, one could decisively conclude if there is tension or not. We also compare the local and CMB data assuming simple extensions of the flat, $\\Lambda$CDM model (including curvature, dark energy with a constant equation of state parameter not equal to -1...

  7. KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters

    Science.gov (United States)

    Köhlinger, F.; Viola, M.; Joachimi, B.; Hoekstra, H.; van Uitert, E.; Hildebrandt, H.; Choi, A.; Erben, T.; Heymans, C.; Joudaki, S.; Klaes, D.; Kuijken, K.; Merten, J.; Miller, L.; Schneider, P.; Valentijn, E. A.

    2017-11-01

    We present measurements of the weak gravitational lensing shear power spectrum based on 450 ° ^2 of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift autocorrelation and cross-correlation spectra in the multipole range 76 ≤ ℓ ≤ 1310. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a ΛCDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalizing over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination S_8 ≡ σ _8 √{Ω_m/0.3} yielding S8 = 0.651 ± 0.058 (three z-bins), confirming the recently reported tension in this parameter with constraints from Planck at 3.2σ (three z-bins). We cross-check the results of the three z-bin analysis with the weaker constraints from the two z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl.

  8. Multi-dimensional cosmology and GUP

    International Nuclear Information System (INIS)

    Zeynali, K.; Motavalli, H.; Darabi, F.

    2012-01-01

    We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions

  9. Multi-dimensional cosmology and GUP

    Energy Technology Data Exchange (ETDEWEB)

    Zeynali, K.; Motavalli, H. [Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz (Iran, Islamic Republic of); Darabi, F., E-mail: k.zeinali@arums.ac.ir, E-mail: f.darabi@azaruniv.edu, E-mail: motavalli@tabrizu.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of)

    2012-12-01

    We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.

  10. Cosmology [2011 European School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rubakov, V A [Moscow, INR (Russian Federation)

    2014-07-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  11. Efficient exploration of cosmology dependence in the EFT of LSS

    Energy Technology Data Exchange (ETDEWEB)

    Cataneo, Matteo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Foreman, Simon; Senatore, Leonardo, E-mail: matteoc@dark-cosmology.dk, E-mail: sfore@stanford.edu, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94306 (United States)

    2017-04-01

    The most effective use of data from current and upcoming large scale structure (LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, for a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are implemented for the matter power spectrum at two loops and are released as public codes. When applied to cosmologies that are within 3σ of the Planck best-fit model, the first method evaluates the power spectrum in a few minutes on a laptop, with results that have 1% or better precision, while with the Taylor expansion the same quantity is instantly generated with similar precision. The ideas and codes we present may easily be extended for other applications or higher-precision results.

  12. Cosmological inflation

    CERN Document Server

    Enqvist, K

    2012-01-01

    The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.

  13. Observable gravitational waves in pre-big bang cosmology: an update

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, M., E-mail: gasperini@ba.infn.it [Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari (Italy)

    2016-12-01

    In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. We conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.

  14. Observable gravitational waves in pre-big bang cosmology: an update

    International Nuclear Information System (INIS)

    Gasperini, M.

    2016-01-01

    In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. We conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.

  15. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  16. Kantowski--Sachs cosmological models as big-bang models

    International Nuclear Information System (INIS)

    Weber, E.

    1985-01-01

    In the presence of a nonzero cosmological constant Λ, we classify the anisotropic cosmological models of the Kantowski--Sachs type by means of the quantities epsilon 2 0 , q 0 , summation 0 corresponding, respectively, to the relative root-mean-square deviation from isotropy, the deceleration parameter, and the density parameter of the perfect fluid at a given time t = t 0 . We obtain for Λ>0 a set of big-bang models of zero measure as well as a set of cosmological models of nonzero measure evolving toward the de Sitter solution

  17. Cosmological effects of nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez

    2007-01-01

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology

  18. Cosmological measurements with general relativistic galaxy correlations

    International Nuclear Information System (INIS)

    Raccanelli, Alvise; Montanari, Francesco; Durrer, Ruth; Bertacca, Daniele; Doré, Olivier

    2016-01-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  19. Gravitational particle production in braneworld cosmology.

    Science.gov (United States)

    Bambi, C; Urban, F R

    2007-11-09

    Gravitational particle production in a time variable metric of an expanding universe is efficient only when the Hubble parameter H is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass M{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology, the expansion rate of the early Universe can be much faster, and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.

  20. Modified General Relativity and Cosmology

    Science.gov (United States)

    Abdel-Rahman, A.-M. M.

    1997-10-01

    Aspects of the modified general relativity theory of Rastall, Al-Rawaf and Taha are discussed in both the radiation- and matter-dominated flat cosmological models. A nucleosynthesis constraint on the theory's free parameter is obtained and the implication for the age of the Universe is discussed. The consistency of the modified matter- dominated model with the neoclassical cosmological tests is demonstrated.

  1. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  2. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)

  3. Stable exponential cosmological solutions with zero variation of G and three different Hubble-like parameters in the Einstein-Gauss-Bonnet model with a Λ-term

    Energy Technology Data Exchange (ETDEWEB)

    Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation)

    2017-06-15

    We consider a D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ. We restrict the metrics to diagonal cosmological ones and find for certain Λ a class of solutions with exponential time dependence of three scale factors, governed by three non-coinciding Hubble-like parameters H > 0, h{sub 1} and h{sub 2}, corresponding to factor spaces of dimensions m > 2, k{sub 1} > 1 and k{sub 2} > 1, respectively, with k{sub 1} ≠ k{sub 2} and D = 1 + m + k{sub 1} + k{sub 2}. Any of these solutions describes an exponential expansion of 3d subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)

  4. Quark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Fields, B.; Thomas, D.

    1992-01-01

    The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin

  5. Improved standard cosmology: Comparison with observation

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1982-01-01

    A cosmological model describing inhomogeneous clusters of galaxies embedded in a homogeneous background is compared to observation. In this model, a cluster is described as a spherically symmetric distribution of matter with an inverse-square density law and an isothermal equation of state, while the background universe is essentially the Einstein/de Sitter one of standard cosmology, but with a small pressure. The model is found to be in overall good agreement with observation, and its adjustable parameters are assigned numerical values. The equation of state for a cluster and the finite cosmological pressure are properties of the model which can in principle be investigated by carrying out observations. Subject headings: cosmology: galaxies: clusters of: relativity

  6. Multiverse understanding of cosmological coincidences

    International Nuclear Information System (INIS)

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-01-01

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.

  7. iCosmo: an interactive cosmology package

    Science.gov (United States)

    Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.

    2011-04-01

    Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.

  8. Introduction to particle cosmology the standard model of cosmology and its open problems

    CERN Document Server

    Bambi, Cosimo

    2016-01-01

    This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP.   This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...

  9. Cosmological implications of a large complete quasar sample.

    Science.gov (United States)

    Segal, I E; Nicoll, J F

    1998-04-28

    Objective and reproducible determinations of the probabilistic significance levels of the deviations between theoretical cosmological prediction and direct model-independent observation are made for the Large Bright Quasar Sample [Foltz, C., Chaffee, F. H., Hewett, P. C., MacAlpine, G. M., Turnshek, D. A., et al. (1987) Astron. J. 94, 1423-1460]. The Expanding Universe model as represented by the Friedman-Lemaitre cosmology with parameters qo = 0, Lambda = 0 denoted as C1 and chronometric cosmology (no relevant adjustable parameters) denoted as C2 are the cosmologies considered. The mean and the dispersion of the apparent magnitudes and the slope of the apparent magnitude-redshift relation are the directly observed statistics predicted. The C1 predictions of these cosmology-independent quantities are deviant by as much as 11sigma from direct observation; none of the C2 predictions deviate by >2sigma. The C1 deviations may be reconciled with theory by the hypothesis of quasar "evolution," which, however, appears incapable of being substantiated through direct observation. The excellent quantitative agreement of the C1 deviations with those predicted by C2 without adjustable parameters for the results of analysis predicated on C1 indicates that the evolution hypothesis may well be a theoretical artifact.

  10. Brane cosmology with curvature corrections

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios

    2003-01-01

    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)

  11. Cosmological reconstruction and Om diagnostic analysis of Einstein-Aether theory

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Antonio [Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste (Italy); Chattopadhyay, Surajit [Pailan College of Management and Technology, Bengal Pailan Park, Kolkata-700 104 (India); Momeni, Davood; Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Raza, Muhammad [Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000 (Pakistan); Faizal, Mir, E-mail: toto.pasqua@gmail.com, E-mail: surajcha@iucaa.ernet.in, E-mail: d.momeni@yahoo.com, E-mail: mraza@zju.edu.cn, E-mail: rmyrzakulov@gmail.com, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia—Okanagan, Kelowna, British Columbia V1V 1V7 (Canada)

    2017-04-01

    In this paper, we analyze the cosmological models in Einstein-Aether gravity, which is a modified theory of gravity in which a time-like vector field breaks the Lorentz symmetry. We use this formalism to analyse different cosmological models with different behavior of the scale factor. In this analysis, we use a certain functional dependence of the Dark Energy (DE) on the Hubble parameter H . It will be demonstrated that the Aether vector field has a non-trivial effect on these cosmological models. We also perform the Om diagnostic in Einstein-Aether gravity and we fit the parameters of the cosmological models using recent observational data.

  12. Possible role of Berry phase in inflationary cosmological perturbations

    International Nuclear Information System (INIS)

    Pal, Barun Kumar; Pal, Supratik; Basu, B

    2012-01-01

    Here we have derived a cosmological analogue of Berry phase by obtaining the corresponding wavefunction for the system of inflationary cosmological perturbations solving the Schrodinger equation. We have further shown that cosmological Berry phase can be related inflationary observable parameters. As a result one can, atleast in principle, establish a supplementary probe of inflationary cosmology through the measurement of the associated Berry phase. But we do not make any strong comment on this.

  13. Cosmology and the weak interaction

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N ν ∼ 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs

  14. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  15. Cosmological implications of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Luis Bernal, José; Bellomo, Nicola; Raccanelli, Alvise; Verde, Licia, E-mail: joseluis.bernal@icc.ub.edu, E-mail: nicola.bellomo@icc.ub.edu, E-mail: alvise@icc.ub.edu, E-mail: liciaverde@icc.ub.edu [ICC, University of Barcelona, IEEC-UB, Martí i Franquès, 1, E08028 Barcelona (Spain)

    2017-10-01

    The possibility that a relevant fraction of the dark matter might be comprised of Primordial Black Holes (PBHs) has been seriously reconsidered after LIGO's detection of a ∼ 30 M {sub ⊙} binary black holes merger. Despite the strong interest in the model, there is a lack of studies on possible cosmological implications and effects on cosmological parameters inference. We investigate correlations with the other standard cosmological parameters using cosmic microwave background observations, finding significant degeneracies, especially with the tilt of the primordial power spectrum and the sound horizon at radiation drag. However, these degeneracies can be greatly reduced with the inclusion of small scale polarization data. We also explore if PBHs as dark matter in simple extensions of the standard ΛCDM cosmological model induces extra degeneracies, especially between the additional parameters and the PBH's ones. Finally, we present cosmic microwave background constraints on the fraction of dark matter in PBHs, not only for monochromatic PBH mass distributions but also for popular extended mass distributions. Our results show that extended mass distribution's constraints are tighter, but also that a considerable amount of constraining power comes from the high-ℓ polarization data. Moreover, we constrain the shape of such mass distributions in terms of the correspondent constraints on the PBH mass fraction.

  16. Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 deg$^2$ SPT-SZ and Planck Gravitational Lensing Map

    Energy Technology Data Exchange (ETDEWEB)

    Simard, G.; et al.

    2017-12-20

    We report constraints on cosmological parameters from the angular power spectrum of a cosmic microwave background (CMB) gravitational lensing potential map created using temperature data from 2500 deg$^2$ of South Pole Telescope (SPT) data supplemented with data from Planck in the same sky region, with the statistical power in the combined map primarily from the SPT data. We fit the corresponding lensing angular power spectrum to a model including cold dark matter and a cosmological constant ($\\Lambda$CDM), and to models with single-parameter extensions to $\\Lambda$CDM. We find constraints that are comparable to and consistent with constraints found using the full-sky Planck CMB lensing data. Specifically, we find $\\sigma_8 \\Omega_{\\rm m}^{0.25}=0.598 \\pm 0.024$ from the lensing data alone with relatively weak priors placed on the other $\\Lambda$CDM parameters. In combination with primary CMB data from Planck, we explore single-parameter extensions to the $\\Lambda$CDM model. We find $\\Omega_k = -0.012^{+0.021}_{-0.023}$ or $M_{\

  17. Inflation and late-time acceleration in braneworld cosmological models with varying brane tension

    International Nuclear Information System (INIS)

    Wong, K.C.; Cheng, K.S.; Harko, T.

    2010-01-01

    Braneworld models with variable brane tension λ introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulting from the observational cosmological data, are also investigated. (orig.)

  18. Cosmological parameters from pre-planck cosmic microwave background measurements

    NARCIS (Netherlands)

    Calabrese, E.; Hlozek, R.; Battaglia, N.; Battistelli, E.; Bond, J.; Chluba, J.; Crichton, D.; Das, S.; Devlin, M.; Dunkley, J.; Dünner, R.; Farhang, M.; Gralla, M.; Hajian, A.; Halpern, M.; Hasselfield, M.; Hincks, A.; Irwin, K.; Kosowsky, A.; Louis, T.; Marriage, T.; Moodley, K.; Newburgh, L.; Niemack, M.; Nolta, M.; Page, L.; Sehgal, N.; Sherwin, B.; Sievers, J.; Sifon, Andalaft C.J.; Spergel, D.; Staggs, S.; Switzer, E.; Wollack, E.

    2013-01-01

    Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat {$Lambda$}CDM cosmological model,

  19. Searching for sterile neutrinos in dynamical dark energy cosmologies

    Science.gov (United States)

    Feng, Lu; Zhang, Jing-Fei; Zhang, Xin

    2018-05-01

    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff energy properties could significantly influence the constraint limits of sterile neutrino parameters.

  20. On the Convergence in Effective Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio

    2010-01-01

    In Loop Quantum Cosmology (LQC) there is a discreteness parameter λ, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider λ as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their λ-dependence, with a special interest on the limit λ→0 and the role of the evolution parameter in the convergence of such limit.

  1. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan)

    2010-06-07

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter {alpha} (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  2. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    International Nuclear Information System (INIS)

    Setare, M.R.; Jamil, Mubasher

    2010-01-01

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  3. A natural cosmological constant from chameleons

    International Nuclear Information System (INIS)

    Nastase, Horatiu; Weltman, Amanda

    2015-01-01

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  4. A natural cosmological constant from chameleons

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  5. A natural cosmological constant from chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  6. Generating three-parameter sensor

    Directory of Open Access Journals (Sweden)

    Filinyuk M. A.

    2014-08-01

    Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.

  7. Next-Generation Tools For Next-Generation Surveys

    Science.gov (United States)

    Murray, S. G.

    2017-04-01

    The next generation of large-scale galaxy surveys, across the electromagnetic spectrum, loom on the horizon as explosively game-changing datasets, in terms of our understanding of cosmology and structure formation. We are on the brink of a torrent of data that is set to both confirm and constrain current theories to an unprecedented level, and potentially overturn many of our conceptions. One of the great challenges of this forthcoming deluge is to extract maximal scientific content from the vast array of raw data. This challenge requires not only well-understood and robust physical models, but a commensurate network of software implementations with which to efficiently apply them. The halo model, a semi-analytic treatment of cosmological spatial statistics down to nonlinear scales, provides an excellent mathematical framework for exploring the nature of dark matter. This thesis presents a next-generation toolkit based on the halo model formalism, intended to fulfil the requirements of next-generation surveys. Our toolkit comprises three tools: (i) hmf, a comprehensive and flexible calculator for halo mass functions (HMFs) within extended Press-Schechter theory, (ii) the MRP distribution for extremely efficient analytic characterisation of HMFs, and (iii) halomod, an extension of hmf which provides support for the full range of halo model components. In addition to the development and technical presentation of these tools, we apply each to the task of physical modelling. With hmf, we determine the precision of our knowledge of the HMF, due to uncertainty in our knowledge of the cosmological parameters, over the past decade of cosmic microwave background (CMB) experiments. We place rule-of-thumb uncertainties on the predicted HMF for the Planck cosmology, and find that current limits on the precision are driven by modeling uncertainties rather than those from cosmological parameters. With the MRP, we create and test a method for robustly fitting the HMF to observed

  8. Cosmology of a charged universe

    International Nuclear Information System (INIS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories

  9. Nonsingular bouncing cosmologies in light of BICEP2

    International Nuclear Information System (INIS)

    Cai, Yi-Fu; Quintin, Jerome; Saridakis, Emmanuel N.; Wilson-Ewing, Edward

    2014-01-01

    We confront various nonsingular bouncing cosmologies with the recently released BICEP2 data and investigate the observational constraints on their parameter space. In particular, within the context of the effective field approach, we analyze the constraints on the matter bounce curvaton scenario with a light scalar field, and the new matter bounce cosmology model in which the universe successively experiences a period of matter contraction and an ekpyrotic phase. Additionally, we consider three nonsingular bouncing cosmologies obtained in the framework of modified gravity theories, namely the Hořava-Lifshitz bounce model, the f(T) bounce model, and loop quantum cosmology

  10. Cosmological Parameter Estimation Using the Genus Amplitude—Application to Mock Galaxy Catalogs

    Science.gov (United States)

    Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan

    2018-01-01

    We study the topology of the matter density field in two-dimensional slices and consider how we can use the amplitude A of the genus for cosmological parameter estimation. Using the latest Horizon Run 4 simulation data, we calculate the genus of the smoothed density field constructed from light cone mock galaxy catalogs. Information can be extracted from the amplitude of the genus by considering both its redshift evolution and magnitude. The constancy of the genus amplitude with redshift can be used as a standard population, from which we derive constraints on the equation of state of dark energy {w}{de}—by measuring A at z∼ 0.1 and z∼ 1, we can place an order {{Δ }}{w}{de}∼ { O }(15 % ) constraint on {w}{de}. By comparing A to its Gaussian expectation value, we can potentially derive an additional stringent constraint on the matter density {{Δ }}{{{Ω }}}{mat}∼ 0.01. We discuss the primary sources of contamination associated with the two measurements—redshift space distortion (RSD) and shot noise. With accurate knowledge of galaxy bias, we can successfully remove the effect of RSD, and the combined effect of shot noise and nonlinear gravitational evolution is suppressed by smoothing over suitably large scales {R}{{G}}≥slant 15 {Mpc}/h. Without knowledge of the bias, we discuss how joint measurements of the two- and three-dimensional genus can be used to constrain the growth factor β =f/b. The method can be applied optimally to redshift slices of a galaxy distribution generated using the drop-off technique.

  11. The Maxwell-Chern-Simons gravity, and its cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Haghani, Zahra; Shahidi, Shahab [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2017-08-15

    We consider the cosmological implications of a gravitational theory containing two vector fields coupled via a generalized Chern-Simons term. One of the vector fields is the usual Maxwell field, while the other is a constrained vector field with constant norm included in the action via a Lagrange multiplier. The theory admits a de Sitter type solution, with healthy cosmological perturbations. We also show that there are seven degrees of freedom that propagate on top of de Sitter space-time, consisting of two tensor polarizations, four degrees of freedom related to the two vector fields, and a scalar degree of freedom that makes one of the vector fields massive. We investigate the cosmological evolution of Bianchi type I space-time, by assuming that the matter content of the Universe can be described by the stiff and dust. The cosmological evolution of the Bianchi type I Universe strongly depends on the initial conditions of the physical quantities, as well as on the model parameters. The mean anisotropy parameter, and the deceleration parameter, are also studied, and we show that independently of the matter equation of state the cosmological evolution of the Bianchi type I Universe always ends in an isotropic de Sitter type phase. (orig.)

  12. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

    Energy Technology Data Exchange (ETDEWEB)

    Weyant, Anja; Wood-Vasey, W. Michael [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), Physics and Astronomy Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Schafer, Chad, E-mail: anw19@pitt.edu [Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2013-02-20

    Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

  13. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

    International Nuclear Information System (INIS)

    Weyant, Anja; Wood-Vasey, W. Michael; Schafer, Chad

    2013-01-01

    Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.

  14. String cosmology basic ideas and general results

    CERN Document Server

    Veneziano, Gabriele

    1995-01-01

    After recalling a few basic concepts from cosmology and string theory, I will outline the main ideas/assumptions underlying (our own group's approach to) string cosmology and show how these lead to the definition of a two-parameter family of ``minimal" models. I will then briefly explain how to compute, in terms of those parameters, the spectrum of scalar, tensor and electromagnetic perturbations, and mention their most relevant physical consequences. More details on the latter part of this talk can be found in Maurizio Gasperini's contribution to these proceedings.

  15. Classical Bianchi Type I Cosmology in K-Essence Theory

    International Nuclear Information System (INIS)

    Pimentel, Luis O.; Socorro, J.; Espinoza-García, Abraham

    2014-01-01

    We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid (p=γρ) modeling the usual matter content and with cosmological constant Λ. Classical exact solutions for any γ≠1 and Λ=0 are found in closed form, whereas solutions for Λ≠0 are found for particular values in the barotropic parameter. We present the possible isotropization of the cosmological model Bianchi I using the ratio between the anisotropic parameters and the volume of the universe. We also include a qualitative analysis of the analog of the Friedmann equation.

  16. Cosmology with torsion: An alternative to cosmic inflation

    International Nuclear Information System (INIS)

    Poplawski, Nikodem J.

    2010-01-01

    We propose a simple scenario which explains why our Universe appears spatially flat, homogeneous and isotropic. We use the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity which naturally extends general relativity to include the spin of matter. The torsion of spacetime generates gravitational repulsion in the early Universe filled with quarks and leptons, preventing the cosmological singularity: the Universe expands from a state of minimum but finite radius. We show that the dynamics of the closed Universe immediately after this state naturally solves the flatness and horizon problems in cosmology because of an extremely small and negative torsion density parameter, Ω S ∼-10 -69 . Thus the ECKS gravity provides a compelling alternative to speculative mechanisms of standard cosmic inflation. This scenario also suggests that the contraction of our Universe preceding the bounce at the minimum radius may correspond to the dynamics of matter inside a collapsing black hole existing in another universe, which could explain the origin of the Big Bang.

  17. How accurately can 21cm tomography constrain cosmology?

    Science.gov (United States)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6noise, to uncertainties in the reionization history, and to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates for how various assumptions affect an experiment’s sensitivity, and we find that the modeling of reionization is the most important, followed by the array layout. We present an accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  18. Statefinder diagnostic for cosmology with the abnormally weighting energy hypothesis

    International Nuclear Information System (INIS)

    Liu Daojun; Liu Weizhong

    2008-01-01

    In this paper, we apply the statefinder diagnostic to the cosmology with the abnormally weighting energy hypothesis (AWE cosmology), in which dark energy in the observational (ordinary matter) frame results from the violation of the weak equivalence principle by pressureless matter. It is found that there exist closed loops in the statefinder plane, which is an interesting characteristic of the evolution trajectories of statefinder parameters and can be used to distinguish AWE cosmology from other cosmological models

  19. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...

  20. Ekpyrotic and cyclic cosmology

    International Nuclear Information System (INIS)

    Lehners, Jean-Luc

    2008-01-01

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/(ρ) >>1 (where P is the average pressure and ρ the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures

  1. Self-accelerating universe in Galileon cosmology

    International Nuclear Information System (INIS)

    Silva, Fabio P.; Koyama, Kazuya

    2009-01-01

    We present a cosmological model with a solution that self-accelerates at late times without signs of ghost instabilities on small scales. The model is a natural extension of the Brans-Dicke (BD) theory including a nonlinear derivative interaction, which appears in a theory with the Galilean shift symmetry. The existence of the self-accelerating universe requires a negative BD parameter but, thanks to the nonlinear term, small fluctuations around the solution are stable on small scales. General relativity is recovered at early times and on small scales by this nonlinear interaction via the Vainshtein mechanism. At late time, gravity is strongly modified and the background cosmology shows a phantomlike behavior and the growth rate of structure formation is enhanced. Thus this model leaves distinct signatures in cosmological observations and it can be distinguished from standard LCDM cosmology.

  2. Theoretical cosmology

    International Nuclear Information System (INIS)

    Raychaudhuri, A.K.

    1979-01-01

    The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)

  3. Observable cosmology and cosmological models

    International Nuclear Information System (INIS)

    Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.

    1987-01-01

    Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure

  4. Evolution in bouncing quantum cosmology

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Piechocki, Włodzimierz

    2012-01-01

    We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes. (paper)

  5. Planck 2013 Cosmology Results: a Review

    Directory of Open Access Journals (Sweden)

    José Alberto Rubino-Martín

    2014-12-01

    Full Text Available This talk presents an overview of the cosmological results derived from the first 15.5 months of observations of the ESA’s Planck mission. These cosmological results are mainly based on the Planck measurements of the cosmic microwave background (CMB temperature and lensing-potential power spectra, although we also briefly discuss other aspects of the Planck data, as the statistical characterization of the reconstructed CMB maps, or the constraints on cosmological parameters using the number counts of galaxy clusters detected by means of the Sunyaev-Zeldovich effect in the Planck maps. All these results are described in detail in a series of papers released by ESA and the Planck collaboration in March 2013.

  6. Cosmological evolution of p-brane networks

    International Nuclear Information System (INIS)

    Sousa, L.; Avelino, P. P.

    2011-01-01

    In this paper we derive, directly from the Nambu-Goto action, the relevant components of the acceleration of cosmological featureless p-branes, extending previous analysis based on the field theory equations in the thin-brane limit. The component of the acceleration parallel to the velocity is at the core of the velocity-dependent one-scale model for the evolution of p-brane networks. We use this model to show that, in a decelerating expanding universe in which the p-branes are relevant cosmologically, interactions cannot lead to frustration, except for fine-tuned nonrelativistic networks with a dimensionless curvature parameter k<<1. We discuss the implications of our findings for the cosmological evolution of p-brane networks.

  7. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)

    2018-01-15

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)

  8. Quintessential brane cosmology

    International Nuclear Information System (INIS)

    Kunze, K.E.; Vazquez-Mozo, M.A.

    2002-01-01

    We study a class of braneworlds where the cosmological evolution arises as the result of the movement of a three-brane in a five-dimensional static dilatonic bulk, with and without reflection symmetry. The resulting four-dimensional Friedmann equation includes a term which, for a certain range of the parameters, effectively works as a quintessence component, producing an acceleration of the universe at late times. Using current observations and bounds derived from big-bang nucleosynthesis, we estimate the parameters that characterize the model

  9. Cosmological imprints of pre-inflationary particles

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, Anastasia; Itzhaki, Nissan; Kovetz, Ely D., E-mail: anastasia.fialkov@gmail.com, E-mail: nitzhaki@post.tau.ac.il, E-mail: elykovetz@gmail.com [Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2010-02-01

    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.

  10. Cosmological imprints of pre-inflationary particles

    International Nuclear Information System (INIS)

    Fialkov, Anastasia; Itzhaki, Nissan; Kovetz, Ely D.

    2010-01-01

    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies

  11. Viscous causal cosmologies

    International Nuclear Information System (INIS)

    Novello, M.; Salim, J.M.; Torres, J.; Oliveira, H.P. de

    1989-01-01

    A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author) [pt

  12. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  13. Neutrino mass priors for cosmology from random matrices

    Science.gov (United States)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; Dodelson, Scott

    2018-02-01

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σ mν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π (Σ mν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σ mν that we interpret as a Bayesian prior probability π (Σ mν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π (Σ mν) peaks close to the smallest Σ mν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π (Σ mν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π (Σ mν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.

  14. Classification of cosmology with arbitrary matter in the Horava-Lifshitz model

    International Nuclear Information System (INIS)

    Minamitsuji, Masato

    2010-01-01

    In this work, we discuss the cosmological evolutions in the nonrelativistic and possibly renormalizable gravitational theory, called the Horava-Lifshitz (HL) theory. We consider the original HL model (type I), and the modified version obtained by an analytic continuation of parameters (type II). We classify the possible cosmological evolutions with arbitrary matter. We will find a variety of cosmology.

  15. Hiding neutrino mass in modified gravity cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Verde, Licia [ICC, University of Barcelona (UB-IEEC), Marti i Franques 1, 08028, Barcelona (Spain); Pena-Garay, Carlos, E-mail: nicola.bellomo@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: binhu@icc.ub.edu, E-mail: raul.jimenez@icc.ub.edu, E-mail: penya@ific.uv.es, E-mail: liciaverde@icc.ub.edu [Instituto de Fisica Corpuscular, CSIC-UVEG, P.O. 22085, Valencia, 46071 (Spain)

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  16. Is there evidence for additional neutrino species from cosmology?

    CERN Document Server

    Feeney, Stephen M.; Verde, Licia

    2013-01-01

    It has been suggested that recent cosmological and flavor-oscillation data favor the existence of additional neutrino species beyond the three predicted by the Standard Model of particle physics. We apply Bayesian model selection to determine whether there is indeed any evidence from current cosmological datasets for the standard cosmological model to be extended to include additional neutrino flavors. The datasets employed include cosmic microwave background temperature, polarization and lensing power spectra, and measurements of the baryon acoustic oscillation scale and the Hubble constant. We also consider other extensions to the standard neutrino model, such as massive neutrinos, and possible degeneracies with other cosmological parameters. The Bayesian evidence indicates that current cosmological data do not require any non-standard neutrino properties.

  17. Cosmological horizons and reconstruction of quantum field theories

    International Nuclear Information System (INIS)

    Dappiaggi, C.; Pinamonti, N.

    2007-12-01

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J - common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J - ) constructed on the cosmological horizon. There is exactly one pure quasifree state λ on W(J - ) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J - , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e. energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented. (orig.)

  18. Origin of a small cosmological constant in a brane world

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Yahiro, Masanobu

    2002-01-01

    We address the relation between the parameters of an accelerating brane universe embedded in five-dimensional bulk space. It is pointed out that the tiny cosmological constant of our world can be obtained as quantum corrections around a given brane solution in the bulk theory or in the field theory on the boundary from a holographic viewpoint. Some implications to the cosmology and constraints on the parameters are also given

  19. Induced cosmological constant in braneworlds with warped internal spaces

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2006-01-01

    We investigate the vacuum energy density induced by quantum fluctuations of a bulk scalar field with general curvature coupling parameter on two codimension one parallel branes in a (D + 1)-dimensional background spacetime AdS D1+1 x Σ with a warped internal space Σ. It is assumed that on the branes the field obeys Robin boundary conditions. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sums of single brane and second brane induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. The contribution of the Kaluza-Klein modes along Σ is investigated in various limiting cases. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the higher dimensional generalization of the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations. (author)

  20. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    International Nuclear Information System (INIS)

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Kessler, R.; Frieman, J. A.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-01-01

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w input – w recovered ) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  1. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  2. Holographic (de)confinement transitions in cosmological backgrounds

    International Nuclear Information System (INIS)

    Erdmenger, Johanna; Ghoroku, Kazuo; Meyer, Rene

    2011-01-01

    For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while gravity at the boundary remains nondynamical. We holographically calculate the stress-energy tensor, showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to the thermal fluid of N=4 SYM theory, while the second, the conformal anomaly, originates from the boundary cosmological constant. Conservation of the boundary stress-tensor implies that the boundary cosmological constant is time-independent, such that there is no exchange between the two stress-tensor contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While the dark radiation term favors deconfinement, a negative cosmological constant drives the system into a confined phase. When both contributions are present, we find an oscillating universe with negative cosmological constant which undergoes periodic (de)confinement transitions as the scale of three-space expands and recontracts.

  3. Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.

    Science.gov (United States)

    Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun

    2006-07-14

    We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.

  4. Cosmology in Poincaré gauge gravity with a pseudoscalar torsion

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Chee, Guoying [Department of Physics, Liaoning Normal University,Dalian 116029 (China)

    2016-05-04

    A cosmology of Poincare{sup ´} gauge theory is developed, where several properties of universe corresponding to the cosmological equations with the pseudoscalar torsion function are investigated. The cosmological constant is found to be the intrinsic torsion and curvature of the vacuum universe and is derived from the theory naturally rather than added artificially, i.e. the dark energy originates from geometry and includes the cosmological constant but differs from it. The cosmological constant puzzle, the coincidence and fine tuning problem are relieved naturally at the same time. By solving the cosmological equations, the analytic cosmological solution is obtained and can be compared with the ΛCDM model. In addition, the expressions of density parameters of the matter and the geometric dark energy are derived, and it is shown that the evolution of state equations for the geometric dark energy agrees with the current observational data. At last, the full equations of linear cosmological perturbations and the solutions are obtained.

  5. Conformal cosmological model and SNe Ia data

    International Nuclear Information System (INIS)

    Zakharov, A. F.; Pervushin, V. N.

    2012-01-01

    Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the Λ term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the Λ term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard ΛCDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without Λ term (or dark energy). We confirm the claim with much larger set of observational data.

  6. Determination of the cosmological parameters and the nature of dark energy; Extraction des parametres cosmologiques et des proprietes de l'energie noire

    Energy Technology Data Exchange (ETDEWEB)

    Linden, S.

    2010-04-15

    The measured properties of the dark energy component being consistent with a Cosmological Constant, {Lambda}, this cosmological standard model is referred to as the {Lambda}-Cold-Dark-Matter ({Lambda}CDM) model. Despite its overall success, this model suffers from various problems. The existence of a Cosmological Constant raises fundamental questions. Attempts to describe it as the energy contribution from the vacuum as following from Quantum Field Theory failed quantitatively. In consequence, a large number of alternative models have been developed to describe the dark energy component: modified gravity, additional dimensions, Quintessence models. Also, astrophysical effects have been considered to mimic an accelerated expansion. The basics of the {Lambda}CDM model and the various attempts of explaining dark energy are outlined in this thesis. Another major problem of the model comes from the dependencies of the fit results on a number of a priori assumptions and parameterization effects. Today, combined analyses of the various cosmological probes are performed to extract the parameters of the model. Due to a wrong model assumption or a bad parameterization of the real physics, one might end up measuring with high precision something which is not there. We show, that indeed due to the high precision of modern cosmological measurements, purely kinematic approaches to distance measurements no longer yield valid fit results except for accidental special cases, and that a fit of the exact (integral) redshift-distance relation is necessary. The main results of this work concern the use of the CPL parameterization of dark energy when coping with the dynamics of tracker solutions of Quintessence models, and the risk of introducing biases on the parameters due to the possibly prohibited extrapolation to arbitrary high redshifts of the SN type Ia magnitude calibration relation, which is obtained in the low-redshift regime. Whereas the risks of applying CPL shows up to be

  7. Cosmology and a general scalar-tensor theory of gravity

    International Nuclear Information System (INIS)

    Bishop, N.T.

    1976-01-01

    The cosmological models resulting from a general scalar-tensor theory of gravity are discussed. Those models for which the scalar field varies as a power of the cosmological expansion factor (i.e. phi varies as Rsup(n)) are considered in detail, leading to a set of such models compatible with observation. This set includes models in which the scalar coupling parameter ω is negative. The models described here are similar to those of Newtonian cosmology obtained from an impotence principle. (author)

  8. Phase Transitions in the Early Universe: The Cosmology of Non-Minimal Scalar Sectors

    Science.gov (United States)

    Kost, Jeffrey D.

    ) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time-development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond those accessible to standard treatments. An important by-product of our analysis is the development of an alternate "UV-based" effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional "IR-based" truncation typically used in the literature.

  9. Development of the Universe and New Cosmology

    CERN Document Server

    Sakharov, Alexander S

    2003-01-01

    Cosmology is undergoing an explosive period of activity, fueled both by new, accurate astrophysical data and by innovative theoretical developments. Cosmological parameters such as the total density of the Universe and the rate of cosmological expansion are being precisely measured for the first time, and a consistent standard picture of the Universe is beginning to emerge. Recent developments in cosmology give rise the intriguing possibility that all structures in the Universe, from superclusters to planets, had a quantum-mechanical origin in its earliest moments. Furthermore, these ideas are not idle theorizing, but predictive, and subject to meaningful experimental test. We review the concordance model of the development of the Universe, as well as evidence for the observational revolution that this field is going through. This already provides us with important information on particle physics, which is inaccessible to accelerators.

  10. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  11. CMB polarization systematics, cosmological birefringence, and the gravitational waves background

    International Nuclear Information System (INIS)

    Pagano, Luca; Bernardis, Paolo de; Gubitosi, Giulia; Masi, Silvia; Melchiorri, Alessandro; Piacentini, Francesco; De Troia, Grazia; Natoli, Paolo; Polenta, Gianluca

    2009-01-01

    Cosmic microwave background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several nonstandard, symmetry breaking theories of electrodynamics that allow for in vacuo rotation of the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the cosmic microwave background may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle α=-4.3 deg. ±4.1 deg. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1 deg. for Planck and 0.2 deg. for the Experimental Probe of Inflationary Cosmology, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a gravitational waves background.

  12. Exploring parameter constraints on quintessential dark energy: The exponential model

    International Nuclear Information System (INIS)

    Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2008-01-01

    We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ

  13. Cosmological anisotropy from non-comoving dark matter and dark energy

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2013-01-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  14. Is cosmology consistent?

    International Nuclear Information System (INIS)

    Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models

  15. The cosmology of the Fab-Four

    International Nuclear Information System (INIS)

    Copeland, Edmund J.; Padilla, Antonio; Saffin, Paul M.

    2012-01-01

    We have recently proposed a novel self tuning mechanism to alleviate the famous cosmological constant problem, based on the general scalar tensor theory proposed by Horndeski. The self-tuning model ends up consisting of four geometric terms in the action, with each term containing a free potential function of the scalar field; the four together being labeled as the Fab-Four. In this paper we begin the important task of deriving the cosmology associated with the Fab-Four Lagrangian. Performing a phase plane analysis of the system we are able to obtain a number of fixed points for the system, with some remarkable new solutions emerging from the trade-off between the various potentials. As well as obtaining inflationary solutions we also find conventional radiation/matter-like solutions, but in regimes where the energy density is dominated by a cosmological constant, and where we do not have any explicit forms of radiation or matter. Stability conditions for matter solutions are obtained and we show how it is possible for there to exist an extended period of 'matter domination' opening up the possibility that we can generate cosmological structures, and recover a consistent cosmology even in the presence of a large cosmological constant

  16. Towards an observational appraisal of string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mulryne, David J [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Ward, John, E-mail: d.mulryne@qmul.ac.uk, E-mail: jwa@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada)

    2011-10-21

    We review the current observational status of string cosmology when confronted with experimental datasets. We begin by defining common observational parameters and discuss how they are determined for a given model. Then we review the observable footprints of several string theoretic models, discussing the significance of various potential signals. Throughout we comment on present and future prospects of finding evidence for string theory in cosmology and on significant issues for the future.

  17. Towards an observational appraisal of string cosmology

    International Nuclear Information System (INIS)

    Mulryne, David J; Ward, John

    2011-01-01

    We review the current observational status of string cosmology when confronted with experimental datasets. We begin by defining common observational parameters and discuss how they are determined for a given model. Then we review the observable footprints of several string theoretic models, discussing the significance of various potential signals. Throughout we comment on present and future prospects of finding evidence for string theory in cosmology and on significant issues for the future.

  18. Cosmological horizons and reconstruction of quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Trento Univ., Povo (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Moretti, V. [Trento Univ. (Italy). Dipt. di Matematica]|[Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Trento, Povo (Italy)

    2007-12-15

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J{sup -} common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J{sup -}) constructed on the cosmological horizon. There is exactly one pure quasifree state {lambda} on W(J{sup -}) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore {lambda} induces a preferred physically meaningful quantum state {lambda}{sub M} for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J{sup -}, then the associated self-adjoint generator in the GNS representation of {lambda}{sub M} has positive spectrum (i.e. energy). Moreover {lambda}{sub M} turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, {lambda}{sub M} coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for {lambda}{sub M} in more general spacetimes are presented. (orig.)

  19. Cosmic Microwave Background: cosmology from the Planck perspective

    Science.gov (United States)

    De Zotti, Gianfranco

    2017-08-01

    The Planck mission has measured the angular anisotropies in the temperature of the Cosmic Microwave Background (CMB) with an accuracy set by fundamental limits. These data have allowed the determination of the cosmological parameters with extraordinary precision. These lecture notes present an overview of the mission and of its cosmological results. After a short history of the project, the Planck instruments and their performances are introduced and compared with those of the WMAP satellite. Next the approach to data analysis adopted by the Planck collaboration is described. This includes the techniques for dealing with the contamination of the CMB signal by astrophysical foreground emissions and for determining cosmological parameters from the analysis of the CMB power spectrum. The power spectra measured by Planck were found to be very well described by the standard spatially flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. This is a remarkable result, considering that the six parameters account for the about 2500 independent power spectrum values measured by Planck (the power was measured for about 2500 multipoles), not to mention the about one trillion science samples produced. A large grid of cosmological models was also explored, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data from ground-based experiments. On the whole, the Planck analysis of the CMB power spectrum allowed to vary and determined 16 parameters. Many other interesting parameters were derived from them. Although Planck was not initially designed to carry out high accuracy measurements of the CMB polarization anisotropies, its capabilities in this respect were significantly enhanced during its development. The quality of its polarization measurements have exceeded all original expectations. Planck's polarisation data confirmed and improved the understanding of the details of the cosmological

  20. STATISTICAL PROPERTIES OF GRB AFTERGLOW PARAMETERS AS EVIDENCE OF COSMOLOGICAL EVOLUTION OF THEIR HOST GALAXIES

    Directory of Open Access Journals (Sweden)

    Gregory Beskin

    2014-08-01

    Full Text Available The results of a study of 43 peaked R-band light curves of optical counterparts of gamma-ray bursts with known redshifts are presented. The parameters of optical transients were calculated in the comoving frame, and then a search for pair correlations between them was conducted. A statistical analysis showed a strong correlation between the peak luminosity and the redshift both for pure afterglows and for events with residual gamma activity, which cannot be explained as an effect of observational selection.This suggests a cosmological evolution of the parameters of the local interstellar medium around the sources of the gamma-ray burst. In the models of forward and reverse shock waves, a relation between the density of the interstellar medium and the redshift was built for gamma-ray burst afterglows, leading to a power-law dependence of the star-formation rate at regions around GRBs on redshift with a slope of about 6.

  1. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  2. TCP, quantum gravity, the cosmological constant and all that .

    International Nuclear Information System (INIS)

    Banks, T.

    1985-01-01

    We study cosmology from the point of view of quantum gravity. Some light is thrown on the nature of time, and it is suggested that the cosmological arrow of time is generated by a spontaneous breakdown of TCP. Conventional cosmological models in which quantum fields interact with a time-dependent gravitational field are shown to describe an approximation to the quantum gravitational wave function which is valid in the long-wavelength limit. Two problems with initial conditions are resolved in models in which a negative bare cosmological constant is cancelled by the classical excitation of a Bose field eta with a very flat potential. These models can also give a natural explanation for the observed value of the cosmological constant. (orig.)

  3. Approximate Methods for the Generation of Dark Matter Halo Catalogs in the Age of Precision Cosmology

    Directory of Open Access Journals (Sweden)

    Pierluigi Monaco

    2016-10-01

    Full Text Available Precision cosmology has recently triggered new attention on the topic of approximate methods for the clustering of matter on large scales, whose foundations date back to the period from the late 1960s to early 1990s. Indeed, although the prospect of reaching sub-percent accuracy in the measurement of clustering poses a challenge even to full N-body simulations, an accurate estimation of the covariance matrix of clustering statistics, not to mention the sampling of parameter space, requires usage of a large number (hundreds in the most favourable cases of simulated (mock galaxy catalogs. Combination of few N-body simulations with a large number of realizations performed with approximate methods gives the most promising approach to solve these problems with a reasonable amount of resources. In this paper I review this topic, starting from the foundations of the methods, then going through the pioneering efforts of the 1990s, and finally presenting the latest extensions and a few codes that are now being used in present-generation surveys and thoroughly tested to assess their performance in the context of future surveys.

  4. The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data

    Science.gov (United States)

    Dunkley, J.; Calabrese, E.; Sievers, J.; Addison, G. E.; Battaglia, N.; Battistelli, E. S.; Bond, J. R.; Das, S.; Devlin, M. J.; Dunner, R.; hide

    2013-01-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 cosmological parameter estimation

  5. Holographic dark energy with cosmological constant

    Science.gov (United States)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  6. Holographic dark energy with cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  7. Holographic dark energy with cosmological constant

    International Nuclear Information System (INIS)

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao

    2015-01-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model

  8. Cosmology

    International Nuclear Information System (INIS)

    Contopoulos, G.; Kotsakis, D.

    1987-01-01

    An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle

  9. Smoot Group Cosmology

    Science.gov (United States)

    the Universe About Cosmology Planck Satellite Launched Cosmology Videos Professor George Smoot's group conducts research on the early universe (cosmology) using the Cosmic Microwave Background radiation (CMB science goals regarding cosmology. George Smoot named Director of Korean Cosmology Institute The GRB

  10. Mathematical cosmology

    International Nuclear Information System (INIS)

    Wainwright, J.

    1990-01-01

    The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)

  11. Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->

    Science.gov (United States)

    Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.

    2008-05-01

    By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.

  12. Modern Cosmology

    CERN Document Server

    Zhang Yuan Zhong

    2002-01-01

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...

  13. Constraining holographic cosmology using Planck data

    Science.gov (United States)

    Afshordi, Niayesh; Gould, Elizabeth; Skenderis, Kostas

    2017-06-01

    Holographic cosmology offers a novel framework for describing the very early Universe in which cosmological predictions are expressed in terms of the observables of a three-dimensional quantum field theory (QFT). This framework includes conventional slow-roll inflation, which is described in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very early Universe, where the dual QFT may be weakly coupled. The new models describe a universe which is nongeometric at early times. While standard slow-roll inflation leads to a (near-) power-law primordial power spectrum, perturbative super-renormalizable QFTs yield a new holographic spectral shape. Here, we compare the two predictions against cosmological observations. We use CosmoMC to determine the best fit parameters, and MultiNest for Bayesian evidence, comparing the likelihoods. We find that the dual QFT should be nonperturbative at the very low multipoles (l ≲30 ), while for higher multipoles (l ≳30 ) the new holographic model, based on perturbative QFT, fits the data just as well as the standard power-law spectrum assumed in Λ CDM cosmology. This finding opens the door to applications of nonperturbative QFT techniques, such as lattice simulations, to observational cosmology on gigaparsec scales and beyond.

  14. Dynamics of anisotropic power-law f(R) cosmology

    International Nuclear Information System (INIS)

    Shamir, M. F.

    2016-01-01

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  15. Dynamics of anisotropic power-law f(R) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)

    2016-12-15

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  16. Observable relations in an inhomogeneous self-similar cosmology

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    An exact self-similar solution is taken in general relativity as a model for an inhomogeneous cosmology. The self-similarity property means (conceptually) that the model is scale-free and (mathematically) that its essential parameters are functions of only one dimensionless variable zeta (equivalentct/R, where R and t are distance and time coordinates and c is the velocity of light). It begins inhomogeneous (zeta=0 or t=0), and tends to a homogeneous Einstein--de Sitter type state as zeta (or t) →infinity. Such a model can be used (a) for evaluating the observational effects of a clumpy universe; (b) for studying astrophysical processes such as galaxy formation and the growth and decay of inhomogeneities in initially clumpy cosmologies; and (c) as a relativistic basis for cosmological models with extended clustering of the de Vaucouleurs and Peebles types. The model has two adjustable parameters, namely, the observer's coordinate zeta 0 and a constant α/sub s/ that fixes the effect of the inhomogeneity. Expressions are obtained for the redshift, Hubble parameter, deceleration parameter, magnitude-redshift relation, and (number density of objects) --redshift relation. Expected anisotropies in the 3 K microwave background are also examined. There is no conflict with observation if zeta 0 /α/sub s/> or approx. =10, and four tests of the model are suggested that can be used to further determine the acceptability of inhomogeneous cosmologies of this type. The ratio α/sub s//zeta 0 on presently available data is α/sub s//zeta 0 < or approx. =10% and this, loosely speaking, means that the universe at the present epoch is globally homogeneous to within about 10%

  17. Cosmology on a cosmic ring

    International Nuclear Information System (INIS)

    Niedermann, Florian; Schneider, Robert

    2015-01-01

    We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4D Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data

  18. Cosmological aspects of spontaneous baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Andrea De; Kobayashi, Takeshi [SISSA,Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-08-24

    We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.

  19. How robust are inflation model and dark matter constraints from cosmological data?

    International Nuclear Information System (INIS)

    Hamann, J.; Hannestad, S.; Sloth, M.S.; Wong, Y.Y.Y.

    2006-11-01

    High-precision data from observation of the cosmic microwave background and the large scale structure of the universe provide very tight constraints on the effective parameters that describe cosmological inflation. Indeed, within a constrained class of ΛCDM models, the simple λφ 4 chaotic inflation model already appears to be ruled out by cosmological data. In this paper, we compute constraints on inflationary parameters within a more general framework that includes other physically motivated parameters such as a nonzero neutrino mass. We find that a strong degeneracy between the tensor-to-scalar ratio τ and the neutrino mass prevents λφ 4 from being excluded by present data. Reversing the argument, if λφ 4 is the correct model of inflation, it predicts a sum of neutrino masses at 0.3→0.5 eV, a range compatible with present experimental limits and within the reach of the next generation of neutrino mass measurements. We also discuss the associated constraints on the dark matter density, the dark energy equation of state, and spatial curvature, and show that the allowed regions are significantly altered. Importantly, we find an allowed range of 0.094 c h 2 <0.136 for the dark matter density, a factor of two larger than that reported in previous studies. This expanded parameter space may have implications for constraints on SUSY dark matter models. (orig.)

  20. Simple inflationary models in Gauss–Bonnet brane-world cosmology

    International Nuclear Information System (INIS)

    Okada, Nobuchika; Okada, Satomi

    2016-01-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss–Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index ( n s ) and the tensor-to-scalar ratio ( r ) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall–Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B -mode polarization. (paper)

  1. Cosmological constraints with clustering-based redshifts

    Science.gov (United States)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  2. Observational constraints on phantom power-law cosmology

    International Nuclear Information System (INIS)

    Kaeonikhom, Chakkrit; Gumjudpai, Burin; Saridakis, Emmanuel N.

    2011-01-01

    We investigate phantom cosmology in which the scale factor is a power law, and we use cosmological observations from Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and observational Hubble data, in order to impose complete constraints on the model parameters. We find that the power-law exponent is β∼-6.51 -0.25 +0.24 , while the Big Rip is realized at t s ∼104.5 -2.0 +1.9 Gyr, in 1σ confidence level. Providing late-time asymptotic expressions, we find that the dark-energy equation-of-state parameter at the Big Rip remains finite and equal to w DE ∼-1.153, with the dark-energy density and pressure diverging. Finally, we reconstruct the phantom potential.

  3. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.; /Fermilab

    2006-08-01

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.

  4. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    International Nuclear Information System (INIS)

    Barenboim, Gabriela; Valencia U.; Lykken, Joseph D.; Fermilab

    2006-01-01

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions

  5. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela [Departament de Fisica Teorica, Universitat de Valencia, Carrer Dr. Moliner 50, E-46100 Burjassot (Valencia) (Spain); Lykken, Joseph D. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2006-12-15

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.

  6. Cosmological constraints from radial baryon acoustic oscillation measurements and observational Hubble data

    International Nuclear Information System (INIS)

    Zhai Zhongxu; Wan Haoyi; Zhang Tongjie

    2010-01-01

    We use the Radial Baryon Acoustic Oscillation (RBAO) measurements, distant type Ia supernovae (SNe Ia), the observational H(z) data (OHD) and the Cosmic Microwave Background (CMB) shift parameter data to constrain cosmological parameters of ΛCDM and XCDM cosmologies and further examine the role of OHD and SNe Ia data in cosmological constraints. We marginalize the likelihood function over h by integrating the probability density P∝e -χ 2 /2 to obtain the best fitting results and the confidence regions in the Ω m -Ω Λ plane. With the combination analysis for both of the ΛCDM and XCDM models, we find that the confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with the result of Lin et al.'s (2009) work. With more data of OHD, we can probably constrain the cosmological parameters using OHD data instead of SNe Ia data in the future.

  7. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  8. Simulating cosmologies beyond ΛCDM with PINOCCHIO

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Luca A. [Institut de Physique Theorique, Universite Paris-Saclay CEA, CNRS, F-91191 Gif-sur-Yvette, Cedex (France); Villaescusa-Navarro, Francisco [Center for Computational Astrophysics, 160 5th Ave, New York, NY, 10010 (United States); Monaco, Pierluigi [Sezione di Astronomia, Dipartimento di Fisica, Università di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Munari, Emiliano [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Borgani, Stefano [INAF – Astronomical Observatory of Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Castorina, Emanuele [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Sefusatti, Emiliano, E-mail: luca.rizzo@cea.fr, E-mail: fvillaescusa@simonsfoundation.org, E-mail: monaco@oats.inaf.it, E-mail: munari@dark-cosmology.dk, E-mail: borgani@oats.inaf.it, E-mail: ecastorina@berkeley.edu, E-mail: emiliano.sefusatti@brera.inaf.it [INAF, Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2017-01-01

    We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results from simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.

  9. Cosmology of a covariant Galilean field.

    Science.gov (United States)

    De Felice, Antonio; Tsujikawa, Shinji

    2010-09-10

    We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.

  10. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  11. Hot topics in Modern Cosmology - SW9 - Slides of the presentations

    International Nuclear Information System (INIS)

    Berezhiani, Z.; Sigl, G.; Biondi, R.; Volkov, M.; Noller, J.; Starobinsky, A.; Toporensky, A.; Renaux, S.; Pilo, L.; Comelli, D.; Slagter, R.; Novello, M.; Padilla, A.; Antunes, V.; Kamenshchik, A.; Vernieri, D.; Kaloper, N.; Denkiewics, T.; Gohar, H.; Zahariade, G.; Frusciante, N.; Von Strauss, M.

    2016-01-01

    This 9. Spontaneous Workshop (SW9) brought together specialists on recent insights in Particle Physics, Astrophysics and Cosmology. The aim was to stimulate debate on common topics in views of providing us with innovating ideas. SW9 topics includes: 1) Cosmological parameters - Anomalies in CMB (Cosmic Microwave Background); 2) Dark matter and neutrinos; 3) Gravity - Dark energy; 4) Singular universes; and 5) Cosmological Large Scale Structures - Magnetic Fields; This document is made up of the slides of the presentations

  12. Testing averaged cosmology with type Ia supernovae and BAO data

    Energy Technology Data Exchange (ETDEWEB)

    Santos, B.; Alcaniz, J.S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro – RJ (Brazil); Coley, A.A. [Department of Mathematics and Statistics, Dalhousie University, Halifax, B3H 3J5 Canada (Canada); Devi, N. Chandrachani, E-mail: thoven@on.br, E-mail: aac@mathstat.dal.ca, E-mail: chandrachaniningombam@astro.unam.mx, E-mail: alcaniz@on.br [Instituto de Astronomía, Universidad Nacional Autónoma de México, Box 70-264, México City, México (Mexico)

    2017-02-01

    An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.

  13. Testing averaged cosmology with type Ia supernovae and BAO data

    International Nuclear Information System (INIS)

    Santos, B.; Alcaniz, J.S.; Coley, A.A.; Devi, N. Chandrachani

    2017-01-01

    An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.

  14. Modern Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuanzhong

    2002-06-21

    This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and

  15. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    International Nuclear Information System (INIS)

    Artymowski, Michał; Lewicki, Marek; Wells, James D.

    2017-01-01

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  16. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lewicki, Marek [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Wells, James D. [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Deutsches Elektronen-Synchrotron DESY, Theory Group,D-22603 Hamburg (Germany)

    2017-03-13

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  17. Model of cosmology and particle physics at an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S. F.

    2005-01-01

    We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M * ∼10 13 GeV by four independent pieces of physics: electroweak symmetry breaking; the μ parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance

  18. Cosmological Analysis of Dynamical Chern-Simons Modified Gravity via Dark Energy Scenario

    Directory of Open Access Journals (Sweden)

    Abdul Jawad

    2015-01-01

    Full Text Available The purpose of this paper is to study the cosmological evolution of the universe in the framework of dynamical Chern-Simons modified gravity. We take pilgrim dark energy model with Hubble and event horizons in interacting scenario with cold dark matter. For this scenario, we discuss cosmological parameters such as Hubble and equation of state and cosmological plane like ωϑ-ωϑ′ and squared speed of sound. It is found that Hubble parameter approaches the ranges 75-0.5+0.5 (for u=2 and (74, 74.30 (for u=1,-1,-2 for Hubble horizon pilgrim dark energy. It implies the ranges 74.80-0.005+0.005 (for u=2 and (73.4, 74 (for u=-2 for event horizon pilgrim dark energy. The equation of state parameter provides consistent ranges with different observational schemes. Also, ωϑ-ωϑ′ planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32. The squared speed of sound shows stability for all present models in the present scenario. We would like to mention here that our results of various cosmological parameters show consistency with different observational data like Planck, WP, BAO, H0, SNLS, and WMAP.

  19. Cosmological constant in the quantum multiverse

    International Nuclear Information System (INIS)

    Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.

    2011-01-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.

  20. Top ten accelerating cosmological models

    International Nuclear Information System (INIS)

    Szydlowski, Marek; Kurek, Aleksandra; Krawiec, Adam

    2006-01-01

    Recent astronomical observations indicate that the Universe is presently almost flat and undergoing a period of accelerated expansion. Basing on Einstein's general relativity all these observations can be explained by the hypothesis of a dark energy component in addition to cold dark matter (CDM). Because the nature of this dark energy is unknown, it was proposed some alternative scenario to explain the current accelerating Universe. The key point of this scenario is to modify the standard FRW equation instead of mysterious dark energy component. The standard approach to constrain model parameters, based on the likelihood method, gives a best-fit model and confidence ranges for those parameters. We always arbitrary choose the set of parameters which define a model which we compare with observational data. Because in the generic case, the introducing of new parameters improves a fit to the data set, there appears the problem of elimination of model parameters which can play an insufficient role. The Bayesian information criteria of model selection (BIC) is dedicated to promotion a set of parameters which should be incorporated to the model. We divide class of all accelerating cosmological models into two groups according to the two types of explanation acceleration of the Universe. Then the Bayesian framework of model selection is used to determine the set of parameters which gives preferred fit to the SNIa data. We find a few of flat cosmological models which can be recommend by the Bayes factor. We show that models with dark energy as a new fluid are favoured over models featuring a modified FRW equation

  1. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    Science.gov (United States)

    Narimani, Ali; Afshordi, Niayesh; Scott, Douglas

    2014-08-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.

  2. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    International Nuclear Information System (INIS)

    Narimani, Ali; Scott, Douglas; Afshordi, Niayesh

    2014-01-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ 4  = 0.105 ± 0.049 (+highL CMB), or ζ 4  = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ 4 =), and also among different data sets

  3. Physically self-consistent basis for modern cosmology

    International Nuclear Information System (INIS)

    Khlopov, M.Yu.

    2000-01-01

    Cosmoparticle physics appeared as a natural result of internal development of cosmology seeking physical grounds for inflation, baryosynthesis, and nonbaryonic dark matter and of particle physics going outside the Standard Model of particle interactions. Its aim is to study the foundations of particle physics and cosmology and their fundamental relationship in the combination of respective indirect cosmological, astrophysical, and physical effects. The ideas on new particles and fields predicted by particle theory and on their cosmological impact are discussed, as well as the methods of cosmoparticle physics to probe these ideas, are considered with special analysis of physical mechanisms for inflation, baryosynthesis, and nonbaryonic dark matter. These mechanisms are shown to reflect the main principle of modern cosmology, putting, instead of formal parameters of cosmological models, physical processes governing the evolution of the big-bang universe. Their realization on the basis of particle theory induces additional model-dependent predictions, accessible to various methods of nonaccelerator particle physics. Probes for such predictions, with the use of astrophysical data, are the aim of cosmoarcheology studying astrophysical effects of new physics. The possibility of finding quantitatively definite relationships between cosmological and laboratory effects on the basis of cosmoparticle approach, as well as of obtaining a unique solution to the problem of physical candidates for inflation, mechanisms of baryogenesis, and multicomponent dark matter, is exemplified in terms of gauge model with broken family symmetry, underlying horizontal unification and possessing quantitatively definite physical grounds for inflation, baryosynthesis, and effectively multicomponent dark-matter scenarios

  4. Cosmological tests of coupled Galileons

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia

    2015-01-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM

  5. Dimensional cosmological principles

    International Nuclear Information System (INIS)

    Chi, L.K.

    1985-01-01

    The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle

  6. Arbitrary scalar-field and quintessence cosmological models

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  7. Role of the cosmological constant in the holographic description of the early universe

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2004-01-01

    We investigate the role of the cosmological constant in the holographic description of a radiation-dominated universe C 2 /R 4 with a positive cosmological constant Λ. In order to understand the nature of cosmological term, we first study the Newtonian cosmology. Here we find two aspects of the cosmological term: entropy (Λ→S Λ ) and energy (Λ→E Λ ). Also we solve the Friedmann equation parametrically to obtain another role. In the presence of the cosmological constant, the solutions are described by the Weierstrass elliptic functions on torus and have modular properties. In this case one may expect to have a two-dimensional Cardy entropy formula but the cosmological constant plays a role of the modular parameter τ(C 2 ,Λ) of torus. Consequently, the entropy concept of the cosmological constant is very suitable for establishing the holographic entropy bounds in the early universe. This contrasts to the role of the cosmological constant as a dark energy in the present universe

  8. Cosmological constraints on Brans-Dicke theory.

    Science.gov (United States)

    Avilez, A; Skordis, C

    2014-07-04

    We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using cosmic microwave background data from Planck. We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength Geff today as the one measured on Earth, GN. In this case, the BD parameter ω is constrained to ω>692 at the 99% confidence level, an order of magnitude improvement over previous constraints. In the second type, the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of ω>890, while Geff is constrained to 0.981theory and are valid for any Horndeski theory, the most general second-order scalar-tensor theory, which approximates the BD theory on cosmological scales. In this sense, our constraints place strong limits on possible modifications of gravity that might explain cosmic acceleration.

  9. Ultracompact Minihalos as Probes of Inflationary Cosmology.

    Science.gov (United States)

    Aslanyan, Grigor; Price, Layne C; Adams, Jenni; Bringmann, Torsten; Clark, Hamish A; Easther, Richard; Lewis, Geraint F; Scott, Pat

    2016-09-30

    Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays. The resulting constraints significantly extend the observable window of inflation in the presence of cold dark matter, coupling two of the key problems in modern cosmology.

  10. Gamma-ray bursts as cosmological probes: ΛCDM vs. conformal gravity

    International Nuclear Information System (INIS)

    Diaferio, Antonaldo; Ostorero, Luisa; Cardone, Vincenzo

    2011-01-01

    ΛCDM, for the currently preferred cosmological density Ω 0 and cosmological constant Ω Λ , predicts that the Universe expansion decelerates from early times to redshift z ≈ 0.9 and accelerates at later times. On the contrary, the cosmological model based on conformal gravity predicts that the cosmic expansion has always been accelerating. To distinguish between these two very different cosmologies, we resort to gamma-ray bursts (GRBs), which have been suggested to probe the Universe expansion history at z > 1, where identified type Ia supernovae (SNe) are rare. We use the full Bayesian approach to infer the cosmological parameters and the additional parameters required to describe the GRB data available in the literature. For the first time, we use GRBs as cosmological probes without any prior information from other data. In addition, when we combine the GRB samples with SNe, our approach neatly avoids all the inconsistencies of most numerous previous methods that are plagued by the so-called circularity problem. In fact, when analyzed properly, current data are consistent with distance moduli of GRBs and SNe that can respectively be, in a variant of conformal gravity, ∼ 15 and ∼ 3 magnitudes fainter than in ΛCDM. Our results indicate that the currently available SN and GRB samples are accommodated equally well by both ΛCDM and conformal gravity and do not exclude a continuous accelerated expansion. We conclude that GRBs are currently far from being effective cosmological probes, as they are unable to distinguish between these two very different expansion histories

  11. Interacting HDE and NADE in Brans-Dicke chameleon cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sheykhi, Ahmad, E-mail: sheykhi@mail.uk.ac.i [Department of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan)

    2011-01-03

    Motivated by the recent work of one of us Setare and Jamil (2010) , we generalize this work to the case where the pressureless dark matter and the holographic dark energy do not conserve separately but interact with each other. We investigate the cosmological applications of interacting holographic dark energy in Brans-Dicke theory with chameleon scalar field which is non-minimally coupled to the matter field. We find out that in this model the phantom crossing can be constructed if the model parameters are chosen suitably. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution.

  12. Interacting HDE and NADE in Brans-Dicke chameleon cosmology

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad; Jamil, Mubasher

    2011-01-01

    Motivated by the recent work of one of us Setare and Jamil (2010) , we generalize this work to the case where the pressureless dark matter and the holographic dark energy do not conserve separately but interact with each other. We investigate the cosmological applications of interacting holographic dark energy in Brans-Dicke theory with chameleon scalar field which is non-minimally coupled to the matter field. We find out that in this model the phantom crossing can be constructed if the model parameters are chosen suitably. We also perform the study for the new agegraphic dark energy model and calculate some relevant cosmological parameters and their evolution.

  13. Remark on application of the Banach metric method to cosmology

    International Nuclear Information System (INIS)

    Szydlowski, M.; Heller, M.

    1982-01-01

    If the cosmological equations can be reduced to the form of a dynamic system, the space of all their solutions is a Banach space. The influence of different parameters on the dynamics of the world models can be easily studied by means of the Banach metric. The method is tested for the Friedman cosmological models perturbed by the bulk viscosity. (author)

  14. The Abacus Cosmos: A Suite of Cosmological N-body Simulations

    Science.gov (United States)

    Garrison, Lehman H.; Eisenstein, Daniel J.; Ferrer, Douglas; Tinker, Jeremy L.; Pinto, Philip A.; Weinberg, David H.

    2018-06-01

    We present a public data release of halo catalogs from a suite of 125 cosmological N-body simulations from the ABACUS project. The simulations span 40 wCDM cosmologies centered on the Planck 2015 cosmology at two mass resolutions, 4 × 1010 h ‑1 M ⊙ and 1 × 1010 h ‑1 M ⊙, in 1.1 h ‑1 Gpc and 720 h ‑1 Mpc boxes, respectively. The boxes are phase-matched to suppress sample variance and isolate cosmology dependence. Additional volume is available via 16 boxes of fixed cosmology and varied phase; a few boxes of single-parameter excursions from Planck 2015 are also provided. Catalogs spanning z = 1.5 to 0.1 are available for friends-of-friends and ROCKSTAR halo finders and include particle subsamples. All data products are available at https://lgarrison.github.io/AbacusCosmos.

  15. Dynamics and constraints of the Dissipative Liouville Cosmology

    CERN Document Server

    Basilakos, Spyros; Mitsou, Vasiliki A; Plionis, Manolis

    2012-01-01

    In this article we investigate the properties of the FLRW flat cosmological models in which the cosmic expansion of the Universe is affected by a dilaton dark energy (Liouville scenario). In particular, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent supernovae type Ia data (SNIa), the differential ages of passively evolving galaxies, and the Baryonic Acoustic Oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS), we put tight constraints on the main cosmological parameters. Furthermore, we study the linear matter fluctuation field of the above Liouville cosmological models. In this framework, we compare the observed growth rate of clustering measured from the optical galaxies with those predicted by the current Liouville models. Performing vari...

  16. Quantum symmetry, the cosmological constant and Planck-scale phenomenology

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Smolin, Lee; Starodubtsev, Artem

    2004-01-01

    We present a simple algebraic mechanism for the emergence of deformations of Poincare symmetries in the low-energy limit of quantum theories of gravity. The deformations, called κ-Poincare algebras, are parametrized by a dimensional parameter proportional to the Planck mass, and imply modified energy-momentum relations of a type that may be observable in near future experiments. Our analysis assumes that the low energy limit of a quantum theory of gravity must also involve a limit in which the cosmological constant is taken very small with respect to the Planck scale, and makes use of the fact that in some quantum theories of gravity the cosmological constant results in the (anti)de Sitter symmetry algebra being quantum deformed. We show that deformed Poincare symmetries inevitably emerge in the small-cosmological-constant limit of quantum gravity in 2 + 1 dimensions, where geometry does not have local degrees of freedom. In 3 + 1 dimensions we observe that, besides the quantum deformation of the (anti)de Sitter symmetry algebra, one must also take into account that there are local degrees of freedom leading to a renormalization of the generators for energy and momentum of the excitations. At the present level of development of quantum gravity in 3 + 1 dimensions, it is not yet possible to derive this renormalization from first principles, but we establish the conditions needed for the emergence of a deformed low energy limit symmetry algebra also in the case of 3 + 1 dimensions

  17. Analytic self-gravitating Skyrmions, cosmological bounces and AdS wormholes

    Directory of Open Access Journals (Sweden)

    Eloy Ayón-Beato

    2016-01-01

    Full Text Available We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein–Skyrme system with winding number w=±1, in presence of a cosmological constant. The static spacetime metric is the direct product R×S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback with unit topological charge. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX with time-dependent scale and squashing coefficients. Remarkably, the Skyrme equations are still identically satisfied for all values of these parameters. Thus, the complete set of field equations for the Einstein–Skyrme–Λ system in the topological sector reduces to a pair of coupled, autonomous, nonlinear differential equations for the scale factor and a squashing coefficient. These equations admit analytic bouncing cosmological solutions in which the universe contracts to a minimum non-vanishing size, and then expands. A non-trivial byproduct of this solution is that a minor modification of the construction gives rise to a family of stationary, regular configurations in General Relativity with negative cosmological constant supported by an SU(2 nonlinear sigma model. These solutions represent traversable AdS wormholes with NUT parameter in which the only “exotic matter” required for their construction is a negative cosmological constant.

  18. LINKING TESTS OF GRAVITY ON ALL SCALES: FROM THE STRONG-FIELD REGIME TO COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Tessa [Astrophysics, Denys Wilkinson Building, Keble Road, University of Oxford, Oxford, OX1 3RH (United Kingdom); Psaltis, Dimitrios [Astronomy Department, University of Arizona, 933 North Cherry Avenue., Tucson, AZ 85721 (United States); Skordis, Constantinos, E-mail: tessa.baker@astro.ox.ac.uk, E-mail: dpsaltis@email.arizona.edu, E-mail: skordis@ucy.ac.cy [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2015-03-20

    The current effort to test general relativity (GR) employs multiple disparate formalisms for different observables, obscuring the relations between laboratory, astrophysical, and cosmological constraints. To remedy this situation, we develop a parameter space for comparing tests of gravity on all scales in the universe. In particular, we present new methods for linking cosmological large-scale structure, the cosmic microwave background, and gravitational waves with classic PPN tests of gravity. Diagrams of this gravitational parameter space reveal a noticeable untested regime. The untested window, which separates small-scale systems from the troubled cosmological regime, could potentially hide the onset of corrections to GR.

  19. Inflation and the theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Riotto, A.

    2003-01-01

    These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)

  20. Approximate Bayesian computation for forward modeling in cosmology

    International Nuclear Information System (INIS)

    Akeret, Joël; Refregier, Alexandre; Amara, Adam; Seehars, Sebastian; Hasner, Caspar

    2015-01-01

    Bayesian inference is often used in cosmology and astrophysics to derive constraints on model parameters from observations. This approach relies on the ability to compute the likelihood of the data given a choice of model parameters. In many practical situations, the likelihood function may however be unavailable or intractable due to non-gaussian errors, non-linear measurements processes, or complex data formats such as catalogs and maps. In these cases, the simulation of mock data sets can often be made through forward modeling. We discuss how Approximate Bayesian Computation (ABC) can be used in these cases to derive an approximation to the posterior constraints using simulated data sets. This technique relies on the sampling of the parameter set, a distance metric to quantify the difference between the observation and the simulations and summary statistics to compress the information in the data. We first review the principles of ABC and discuss its implementation using a Population Monte-Carlo (PMC) algorithm and the Mahalanobis distance metric. We test the performance of the implementation using a Gaussian toy model. We then apply the ABC technique to the practical case of the calibration of image simulations for wide field cosmological surveys. We find that the ABC analysis is able to provide reliable parameter constraints for this problem and is therefore a promising technique for other applications in cosmology and astrophysics. Our implementation of the ABC PMC method is made available via a public code release

  1. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y.Y.

    2011-01-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal ΛCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w e degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20–75% relative to the standard ΛCDM value

  2. Religion, theology and cosmology

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-10-01

    Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.

  3. An introduction to cosmology

    CERN Document Server

    Narlikar, Jayant Vishnu

    2002-01-01

    The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.

  4. Instanton transition in thermal and moduli deformed de Sitter cosmology

    International Nuclear Information System (INIS)

    Kounnas, Costas; Partouche, Herve

    2008-01-01

    We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. Depending on the parameters, either a first or second-order phase transition can occur. In the first case, an instanton allows a double analytic continuation. It induces a probability to enter the inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a 'creation from nothing', due to the vanishing of the big bang branch. However, the latter may be viable in some range of the deformation parameter. In the second case, there is a smooth evolution from a big bang to the inflationary phase

  5. Dynamic field theory and equations of motion in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, 322 Physics Bldg., Columbia, MO 65211 (United States); Petrov, Alexander N., E-mail: alex.petrov55@gmail.com [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Prospect 13, Moscow 119992 (Russian Federation)

    2014-11-15

    We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equations in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of

  6. Some topics in grand unified models and the cosmological baryon asymmetry

    International Nuclear Information System (INIS)

    Reiss, D.B.

    1981-01-01

    In part I of this thesis some of the parameters relevant to the production of a cosmological baryon number asymmetry are considered in the context of grand unified models. General expressions for the average baryon number generated in the free decays of bosons are derived. The CP violation necessary for the generation of a baryon excess is discussed for a variety of SU(5) models. The kinematics of baryon number production in an illustrative SO(10) model is discussed in detail. In part II a viable SO(10) model is constructed which reproduces the phenomenological fermion mass and mixing angle values. A detailed discussion of the beta function for this model is presented. This analysis includes the effects of scalars

  7. Cosmological models - in which universe do we live

    International Nuclear Information System (INIS)

    Hartvigsen, Y.

    1976-01-01

    A general discussion of the present state of cosmological models is introduced with a brief presentation of the expanding universe theory, the red shift and Hubble's Law. Hubble's Constant lies between 30 and 105 km/sec/Mpc, and a value of 55 km/sec/Mpc is assumed in this article. The arguments for the big bang and steady state theories are presented and the reasons for the present acceptance of the former given. Friedmann models are briefly discussed and 'universe density', rho, and 'space curvature',k, and the 'cosmological constant', Λ, are presented. These are shown on the Stabell-Refsdal diagram and the density parameter, sigma 0 , and the retardation parameter, q 0 , are related to Hubble's Constant. These parameters are then discussed and their values restricted such that the part of the Stabell-Refsdal diagram which is of interest may be defined. (JIW)

  8. Conformal symmetries of FRW accelerating cosmologies

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2014-01-01

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage

  9. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  10. Cosmology with cosmic microwave background anisotropy

    Indian Academy of Sciences (India)

    Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the ...

  11. Seeding black holes in cosmological simulations

    Science.gov (United States)

    Taylor, P.; Kobayashi, C.

    2014-08-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  12. Cosmological tests of a scale covariant theory of gravitation

    International Nuclear Information System (INIS)

    Owen, J.R.

    1979-01-01

    The Friedmann models with #betta# = 0 are subjected to several optical and radio tests within the standard and scale covariant theories of gravitation. Within standard cosmology, both interferometric and scintillation data are interpreted in terms of selection effects and evolution. Within the context of scale covariant cosmology are derived: (1) the full solution to Einstein's gravitational equations in atomic units for a matter dominated universe, (2) the study of the magnitude vs. redshift relation for elliptical galaxies, (3) the derivation of the evolutionary parameter used in (2), (4) the isophotal angular diameter vs. redshift relation, (5) the metric angular diameter vs. redshift relation, (6) the N(m) vs. magnitude relation for QSO's and their m vs z relation, and finally (7) the integrated and differential expressions for the number count vs. radio flux test. The results, both in graphical and tabular form, are presented for four gauges (i.e. parametrized relations between atomic and gravitational units). No contradiction between the new theory and the data is found with any of the tests studied. For some gauges, which are suggested by a recent analysis of the time variation of the Moon's period which is discussed in the text in terms of the new theory, the effect of the deceleration parameter on cosmological predictions is enhanced over standard cosmology and it is possible to say that the data are more easily reconciled with an open universe. Within the same gauge, the main features of both the N(m) vs. m and m-z test are accounted for by the same simple evolutionary parametrization whereas different evolutionary rates were indicated by interpretation within standard cosmology. The same consistency, lacking in standard cosmology on this level of analysis, is achieved for the integrated and differential number count - radio flux tests within the same gauge

  13. Mathematical cosmology

    International Nuclear Information System (INIS)

    Landsberg, P.T.; Evans, D.A.

    1977-01-01

    The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)

  14. Cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics

    2012-11-15

    We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.

  15. Stability of the Einstein static universe in open cosmological models

    International Nuclear Information System (INIS)

    Canonico, Rosangela; Parisi, Luca

    2010-01-01

    The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravity under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.

  16. Cluster cosmological analysis with X ray instrumental observables: introduction and testing of AsPIX method

    International Nuclear Information System (INIS)

    Valotti, Andrea

    2016-01-01

    Cosmology is one of the fundamental pillars of astrophysics, as such it contains many unsolved puzzles. To investigate some of those puzzles, we analyze X-ray surveys of galaxy clusters. These surveys are possible thanks to the bremsstrahlung emission of the intra-cluster medium. The simultaneous fit of cluster counts as a function of mass and distance provides an independent measure of cosmological parameters such as Ω m , σ s , and the dark energy equation of state w0. A novel approach to cosmological analysis using galaxy cluster data, called top-down, was developed in N. Clerc et al. (2012). This top-down approach is based purely on instrumental observables that are considered in a two-dimensional X-ray color-magnitude diagram. The method self-consistently includes selection effects and scaling relationships. It also provides a means of bypassing the computation of individual cluster masses. My work presents an extension of the top-down method by introducing the apparent size of the cluster, creating a three-dimensional X-ray cluster diagram. The size of a cluster is sensitive to both the cluster mass and its angular diameter, so it must also be included in the assessment of selection effects. The performance of this new method is investigated using a Fisher analysis. In parallel, I have studied the effects of the intrinsic scatter in the cluster size scaling relation on the sample selection as well as on the obtained cosmological parameters. To validate the method, I estimate uncertainties of cosmological parameters with MCMC method Amoeba minimization routine and using two simulated XMM surveys that have an increasing level of complexity. The first simulated survey is a set of toy catalogues of 100 and 10000 deg 2 , whereas the second is a 1000 deg 2 catalogue that was generated using an Aardvark semi-analytical N-body simulation. This comparison corroborates the conclusions of the Fisher analysis. In conclusion, I find that a cluster diagram that accounts

  17. Cosmology with primordial black holes

    International Nuclear Information System (INIS)

    Lindley, D.

    1981-09-01

    Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)

  18. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2014-03-10

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  19. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L.

    2014-01-01

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω m and σ 8 from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  20. Big-bang nucleosynthesis in the new cosmology

    International Nuclear Information System (INIS)

    Fields, B.D.

    2005-01-01

    Big bang nucleosynthesis (BBN) describes the production of the lightest elements in the first minutes of cosmic time. I will review the physics of cosmological element production, and the observations of the primordial element abundances. The comparison between theory and observation has heretofore provided our earliest probe of the universe, and given the best measure of the cosmic baryon content. However, BBN has now taken a new role in cosmology, in light of new precision measurements of the cosmic microwave background (CMB). Recent CMB anisotropy data yield a wealth of cosmological parameters; in particular, the baryon-to-photon ratio η = n B /n γ is measured to high precision. The confrontation between the BBN and CMB 'baryometers' poses a new and stringent test of the standard cosmology; the status of this test will be discussed. Moreover, it is now possible to recast the role of BBN by using the CMB to fix the baryon density and even some light element abundances. This strategy sharpens BBN into a more powerful probe of early universe physics, and of galactic nucleosynthesis processes. The impact of the CMB results on particle physics beyond the Standard Model, and on non-standard cosmology, will be illustrated. Prospects for improvement of these bounds via additional astronomical observations and nuclear experiments will be discussed, as will the lingering 'lithium problem.' (author)

  1. Cosmological perturbations in a family of deformations of general relativity

    International Nuclear Information System (INIS)

    Krasnov, Kirill; Shtanov, Yuri

    2010-01-01

    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity

  2. Cosmological tests on Visser's massive graviton dark matter cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xin-Yun; Liu, Xian-Ming [Hubei University for Nationalities, Department of Physics, Enshi, Hubei (China); Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Science, Nanan (China)

    2013-06-15

    We present the constraints on the Massive Graviton Dark Matter scenario (MGCDM) using the cosmological observations, including type Ia supernovae (SNe Ia), Gamma Ray Bursts (GRB), Observational Hubble Parameter Data (OHD), Cosmic Microwave Background shift parameter, and the Radial Baryon Acoustic Oscillation. In order to compare the goodness of the data samples and their combinations, we adopt the Fisher matrix analysis and the figure of merit (FoM) diagnostic. Based on the constraint results, we further discuss the cosmic age problem in MGCDM. The calculation shows that the universe in MGCDM frame is older than that in standard {Lambda}CDM model, but the cosmic age crisis is still unresolved with just an alleviation. (orig.)

  3. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  4. Cosmological models with Gurzadyan-Xue dark energy

    International Nuclear Information System (INIS)

    Vereshchagin, G V; Yegorian, G

    2006-01-01

    The formula for dark energy density derived by Gurzadyan and Xue is the only formula which provides (without a free parameter) a value for dark energy density in remarkable agreement with current cosmological datasets, unlike numerous phenomenological scenarios where the corresponding value is postulated. This formula suggests the possibility of variation of physical constants such as the speed of light and the gravitational constant. Considering several cosmological models based on that formula and deriving the cosmological equations for each case, we show that in all models source terms appear in the continuity equation. So, on one hand, GX models make up a rich set covering a lot of currently proposed models of dark energy; on the other hand, they reveal hidden symmetries, with a particular role of the separatrix Ω m = 2/3, and link with the issue of the content of physical constants

  5. Where does cosmological perturbation theory break down?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark

    2009-01-01

    It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.

  6. Surface Casimir densities and induced cosmological constant on parallel branes in AdS spacetime

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2004-01-01

    Vacuum expectation value of the surface energy-momentum tensor is evaluated for a massive scalar field with general curvature coupling parameter subject to Robin boundary conditions on two parallel branes located on (D+1)-dimensional anti-de Sitter bulk. The general case of different Robin coefficients on separate branes is considered. As a regularization procedure the generalized zeta function technique is used, in combination with contour integral representations. The surface energies on the branes are presented in the form of the sums of single brane and second brane-induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem between the gravitational and electroweak mass scales, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations

  7. Noether symmetry approach in the cosmological alpha-attractors

    Science.gov (United States)

    Kaewkhao, Narakorn; Kanesom, Thanyagamon; Channuie, Phongpichit

    2018-06-01

    In cosmological framework, Noether symmetry technique has revealed a useful tool in order to examine exact solutions. In this work, we first introduce the Jordan-frame Lagrangian and apply the conformal transformation in order to obtain the Lagrangian equivalent to Einstein-frame form. We then analyze the dynamics of the field in the cosmological alpha-attractors using the Noether symmetry approach by focusing on the single field scenario in the Einstein-frame form. We show that with a Noether symmetry the corresponding dynamical system can be completely integrated and the potential exhibited by the symmetry can be exactly obtained. With the proper choice of parameters, the behavior of the scale factor displays an exponential (de Sitter) behavior at the present epoch. Moreover, we discover that the Hubble parameters strongly depends on the initial values of parameters exhibited by the Noether symmetry. Interestingly, it can retardedly evolve and becomes a constant in the present epoch in all cases.

  8. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1985-01-01

    The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology

  9. Cosmology

    CERN Document Server

    Vittorio, Nicola

    2018-01-01

    Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.

  10. Supersymmetric GUTs and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1982-06-01

    By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)

  11. Kasner asymptotics of mixmaster Horava-Witten and pre-big-bang cosmologies

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2001-01-01

    We discuss various superstring effective actions and, in particular, their common sector which leads to the so-called pre-big-bang cosmology (cosmology in a weak coupling limit of heterotic superstring theory. Using the conformal relationship between these two theories we present Kasner asymptotic solutions of Bianchi type IX geometries within these theories and make predictions about possible emergence of chaos. Finally, we present a possible method of generating Horava-Witten cosmological solutions out of the well-known general relativistic or pre-big-bang solutions

  12. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  13. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  14. The case for the cosmological constant

    Indian Academy of Sciences (India)

    A time dependent cosmological A-term can be generated by scalar field ... Perlmutter et al (1999) indicate that the joint probability distribution of ΩС ΩA is well .... and С must be adjusted to very high levels of accuracy in order to ensure. С.

  15. Matter bounce cosmology with a generalized single field: non-Gaussianity and an extended no-go theorem

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Bin; Cai, Yi-Fu [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Quintin, Jerome [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada); Wang, Dong-Gang, E-mail: lyb2166@mail.ustc.edu.cn, E-mail: jquintin@physics.mcgill.ca, E-mail: wdgang@strw.leidenuniv.nl, E-mail: yifucai@ustc.edu.cn [Leiden Observatory, Leiden University, 2300 RA Leiden (Netherlands)

    2017-03-01

    We extend the matter bounce scenario to a more general theory in which the background dynamics and cosmological perturbations are generated by a k -essence scalar field with an arbitrary sound speed. When the sound speed is small, the curvature perturbation is enhanced, and the tensor-to-scalar ratio, which is excessively large in the original model, can be sufficiently suppressed to be consistent with observational bounds. Then, we study the primordial three-point correlation function generated during the matter-dominated contraction stage and find that it only depends on the sound speed parameter. Similar to the canonical case, the shape of the bispectrum is mainly dominated by a local form, though for some specific sound speed values a new shape emerges and the scaling behaviour changes. Meanwhile, a small sound speed also results in a large amplitude of non-Gaussianities, which is disfavored by current observations. As a result, it does not seem possible to suppress the tensor-to-scalar ratio without amplifying the production of non-Gaussianities beyond current observational constraints (and vice versa). This suggests an extension of the previously conjectured no-go theorem in single field nonsingular matter bounce cosmologies, which rules out a large class of models. However, the non-Gaussianity results remain as a distinguishable signature of matter bounce cosmology and have the potential to be detected by observations in the near future.

  16. FRW-type cosmologies with adiabatic matter creation

    International Nuclear Information System (INIS)

    Lima, J.A.; Germano, A.S.; Abramo, L.R.

    1996-01-01

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ * =γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society

  17. Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Bouland, Adam; Easther, Richard; Rosenfeld, Katherine, E-mail: adam.bouland@aya.yale.edu, E-mail: richard.easther@yale.edu, E-mail: krosenfeld@cfa.harvard.edu [Department of Physics, Yale University, New Haven CT 06520 (United States)

    2011-05-01

    We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.

  18. Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains

    International Nuclear Information System (INIS)

    Bouland, Adam; Easther, Richard; Rosenfeld, Katherine

    2011-01-01

    We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user

  19. Cosmological solutions, p-branes, and the Wheeler-DeWitt equation

    International Nuclear Information System (INIS)

    Lue, H.; Maharana, J.; Maharana, J.; Mukherji, S.; Pope, C.N.; Pope, C.N.

    1998-01-01

    The low energy effective actions which arise from string theory or M-theory are considered in the cosmological context, where the graviton, dilaton and antisymmetric tensor field strengths depend only on time. We show that previous results can be extended to include cosmological solutions that are related to the E N Toda equations. The solutions of the Wheeler-DeWitt equation in minisuperspace are obtained for some of the simpler cosmological models by introducing intertwining operators that generate canonical transformations which map the theories into free theories. We study the cosmological properties of these solutions, and also briefly discuss generalized Brans-Dicke models in our framework. The cosmological models are closely related to p-brane solitons, which we discuss in the context of the E N Toda equations. We give the explicit solutions for extremal multi-charge (D-3)-branes in the truncated system described by the D 4 =O(4,4) Toda equations. copyright 1998 The American Physical Society

  20. Intrinsic and cosmological signatures in gamma-ray burst time profiles: Time dilation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.

    2000-02-08

    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. The authors have used a pulse decomposition procedure to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. The authors obtain amplitude, rise and decay timescales, a pulse shape parameter, and the fluencies of individual pulses in all of the bursts. The authors investigate the correlations between brightness measures (amplitude and fluence) and timescale measures (pulse width and separation) which may result from cosmological time dilation of bursts, or from intrinsic properties of burst sources or from selection effects. The effects of selection biases are evaluated through simulations. The correlations between these parameters among pulses within individual bursts give a measure of the intrinsic effects while the correlations among bursts could result both from intrinsic and cosmological effects. The authors find that timescales tend to be shorter in bursts with higher peak fluxes, as expected from cosmological time dilation effects, but also find that there are non-cosmological effects contributing to this inverse correlation. The authors find that timescales tend to be longer in bursts with higher total fluences, contrary to what is expected from cosmological effects. The authors also find that peak fluxes and total fluences of bursts are uncorrelated, indicating that they cannot both be good distance indicators for bursts.

  1. Cosmological implications of modified gravity induced by quantum metric fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, Yat Sen School, Guangzhou (China); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Liang, Shi-Dong [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Guangzhou (China)

    2016-08-15

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors. (orig.)

  2. The variability of the gravitational constant and the mass-energy conservation in the Dirac cosmology

    International Nuclear Information System (INIS)

    Rybak, M.; Krygier, B.; Krempec-Krygier, J.

    1985-01-01

    The Hubble-Sandage diagrams for the Dirac cosmology have been discussed in the case of the modified dependence of luminosity upon the gravitational parameter G and mass. It is shown that the observational data for galaxies and the brightest quasars can be explained by the Dirac cosmology with the reasonably chosen changes of the gravitational parameter and of mass with the time. 41 refs., 2 figs. (author)

  3. Origin of inflation in CFT driven cosmology. R2-gravity and non-minimally coupled inflaton models

    International Nuclear Information System (INIS)

    Barvinsky, A.O.; Kamenshchik, A.Yu.; Nesterov, D.V.

    2015-01-01

    We present a detailed derivation of the recently suggested new type of hill-top inflation [arXiv:1509.07270] originating from the microcanonical density matrix initial conditions in cosmology driven by conformal field theory (CFT). The cosmological instantons of topology S 1 x S 3 , which set up these initial conditions, have the shape of a garland with multiple periodic oscillations of the scale factor of the spatial S 3 -section. They describe underbarrier oscillations of the inflaton and scale factor in the vicinity of the inflaton potential maximum, which gives a sufficient amount of inflation required by the known CMB data. We build the approximation of two coupled harmonic oscillators for these garland instantons and show that they can generate inflation consistent with the parameters of the CMB primordial power spectrum in the non-minimal Higgs inflation model and in R 2 gravity. In particular, the instanton solutions provide smallness of inflationary slow-roll parameters ε and η < 0 and their relation ε ∝ η 2 characteristic of these two models. We present the mechanism of formation of hill-like inflaton potentials, which is based on logarithmic loop corrections to the asymptotically shift-invariant tree-level potentials of these models in the Einstein frame. We also discuss the role of R 2 -gravity as an indispensable finite renormalization tool in the CFT driven cosmology, which guarantees the nondynamical (ghost free) nature of its scale factor and special properties of its cosmological garland-type instantons. Finally, as a solution to the problem of hierarchy between the Planckian scale and the inflation scale we discuss the concept of a hidden sector of conformal higher spin fields. (orig.)

  4. Qualitative cosmology

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Belinskij, V.A.

    1984-01-01

    Application of the qualitative theory of dynamic systems to analysis of homogeneous cosmological models is described. Together with the well-known cases, requiring ideal liquid, the properties of cosmological evolution of matter with dissipative processes due to viscosity are considered. New cosmological effects occur, when viscosity terms being one and the same order with the rest terms in the equations of gravitation or even exceeding them. In these cases the description of the dissipative process by means of only two viscosity coefficients (volume and shift) may become inapplicable because all the rest decomposition terms of dissipative addition to the energy-momentum in velocity gradient can be large application of equations with hydrodynamic viscosty should be considered as a model of dissipative effects in cosmology

  5. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  6. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2003-01-01

    The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,

  7. Cosmological perturbations in the projectable version of Hořava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Cerioni, Alessandro; Brandenberger, Robert H.

    2011-01-01

    We consider linear perturbations about a homogeneous and isotropic cosmological background in the projectable version of Hořava-Lifshitz gravity. Starting from the action for cosmological perturbations, we identify the canonically normalized fluctuation variables. We find that - in contrast to what happens in the non-projectable version of the theory - the extra scalar cosmological perturbation mode is already dynamical at the level of linear perturbations and is either ghost-like or tachyonic depending on the value of a free parameter. This indicates a problem for the projectable version of Hořava-Lifshitz gravity

  8. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, G.G.

    2011-01-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch...... be circumvented by a small νe degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20-75% relative to the standard ΛCDM value....

  9. Stable cosmology in chameleon bigravity

    Science.gov (United States)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota

    2018-02-01

    The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.

  10. Higgs cosmology

    Science.gov (United States)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  11. Constraints on Λ(t)-cosmology with power law interacting dark sectors

    International Nuclear Information System (INIS)

    Poitras, Vincent

    2012-01-01

    Motivated by the cosmological constant and the coincidence problems, we consider a cosmological model where the cosmological constant Λ 0 is replaced by a cosmological term Λ(t) which is allowed to vary in time. More specifically, we are considering that this dark energy term interacts with dark matter through the phenomenological decay law ρ-dot Λ = −Qρ Λ n . We have constrained the model for the range n element of [0,10] using various observational data (SNeIa, GRB, CMB, BAO, OHD), emphasizing the case where n = 3/2. This case is the only one where the late-time value for the ratio of dark energy density and matter energy density ρ Λ /ρ m is constant, which could provide an interesting explanation to the coincidence problem. We obtain strong limits on the model parameters which however exclude the region where the coincidence or the cosmological constant problems are significantly ameliorated

  12. On the impact of large angle CMB polarization data on cosmological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Burigana, Carlo; Gruppuso, Alessandro; Trombetti, Tiziana [Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Piero Gobetti 101, I-40129 Bologna (Italy); Gerbino, Martina [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Polenta, Gianluca [Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma (Italy); Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it [Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2017-02-01

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.

  13. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    International Nuclear Information System (INIS)

    Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.; Toporensky, Alexey V.

    2016-01-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  14. Smoot Cosmology Group

    Science.gov (United States)

    . ______________________________________________________________________________________ Nobelist George Smoot to Direct Korean Cosmology Institute Nobel Laureate George Smoot has been appointed director of a new cosmology institute in South Korea that will work closely with the year-old Berkeley the Early Universe (IEU) at EWHA Womans University in Seoul, Korea will provide cosmology education

  15. Behavior of cosmological models with varying G

    International Nuclear Information System (INIS)

    Barrow, J.D.; Parsons, P.

    1997-01-01

    We provide a detailed analysis of Friedmann-Robertson-Walker universes in a wide range of scalar-tensor theories of gravity. We apply solution-generating methods to three parametrized classes of scalar-tensor theory which lead naturally to general relativity in the weak-field limit. We restrict the parameters which specify these theories by the requirements imposed by the weak-field tests of gravitation theories in the solar system and by the requirement that viable cosmological solutions be obtained. We construct a range of exact solutions for open, closed, and flat isotropic universes containing matter with equation of state p≤(1)/(3)ρ and in vacuum. We study the range of early- and late-time behaviors displayed, examine when there is a open-quotes bounceclose quotes at early times, and expansion maxima in closed models. copyright 1997 The American Physical Society

  16. Precision Parameter Estimation and Machine Learning

    Science.gov (United States)

    Wandelt, Benjamin D.

    2008-12-01

    I discuss the strategy of ``Acceleration by Parallel Precomputation and Learning'' (AP-PLe) that can vastly accelerate parameter estimation in high-dimensional parameter spaces and costly likelihood functions, using trivially parallel computing to speed up sequential exploration of parameter space. This strategy combines the power of distributed computing with machine learning and Markov-Chain Monte Carlo techniques efficiently to explore a likelihood function, posterior distribution or χ2-surface. This strategy is particularly successful in cases where computing the likelihood is costly and the number of parameters is moderate or large. We apply this technique to two central problems in cosmology: the solution of the cosmological parameter estimation problem with sufficient accuracy for the Planck data using PICo; and the detailed calculation of cosmological helium and hydrogen recombination with RICO. Since the APPLe approach is designed to be able to use massively parallel resources to speed up problems that are inherently serial, we can bring the power of distributed computing to bear on parameter estimation problems. We have demonstrated this with the CosmologyatHome project.

  17. Phantom cosmology without Big Rip singularity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Institucio Catalana de Recerca i Estudis Avancats - ICREA and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Tomsk State Pedagogical University, Tomsk (Russian Federation); Yurov, Artyom V. [Baltic Federal University of I. Kant, Department of Theoretical Physics, 236041, 14, Nevsky st., Kaliningrad (Russian Federation)

    2012-03-23

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time ('phantom energy' without 'Big Rip' singularity) and (ii) energy density tends to constant value with time ('cosmological constant' with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  18. Phantom cosmology without Big Rip singularity

    International Nuclear Information System (INIS)

    Astashenok, Artyom V.; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yurov, Artyom V.

    2012-01-01

    We construct phantom energy models with the equation of state parameter w which is less than -1, w<-1, but finite-time future singularity does not occur. Such models can be divided into two classes: (i) energy density increases with time (“phantom energy” without “Big Rip” singularity) and (ii) energy density tends to constant value with time (“cosmological constant” with asymptotically de Sitter evolution). The disintegration of bound structure is confirmed in Little Rip cosmology. Surprisingly, we find that such disintegration (on example of Sun-Earth system) may occur even in asymptotically de Sitter phantom universe consistent with observational data. We also demonstrate that non-singular phantom models admit wormhole solutions as well as possibility of Big Trip via wormholes.

  19. The cosmic microwave background data and their implications for cosmology

    CERN Document Server

    Tudose, V

    2003-01-01

    Recently the results from three projects (BOOMERANG, DASI and MAXIMA) dealing with the observation of the temperature and isotropies of the cosmic microwave background (CMB) were published. It was a real breakthrough for cosmology since these data established a new level in understanding the universe. Here we present a review of the main results obtained by the projects mentioned above, emphasizing their significance to the nowadays status of cosmology. In this respect we report on the increasing evidence for an inflationary period in the very early stages after the Big Bang, we discuss at large the values of the cosmological parameters and we acknowledge the picture of the universe as it appears from the CMB data. (authors)

  20. Cosmological model with viscosity media (dark fluid) described by an effective equation of state

    International Nuclear Information System (INIS)

    Ren Jie; Meng Xinhe

    2006-01-01

    A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level

  1. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  2. Cosmology with a decaying vacuum energy parametrization derived from quantum mechanics

    International Nuclear Information System (INIS)

    Szydłowski, M; Stachowski, A; Urbanowski, K

    2015-01-01

    Within the quantum mechanical treatment of the decay problem one finds that at late times tthe survival probability of an unstable state cannot have the form of an exponentially decreasing function of time t but it has an inverse power-like form. This is a general property of unstable states following from basic principles of quantum theory. The consequence of this property is that in the case of false vacuum states the cosmological constant becomes dependent on time: Λ — Λ bare ≡ Λ(t) — Λ bare ∼ 1/t 2 . We construct the cosmological model with decaying vacuum energy density and matter for solving the cosmological constant problem and the coincidence problem. We show the equivalence of the proposed decaying false vacuum cosmology with the Λ(t) cosmologies (the Λ(t)CDM models). The cosmological implications of the model of decaying vacuum energy (dark energy) are discussed. We constrain the parameters of the model with decaying vacuum using astronomical data. For this aim we use the observation of distant supernovae of type Ia, measurements of H(z), BAO, CMB and others. The model analyzed is in good agreement with observation data and explain a small value of the cosmological constant today. (paper)

  3. Prediction and typicality in multiverse cosmology

    International Nuclear Information System (INIS)

    Azhar, Feraz

    2014-01-01

    In the absence of a fundamental theory that precisely predicts values for observable parameters, anthropic reasoning attempts to constrain probability distributions over those parameters in order to facilitate the extraction of testable predictions. The utility of this approach has been vigorously debated of late, particularly in light of theories that claim we live in a multiverse, where parameters may take differing values in regions lying outside our observable horizon. Within this cosmological framework, we investigate the efficacy of top-down anthropic reasoning based on the weak anthropic principle. We argue contrary to recent claims that it is not clear one can either dispense with notions of typicality altogether or presume typicality, in comparing resulting probability distributions with observations. We show in a concrete, top-down setting related to dark matter, that assumptions about typicality can dramatically affect predictions, thereby providing a guide to how errors in reasoning regarding typicality translate to errors in the assessment of predictive power. We conjecture that this dependence on typicality is an integral feature of anthropic reasoning in broader cosmological contexts, and argue in favour of the explicit inclusion of measures of typicality in schemes invoking anthropic reasoning, with a view to extracting predictions from multiverse scenarios. (paper)

  4. Prediction and typicality in multiverse cosmology

    Science.gov (United States)

    Azhar, Feraz

    2014-02-01

    In the absence of a fundamental theory that precisely predicts values for observable parameters, anthropic reasoning attempts to constrain probability distributions over those parameters in order to facilitate the extraction of testable predictions. The utility of this approach has been vigorously debated of late, particularly in light of theories that claim we live in a multiverse, where parameters may take differing values in regions lying outside our observable horizon. Within this cosmological framework, we investigate the efficacy of top-down anthropic reasoning based on the weak anthropic principle. We argue contrary to recent claims that it is not clear one can either dispense with notions of typicality altogether or presume typicality, in comparing resulting probability distributions with observations. We show in a concrete, top-down setting related to dark matter, that assumptions about typicality can dramatically affect predictions, thereby providing a guide to how errors in reasoning regarding typicality translate to errors in the assessment of predictive power. We conjecture that this dependence on typicality is an integral feature of anthropic reasoning in broader cosmological contexts, and argue in favour of the explicit inclusion of measures of typicality in schemes invoking anthropic reasoning, with a view to extracting predictions from multiverse scenarios.

  5. Cosmology and CPT violating neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; Salvado, Jordi [Universitat de Valencia-CSIC, Departament de Fisica Teorica y Instituto de Fisica Corpuscular, Burjassot (Spain)

    2017-11-15

    The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment. (orig.)

  6. Cosmological constant problem

    International Nuclear Information System (INIS)

    Weinberg, S.

    1989-01-01

    Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one

  7. Introduction to cosmology

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2001-01-01

    Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.

  8. Introduction to cosmology

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.

  9. The Rise and Fall of the Cosmic String Theory for Cosmological Perturbations

    International Nuclear Information System (INIS)

    Perivolaropoulos, L.

    2005-01-01

    The cosmic string theory for cosmological fluctuations is a good example of healthy scientific progress in cosmology. It is a well defined physically motivated model that has been tested by cosmological observations and has been ruled out as a primary source of primordial fluctuations. Until about fifteen years ago, the cosmic string theory of cosmological perturbations provided one of the two physically motivated candidate theories for the generation of primordial perturbations. The cosmological data that appeared during the last decade have been compared with the well defined predictions of the theory and have ruled out cosmic strings as a primary source of primordial cosmological perturbations. Since cosmic strings are predicted to form after inflation in a wide range of microphysical theories (including supersymmetric and fundamental string theories) their observational bounds may serve a source of serious constraints for these theories. This is a pedagogical review of the historical development, the main predictions of the cosmic string theory and the constraints that have been imposed on it by cosmological observations. Recent lensing events that could be attributed to lighter cosmic strings are also discussed

  10. Constraints on cosmological birefringence energy dependence from CMB polarization data

    International Nuclear Information System (INIS)

    Gubitosi, G.; Paci, F.

    2013-01-01

    We study the possibility of constraining the energy dependence of cosmological birefringence by using CMB polarization data. We consider four possible behaviors, characteristic of different theoretical scenarios: energy-independent birefringence motivated by Chern-Simons interactions of the electromagnetic field, linear energy dependence motivated by a 'Weyl' interaction of the electromagnetic field, quadratic energy dependence, motivated by quantum gravity modifications of low-energy electrodynamics, and inverse quadratic dependence, motivated by Faraday rotation generated by primordial magnetic fields. We constrain the parameters associated to each kind of dependence and use our results to give constraints on the models mentioned. We forecast the sensitivity that Planck data will be able to achieve in this respect

  11. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

    Science.gov (United States)

    Gerbino, Martina; Lattanzi, Massimiliano; Mena, Olga; Freese, Katherine

    2017-12-01

    We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i =mi /Mν (where the index i = 1 , 2 , 3 indicates the three mass eigenstates) carried by each of the mass eigenstates mi, after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameterhtype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical

  12. The Dirac-Milne cosmology

    Science.gov (United States)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  13. Implications of a decay law for the cosmological constant in higher dimensional cosmology and cosmological wormholes

    International Nuclear Information System (INIS)

    Rami, El-Nabulsi Ahmad

    2009-01-01

    Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)

  14. BOOK REVIEW: Observational Cosmology Observational Cosmology

    Science.gov (United States)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  15. Conservative constraints on early cosmology with MONTE PYTHON

    International Nuclear Information System (INIS)

    Audren, Benjamin; Lesgourgues, Julien; Benabed, Karim; Prunet, Simon

    2013-01-01

    Models for the latest stages of the cosmological evolution rely on a less solid theoretical and observational ground than the description of earlier stages like BBN and recombination. As suggested in a previous work by Vonlanthen et al., it is possible to tweak the analysis of CMB data in such way to avoid making assumptions on the late evolution, and obtain robust constraints on ''early cosmology parameters''. We extend this method in order to marginalise the results over CMB lensing contamination, and present updated results based on recent CMB data. Our constraints on the minimal early cosmology model are weaker than in a standard ΛCDM analysis, but do not conflict with this model. Besides, we obtain conservative bounds on the effective neutrino number and neutrino mass, showing no hints for extra relativistic degrees of freedom, and proving in a robust way that neutrinos experienced their non-relativistic transition after the time of photon decoupling. This analysis is also an occasion to describe the main features of the new parameter inference code MONTE PYTHON, that we release together with this paper. MONTE PYTHON is a user-friendly alternative to other public codes like COSMOMC, interfaced with the Boltzmann code CLASS

  16. Shadow cast by rotating braneworld black holes with a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2018-02-15

    In this article, we study the shadow produced by rotating black holes having a tidal charge in a Randall-Sundrum braneworld model, with a cosmological constant. We obtain the apparent shape and the corresponding observables for different values of the tidal charge and the rotation parameter, and we analyze the influence of the presence of the cosmological constant. We also discuss the observational prospects for this optical effect. (orig.)

  17. Cosmological histories in bimetric gravity: a graphical approach

    International Nuclear Information System (INIS)

    Mörtsell, E.

    2017-01-01

    The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts and the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.

  18. Multiscale cosmology and structure-emerging dark energy: A plausibility analysis

    International Nuclear Information System (INIS)

    Wiegand, Alexander; Buchert, Thomas

    2010-01-01

    Cosmological backreaction suggests a link between structure formation and the expansion history of the Universe. In order to quantitatively examine this connection, we dynamically investigate a volume partition of the Universe into over- and underdense regions. This allows us to trace structure formation using the volume fraction of the overdense regions λ M as its characterizing parameter. Employing results from cosmological perturbation theory and extrapolating the leading mode into the nonlinear regime, we construct a three-parameter model for the effective cosmic expansion history, involving λ M 0 , the matter density Ω m D 0 , and the Hubble rate H D 0 of today's Universe. Taking standard values for Ω m D 0 and H D 0 as well as a reasonable value for λ M 0 , that we derive from N-body simulations, we determine the corresponding amounts of backreaction and spatial curvature. We find that the obtained values that are sufficient to generate today's structure also lead to a ΛCDM-like behavior of the scale factor, parametrized by the same parameters Ω m D 0 and H D 0 , but without a cosmological constant. However, the temporal behavior of λ M does not faithfully reproduce the structure formation history. Surprisingly, however, the model matches with structure formation with the assumption of a low matter content, Ω m D 0 ≅3%, a result that hints to a different interpretation of part of the backreaction effect as kinematical dark matter. A complementary investigation assumes the ΛCDM fit-model for the evolution of the global scale factor by imposing a global replacement of the cosmological constant through backreaction, and also supposes that a Newtonian simulation of structure formation provides the correct volume partition into over- and underdense regions. From these assumptions we derive the corresponding evolution laws for backreaction and spatial curvature on the partitioned domains. We find the correct scaling limit predicted by perturbation

  19. Cosmological horizons as new examples of the membrane paradigm

    International Nuclear Information System (INIS)

    Wang, Tower

    2015-01-01

    In this paper we aim to provide new examples of the application and the generality of the membrane paradigm. The membrane paradigm is a formalism for studying the event horizon of black holes. After analyzing it with some technical details and realizing it in the Reissner–Nordström black hole, we apply the paradigm to cosmological horizons, first to the pure de Sitter horizon, and then to the trapping horizon of the Friedmann–Lemaître–Robertson–Walker Universe. In the latter case, the cosmological stretched horizon is oblique, thus the running of the renormalization parameter is nonzero in the timelike direction and gives a correction to the membrane pressure. In this paradigm, the cosmological equations come from continuity equations of the membrane fluid and the bulk fluid respectively. (paper)

  20. Large scale geometry and evolution of a universe with radiation pressure and cosmological constant

    CERN Document Server

    Coquereaux, Robert; Coquereaux, Robert; Grossmann, Alex

    2000-01-01

    In view of new experimental results that strongly suggest a non-zero cosmological constant, it becomes interesting to revisit the Friedmann-Lemaitre model of evolution of a universe with cosmological constant and radiation pressure. In this paper, we discuss the explicit solutions for that model, and perform numerical explorations for reasonable values of cosmological parameters. We also analyse the behaviour of redshifts in such models and the description of ``very large scale geometrical features'' when analysed by distant observers.

  1. Microwave background anisotropies and the primordial spectrum of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gouda, Naoteru; Sugiyama, Naoshi

    1990-01-01

    Microwave background anisotropies in various cosmological scenarios are studied. In particular, the extent to which nonscale-invariant spectra of the primordial density fluctuations are consistent with the observational upper limits is examined. The resultant constraints are summarized as contours on (n, Omega)-plane, where n is the power-law index of the primordial spectrum of density fuctuations and Omega is the cosmological density parameter. They are compared also with the constraints from the cosmic Mach number test, recently proposed by Ostriker and Suto (1990). The parameter regions which pass both tests are not consistent with the theoretical prejudice inspired by the inflationary model. 44 refs

  2. Encyclopedia of cosmology historical, philosophical, and scientific foundations of modern cosmology

    CERN Document Server

    Hetherington, Norriss S

    2014-01-01

    The Encyclopedia of Cosmology, first published in 1993, recounts the history, philosophical assumptions, methodological ambiguities, and human struggles that have influenced the various responses to the basic questions of cosmology through the ages, as well as referencing important scientific theories.Just as the recognition of social conventions in other cultures can lead to a more productive perspective on our own behaviour, so too a study of the cosmologies of other times and places can enable us recognise elements of our own cosmology that might otherwise pass as inevitable developments.Ap

  3. Loading factor and inclination parameter of diagonal type MHD generators

    International Nuclear Information System (INIS)

    Ishikawa, Motoo

    1979-01-01

    Regarding diagonal type MHD generators is studied the relation between the loading factor and inclination parameter which is required for attaining the maximum power density with a given electrical efficiency on the assumption of infinitely segmented electrodes. The average current density on electrodes is calculated against the Hall parameter, loading factor, and inclination parameter. The diagonal type generator is compared with Faraday type generator regarding the average current density. Decreasing the loading factor from inlet to outlet is appropriate to small size generators but increasing to large size generators. The inclination parameter had better decrease in both generators, being smaller for small generators than for large ones. The average current density on electrodes of diagonal type generators varies less with the loading factor than the Faraday type. In large size generators its value can become smaller compared with that of the Faraday type. (author)

  4. Higgs cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  5. Origin of inflation in CFT driven cosmology: R{sup 2}-gravity and non-minimally coupled inflaton models

    Energy Technology Data Exchange (ETDEWEB)

    Barvinsky, A. O., E-mail: barvin@td.lpi.ru [Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, 119991, Moscow (Russian Federation); Department of Physics, Tomsk State University, Lenin Ave. 36, 634050, Tomsk (Russian Federation); Department of Physics and Astronomy, Pacific Institute for Theoretical Physics, UBC, 6224 Agricultural Road, V6T1Z1, Vancouver, BC (Canada); Kamenshchik, A. Yu., E-mail: kamenshchik@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Via Irnerio 46, 40126, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, 119334, Moscow (Russian Federation); Nesterov, D. V., E-mail: nesterov@td.lpi.it [Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, 119991, Moscow (Russian Federation)

    2015-12-11

    We present a detailed derivation of the recently suggested new type of hill-top inflation originating from the microcanonical density matrix initial conditions in cosmology driven by conformal field theory (CFT). The cosmological instantons of topology S{sup 1}×S{sup 3}, which set up these initial conditions, have the shape of a garland with multiple periodic oscillations of the scale factor of the spatial S{sup 3}-section. They describe underbarrier oscillations of the inflaton and scale factor in the vicinity of the inflaton potential maximum, which gives a sufficient amount of inflation required by the known CMB data. We build the approximation of two coupled harmonic oscillators for these garland instantons and show that they can generate inflation consistent with the parameters of the CMB primordial power spectrum in the non-minimal Higgs inflation model and in R{sup 2} gravity. In particular, the instanton solutions provide smallness of inflationary slow-roll parameters ϵ and η<0 and their relation ϵ∼η{sup 2} characteristic of these two models. We present the mechanism of formation of hill-like inflaton potentials, which is based on logarithmic loop corrections to the asymptotically shift-invariant tree-level potentials of these models in the Einstein frame. We also discuss the role of R{sup 2}-gravity as an indispensable finite renormalization tool in the CFT driven cosmology, which guarantees the non-dynamical (ghost free) nature of its scale factor and special properties of its cosmological garland-type instantons. Finally, as a solution to the problem of hierarchy between the Planckian scale and the inflation scale we discuss the concept of a hidden sector of conformal higher spin fields.

  6. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  7. Fluid observers and tilting cosmology

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Lim, W C

    2006-01-01

    We study perfect fluid cosmological models with a constant equation of state parameter γ in which there are two naturally defined timelike congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e. γ > 4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e. γ < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant

  8. Supernova cosmology

    International Nuclear Information System (INIS)

    Leibundgut, B.

    2005-01-01

    Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)

  9. Loop quantum cosmology with complex Ashtekar variables

    International Nuclear Information System (INIS)

    Achour, Jibril Ben; Grain, Julien; Noui, Karim

    2015-01-01

    We construct and study loop quantum cosmology (LQC) when the Barbero–Immirzi parameter takes the complex value γ=±i. We refer to this new approach to quantum cosmology as complex LQC. This formulation is obtained via an analytic continuation of the Hamiltonian constraint (with no inverse volume corrections) from real γ to γ=±i, in the simple case of a flat FLRW Universe coupled to a massless scalar field with no cosmological constant. For this, we first compute the non-local curvature operator (defined by the trace of the holonomy of the connection around a fundamental plaquette) evaluated in an arbitrary spin j representation, and find a new close formula for its expression. This allows us to define explicitly a one parameter family of regularizations of the Hamiltonian constraint in LQC, parametrized by the spin j. It is immediate to see that any spin j regularization leads to a bouncing scenario. Then, motivated in particular by previous results on black hole thermodynamics, we perform the analytic continuation of the Hamiltonian constraint to values of the Barbero–Immirzi parameter given by γ=±i and to spins j=(1/2)(−1+is) where s is real. Even if the area spectrum then becomes continuous, we show that the complex LQC defined in this way does also replace the initial big-bang singularity by a big-bounce. In addition to this, the maximal density and the minimal volume of the Universe are obviously independent of γ. Furthermore, the dynamics before and after the bounce is not symmetrical anymore, which makes a clear distinction between these two phases of the evolution of the Universe. (paper)

  10. Gravitino/axino as decaying dark matter and cosmological tensions

    Directory of Open Access Journals (Sweden)

    Koichi Hamaguchi

    2017-09-01

    Full Text Available In supersymmetric axion models, if the gravitino or axino is the lightest SUSY particle (LSP, the other is often the next-to-LSP (NLSP. We investigate the cosmology of such a scenario and point out that the lifetime of the NLSP naturally becomes comparable to the present age of the universe in a viable parameter region. This is a well-motivated example of the so-called decaying dark matter model, which is recently considered as an extension of the ΛCDM model to relax some cosmological tensions.

  11. Nonlinear evolution of f(R) cosmologies. I. Methodology

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki

    2008-01-01

    We introduce the method and the implementation of a cosmological simulation of a class of metric-variation f(R) models that accelerate the cosmological expansion without a cosmological constant and evade solar-system bounds of small-field deviations to general relativity. Such simulations are shown to reduce to solving a nonlinear Poisson equation for the scalar degree of freedom introduced by the f(R) modifications. We detail the method to efficiently solve the nonlinear Poisson equation by using a Newton-Gauss-Seidel relaxation scheme coupled with the multigrid method to accelerate the convergence. The simulations are shown to satisfy tests comparing the simulated outcome to analytical solutions for simple situations, and the dynamics of the simulations are tested with orbital and Zeldovich collapse tests. Finally, we present several static and dynamical simulations using realistic cosmological parameters to highlight the differences between standard physics and f(R) physics. In general, we find that the f(R) modifications result in stronger gravitational attraction that enhances the dark matter power spectrum by ∼20% for large but observationally allowed f(R) modifications. A more detailed study of the nonlinear f(R) effects on the power spectrum are presented in a companion paper.

  12. Supersymmetry and cosmology

    International Nuclear Information System (INIS)

    Feng, Jonathan L.

    2005-01-01

    Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface

  13. The inflationary cosmology

    International Nuclear Information System (INIS)

    Sasaki, Misao

    1983-01-01

    We review the recent status of the inflationary cosmology. After exhibiting the essence of difficulties associated with the horizon, flatness and baryon number problems in the standard big-bang cosmology, we discuss that the inflationary universe scenario is one of the most plausible solutions to these fundamental cosmological problems. Since there are two qualitatively different versions of the inflationary universe scenario, we review each of them separately and discuss merits and demerits of each version. The Hawking radiation in de Sitter space is also reviewed since it may play an essential role in the inflationary cosmology. (author)

  14. The Cosmological Dependence of Galaxy Cluster Morphologies

    Science.gov (United States)

    Crone, Mary Margaret

    1995-01-01

    Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should

  15. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    Science.gov (United States)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  16. Simulation-based marginal likelihood for cluster strong lensing cosmology

    Science.gov (United States)

    Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.

    2018-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.

  17. Indian cosmogonies and cosmologies

    Directory of Open Access Journals (Sweden)

    Pajin Dušan

    2011-01-01

    Full Text Available Various ideas on how the universe appeared and develops, were in Indian tradition related to mythic, religious, or philosophical ideas and contexts, and developed during some 3.000 years - from the time of Vedas, to Puranas. Conserning its appeareance, two main ideas were presented. In one concept it appeared out of itself (auto-generated, and gods were among the first to appear in the cosmic sequences. In the other, it was a kind of divine creation, with hard work (like the dismembering of the primal Purusha, or as emanation of divine dance. Indian tradition had also various critiques of mythic and religious concepts (from the 8th c. BC, to the 6c., who favoured naturalistic and materialistic explanations, and concepts, in their cosmogony and cosmology. One the peculiarities was that indian cosmogony and cosmology includes great time spans, since they used a digit system which was later (in the 13th c. introduced to Europe by Fibonacci (Leonardo of Pisa, 1170-1240.

  18. The influence of super-horizon scales on cosmological observables generated during inflation

    Science.gov (United States)

    Matarrese, Sabino; Musso, Marcello A.; Riotto, Antonio

    2004-05-01

    Using the techniques of out-of-equilibrium field theory, we study the influence on properties of cosmological perturbations generated during inflation on observable scales coming from fluctuations corresponding today to scales much bigger than the present Hubble radius. We write the effective action for the coarse grained inflaton perturbations, integrating out the sub-horizon modes, which manifest themselves as a coloured noise and lead to memory effects. Using the simple model of a scalar field with cubic self-interactions evolving in a fixed de Sitter background, we evaluate the two- and three-point correlation function on observable scales. Our basic procedure shows that perturbations do preserve some memory of the super-horizon scale dynamics, in the form of scale dependent imprints in the statistical moments. In particular, we find a blue tilt of the power spectrum on large scales, in agreement with the recent results of the WMAP collaboration which show a suppression of the lower multipoles in the cosmic microwave background anisotropies, and a substantial enhancement of the intrinsic non-Gaussianity on large scales.

  19. Post-inflationary brane cosmology

    International Nuclear Information System (INIS)

    Mazumdar, Anupam

    2001-01-01

    The brane cosmology has invoked new challenges to the usual Big Bang cosmology. In this paper we present a brief account on thermal history of the post-inflationary brane cosmology. We have realized that it is not obvious that the post-inflationary brane cosmology would always deviate from the standard Big Bang cosmology. However, if it deviates some stringent conditions on the brane tension are to be satisfied. In this regard we study various implications on gravitino production and its abundance. We discuss Affleck-Dine mechanism for baryogenesis and make some comments on moduli and dilaton problems in this context

  20. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    He, Minxi; Liu, Junyu; Lu, Shiyun; Cai, Yi-Fu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhou, Siyi; Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Brandenberger, Robert, E-mail: hmxz0@mail.ustc.edu.cn, E-mail: jliu2@caltech.edu, E-mail: shiyun@mail.ustc.edu.cn, E-mail: zhousiyi1@gmail.com, E-mail: yifucai@ustc.edu.cn, E-mail: phyw@ust.hk, E-mail: rhb@physics.mcgill.ca [Department of Physics, McGill University, Montréal, Quebec H3A 2T8 (Canada)

    2016-12-01

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two models produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.

  1. Vices, gods, and virtues: cosmology as a mediating factor in attitudes toward male homosexuality.

    Science.gov (United States)

    Hoffman, R J

    Using historical and anthropological evidence, the article examines the relationship of the polytheistic and monotheistic cosmologies and attitudes toward sexuality, in particular, male homosexuality. The polytheistic cosmology included the ideas of the continuity of creation, the generative forces of the universe as a whole, and gender blurring in the realm of the supernatural. In the monotheistic cosmology the godhead (Yahweh) is unborn and does not father any generations, the universe is desexualized, and the conception of gender is rigidified. The author concludes that polytheism created the conditions for a wide variety of sexual expression and sex-role behavior and did not preclude any particular form of sexual activity. In contradistinction, the monotheistic cosmology was highly restrictive of permissible male and female behavior and sexual expression and conduct. Consequently, polytheism was able to embrace the crossing of gender lines and homosexual relationships while monotheism was incapable of making these accommodations.

  2. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  3. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  4. Einstein and cosmology

    International Nuclear Information System (INIS)

    Gekman, O.

    1982-01-01

    The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory

  5. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Turner, M.S.; Schramm, D.N.

    1985-01-01

    During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe

  6. Supersymmetric grand unified theories and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1983-01-01

    By examining the behavior of supersymmetric grand unified theories (GUT's) in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUT's. In the second class of models, the superheavy GUT scale is related to the supersymmetry-breaking scale in the manner of Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out

  7. Cosmological implications of grand unified theories

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1982-01-01

    These lectures, mainly devoted to the cosmological implications of GUTs, also include the essential ingredients of GUTs and some of their important applications to particle physics. Section 1 contains some basic points concerning the structure of the standard strong and electroweak interactions prior to grand unification. A detailed expose of GUTs is attempted in sect. 2, including their basci principles and their consequences for particle physics. The minimal, simplest GUT, SU 5 is analysed in some detail and it will be used throughout these lectures as the GUT prototype. Finally, sect. 3 contains the most important cosmological implications of GUTs, including baryon number generation in the early Universe (in rather lengthy detail), dissipative processes in the very early Universe, grand unified monopoles, etc. (orig./HSI)

  8. Cosmology and time

    Directory of Open Access Journals (Sweden)

    Balbi Amedeo

    2013-09-01

    Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.

  9. Quantum cosmology - science of Genesis

    International Nuclear Information System (INIS)

    Padmanabhan, Thanu

    1987-01-01

    Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)

  10. Generalized teleparallel cosmology and initial singularity crossing

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg [Center for Theoretical Physics, the British University in Egypt, Suez Desert Road, Sherouk City 11837 (Egypt)

    2017-02-01

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. The milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.

  11. Philosophical Roots of Cosmology

    Science.gov (United States)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  12. Observational cosmology

    NARCIS (Netherlands)

    Sanders, RH; Papantonopoulos, E

    2005-01-01

    I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic

  13. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  14. Quantum cosmology with effects of a preferred reference frame

    International Nuclear Information System (INIS)

    Ghaffarnejad, Hossein

    2010-01-01

    Recently, we presented a gravity model by generalizing the Brans-Dicke theory which is suitable for studying the metric signature transition dynamics without using an imaginary time parameter. Adding a suitable scalar potential described in terms of the Brans-Dicke scalar field 'Φ-tilde, this alternative theory is used to study the Wheeler-DeWitt approach of quantum cosmology. We assumed that the universe is defined in a flat Robertson-Walker metric with Lorentzian signature. In that case, the Wheeler-DeWitt wavefunctional is obtained as two-dimensional quantum harmonic oscillator convergent polynomials for both of the choices of positive and negative values of the Brans-Dicke parameter. Here we choose a preferred reference frame with a time coordinate of 'γ' which relates to time of cosmological free falling observer 't' as 'dt= Φ-tilde(γ)dγ'.

  15. Measuring the cosmological constant through the Lyman-alpha forest using the Alcock-Paczynski test

    Science.gov (United States)

    Lin, Wen-Ching

    An important topic in cosmology is the determination of the energy densities of the major components of the Universe---OB, O DM and OΛ. Among these, the cosmological constant OΛ, which associates with the vacuum energy of our universe, draws specific attentions for its importance in fundamental particle physics. The Lyalpha forest QSO spectra are observationally available from z ˜ 0 to z ˜ 4. Recently the concept of performing the Alcock-Paczynski test on the Lyalpha forest to determine the cosmological constant has been proposed. This motivates us to develop a methodology incorporating sophisticated cosmological hydrodynamics simulations including these effects to implement the AP test and to perform an accurate measurement on the cosmological constant O Λ. To manipulate the data from paired QSO spectra with different angular separations, we propose an explicit method based on the maximum likelihood estimation. We use this method to implement the AP test and demonstrate the whole procedure based on our numerical simulations. Using mock pair spectra, we estimate that more than 40 pairs are required to derive an accurate value of OΛ due to the impact of cosmic variance. The degeneracy of other cosmological parameters is an important topic for this project. We examine two other parameters, sigma8 and n, the initial power spectrum amplitude and index, whose value are not consistently derived through other means. We conclude that when the uncertainties of these two parameters are around 10%--20%, the resulting bias in O Λ is less than 10%. Using a small sample of currently available QSO pairs, we have derived OΛ = 0.65+0.39-1.16 . Our preliminary result encourges us to take further steps on this project.

  16. f(R) gravity cosmology in scalar degree of freedom

    International Nuclear Information System (INIS)

    Goswami, Umananda Dev; Deka, Kabita

    2014-01-01

    The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background

  17. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Turner, M.S.

    1986-01-01

    Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe

  18. A New Approach for Obtaining Cosmological Constraints from Type Ia Supernovae using Approximate Bayesian Computation

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Elise; Wolf, Rachel; Sako, Masao

    2016-11-09

    Cosmological parameter estimation techniques that robustly account for systematic measurement uncertainties will be crucial for the next generation of cosmological surveys. We present a new analysis method, superABC, for obtaining cosmological constraints from Type Ia supernova (SN Ia) light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. The ABC method works by using a forward model simulation of the data where systematic uncertainties can be simulated and marginalized over. A key feature of the method presented here is the use of two distinct metrics, the `Tripp' and `Light Curve' metrics, which allow us to compare the simulated data to the observed data set. The Tripp metric takes as input the parameters of models fit to each light curve with the SALT-II method, whereas the Light Curve metric uses the measured fluxes directly without model fitting. We apply the superABC sampler to a simulated data set of $\\sim$1000 SNe corresponding to the first season of the Dark Energy Survey Supernova Program. Varying $\\Omega_m, w_0, \\alpha$ and $\\beta$ and a magnitude offset parameter, with no systematics we obtain $\\Delta(w_0) = w_0^{\\rm true} - w_0^{\\rm best \\, fit} = -0.036\\pm0.109$ (a $\\sim11$% 1$\\sigma$ uncertainty) using the Tripp metric and $\\Delta(w_0) = -0.055\\pm0.068$ (a $\\sim7$% 1$\\sigma$ uncertainty) using the Light Curve metric. Including 1% calibration uncertainties in four passbands, adding 4 more parameters, we obtain $\\Delta(w_0) = -0.062\\pm0.132$ (a $\\sim14$% 1$\\sigma$ uncertainty) using the Tripp metric. Overall we find a $17$% increase in the uncertainty on $w_0$ with systematics compared to without. We contrast this with a MCMC approach where systematic effects are approximately included. We find that the MCMC method slightly underestimates the impact of calibration uncertainties for this simulated data set.

  19. Inflationary and deflationary branches in extended pre-big-bang cosmology

    International Nuclear Information System (INIS)

    Lidsey, J.E.

    1997-01-01

    The pre-big-bang cosmological scenario is studied within the context of the Brans-Dicke theory of gravity. An epoch of superinflationary expansion may occur in the pre-big-bang phase of the Universe close-quote s history in a certain region of parameter space. Two models are considered that contain a cosmological constant in the gravitational and matter sectors of the theory, respectively. Classical pre- and post-big-bang solutions are found for both models. The existence of a curvature singularity forbids a classical transition between the two branches. On the other hand, a quantum cosmological approach based on the tunneling boundary condition results in a nonzero transition probability. The transition may be interpreted as a spatial reflection of the wave function in minisuperspace. copyright 1997 The American Physical Society

  20. Inflationary and deflationary branches in extended pre-big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Lidsey, J.E. [Astronomy Unit, School of Mathematical Sciences, Queen Mary Westfield, Mile End Road, London, E1 4NS (United Kingdom)

    1997-03-01

    The pre-big-bang cosmological scenario is studied within the context of the Brans-Dicke theory of gravity. An epoch of superinflationary expansion may occur in the pre-big-bang phase of the Universe{close_quote}s history in a certain region of parameter space. Two models are considered that contain a cosmological constant in the gravitational and matter sectors of the theory, respectively. Classical pre- and post-big-bang solutions are found for both models. The existence of a curvature singularity forbids a classical transition between the two branches. On the other hand, a quantum cosmological approach based on the tunneling boundary condition results in a nonzero transition probability. The transition may be interpreted as a spatial reflection of the wave function in minisuperspace. {copyright} {ital 1997} {ital The American Physical Society}

  1. The cosmological perturbation theory in loop cosmology with holonomy corrections

    International Nuclear Information System (INIS)

    Wu, Jian-Pin; Ling, Yi

    2010-01-01

    In this paper we investigate the scalar mode of first-order metric perturbations over spatially flat FRW spacetime when the holonomy correction is taken into account in the semi-classical framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric perturbation the holonomy effects influence both background and perturbations, and contribute the non-trivial terms S h1 and S h2 in the cosmological perturbation equations

  2. An analysis of the phase space of Horava-Lifshitz cosmologies

    International Nuclear Information System (INIS)

    Carloni, S; Elizalde, E; Silva, P J

    2010-01-01

    Using the dynamical system approach, the properties of cosmological models based on the Horava-Lifshitz gravity are systematically studied. In particular, the cosmological phase space of the Horava-Lifshitz model is characterized. The analysis allows us to compare some key physical consequences of the imposition (or not) of detailed balance. The result of the investigation is that in the detailed balance case one of the attractors in the theory corresponds to an oscillatory behavior. Such oscillations can be associated with a bouncing universe, as previously described by Brandenberger, and will prevent a possible evolution toward a de Sitter universe. Other results obtained show that the cosmological models generated by Horava-Lifshitz gravity without the detailed balance assumption have indeed the potential to describe the transition between the Friedmann and the dark-energy eras. The whole analysis leads to the plausible conclusion that a cosmology compatible with the present observations of the universe can be achieved only if the detailed balance condition is broken.

  3. Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light

    Science.gov (United States)

    Özer, Hatice; Delice, Özgür

    2018-03-01

    Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.

  4. Low-redshift effects of local structure on the Hubble parameter in presence of a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)

    2016-04-15

    In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)

  5. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Martina Gerbino

    2017-12-01

    Full Text Available We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i=mi/Mν (where the index i=1,2,3 indicates the three mass eigenstates carried by each of the mass eigenstates mi, after marginalizing over the (unknown neutrino mass ordering, either normal ordering (NH or inverted ordering (IH. The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameter htype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4:3 from Planck temperature and large-scale polarization in combination with BAO (3:2 if small-scale polarization is also included. Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE and BAO surveys (DESI may determine the neutrino mass hierarchy at a high

  6. Dynamics of cosmological perturbations and reheating in the anamorphic universe

    Energy Technology Data Exchange (ETDEWEB)

    Graef, L.L.; Ferreira, Elisa G.M.; Brandenberger, Robert [Physics Department, McGill University, Montreal, QC, H3A 2T8 (Canada); Hipólito-Ricaldi, W.S., E-mail: leilagraef@on.br, E-mail: wiliam.ricaldi@ufes.br, E-mail: elisa.ferreira@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, Rodovia BR 101 Norte, km. 60, São Mateus, ES (Brazil)

    2017-04-01

    We discuss scalar-tensor realizations of the Anamorphic cosmological scenario recently proposed by Ijjas and Steinhardt [1]. Through an analysis of the dynamics of cosmological perturbations we obtain constraints on the parameters of the model. We also study gravitational Parker particle production in the contracting Anamorphic phase and we compute the fraction between the energy density of created particles at the end of the phase and the background energy density. We find that, as in the case of inflation, a new mechanism is required to reheat the universe.

  7. A taste of cosmology

    International Nuclear Information System (INIS)

    Verde, L.

    2011-01-01

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)

  8. A Taste of Cosmology

    CERN Document Server

    Verde, L.

    2013-06-27

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.

  9. Cosmological Constraints from the SDSS maxBCG Cluster Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /CCAPP; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Rykoff, Eli S.; /UC, Santa Barbara; Annis, James T.; /Fermilab; Becker, Matthew R.; /Chicago U. /KICP, Chicago; Evrard, August E.; /Michigan U. /Michigan U., MCTP; Frieman, Joshua A.; /Fermilab /KICP, Chicago /Chicago U.; Hansen, Sarah M.; /UC, Santa Cruz; Hao, Jia; /Michigan U.; Johnston, David E.; /Northwestern U.; Koester, Benjamin P.; /KICP, Chicago /Chicago U.; McKay, Timothy A.; /Michigan U. /Michigan U., MCTP; Sheldon, Erin S.; /Brookhaven; Weinberg, David H.; /CCAPP /Ohio State U.

    2009-08-03

    We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat {Lambda}CDM cosmology, we find {sigma}{sub 8}({Omega}{sub m}/0.25){sup 0.41} = 0.832 {+-} 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find {sigma}{sub 8} = 0.807 {+-} 0.020 and {Omega}{sub m} = 0.265 {+-} 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.

  10. Friedman's cosmological views

    International Nuclear Information System (INIS)

    Heller, M.

    1985-01-01

    Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)

  11. Galileon cosmology

    International Nuclear Information System (INIS)

    Chow, Nathan; Khoury, Justin

    2009-01-01

    We study the cosmology of a galileon scalar-tensor theory, obtained by covariantizing the decoupling Lagrangian of the Dvali-Gabadadze-Poratti (DGP) model. Despite being local in 3+1 dimensions, the resulting cosmological evolution is remarkably similar to that of the full 4+1-dimensional DGP framework, both for the expansion history and the evolution of density perturbations. As in the DGP model, the covariant galileon theory yields two branches of solutions, depending on the sign of the galileon velocity. Perturbations are stable on one branch and ghostlike on the other. An interesting effect uncovered in our analysis is a cosmological version of the Vainshtein screening mechanism: at early times, the galileon dynamics are dominated by self-interaction terms, resulting in its energy density being suppressed compared to matter or radiation; once the matter density has redshifted sufficiently, the galileon becomes an important component of the energy density and contributes to dark energy. We estimate conservatively that the resulting expansion history is consistent with the observed late-time cosmology, provided that the scale of modification satisfies r c > or approx. 15 Gpc.

  12. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1982-06-01

    work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle

  13. Cosmological constant from a deformation of the Wheeler–DeWitt equation

    International Nuclear Information System (INIS)

    Garattini, Remo; Faizal, Mir

    2016-01-01

    In this paper, we consider the Wheeler–DeWitt equation modified by a deformation of the second quantized canonical commutation relations. Such modified commutation relations are induced by a Generalized Uncertainty Principle. Since the Wheeler–DeWitt equation can be related to a Sturm–Liouville problem where the associated eigenvalue can be interpreted as the cosmological constant, it is possible to explicitly relate such an eigenvalue to the deformation parameter of the corresponding Wheeler–DeWitt equation. The analysis is performed in a Mini-Superspace approach where the scale factor appears as the only degree of freedom. The deformation of the Wheeler–DeWitt equation gives rise to a Cosmological Constant even in absence of matter fields. As a Cosmological Constant cannot exist in absence of the matter fields in the undeformed Mini-Superspace approach, so the existence of a non-vanishing Cosmological Constant is a direct consequence of the deformation by the Generalized Uncertainty Principle. In fact, we are able to demonstrate that a non-vanishing Cosmological Constant exists even in the deformed flat space. We also discuss the consequences of this deformation on the big bang singularity.

  14. Cosmological constant from a deformation of the Wheeler–DeWitt equation

    Directory of Open Access Journals (Sweden)

    Remo Garattini

    2016-04-01

    Full Text Available In this paper, we consider the Wheeler–DeWitt equation modified by a deformation of the second quantized canonical commutation relations. Such modified commutation relations are induced by a Generalized Uncertainty Principle. Since the Wheeler–DeWitt equation can be related to a Sturm–Liouville problem where the associated eigenvalue can be interpreted as the cosmological constant, it is possible to explicitly relate such an eigenvalue to the deformation parameter of the corresponding Wheeler–DeWitt equation. The analysis is performed in a Mini-Superspace approach where the scale factor appears as the only degree of freedom. The deformation of the Wheeler–DeWitt equation gives rise to a Cosmological Constant even in absence of matter fields. As a Cosmological Constant cannot exist in absence of the matter fields in the undeformed Mini-Superspace approach, so the existence of a non-vanishing Cosmological Constant is a direct consequence of the deformation by the Generalized Uncertainty Principle. In fact, we are able to demonstrate that a non-vanishing Cosmological Constant exists even in the deformed flat space. We also discuss the consequences of this deformation on the big bang singularity.

  15. Open problems in string cosmology

    International Nuclear Information System (INIS)

    Toumbas, N.

    2010-01-01

    Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Dynamics of the cosmological and Newton’s constant

    International Nuclear Information System (INIS)

    Smolin, Lee

    2016-01-01

    A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density. (paper)

  17. Crucial test of the Dirac cosmologies

    International Nuclear Information System (INIS)

    Steigman, G.

    1978-01-01

    In a cosmology consistent with the Cosmological Principle (large scale, statistical isotropy and homogeneity of the universe), a Planck spectrum is not preserved as the universe evolves unless the number of photons in a comoving volume is conserved. It is shown that a large class of cosmological models based on Dirac's Large Numbers Hypothesis (LNH) violate this constraint. The observed isotropy and spectral distribution of the microwave background radiation thus provide a crucial test of such cosmologies. After reviewing the LNH, the general evolution of radiation spectra in cosmologies consistent with the cosmological principle is outlined. It is shown that the predicted deviations from a Planck spectrum for Dirac cosmologies (as well as for ''tired-light'' cosmologies) are enormous. The Planckian (or near-Planckian) spectral form for the microwave radiation provides a crucial test, failed by such cosmologies

  18. A critical review of classical bouncing cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Diana, E-mail: dbattefe@astro.physik.uni-goettingen.de [Institut for Astrophysics, University of Goettingen, Friedrich-Hund Platz 1, D-37077 (Germany); Peter, Patrick, E-mail: peter@iap.fr [Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris (France)

    2015-04-01

    Given the proliferation of bouncing models in recent years, we gather and critically assess these proposals in a comprehensive review. The PLANCK data shows an unmistakably red, quasi scale-invariant, purely adiabatic primordial power spectrum and no primary non-Gaussianities. While these observations are consistent with inflationary predictions, bouncing cosmologies aspire to provide an alternative framework to explain them. Such models face many problems, both of the purely theoretical kind, such as the necessity of violating the NEC and instabilities, and at the cosmological application level, as exemplified by the possible presence of shear. We provide a pedagogical introduction to these problems and also assess the fitness of different proposals with respect to the data. For example, many models predict a slightly blue spectrum and must be fine-tuned to generate a red spectral index; as a side effect, large non-Gaussianities often result. We highlight several promising attempts to violate the NEC without introducing dangerous instabilities at the classical and/or quantum level. If primordial gravitational waves are observed, certain bouncing cosmologies, such as the cyclic scenario, are in trouble, while others remain valid. We conclude that, while most bouncing cosmologies are far from providing an alternative to the inflationary paradigm, a handful of interesting proposals have surfaced, which warrant further research. The constraints and lessons learned as laid out in this review might guide future research.

  19. A savour of Cosmology

    International Nuclear Information System (INIS)

    Langer, M.

    2007-01-01

    This is a very concise introductory lecture to Cosmology. We start by reviewing the basics of homogeneous and isotropic cosmology. We then spend some time on the description of the Cosmic Microwave Background. Finally, a small section is devoted to the discussion of the cosmological constant and of some of the related problems

  20. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  1. Program for parameter studies of steam generators

    International Nuclear Information System (INIS)

    Mathisen, R.P.

    1982-11-01

    R2-GEN is a computer code for stationary thermal parameter studies of steam generators. The geometry and data are valid for Ringhals-2 generators. Subroutines and relevant calculations are included. The program is based on a heterogeneous flow model and some applications on tubes with varying contamination are presented. (G.B.)

  2. Topics in inflationary cosmology

    International Nuclear Information System (INIS)

    Kahn, R.N.

    1985-01-01

    This thesis examines several topics in the theory of inflationary cosmology. It first proves the existence of Hawking Radiation during the slow-rolling period of a new inflationary universe. It then derives and somewhat extends Bardeen's gauge invariant formalism for calculating the growth of linear gravitational perturbations in a Friedmann-Robertson-Walker cosmological background. This formalism is then applied, first to several new inflationary universe models all of which show a Zel'dovich spectrum of fluctuations, but with amplitude sigma(100 4 ) above observational limits. The general formalism is next applied to models that exhibit primordial inflation. Fluctuations in these models also exhibit a Zel'dovich spectrum here with an acceptable amplitude. Finally the thesis presents the results of new, numerical calculations. A classical, (2 + 1) dimensional computer model is developed that includes a Higgs field (which drives inflation) along with enough auxiliary fields to generate dynamically not only a thermal bath, but also the fluctuations that naturally accompany that bath. The thesis ends with a discussion of future prospects

  3. Measures, Probability and Holography in Cosmology

    Science.gov (United States)

    Phillips, Daniel

    This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We

  4. Galaxy Formation Efficiency and the Multiverse Explanation of the Cosmological Constant with EAGLE Simulations

    Science.gov (United States)

    Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.

  5. Cosmological Models and Stability

    Science.gov (United States)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  6. A method for generating subgroup parameters from resonance tables

    International Nuclear Information System (INIS)

    Devan, K.; Mohanakrishnan, P.

    1993-01-01

    A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. (author). 8 refs., 2 tabs

  7. Phantom cosmologies and fermions

    International Nuclear Information System (INIS)

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  8. Teichmueller motion of (2+1)-dimensional gravity with the cosmological constant

    International Nuclear Information System (INIS)

    Fujiwara, Yoshihisa; Soda, Jiro.

    1989-08-01

    The (2+1)-dimensional Einstein gravity with a cosmological constant is studied in the ADM canonical formalism. Adopting the York's time slice, we completely solve the initial-value problem and the time evolution equations with an initial spacelike 2-surface being a closed Riemann surface of genus zero and one. The result in a torus case is that the Teichmueller parameters for the torus follow a geodesic in the Teichmueller space but its motion asymptotically stops due to the presence of the cosmological constant. (author)

  9. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight

    Science.gov (United States)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.

    2017-08-01

    We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  10. Dark energy cosmology with generalized linear equation of state

    International Nuclear Information System (INIS)

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  11. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  12. Quantum cosmological models

    International Nuclear Information System (INIS)

    Coule, D H

    2005-01-01

    We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)

  13. Growth of matter perturbation in quintessence cosmology

    Science.gov (United States)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  14. A varying-α brane world cosmology

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-08-01

    We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)

  15. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  16. Cosmological constraints from galaxy clustering in the presence of massive neutrinos

    Science.gov (United States)

    Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L.

    2018-06-01

    The clustering ratio is defined as the ratio between the correlation function and the variance of the smoothed overdensity field. In Λ cold dark matter (ΛCDM) cosmologies without massive neutrinos, it has already been proven to be independent of bias and redshift space distortions on a range of linear scales. It therefore can provide us with a direct comparison of predictions (for matter in real space) against measurements (from galaxies in redshift space). In this paper we first extend the applicability of such properties to cosmologies that account for massive neutrinos, by performing tests against simulated data. We then investigate the constraining power of the clustering ratio on cosmological parameters such as the total neutrino mass and the equation of state of dark energy. We analyse the joint posterior distribution of the parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12, and the angular power spectra of cosmic microwave background temperature and polarization anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast the constraining power the clustering ratio will achieve, predicting the amplitude of its errors with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck covariance matrix alone, then we add information from the clustering ratio. We find a significant improvement on the constraint of all considered parameters, and in particular an improvement of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.

  17. Revisiting cosmological bounds on sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Aaron C. [Institute for Particle Physics Phenomenology (IPPP), Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Martínez, Enrique Fernández [Departamento and Instituto de Física Teórica (IFT), UAM/CSIC, Universidad Autonoma de Madrid, C/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain); Hernández, Pilar; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lattanzi, Massimiliano, E-mail: aaron.vincent@durham.ac.uk, E-mail: enrique.fernandez-martinez@uam.es, E-mail: m.pilar.hernandez@uv.es, E-mail: omena@ific.uv.es, E-mail: lattanzi@fe.infn.it [Dipartimento di Fisica e Science della Terra, Università di Ferrara and INFN, sezione di Ferrara, Polo Scientifico e Tecnologico, Edificio C Via Saragat, 1, I-44122 Ferrara (Italy)

    2015-04-01

    We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R{sub CMB} and the sound horizon r{sub s} from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin{sup 2}θ ∼< 0.026 (m{sub s}/eV){sup −2}.

  18. Cosmology with decaying particles

    International Nuclear Information System (INIS)

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons β -1 identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (β) family of solutions; physically β -1 approx. = (Ω/sub R//Ω/sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references

  19. Cosmology with decaying particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S.

    1984-09-01

    We consider a cosmological model in which an unstable massive relic particle species (denoted by X) has an initial mass density relative to baryons ..beta../sup -1/ identically equal rho/sub X//rho/sub B/ >> 1, and then decays recently (redshift z less than or equal to 1000) into particles which are still relativistic today (denoted by R). We write down and solve the coupled equations for the cosmic scale factor a(t), the energy density in the various components (rho/sub X/, rho/sub R/, rho/sub B/), and the growth of linear density perturbations (delta rho/rho). The solutions form a one parameter (..beta..) family of solutions; physically ..beta../sup -1/ approx. = (..cap omega../sub R//..cap omega../sub NR/) x (1 + z/sub D/) = (ratio today of energy density of relativistic to nonrelativistic particles) x (1 + redshift of (decay)). We discuss the observational implications of such a cosmological model and compare our results to earlier results computed in the simultaneous decay approximation. In an appendix we briefly consider the case where one of the decay products of the X is massive and becomes nonrelativistic by the present epoch. 21 references.

  20. Cosmology, physics of particles and nuclei

    International Nuclear Information System (INIS)

    2003-01-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  1. Cosmology, physics of particles and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  2. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  3. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  4. Testing cosmology with galaxy clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    2011-01-01

    PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory and cosmo......PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory...... and cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes...

  5. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2017-01-01

    This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.

  6. Everyone's guide to cosmology

    International Nuclear Information System (INIS)

    Davies, P.

    1991-01-01

    The main concepts of cosmology are discussed, and some of the misconceptions are clarified. The features of big bang cosmology are examined, and it is noted that the existence of the cosmic background radiation provides welcome confirmation of the big bang theory. Calculations of relative abundances of the elements conform with observations, further strengthening the confidence in the basic ideas of big bang cosmology

  7. Bouncing cosmologies from quantum gravity condensates

    Science.gov (United States)

    Oriti, Daniele; Sindoni, Lorenzo; Wilson-Ewing, Edward

    2017-02-01

    We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of isotropic group field theory condensate states in the Gross-Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

  8. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  9. The cosmological term and a modified Brans-Dicke cosmology

    International Nuclear Information System (INIS)

    Endo, M.; Fukui, T.

    1977-01-01

    Adding the cosmological term Λ, which is assumed to be variable in this paper, to the Brans-Dicke Lagrangian, an attempt is made to understand the meaning of the term and to relate it to the mass of the universe. The Dirac large-number hypothesis is considered, applying the results obtained from the application of the present theory to a uniform cosmological model. (author)

  10. Viscous coupled fluids in inflationary cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Brevik, I., E-mail: iver.h.brevik@ntnu.no [Norwegian University of Science and Technology (Norway); Timoshkin, A. V., E-mail: timoshkinAV@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation)

    2016-04-15

    We consider the inflation produced by two coupled fluids in a flat Friedmann–Robertson–Walker universe. Different cosmological models for describing inflation with the use of an inhomogeneous equation of state for the fluid are investigated. The gravitational equations for energy and matter are solved, and analytic representations for the Hubble parameter and the energy density are obtained. Corrections to the energy density for matter inducing the inflation and the coupling to energy are discussed. We analyze the description of inflation induced by nonconstant equation-of-state parameters from fluid viscosity. The correspondence between the spectral index and the tensor-to-scalar ratio recently observed by the Planck satellite is considered.

  11. Simple cosmological model with inflation and late times acceleration

    Science.gov (United States)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-03-01

    In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.

  12. astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, E.; Madigan, M.

    2017-04-01

    Given the complexity of modern cosmological parameter inference where we arefaced with non-Gaussian data and noise, correlated systematics and multi-probecorrelated data sets, the Approximate Bayesian Computation (ABC) method is apromising alternative to traditional Markov Chain Monte Carlo approaches in thecase where the Likelihood is intractable or unknown. The ABC method is called"Likelihood free" as it avoids explicit evaluation of the Likelihood by using aforward model simulation of the data which can include systematics. Weintroduce astroABC, an open source ABC Sequential Monte Carlo (SMC) sampler forparameter estimation. A key challenge in astrophysics is the efficient use oflarge multi-probe datasets to constrain high dimensional, possibly correlatedparameter spaces. With this in mind astroABC allows for massive parallelizationusing MPI, a framework that handles spawning of jobs across multiple nodes. Akey new feature of astroABC is the ability to create MPI groups with differentcommunicators, one for the sampler and several others for the forward modelsimulation, which speeds up sampling time considerably. For smaller jobs thePython multiprocessing option is also available. Other key features include: aSequential Monte Carlo sampler, a method for iteratively adapting tolerancelevels, local covariance estimate using scikit-learn's KDTree, modules forspecifying optimal covariance matrix for a component-wise or multivariatenormal perturbation kernel, output and restart files are backed up everyiteration, user defined metric and simulation methods, a module for specifyingheterogeneous parameter priors including non-standard prior PDFs, a module forspecifying a constant, linear, log or exponential tolerance level,well-documented examples and sample scripts. This code is hosted online athttps://github.com/EliseJ/astroABC

  13. How robust are inflation model and dark matter constraints from cosmological data?

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Sloth, Martin Snoager

    2006-01-01

    the tensor-to-scalar ratio r and the neutrino mass prevents lambda phi^4 from being excluded by present data. Reversing the argument, if lambda phi^4 is the correct model of inflation, it predicts a sum of neutrino masses at 0.3-0.5 eV, a range compatible with present experimental limits and within the reach......High-precision data from observation of the cosmic microwave background and the large scale structure of the universe provide very tight constraints on the effective parameters that describe cosmological inflation. Indeed, within a constrained class of LambdaCDM models, the simple lambda phi^4...... chaotic inflation model already appears to be ruled out by cosmological data. In this paper, we compute constraints on inflationary parameters within a more general framework that includes other physically motivated parameters such as a nonzero neutrino mass. We find that a strong degeneracy between...

  14. arXiv Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David

    2015-11-06

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $\\Lambda$CDM model, using the one-dimensional Ly$\\alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$\\alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ...

  15. The need for accurate redshifts in supernova cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcino, Josh; Davis, Tamara, E-mail: j.calcino@uq.edu.au, E-mail: tamarad@physics.uq.edu.au [The School of Mathematics and Physics, University of Queensland, Cooper Road, Brisbane (Australia)

    2017-01-01

    Recent papers have shown that a small systematic redshift shift (Δ z ∼ 10{sup −5}) in measurements of type Ia supernovae can cause a significant bias (∼1%) in the recovery of cosmological parameters. Such a redshift shift could be caused, for example, by a gravitational redshift due to the density of our local environment. The sensitivity of supernova data to redshift shifts means supernovae make excellent probes of inhomogeneities. We therefore invert the analysis, and try to diagnose the nature of our local gravitational environment by fitting for Δ z as an extra free parameter alongside the usual cosmological parameters. Using the Joint Light-curve SN Ia dataset we find the best fit includes a systematic redshift shift of Δ z = (2.6{sup +2.7}{sub −2.8}) × 10{sup −4}. This is a larger shift than would be expected due to gravitational redshifts in a standard Λ-Cold Dark Matter universe (though still consistent with zero), and would correspond to a monopole Doppler shift of about 100 km s{sup −1} moving away from the Milky-Way. However, since most supernova measurements are made to a redshift precision of no better than 10{sup −3}, it is possible that a systematic error smaller than the statistical error remains in the data and is responsible for the shift; or that it is an insignificant statistical fluctuation. We find that when Δ z is included as a free parameter while fitting to the JLA SN Ia data, the constraints on the matter density shifts to Ω {sub m} = 0.313{sup +0.042}{sub −0.040}, bringing it into better agreement with the CMB cosmological parameter constraints from Planck. A positive Δ z ∼ 2.6×10{sup −4} would also cause us to overestimate the supernova measurement of Hubble's constant by Δ H {sub 0} ∼ 1 kms{sup −1}Mpc{sup −1}. However this overestimation should diminish as one increases the low-redshift cutoff, and this is not seen in the most recent data.

  16. Locally-rotationally-symmetric Bianchi type-V cosmology with heat flow

    Indian Academy of Sciences (India)

    LRS) Bianchi type-V cosmological model with perfect fluid and heat flow. A general approach is introduced to solve Einstein's field equations using a law of variation for the mean Hubble parameter, which is related to average scale factor of the ...

  17. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen

    2018-03-01

    Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.

  18. Is the cosmological singularity compulsory

    International Nuclear Information System (INIS)

    Bekenstein, J.D.; Meisels, A.

    1980-01-01

    The cosmological singularity is inherent in all conventional general relativistic cosmological models. There can be no question that it is an unphysical feature; yet there does not seem to be any convervative way of eliminating it. Here we present singularity-free isotropic cosmological models which are indistinguishable from general relativistic ones at late times. They are based on the general theory of variable rest masses that we developed recently. Outside cosmology this theory simulates general relativity well. Thus it provides a framework incorporating those features which have made geneal relativity so sucessful while providing a way out of singularity dilemma. The cosmological models can be made to incorporate Dirac's large numbers hypothesis. G(now)/G(0)approx.10 -38

  19. Cosmological information in Gaussianized weak lensing signals

    Science.gov (United States)

    Joachimi, B.; Taylor, A. N.; Kiessling, A.

    2011-11-01

    Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non

  20. Cosmology solved? Maybe

    International Nuclear Information System (INIS)

    Turner, Michael S.

    1999-01-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!

  1. Cosmology solved? Maybe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S

    1999-03-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology{exclamation_point}.

  2. Partial rip scenario - a cosmology with a growing cosmological term

    International Nuclear Information System (INIS)

    Stefancic, H.

    2004-01-01

    A cosmology with the growing cosmological term is considered. If there is no exchange of energy between vacuum and matter components, the requirement of general covariance implies the time dependence of the gravitational constant G. Irrespectively of the exact functional form of the cosmological term growth, the universe ends in a de Sitter regime with a constant asymptotic Λ, but vanishing G. Although there is no divergence of the scale factor in finite time, such as in the 'Big Rip' scenario, gravitationally bound systems eventually become unbound. In the case of systems bound by non-gravitational forces, there is no unbounding effect, as the asymptotic Λ is insufficiently large to disturb these systems

  3. HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr [Department of Earth Sciences, Chosun University, Gwangju 61452 (Korea, Republic of)

    2016-10-20

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.

  4. Future Cosmological Constraints From Fast Radio Bursts

    Science.gov (United States)

    Walters, Anthony; Weltman, Amanda; Gaensler, B. M.; Ma, Yin-Zhe; Witzemann, Amadeus

    2018-03-01

    We consider the possible observation of fast radio bursts (FRBs) with planned future radio telescopes, and investigate how well the dispersions and redshifts of these signals might constrain cosmological parameters. We construct mock catalogs of FRB dispersion measure (DM) data and employ Markov Chain Monte Carlo analysis, with which we forecast and compare with existing constraints in the flat ΛCDM model, as well as some popular extensions that include dark energy equation of state and curvature parameters. We find that the scatter in DM observations caused by inhomogeneities in the intergalactic medium (IGM) poses a big challenge to the utility of FRBs as a cosmic probe. Only in the most optimistic case, with a high number of events and low IGM variance, do FRBs aid in improving current constraints. In particular, when FRBs are combined with CMB+BAO+SNe+H 0 data, we find the biggest improvement comes in the {{{Ω }}}{{b}}{h}2 constraint. Also, we find that the dark energy equation of state is poorly constrained, while the constraint on the curvature parameter, Ω k , shows some improvement when combined with current constraints. When FRBs are combined with future baryon acoustic oscillation (BAO) data from 21 cm Intensity Mapping, we find little improvement over the constraints from BAOs alone. However, the inclusion of FRBs introduces an additional parameter constraint, {{{Ω }}}{{b}}{h}2, which turns out to be comparable to existing constraints. This suggests that FRBs provide valuable information about the cosmological baryon density in the intermediate redshift universe, independent of high-redshift CMB data.

  5. Antimatter and cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1989-01-01

    This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)

  6. Precision cosmological measurements: Independent evidence for dark energy

    International Nuclear Information System (INIS)

    Bothun, Greg; Hsu, Stephen D.H.; Murray, Brian

    2008-01-01

    Using recent precision measurements of cosmological parameters, we re-examine whether these observations alone, independent of type Ia supernova surveys, are sufficient to imply the existence of dark energy. We find that best measurements of the age of the Universe t 0 , the Hubble parameter H 0 and the matter fraction Ω m strongly favor an equation of state defined by (w<-1/3). This result is consistent with the existence of a repulsive, acceleration-causing component of energy if the Universe is nearly flat

  7. The Bright Universe Cosmology

    International Nuclear Information System (INIS)

    Surdin, M.

    1980-01-01

    It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)

  8. Friedmann cosmology with a cosmological 'constant' in the scale covariant theory

    International Nuclear Information System (INIS)

    Beesham, A.

    1986-01-01

    Homogeneous isotropic cosmologies in the presence of a cosmological 'constant' are studied in the scale covariant theory. A class of solutions is obtained for kappa = 0 for models filled with dust, radiation or stiff matter. For kappa not= 0, solutions are presented for the radiation models. (author)

  9. Role of deceleration parameter and interacting dark energy in singularity avoidance

    Science.gov (United States)

    Abdussattar; Prajapati, S. R.

    2011-02-01

    A class of non-singular bouncing FRW models are obtained by constraining the deceleration parameter in the presence of an interacting dark energy represented by a time-varying cosmological constant. The models being geometrically closed, initially accelerate for a certain period of time and decelerate thereafter and are also free from the entropy and cosmological constant problems. Taking a constant of integration equal to zero one particular model is discussed in some detail and the variation of different cosmological parameters are shown graphically for specific values of the parameters of the model. For some specific choice of the parameters of the model the ever expanding models of Ozer & Taha and Abdel-Rahman and the decelerating models of Berman and also the Einstein de-Sitter model may be obtained as special cases of this particular model.

  10. Cosmological observables in the quasi-spherical Szekeres model

    Science.gov (United States)

    Buckley, Robert G.

    2014-10-01

    The standard model of cosmology presents a homogeneous universe, and we interpret cosmological data through this framework. However, structure growth creates nonlinear inhomogeneities that may affect observations, and even larger structures may be hidden by our limited vantage point and small number of independent observations. As we determine the universe's parameters with increasing precision, the accuracy is contingent on our understanding of the effects of such structures. For instance, giant void models can explain some observations without dark energy. Because perturbation theory cannot adequately describe nonlinear inhomogeneities, exact solutions to the equations of general relativity are important for these questions. The most general known solution capable of describing inhomogeneous matter distributions is the Szekeres class of models. In this work, we study the quasi-spherical subclass of these models, using numerical simulations to calculate the inhomogeneities' effects on observations. We calculate the large-angle CMB in giant void models and compare with simpler, symmetric void models that have previously been found inadequate to matchobservations. We extend this by considering models with early-time inhomogeneities as well. Then, we study distance observations, including selection effects, in models which are homogeneous on scales around 100 Mpc---consistent with standard cosmology---but inhomogeneous on smaller scales. Finally, we consider photon polarizations, and show that they are not directly affected by inhomogeneities. Overall, we find that while Szekeres models have some advantages over simpler models, they are still seriously limited in their ability to alter our parameter estimation while remaining within the bounds of current observations.

  11. Planck 2013 results. XVI. Cosmological parameters

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find...... over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r...

  12. Local cosmology of the solar system

    OpenAIRE

    Bel, Ll.

    2010-01-01

    A time-dependent model of space-time is used to describe the gravitational field of the sun. This model is a spherically symmetric approximate solution of Einstein's equations in vacuum. Near the sun it approximates one of the models derived from the Schwarzschild solution, while at large distances it becomes a milne's-like zero space-time curvature model. Two local cosmology free parameters provide simple descriptions for the secular increasing of the astronomical unit, as well as the "anoma...

  13. Cosmological evolution of vacuum and cosmic acceleration

    International Nuclear Information System (INIS)

    Kaya, Ali

    2010-01-01

    It is known that the unregularized expressions for the stress-energy tensor components corresponding to subhorizon and superhorizon vacuum fluctuations of a massless scalar field in a Friedmann-Robertson-Walker background are characterized by the equation of state parameters ω = 1/3 and ω = -1/3, which are not sufficient to produce cosmological acceleration. However, the form of the adiabatically regularized finite stress-energy tensor turns out to be completely different. By using the fact that vacuum subhorizon modes evolve nearly adiabatically and superhorizon modes have ω = -1/3, we approximately determine the regularized stress-energy tensor, whose conservation is utilized to fix the time dependence of the vacuum energy density. We then show that vacuum energy density grows from zero up to H 4 in about one Hubble time, vacuum fluctuations give positive acceleration of the order of H 4 /M 2 p and they can completely alter the cosmic evolution of the universe dominated otherwise by the cosmological constant, radiation or pressureless dust. Although the magnitude of the acceleration is tiny to explain the observed value today, our findings indicate that the cosmological backreaction of vacuum fluctuations must be taken into account in early stages of cosmic evolution.

  14. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  15. The second-order luminosity-redshift relation in a generic inhomogeneous cosmology

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Marozzi, Giovanni; Veneziano, Gabriele; Nugier, Fabien

    2012-01-01

    After recalling a general non-perturbative expression for the luminosity-redshift relation holding in a recently proposed 'geodesic light-cone' gauge, we show how it can be transformed to phenomenologically more convenient gauges in which cosmological perturbation theory is better understood. We present, in particular, the complete result on the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic perturbed cosmology, assuming that appreciable vector and tensor perturbations are only generated at second order. This relation provides a basic ingredient for the computation of the effects of stochastic inhomogeneities on precision dark-energy cosmology whose results we have anticipated in a recent letter. More generally, it can be used in connection with any physical information carried by light-like signals traveling along our past light-cone

  16. Cosmological Particle Data Compression in Practice

    Science.gov (United States)

    Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.

    2017-12-01

    In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.

  17. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    Science.gov (United States)

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  18. Cosmic Explosions, Life in the Universe, and the Cosmological Constant

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia

    2016-02-01

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  19. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  20. The new images of the microwave sky: a concordance cosmology?

    CERN Document Server

    Bernardis, P D; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Coble, K; Contaldi, C R; Crill, B P; De Gasperis, G; De Troia, G; Farese, P; Ganga, K; Giacometti, M; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A H; Jones, W C; Lange, A E; Martinis, L; Mason, P; Mauskopf, P D; Melchiorri, A; Montroy, T; Natoli, P; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Pongetti, F; Prunet, S; Romeo, G; Ruhl, J E; Scaramuzzi, F; Vittorio, N

    2002-01-01

    The existence and anisotropy of the cosmic microwave background (CMB), the large scale distribution of Galaxies, the expansion of the Universe and the abundance of light elements can be all be explained with a single cosmological model. In this paper we focus on the CMB anisotropy maps produced by the BOOMERanG experiment and on their impact on cosmology. The images are consistent with the result of acoustic oscillations of the photons-matter plasma in the pre-recombination Universe (z > or approx. 1000). We show how the instrument and the observations have been optimized and how the basic parameters of the model are derived from the data. These observations of the CMB are gaussian and point to a low curvature Universe (omega approx 1), as expected in the inflation scenario. In order to fit these observations and other cosmological evidence, the composition of the Universe must have significant contributions from dark matter (omega sub m approx 0.3) and dark energy (omega subLAMBDA approx 0.7).

  1. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  2. Current cosmology

    International Nuclear Information System (INIS)

    Zeldovich, Ya.

    1984-01-01

    The knowledge is summed up of contemporary cosmology on the universe and its development resulting from a great number of highly sensitive observations and the application of contemporary physical theories to the entire universe. The questions are assessed of mass density in the universe, the structure and origin of the universe, its baryon asymmetry and the quantum explanation of the origin of the universe. Physical problems are presented which should be resolved for the future development of cosmology. (Ha)

  3. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  4. Perspectives in cosmology

    International Nuclear Information System (INIS)

    Vilenkin, Alexander

    2010-01-01

    The n ew standard cosmology , based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.

  5. Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology

    International Nuclear Information System (INIS)

    Aghmohammadi, A; Abolhassani, M R; Saaidi, Kh; Vajdi, A

    2009-01-01

    In this paper, using f(R) theory of gravity we explicitly calculate cosmological evolution in the presence of a perfect fluid source in four- and five-dimensional space-time in which this cosmological evolution in self-creation is presented by Reddy et al (2009 Int. J. Theor. Phys. 48 10). An exact cosmological model is presented using a relation between Einstein's gravity field equation components due to a metric with the same component from f(R) theory of gravity. Some physics and kinematical properties of the model are also discussed.

  6. An introduction to modern cosmology

    CERN Document Server

    Liddle, Andrew

    2015-01-01

    An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation

  7. An introduction to cosmology

    CERN Document Server

    Kunze, Kerstin E.

    2016-12-20

    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.

  8. Milgrom's revision of Newton's laws - Dynamical and cosmological consequences

    Science.gov (United States)

    Felten, J. E.

    1984-01-01

    Milgrom's (1983) recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. It is shown by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a 'Milgrom universe' will recollapse even if the classical closure parameter Omega is much less than unity. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A new theory of gravitation will be needed before the behavior of a Milgrom universe can be predicted.

  9. Cosmological horizons, quintessence and string theory

    International Nuclear Information System (INIS)

    Kaloper, Nemanja

    2003-01-01

    String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)

  10. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    Science.gov (United States)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  11. Quintessence and the cosmological constant

    International Nuclear Information System (INIS)

    Doran, M.; Wetterich, C.

    2003-01-01

    Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant

  12. Long wavelength limit of evolution of cosmological perturbations in the universe where scalar fields and fluids coexist

    International Nuclear Information System (INIS)

    Hamazaki, Takashi

    2008-01-01

    We present the LWL formula which represents the long wavelength limit of the solutions of evolution equations of cosmological perturbations in terms of the exactly homogeneous solutions in the most general case where multiple scalar fields and multiple perfect fluids coexist. We find the conserved quantity which has origin in the adiabatic decaying mode, and by regarding this quantity as the source term we determine the correction term which corrects the discrepancy between the exactly homogeneous perturbations and the k→0 limit of the evolutions of cosmological perturbations. This LWL formula is useful for investigating the evolutions of cosmological perturbations in the early stage of our universe such as reheating after inflation and the curvaton decay in the curvaton scenario. When we extract the long wavelength limits of evolutions of cosmological perturbations from the exactly homogeneous perturbations by the LWL formula, it is more convenient to describe the corresponding exactly homogeneous system with not the cosmological time but the scale factor as the evolution parameter. By applying the LWL formula to the reheating model and the curvaton model with multiple scalar fields and multiple radiation fluids, we obtain the S formula representing the final amplitude of the Bardeen parameter in terms of the initial adiabatic and isocurvature perturbations

  13. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    Science.gov (United States)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  14. Perspectives in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2010-01-01

    The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.

  15. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  16. Inflation and quantum cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1991-01-01

    In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)

  17. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2011-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  18. Particle theory and cosmology

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.

    1991-01-01

    This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology

  19. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  20. Was Newtonian cosmology really inconsistent?

    Science.gov (United States)

    Vickers, Peter

    This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.