WorldWideScience

Sample records for generation air transportation

  1. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    Science.gov (United States)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  2. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Science.gov (United States)

    2011-12-15

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 91, 121, 125, 129, and 135 Proposed Provision of Navigation Services for the Next Generation Air Transportation System (Next...) navigation infrastructure to enable performance-based navigation (PBN) as part of the Next Generation Air...

  3. Particle modeling of transport of α-ray generated ion clusters in air

    International Nuclear Information System (INIS)

    Tong, Lizhu; Nanbu, Kenichi; Hirata, Yosuke; Izumi, Mikio; Miyamoto, Yasuaki; Yamaguchi, Hiromi

    2006-01-01

    A particle model is developed using the test-particle Monte Carlo method to study the transport properties of α-ray generated ion clusters in a flow of air. An efficient ion-molecule collision model is proposed to simulate the collisions between ion and air molecule. The simulations are performed for a steady state of ion transport in a circular pipe. In the steady state, generation of ions is balanced with such losses of ions as absorption of the measuring sensor or pipe wall and disappearance by positive-negative ion recombination. The calculated ion current to the measuring sensor agrees well with the previous measured data. (author)

  4. Compressed Air/Vacuum Transportation Techniques

    Science.gov (United States)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  5. Concept of Operations for the Next Generation Air Transportation System, Version 2.0

    Science.gov (United States)

    2007-06-13

    instrument flight rules [ IFR ]), and communication with the ANSP via voice radio. In airspace where TBO is used (see Section 2.4), the minimum...GENERATION AIR TRANSPORTATION SYSTEM (NEXTGEN) JOINT PLANNING AND DEVELOPMENT OFFICE 2-32 VERSION 2.0 Transport category IFR -capable rotorcraft...disapproval, or a recommendation to amend the plan to include easements, noise mitigation, and disclosure requirements. The jurisdiction seeking to approve

  6. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    Science.gov (United States)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  7. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  8. The Economic and Social Benefits of Air Transport

    OpenAIRE

    GHEORGHE Camelia; SEBEA Mihai

    2010-01-01

    Air transport is an innovative industry that drives economic and social progress. It connects people, countries and cultures; provides access to global markets and generates trade and tourism. It also forges links between developed and developing nations. Like most human activities, air transport has an impact on the environment, mainly through noise and emissions that affect local air quality and the climate. The industry fully recognises its responsibility in this regard and is determined t...

  9. 77 FR 50420 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Science.gov (United States)

    2012-08-21

    ... Air Transportation System (NextGen) Transition to Performance-Based Navigation (PBN); Disposition of... safety, minimize economic impacts from GPS outages within the NAS and support air transportation's timing... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 91, 97, 121, 125, 129...

  10. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    Science.gov (United States)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  11. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    Science.gov (United States)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  12. The Integrated Air Transportation System Evaluation Tool

    Science.gov (United States)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  13. 22 CFR 228.22 - Air transportation.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation is... U.S. flag air carriers for all international air travel and transportation, unless such service is...

  14. Radioactive material air transportation

    International Nuclear Information System (INIS)

    Pader y Terry, Claudio Cosme

    2002-01-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  15. Dynamic airspace configuration algorithms for next generation air transportation system

    Science.gov (United States)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  16. Transportation and air quality

    International Nuclear Information System (INIS)

    Roseland, M.

    1992-01-01

    In the greater Vancouver regional district (GVRD), some 80% of the annual production of 600,000 tonnes of air pollutants come from motor vehicles. Three critical air quality issues in the GVRD are discussed: local air pollution, ozone layer depletion, and greenhouse gas emissions, all of which are fundamentally linked to transportation. Overall air quality in the GVRD has been judged acceptable by current federal standards, but ground-level ozone has exceeded maximum tolerable levels at some locations and concentrations of suspended particulates are above maximum acceptable levels. Serious deterioration in air quality has been predicted unless a concerted effort is made to manage air quality on an airshed-wide basis. The GVRD is developing Canada's first Air Management Plan with the goal of halving atmospheric emissions by 2000. GVRD transportation priorities stress public transit, walking, cycling, car pooling, and reducing of travel demand; however, the viability of such strategies depends on decisions made outside the transportation sector. Restricted authority and jurisdiction also hinder GVRD goals; the regional level of government has no authority over highways or transit and only has authority for pollution control in some parts of the Fraser Valley. Airshed quality management, using the Los Angeles example, is seen as a possible direction for future GVRD policymaking in the transportation sector. A single regional planning agency with responsibility for transportation, land use, and air quality management appears as the best option for an integrated approach to solve multiple problems. 19 refs

  17. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    Science.gov (United States)

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (pair space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (ptransport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (ptransport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Radioactive material air transportation; Transporte aereo de material radioativo

    Energy Technology Data Exchange (ETDEWEB)

    Pader y Terry, Claudio Cosme [Varig Logistica (VARIGLOG), Sao Paulo, SP (Brazil)

    2002-07-01

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation.

  19. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  20. Spatial Pattern, Transportation and Air Quality Nexus: The Case of Iskandar Malaysia

    Directory of Open Access Journals (Sweden)

    Azalia Mohd Yusop

    2016-09-01

    Full Text Available Spatial pattern, transportation, and air quality are three development entities which significantly affecting one another. This nexus exhibits the urbanization imprint accouter transportation generating air pollution as a reflection of spatial distribution. The integration among them is a vital part of development as it affects the societal living environment. It provides unfavorable air quality and directly cause health problems. The developing region of Iskandar Malaysia exhibits huge spatial distribution transformation accompanied by large percentage of urbanization rate, but seems less integration of land use and transportation planning which causes the exaggeration of air pollution. We carry out the research on the nexus of spatial distribution, transportation and air quality in Iskandar Malaysia by analyzing and evaluating the interconnectivity of these three entities. The spatial analysis and evaluation on the land use development pattern and spatial policy shows that the Iskandar development region are growing in the polycentric manners, where the spatial development policy drives the distributional growth of new sub-centers. We undertook a household-based travel survey that reveals the poly-centricity reflected by the de-concentration of workplaces which shifted from the single point towards multiple centers. On the other hand, this phenomenon has created a distributional traffic pattern amid the high dependency on the private vehicles of the citizens in Iskandar Malaysia. With a predominantly fossil fuel consuming vehicles, this has generated air pollution. Based on the traffic survey and the dependency of the citizens on private cars for their daily mobility, the concentration of air pollution is seemingly at risk. This research reflects that Iskandar Malaysia development region currently undergoes towards polycentric development with some new urban centers. We found that land use and transportation planning policies require serious

  1. 14 CFR 399.86 - Payments for non-air transportation services for air cargo.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payments for non-air transportation... Enforcement § 399.86 Payments for non-air transportation services for air cargo. The Board considers that... air carriers for non-air transportation preparation of air cargo shipments are for services ancillary...

  2. Air transport system

    CERN Document Server

    Schmitt, Dieter

    2016-01-01

    The book addresses all major aspects to be considered for the design and operation of aircrafts within the entire transportation chain. It provides the basic information about the legal environment, which defines the basic requirements for aircraft design and aircraft operation. The interactions between  airport, air traffic management and the airlines are described. The market forecast methods and the aircraft development process are explained to understand the very complex and risky business of an aircraft manufacturer. The principles of flight physics as basis for aircraft design are presented and linked to the operational and legal aspects of air transport including all environmental impacts. The book is written for graduate students as well as for engineers and experts, who are working in aerospace industry, at airports or in the domain of transport and logistics.

  3. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    Science.gov (United States)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  4. 14 CFR 221.5 - Unauthorized air transportation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications... Department's granting authority to perform the foreign air transportation covered by such tariff publications...

  5. Air medical transport of cardiac patients.

    Science.gov (United States)

    Essebag, Vidal; Halabi, Abdul R; Churchill-Smith, Michael; Lutchmedial, Sohrab

    2003-11-01

    The air medical transport of cardiac patients is a rapidly expanding practice. For various medical, social, and economic indications, patients are being flown longer distances at commercial altitudes, including international and intercontinental flights. There are data supporting the use of short-distance helicopter flights early in the course of a cardiac event for patients needing emergent transfer for percutaneous coronary intervention or aortocoronary bypass. When considering elective long-distance air medical transport of cardiac patients for social or economic reasons, it is necessary to weigh the benefits against the potential risks of flight. A few recent studies suggest that long-distance air medical transport is safe under certain circumstances. Current guidelines for air travel after myocardial infarction do not address the use of medical escorts or air ambulances equipped with intensive care facilities. Further research using larger prospective studies is needed to better define criteria for safe long-distance air medical transport of cardiac patients.

  6. The critical care air transport program.

    Science.gov (United States)

    Beninati, William; Meyer, Michael T; Carter, Todd E

    2008-07-01

    The critical care air transport team program is a component of the U.S. Air Force Aeromedical Evacuation system. A critical care air transport team consists of a critical care physician, critical care nurse, and respiratory therapist along with the supplies and equipment to operate a portable intensive care unit within a cargo aircraft. This capability was developed to support rapidly mobile surgical teams with high capability for damage control resuscitation and limited capacity for postresuscitation care. The critical care air transport team permits rapid evacuation of stabilizing casualties to a higher level of care. The aeromedical environment presents important challenges for the delivery of critical care. All equipment must be tested for safety and effectiveness in this environment before use in flight. The team members must integrate the current standards of care with the limitation imposed by stresses of flight on their patient. The critical care air transport team capability has been used successfully in a range of settings from transport within the United States, to disaster response, to support of casualties in combat.

  7. Better-Than-Visual Technologies for Next Generation Air Transportation System Terminal Maneuvering Area Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.

    2011-01-01

    A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.

  8. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Centers Contact Us Share Transportation, Air Pollution, and Climate Change Overview Learn about pollutants from vehicles and engines that cause harmful health effects and climate change. Overview of air pollution from transportation Key issues, ...

  9. Air pollution related to sea transport

    International Nuclear Information System (INIS)

    Massin, J.M.; Hertz, O.

    1993-01-01

    Sea transportation contributes only 1-2% of world CO 2 emissions. Owing to the sulphur concentration in the bunker fuels, this transportation mode represents over 4% of the world SO 2 emissions. In addition, NO x emissions are likely to exceed 7% of the world emissions. SO 2 emissions in the North Sea and the Channel account for 15% of the whole French emissions, NO x emissions for about 10% and CO 2 emissions for about 3%. There are several potential measures to reduce the emissions of ship engines - propelling engines or generator driving engines - improvement of fuel quality, by desulphurizing and prohibiting the use of noxious additives such as PCB; use of alternative fuels; engine optimizing; exhaust gas processing; use of new propelling systems. A new organisation of world marketing of fuels with low or high sulphur levels could also be set up. The Sea Protection Committee of the International Maritime Organisation (IMO) discussed this problem during its meeting in 1990. The 73/78 MARPOL convention provides the IMO with an international juridical tool, especially designed for the preclusion of pollution due to sea transportation. It can address the issue of air pollution which requires a concerted approach between seaside countries and the drawing up of international regulations relating to the protection of the sea world. Fuel quality is already controlled by international standards drawn up by ISO. These standards should be improved to reduce air pollution due to sea transportation

  10. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  11. Air medical transportation in India: Our experience.

    Science.gov (United States)

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation.

  12. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    Science.gov (United States)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  13. Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance

    Science.gov (United States)

    2017-04-26

    AFRL-SA-WP-SR-2017-0008 Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance Dina...July 2014 – November 2016 4. TITLE AND SUBTITLE Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance 5a...During Critical Care Air Transport Team Advanced Course validation, three-member teams consisting of a physician, nurse, and respiratory therapist

  14. Intercontinental Transport of Air Pollution

    Science.gov (United States)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  15. Characteristics of nontrauma scene flights for air medical transport.

    Science.gov (United States)

    Krebs, Margaret G; Fletcher, Erica N; Werman, Howard; McKenzie, Lara B

    2014-01-01

    Little is known about the use of air medical transport for patients with medical, rather than traumatic, emergencies. This study describes the practices of air transport programs, with respect to nontrauma scene responses, in several areas throughout the United States and Canada. A descriptive, retrospective study was conducted of all nontrauma scene flights from 2008 and 2009. Flight information and patient demographic data were collected from 5 air transport programs. Descriptive statistics were used to examine indications for transport, Glasgow Coma Scale Scores, and loaded miles traveled. A total of 1,785 nontrauma scene flights were evaluated. The percentage of scene flights contributed by nontraumatic emergencies varied between programs, ranging from 0% to 44.3%. The most common indication for transport was cardiac, nonST-segment elevation myocardial infarction (22.9%). Cardiac arrest was the indication for transport in 2.5% of flights. One air transport program reported a high percentage (49.4) of neurologic, stroke, flights. The use of air transport for nontraumatic emergencies varied considerably between various air transport programs and regions. More research is needed to evaluate which nontraumatic emergencies benefit from air transport. National guidelines regarding the use of air transport for nontraumatic emergencies are needed. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  16. 78 FR 59880 - Enhanced Consumer Protections for Charter Air Transportation

    Science.gov (United States)

    2013-09-30

    ... Protections for Charter Air Transportation AGENCY: Office of the Secretary (OST), U.S. Department of... charter air transportation. First, this proposal would require air taxis and commuter air carriers that sell charter air transportation but rely on others to perform that air transportation to make certain...

  17. 77 FR 53779 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Science.gov (United States)

    2012-09-04

    ... Involving Animals During Air Transport AGENCY: Office of the Secretary (OST), Department of Transportation... period of an NPRM on the reporting of incidents involving animals during air transport that was published... animal during air transport. The NPRM proposed to: (1) Expand the reporting requirement to U.S. carriers...

  18. The transport of civil plutonium by air

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the review entitled ''The Transport of Civil Plutonium by Air'' reported by the Advisory Committee on the Safe Transport of Radioactive Materials (ACTRAM) 1988. The contents contain chapters on the following topics:- the reasons for air transport, the various regulations, packagings for plutonium transport, testing of the packagings, accidents, the consequences of a release, and emergency arrangements. (U.K.)

  19. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Science.gov (United States)

    2010-01-01

    ... involving animals during air transport. 234.13 Section 234.13 Aeronautics and Space OFFICE OF THE SECRETARY... REPORTS § 234.13 Reports by air carriers on incidents involving animals during air transport. (a) Any air... during air transport provided by the air carrier. (b) The report shall be made in the form and manner set...

  20. THE ANALYSIS OF WAYS TO IMPROVE ECONOMIC DEVELOPMENT AND TRADE ORGANIZATION OF TRANSPORTATION ON AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanov

    2015-01-01

    Full Text Available In transport system of Russia air transport is one of main types of passenger and cargo transport. Demand for air transportation constantly increases that allows to consider reasonably improvement of transportations on air transport as the priority direction of development in civil aviation. The article considers issues of development of the branch air transport.

  1. Transport sector strategies and their impact on the air quality and on greenhouse gasses

    International Nuclear Information System (INIS)

    Crespo Garcia, L.; Portillo Jimenez-Landi, A.

    2009-01-01

    The transport sector plays on essential role in our society, but generates non desired effects on the air quality as well on climate change. This is the reason why the transport and the environment governmental actions are crucial to mitigate them. In this article we introduced the most important resources and regulations to control and to evaluate the air quality and emissions, and also the most relevant objectives in transport actions to reduce them, not only in Spain but also in the European Union. We discuss herein their compliance degree and their effectiveness in relation with the transport emissions evolution during 1990-2006 in spain. (Author) 11 refs

  2. Air medical transportation in India: Our experience

    Directory of Open Access Journals (Sweden)

    Himanshu Khurana

    2016-01-01

    Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation.

  3. Air ambulance medical transport advertising and marketing.

    Science.gov (United States)

    2011-01-01

    The National Association of EMS Physicians (NAEMSP), the American College of Emergency Physicians (ACEP), the Air Medical Physician Association (AMPA), the Association of Air Medical Services (AAMS), and the National Association of State EMS Officials (NASEMSO) believe that patient care and outcomes are optimized by using air medical transport services that are licensed air ambulance providers with robust physician medical director oversight and ongoing quality assessment and review. Only air ambulance medical transport services with these credentials should advertise/market themselves as air ambulance services.

  4. 10 CFR 71.88 - Air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy... Controls and Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions of any..., whether for import, export, or domestic shipment, is not transported by air or delivered to a carrier for...

  5. Animal Welfare in Air Transport

    Directory of Open Access Journals (Sweden)

    Boris Popović

    2012-10-01

    Full Text Available Animal welfare is becoming an evermore-important factorfor air carriers from the economical viewpoint, due to its importantimpact on the carrier public image. High standard care hasto be taken of animals during transport in order to satisfy an importantsegment of airline customers, either the Business/Firstclass passengers travelling with pets, or influential shippers ofracing horses, dogs, Zoo species etc.Air transp011 of animals, disregarding other advantages,may pose a threat to their health and welfare being a significantmultifactorial stressor. Along with cardiovascular, endocrineand metabolic abe1mtions, it affects the immune response ofan animal and increases susceptibility to infection. Therefore,strict conditions for air transport of eve1y animal species havebeen imposed. Transport of only healthy animals is approved,as it is necessG/y to prevent the spread of disease during transportand to provide satisfactOJy environment for animals to betransported.

  6. The ASAC Air Carrier Investment Model (Second Generation)

    Science.gov (United States)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  7. Usefulness of current international air transport statistics

    Science.gov (United States)

    1999-05-01

    International air transportation is the fastest growing segment of transportation. It performs a major function in the globalization process and is a significant feature of the late 20th century. Public policy regarding international air transportati...

  8. A Seasonal Air Transport Climatology for Kenya

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  9. Transport sector strategies and their impact on the air quality and on greenhouse gasses; Estrategias del sector del transporte y su impacto en la calidad del aire y en los gases de efecto invernadero

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Portillo Jimenez-Landi, A.

    2009-07-01

    The transport sector plays on essential role in our society, but generates non desired effects on the air quality as well on climate change. This is the reason why the transport and the environment governmental actions are crucial to mitigate them. In this article we introduced the most important resources and regulations to control and to evaluate the air quality and emissions, and also the most relevant objectives in transport actions to reduce them, not only in Spain but also in the European Union. We discuss herein their compliance degree and their effectiveness in relation with the transport emissions evolution during 1990-2006 in spain. (Author) 11 refs.

  10. An Assessment of Civil Tiltrotor Concept of Operations in the Next Generation Air Transportation System

    Science.gov (United States)

    Chung, William W.; Salvano, Dan; Rinehart, David; Young, Ray; Cheng, Victor; Lindsey, James

    2012-01-01

    Based on a previous Civil Tiltrotor (CTR) National Airspace System (NAS) performance analysis study, CTR operations were evaluated over selected routes and terminal airspace configurations assuming noninterference operations (NIO) and runway-independent operations (RIO). This assessment aims to further identify issues associated with these concepts of operations (ConOps), and their dependency on the airspace configuration and interaction with conventional fixed-wing traffic. Safety analysis following a traditional Safety Management System (SMS) methodology was applied to CTR-unique departure and arrival failures in the selected airspace to identify any operational and certification issues. Additional CTR operational cases were then developed to get a broader understanding of issues and gaps that will need to be addressed in future CTR operational studies. Finally, needed enhancements to National Airspace System performance analysis tools were reviewed, and recommendations were made on improvements in these tools that are likely to be required to support future progress toward CTR fleet operations in the Next Generation Air Transportation System (NextGen).

  11. An analysis of severe air transport accidents

    International Nuclear Information System (INIS)

    McClure, J.D.; Luna, R.E.

    1989-01-01

    The objective of this paper is to analyze the severity of aircraft accidents that may involve the air transport of radioactive materials (RAM). One of the basic aims of this paper is to provide a numerical description of the severity of aircraft transport accidents so that the accident severity can be compared with the accident performance standards that are specified in IAEA Safety Series 6, the international packaging standards for the safe movement of RAM. The existing packaging regulations in most countries embrace the packaging standards developed by the IAEA. Historically, the packaging standards for Type B packages have been independent of the transport mode. That is, if the shipment occurs in a certified packaging, then the shipment can take place by any transport mode. In 1975, a legislative action occurred in the US Congress which led to the development of a package designed specifically for the air transport of plutonium. Changes were subsequently made to the US packaging regulations in 10CFR71 to incorporate the plutonium air transport performance standards. These standards were used to certify the air transport package for plutonium which is commonly referred to as PAT-1 (US NRC). The PAT-1 was certified by the US Nuclear Regulatory Commission in September 1978

  12. 22 CFR 226.1003 - Air transportation. [Reserved

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. [Reserved] 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation...

  13. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board. Two...

  14. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Science.gov (United States)

    2011-01-14

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation AGENCY: Office of the Secretary, Department of Transportation..., their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C...

  15. Design aspects of plutonium air-transportable packages

    International Nuclear Information System (INIS)

    Allen, G.C.; Moya, J.L.; Pierce, J.D.; Attaway, S.W.

    1989-01-01

    Recent worldwide interest in transporting plutonium powders by air has created a need for expanding the packaging technology base as well as improving their understanding of how plutonium air transport (PAT) packagings perform during severe accident tests. Historically it has not been possible to establish design rules for individual package components because of the complex way parts interacted in forming a successful whole unit. Also, computer analyses were only considered valid for very limited portions of the design effort because of large deformations, localized tearing occurring in the package during accident testing, and extensive use of orthotropic materials. Consequently, iterative design and experimentation has historically been used to develop plutonium air-transportable packages. Full-scale prototypes have been tested since scaling of packages utilizing wood as an energy absorber and thermal insulator has not proven to be very successful. This is because the wood grain and dynamic performance of the wood during crush do not always scale. The high cost of full-scale testing of large packages has certainly hindered obtaining additional data and development new designs. The testing criteria for PAT packages, as described in the US Nuclear Regulatory Commission's Qualification Criteria to Certify a Package for Air Transport of Plutonium, NUREG-0360, 1978, are summarized. Computer modeling techniques have greatly improved over the last ten years, and there are some areas of opportunity for future applications to plutonium air-transportable package design problems. Having developed a better understanding of the performance of current packages, they have the opportunity to make major improvements in new packaging concepts. Each of these areas is explored in further depth to establish their impact on design practices for air-transportable packages

  16. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... surface carrier for transport. Otherwise, all shipments on the transit air cargo manifest shall be...

  17. Reducing Air Pollution from International Transportation

    Science.gov (United States)

    Because of their reliance on petroleum-based fuels and their dramatic growth rates in recent decades, air and sea transport are responsible for significant emissions of both traditional air pollutants and greenhouse gases.

  18. Structural Properties of the Brazilian Air Transportation Network.

    Science.gov (United States)

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  19. Structural Properties of the Brazilian Air Transportation Network

    Directory of Open Access Journals (Sweden)

    GUILHERME S. COUTO

    2015-09-01

    Full Text Available The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.

  20. Formal Methods Applications in Air Transportation

    Science.gov (United States)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  1. Systemic Analysis Approaches for Air Transportation

    Science.gov (United States)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  2. Fixed Wing Project: Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  3. Recent trends in air transport sustainibility

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Alonso, G.

    2016-07-01

    The target of this paper is to analyse the main elements of Air Transport sustainability, studying their evolution during the last years and establishing the future prevalent trends, which might be modified by the application of the adequate policies. Air Transport sustainability is considered as integrated by five basic characteristics: physical accessibility, economic affordability, safety, security and environmental impact. Each one of them has its own influence on the development of this transportation mode and all of them are required in order to achieve a sustainable development. After defining the structural elements of the five characteristics and the corresponding quantitative indicators, the paper studies the recent evolution of such indicators and extrapolates the most likely future trends, having taken into account the most relevant limitations presently existent or potentially appearing in the near future. The most important policies being presently studied (future aircraft designs, infrastructure developments, potential safety and security new rules and tentative environmental action programs) are evaluated, considering the potential repercussions on sustainability progress. Some combinations of them are suggested as the most efficient alternatives for preserving the sustainable development of XXI century air transport. (Author)

  4. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. The impetus for this effort was spawned in part by the decision of the Japanese government to move large quantities of reprocessed plutonium by air from France to Japan. The exploration of options for overflights of United States and Canadian airspace (among others) and landings in Anchorage, Alaska, generated intense debate in the US and countries that might have been overflown. The debate centered on general questions of the need to air transport plutonium in large quantities, package survival in an accident, prenotification, emergency response, routing, safeguards and other facets of the proposed operations. In the US, which already had the most stringent regulations for packaging of plutonium shipped by air (NUREG-0360), there was immediate additional legislative action to increase the stringency by requiring demonstration that an aircraft carrying plutonium in certified packagings could undergo a severe crash without release of plutonium (the Murkowski amendment). In the United Kingdom there was an official inquiry that resulted in a high visibility report (ACTRAM 88) and a conclusion that the IAEA should examine regulatory needs in the general area of air transport

  5. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air transport traffic and capacity elements... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported items...

  6. Decentralization in Air Transportation

    NARCIS (Netherlands)

    Udluft, H.

    2017-01-01

    In this work,we demonstrate that decentralized control can result in stable, efficient, and robust operations in the Air Transportation System. We implement decentralized control for aircraft taxiing operations and use Agent-Based Modeling and Simulation to analyze the resulting system behavior

  7. Air Transportation of Critically Ill Patients

    Directory of Open Access Journals (Sweden)

    E. P. Rodionov

    2008-01-01

    Full Text Available During the Napoleonic wars, balloon evacuation of the wounded was the first to be made in the history when Paris was being defended. In the USA, casualty helicopters are being used in 20% of cases on evacuating the victims from the accident scene and in 80% during interhospital transportation. Russia also shows an ambiguous approach to employing air medical service — from the wide use of air transportation in the country’s regions that are difficult of access to its almost complete refusal in the regions with the well-developed transportation system. Long-distance transportation of critically ill patients by chartered or commercial planes is the reality of our time. In each region, continuing specialized teams of qualified medical workers who have a good knowledge of altitude pathophysiology and handle the obligatorily certified equipment should be created on the basis of large-scale medical centers.

  8. An Analysis of Air Transportation in Nigeria | Ladan | Journal of ...

    African Journals Online (AJOL)

    Air Transportation is the transportation of passengers and cargo by aircraft and helicopters. An efficient air transport contributes to economic growth and development. However in Nigeria,lt ... Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  9. The contribution of transport to air quality. TERM 2012: transport indicators tracking progress towards environmental targets in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vicente, A.; Pastorello, C.; Foltescu, V.L. [and others

    2012-11-15

    TERM 2012 (Transport and Environment Reporting Mechanism) presents the most relevant and up to date information on the main issues regarding transport and environment in Europe, particularly in areas with specific policy targets such as greenhouse gas emissions and energy consumption, transport demand levels, noise and other issues. It also offers an overview of the transport sector's impact on air pollutant emissions and air quality. It discusses the contributions made by all modes of transport to direct air pollutant emissions and also to 'secondary' air pollutants formed in the atmosphere. Alongside the recently published Air quality in Europe - 2012 report, TERM 2012 aims to inform the European Commission's review of the Thematic Strategy on Air Pollution. (Author)

  10. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  11. Journal of Air Transportation, Volume 10, No. 1

    Science.gov (United States)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor); Lucas, Sarah (Editor); Scarpellini-Metz, Nanette (Editor)

    2005-01-01

    The mission of the Journal of Air Transportation (JA is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  12. Journal of Air Transportation; Volume 9, No. 3

    Science.gov (United States)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2004-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  13. Journal of Air Transportation, Volume 11, No. 3

    Science.gov (United States)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2007-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy

  14. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    Science.gov (United States)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  15. CO2 is in the air. Five myths about the role of air transport in climate changes

    International Nuclear Information System (INIS)

    2015-12-01

    This publication discusses and criticises some general opinions on air transport. Thus, it is often said that air transport is a minor contributor to greenhouse effect (whereas air transport emits as much CO 2 as Germany who is the sixth World emitter, and has various impacts on health), that air transport is doing a lot for the climate (whereas it in fact manages not to be affected by policies against climate change), that more air passengers result in less CO 2 (whereas traffic predictions would result in an increased oil consumption, and increased CO 2 emissions despite promised technological improvements), that technical progress is at the service of climate (whereas the sector is notably late to reach its defined objectives in terms of energy efficiency), and that air transport is the only way to travel (whereas other means emit much less CO 2 ). Some recommendations are made for measures to be adopted at the international, European and French levels for a better protection of the environment

  16. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Science.gov (United States)

    2010-01-01

    ... Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM... General § 1300.3 Supplementary regulations of the Air Transportation Stabilization Board. (a) The regulations in this part are supplemented by the regulations of the Air Transportation Stabilization Board in...

  17. Air versus terrestrial transport modalities: An energy and environmental comparison

    International Nuclear Information System (INIS)

    Federici, M.; Ulgiati, S.; Basosi, R.

    2009-01-01

    In the last 15 years, worldwide air transportation has grown at an average yearly rate of 4.5%. Forecasts confirm that this could be the average increase rate for the next 20 years, although recent oscillation of oil price translated into a slowing down of such a trend, with several air companies forced out of business. Within this framework, low cost airlines keep increasing their market share, in so making airplane to compete with terrestrial transport modalities, not only for medium and long distance, but also for short trips. This is because air transport is obviously faster than transport by trains and cars, and most often it also is a cheaper option in money terms. In spite of its apparent success, air transportation is a source of concern for many analysts, because it is considered as the more energy intensive and polluting transport modality. In order to explore the correctness of such an issue, we compared air transportation to high speed trains and other modern terrestrial modalities, by using a 'whole-system' approach. The present study applies an LCA-like approach, by taking into account all the energy and materials directly and indirectly required to make and operate infrastructures (i.e. tunnels, railways, highways) and vehicles. Efficiency and environmental loading are assessed by means of Material Flow Accounting, Embodied Energy Analysis and Emergy Synthesis methods. Results point out that the gap among the environmental performances of air, road and railway modalities is significantly narrower than expected. The thermodynamic and environmental costs of road and railway infrastructure cannot be disregarded as negligible. In a selected number of cases these transport modalities perform even worse than the air transportation mode, where infrastructures play a much smaller role.

  18. Air versus terrestrial transport modalities: An energy and environmental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Federici, M.; Basosi, R. [Department of Chemistry and Center for Complex Systems Investigation, University of Siena, via Alcide De Gasperi 2, 53100 Siena (Italy); Ulgiati, S. [Department of Sciences for the Environment, ' ' Parthenope' ' University of Napoli, Centro Direzionale, Isola C4, I-80143 Napoli (Italy)

    2009-10-15

    In the last 15 years, worldwide air transportation has grown at an average yearly rate of 4.5%. Forecasts confirm that this could be the average increase rate for the next 20 years, although recent oscillation of oil price translated into a slowing down of such a trend, with several air companies forced out of business. Within this framework, low cost airlines keep increasing their market share, in so making airplane to compete with terrestrial transport modalities, not only for medium and long distance, but also for short trips. This is because air transport is obviously faster than transport by trains and cars, and most often it also is a cheaper option in money terms. In spite of its apparent success, air transportation is a source of concern for many analysts, because it is considered as the more energy intensive and polluting transport modality. In order to explore the correctness of such an issue, we compared air transportation to high speed trains and other modern terrestrial modalities, by using a ''whole-system'' approach. The present study applies an LCA-like approach, by taking into account all the energy and materials directly and indirectly required to make and operate infrastructures (i.e. tunnels, railways, highways) and vehicles. Efficiency and environmental loading are assessed by means of Material Flow Accounting, Embodied Energy Analysis and Emergy Synthesis methods. Results point out that the gap among the environmental performances of air, road and railway modalities is significantly narrower than expected. The thermodynamic and environmental costs of road and railway infrastructure cannot be disregarded as negligible. In a selected number of cases these transport modalities perform even worse than the air transportation mode, where infrastructures play a much smaller role. (author)

  19. Globalisation and Air Transportation Industry: A Case Study of Malaysia

    OpenAIRE

    Kamaruddin, Shahrul Kamal

    2010-01-01

    Air transportation remains a large and growing industry that is central to the globalisation process. The globalisation impact on the air transportation industry remains largely focused on the airlines, while the impact on airports is rarely defined. The objective of this research is to identify the processes of globalisation that impact the air transportation industry specifically on airport development and operations that will greatly influence the changing nature of airports. A survey ques...

  20. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  1. Journal of Air Transportation, Volume 10, No. 2

    Science.gov (United States)

    Bowen, Brent (Editor); Unal, Mehmet (Editor); Gudmundsson, Sveinn Vidar (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    Topics discussed include: Mitigation Alternatives for Carbon Dioxide Emissions by the Air Transport Industry in Brazil; Air Transport Regulation Under Transformation: The Case of Switzerland; An Estimation of Aircraft Emissions at Turkish Airports; Guide to the Implementation of Iso 14401 at Airports; The Impact of Constrained Future Scenarios on Aviation and Emissions; The Immediate Financial Impact of Transportation Deregulation on the Stockholders of the Airline Industry; Aviation Related Airport Marketing in an Overlapping Metropolitan Catchment Area: The Case of Milan's Three Airports; and Airport Pricing Systems and Airport Deregulation Effects on Welfare.

  2. Vertical hydraulic generators experience with dynamic air gap monitoring

    International Nuclear Information System (INIS)

    Pollock, G.B.; Lyles, J.F.

    1992-01-01

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit

  3. ZZ AIRFEWG, Gamma, Neutron Transport Calculation in Air Using FEWG1 Cross-Section

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Description of program or function: Format: ANISN; Number of groups: 37 neutron / 21 gamma-ray; Nuclides: air (79% N and 21% O); Origin: DLC-0031/FEWG1 cross sections (ENDF/B-IV). Weighting spectrum: 1/E. The AIRFEWG library has been generated by an ANISN multigroup calculation of gamma-ray, neutron, and secondary gamma-ray transport in infinite homogeneous air using DLC-0031/FEWG1 cross sections. 2 - Method of solution: The results were generated with a P3, ANISN run with a source in a single energy group. Thus, 58 such runs were required. For sources in the 37 neutron groups, both neutron and secondary gamma-ray fluence results were calculated. For gamma-ray sources only gamma-ray fluences were calculated

  4. Evaluation of the impact of transportation changes on air quality

    Science.gov (United States)

    Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F. J.; Močnik, G.; Alados-Arboledas, L.

    2015-08-01

    Transport regulation at local level for the abatement of air pollution has gained significant traction in the EU. In this work, we analyze the effect of different transportation changes on air quality in two similarly sized cities: Granada (Spain) and Ljubljana (Slovenia). Several air pollutants were measured at both sites before and after the implementation of the changes. In Ljubljana, a 72% reduction of local black carbon (BC), from 5.6 to 1.6 μg/m3, was observed after the restriction was implemented. In Granada, statistically significant reductions of 1.3 μg/m3 (37%) in BC and of 15 μg/m3 (33%) in PM10 concentrations were observed after the public transportation re-organization. However, the improvement observed in air quality was very local since other areas of the cities did not improve significantly. We show that closing streets to private traffic, renewal of the bus fleet and re-organization of the public transportation significantly benefit air quality.

  5. Radiation doses arising from the air transport of radioactive materials

    International Nuclear Information System (INIS)

    Gelder, R.; Shaw, K.B.; Wilson, C.K.

    1989-01-01

    There is a compelling need for the transport of radioactive material by air because of the requirement by hospitals throughout the world for urgent delivery for medical purposes. Many countries have no radionuclide-producing capabilities and depend on imports: a range of such products is supplied from the United Kingdom. Many of these are short lived, which explains the need for urgent delivery. The only satisfactory method of delivery on a particular day to a particular destination is often by the use of scheduled passenger air service. The International Civil Aviation Organization's Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO 1987-1988), prescribe the detailed requirements applicable to the international transport of dangerous goods by air. Radioactive materials are required to be separated from persons and from undeveloped photographic films or plates: minimum distances as a function of the total sum of transport indexes are given in the Instructions. A study, which included the measurement and assessment of the radiation doses resulting from the transport of radioactive materials by air from the UK, has been performed by the National Radiological Protection Board (NRPB) on behalf of the Civil Aviation Authority (CAA) and the Department of Transport (DTp)

  6. Survey of projected growth and problems facing air transportation, 1975 - 1985

    Science.gov (United States)

    Williams, L. J.; Wilson, A.

    1975-01-01

    Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.

  7. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Air transportation advertisements and solicitations. 1510.7 Section 1510.7 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES PASSENGER CIVIL AVIATION SECURITY SERVICE...

  8. Injuries in air transport emergency evacuations.

    Science.gov (United States)

    1979-02-01

    Twelve air transport evacuations are reviewed. Injuries are discussed with emphasis on configurational and procedural contributing factors. Recommendations and information about possible methods of reducing injuries are provided.

  9. 75 FR 12328 - Application of Charter Air Transport, Inc. for Commuter Authority

    Science.gov (United States)

    2010-03-15

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc... interested persons to show cause why it should not issue an order finding Charter Air Transport, Inc., fit, willing, and able, and awarding it Commuter Air Carrier Authorization. DATES: Persons wishing to file...

  10. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health

    Directory of Open Access Journals (Sweden)

    Larry E. Erickson

    2017-02-01

    Full Text Available The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  11. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health.

    Science.gov (United States)

    Erickson, Larry E; Jennings, Merrisa

    2017-01-01

    The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  12. Proposed design for the new SNL air-transporter

    International Nuclear Information System (INIS)

    Hardy, A.R.; Kennedy, S.T.; Haberlin, M.M.

    1988-01-01

    The design of a prototype air-transporter suitable for remote operation in a size reduction facility is discussed. The first section describes the design concept selected for the transporter, that of a series of modular units within a simple rigid framework and the detailed design of the individual modules. The design has the following features: electrical drive units, self contained air-skates, electrical logic circuit placed outside the working area, pneumatic and electrical umbilicals and provision for specific items of ancilliary equipment. The second section describes the detailed evaluation of various cable handling systems for the umbilicals from the control console outside the facility to the transporter. It has been established that the optimum system is a single rail festoon complete with transporter mounted pivoting arm. (author)

  13. Models for Comparing Air-Only and Sea/Air Transportation of Wartime Deployment Cargo

    National Research Council Canada - National Science Library

    Theres, Michael

    1998-01-01

    ...) to an overseas Port of Debarkation (POD). This thesis evaluates a proposal to load air-transportable cargo aboard vessels at CONUS seaports and to ship that cargo to an appropriately located sea-air-interface (SAI...

  14. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  15. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Science.gov (United States)

    2010-01-01

    ... air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on the authority of all direct U.S. and foreign carriers to operate in air transportation that they have...

  16. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    Science.gov (United States)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  17. Transformations in Air Transportation Systems For the 21st Century

    Science.gov (United States)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  18. Microscale air quality impacts of distributed power generation facilities.

    Science.gov (United States)

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  19. Environmental Information for the U.S. Next Generation Air Transportation System (NextGen)

    Science.gov (United States)

    Murray, J.; Miner, C.; Pace, D.; Minnis, P.; Mecikalski, J.; Feltz, W.; Johnson, D.; Iskendarian, H.; Haynes, J.

    2009-09-01

    It is estimated that weather is responsible for approximately 70% of all air traffic delays and cancellations in the United States. Annually, this produces an overall economic loss of nearly 40B. The FAA and NASA have determined that weather impacts and other environmental constraints on the U.S. National Airspace System (NAS) will increase to the point of system unsustainability unless the NAS is radically transformed. A Next Generation Air Transportation System (NextGen) is planned to accommodate the anticipated demand for increased system capacity and the super-density operations that this transformation will entail. The heart of the environmental information component that is being developed for NextGen will be a 4-dimensional data cube which will include a single authoritative source comprising probabilistic weather information for NextGen Air Traffic Management (ATM) systems. Aviation weather constraints and safety hazards typically comprise meso-scale, storm-scale and microscale observables that can significantly impact both terminal and enroute aviation operations. With these operational impacts in mind, functional and performance requirements for the NextGen weather system were established which require significant improvements in observation and forecasting capabilities. This will include satellite observations from geostationary and/or polar-orbiting hyperspectral sounders, multi-spectral imagers, lightning mappers, space weather monitors and other environmental observing systems. It will also require improved in situ and remotely sensed observations from ground-based and airborne systems. These observations will be used to better understand and to develop forecasting applications for convective weather, in-flight icing, turbulence, ceilings and visibility, volcanic ash, space weather and the environmental impacts of aviation. Cutting-edge collaborative research efforts and results from NASA, NOAA and the FAA which address these phenomena are summarized

  20. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Science.gov (United States)

    2010-10-01

    ... Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Air Transportation by U.S... attend, the use of a foreign-flag air carrier that provides transportation under an air transport... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Air transport agreements...

  1. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of...

  2. PAT-2 (Plutonium Air Transportable Model 2)

    International Nuclear Information System (INIS)

    Anderson, J.

    1981-01-01

    The PAT-2 (Plutonium Air Transportable Model 2) package is designed for the safe transport of plutonium and/or uranium in small quantities, especially as used in international safeguards activities, and especially as transported by air. The PAT-2 package is resistant to severe accidents, including that of a high-speed jet aircraft crash, and is designed to withstand such environments as extreme impact, crushing, puncturing and slashing loads, severe hydrocarbon-fueled fires, and deep underwater immersion, with no escape of contents. The accident environments may be imposed upon the package singly or seqentially. The package meets the requirements of 10 CFR 71 for Fissile Class I packages with a cargo of 15 grams of Pu-239, or other isotopic forms described herein, not to exceed 2 watts of thermal activity. Packaging, operational features, and contents of package, are discussed

  3. South Coast Air Quality Management District Truck Testing | Transportation

    Science.gov (United States)

    Research | NREL South Coast Air Quality Management District Truck Evaluation South Coast Air Quality Management District Truck Evaluation Photo of heavy-duty truck cab. Electric drayage truck Cargo Transportation project, conducted in partnership with the South Coast Air Quality Management

  4. 14 CFR 221.61 - Rules and regulations governing foreign air transportation.

    Science.gov (United States)

    2010-01-01

    ... governing foreign air transportation. Instead of being included in the fares tariffs, the rules and regulations governing foreign air transportation required to be filed by §§ 221.20 and 221.30 and/or... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Rules and regulations governing foreign air...

  5. New developments in the air transport of plutonium

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-01-01

    A new package for the air transport of plutonium has been developed in response to a United States Public Law which restricts the US air transport of plutonium except for small medical devices. This new package, called PAT-1 for plutonium air transportable package model 1, is the result of the NRC-sponsored PARC (plutonium accident resistant container) project at Sandia Laboratories, Albuquerque. The PAT-1 package is designed to meet or exceed new criteria specified in NUREG-0360. These include a severe test sequence of impact (greater than 250 KTS) on an unyielding target, crush, puncture, slash, a large JP-4 fire for 1 hour, followed by water immersion, with stringent acceptance standards on plutonium release, nuclear shielding, and nuclear criticality. The PAT-1 package design features a high energy absorption capability with high-level fire protection. It weighs approximately 227 kg (500 lb) when loaded with 2 kg PuO 2 , and can accommodate up to 25 watts thermal energy from the plutonium load

  6. Air Transport and Operations. Proceedings of the Third International Air Transport and Operations Symposium 2012

    NARCIS (Netherlands)

    Curran, R.; Fischer, L.; Pérez, D.; Klein, K.; Hoekstra, J.; Roling, P.; Verhagen, W.J.C.

    2012-01-01

    Air transport must evolve if it is to optimize its value in the 21st century. The mood in the aerospace industry is positive with regard to economic recovery, but the focus in this transitional time must be on sustaining value, without losing sight of environmental and safety priorities

  7. Opportunities to Improve Air Quality through Transportation Pricing Programs

    Science.gov (United States)

    This document is intended to give state and local air quality and transportation planners,elected government officials, and other interested parties background information on transportation pricing programs.

  8. Experience of air transport of nuclear fuel material as type A package

    International Nuclear Information System (INIS)

    Kawasaki, Masashi; Kageyama, Tomio; Suzuki, Toru

    2004-01-01

    Special law on nuclear disaster countermeasures (hereafter called as to nuclear disaster countermeasures low) that is domestic law for dealing with measures for nuclear disaster, was enforced in June, 2000. Therefore, nuclear enterprise was obliged to report accidents as required by nuclear disaster countermeasures law, besides meeting the technical requirement of existent transport regulation. For overseas procurement of plutonium reference materials that are needed for material accountability, A Type package must be transported by air. Therefore, concept of air transport of nuclear fuel materials according to the nuclear disaster countermeasures law was discussed, and the manual including measures against accident in air transport was prepared for the oversea procurement. In this presentation, the concept of air transport of A Type package containing nuclear fuel materials according to the nuclear disaster countermeasures law, and the experience of a transportation of plutonium solution from France are shown. (author)

  9. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  10. New developments in the air transport of plutonium

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1978-01-01

    A new package for the air transport of plutonium has been developed in response to a United States Public Law which restricts the U.S. air transport of plutonium except for small medical devices. This new package, called PAT-1 for plutonium air transportable package model 1, is the result of the NRC-sponsored (NRC=U.S. Nuclear Regulatory Commission.) PARC (plutonium accident resistant container) project at Sandia Laboratories, Albuquerque. The PAT-1 package is designed to meet or exceed new criteria specified in NUREG-0360. These inclued a severe test sequence of impact (>250 knots) on an unyielding target, crush, puncture, slash, a large JP-4 fire for 1 hour, followed by water immersion, with stringent acceptance standards on plutonium release, nuclear shielding, and nuclear criticality. The PAT-1 package design features a high energy absorption capability with high-level fire protection. It weighs approximately 227 kg (500 lb) when loaded with 2 kg PuO 2 , and can accommodate up to 25 watts thermal energy from the plutonium load

  11. Some considerations for air transportation analysis to non-urban areas.

    Science.gov (United States)

    Norman, S. D.

    1973-01-01

    Review of some of the problems associated with air transportation to and from nonurban areas. While a significant proportion of public transportation needs of nonurban areas are met by aircraft, there are indications that improvement in air transportation service are called for and would be rewarded by increased patronage. However, subsidized local service carriers are attracted by large aircraft operation, and there is a tendency to discontinue service to low density areas. Prospects and potential means for reversing this trend are discussed.

  12. Comparison of Air Transportation Systems of Turkey and Spain as the Competitors in Tourism Sector

    Directory of Open Access Journals (Sweden)

    Hakan OKTAL

    2017-12-01

    Full Text Available The growth of air transportation in a country affects positively the development of other industries especially tourism. Turkey and Spain rank among the top countries in the world with their most developed air transportation and tourism sectors. In this study, the similarities and differences of air transportation systems of both countries and their dependency on tourism are examined. In this framework, the structure and the development process of Turkish and Spanish air transportation is revealed, then the future development trends of air passenger and air freight demands are estimated by using trend and regression analyses. Finally, the factors which may accelerate the development of air transportation and tourism sectors and the threats against the growth of these sectors are explored. The analysis results show that the tourism is crucial for the development of air transportation in both countries.

  13. PROBLEMS OF THE EFFICIENCY INCREASING OF TRANSPORTATION BY AIR OF UKRAINIAN SSR (1960-1980

    Directory of Open Access Journals (Sweden)

    Anatoliy Gorban

    2015-11-01

    Full Text Available The article is devoted to the problems of the efficiency increasing of the air transportation. The difficulties of increasing the efficiency of transportation by air in Ukrainian SSR in 1960-1980 were researched, factors that adversely affected the organization of the transport sector were determined and depicted. The article analyzes what caused such difficulties and it was found out that the causes of these difficulties are connected with the organizational problems of air transport of Ukrainian SSR, which negatively affected the operation of the industry. The central aim of the research is to focus on the main problems of air transport of Ukrainian SSR. So, we should say that the transport operation of those years was distributed too unevenly and was dependent on the population density of the territory of the republic. Purpose of the article is to determine, compile and analyze the factors that negatively affected the organization of air transportation of the Ukrainian republic and reduced the efficiency of its operation. Results of the research shows technical, organization and economical deficiency of air transport of Ukrainian SSR which caused the ineffectiveness of this type of transport and determines the nature of such difficulties. Statement of the problem. During the specified period (1960–1980 the air transport had undergone rapid development. Many new airlines were opened, airports were being built and reconstructed, the terms of exploiting of turbojet aircrafts were increased, the speed of planes was increasing. All these facts ensured safe and reliable air connection of all district centers, connected Ukraine with the other Soviet republics and foreign countries by air corridors. Ukrainian Department of Civil Aviation became the biggest regional Department of the Ministry of Civil Aviation of the USSR. But, at the same time the intensity of the increase of cargo and passenger transportation since 1970s led to accumulation of

  14. Alpha radioactivity monitor using ionized air transport technology for large size uranium waste (2). Simulation model reinforcement for practical apparatus design

    International Nuclear Information System (INIS)

    Asada, Takatoshi; Hirata, Yosuke; Naito, Susumu; Izumi, Mikio; Yoshimura, Yukio

    2011-01-01

    In alpha radioactivity measurement using ionized air transportation (AMAT), conversion from ion currents to radioactivity accurate is required. An ion transport simulation provides ways of complementarily determining conversion factors. We have developed an ion transport simulation model. Simulation results were compared with experiments with air speeds, faster than 1 m/s, achieving good agreement. In a practical AMAT apparatus, the air-flow at the alpha source may be slower than 1 m/s, and ion loss is likely to be large. Reinforcement of the ion transport model to cover the lower air speed region is effective. Ions are generated by an alpha particle in a very thin column. Since the ion density at this temporal stage is high, the recombination loss, proportional to the square of ion density, is dominant within a few milli-seconds. The spatial and temporal scales of this columnar recombination are too small for CFD simulation. We solve an ion transport equation during the period of columnar recombination with diffusion and recombination terms and incorporated the relation between ion loss and turbulent parameters into CFD. Using this model, simulations have been done for various air speeds and targets. Those for simulation results agree with experiments, showing improvement of simulation accuracy. (author)

  15. 76 FR 52731 - On-Line Complaint Form for Service-Related Issues in Air Transportation

    Science.gov (United States)

    2011-08-23

    ... for Service-Related Issues in Air Transportation AGENCY: Office of the Secretary, Department of... consumer protection and civil rights laws and regulations related to air transportation. The Enforcement... travelers, and to ensure safe and adequate service in air transportation. Filing a complaint using a web...

  16. The effect of transport on air quality in urban areas of Syria

    International Nuclear Information System (INIS)

    Almasri, Radwan; Muneer, Tariq; Cullinane, Kevin

    2011-01-01

    Statistics show that the number of cars per capita in Syria is still low, but that the figure has more than doubled since 2004. Syria also suffers from inadequate public transport provision, poor infrastructure and the absence of suitable traffic management systems, with the average speed of road transport in Damascus at about 4-5 km/h. Only until very recently, a comprehensive network for the continuous monitoring of air pollutants has been lacking. This paper reviews, collates and synthesises the results of numerous studies of Syrian road transport, with an emphasis on air pollution from Syria's transport and energy production sectors. It is revealed that what studies that have been done show that the air quality in Syrian urban areas falls below established national air quality standards, especially during winter when the demand for heating is high. The paper proposes a number of suggestions to improve air quality in Syria by using greener and more public transport, promoting and incentivising rational and efficient energy consumption in all sectors, taking advantage of available renewable energy resources, establishing an active network for routine measurement of pollution, setting local emissions standards that are in line with international standards and which are supported by the imposition of penalties, fines or taxation on polluting agents. - Highlights: → Car ownership in Syria is low, but has more than doubled since 2004. → Air pollution from Syria's transport and energy production sectors are analysed. → Air quality can be improved by using greener and more public transport. → Policy should incentivise efficient energy consumption in all sectors. → The use of renewable energy resources should be promoted.

  17. The role of the railways in the future of air transport

    NARCIS (Netherlands)

    Givoni, M.; Banister, D.

    2007-01-01

    The role of the railways in the air transport industry is usually limited to provision of access to airports. However, the development of high-speed rail networks and the congestion and environmental problems faced by the air transport industry suggest the railways could have a greater role in

  18. Smogbusters: Grassroots Action for Clean Air and Sustainable Transport in Australia

    Science.gov (United States)

    Manners, Eric; Wake, David; Carlisle, Rachel

    2009-01-01

    Smogbusters was a national, community-based, government-funded community education program promoting clean air and sustainable transport in Australia from 1994 to 2002. Smogbusters aimed to improve air quality primarily by raising awareness about motor vehicle transport and its negative impacts on health, the environment and communities, and by…

  19. The Role of Budget Airlines in the Air Transport Market

    Directory of Open Access Journals (Sweden)

    Panasiuk Irina P.

    2017-05-01

    Full Text Available The contemporary air transport market has been considered and analyzed, key aspects of the emergence of budget airlines (low-cost in the air transport market have been highlighted. The main factors of influence on their functioning and international distribution have been allocated. On exploring the air transport market, it can be argued that low-cost airlines are gaining speed and spreading all around the world. This system was developed specifically for budget tourists and is particularly popular among students. Budget airlines are a profitable alternative to expensive airfares. As a rule, low-cost airlines refuse most traditional services to reduce the cost of transporting passengers, and hence the prices of flights. In the current phase of operation of the budget airlines, it is particularly necessary to study the reasons for such charity and the efficiency factor in providing cheap airfares. In spite of the tempting offer, there are some nuances that are subject of research.

  20. The transport of neutrons and gamma-rays in the air

    International Nuclear Information System (INIS)

    Adamski, J.

    1980-01-01

    The transport of neutrons and gamma rays in the infinite homogeneous air has been investigated. For the calculations has been used the Multigroup One Dimensional Discrete Ordinates Transport Code ANISN-W. The calculations have been performed for three types of neutron sources. The neutrons and gamma ray doses in the air have been analyzed, and comparison to the other authors' results has been given. (author)

  1. Identification and Characterization of Key Human Performance Issues and Research in the Next Generation Air Transportation System (NextGen)

    Science.gov (United States)

    Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.

    2010-01-01

    This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.

  2. Long-range transport of mutagens and other air pollutants from mainland East Asia to western Japan.

    Science.gov (United States)

    Coulibaly, Souleymane; Minami, Hiroki; Abe, Maho; Hasei, Tomohiro; Oro, Tadashi; Funasaka, Kunihiro; Asakawa, Daichi; Watanabe, Masanari; Honda, Naoko; Wakabayashi, Keiji; Watanabe, Tetsushi

    2015-01-01

    Asian dust events, transport of dust particles from arid and semi-arid areas in China and Mongolia to the east by prevailing westerlies, are often observed in Japan in spring. In recent decades, consumption of fossil fuels has markedly increased in mainland East Asia with rapid economic growth, and severe air pollution has occurred. A part of air pollutants including mutagens, such as polycyclic aromatic hydrocarbons (PAHs), generated in mainland East Asia are thought to be transported to Japan by the prevailing westerlies, like Asian dust, and winter monsoon. The objective of this study was to clarify the long-range transport of mutagens and other air pollutants in East Asia. Thus, we collected total suspended particles (TSP) at a rural town in western Japan, namely, Yurihama in Tottori Prefecture, for 1 year (June 2012-May 2013), and investigated their chemical constituents and mutagenicity. Many TSP collected from January to March showed high mutagenicity toward Salmonella typhimurium YG1024 with and without S9 mix, and high levels of lead (Pb) and sulfate ions (SO4 (2-)), which are indicators of transboundary air pollutions from mainland East Asia, were detected in those TSP. A large amount of iron, which is an indicator of sand, was found in highly mutagenic TSP collected in March, but not in TSP collected in January and February. High levels of PAHs were detected in highly mutagenic TSP collected from January to March. The ratios of the concentration of fluoranthene to those of fluoranthene and pyrene suggested that the main source of PAHs in TSP collected in winter and spring was coal and biomass combustion. Backward trajectories of air masses on days when high levels of mutagenicity were found indicated that these air masses had traveled from eastern or northern China to Yurihama. These results suggest that high levels of mutagens were transported from mainland East Asia to western Japan, and this transportation accompanied Asian dust in March, but not in

  3. INTERACTION OF AIR TRANSPORTATION AND FUEL-SUPPLY COMPANIES

    Directory of Open Access Journals (Sweden)

    I. P. Zheleznaya

    2014-01-01

    Full Text Available The article describes the role of aviation fuel in the life of air transport. Fueling industry worldwide solves two main tasks - ensuring the safety and economy of air traffic. In Russia, there is one more task of airlines fuel supply. The article deals with fuel pricing taking into consideration today's realities.

  4. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  5. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  6. Body temperature change and outcomes in patients undergoing long-distance air medical transport.

    Science.gov (United States)

    Nakajima, Mikio; Aso, Shotaro; Yasunaga, Hideo; Shirokawa, Masamitsu; Nakano, Tomotsugu; Miyakuni, Yasuhiko; Goto, Hideaki; Yamaguchi, Yoshihiro

    2018-04-30

    Short-distance air medical transport for adult emergency patients does not significantly affect patients' body temperature and outcomes. This study aimed to examine the influence of long-distance air medical transport on patients' body temperatures and the relationship between body temperature change and mortality. We retrospectively enrolled consecutive patients transferred via helicopter or plane from isolated islands to an emergency medical center in Tokyo, Japan between April 2010 and December 2016. Patients' average body temperature was compared before and after air transport using a paired t-test, and corrections between body temperature change and flight duration were calculated using Pearson's correlation coefficient. Multivariable logistic regression models were then used to examine the association between body temperature change and in-hospital mortality. Of 1253 patients, the median age was 72 years (interquartile range, 60-82 years) and median flight duration was 71 min (interquartile range, 54-93 min). In-hospital mortality was 8.5%, and average body temperature was significantly different before and after air transport (36.7 °C versus 36.3 °C; difference: -0.36 °C; 95% confidence interval, -0.30 to -0.42; p 38.0 °C) or normothermia (36.0-37.9 °C) before air transport and hypothermia after air transport (odds ratio, 2.08; 95% confidence interval, 1.20-3.63; p = 0.009), and (ii) winter season (odds ratio, 2.15; 95% confidence interval, 1.08-4.27; p = 0.030). Physicians should consider body temperature change during long-distance air transport in patients with not only hypothermia but also normothermia or hyperthermia before air transport, especially in winter. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    Science.gov (United States)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  8. Estimation of economic costs of particulate air pollution from road transport in China

    Science.gov (United States)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  9. Air-to-vegetation transport of /sup 131/I as hypoiodous acid (HOI)

    Energy Technology Data Exchange (ETDEWEB)

    Voilleque, P G [Science Applications, Inc., Idaho Falls, ID (USA); Keller, J H [Exxon Nuclear Idaho Co., Inc., Idaho Falls, ID (USA)

    1981-01-01

    A significant fraction of the /sup 131/I in ventilation air in both BWRs and PWRs is present as hypoiodous acid (HOI). While HOI has been observed in the atmosphere its transport through the critical pathway has not been studied in detail. Of particular importance and interest is the deposition velocity used to characterize air-to-vegetation transport. This note describes the measurement of air-to-vegetation transport of HOI in a laboratory environmental chamber. The deposition velocity for HOI is compared with those for elemental I/sub 2/, methyl iodide and iodine associated with airborne particulates to show the relative importance of HOI in transport of /sup 131/I through the air-grass-cow-milk food chain. The data can be used to estimate relative contributions of the four /sup 131/I species to doses via the critical pathway.

  10. An aggregated indicator of air-pollution impacts involved by transports

    International Nuclear Information System (INIS)

    Goger, Th.

    2006-11-01

    We intend to build a global environmental impact indicator of air pollution to assess transport infrastructures, technologies or flows. This indicator tries to be simple and transparent to facilitate its use in decision-making. The intention is for the indicator to be like the Global Warming Potential (GWP), which establishes a relationship between the emission of six greenhouse gases and the average temperature increase of the Earth. The indicator therefore allows estimating the global environmental impact of transport-generated air pollution, while simultaneously conserving the value of the environmental impact of each type of air pollution and the emission assessment. This work is based on an environmental impact typology, a set of indicators, and aggregation architecture of atmospheric pollution. The typology is established as a function of the specific and homogenous characteristics of each type of pollution in terms of pollutants, impact mechanisms, targets and environmental impacts. To ensure exhaustiveness and non-redundancy, 10 types of air pollution impact are proposed: greenhouse effect, ozone depletion, direct eco-toxicity (this type of pollution excludes greenhouse effects on nature, ozone depletion, eutrophication, acidification and photochemical pollution), eutrophication, acidification, photochemical pollution, restricted direct health effects (not taking into account welfare, and excluding the effects on health of the greenhouse effect, ozone depletion, acidification and photochemical pollution), sensitive pollution (annoyance caused by odours and fumes), and degradation of common and historical man-made heritage. Indicators similar to GWP can be identified in the literature for each type of atmospheric pollution, except for the degradation of common and historical man-made heritage, for which none indicator have been suggested. However, these indicators do not seem to have achieved wide scientific consensus, except for GWP, which may make it

  11. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG'S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG'S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria

  12. International antiterrorist conventions concerning the safety of air transport

    Directory of Open Access Journals (Sweden)

    Jacek BARCIK

    2008-01-01

    Full Text Available In this article the international law regulations are presented concerning the civilian safety of the air transport. The history concerning air terrorism and international antiterrorist conventions was described in detail, involving The Chicago Convention, The Tokyo Convention, The Hague Convention and Montreal Convention.

  13. Tripartite equilibrium strategy for a carbon tax setting problem in air passenger transport.

    Science.gov (United States)

    Xu, Jiuping; Qiu, Rui; Tao, Zhimiao; Xie, Heping

    2018-03-01

    Carbon emissions in air passenger transport have become increasing serious with the rapidly development of aviation industry. Combined with a tripartite equilibrium strategy, this paper proposes a multi-level multi-objective model for an air passenger transport carbon tax setting problem (CTSP) among an international organization, an airline and passengers with the fuzzy uncertainty. The proposed model is simplified to an equivalent crisp model by a weighted sum procedure and a Karush-Kuhn-Tucker (KKT) transformation method. To solve the equivalent crisp model, a fuzzy logic controlled genetic algorithm with entropy-Bolitzmann selection (FLC-GA with EBS) is designed as an integrated solution method. Then, a numerical example is provided to demonstrate the practicality and efficiency of the optimization method. Results show that the cap tax mechanism is an important part of air passenger trans'port carbon emission mitigation and thus, it should be effectively applied to air passenger transport. These results also indicate that the proposed method can provide efficient ways of mitigating carbon emissions for air passenger transport, and therefore assist decision makers in formulating relevant strategies under multiple scenarios.

  14. Quantifying air distribution, ventilation effectiveness and airborne pollutant transport in an aircraft cabin mockup

    Science.gov (United States)

    Wang, Aijun

    The health, safety and comfort of passengers during flight inspired this research into cabin air quality, which is closely related to its airflow distribution, ventilation effectiveness and airborne pollutant transport. The experimental facility is a full-scale aircraft cabin mockup. A volumetric particle tracking velocimetry (VPTV) technique was enhanced by incorporating a self-developed streak recognition algorithm. Two stable recirculation regions, the reverse flows above the seats and the main air jets from the air supply inlets formed the complicated airflow patterns inside the cabin mockup. The primary air flow was parallel to the passenger rows. The small velocity component in the direction of the cabin depth caused less net air exchange between the passenger rows than that parallel to the passenger rows. Different total air supply rate changed the developing behaviors of the main air jets, leading to different local air distribution patterns. Two indices, Local mean age of air and ventilation effectiveness factor (VEF), were measured at five levels of air supply rate and two levels of heating load. Local mean age of air decreased linearly with an increase in the air supply rate, while the VEF remained consistent when the air supply rate varied. The thermal buoyancy force from the thermal plume generated the upside plume flow, opposite to the main jet flow above the boundary seats and thus lowered the local net air exchange. The airborne transport dynamics depends on the distance between the source and the receptors, the relative location of pollutant source, and air supply rate. Exposure risk was significantly reduced with increased distance between source and receptors. Another possible way to decrease the exposure risk was to position the release source close to the exhaust outlets. Increasing the air supply rate could be an effective solution under some emergency situations. The large volume of data regarding the three-dimensional air velocities was

  15. 75 FR 50730 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Transportation Conformity...

    Science.gov (United States)

    2010-08-17

    ... Promulgation of Air Quality Implementation Plans; Indiana; Transportation Conformity Consultation Requirement... consists of transportation conformity criteria and procedures related to interagency consultation and... meet a requirement of the Clean Air Act and Transportation Conformity regulations. DATES: Comments must...

  16. Changes in the Trade and Promotion of Passenger Air Transport

    Directory of Open Access Journals (Sweden)

    Cornelia Petroman

    2010-10-01

    Full Text Available Passenger air carriers will be able to systematically overbook transport capacities on certain aerial routes due to the quick adaptation to modern trading means, to the modern promotion of services and to the modern means of information of potential travellers. Though ticket booking in aerial transport made its debut as a simple process of automation of ticket sale, it soon turned into a strong marketing instrument with unexpected effects on competitiveness on the market of tourism aerial transport. The use of modern ways of operating Computer Reservation Systems and Billing Settlement Plans by passenger air companies and by tour operators improves service standards.

  17. Airflow Pattern Generated by Three Air Diffusers

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel

    2011-01-01

    The correct description of air diffusers plays a crucial role in the CFD predictions of the airflow pattern into a room. The numerical simulation of air distribution in an indoor space is challenging because of the complicated airflow pattern generated. Many authors have developed simplified geom...

  18. The Effects of Projected Future Demand Including Very Light Jet Air-Taxi Operations on U.S. National Airspace System Delays as a Function of Next Generation Air Transportation System Airspace Capacity

    Science.gov (United States)

    Smith, Jerry; Viken, Jeff; Dollyhigh, Samuel; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu

    2007-01-01

    This paper presents the results from a study which investigates the potential effects of the growth in air traffic demand including projected Very Light Jet (VLJ) air-taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The geographic region studied is the contiguous United States (U.S.) of America, although international air traffic to and from the U.S. is included. The main focus of this paper is to determine how much air traffic growth, including VLJ air-taxi operations will add to enroute airspace congestion and determine what additional airspace capacity will be needed to accommodate the expected demand. Terminal airspace is not modeled and increased airport capacity is assumed.

  19. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    Science.gov (United States)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  20. 77 FR 44551 - Approval of Air Quality Implementation Plans; Arizona; Interstate Transport of Fine Particulate...

    Science.gov (United States)

    2012-07-30

    ... related to the evaluation of impacts of interstate transport of air pollutants. In this action, EPA is... the 2011 Transport Rule (also known as the ``Cross- State Air Pollution Rule'' or ``CSAPR'').\\5\\ In...\\ Within that submittal, Appendix B, ``Clean Air Act Section 110(a)(2)(D)(i)-- Interstate Transport...

  1. 78 FR 15664 - Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Interstate Transport...

    Science.gov (United States)

    2013-03-12

    ... Promulgation of Air Quality Implementation Plans; New Mexico; Interstate Transport of Fine Particulate Matter... (August 8, 2011, 76 FR 48208). The Transport Rule was intended to replace the earlier Clean Air Interstate..., 2005); and Transport Rule or Cross-State Air Pollution Rule, 76 FR 48208 (August 8, 2011). \\4\\ CAIR...

  2. 14 CFR 399.40 - Tariffs for domestic air transportation on or after January 1, 1983.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tariffs for domestic air transportation on... Relating to Rates and Tariffs § 399.40 Tariffs for domestic air transportation on or after January 1, 1983. The Board will not approve or accept any tariff filings for interstate of overseas air transportation...

  3. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  4. Acoustophoretic contactless transport and handling of matter in air.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-07-30

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1-10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid-liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air.

  5. Analysis of air quality at Osoyoos, British Columbia border air quality station (Nov 2004 - Sep 2006) : an analysis of trans-boundary air pollution transport

    International Nuclear Information System (INIS)

    Meyn, S.; Hay, J.; Vingarzan, R.; Farris, S.

    2007-05-01

    The purpose of the border air quality study, under the Canada-United States (US) international airshed strategy, was to assess the transboundary transport of air pollutants between the US and Canada. This report presented an analysis of pollutants in ambient air and assessed their most likely source location and transport direction. The pollutants of most interest were fine particulate matter (PM 2.5 ) and ground-level ozone (O 3 ) due to their association with human health effects. The data analyzed in this report represent just under two years of meteorological, air quality, and traffic volume data. Data was collected at the Osoyoos Canada customs site from November 2004 to September 2006. Osoyoos is located at the southern Canadian extreme of the Okanagan Valley in British Columbia. The report provided data summaries and discussed meteorology and elevated concentration conditions of PM 2.5 ; O 3 ; nitric oxide (NO); nitrogen; and sulphur dioxide (SO 2 ). Next, the report provided a multi-pollutant analysis as well as an episode analysis consisting of 4 case studies. The report also included an analysis of transboundary pollutant transport such as a wind sector analysis of pollutant concentration and comparison with modeled transport. Last, the report provided a summary and a discussion of policy implications. It was concluded that US-Canada transboundary transport of pollutants occurs through the Okanagan Valley in which the Osoyoos Canada Customs border air quality station is located. The study recommended further investigation of air parcel trajectories and synoptic-scale conditions leading to elevated O 3 concentrations, as well as the collection of at least 3 full years worth of PM 2.5 and O 3 data to calculate and measure against Canada-wide standards/US national ambient air quality objectives. refs., tabs., figs

  6. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  7. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  8. Air Transport and Travel Industry Training Board

    Science.gov (United States)

    Industrial Training Journal, 1974

    1974-01-01

    Seeing its role as one of stimulating, guiding, and coordinating training activities rather than providing central training facilities, three programs have been developed by the Air Transport and Travel Industry Training Board: (1) an occupational program, (2) a company program, and (3) an industry program. (MW)

  9. Transboundary health impacts of transported global air pollution and international trade

    Science.gov (United States)

    Tong, D.; Zhang, Q.; Jiang, X.

    2017-12-01

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  10. Transboundary health impacts of transported global air pollution and international trade.

    Science.gov (United States)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM 2.5 ) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM 2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM 2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM 2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  11. Evaluation of Triple Containment Method for Air Transport of Contaminated Human

    National Research Council Canada - National Science Library

    Neville, J

    2003-01-01

    A triple containment system intended for transport of biologically contaminated human remains was tested for its ability to maintain integrity during exposure to altitude changes representative of air transport...

  12. 49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.

    Science.gov (United States)

    2010-10-01

    ... generant and, in some cases, a pressure vessel (cylinder)) is a gas generator used to inflate an air bag in... domestic transportation by highway, rail freight, cargo vessel or cargo aircraft, a serviceable air bag...

  13. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations

  14. Estimates of health risks associated with uranium hexafluoride transport by air

    International Nuclear Information System (INIS)

    Elert, M.; Skagius, K.

    1990-01-01

    In Sweden air transport is considered as an alternative for the shipment of uranium hexafluoride (UF 6 ). The radiological consequences of an aeroplane accident involving UF 6 transport have been estimated and are presented as the dose from acute exposure and the dose from long-term exposure caused by ground contamination. Chemical effects of a UF 6 release are also discussed. A number of limiting scenarios have been defined, resulting in different mechanical and thermal impacts on the transport packages. The expected accident environment and the physical and chemical behaviour of the material have been used to derive a source term for the release to the air. A Gaussian dispersion model has been used to calculate the expected air concentration downwind from the accident site. The radiation dose from short-term exposure was found to be higher than the long-term exposure from uranium deposited on the ground. (author)

  15. Disruption Management in Passenger Transportation - from Air to Tracks

    DEFF Research Database (Denmark)

    Clausen, Jens

    2007-01-01

    of the world has show a dramatic increase as well. Public transportation by e.g. rail has come into focus, and hence also the service level provided by suppliers ad public transportation. These transportation systems are likewise very vulnerable to disruptions. In the airline industry there is a long tradition......Over the last 10 years there has been a tremendous growth in air transportation of passengers. Both airports and airspace are close to saturation with respect to capacity, leading to delays caused by disruptions. At the same time the amount of vehicular trac around and in all larger cities...

  16. A state-of-the-art review of transportation systems evaluation techniques relevant to air transportation, volume 1. [urban planning and urban transportation using decision theory

    Science.gov (United States)

    Haefner, L. E.

    1975-01-01

    Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.

  17. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    Science.gov (United States)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and

  18. Union Gas assessment protocol for power generator air and noise emissions

    International Nuclear Information System (INIS)

    Complin, P.

    2008-01-01

    This paper outlined a procedure for obtaining data to facilitate air and noise compliance assessments for emergency and other fuel-fired power generators. Facilities with the generators may contain additional sources of nitrogen oxides (NO x ). The assessments are required for each new or modified generator in order to ensure that regulatory requirements in the Air Pollution Local Air Quality Regulation and the Noise Pollution Control documents are met. The air emission assessments follow the Ontario Ministry of the Environment (MOE) report. The paper included a screening process to screen out generators with negligible emissions. A maximum power rating was calculated using AP-2 emission factors and a conservative heat rating assumption. Maximum power ratings for various types of generators were presented. The information requirements included a description of the type of engine used; sound power level data; octave band insertion loss data; and plan and section drawings of the generator room. 2 tabs.

  19. Lower air temperature is associated with ambulance transports and death in Takamatsu area, Japan.

    Science.gov (United States)

    Mochimasu, Kazumi Dokai; Miyatake, Nobuyuki; Tanaka, Naoko; Kinoshita, Hiroshi

    2014-07-01

    The aim of this study was to investigate the linkage among ambulance transports, the number of death and air temperature in Takamatsu area, Japan. Monthly data of ambulance transports (total and acute disease) and the number of death from 2004 to 2012 were obtained from Fire Department Service in Takamatsu and Takamatsu city official website, Japan. Climate parameters for required period were also obtained from Japan Meteorological Agency. Population data in Takamatsu area were also used to adjust ambulance transports and the number of death. The linkage among ambulance transports, the number of death and climate parameters was evaluated by ecological analysis. Total ambulance transports (/a hundred thousand people/day) and ambulance transports due to acute disease (/a hundred thousand people/day) were 12.3 ± 0.9 and 6.8 ± 0.7, respectively. The number of death (/a hundred thousand people/day) was 2.5 ± 0.4. By quadratic curve, ambulance transports due to acute disease and the number of death were significantly correlated with the parameters of air temperature. However, the number of death was the highest in January and the lowest in August. Although higher air temperature was only associated with higher ambulance transports, lower air temperature was associated with both higher ambulance transports and the number death in Takamatsu area, Japan.

  20. Air passenger transport and the greenhouse effect

    International Nuclear Information System (INIS)

    Hubert, M.

    2004-11-01

    The commercial aviation sector accounts for 2.5 % of total worldwide anthropogenic carbon dioxide (CO 2 ) emissions. Water vapour (H 2 O) and NO x emissions, the formation of condensation trails and increased formation of cirrus clouds due to altitude (indirect effects) also accentuate the greenhouse effect. The Intergovernmental Panel on Climate Change (IPCC) estimates that the effects apart from CO 2 emissions are relatively higher for aviation than for other human activities. For one tonne of CO 2 emissions, the radiative forcing of aviation is twice as important as other activities. On this basis, a Paris-New York return trip for one passenger on a charter flight corresponds to a quarter of the total climate impact caused by the annual consumption of a French person. Increased mobility and a rise in international tourism suggest that past trends in the growth of air passenger transport will continue. The improvements in energy efficiency achieved are seemingly not sufficient to prevent a significant increase in the impact of air transport on climate change. (author)

  1. Performance of personalized ventilation in a room with an underfloor air distribution system: transport of contaminants between occupants

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2003-01-01

    the workplaces has not been studied in detail. This paper presents a study on the performance of a personalized ventilation system installed in a full-scale test room with an underfloor air distribution system. Transport of human-produced airborne pollutants (in real life they can be infectious agents) between......Studies have documented that personalized ventilation, which provides clean air at each office workplace, is able to improve substantially the quality of air inhaled by occupants. However, the interaction between the airflow generated by personalized ventilation and the airflow pattern outside...... two occupants was examined using a tracer-gas. Two breathing thermal manikins were used to simulate occupants. The results show that the tested combination of personalized and underfloor ventilation was not able to decrease concentration of the human-produced airborne pollutants in air inhaled...

  2. Generation and transport of laser accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Peter; Boine-Frankenheim, Oliver [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kornilov, Vladimir; Spaedtke, Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  3. CO{sub 2} emissions due to the air transportation in Brazil; Emissoes de CO{sub 2} devido ao transporte aereo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Andre Felipe; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: afsimoes@antares.com.br; roberto@ppe.ufrj.br

    2002-07-01

    This work intends to to insert and understand the participation of the brazilian air transportation in the ambit of the global climate changes. Firstly an introduction is presented for positioning the Brazil, in the proposed subject; an approach of the tenuous relationship between the air transportation sector and atmospheric environment medium; the energy consumption associated to the growing demand; and the inventory of the CO{sub 2} emissions (Calculated by using the top-down methodology) due to the Brazilian air transportation activities. The work is globally discussed and analysed.

  4. Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation

    International Nuclear Information System (INIS)

    Basbous, Tammam; Younes, Rafic; Ilinca, Adrian; Perron, Jean

    2012-01-01

    In this paper, we are studying an innovative solution to reduce fuel consumption and production cost for electricity production by Diesel generators. The solution is particularly suitable for remote areas where the cost of energy is very high not only because of inherent cost of technology but also due to transportation costs. It has significant environmental benefits as the use of fossil fuels for electricity generation is a significant source of GHG (Greenhouse Gas) emissions. The use of hybrid systems that combine renewable sources, especially wind, and Diesel generators, reduces fuel consumption and operation cost and has environmental benefits. Adding a storage element to the hybrid system increases the penetration level of the renewable sources, that is the percentage of renewable energy in the overall production, and further improves fuel savings. In a previous work, we demonstrated that CAES (Compressed Air Energy Storage) has numerous advantages for hybrid wind-diesel systems due to its low cost, high power density and reliability. The pneumatic hybridization of the Diesel engine consists to introduce the CAES through the admission valve. We have proven that we can improve the combustion efficiency and therefore the fuel consumption by optimizing Air/Fuel ratio thanks to the CAES assistance. As a continuation of these previous analyses, we studied the effect of the intake pressure and temperature and the exhaust pressure on the thermodynamic cycle of the diesel engine and determined the values of these parameters that will optimize fuel consumption. -- Highlights: ► Fuel economy analysis of a simple pneumatic hybridization of the Diesel engine using stored compressed air. ► Thermodynamic analysis of the pneumatic hybridization of diesel engines for hybrid wind-diesel energy systems. ► Analysis of intake pressure and temperature of compressed air and exhaust pressure on pressure/temperature during Diesel thermodynamic cycle. ► Direct admission of

  5. Evaluation of cardiopulmonary factors critical to successful emergency perinatal air transport.

    Science.gov (United States)

    1982-03-01

    Regionalization of specialized perinatal care is a fully viable and progressing concept. The two major components of regionalized care are the level III care facility and the air transport service. In descending importance, the medical transport team...

  6. Transboundary health impacts of transported global air pollution and international trade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J.; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G.; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V.; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution1, 2, 3, 4, 5. Some studies have estimated premature mortality related to local sources of air pollution6, 7, but local air quality can also be affected by atmospheric transport of pollution from distant sources8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region14, 19, 20, 21, 22. The effects of international trade on air pollutant emissions23, air quality14 and health24 have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  7. Air quality overview assessment of thermal power generation in Vancouver, BC

    International Nuclear Information System (INIS)

    Caton, R.B.; Brotherston, A.E.

    1992-01-01

    B.C. Hydro is preparing a 25 year utilization plan for Burrard Thermal Generating Plant, a 900 MW natural gas fired steam boiler facility near Vancouver. Historical emissions from the plant and ambient air quality in the region were reviewed to place plant operations in context of the technological modifications which have been made over the past 10 years. Environmental effects criteria and regulatory developments which may constrain planning were reviewed and evaluated. Unit emission rates at Burrard have been reduced by 40% since 1989, by extensive combustion modifications, to ca 40 ng/J of NOx. Nevertheless, anticipated regulatory requirements of emissions reductions nationally and in the Vancouver region will necessitate further reductions, or equivalent strategies, over the next ten years. The findings of the Burrard Thermal air quality review are summarized, including historical emissions in the Lower Mainland, transport and transformation of oxidants and acidic deposition, human health impacts, and vegetation impacts. The difficulties that arise in evaluating the imapct of an isolated source of NOx in an urban area are discussed. 30 refs., 5 figs., 6 tabs

  8. Impact of power generation on air quality

    International Nuclear Information System (INIS)

    Fisher, B.E.A.

    1999-01-01

    The article discusses the impact of the electric power industry on air quality. Much of the data are presented in chronological order starting with the London smogs in the late nineteenth century and the Clean Air Act of 1956. With the building of bigger and bigger coal-fired power stations, apparatus to restrict emissions of dust became common and a Royal Commission reported on the progress of smoke control in 1974 and 1976. The article is presented under the sub-headings of (i) role of Local Authorities; (ii) weather and smog; (iii) trends in emissions; (iv) dispersal and dilution; (v) smoke and sulfur dioxide exported; (vi) atmospheric lifetime of sulfur dioxide; (vii) proportionality between emissions and deposition; (viii) critical loads; (ix) international agreements on transboundary pollution; (x) road transport pollution; (xi) local air quality management and (xii) climate change

  9. Risk for intracranial pressure increase related to enclosed air in post-craniotomy patients during air ambulance transport: a retrospective cohort study with simulation.

    Science.gov (United States)

    Brändström, Helge; Sundelin, Anna; Hoseason, Daniela; Sundström, Nina; Birgander, Richard; Johansson, Göran; Winsö, Ola; Koskinen, Lars-Owe; Haney, Michael

    2017-05-12

    Post-craniotomy intracranial air can be present in patients scheduled for air ambulance transport to their home hospital. We aimed to assess risk for in-flight intracranial pressure (ICP) increases related to observed intracranial air volumes, hypothetical sea level pre-transport ICP, and different potential flight levels and cabin pressures. A cohort of consecutive subdural hematoma evacuation patients from one University Medical Centre was assessed with post-operative intracranial air volume measurements by computed tomography. Intracranial pressure changes related to estimated intracranial air volume effects of changing atmospheric pressure (simulating flight and cabin pressure changes up to 8000 ft) were simulated using an established model for intracranial pressure and volume relations. Approximately one third of the cohort had post-operative intracranial air. Of these, approximately one third had intracranial air volumes less than 11 ml. The simulation estimated that the expected changes in intracranial pressure during 'flight' would not result in intracranial hypertension. For intracranial air volumes above 11 ml, the simulation suggested that it was possible that intracranial hypertension could develop 'inflight' related to cabin pressure drop. Depending on the pre-flight intracranial pressure and air volume, this could occur quite early during the assent phase in the flight profile. DISCUSSION: These findings support the idea that there should be radiographic verification of the presence or absence of intracranial air after craniotomy for patients planned for long distance air transport. Very small amounts of air are clinically inconsequential. Otherwise, air transport with maintained ground-level cabin pressure should be a priority for these patients.

  10. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  11. What should ''damaged'' mean in air transport of fissile packages

    International Nuclear Information System (INIS)

    Luna, R.E.; Falci, F.P.; Blackman, D.

    1995-01-01

    It is likely that the ongoing process to produce the 1996 version of the IAEA Regulation for the Safe Transport of Radioactive Materials, IAEA Safety Series 6(SS 6) will result in a more stringent package qualification standard for air transport of large quantities of radioactive materials (RAM) than is included in the 1990 version. During the process to define the scope of the new requirements there was extensive discussion of their impact on, and application to, fissile material package qualification criteria. Since fissile materials are shipped in a variety of packagings ranging from exempt to Type B, each packaging of each type must be evaluated for its ability to maintain subcriticality both alone and in arrays and in both damaged and undamaged condition. In the 1990 version of SS 6 ''damaged'' means the condition of a package after it had undergone the ''tests for demonstrating the ability to withstand accident conditions in transport,'' i.e., Type B qualification tests. These tests conditions are typical of severe accidents in surface modes, but are less severe than air mode qualification test environments to be applied to Type C packages. As a result, questions arose about the need for a corresponding change in the 1996 SS 6 to define ''damaged'' to include the Type C test regime for criticality evaluations of fissile packages in air transport

  12. Air Transport versus High-Speed Rail: An Overview and Research Agenda

    Directory of Open Access Journals (Sweden)

    Xiaoqian Sun

    2017-01-01

    Full Text Available The development of high-speed rail (HSR services throughout the last decades has gradually blurred the concept of competition and cooperation with air transportation. There is a wide range of studies on this subject, with a particular focus on single lines or smaller regions. This article synthesizes and discusses recently published studies in this area, while aiming to identify commonalities and deviations among different regions throughout the world, covering services from Europe, Asia, and North America. Our meta-analysis reveals that the literature is highly controversial and the results vary substantially from one region to another, and a generalization is difficult, given route-specific characteristics, such as demand distribution, network structure, and evolution of transportation modes. As a major contribution, we propose a list of five challenges as a future research agenda on HSR/air transport competition and cooperation. Among others, we see a need for the construction of an open-source dataset for large-scale multimodal transport systems, the comprehensive assessment of new emerging transport modes, and also taking into account the resilience of multimodal transport systems under disruption.

  13. THE RISK PERCEPTION OF TRANSPORT–GENERATED AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Birgitta GATERSLEBEN

    2000-01-01

    Full Text Available This paper describes a study that is part of a multidisciplinary project examining the relationship between transport, air pollution and health in Guildford, a medium sized town in the UK. Real-time air quality monitoring revealed low levels of air pollution through vehicle emissions. However, the residents of the town claim that there is an air pollution problem, perceptions reinforced by visual and sensory feedback, i.e., people see dust, feel irritations to their eyes, noses and throats and smell exhaust fumes. It is shown that the higher people believe air pollution levels to be the more responsible they feel and the less trust they have in local authorities and technological developments. Beliefs about the health consequences of air pollution are not related to responsibility and trust. The findings support other studies on risk perception that have shown that people find a risk less acceptable when they have a lower trust in risk managers. It is concluded that these findings are of importance for the environmental education of the public generally and risk communication by local authorities in particular.

  14. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    Science.gov (United States)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  15. Modeling the impact of air transport on the economy - practices, problems and prospects

    Directory of Open Access Journals (Sweden)

    Sonia Huderek-Glapska

    2016-03-01

    Full Text Available Background: The issue of measuring the contribution of air transport to the regional economy is very important nowadays since many airport infrastructure projects are being implemented, using available European Union funds. As a result of growing transport needs and increasing incomes among the population, the air transport market is strongly developing.  This development results to many direct and indirect socio-economic benefits to locations in close proximity of an airport but also in the whole economy. The measurement of these benefits is important because the decisions made with respect to air transport influence local and regional economic performance. The most commonly used tool for measuring the positive effects associated with the operation of an airport is the input-output analysis. The aim of the article is to present the characteristics of the input-output method, to indicate its applications in Poland - the country with the most dynamic growth of air transport, to present the possible limitations of this method and propose improvements. Methods: The method used in this research is one that measures the effects of changes in the economy as a result of air transport activity. Particular input-output analysis is used. Results: On the background of the results of modeling the impact of polish airport on regional economy in 2009 the updated analysis in 2012 is provided. The economic impacts of Krakow, Katowice, Wroclaw and Szczecin airports are estimated. Then the limitations of input-output method are presented and suggestions of possible improvements are made. Comments: Proper measurement of the impact of airport's operation and investment on the economy, leads to more effective air transport policy development. For future research, the advanced input-output method to assess the positive impact of airports on regional development is recommended. However, a comprehensive assessment of the operation and expansion of airport

  16. Carbon emission allowance allocation with a mixed mechanism in air passenger transport.

    Science.gov (United States)

    Qiu, Rui; Xu, Jiuping; Zeng, Ziqiang

    2017-09-15

    Air passenger transport carbon emissions have become a great challenge for both governments and airlines because of rapid developments in the aviation industry in recent decades. In this paper, a mixed mechanism composed of a cap-and-trade mechanism and a carbon tax mechanism is developed to assist governments in allocating carbon emission allowances to airlines operating on the routes. Combined this mixed mechanism with an equilibrium strategy, a bi-level multi-objective model is proposed for an air passenger transport carbon emission allowance allocation problem, in which a government is considered as a leader and the airlines as the followers. An interactive solution approach integrating a genetic algorithm and an interactive evolutionary mechanism is designed to search for satisfactory solutions of the proposed model. A case study is then presented to show its practicality and efficiency in mitigating carbon emissions. Sensitivity analyses under different tradable and taxable levels are also conducted, which can give the government insights as to the tradeoffs between lowering carbon intensity and improving airlines' operations. The computational results demonstrate that the mixed mechanism can assist greatly in carbon emission mitigation for air passenger transport and therefore, it should be established as part of air passenger transport carbon emission policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. the effect of air medical transport on survival after trauma

    African Journals Online (AJOL)

    region in the latter part of 1999. This empirical research assessed death rate data to ascertain if the air medical transport (AMT) of patients results in lower death rates than occur with road transportation of patients. Wits Business School ... the South African medical environment, patients were evaluated at the trauma units of ...

  18. Claw-pole Synchronous Generator for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    PAVEL Valentina

    2013-05-01

    Full Text Available This paper presents a claw-poles generator for compressed air energy storage systems. It is presented the structure of such a system used for compensating of the intermittency of a small wind energy system. For equipping of this system it is chosen the permanent magnet claw pole synchronous generator obtained by using ring NdFeB permanentmagnets instead of excitation coil. In such a way the complexity of the scheme is reduced and the generator become maintenance free. The new magnetic flux density in the air-gap is calculated by magneticreluctance method and by FEM method and the results are compared with measured values in the old and new generator.

  19. Plutonium air transportable package Model PAT-1. Safety analysis report

    International Nuclear Information System (INIS)

    1978-02-01

    The document is a Safety Analysis Report for the Plutonium Air Transportable Package, Model PAT-1, which was developed by Sandia Laboratories under contract to the Nuclear Regulatory Commission (NRC). The document describes the engineering tests and evaluations that the NRC staff used as a basis to determine that the package design meets the requirements specified in the NRC ''Qualification Criteria to Certify a Package for Air Transport of Plutonium'' (NUREG-0360). By virtue of its ability to meet the NRC Qualification Criteria, the package design is capable of safely withstanding severe aircraft accidents. The document also includes engineering drawings and specifications for the package. 92 figs, 29 tables

  20. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  1. Review of maritime transportation air emission pollution and policy analysis

    Science.gov (United States)

    Wang, Haifeng; Liu, Dahai; Dai, Guilin

    2009-09-01

    The study of air emission in maritime transportation is new, and the recognition of its importance has been rising in the recent decade. The emissions of CO2, SO2, NO2 and particulate matters from maritime transportation have contributed to climate change and environmental degradation. Scientifically, analysts still have controversies regarding how to calculate the emissions and how to choose the baseline and methodologies. Three methods are generally used, namely the ‘bottom up’ approach, the ‘top down’ approach and the STEEM, which produce very different results, leading to various papers with great uncertainties. This, in turn, results in great difficulties to policy makers who attempt to regulate the emissions. A recent technique, the STEEM, is intended to combine the former two methods to reduce their drawbacks. However, the regulations based on its results may increase the costs of shipping companies and cause the competitiveness of the port states and coastal states. Quite a few papers have focused on this area and provided another fresh perspective for the air emission to be incorporated in maritime transportation regulations; these facts deserve more attention. This paper is to review the literature on the debates over air emission calculation, with particular attention given to the STEEM and the refined estimation methods. It also reviews related literature on the economic analysis of maritime transportation emission regulations, and provides an insight into such analysis. At the end of this paper, based on a review and analysis of previous literature, we conclude with the policy indications in the future and work that should be done. As the related regulations in maritime transportation emissions are still at their beginning stage in China, this paper provides specific suggestions on how China should regulate emissions in the maritime transportation sector.

  2. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    Science.gov (United States)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  3. Electronic transport properties of pentacene single crystals upon exposure to air

    NARCIS (Netherlands)

    Jurchescu, OD; Baas, J; Palstra, TTM; Jurchescu, Oana D.

    2005-01-01

    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases

  4. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  5. Equipment transporter for nuclear steam generator

    International Nuclear Information System (INIS)

    Hayes, L.R.

    1987-01-01

    A transporter is described for use in a steam generator of a nuclear power installation. The generator is essentially a heat exchanger having a vertically extended shell. Across the lower portion extends a horizontal tube sheet having an upper surface which supports a bundle of vertically extending tubes forming a limited annular space with the inside of the shell wall and the upper surface. An opening of limited dimensions through the shell wall gains manual access to the limited annular space. The transporter has means for locating and removing solid debris from the upper surface of the tube sheet in the annular space and has a means for assembly and disassembly of the transporter so that it may be manually passed through the shell opening to and from a position on the upper surface of the tube sheet in the annular space. The transporter includes: a body; at least three wheels mounted on the body for engaging the upper surface of the tube sheet; a first motor mounted on the body drivingly connected to the wheels for moving the transporter along the upper surface of the tube sheet in the annular space; a remotely operated means on the body for locating solid debris on the upper surface of the tube sheet; and means for securing and removing solid debris on the upper surface of the tube sheet located by the means for locating

  6. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    Science.gov (United States)

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-01-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104

  7. The competitive landscape of air transport in Europe

    NARCIS (Netherlands)

    Lieshout, R.; Malighetti, P.; Redondi, R.; Burghouwt, G.

    2016-01-01

    Competition between airlines and airports increased significantly since the deregulation of the intra-European air transport market in 1997. The passenger has a wider choice in terms of routings and departure airports than twenty-five years ago and pays a lower price. In this paper we investigate in

  8. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, Robert; Lock, Grahm

    2005-01-01

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database...... changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA...... with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types...

  9. Developing self-cleaning and air purifying transportation infrastructure components to minimize environmental impact of transportation.

    Science.gov (United States)

    2013-10-01

    Creating transportation infrastructure, which can clean up itself and contaminated air surrounding it, can be a : groundbreaking approach in addressing environmental challenges of our time. This project has explored a possibility of : depositing coat...

  10. A portfolio evaluation framework for air transportation improvement projects

    Science.gov (United States)

    Baik, Hyeoncheol

    This thesis explores the application of portfolio theory to the Air Transportation System (ATS) improvement. The ATS relies on complexly related resources and different stakeholder groups. Moreover, demand for air travel is significantly increasing relative to capacity of air transportation. In this environment, improving the ATS is challenging. Many projects, which are defined as technologies or initiatives, for improvement have been proposed and some have been demonstrated in practice. However, there is no clear understanding of how well these projects work in different conditions nor of how they interact with each other or with existing systems. These limitations make it difficult to develop good project combinations, or portfolios that maximize improvement. To help address this gap, a framework for identifying good portfolios is proposed. The framework can be applied to individual projects or portfolios of projects. Projects or portfolios are evaluated using four different groups of factors (effectiveness, time-to-implement, scope of applicability, and stakeholder impacts). Portfolios are also evaluated in terms of interaction-determining factors (prerequisites, co-requisites, limiting factors, and amplifying factors) because, while a given project might work well in isolation, interdependencies between projects or with existing systems could result in lower overall performance in combination. Ways to communicate a portfolio to decision makers are also introduced. The framework is unique because (1) it allows using a variety of available data, and (2) it covers diverse benefit metrics. For demonstrating the framework, an application to ground delay management projects serves as a case study. The portfolio evaluation approach introduced in this thesis can aid decision makers and researchers at universities and aviation agencies such as Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD), in

  11. A survey of the transport of radioactive materials by air to, from and within the UK

    International Nuclear Information System (INIS)

    Hughes, J.S.; Watson, S.J.

    2004-01-01

    Radioactive materials are frequently transported overseas by air for medical and industrial purposes. Among the advantages of this mode of transport is that urgent delivery is often required because some radionuclides are short lived. There are also a limited number of shipments by air within the UK. Scheduled passenger services or freight only aircraft may be used. Packages of radioactive materials are transported in aircraft holds at recommended segregation distances from areas occupied by passengers and crew. Many workers are involved in air transport and it is necessary to have procedures in place to minimise their exposure to ionising radiation

  12. Relationships between Atmospheric Transport Regimes and PCB Concentrations in the Air at Zeppelin, Spitsbergen.

    Science.gov (United States)

    Ubl, Sandy; Scheringer, Martin; Hungerbühler, Konrad

    2017-09-05

    Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.

  13. Journal of Air Transportation, Volume 8, No. 2. Volume 8, No. 2

    Science.gov (United States)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Nickerson, Jocelyn (Editor)

    2003-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. This journal contains articles on the following:Fuel Consumption Modeling of a Transport Category Aircraft: A FlightOperationsQualityAssurance (F0QA) Analysis;Demand for Air Travel in the United States: Bottom-Up Econometric Estimation and Implications for Forecasts by Origin and Destination Pairs;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part I1 Political Oversight and Promotion;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part 111: Emerging Technologies;Ethics Education in University Aviation Management Programs in the US: Part Two B-Statistical Analysis of Current Practice;Integrating Human Factors into the Human-computer Interface: and How Best to Display Meteorological Information for Critical Aviation Decision-making and Performance.

  14. Development of alpha radioactivity measurement using ionized air transportation technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Naito, Susumu; Sano, Akira; Sato, Mitsuyoshi; Fukumoto, Masahiko; Miyamoto, Yasuaki; Nanbu, Kenichi; Takahashi, Hiroyuki

    2005-01-01

    Alpha radioactivity Measurement using ionized Air Transportation technology (AMAT) is developed to measure alpha contaminated wastes with large and complex surfaces. An outline of this project was described in this text. A major problem of AMAT technology is that the theoretical relation between alpha radioactivity and observed ion current is unclear because of the complicated behavior of ionized air molecules. An ion current prediction model covering from ionization of air molecules to ion detection was developed based on atmospheric electrodynamics. This model was described in this text, too. (author)

  15. Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress.

    Science.gov (United States)

    Paital, Biswaranjan

    2014-01-01

    Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

  16. Journal of Air Transportation, Volume 9, No. 2. Volume 9, No. 2

    Science.gov (United States)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Gudmundsson, Sveinn Vidar (Editor); Scarpellini, Nanette (Editor)

    2004-01-01

    The following articles from the "Journal of Air Transportation" were processed: Future Requirements and Concepts for Cabins of Blended Wing Body Configurations:A Scenario Approach; Future Scenarios for the European Airline Industry: A Marketing-Based Perspective; An Application of the Methodology for Assessment of the Sustainability of the Air Transport System; Modeling the Effect of Enlarged Seating Room on Passenger Preferences of Domestic Airlines in Taiwan; Developing a Fleet Standardization Index for Airline Pricing; and Future Airport Capacity Utilization in Germany: Peaked Congestion and/or Idle Capacity).

  17. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  18. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  19. The influence of layering and barometric pumping on firn air transport in a 2-D model

    Directory of Open Access Journals (Sweden)

    B. Birner

    2018-06-01

    Full Text Available Ancient air trapped in ice core bubbles has been paramount to developing our understanding of past climate and atmospheric composition. Before air bubbles become isolated in ice, the atmospheric signal is altered in the firn column by transport processes such as advection and diffusion. However, the influence of low-permeability layers and barometric pumping (driven by surface pressure variability on firn air transport is not well understood and is not readily captured in conventional one-dimensional (1-D firn air models. Here we present a two-dimensional (2-D trace gas advection–diffusion–dispersion model that accounts for discontinuous horizontal layers of reduced permeability. We find that layering or barometric pumping individually yields too small a reduction in gravitational settling to match observations. In contrast, when both effects are active, the model's gravitational fractionation is suppressed as observed. Layering focuses airflows in certain regions in the 2-D model, which acts to amplify the dispersive mixing resulting from barometric pumping. Hence, the representation of both factors is needed to obtain a realistic emergence of the lock-in zone. In contrast to expectations, we find that the addition of barometric pumping in the layered 2-D model does not substantially change the differential kinetic fractionation of fast- and slow-diffusing trace gases. Like 1-D models, the 2-D model substantially underestimates the amount of differential kinetic fractionation seen in actual observations, suggesting that further subgrid-scale processes may be missing in the current generation of firn air transport models. However, we find robust scaling relationships between kinetic isotope fractionation of different noble gas isotope and elemental ratios. These relationships may be used to correct for kinetic fractionation in future high-precision ice core studies and can amount to a bias of up to 0.45 °C in noble-gas-based mean ocean

  20. Transportation Network Topologies

    Science.gov (United States)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which

  1. Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion

    Science.gov (United States)

    Correnti, Vincenzo; Ignaccolo, Matteo; Capri, Salvatore; Inturri, Giuseppe

    2006-01-01

    The volume of air traffic worldwide is still in constant growth despite unfair events that sometimes occur. The demand for regional air transport is also increasing, thanks in part to the use of new vehicles purposely designed for short range flights which make this means of transport more attractive than in the past. This paper studies the possibility of using aircraft capable of vertical or short takeoff or landing (V/STOL), in particular the tiltrotor, in the regional air transport market and the impact on airport capacity that the use of this craft would have. With this in mind the advantages and disadvantages of using this vehicle are identified, as well as the changes to be made to the air transport system in order to exploit its full potential.

  2. Effect of public transport strikes on air pollution levels in Barcelona (Spain).

    Science.gov (United States)

    Basagaña, Xavier; Triguero-Mas, Margarita; Agis, David; Pérez, Noemí; Reche, Cristina; Alastuey, Andrés; Querol, Xavier

    2018-01-01

    Public transport strikes can lead to an increase of the number of private vehicle trips, which in turn can increase air pollution levels. We aimed to estimate the change in air pollution concentrations during public transport strikes in the city of Barcelona (Spain). Data on strikes of the metro, train or bus systems were collected from government records (2005-2016). We collected daily concentrations of NOx; particulate matter with an aerodynamic diameter smaller than 10μm (PM10), 2.5μm (PM2.5), and 1μm (PM1); particle number concentration (N); black carbon (BC) and CO from research and official monitoring stations. We fitted linear regression models for each pollutant with the strike indicator as an independent variable, and models were adjusted for day of the week, month, year, and holiday periods. During the study period, there were 208days affected by a strike of the metro (28), train (106) or bus (91) systems. Half of the strikes were partial, most of them were single-day strikes, there was little overlap between strikes of the different transport systems, and all strikes had to comply with mandatory minimal services. When pooling all types of strikes, NOx and BC showed higher levels during strike days in comparison with non-strike days (increase between 4.1% and 7.7%, with higher increases for NO). The increases in these concentrations were more evident during full day and multiday metro strikes. In conclusion, alterations in public transport have consequences on air quality. This highlights the importance of public transport in reducing air pollution concentrations in cities. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigation of air transportation technology at Princeton University, 1986

    Science.gov (United States)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  4. Experience of air transport of nuclear fuel material in Japan

    International Nuclear Information System (INIS)

    Yamashita, T.; Toguri, D.; Kawasaki, M.

    2004-01-01

    Certified Reference Materials (hereafter called as to CRMs), which are indispensable for Quality Assurance and Material Accountability in nuclear fuel plants, are being provided by overseas suppliers to Japanese nuclear entities as Type A package (non-fissile) through air transport. However, after the criticality accident at JCO in Japan, special law defining nuclear disaster countermeasures (hereafter called as to the LAW) has been newly enforced in June 2000. Thereafter, nuclear fuel materials must meet not only to the existing transport regulations but also to the LAW for its transport

  5. First experience in international air transportation of RR SFA in Russian-made TUK-19 casks

    International Nuclear Information System (INIS)

    Kanashov, B.A.; Barinkov, O.P.; Dorofeev, A.N.; Komarov, S.V.; Smirnov, A.V.; Biro, L.; Budu, M.; Ciocanescu, M.

    2010-01-01

    Traditionally, spent fuel assemblies (SFA) have been transported across the Russian Federation by rail in special railcars. New conditions required SFA shipments by other conveyance, i.e. road, sea and even air transport. The air shipment of the VVR-S research reactor SNF in TUK-19 casks from Magurele, Romania in June 2009 was the first experience after new Russian and international regulations for the safe transport of radioactive material came into effect. The preparatory stage of the shipment focused on the issues associated with radiation and nuclear safety both during the loading and transport operations. The project covered development of a technology and equipment for SFA loading into TUK-19 casks and that for the air shipment. The SFAs were loaded into the TUK-19 casks with a specially designed transfer cask, and the SFA-containing packages were transported in specialized freight 20-foot ISO-containers. The safety of the loading and transport operations was ensured both by reliable engineering solutions, and selected conveyances and routes. The paper shows that the loading and the air shipment of the Romanian SFAs in TUK-19 casks does not contradict Romanian, Russian and international regulations for the safe transport of radioactive material. The outcomes of the SNF shipment from Romania confirmed correctness of the solutions and demonstrated high environmental safety. (author)

  6. Measuring the Air Quality and Transportation Impacts of Infill Development

    Science.gov (United States)

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  7. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Krol, M.C.; Peters, W.; Verwer, J.G.; Chock, David P.; Carmichael, Gregory R.; Brick, Patricia

    2002-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  8. A Zooming Technique for Wind Transport of Air Pollution

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.; Lioen, W.; Verwer, J.G.

    In air pollution dispersion models, typically systems of millions of equations that describe wind transport, chemistry and vertical mixing have to be integrated in time. To have more accurate results over specific fixed areas of interest---usually highly polluted areas with intensive emissions---a

  9. Solving Vertical Transport and Chemistry in Air Pollution Models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  10. A zooming technique for wind transport of air pollution

    NARCIS (Netherlands)

    Vilsmeier, R.; Berkvens, P.J.F.; Benkhaldoun, F.; Bochev, Mikhail A.; Lioen, W.M.; Haenel, D.; Verwer, J.G.

    1999-01-01

    In air pollution dispersion models, typically systems of millions of equations that describe wind transport, chemistry and vertical mixing have to be integrated in time. To have more accurate results over specific fixed areas of interest---usually highly polluted areas with intensive emissions---a

  11. The application of gas ejector for road transport air conditioning system

    Science.gov (United States)

    Sumeru, Nasution, Henry; Ani, Farid Nasir

    2012-06-01

    The depletion of fossil fuel supply requires fuel and energy saving in energy utilization system. Therefore, these required the development of new and efficient technologies as to reduce fuel consumption especially in air conditioning of road vehicles. Currently, the air conditioning for road vehicles uses vapor compression system. Although the vapor compression system has high COP, the compressor is driven by vehicle engines, which take additional fuel consumption when the air conditioning system is in operation. In this study, the waste heat of radiator drives the ejector refrigeration for air conditioning. Although the ejector refrigeration system has low COP, the use of heat driven air conditioning will reduce the fuel consumption as compared with conventional system. This is because the systems do not use the mechanical engine load. The analysis of this study is based on the ejector refrigeration system using natural refrigerant (isobutene). The evaporation temperature is 10°C, condensation temperature is 35°C, generator temperature is 90°C with ejector isentropic efficiency of 0.7, and the COP system is 0.25. The heat released by the radiator of typical small road vehicles is between 60 to 100 kW and if the generator absorbs 20% of the heat, the heat contained in the generator is 12 to 20 kW. When the ejector air conditioning system has a COP 0.25, it will generate cooling capacity between 3 to 5 kW, compared with the conventional air conditioning of similar vehicles, which is approximately 2 to 4.4 kW.

  12. Journal of Airline and Airport Management: Taking off on an exciting journey into Air Transport Research

    Directory of Open Access Journals (Sweden)

    David Gonzalez-Prieto

    2011-11-01

    Full Text Available We are pleased to introduce this first and inaugural issue of the first volume of the Journal of Airline and Airport Management (JAIRM. JAIRM is an international journal that proposes and fosters discussion on the theory and application in all areas of air transport, including (but not limited to air transport and globalization, airline and airport management. We are interested in issues related to production, logistics, operations, marketing, policy and regulation, information systems, project management, quality, as well as regional development, economics, organizational behaviour, finance and accounting in air transport research.

  13. Estimates of health risks associated with uranium transportation by air

    International Nuclear Information System (INIS)

    Elert, M.; Skagius, K.; Ericsson, A.M.; Karlsson, L.G.; Markstroem, A.

    1989-01-01

    There is today an increased interest for air transport of large quantities of uranium compounds. In this report the health risks from an aircrash where uraniumhexafluoride, uraniumdioxide powder, low enriched unirradiated fuel used in Swedish power reactors and unirradiated MTR-fuel used in the research reactor in Studsvik, is analysed. The radiation doses to personnel and the general public is calculated as well as the ground contamination from the spreaded material. Also air concentration of hydrogenflouride, from uraniumhexaflouride reacting with moisture in the air, is calculated. A number of intermediate results are presented. (authors) (69 refs.)

  14. Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere

    Science.gov (United States)

    Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.

    2017-12-01

    Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.

  15. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  16. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual Axis Radiographic Hydrotest facility. The pulsed-power source drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B-dot technique to be about ±100 μ at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap

  17. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  18. A study on contaminant transport in indoor air

    International Nuclear Information System (INIS)

    Pujala, Usha; Sen, Soubhadra; Subramanian, V.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    In case of an accidental release of radioactive contaminant inside a well-ventilated room, the same will be transported to the different parts of the room due to the circulation of indoor air. To ensure safety of the operating personnel, it is important to identify the ideal locations for keeping the warning alarm systems. To address the problem, a detailed study is required where numerical simulation has to be supported by experimental verification. A computational methodology has already been verified for this purpose (IGC report-no.323). In this work, a study on the transport of an inert aerosol inside a well-ventilated isolated room has been carried out

  19. Emissions and Air Quality Impacts of Freight Transportation

    Science.gov (United States)

    Bickford, Erica

    Diesel freight vehicles (trucks + trains) are responsible for 20% of all U.S. nitrogen oxide (NOx) and 3% of fine particulate (PM2.5) emissions - pollutants that are harmful to human health. Freight tonnage is also projected to double over the next several decades, reaching 30 billion tons by 2050, increasing freight transport activity. Air quality impacts from increased activity, trade-offs between activity and vehicle technology improvements, as well as where to make infrastructure investments that encourage sustainable freight growth, are important considerations for transportation and air quality managers. To address these questions, we build a bottom-up roadway-by-roadway freight truck inventory (WIFE) and employ it to quantify emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet, and investigate emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwest. We also evaluate the spatial and seasonal freight performance of WIFE modeled in a regional photochemical model (CMAQ) against satellite retrievals of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI). Results show that spatial and seasonal distribution of biodiesel affects regional emissions impacts. Summer high-blend deployment yields a larger annual emissions reduction than year-round low-blend deployment, however, technological improvements in vehicle emissions controls between 2009 and 2018 dwarf the impacts of biodiesel. Truck-to-rail modal shift analysis found 40% of daily freight truck VMT could be shifted to rail freight, causing a 26% net reduction in NOx emissions, and 31% less carbon dioxide (CO2) emissions. Despite significant emissions impacts, air quality modeling results showed mostly localized near roadway air quality improvements, with small regional net changes; yet, federal regulation of CO2 emissions and/or rising costs of diesel fuel could motivate shifting freight to more fuel efficient rail. Evaluation of

  20. Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) Fact Sheet

    Science.gov (United States)

    In fall 2017, the U.S. Environmental Protection Agency (EPA) launched the Kansas City Transportation Local-Scale Air Quality Study (KC-TRAQS) to learn more about local community air quality in three neighborhoods in Kansas City, KS.

  1. The Relationship of Land Use and Transportation Planning to Air Quality Management.

    Science.gov (United States)

    Hagevik, George, Ed.

    Due to a lack of communication between urban, regional, and transportation planning agencies and air pollution control agencies, cooperative efforts in environmental planning have been nearly non-existent. This traditional lack of communication and understanding serves to obscure the fact that air pollution control agencies and planning agencies…

  2. A cost-effective compressed air generation for manufacturing using modified microturbines

    International Nuclear Information System (INIS)

    Eret, Petr

    2016-01-01

    Highlights: • A new cost-effective way of compressed air generation for manufacturing in SME is proposed. • The approach is based on a modified microturbine configuration. • Thermodynamic and life cycle analyses are presented and economic benefit is demonstrated. - Abstract: Compressed air is an irreplaceable energy source for some manufacturing processes, and is also common in applications even when there are alternatives. As a result, compressed air is a key utility in manufacturing industry, but unfortunately the cost of compressed air production is one of the most expensive processes in a manufacturing facility. In order to reduce the compressed air generation cost an unconventional way using a microturbine configuration is proposed. The concept is based on an extraction of a certain amount of compressed air from/after the compressor with the residual air flowing to the turbine to produce sufficient back power to drive the compressor. A thermodynamic and life cycle analysis are presented for several system variations, including a simple cycle without a recuperator and a complex configuration with an intercooler, recuperator and reheating. The study is based on the typical requirements (i.e. quantity, pressure) for a small to medium sized industrial compressed air system. The analysis is focused on the North American market due to the low price of natural gas. The lowest life cycle cost alternative is represented by a microturbine concept with a recuperator, air extraction after partial compression, intercooler and aftercooler. A comparison of an electric motor and conventional microturbine prime movers demonstrates the economic benefit of the proposed compressed air generation method, for the design parameters and utility prices considered.

  3. 75 FR 13332 - Application of Charter Air Transport, Inc. for Commuter Authority

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc. for Commuter Authority Correction In notice document 2010-5555 appearing on page 12328 in the issue of Monday, March 15, 2010, make the following correction: In the second column, in the first paragraph, in...

  4. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  5. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  6. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  7. State and market in post-reform Brazilian air transportation

    Directory of Open Access Journals (Sweden)

    Cristiano Fonseca Monteiro

    2009-10-01

    Full Text Available The changes that have taken place in Brazilian air transportation following the cycle of “market reforms” have turned this sector into an object of growing interest. This interest, in turn, has led to the emergence of a broad literature on the subject, characterized by the emphasis on an agenda of liberalization and the critique of State activism. The goal of the present article is to promote a confrontation between the different interpretations that have been made, incorporating the contributions of approaches inspired in Economic Sociology and in institutionalist analyses in order to draw attention to the importance that political variables, and the State in particular, have for economic performance. The post-reform context is characterized by an initial moment of greater State activism regarding air transportation, through re-initiation of stricter regulatory mechanisms and the re-opening of channels of dialog between state actors and firms. This is followed by a second moment in which state activism is abandoned, at the same time that the sector demonstrates expressive rates of growth, pushing it beyond its existing capacity and flight support infrastructure. This culminated in the episode known as the “apagão aéreo” (aerial black out Analysis of testimonies of state and private sector actors regarding the “blackout” enables us to identify the flaws in the responsible state apparatus as one of the factors that led to the “blackout”. Our conclusions draw attention to the importance of taking political factors into consideration, and particularly the role of the State, in the development of air transportation in Brazil. Keywords: commercial aviation, politics and economics, regulation, Economic Sociology, Historical Institutionalism.

  8. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    International Nuclear Information System (INIS)

    Luna, R.E.; Wangler, M.W.; Selling, H.A.

    1993-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. Few technical issues remain in determining the shape of the IAEA's revision of its regulations to accommodate air transport of large quantities of radioactive material. In the next two years the detailed wording of the regulations will be fully worked out and proposed for inclusion in SS6. Considering the breadth of the member state participation in the process, it seems likely that the approved version of the 1995 revision of SS6 will contain air mode revisions that move away from the predominantly mode independent character that characterized their first 30 years. (J.P.N.)

  9. Toward the next generation of air quality monitoring: Persistent organic pollutants

    Science.gov (United States)

    Hung, Hayley; MacLeod, Matthew; Guardans, Ramon; Scheringer, Martin; Barra, Ricardo; Harner, Tom; Zhang, Gan

    2013-12-01

    Persistent Organic Pollutants (POPs) are global pollutants that can migrate over long distances and bioaccumulate through food webs, posing health risks to wildlife and humans. Multilateral environmental agreements, such as the Stockholm Convention on POPs, were enacted to identify POPs and establish the conditions to control their release, production and use. A Global Monitoring Plan was initiated under the Stockholm Convention calling for POP monitoring in air as a core medium; however long temporal trends (>10 years) of atmospheric POPs are only available at a few selected sites. Spatial coverage of air monitoring for POPs has recently significantly improved with the introduction and advancement of passive air samplers. Here, we review the status of air monitoring and modeling activities and note major uncertainties in data comparability, deficiencies of air monitoring and modeling in urban and alpine areas, and lack of emission inventories for most POPs. A vision for an internationally-integrated strategic monitoring plan is proposed which could provide consistent and comparable monitoring data for POPs supported and supplemented by global and regional transport models. Key recommendations include developing expertise in all aspects of air monitoring to ensure data comparability and consistency; partnering with existing air quality and meteorological networks to leverage synergies; facilitating data sharing with international data archives; and expanding spatial coverage with passive air samplers. Enhancing research on the stability of particle-bound chemicals is needed to assess exposure and deposition in urban areas, and to elucidate long-range transport. Conducting targeted measurement campaigns in specific source areas would enhance regional models which can be extrapolated to similar regions to estimate emissions. Ultimately, reverse-modeling combined with air measurements can be used to derive “emission” as an indicator to assess environmental

  10. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain.

    Science.gov (United States)

    Paital, Biswaranjan

    2013-09-01

    Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for >24h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25°C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Air transportation and tourism in the Croatian littoral

    Directory of Open Access Journals (Sweden)

    Slaven Gašparović

    2011-12-01

    Full Text Available The aim of this paper is to analyse and explain the impact of air transportation on the development of tourism in the Croatian littoral. The analysis was made by using the data collected from flight schedules and airport authorities. The data on frequency of lines and number of passengers were analysed in order to correlate the distribution of the number of passengers with the number of tourists during the year. In this case, the correlation between the number of passengers and the number of arrivals/number of overnight stays is observed. Data for the time period from 2008 till 2010 were analysed in more detail by dividing the passengers into four categories: full-service passengers, low-cost passengers, charter passengers and general aviation passengers. Major touristic markets are identified on the basis of the number of connections between European and Croatian littoral airports. The last part of the paper deals with the increasing impact of low-cost services on the development of tourism in the Croatian littoral region. This is due to the fact that low-cost carriers have accounted for a considerable part of air transport in the last few years.

  12. 75 FR 20922 - Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Transportation...

    Science.gov (United States)

    2010-04-22

    ... with the January 2009, ``Guidance for Developing Transportation Conformity State Implementation Plans... Promulgation of Air Quality Implementation Plans; New Mexico; Transportation Conformity Requirement for... Transportation Conformity? II. What Is the Background for This Action? III. What Did the State Submit and How Did...

  13. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    International Nuclear Information System (INIS)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-01-01

    Greenhouse gas (CO 2 , CH 4 and N 2 O, hereinafter GHG) and criteria air pollutant (CO, NO x , VOC, PM 10 , PM 2.5 and SO x , hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  14. The role of transportation control measures in California's air pollution control strategy

    International Nuclear Information System (INIS)

    Guensler, R.; Burmich, P.; Geraghty, A.

    1992-01-01

    In California, significant progress has been made to control emissions from industrial sources as well as from motor vehicles. Nonetheless, policy analysts still debate over whether it makes sense to control motor vehicle emissions through legislated reductions in vehicle use, especially when new vehicle emission standards are becoming even more stringent in California. In this paper, the emission reduction benefits of California's new low-emission vehicles and clean fuels program are reviewed. The air quality management plans of three major metropolitan areas in California are examined, to identify emission reductions needed to meet federal and state air quality standards. For each of these three areas, emission reductions expected from transportation control measure implementation are presented. Then, the extent to which the reductions are open-quotes significantclose quotes and relied upon in each of the local attainment efforts is analyzed. The emission reductions expected from the stringent exhaust emission standards of California's new low-emission vehicles and clean fuels program will not be sufficient to meet mandated clean air standards in the study areas. Based upon our review, transportation control measures appear to be necessary components of the air quality management plans in California's major metropolitan areas. The paper concludes that cost-effective transportation control measures (TCMs) will be needed as a complementary strategy to California's stringent tail-pipe standards in moderate to extreme nonattainment areas

  15. Agenda and Presentations from Circumpolar Workshop: Transport and Clean Air

    Science.gov (United States)

    EPA and its partners convened Transport and Clean Air, a Circumpolar Workshop held in December 2013. This seminar allowed leading experts to share best practices on reducing emissions of particulates and black carbon from diesel sources in the Arctic.

  16. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  17. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    Science.gov (United States)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  18. 75 FR 70962 - California Green Trade Corridor Transportation Investment Generating Economic Recovery (TIGER)

    Science.gov (United States)

    2010-11-19

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket Number 2010-0103] California Green Trade Corridor Transportation Investment Generating Economic Recovery (TIGER) AGENCY: Department of... California Green Trade Corridor Transportation Investment Generating Economic Recovery (TIGER) grant. An...

  19. Modelling the urban air quality in Hamburg with the new city-scale chemistry transport model CityChem

    Science.gov (United States)

    Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus

    2017-04-01

    Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World

  20. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  1. The impact of changing technology on the demand for air transportation

    Science.gov (United States)

    Kneafsey, J. T.; Taneja, N. K.

    1978-01-01

    Demand models for air transportation that are sensitive to the impact of changing technology were developed. The models are responsive to potential changes in technology, and to changing economic, social, and political factors as well. In addition to anticipating the wide differences in the factors influencing the demand for long haul and short haul air travel, the models were designed to clearly distinguish among the unique features of these markets.

  2. Investigation of air transportation technology at Princeton University, 1984

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  3. Contact Information for EPA's Office of Transportation and Air Quality

    Science.gov (United States)

    You will find an EPA employee by name or by topic of interest, also, you will know who to contact if you want to find a specific transportation and air quality document, importing a vehicle to the US, and other frequently asked questions.

  4. 03. Disruption Management in PassengerTransportation - from Air to Tracks

    OpenAIRE

    Clausen, Jens

    2007-01-01

    Over the last 10 years there has been a tremendous growth in air transportation of passengers. Both airports and airspace are close to saturation with respect to capacity, leading to delays caused by disruptions. At the same time the amount of vehicular traffic around and in all larger cities of the world has show a dramatic increase as well. Public transportation by e.g. rail has come into focus, and hence also the service level provided by suppliers ad public transportatio...

  5. Lithium battery fires: implications for air medical transport.

    Science.gov (United States)

    Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim

    2012-01-01

    Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  6. THE FUTURE OF PASSENGER AIR TRANSPORT – VERY LARGE AIRCRAFT AND OUT KEY HUMAN FACTORS AFFECTING THE OPERATION AND SAFETY OF PASSENGER AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    Petra Skolilova

    2017-12-01

    Full Text Available The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.

  7. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  8. Network Theory: A Primer and Questions for Air Transportation Systems Applications

    Science.gov (United States)

    Holmes, Bruce J.

    2004-01-01

    A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.

  9. A Fuzzy Approach of the Competition on the Air Transport Market

    Science.gov (United States)

    Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes

    2003-01-01

    The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,

  10. Evaluation of a prototype air transport system for use in a crate handling and size reduction facility

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1987-09-01

    This paper describes the design features and evaluation, under simulated active conditions, of a purpose designed remotely operated air transporter system. The paper concludes by recommending that an air transporter, based on this concept, is considered for the alpha active facility. (author)

  11. Air transport and tourism of Montenegro in terms of global recession

    Directory of Open Access Journals (Sweden)

    Radulović Ljiljana

    2012-01-01

    Full Text Available Today's dynamic environment can be characterized as unstable and unpredictable, which significantly affects the development of tourism and the flow of air traffic management which is why the tourism industry should be understood as a process based on continuous research, analysis and understanding of the interactions between the identified changes. Starting from the geographical position and strategic documents on Transport and Tourism, Montenegro is positioned as a air traffic destination whose success in the tourism market is conditioned by the willingness and ability of the holder of the tourist and transport policy pursuant to the challenges of today's approaches to planning and precisely define the development goals and courses of action. Based on the above and due recognition of the economic crisis as the challenges that face our country emphasized the need to analyze the effects of the global economic crisis on the performance of air traffic and future development of tourism in Montenegro. With the intention of the comprehensive observation of the current situation, this paper will present quantitative data from the previous period with the development of air traffic forecasts, organized under the development of Montenegrin tourism. In this way we want the consequences of the global economic crisis displayed as a serious threat to the development of air traffic and tourism in Montenegro, with the ultimate aim of highlighting the importance of establishing high-quality air traffic as part of an integrated approach to tourism development of our country that can achieve a certain degree of resistance to contemporary challenges.

  12. Optimizing Air Transportation Service to Metroplex Airports. Part 1; Analysis of Historical Data

    Science.gov (United States)

    Donohue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar

    2010-01-01

    The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation (+4% annual growth), resulting in unreliable service and systemic delays. Estimates of the impact of delays and unreliable air transportation service on the economy range from $32B to $41B per year. This report describes the results of an analysis of airline strategic decision-making with regards to: (1) geographic access, (2) economic access, and (3) airline finances. This analysis evaluated markets-served, scheduled flights, aircraft size, airfares, and profit from 2005-2009. During this period, airlines experienced changes in costs of operation (due to fluctuations in hedged fuel prices), changes in travel demand (due to changes in the economy), and changes in infrastructure capacity (due to the capacity limits at EWR, JFK, and LGA). This analysis captures the impact of the implementation of capacity limits at airports, as well as the effect of increased costs of operation (i.e. hedged fuel prices). The increases in costs of operation serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed.

  13. Air spark-like plasma source for antimicrobial NOx generation

    International Nuclear Information System (INIS)

    Pavlovich, M J; Galleher, C; Curtis, B; Clark, D S; Graves, D B; Ono, T; Machala, Z

    2014-01-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NO x at an initial rate of about 1.5  ×  10 16 NO x molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NO x in 10 min. Around 90% of the NO x is in the form of NO 2 after several minutes of operation in the confined volume, suggesting that NO 2 is the dominant antimicrobial component. The strong antimicrobial action of the NO x mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NO x mixture. Some possible applications of plasma generation of NO x (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature. (paper)

  14. Pressure Injury Development in Patients Treated by Critical Care Air Transport Teams: A Case-Control Study.

    Science.gov (United States)

    Dukes, Susan F; Maupin, Genny M; Thomas, Marilyn E; Mortimer, Darcy L

    2018-04-01

    The US Air Force transports critically ill patients from all over the world, with transport times commonly ranging from 6 to 11 hours. Few outcome measures have been tracked for these patients. Traditional methods to prevent pressure injuries in civilian hospitals are often not feasible in the military transport environment. The incidence rate and risk factors are described of en route-related pressure injuries for patients overseen by the Critical Care Air Transport Team. This retrospective, case-control, medical records review investigated risk factors for pressure injury in patients who developed a pressure injury after their transport flight compared with those with no documented pressure injuries. The pressure injury rate was 4.9%. Between 2008 and 2012, 141 patients in whom pressure injuries developed and who had received care by the team were matched with 141 patients cared for by the team but did not have pressure injury. According to regression analysis, body mass index and 2 or more Critical Care Air Transport Team transports per patient were associated with pressure injury development. Although the pressure injury rate of 4.9% in this cohort of patients is consistent with that reported by civilian critical care units, the rate must be interpreted with caution, because civilian study data frequently represent the entire intensive care unit length of stay. Targeted interventions for patients with increased body mass index and 2 or more critical care air transports per patient may help decrease the development of pressure injury in these patients. ©2018 American Association of Critical-Care Nurses.

  15. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  16. [Transport characteristics of air pollutants over the Yangtze Delta].

    Science.gov (United States)

    Wang, Yan; Chai, Fa-He; Wang, Yong-Hong; Liu, Ming

    2008-05-01

    Meteorological field of January, April, July and October in 2004 was obtained by running MM5 with NCEP datasets. Then we used HYSPLIT 4.8 model to calculate the backward and forward trajectories of representative cities. Distributions of trajectories and the affected areas vary with seasons. Transport current affecting Yangtze River Delta is mainly from Mongolia, North China or Northeast region, via Yellow Sea area, Shandong, Jiangsu province or Shanghai. Another important transport path is current from southwest because of the Southwest monsoon. A movement of East Asia monsoon plays an important part in the mesoscale transport of pollutants in Yangtze Delta. Winter monsoon is a main mechanism which moves the air pollutants in Yangtze Delta to South China and West Pacific ocean. Another important transport system is the subtropical anticyclone over the western Pacific Ocean which controls the east coast of our country in spring and summer. This circulation system mainly affects the inland area of our country.

  17. Evaluation of a prototype air transport system for use in a crate handling and size reduction facility

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1987-01-01

    This paper describes in detail the design features and evaluation, under simulated active conditions, of a purpose designed remotely operated air transporter system. The paper concludes by recommending that an air transporter, based on this concept, is considered for the alpha active facility. (author)

  18. Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants.

    Science.gov (United States)

    Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S

    2016-04-01

    This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.

  19. 78 FR 40966 - Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Interstate Transport...

    Science.gov (United States)

    2013-07-09

    ... Promulgation of Air Quality Implementation Plans; New Mexico; Interstate Transport of Fine Particulate Matter... a State Implementation Plan (SIP) submittal from the State of New Mexico to address Clean Air Act (CAA or Act) requirements that prohibit air emissions which will contribute significantly to...

  20. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual-Axis Radiographic Hydrotest facility. The pulsed-power sources drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first of 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B technique to be about ±100 μm at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap. 7 refs., 6 figs

  1. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  2. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Colette, A.; Rouil, L.; Bessagnet, B.; Schucht, S.; Szopa, S.; Vautard, R.; Menut, L.

    2013-01-01

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  3. Operating systems in the air transportation environment.

    Science.gov (United States)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  4. Exceptional Air Mass Transport and Dynamical Drivers of an Extreme Wintertime Arctic Warm Event

    Science.gov (United States)

    Binder, Hanin; Boettcher, Maxi; Grams, Christian M.; Joos, Hanna; Pfahl, Stephan; Wernli, Heini

    2017-12-01

    At the turn of the years 2015/2016, maximum surface temperature in the Arctic reached record-high values, exceeding the melting point, which led to a strong reduction of the Arctic sea ice extent in the middle of the cold season. Here we show, using a Lagrangian method, that a combination of very different airstreams contributed to this event: (i) warm low-level air of subtropical origin, (ii) initially cold low-level air of polar origin heated by surface fluxes, and (iii) strongly descending air heated by adiabatic compression. The poleward transport of these warm airstreams occurred along an intense low-level jet between a series of cyclones and a quasi-stationary anticyclone. The complex 3-D configuration that enabled this transport was facilitated by continuous warm conveyor belt ascent into the upper part of the anticyclone. This study emphasizes the combined role of multiple transport processes and transient synoptic-scale dynamics for establishing an extreme Arctic warm event.

  5. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    Science.gov (United States)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  6. Air passenger transport and the greenhouse effect; Transport aerien de passagers et effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, M

    2004-11-01

    The commercial aviation sector accounts for 2.5 % of total worldwide anthropogenic carbon dioxide (CO{sub 2}) emissions. Water vapour (H{sub 2}O) and NO{sub x} emissions, the formation of condensation trails and increased formation of cirrus clouds due to altitude (indirect effects) also accentuate the greenhouse effect. The Intergovernmental Panel on Climate Change (IPCC) estimates that the effects apart from CO{sub 2} emissions are relatively higher for aviation than for other human activities. For one tonne of CO{sub 2} emissions, the radiative forcing of aviation is twice as important as other activities. On this basis, a Paris-New York return trip for one passenger on a charter flight corresponds to a quarter of the total climate impact caused by the annual consumption of a French person. Increased mobility and a rise in international tourism suggest that past trends in the growth of air passenger transport will continue. The improvements in energy efficiency achieved are seemingly not sufficient to prevent a significant increase in the impact of air transport on climate change. (author)

  7. The Air Transportation Policy of Small States: Meeting the Challenges of Globalization

    Science.gov (United States)

    Antoniou, Andreas

    2001-01-01

    The air transport policies of small states are currently at a crossroad. Policy makers in these countries are facing a difficult dilemma: either follow the general trend of liberalization and pay the high cost of the resulting restructuring or maintain the existing regulatory and ownership structures at the risk of isolation thus undermining the viability and sustainability of their air transport sector and their economies in general. This paper proposes to explore the broad issues raised by this difficult dilemma, to outline its special significance in the context of small states and to delineate the options opened to the economic policymakers; in these states. After a brief note on the method of research, we sketch the main elements of the international air transport industry in which the airlines of small states are called upon to act. We then propose to review the main features of the analytical framework of this debate as it pertains to the special circumstances of these states. Then we focus on the challenges facing the airlines of Small States, while the next section proposes a number of the alternative policy options open to the policy makers in these states. The main conclusions are drawn in the final section.

  8. Model-generated air quality statistics for application in vegetation response models in Alberta

    International Nuclear Information System (INIS)

    McVehil, G.E.; Nosal, M.

    1990-01-01

    To test and apply vegetation response models in Alberta, air pollution statistics representative of various parts of the Province are required. At this time, air quality monitoring data of the requisite accuracy and time resolution are not available for most parts of Alberta. Therefore, there exists a need to develop appropriate air quality statistics. The objectives of the work reported here were to determine the applicability of model generated air quality statistics and to develop by modelling, realistic and representative time series of hourly SO 2 concentrations that could be used to generate the statistics demanded by vegetation response models

  9. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 3

    Science.gov (United States)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    Volume 3 of the 2003 Air Transport Reserch Society (ATRS) World Conference includes papers on topics relevant to airline operations worldwide. Specific topics include: European Union and civil aviation regimens;simulating decision making in airline operations, passenger points of view on convenient airports; route monopolies and nonlinear pricing; cooperation among airports in Europe; fleet modernizaiton in Brazil;the effects of deregulation on the growth of air transportation in Europe and the United States.

  10. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    Science.gov (United States)

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  11. Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia.

    Science.gov (United States)

    Xia, Ting; Nitschke, Monika; Zhang, Ying; Shah, Pushan; Crabb, Shona; Hansen, Alana

    2015-01-01

    Motor vehicle emissions contribute nearly a quarter of the world's energy-related greenhouse gases and cause non-negligible air pollution, primarily in urban areas. Changing people's travel behaviour towards alternative transport is an efficient approach to mitigate harmful environmental impacts caused by a large number of vehicles. Such a strategy also provides an opportunity to gain health co-benefits of improved air quality and enhanced physical activities. This study aimed at quantifying co-benefit effects of alternative transport use in Adelaide, South Australia. We made projections for a business-as-usual scenario for 2030 with alternative transport scenarios. Separate models including air pollution models and comparative risk assessment health models were developed to link alternative transport scenarios with possible environmental and health benefits. In the study region with an estimated population of 1.4 million in 2030, by shifting 40% of vehicle kilometres travelled (VKT) by passenger vehicles to alternative transport, annual average urban PM2.5 would decline by approximately 0.4μg/m(3) compared to business-as-usual, resulting in net health benefits of an estimated 13deaths/year prevented and 118 disability-adjusted life years (DALYs) prevented per year due to improved air quality. Further health benefits would be obtained from improved physical fitness through active transport (508deaths/year prevented, 6569DALYs/year prevented), and changes in traffic injuries (21 deaths and, 960 DALYs prevented). Although uncertainties remain, our findings suggest that significant environmental and health benefits are possible if alternative transport replaces even a relatively small portion of car trips. The results may provide assistance to various government organisations and relevant service providers and promote collaboration in policy-making, city planning and infrastructure establishment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Future's operation areas: new-generation suppression enemy air defence (SEAD) elements

    Science.gov (United States)

    Hazinedar, Ä.°lker

    2015-05-01

    Since air vehicles took place in the theater of operations, they have become the indispensable elements and the strongest attack power of armed forces. In the following period, with technological development, supersonic aircrafts took place in the operation area and this increased effectiveness of air vehicles much more. Air forces have used these aircrafts during important missions like strategic attack and air defense operations. On the other hand, decision makers understood that it was not feasible to intercept fighter aircrafts by executing combat air patrol flight missions. Since there is not enough reaction time to intercept the high speed aircrafts, ground stationed Surface to Air Missiles (SAM) system requirement has emerged. Therefore, SAM systems took place in the operation scene as well. Due to the fact that SAM systems emerged against the attack power, the attack aircrafts are to keep away from the fire of the ground stationed SAM systems. Hence, the requirement of Suppression Enemy Air Defense (SEAD) arose. SEAD elements take under suppression the radar of the SAM systems. In this way, attack aircrafts are able to attack without the risk of SAM systems. The purpose of this study is to find new methods or concepts in order to protect friendly attack aircrafts against ground based surface to air missiles' fires. Modernization of SAM systems and new generation SAM system producing activities have proceeded with positive acceleration. So, current SEAD elements and concepts are not able to cover the requirements due to the increased SAM system ranges. According to the concepts, SEAD weapons` ranges must be longer than the SAM weapons' ranges to protect friendly aircrafts. In this study, new concept was offered to overcome the deficiencies of current SEAD concept. The elements of new concepts were put forward. Classic SEAD concept and new generation concepts were assessed by using SWOT analysis technique. As a result, this study has revealed that, air forces

  13. Journal of Air Transportation, Volume 11, No. 1

    Science.gov (United States)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2006-01-01

    Topics covered include: Analysis of System-wide Investment in the National Airspace System: A Portfolio Analytical Framework and an Example; Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion; The Development of Jomo Kenyatta International Airport as a Regional Aviation Hub; Corporate Social Responsibility in Aviation; The Competitive Effects of Airline Mergers and Acquisitions: More Capital Market Evidence; and The Competitive Position of Hub Airports in the Transatlantic Market.

  14. Air quality impacts of projections of natural gas-fired distributed generation

    Science.gov (United States)

    Horne, Jeremy R.; Carreras-Sospedra, Marc; Dabdub, Donald; Lemar, Paul; Nopmongcol, Uarporn; Shah, Tejas; Yarwood, Greg; Young, David; Shaw, Stephanie L.; Knipping, Eladio M.

    2017-11-01

    This study assesses the potential impacts on emissions and air quality from the increased adoption of natural gas-fired distributed generation of electricity (DG), including displacement of power from central power generation, in the contiguous United States. The study includes four major tasks: (1) modeling of distributed generation market penetration; (2) modeling of central power generation systems; (3) modeling of spatially and temporally resolved emissions; and (4) photochemical grid modeling to evaluate the potential air quality impacts of increased DG penetration, which includes both power-only DG and combined heat and power (CHP) units, for 2030. Low and high DG penetration scenarios estimate the largest penetration of future DG units in three regions - New England, New York, and California. Projections of DG penetration in the contiguous United States estimate 6.3 GW and 24 GW of market adoption in 2030 for the low DG penetration and high DG penetration scenarios, respectively. High DG penetration (all of which is natural gas-fired) serves to offset 8 GW of new natural gas combined cycle (NGCC) units, and 19 GW of solar photovoltaic (PV) installations by 2030. In all scenarios, air quality in the central United States and the northwest remains unaffected as there is little to no DG penetration in those states. California and several states in the northeast are the most impacted by emissions from DG units. Peak increases in maximum daily 8-h average ozone concentrations exceed 5 ppb, which may impede attainment of ambient air quality standards. Overall, air quality impacts from DG vary greatly based on meteorological conditions, proximity to emissions sources, the number and type of DG installations, and the emissions factors used for DG units.

  15. The humidity effect on the breakdown voltage characteristics and the transport parameters of air

    International Nuclear Information System (INIS)

    Radmilović-Radjenović, M.; Radjenović, B.; Nikitović, Ž.; Matejčik, Š.; Klas, M.

    2012-01-01

    This paper contains experimental results for the direct current (DC) breakdown voltages and calculated transport parameters for dry, synthetic and ambient air. The breakdown voltage curves for dry, ambient and synthetic air at the gap size of 100μm are very similar. The differences between them are much more pronounced at the interelectrode separation of 20μm, especially at the right hand branch of the breakdown voltage curves. On the other hand, the effective yields γ for dry and synthetic air are in disagreement at lower values of the E/p. Results of calculations based on the Two Term Approximation indicate that the humidity has no a great influence on the transport parameters at all range of the reduce field E/N.

  16. Observation of regional air pollutant transport between the megacity Beijing and the North China Plain

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-11-01

    Full Text Available Megacities have strong interactions with the surrounding regions through transport of air pollutants. It has been frequently addressed that the air quality of Beijing is influenced by the influx of air pollutants from the North China Plain (NCP. Estimations of air pollutant cross-boundary transport between Beijing and the NCP are important for air quality management. However, evaluation of cross-boundary transport using long-term observations is very limited. Using the observational results of the gaseous pollutants SO2, NO, NO2, O3, and CO from August 2006 to October 2008 at the Yufa site, a cross-boundary site between the megacity Beijing and the NCP, together with meteorological parameters, we explored a method for evaluating the transport flux intensities at Yufa, as part of the “Campaign of Air Quality Research in Beijing and Surrounding Region 2006–2008” (CAREBeijing 2006–2008. The hourly mean ± SD (median concentration of SO2, NO, NO2, NOx, O3, Ox, and CO was 15 ± 16 (9 ppb, 12 ± 25 (3 ppb, 24 ± 19 (20 ppb, 36 ± 39 (23 ppb, 28 ± 27 (21 ppb, 52 ± 24 (45 ppb, and 1.6 ± 1.4 (1.2 ppm during the observation period, respectively. The bivariate polar plots showed the dependence of pollutant concentrations on both wind speed and wind direction, and thus inferred their dominant transport directions. Surface flux intensity calculations further demonstrated the regional transport influence of Beijing and the NCP on Yufa. The net surface transport flux intensity (mean ± SD of SO2, NO, NO2, NOx, O3, Ox, and CO was 6.2 ± 89.5, −4.3 ± 29.5, −0.6 ± 72.3, −4.9 ± 93.0, 14.7 ± 187.8, 14.8 ± 234.9, and 70 ± 2830 µg s−1 m−2 during the observation period, respectively. For SO2, CO, O3, and Ox the surface flux intensities from the NCP to Yufa surpassed those from Beijing to Yufa in all seasons except winter, with the strongest net fluxes largely

  17. Simultaneous air transportation of the harvested heart and visceral organs for transplantation.

    Science.gov (United States)

    Aydin, U; Yazici, P; Kazimi, C; Bozoklar, A; Sozbilen, M; Zeytunlu, M; Kilic, M

    2008-01-01

    The purpose of this study was to evaluate the duration for organ procurement including both heart and visceral organs and outcomes of the simultaneous transportation of the teams back to the recipient hospitals. Between March 2005 and March 2007, 37/82 organ procurement was performed in the district hospitals and transported to our institution for organ transplantation. Combined heart and visceral organ procurement which was simultaneously transported to the recipient hospitals by one air vehicle was reviewed. After both the thoracic and abdominal cavities were entered, all intra-abdominal organs were mobilized allowing exposure of the inferior mesenteric vein and aorta. The supraceliac abdominal aorta was elevated. The attachments of the liver in the hilar region were incised and both kidneys and pancreas prepared for removal. After the inferior mesenteric vein and aorta were cannulated, simultaneous aortic cross-clamping was performed and cold preservation solution infused. Harvested organs were packed with ice and removed to the back table for initial preparation and packaging for air transport. The mean duration of 6 procurement procedures was 63 minutes (range 50-75 minutes) to aortic clamping, and 27.5 minutes (range, 20-40 minutes) between clamping and harvesting. Mean cold ischemia times for 6 hearts, 6 livers, 12 kidneys, 2 pancreas, and 1 small intestine were 2.4 hours (range, 2-3.5 hours), 5 hours (range, 3-8 hours), 10.3 hours (range, 8-15 hours), 6.7 hours, and 9.5 hours, respectively. No graft complication was observed to be associated with the procurement procedure. Better collaborations between surgical teams and rapid procurement techniques provide simultaneous air transportation back to the recipient hospital with reduced cold ischemia times of the visceral organs.

  18. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, R. A.; Lock, G.

    2003-01-01

    This paper reports the development of the maritime module within the framework of the TRENDS project. A detailed database has been constructed, which includes all stages of the energy consumption and air pollutant emission calculations. The technical assumptions and factors incorporated in the da...... ¿ short sea or deep-sea shipping. Key Words: Air Pollution, Maritime Transport, Air Pollutant Emissions......This paper reports the development of the maritime module within the framework of the TRENDS project. A detailed database has been constructed, which includes all stages of the energy consumption and air pollutant emission calculations. The technical assumptions and factors incorporated...... encountered since the statistical data collection was not undertaken with a view to this purpose are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission results per port and vessel type, to aggregate results for different types of movements...

  19. Agent-based modeling and simulation of emergent behavior in air transportation

    NARCIS (Netherlands)

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system

  20. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  1. Characteristics and transport of organochlorine pesticides in urban environment: air, dust, rain, canopy throughfall, and runoff.

    Science.gov (United States)

    Zhang, Wei; Ye, Youbin; Hu, Dan; Ou, Langbo; Wang, Xuejun

    2010-11-01

    Characteristics and transport of organochlorine pesticides (OCPs) in urban multiple environments, including air, dust, rain, canopy throughfall, and runoff water, are explored in this study. Hexachlorocyclohexanes (HCHs) dominated in both air and rain water, and dichlorodiphenyltrichloroethane (DDT) related substances showed a higher affinity to dust. Relatively high concentrations of DDT and dichlorodiphenyldichloroethylene (DDE) in air, rain and dust imply that technical DDT in the environment has been degrading, and there may be unknown local or regional emission sources that contain DDTs in the study area. Source identification showed that DDTs in Beijing urban environments with a fresh signature may originate from the atmospheric transport from remote areas. The ratio of α-/γ-HCH in dust, rain, canopy throughfall and runoff were close to 1, indicating the possible use of lindane. OCPs in runoff were transported from various sources including rain, dust, and canopy throughfall. In runoff, DDTs and hexachlorobenzene (HCB) were mainly transported from dust, and HCHs were mainly from rain and canopy throughfall.

  2. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  3. The Air Force Critical Care Air Transport Team (CCATT): Using the Estimating Supplies Program (ESP) to Validate Clinical Requirements

    Science.gov (United States)

    2005-04-05

    Disease, Severe. 0249 Peptic Ulcer , Gastric or Duodenal, Penetrating and/or Perforating . 0250 Peptic Ulcer , Gastric or Duodenal, Uncomplicated. 0251...in US Air Force (USAF) Allowance Standard (AS) development and management . The Critical Care Air Transport Team (CCATT) Unit Type Code (UTC) AS was...tasks enabling the management of the critically ill or injured en route to the appropriate level of care (LOC) or medical treatment facility (MTF

  4. Journal of Air Transportation, Volume 10, No. 3

    Science.gov (United States)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    The following topics are discussed: The Effects of Safety Information on Aeronautical Decision Making; Design, Development, and Validation of an Interactive Multimedia Training Simulator for Responding to Air Transportation Bomb Threats; Discovering the Regulatory Considerations of the Federal Aviation Administration: Interviewing the Aviation Rulemaking Advisory Committee; How to Control Airline Routes from the Supply Side: The Case of TAP; An Attempt to Measure the Traffic Impact of Airline Alliances; and Study Results on Knowledge Requirements for Entry-level Airport Operations and Management Personnel.

  5. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    Science.gov (United States)

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  6. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  7. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5

    Science.gov (United States)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities. The Conference proceedings of the 2003 Air Transport Research Society (ATRS) world conference, volume 5 is presented. The topics include: 1) The Temporal Configuration of Airline Networks in Europe; 2) Determination and Applications of Environmental Costs at Different Sized Airports-Aircraft Noise and Engine Emissions; 3) Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector; 4) An Assessment of the Sustainability of Air Transport System: Quantification of Indicators; 5) Regulation, Competition and Network Evolution in Aviation; 6) Regulation in the Air: Price and Frequency Cap; 7) Industry Consolidation and Future Airline Network Structures in Europe; 8) Application of Core Theory to the U.S. Airline Industry; 9) Air Freight Transshipment Route Choice Analysis; 10) A Fuzzy Approach of the Competition on Air Transport Market; and 11) Developing Passenger Demand Models for International Aviation from/to Egypt: A Case Study of Cairo Airport and Egyptair.

  8. Containing air pollution and traffic congestion: Transport policy and the environment in Singapore

    Science.gov (United States)

    Chin, Anthony T. H.

    Land transportation remains one of the main contributors of noise and air pollution in urban areas. This is in addition to traffic congestion and accidents which result in the loss of productive activity. While there is a close relationship between traffic volumes and levels of noise and air pollution, transport authorities often assume that solving traffic congestion would reduce noise and air pollutant levels. Tight control over automobile ownership and use in Singapore has contributed in improving traffic flows, travel speeds and air quality. The adoption of internationally accepted standards on automobile emissions and gasoline have been effective in reducing air pollution from motor vehicles. Demand management measures have largely focused on controlling the source of traffic congestion, i.e. private automobile ownership and its use especially within the Central Business District during the day. This paper reviews and analyzes the effectiveness of two measures which are instrumental in controlling congestion and automobile ownership, i.e. road pricing and the vehicle quota scheme (VQS). While these measures have been successful in achieving desired objectives, it has also led to the spreading of traffic externalities to other roads in the network, loss in consumer welfare and rent seeking by automobile traders.

  9. Retrospective Review of Air Transportation Use for Upper Extremity Amputations at a Level-1 Trauma Center.

    Science.gov (United States)

    Grantham, W Jeffrey; To, Philip; Watson, Jeffry T; Brywczynski, Jeremy; Lee, Donald H

    2016-08-01

    Air transportation to tertiary care centers of patients with upper extremity amputations has been utilized in hopes of reducing the time to potential replantation; however, this mode of transportation is expensive and not all patients will undergo replantation. The purpose of this study is to review the appropriateness and cost of air transportation in upper extremity amputations. Consecutive patients transported by aircraft with upper extremity amputations in a 7-year period at a level-1 trauma center were retrospectively reviewed. The distance traveled was recorded, along with the times of the injury, referral, transportation duration, arrival, and start of the operation. The results of the transfer were defined as replantation or revision amputation. Overall, 47 patients were identified with 43 patients going to the operating room, but only 14 patients (30%) undergoing replantation. Patients arrived at the tertiary hand surgery center with a mean time of 182.3 minutes following the injury, which includes 105.2 minutes of transportation time. The average distance traveled was 105.4 miles (range, 22-353 miles). The time before surgery of those who underwent replantation was 154.6 minutes. The average cost of transportation was $20,482. Air transportation for isolated upper extremity amputations is costly and is not usually the determining factor for replantation. The type of injury and patients' expectations often dictate the outcome, and these may be better determined at the time of referral with use of telecommunication photos, discussion with a hand surgeon, and patient counseling. III.

  10. Levels of ambient air pollution according to mode of transport: a systematic review.

    Science.gov (United States)

    Cepeda, Magda; Schoufour, Josje; Freak-Poli, Rosanne; Koolhaas, Chantal M; Dhana, Klodian; Bramer, Wichor M; Franco, Oscar H

    2017-01-01

    Controversy exists about the differences in air pollution exposure and inhalation dose between mode of transport. We aimed to review air pollution exposure and inhaled dose according to mode of transport and pollutant and their effect in terms of years of life expectancy (YLE). In this systematic review, we searched ten online databases from inception to April 13, 2016, without language or temporal restrictions, for cohort, cross-sectional, and experimental studies that compared exposure to carbon monoxide, black carbon, nitrogen dioxide, and fine and coarse particles in active commuters (pedestrian or cyclist) and commuters using motorised transport (car, motorcycle, bus, or massive motorised transport [MMT-ie, train, subway, or metro]). We excluded studies that measured air pollution exposure exclusively with biomarkers or on the basis of simulated data, reviews, comments, consensuses, editorials, guidelines, in-vitro studies, meta-analyses, ecological studies, and protocols. We extracted average exposure and commuting time per mode of transport and pollutant to calculate inhaled doses. We calculated exposure and inhaled dose ratios using active commuters as the reference and summarised them with medians and IQRs. We also calculated differences in YLE due to fine particle inhaled dose and physical activity. We identified 4037 studies, of which 39 were included in the systematic review. Overall, car commuters had higher exposure to all pollutants than did active commuters in 30 (71%) of 42 comparisons (median ratio 1·22 [IQR 0·90-1·76]), followed by those who commuted by bus in 57 (52%) of 109 (1·0 [0·79-1·41]), by motorcycle in 16 (50%) of 32 (0·99 [0·86-1·38]), by a car with controlled ventilation settings in 39 (45%) of 86 (0·95 [0·66-1·54]), and by MMT in 21 (38%) of 55 (0·67 [0·49-1·13]). Overall, active commuters had higher inhalation doses than did commuters using motorised transport (median ratio car with controlled ventilation settings 0

  11. Effects of atmospheric transport and trade on air pollution mortality in China

    Science.gov (United States)

    Zhao, Hongyan; Li, Xin; Zhang, Qiang; Jiang, Xujia; Lin, Jintai; Peters, Glen P.; Li, Meng; Geng, Guannan; Zheng, Bo; Huo, Hong; Zhang, Lin; Wang, Haikun; Davis, Steven J.; He, Kebin

    2017-09-01

    Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2.5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths) of China's PM2.5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths) China's PM2.5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total) and 145 100 (14 %) premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  12. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    Science.gov (United States)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  13. Development of alpha radioactivity monitor using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2008-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'Clearance Level' for uranium and TRU radioactive waste. We carried out optimum design and realized two kinds of practical alpha activity monitor, combining with radiation detector technology, ionized air physics and computational fluid dynamics. The results will bring paradigm shift on the alpha-ray measurement such as converting 'closely contacting and scanning measurement' to 'remotely measurement in the block', and drastically improve the efficiency of measurement operation. We hope that this technology will be widely endorsed as the practical method for the alpha clearance measurement in future. (author)

  14. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    Science.gov (United States)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  15. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.; Becker, D.L.

    1996-01-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration close-quote s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. copyright 1996 American Institute of Physics

  16. EDF energy generation UK transport of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [EDF Energy, London, (United Kingdom)

    2015-07-01

    This paper give an overview of irradiated fuel transport in the UK. It describes the design of irradiated fuel flask used by EDF Energy; operational experience and good practices learnt from over 50 years of irradiated fuel transport. The AGRs can store approximately 9 months generation of spent fuel, hence the ability to transport irradiated fuel is vital. Movements are by road to the nearest railhead, typically less than 2 miles and then by rail to Sellafield, up to 400 miles, for reprocessing or long term storage. Road and rail vehicles are covered. To date in the UK: over 30,000 Magnox flask journeys and over 15,000 AGR A2 flask journeys have been carried out.

  17. Effect of air turbulence on gas transport in soil; comparison of approaches

    Science.gov (United States)

    Pourbakhtiar, Alireza; Papadikis, Konstantinos; Poulsen, Tjalfe; Bridge, Jonathan; Wilkinson, Stephen

    2017-04-01

    Greenhouse gases are playing the key role in global warming. Soil is a source of greenhouse gases such as methane (CH4). Radon (Rn) which is a radioactive gas can emit form subsurface into the atmosphere and leads to health concerns in urban areas. Temperature, humidity, air pressure and vegetation of soil can affect gas emissions inside soil (Oertel et al., 2016). It's shown in many cases that wind induced fluctuations is an important factor in transport of gas through soil and other porous media. An example is: landfill gas emissions (Poulsen et al., 2001). We applied an experimental equipment for measuring controlled air turbulence on gas transport in soil in relation to the depth of sample. Two approaches for measurement of effect of wind turbulence on gas transport were applied and compared. Experiments were carried out with diffusion of CO2 and air as tracer gases with average vertical wind speeds of 0 to 0.83 m s-1. In approach A, Six different sample thicknesses from 5 to 30 cm were selected and total of 4 different wind conditions with different speed and fluctuations were applied. In approach B, a sample with constant depth was used. Five oxygen sensors were places inside sample at different depths. Total of 111 experiments were carried out. Gas transport is described by advection-dispersion equation. Gas transport is quantified as a dispersion coefficient. Oxygen breakthrough curves as a function of distance to the surface of the sample exposed to wind were derived numerically with an explicit forward time, central space finite-difference based model to evaluate gas transport. We showed that wind turbulence-induced fluctuations is an important factor in gas transport that can increase gas transport with average of 45 times more than molecular diffusion under zero wind condition. Comparison of two strategies for experiments, indicated that, constant deep samples (Approach B) are more reliable for measurement of gas transport under influence of wind

  18. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren.

    Science.gov (United States)

    van Kempen, Elise; Fischer, Paul; Janssen, Nicole; Houthuijs, Danny; van Kamp, Irene; Stansfeld, Stephen; Cassee, Flemming

    2012-05-01

    Children living close to roads are exposed to both traffic noise and traffic-related air pollution. There are indications that both exposures affect cognitive functioning. So far, the effects of both exposures have only been investigated separately. To investigate the relationship between air pollution and transportation noise on the cognitive performance of primary schoolchildren in both the home and school setting. Data acquired within RANCH from 553 children (aged 9-11 years) from 24 primary schools were analysed using multilevel modelling with adjustment for a range of socio-economic and life-style factors. Exposure to NO(2) (which is in urban areas an indicator for traffic-related air pollution) at school was statistically significantly associated with a decrease in the memory span length measured during DMST (χ(2)=6.8, df=1, p=0.01). This remained after additional adjustment for transportation noise. Statistically significant associations were observed between road and air traffic noise exposure at school and the number of errors made during the 'arrow' (χ(2)=7.5, df=1, p=0.006) and 'switch' (χ(2)=4.8, df=1, p=0.028) conditions of the SAT. This remained after adjustment for NO(2). No effects of air pollution exposure or transportation noise exposure at home were observed. Combined exposure of air pollution and road traffic noise had a significant effect on the reaction times measured during the SRTT and the 'block' and the 'arrow' conditions of the SAT. Our results provide some support that prolonged exposure to traffic-related air pollution as well as to noise adversely affects cognitive functioning. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Li Sun

    2016-02-01

    Full Text Available This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO and nitrogen dioxide (NO2 pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  20. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    Science.gov (United States)

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  1. A moist air condensing device for sustainable energy production and water generation

    International Nuclear Information System (INIS)

    Ming, Tingzhen; Gong, Tingrui; Richter, Renaud K. de; Wu, Yongjia; Liu, Wei

    2017-01-01

    Highlights: • A novel device based upon a SCPP system is proposed for electricity production and water generation. • The collector is replaced by black tubes around the chimney. • The overall performance of SCPP for energy production and water generation was analyzed. • The system total energy efficiency of a SCPP with a height of 3000 m can be nearly 7%. - Abstract: A solar chimney power plant (SCPP) is not only a solar thermal application system to achieve output power, but also a device extracting freshwater from the humid air. In this article, we proposed a SCPP with collector being replaced by black tubes around the chimney to warm water and air. The overall performance of SCPP was analyzed by using a one-dimensional compressible fluid transfer model to calculate the system characteristic parameters, such as chimney inlet air velocity, the condensation level, amount of condensed water, output power, and efficiency. It was found that increasing the chimney inlet air temperature is an efficient way to increase chimney inlet air velocity and wind turbine output power. The operating conditions, such as air temperature and air relative humidity, have significant influence on the condensation level. For water generation, chimney height is the most decisive factor, the mass flow rate of condensed water decreases with increasing wind turbine pressure drop. To achieve the optimum peak output power by wind turbine, we should set the pressure drop factor as about 0.7. In addition, increasing chimney height is also an efficient way to improve the SCPP efficiency. Under ideal conditions, the system total efficiency of a SCPP with a height of 3000 m can be up to nearly 7%.

  2. Exploring Potential ADS-B Vulnerabilites in the FAA’s Nextgen Air Transportation System

    Science.gov (United States)

    2011-06-01

    an online database of aircraft and the camera is used to filter the data, based on field of view, for display on the phone’s screen. The developers...34 December 28, 2009. [Online]. abcnews.go.com [5] P. Dempsey and L. Gesell , Air Transportation: Foundations for the 21st Century. Arizona: Coast Aire

  3. Summary and recommendations for the NASA/MIT workshop on short haul air transport

    Science.gov (United States)

    Simpson, R. W.

    1971-01-01

    The material is summarized that was covered by the MIT/NASA Waterville Valley workshop which dealt with the institutional, socio-economic, operational and technological problems associated with introducing new forms of short haul domestic air transportation. It was found that future air systems hold great potential in satisfying society's needs for a low noise, low landspace, high access, high speed, large network system for public travel over distances between 5 and 500 miles. It is concluded that quiet air systems are necessary for obtaining community approval, and is recommended that extremely high priority be assigned to the development of quiet aircraft for future short haul air systems.

  4. Development of the Electromagnetic Induction Type Micro Air Turbine Generator Using MEMS and Multilayer Ceramic Technology

    International Nuclear Information System (INIS)

    Iiduka, A; Ishigaki, K; Takikawa, Y; Ohse, T; Saito, K; Uchikoba, F

    2011-01-01

    The miniaturized electromagnetic induction type air turbine generator is described. The micro air turbine generator rotated by the compressed air and generating electricity was fabricated by the combination of MEMS and multilayer ceramic technology. The micro generator consisted of an air turbine and a magnetic circuit. The turbine part consisted of 7 silicon layers fabricated by the MEMS technology. The magnetic circuit was fabricated by the multilayer ceramic technology based on the green sheet process. The magnetic material used in the circuit was ferrite, and the internal conductor was silver. The dimensions of the obtained generator were 3.5x4x3.5 mm. The output power was 1.92 μW. From FEM analysis of the magnetic flux, it was found that leakage of the flux affected the output power.

  5. Ministerial Order of 22 August 1957 on the transport of dangerous materials by air

    International Nuclear Information System (INIS)

    1957-01-01

    This Order provides for the conditions of transport of dangerous materials by air. Materials regarded as dangerous to handle or transport by aircraft from a safety or health standpoint may possibly not be accepted, or only accepted under certain conditions. These materials include radioactive materials in Class IV(b). (NEA) [fr

  6. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    Science.gov (United States)

    Strogen, Bret Michael

    Production of fuel ethanol in the United States has increased ten-fold since 1993, largely as a result of government programs motivated by goals to improve domestic energy security, economic development, and environmental impacts. Over the next decade, the growth of and eventually the total production of second generation cellulosic biofuels is projected to exceed first generation (e.g., corn-based) biofuels, which will require continued expansion of infrastructure for producing and distributing ethanol and perhaps other biofuels. In addition to identifying potential differences in tailpipe emissions from vehicles operating with ethanol-blended or ethanol-free gasoline, environmental comparison of ethanol to petroleum fuels requires a comprehensive accounting of life-cycle environmental effects. Hundreds of published studies evaluate the life-cycle emissions from biofuels and petroleum, but the operation and maintenance of storage, handling, and distribution infrastructure and equipment for fuels and fuel feedstocks had not been adequately addressed. Little attention has been paid to estimating and minimizing emissions from these complex systems, presumably because they are believed to contribute a small fraction of total emissions for petroleum and first generation biofuels. This research aims to quantify the environmental impacts associated with the major components of fuel distribution infrastructure, and the impacts that will be introduced by expanding the parallel infrastructure needed to accommodate more biofuels in our existing systems. First, the components used in handling, storing, and transporting feedstocks and fuels are physically characterized by typical operating throughput, utilization, and lifespan. US-specific life-cycle GHG emission and water withdrawal factors are developed for each major distribution chain activity by applying a hybrid life-cycle assessment methodology to the manufacturing, construction, maintenance and operation of each

  7. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...

  8. Turbulent transport across an interface between dry and humid air in a stratified environment

    Science.gov (United States)

    Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela

    2014-11-01

    The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).

  9. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    Science.gov (United States)

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments

    Science.gov (United States)

    Yang, Fenhuan; Kaul, Daya; Wong, Ka Chun; Westerdahl, Dane; Sun, Li; Ho, Kin-fai; Tian, Linwei; Brimblecombe, Peter; Ning, Zhi

    2015-05-01

    Epidemiologic studies have linked human exposure to pollutants with adverse health effects. Passenger exposure in public transport systems contributes an important fraction of daily burden of air pollutants. While there is extensive literature reporting the concentrations of pollutants in public transport systems in different cities, there are few studies systematically addressing the heterogeneity of passenger exposure in different transit microenvironments, in cabins of different transit vehicles and in areas with different characteristics. The present study investigated PM2.5 (particulate matter with aerodynamic diameters smaller than 2.5 μm), black carbon (BC), ultrafine particles (UFP) and carbon monoxide (CO) pollutant concentrations in various public road transport systems in highly urbanized city of Hong Kong. Using a trolley case housing numerous portable air monitors, we conducted a total of 119 trips during the campaign. Transit microenvironments, classified as 1). busy and secondary roadside bus stops; 2). open and enclosed termini; 3). above- and under-ground Motor Rail Transport (MTR) platforms, were investigated and compared to identify the factors that may affect passenger exposures. The pollutants inside bus and MTR cabins were also investigated together with a comparison of time integrated exposure between the transit modes. Busy roadside and enclosed termini demonstrated the highest average particle concentrations while the lowest was found on the MTR platforms. Traffic-related pollutants BC, UFP and CO showed larger variations than PM2.5 across different microenvironments and areas confirming their heterogeneity in urban environments. In-cabin pollutant concentrations showed distinct patterns with BC and UFP high in diesel bus cabins and CO high in LPG bus cabins, suggesting possible self-pollution issues and/or penetration of on-road pollutants inside cabins during bus transit. The total passenger exposure along selected routes, showed bus

  11. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    Science.gov (United States)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  12. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  13. Generation and Reduction of NOx on Air-Fed Ozonizers

    Science.gov (United States)

    Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki

    A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.

  14. The Conference Proceedings of the 1997 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    Science.gov (United States)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1997-01-01

    Topics included in the proceedings are: The effect of liberalized air transport bilaterals; cost competitiveness of major airlines; economic effects of duopoly competition in Korea; transforming Canada's aviation regulations; liberalization in Europe; airline labor cost in a liberalized Europe; noncooperative collusion; European air transport deregulation; public ownership and deregulation in the Scandanavian airline industry; airline competition between London and Amsterdam; and a banker's view of the European airline industry.

  15. Les enjeux de la pollution de l'air des transports

    OpenAIRE

    Joumard , Robert

    2003-01-01

    International audience; Au vu notamment de l'évolution de la qualité de l'air telle que mesurée en France et dans l'Union Européenne au cours des dix dernières années, de l'évolution des émissions de polluants atmosphériques des transports routiers en France, telle que calculée sur la période 1970-2020, et de l'évolution de la perception sociale du thème de la pollution de l'air, on évalue quels polluants sont les plus problématiques aujourd'hui et demain. Il s'agit en tout premier lieu du ga...

  16. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  17. Agenda for action on air and health

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, B.; Perrotta, K.; Campbell, M.; Li-Muller, A.; Macfarlane, R.; Gingrich, S. [Toronto Public Health, ON (Canada)

    2004-07-01

    Toronto's acting medical officer of health estimates that five common air pollutants contribute to thousands of premature deaths and even more hospital admissions in Toronto every year. This report includes information from studies around the world which show that air pollution causes reduced lung function, asthma attacks, emergency room visits, lung cancer, high blood pressure and reduced life expectancy. The medical officer of health calls for action on air quality. The transportation sector was identified as the most significant source of air pollutants within the city, followed by the industrial sector and fuel consumption for power generation and home heating. Air quality in Toronto is also affected by coal-fired power plants that are upwind in southwestern Ontario and mid-western United States. This report was divided into 4 priority areas: (1) reduce use of, and emissions from, the transportation sector by increasing ridership on public transit and curbing urban sprawl, (2) reducing emissions from fuel consumption for home heating and power generation by phasing out coal-fired power plants and promoting energy efficiency, (3) reducing emissions from point sources that contribute to local and regional air quality concerns, and (4) improving the support systems needed to promote air quality improvements. Some of the recommendations were to develop a regional air quality plan that mandates significant reductions in smog-forming precursors from the industrial sector. 95 refs., 6 tabs., 1 fig., 2 appendices.

  18. THE BRAZILIAN SUPREME COURT'S PRECEDENTS AND THE CURIOUS TAXING DIFFERENCE ON THE AIR AND INLAND PASSENGER TRANSPORT

    Directory of Open Access Journals (Sweden)

    Marciano Seabra de Godoi

    2016-07-01

    Full Text Available The study aims to the taxing of transport service provision, particularly the passenger transport, as well as the odd difference of treatment created directly by the Brazilian Supreme Court’s precedents, applying distinguished regimes for air passenger and inland. It discusses the evolution of legislation on the subject and, specially, it examines critically how the Supreme Court’s case law stood on the issue, through the judgment of many direct actions of unconstitutionality (ADI. The study considers legally inconsistent these precedents, in which is unconstitutional the tax collection over the air transport, but constitutional over the inland one.

  19. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  20. Transboundary Air-Pollution Transport in the Czech-Polish Border Region between the Cities of Ostrava and Katowice.

    Science.gov (United States)

    Černikovský, Libor; Krejčí, Blanka; Blažek, Zdeněk; Volná, Vladimíra

    2016-12-01

    The Czech Hydrometeorological Institute (CHMI) estimated the transboundary transport of air pollution between the Czech Republic and Poland by assessing relationships between weather conditions and air pollution in the area as part of the "Air Quality Information System in the Polish-Czech border of the Silesian and Moravian-Silesian region" project (http://www.air-silesia.eu). Estimation of cross-border transport of pollutants is important for Czech-Polish negotiations and targeted measures for improving air quality. Direct measurement of PM 10 and sulphur dioxide (SO 2 ) concentrations and the direction and wind speed from measuring stations in the vicinity of the Czech-Polish state border in 2006-2012. Taking into account all the inaccuracies, simplifications and uncertainties, by which all of the measurements are affected, it is possible to state that the PM 10 transboundary transport was greater from the direction of Poland to the Czech Republic, rather than the other way around. Nevertheless, the highest share of the overall PM 10 concentration load was recorded on days with a vaguely estimated airflow direction. This usually included days with changing wind direction or days with a distinct wind change throughout the given day. A changeable wind is most common during low wind speeds. It can be assumed that during such days with an ambiguous daily airflow, the polluted air saturated with sources on both sides of the border moves from one country to the other. Therefore, we could roughly ascribe an equal level of these concentrations to both the Czech and Polish side. PM 10 transboundary transport was higher from Poland to the Czech Republic than from the opposite direction, despite the predominant air flow from the Czech Republic to Poland. Copyright© by the National Institute of Public Health, Prague 2016

  1. Agent-Based Modelling and Simulation of Safety and Resilience in Air Transportation

    NARCIS (Netherlands)

    Bouarfa, S.

    2015-01-01

    Purpose: In order to improve the safety, capacity, economy, and sustainability of air transportation, revolutionary changes are required. These changes might range from the introduction of new technology and operational procedures to unprecedented roles of human operators and the way they interact.

  2. Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Rabia; Ahmad, Sheikh Saeed [Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi (Pakistan)

    2010-05-15

    A research associated with urban transportation was carried out in Rawalpindi and Islamabad to analyze the status of emission of air pollutants and energy demands. The study included a discussion of past trends and future scenarios in order to reduce the future emissions. A simple model of passenger transport has been developed using computer based software called Long-Range Energy Alternatives Planning System (LEAP). The LEAP model was used to estimate total energy demand and the vehicular emissions for the base year 2000 and extrapolated till 2030 for the future predictions. Transport database in Rawalpindi and Islamabad, together with fuel consumption values for the vehicle types and emission factors of NO{sub x}, SO{sub 2} and PM{sub 10} corresponding to the actual vehicle types, formed the basis of the transport demand, energy consumption and total emission calculations. Apart from base scenario, the model was run under three alternative scenarios to study the impact of different urban transport policy initiatives that would reduce energy demand and emissions in transport sector of Rawalpindi and Islamabad. The prime objective was to arrive at an optimal transport policy, which limits the future growth of fuel consumption as well as air pollution. (author)

  3. Legal and security requirements for the air transportation of cyanotoxins and toxigenic cyanobacterial cells for legitimate research and analytical purposes.

    Science.gov (United States)

    Metcalf, J S; Meriluoto, J A O; Codd, G A

    2006-05-25

    Cyanotoxins are now recognised by international and national health and environment agencies as significant health hazards. These toxins, and the cells which produce them, are also vulnerable to exploitation for illegitimate purposes. Cyanotoxins are increasingly being subjected to national and international guidelines and regulations governing their production, storage, packaging and transportation. In all of these respects, cyanotoxins are coming under the types of controls imposed on a wide range of chemicals and other biotoxins of microbial, plant and animal origin. These controls apply whether cyanotoxins are supplied on a commercial basis, or stored and transported in non-commercial research collaborations and programmes. Included are requirements concerning the transportation of these toxins as documented by the United Nations, the International Air Transport Association (IATA) and national government regulations. The transportation regulations for "dangerous goods", which by definition include cyanotoxins, cover air mail, air freight, and goods checked in and carried on flights. Substances include those of determined toxicity and others of suspected or undetermined toxicity, covering purified cyanotoxins, cyanotoxin-producing laboratory strains and environmental samples of cyanobacteria. Implications of the regulations for the packaging and air-transport of dangerous goods, as they apply to cyanotoxins and toxigenic cyanobacteria, are discussed.

  4. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  5. Qualification criteria to certify a package for air transport of plutonium

    International Nuclear Information System (INIS)

    1977-12-01

    The document describes qualification criteria developed by the U.S. Nuclear Regulatory Commission to certify a package for air transport of plutonium. Included in the document is a discussion of aircraft accident conditions and a summary of the technical basis for the qualification criteria. The criteria require prototype packages to be subjected to various individual and sequential tests that simulate the conditions produced in severe aircraft accidents. Specific post-test acceptance standards are prescribed for each of the three safety functions of a package. The qualification criteria also prescribe certain operational controls to be exercised during transport

  6. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    Science.gov (United States)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  7. [New possibilities in emergency medical transportation and emergency services of Polish Medical Air Rescue].

    Science.gov (United States)

    Gałazkowski, Robert

    2010-01-01

    In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come.

  8. Hospital survival upon discharge of ill‐neonates transported by ground or air ambulance to a tertiary center

    Directory of Open Access Journals (Sweden)

    Jorge Luis Alvarado‐Socarras

    2016-05-01

    Conclusions: Mode of transport was not associated with the outcome. In Colombia, access to medical services through air transport is a good option for neonates in critical condition. Further studies would determine the optimum distance (time of transportation to obtain good clinical outcomes according type of ambulance.

  9. Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    Prasad Radha K.

    2017-09-01

    Full Text Available This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.

  10. Effects of atmospheric transport and trade on air pollution mortality in China

    Directory of Open Access Journals (Sweden)

    H. Zhao

    2017-09-01

    Full Text Available Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2. 5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths of China's PM2. 5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths China's PM2. 5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total and 145 100 (14 % premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  11. Exploring Concepts of Operations for On-Demand Passenger Air Transportation

    Science.gov (United States)

    Nneji, Victoria Chibuogu; Stimpson, Alexander; Cummings, Mary; Goodrich, Kenneth H.

    2017-01-01

    In recent years, a surge of interest in "flying cars" for city commutes has led to rapid development of new technologies to help make them and similar on-demand mobility platforms a reality. To this end, this paper provides analyses of the stakeholders involved, their proposed operational concepts, and the hazards and regulations that must be addressed. Three system architectures emerged from the analyses, ranging from conventional air taxi to revolutionary fully autonomous aircraft operations, each with vehicle safety functions allocated differently between humans and machines. Advancements for enabling technologies such as distributed electric propulsion and artificial intelligence have had major investments and initial experimental success, but may be some years away from being deployed for on-demand passenger air transportation at scale.

  12. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  13. Model air-supported drum-type homopolar generator

    International Nuclear Information System (INIS)

    Kustom, R.L.; Fuja, R.E.; Wehrle, R.B.; Smith, R.P.; Kovarik, T.J.

    1977-01-01

    A single cylinder, drum-type homopolar generator has been designed and built for the purpose of developing a simple air support system for thin cylinder rotors operated at high surface velocities and significant radial drum growth. The model has an aluminum cylinder which is 0.32 cm thick, 25 cm in diameter, and 12.7 cm long. It is designed to operate at a peak current of 2500 A and to store a total of 40 kJ with a surface velocity of 305 m/sec

  14. Effects of air transportation cause physiological and biochemical changes indicative of stress leading to regulation of chaperone expression levels and corticosterone concentration.

    Science.gov (United States)

    Shim, SunBo; Lee, SeHyun; Kim, ChuelKyu; Kim, ByoungGuk; Jee, SeungWan; Lee, SuHae; Sin, JiSoon; Bae, ChangJoon; Woo, Jong-Min; Cho, JungSik; Lee, EonPil; Choi, HaeWook; Kim, HongSung; Lee, JaeHo; Jung, YoungJin; Cho, ByungWook; Chae, KabRyong; Hwang, DaeYoun

    2009-01-01

    Laboratory animals generally experience numerous unfamiliar environmental and psychological influences such as noises, temperatures, handling, shaking, and smells during the process of air transportation. To investigate whether stress induced by air transportation affects stress-related factors in animals, the levels of hormone and chaperone protein were measured in several tissues of F344 rats transported for 13 h and not transported. Herein, we conclude that the levels of corticosterone, HSP70, and GRP78 were significantly increased in the transported group compare to not transported group, but they were rapidly restored to the not transported group level after a recovery period of one week. However, the magnitude of induction and restoration levels of these factors varied depending on the tissue type. Thus, these results suggest that air transportation should be considered for the improvement of laboratory animal health and to reduce the incidence of laboratory animal stress.

  15. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    Science.gov (United States)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  16. Seasonal Fluctuations in Air Pollution in Dazaifu, Japan, and Effect of Long-Range Transport from Mainland East Asia.

    Science.gov (United States)

    Coulibaly, Souleymane; Minami, Hiroki; Abe, Maho; Hasei, Tomohiro; Sera, Nobuyuki; Yamamoto, Shigekazu; Funasaka, Kunihiro; Asakawa, Daichi; Watanabe, Masanari; Honda, Naoko; Wakabayashi, Keiji; Watanabe, Tetsushi

    2015-01-01

    To clarify the seasonal fluctuations in air pollution and the effect of long-range transport, we collected airborne particles (n=118) at Dazaifu in Fukuoka, Japan, from June 2012 to May 2013 and measured Pb and SO4(2-), which are indicators of the long-range transport of anthropogenic air pollutants, as well as their mutagenicity, and other factors. The levels of airborne particles, Pb, and SO4(2-) were very high on March 4, 8, 9, and 19, and May 13, 21, and 22, 2013. The backward trajectories indicated that air masses had arrived from the Gobi Desert and northern China on those days. The mutagenicity of airborne particles was examined using the Ames test on Salmonella typhimurium YG1024. Highly mutagenic airborne particles were mostly collected in winter, and most of them showed high activity both with and without S9 mix. High levels of polycyclic aromatic hydrocarbons (PAHs) were found in many samples that showed high mutagenicity. For the samples collected on January 30, February 21, and March 4, the levels of Pb, SO4(2-), PAHs, and mutagenicity were high, and the backward trajectories indicated that air masses present on those days had passed through northern or central China. The Japan Meteorological Agency registered Asian dust events at Fukuoka on March 8, 9, and 19, 2013. The results of the present study suggest that high levels of anthropogenic air pollutants were transported with Asian dust. Similarly, long-range transport of air pollutants including mutagens occurred on days when Asian dust events were not registered.

  17. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  18. Incorporating environmental constraints to electricity generation in the city of Buenos Aires

    International Nuclear Information System (INIS)

    Dawidowski, Laura E.; Gomez, Dario R.; Bajano, Hector; Anbinder, Gustavo D.; Rey, Francisco C.

    1999-01-01

    A prototype for an integrated system that includes air quality constraints to the procedure that is presently in use to determine the daily economic dispatch of power plants in Argentina is proposed. The recent incorporation of new machines to the installed capacity of the three power plants located in the densely populated metropolitan area of Buenos Aires, the thermal-based future expansion of the power sector and the relatively high nitrogen oxides concentrations that can be associated to electricity generation in the city of Buenos Aires, served to motivate this work. The prototype attempts to generate a dispatch that is compatible with the environment taking into account the present economic dispatch, weather forecast and dispersion models to evaluate ambient air concentrations of nitrogen oxides (NO x ) caused by the combined operation of the thermal power plants. Although the prototype deals exclusively with NO x , since these are the pollutants of primary concern considering the fuel consumption pattern of argentinean power plants, its structure is general enough to take into account other pollutants such as sulfur dioxide and particulate matter. (author)

  19. Evaluation of life-cycle air emission factors of freight transportation.

    Science.gov (United States)

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  20. Test Report for Perforated Metal Air Transportable Package (PMATO) Prototype.

    Energy Technology Data Exchange (ETDEWEB)

    Bobbe, Jeffery G.; Pierce, Jim Dwight

    2003-06-01

    A prototype design for a plutonium air transport package capable of carrying 7.6 kg of plutonium oxide and surviving a ''worst-case'' plane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A series of impact tests were conducted on half-scale models of this design for side, end, and comer orientations at speeds close to 282 m/s onto a target designed to simulate weathered sandstone. These tests were designed to evaluate the performance of the overpack concept and impact-limiting materials in critical impact orientations. The impact tests of the Perforated Metal Air Transportable Package (PMATP) prototypes were performed at SNL's 10,000-ft rocket sled track. This report describes test facilities calibration and environmental testing methods of the PMATP under specific test conditions. The tests were conducted according to the test plan and procedures that were written by the authors and approved by SNL management and quality assurance personnel. The result of these tests was that the half-scale PMATP survived the ''worst-case'' airplane crash conditions, and indicated that a full-scale PMATP, utilizing this overpack concept and these impact-limiting materials, would also survive these crash conditions.

  1. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  2. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  3. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  4. Liberalisation of air cargo transport

    Science.gov (United States)

    2002-05-02

    Over a period of many years, international air cargo demand has continued to increase more rapidly than international air passenger demand. Air cargo arrangements need to be as efficient and expeditious as possible, to meet user requirements for air ...

  5. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS

    International Nuclear Information System (INIS)

    MAJI, A. K.; MARSHALL, B.

    2000-01-01

    subsequent accumulation of debris on the sump screen. The complete methodology will, of course, include a means of estimating debris generation, transport to the containment floor, transport to the sump screen, and the resulting loss of NPSH

  6. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo-Vazquez, F J [Instituto de Astrofisica de Andalucia (IAA), CSIC, PO Box 3004, 18080 Granada (Spain); Donko, Z [Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box, 49 (Hungary)

    2009-08-15

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, {approx}215 K (at 11 km) and {approx}198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N {<=} 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas

  7. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature

    International Nuclear Information System (INIS)

    Gordillo-Vazquez, F J; Donko, Z

    2009-01-01

    A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25 deg. S and +25 deg. N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly

  8. Ruthenium transport experiments in air ingress accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Teemu, Karkele; Ulrika, Backman; Ari, Auvinen; Unto, Tapper; Jorma, Jokiniemi [VTT Technical Research Centre of Finland, Fine Particles (Finland); Riitta, Zilliacus; Maija, Lipponen; Tommi, Kekki [VTT Technical Research Centre of Finland, Accident Management (Finland); Jorma, Jokiniemi [Kuopio Univ., Dept. of Environmental Sciences, Fine Particle and Aerosol Technology Lab. (Finland)

    2007-07-01

    In this study the release, transport and speciation of ruthenium in conditions simulating an air ingress accident was studied. Ruthenium dioxide was exposed to oxidising environment at high temperature (1100-1700 K) in a tubular flow furnace. At these conditions volatile ruthenium species were formed. A large fraction of the released ruthenium was deposited in the tube as RuO{sub 2}. Depending on the experimental conditions 1-26 wt% of the released ruthenium was trapped in the outlet filter as RuO{sub 2} particles. In stainless steel tube 0-8.8 wt% of the released ruthenium reached the trapping bottle as gaseous RuO{sub 4}. A few experiments were carried out, in which revaporization of ruthenium deposited on the tube walls was studied. In these experiments, oxidation of RuO{sub 2} took place at a lower temperature. During revaporization experiments 35-65 % of ruthenium was transported as gaseous RuO{sub 4}. In order to close mass balance and achieve better time resolution 4 experiments were carried out using a radioactive tracer. In these experiments ruthenium profiles were measured. These experiments showed that the most important retention mechanism was decomposition of gaseous RuO{sub 3} into RuO{sub 2} as the temperature of the furnace was decreasing. In these experiments the transport rate of gaseous ruthenium was decreasing while the release rate was constant.

  9. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    Science.gov (United States)

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  11. Transportation, Social Inequality and Spatial Capital: Comparative Analysis between Buenos Aires and Santiago de Chile

    Directory of Open Access Journals (Sweden)

    Ricardo Apaolaza

    2016-09-01

    Full Text Available This paper studies how the characteristics of Latin American urban transportation generate dimensions of dispute of ‘spatial capital’, meaning an individually internalizable type of urban resource which results from the combination of objective material conditions and subjective socio-cultural conditions. These conditions determine a socially differentiated use of territory and sometimes are decisive elements in opening new niches for high-end real-estate producers and consumers, hence linking with processes of displacement and exclusion. The study cases compare four neighborhoods from Buenos Aires and Santiago de Chile, two peripherals and two pericentrals. The results show, considering the role of new infrastructure, a strong difference between residents from the peripheral cases and little difference in the pericentral cases, identifying, however, processes of a dispute over the ownership and use of urban space and the neighborhood, in all the cases.

  12. Air Traffic Management Research at NASA

    Science.gov (United States)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  13. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography

    DEFF Research Database (Denmark)

    Katuwal, S.; Nørgaard, Trine; Møldrup, Per

    2015-01-01

    Soil macropores often control fluid flow and solute transport, and quantification of macropore characteristics including their variability in space and time are essential to predict soil hydraulic and hydrogeochemical functions. In this study, measurements of air and solute transport properties...... and direct macropore visualization by X-ray CT scanning were carried out on 17 large (19-cm diam.; 20-cm length) undisturbed soil columns sampled across a field site (Silstrup, Denmark) with natural gradients in texture and density. Air permeability (ka) at in-situ water content and -20 hPa of matric......-porosity, suggesting that density is the main control of functional soil structure and gas and solute transport at the Silstrup site. Linking gas transport and chemical tracer experiments with X-ray CT based visualization and quantification of macro-porosity was found to be a powerful method to understand field scale...

  14. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  15. Investigating the role of transportation models in epidemiologic studies of traffic related air pollution and health effects.

    Science.gov (United States)

    Shekarrizfard, Maryam; Valois, Marie-France; Goldberg, Mark S; Crouse, Dan; Ross, Nancy; Parent, Marie-Elise; Yasmin, Shamsunnahar; Hatzopoulou, Marianne

    2015-07-01

    In two earlier case-control studies conducted in Montreal, nitrogen dioxide (NO2), a marker for traffic-related air pollution was found to be associated with the incidence of postmenopausal breast cancer and prostate cancer. These studies relied on a land use regression model (LUR) for NO2 that is commonly used in epidemiologic studies for deriving estimates of traffic-related air pollution. Here, we investigate the use of a transportation model developed during the summer season to generate a measure of traffic emissions as an alternative to the LUR model. Our traffic model provides estimates of emissions of nitrogen oxides (NOx) at the level of individual roads, as does the LUR model. Our main objective was to compare the distribution of the spatial estimates of NOx computed from our transportation model to the distribution obtained from the LUR model. A secondary objective was to compare estimates of risk using these two exposure estimates. We observed that the correlation (spearman) between our two measures of exposure (NO2 and NOx) ranged from less than 0.3 to more than 0.9 across Montreal neighborhoods. The most important factor affecting the "agreement" between the two measures in a specific area was found to be the length of roads. Areas affected by a high level of traffic-related air pollution had a far better agreement between the two exposure measures. A comparison of odds ratios (ORs) obtained from NO2 and NOx used in two case-control studies of breast and prostate cancer, showed that the differences between the ORs associated with NO2 exposure vs NOx exposure differed by 5.2-8.8%. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  17. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Tarasenko, V. F.

    2011-01-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ∼5 × 10 10 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  18. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  19. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  20. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  1. Assessment of air pollution emissions and evaluation of renewable energy as mitigation option-power generation sector of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.H.; Uqaili, M.A.; Memon, M.

    2005-01-01

    Energy is an engine for growth and is linked with all aspects of development, poverty alleviation, and improvement of quality of life. The production, distribution and use of energy particularly fossil fuels have significant environmental impacts. Pakistan has total power generation capacity of 19.25 GW, with 63.9% thermal, 33.7% hydel and 2.4% nuclear share. The electricity generation increased by 7.5% per annum during the last three decades and future demand has been projected to grow at 7%-11 % per annum. This increasing power demand will depend mainly on power generation from fossil fuels. This paper presents the review of power generation situation and assesses the air pollution emissions from thermal power generation in Pakistan. The paper also investigates the prospects of renewable energy- sources for air pollution mitigation in the country. The study indicates that thermal power generation plants are the major source of air pollution emissions in the country. This air pollution has local, regional and global environmental impacts. The paper concludes that the use of renewables such as hydel, wind, solar and biomass energy for power generation can contribute substantially in air pollution mitigation in the country. (author)

  2. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    Science.gov (United States)

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  3. A basic condition-based maintenance strategy for air-cooled turbine generators

    International Nuclear Information System (INIS)

    Laird, T.; Griffith, G.; Hoof, M.

    2005-01-01

    This paper discusses the methods of using condition-based maintenance (CBM) for turbine generators. Even though it is focused on the maintenance strategy for air-cooled generators, all types of power producers can realize benefits from a better maintenance strategy at lower costs. A reliable assessment of the actual unit condition requires detailed knowledge of the unit design, operational weaknesses, cost of maintenance and operational capabilities. (author)

  4. Outsourcing in air transportation industry: the case of Turkish Airlines

    OpenAIRE

    Durmaz, Vildan; Adiller, Leyla

    2010-01-01

    Air transportation industry, in all over the world, is developing and changing day by day in a very competitive environment. Airline companies have to adopt themselves using different strategies to give more efficient and effective services to survive in that market. Outsourcing is one of these strategies to be able to reach the sustainability of airline companies. The main aim of this paper is to discuss the importance of outsourcing for the airline companies. For this reason, first outso...

  5. Design, Development, and Innovation of an Interactive Multimedia Training Simulator for Responding to Air Transportation Bomb Threats

    Science.gov (United States)

    Chung, Christopher A.; Marwaha, Shweta

    2005-01-01

    This paper describes an interactive multimedia simulator for air transportation bomb threat training. The objective of this project is to improve the air transportation sector s capability to respond to bomb threats received by commercial airports and aircraft. The simulator provides realistic training on receiving and responding to a variety of bomb threats that might not otherwise be possible due to time, cost, or operational constraints. Validation analysis indicates that the use of the simulator resulted in statistically significant increases in individual ability to respond to these types of bomb threats.

  6. Predicting the impacts of new technology aircraft on international air transportation demand

    Science.gov (United States)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  7. The Conference Proceedings of the 2001 Air Transport Research Society (ATRS) of the WCTR Society. Volume 2

    Science.gov (United States)

    Lee, Yeong-Heok (Editor); Bowen, Brent D. (Editor); Tarry, Scott E. (Editor)

    2001-01-01

    The ATRS held its 5th Annual conference at the City University of Hong Kong Campus in July 2001. The conference was a success with nearly 140 participants including 70 presenters. Titles that comprise Volume 2 include: Intelligent Airport Gate Assignment System; A Study on the Effects of the Personality Compatibility to the Job Performance; ITS/CVO Application for Air cargo Transportation in Korea; An Airport as a Logistics and Economic Hub: The Case of Incheon International Airport; The Impact Of Aviation Safety over the Consumer's Behavior; The Integration of China and Taiwan Air Networks for Direct Air Cargo Services; Quality perception and carrier choice in Civil Aviation; Future Trends in Business Travel Decision Making; Cooperation Among German Airports in Europe; Inbound and Outbound Air Passenger Traffic Forecasting between the United States and Selected Asian countries; An Evaluation of Alternative Facilities for Airport Redevelopment using Fuzzy Linguistic Approach; Economic Analysis of Airline Alliances; The Aviation Cooperation between the two Koreas Preparing for the Reunification of the Peninsula; and A Study on the Air Transport Cooperation in Northeast Asia between China, Japan and Korea.

  8. Linking air and water transport in intact soils to macro-porosity by combining laboratory measurements and X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Norgaard, Trine; Møldrup, Per

    -porosity (R2 = 0.80 for air permeability: R2= 0.61 for 5% arrival time) and macro-porosity of the restricting layer (R2=0.83 for air permeability: R2= 0.71 for 5% arrival time) over air-filled porosity and all the correlations were positive. The high positive correlation these air and water transport...... functions with macro-porosity stressed the importance of continuity and tortuosity of pores in air, water and solute flow and transport through the soils. Negative correlations of air permeability, 5% arrival time of tracer and macro-porosity were obtained with bulk density whereas with other soil physical......With an objective to link the hydraulic properties of soil with the soil structural properties, air permeability and 5% arrival time of a conservative tracer was measured for large undisturbed soil columns from the same agricultural field. The same soil columns were scanned with a medical scanner...

  9. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael J. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Go, David B., E-mail: dgo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States)

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  10. ATR, Radiation Transport Models in Atmosphere at Various Altitudes

    International Nuclear Information System (INIS)

    1981-01-01

    1 - Description of problem or function: ATR is a user-oriented code for calculating quickly and simply radiation environment problems at all altitudes in the atmosphere. The code is based on parametric models of a comprehensive data base of air transport results which were generated using discrete ordinates transport techniques for infinite homogeneous air. The effects of air-ground interface and non-uniform air density are treated as perturbation corrections on homogeneous air results. ATR includes parametric models for neutrons and secondary gamma rays as a function of space, energy and source- target angle out to angles of 550 g/cm 2 of air. ATR contains parameterizations of infinite medium air transport of neutrons and secondary gamma rays and correction factors for the air-ground interface and high altitude exponential air. It responds to a series of user-oriented commands which specify the source, geometry and print options to output a variety of useful air transport information, including energy-angle dependent fluence, dose, current, and isodose ranges. 2 - Method of solution: The version 3 differs from earlier versions in that version 3 contains the parameterization of the new neutron and secondary gamma rays data base that was calculated using the latest DNA approved cross sections for air. Other improvements to the ATR code include: parameterization and inclusion into ATR of new air- over-ground correction factors, low energy x-rays calculations, new fission source, and new convenience options. 3 - Restrictions on the complexity of the problem: ATR takes approximately 36,000 decimal words of storage. This can be lessened by overlaying different parts of the code

  11. Air pollution health effects of electric power generation

    International Nuclear Information System (INIS)

    1975-11-01

    stitutt for Atomenergi (IFA) and Norsk Institutt for Luftforskning (NILU) have undertaken a joint project with the ultimate purpose of comparing the relative air pollution health effects of gas-fired, oil-fired and uranium-fueled electric power generating plants. Phase I of the project includes a literature review on pollutant emissions and their health effects. The methods which have previouously been used to compare the relative health effects are also reviewed. The radioactive effluents from nuclear power plants are tabulated and the health effects discussed on the basis of data from Hiroshima and Nagasaki, medical irradiation therapy and studies of USAEC and UKAEA employees. It is pointed out that there is no indication that chronic low-level radiation has somatic effects, and the Japanese data gives no conclusive indication of genetic effects. Background irradiation in Kerala and Guarapari and in USA is also cited. Following a brief presentation of the principal air pollutants from fossil fuels a number of studies of 'smog' incidents in the UK and USA are discussed, and a prediction equation based on multiple regression analysis is presented. Finally the methods of comparing the health effects from nuclear and fossil-fuel plants are discussed. In an appendix Lave and Freeburg's study 'Health effects of electricity generation from coal, oil and nuclear fuel' is evaluated. (JIW)

  12. Universal bursty behavior in the air transportation system.

    Science.gov (United States)

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α=2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.

  13. Optimizing Air Transportation Service to Metroplex Airports. Par 2; Analysis Using the Airline Schedule Optimization Model (ASOM)

    Science.gov (United States)

    Donoue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar

    2010-01-01

    The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation; the failure to increase capacity at the same rate as the growth in demand results in unreliable service and systemic delay. This report describes the results of an analysis of airline strategic decision-making that affects geographic access, economic access, and airline finances, extending the analysis of these factors using historic data (from Part 1 of the report). The Airline Schedule Optimization Model (ASOM) was used to evaluate how exogenous factors (passenger demand, airline operating costs, and airport capacity limits) affect geographic access (markets-served, scheduled flights, aircraft size), economic access (airfares), airline finances (profit), and air transportation efficiency (aircraft size). This analysis captures the impact of the implementation of airport capacity limits, as well as the effect of increased hedged fuel prices, which serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed; also incorporated are demand elasticity curves based on historical data that provide information about how passenger demand is affected by airfare changes.

  14. Design of a type - a transport package for 99Mo-99mTc Coltech generator

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Suryanarayana, G.V.; Dey, A.C.; Sachdev, S.S.; Choughule, N.; Murali, S.

    2012-01-01

    BRIT is launching a new product called 99 Mo- 99m Tc Coltech generator. The Coltech generator is a devise designed for the transport of 99 Mo radioisotope adsorbed on the acidic alumina in a sealed glass column (max dimensions: 13 mm diameter, 70 mm height) as the primary containment. At hospital end, 99m Tc, the daughter product of 99 Mo, can be eluted out from the generator using saline. The active column is fitted with a leak proof network of stainless steel needles. The glass column carrying 99 Mo is housed inside a lead shielding having minimum thickness of 50 mm all around, which serves as secondary containment. The shielding is housed inside the ABS shell which acts as tertiary containment, also provides protection to the needles, filters etc. Total weight of the generator is 16 kg. Based on the AERB code SC/TR-1 (being revised), 99 Mo- 99m Tc Coltech generator will be transported in a Type-A transport container. A transport package has been designed by following the code SC/TR-1. Principle design of the package is based on the package for transportation of the similar generator produced by POLATOM, Poland and the package is approved by the Polish regulatory authority. Components are manufactured locally taking care of lndian conditions. The package comprised of a MS drum (HOBBOCK) with tamper proof lockable MS lid and a handle to assist in lifting. For absorbing the shock during transportation, the generator assembly is packed inside the two pieces EPS top and bottom support. The package has been designed for transportation by all modes of transport. Since radioactive material is solid in form and sealed a glass column, it has been designed to sustain a free drop test of 1.2 m, in addition to other tests specified in SC/TR-1. During trial batches upto ∼ 1 Ci of 99 Mo generators were produced, packed in the same Type-A package and supplied to local nuclear medicine center RMC, Mumbai in BRIT vehicle in consultation with AERB. The radiometry of the packages

  15. Perspectives of Use of Alternative Energy Sources in Air Transport

    Directory of Open Access Journals (Sweden)

    Luboš Socha

    2017-01-01

    Full Text Available The problem of environmental load is also reflected in air transport. Usage of fossil fuels, which are dominant nowadays, has a negative impact on the environment and also its resources are limited. Therefore, the article focuses on the prospective of use of other energy sources in aviation, such as alternative fuels (synthetic fuels, biofuels, alcohol, methane, hydrogen, solar energy and the use of fuel cells. Also, the paper briefly summarizes the approach of aircraft manufacturers to the use alternative sources.

  16. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...... ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air...

  18. The air transport of radioactive material in large quantities or with high activity

    International Nuclear Information System (INIS)

    1993-04-01

    The present TECDOC is a mixture of new regulatory provisions for the air transport of large quantities of radioactive material, explanatory and background material for these new provisions and other issues which have been discussed by the various technical committees, advisory groups and consultants that contributed to its development. It represents the broad consensus that has been reached between IAEA Member States on the major fundamental issues related to air transport of radioactive material with high potential hazard. The most visible novelty in the TECDOC is the proposal to introduce a new package type, the Type C package. The material contained in the TECDOC will be subject to further scrutiny by Member States and be cognizant international organizations. It is intended that the new regulatory provisions will be incorporated in the new, comprehensively revised Edition of the Regulations, due in 1996. To let the regulatory provisions proper stand out from background material it is printed in italics throughout the TECDOC. 33 refs, 6 figs

  19. Dynamic Analysis of Product Lifecycle and Sea/Air Modal Choice: Evidence of Export from Japan1

    Directory of Open Access Journals (Sweden)

    Hideki Murakami

    2014-12-01

    Full Text Available Here, we test the hypothesis that commodities at their peak valuation are transported by air, while those at their inception and maturity are shipped by sea, as well as the theory that shippers choose air to transport high-valued commodities. We empirically investigated how the product lifecycle of commodities is reflected by shippers’ choices of air over seaborne transportation. We also assumed that commodities that achieved substantial innovation in their lifecycles would be moved by air transportation so that these commodities could reach targeted markets as quickly as possible to avoid the opportunity costs that might be generated by missed business chances. We constructed two sets of unbalanced panel data of 14 commodities for 24 years drawn from Japan's customs, demographic, and international statistics. By estimating structural equation systems that consisted of commodity-specific export and export air ratio functions, we found that the product lifecycle of cargo outgoing from Japan exactly matched the upward and downward movement of the air ratio.

  20. Particulate air pollution, with emphasis on traffic generated aerosols

    DEFF Research Database (Denmark)

    Fauser, Patrik

    constitute each about 5 wt-% of the collected suspended particulate matter in inner city air. The particle size distribution shows that 92 % of the mass of airborne particulate tire debris have aerodynamic diameters smaller than 1 µm. The mean aerodynamic diameter is about 1 µm for the bitumen particles...... % of this concentration derives from adsorbed particles on both leaf sides. The remainder is either respired through stomata or incorporated in the epicuticular wax layer. The fact that a substantial amount of the airborne tire and bitumen particles occur in the submicron range permits long range transportation...

  1. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  2. Long-range transport of air pollution under light gradient wind conditions

    International Nuclear Information System (INIS)

    Kurita, H.; Sasaki, K.; Muroga, H.; Ueda, H.; Wakamatsu, S.

    1985-01-01

    The long-range transport of air pollution on clear days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. Surface-level wind and pressure distributions over a 300 x 300 km area were analyzed, together with concentration isopleths of oxidants and suspended particles produced by photochemical reactions

  3. Dusty air masses transport between Amazon Basin and Caribbean Islands

    Science.gov (United States)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  4. Investigation of air transportation technology at Princeton University, 1985

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.

  5. Willingness to Pay of Air Passengers for Carbon-Offset

    Directory of Open Access Journals (Sweden)

    Rong-Chang Jou

    2015-03-01

    Full Text Available An important source of anthropogenic greenhouse gas (GHG emissions is the air transport sector, which accounts for approximately 2% of global GHG emissions. Therefore, reducing GHG emissions from aircrafts has become a major challenge for transportation authorities worldwide. In recent years, much research has focused on tax ideas related to the CO2 emissions produced by air transport, such as the voluntary carbon offset (VCO. This study investigates the willingness of economy class air passengers to pay to compensate for the CO2 emissions produced during their journeys from Taiwan to Hong Kong. Together with the Spike model, a framework known as the contingent valuation (CV method offers a way to investigate how much the air passenger would be willing to pay to offset a journey’s airplane-generated CO2 emissions. The Spike model was applied to address the problem of zero willingness to pay (WTP. The results obtained in this study are consistent with the results found in previous studies and therefore can provide valuable insights into pricing strategies for airlines.

  6. Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada.

    Science.gov (United States)

    Bertazzon, Stefania; Shahid, Rizwan

    2017-07-25

    An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children.

  7. Schools, Air Pollution, and Active Transportation: An Exploratory Spatial Analysis of Calgary, Canada

    Science.gov (United States)

    Bertazzon, Stefania; Shahid, Rizwan

    2017-01-01

    An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children. PMID:28757577

  8. Transport of radioactive material by air, proposal for a revision of the regulation

    International Nuclear Information System (INIS)

    Devillers, C.; Ringot, C.

    1989-01-01

    The regulation should be modified in such a way that the packages used for the air transport of radioactive material presenting a high level of potential danger be designed to fulfill their safety functions for a large fraction of the conditions likely to be encountered in an aircraft accident

  9. Inventory of conventional air pollutants emissions from road transportation for the state of Rio de Janeiro

    International Nuclear Information System (INIS)

    Souza, Cristiane Duarte Ribeiro de; Silva, Suellem Deodoro; Silva, Marcelino Aurélio Vieira da; D’Agosto, Márcio de Almeida; Barboza, Arthur Prado

    2013-01-01

    Road transportation has contributed to increased emissions of conventional air pollutants and, consequently, to the increase in problems associated with the environment and human health, depending on the type of pollutant and the concentration of it. To support the development of public policies aimed to decrease total tonnes of emissions, we used a bottom-up approach to estimate the amount of air pollutants, such as carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NO x ), particulate matter (PM), and aldehydes (RCHO), that are emitted by road transportation in the state of Rio de Janeiro (RJ) from 1980 to 2010. The results from 2010 show that cars are responsible for 55% of CO emissions, 61% of THC emissions, and 93% of RCHO emissions. Due to the use of hydrated ethanol and compressed natural gas (CNG) instead of petroleum based fuels during the period analyzed, 1,760,370 t of air pollutant emissions were avoided. Compared to Brazil, in 2010, RJ had a quantity of emissions per vehicle from 12% (CO) to 59% (PM) smaller than the national average. As strategies to reduce air pollutant emissions, we consider reducing the intensity of use, with a proportional reduction in emissions, and increased the use of biodiesel. - Highlights: ► We estimate road transportation emissions for Rio de Janeiro from 1980 to 2010. ► C gasoline was most responsible for CO (74%) and diesel for PM (91%). ► Emissions/vehicle for Rio de Janeiro are (12% to 59%) smaller than Brazilian. ► 1,760,370 t of emissions was avoided using non-petroleum-based fuels. ► Strategies to reduce the emissions of these air pollutants were proposed.

  10. Air transport and climate change: emissions market to demand management; Transporte aereo y cambio climatico: del mercado de emisiones a la gestion de la demanda

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Perez, D.

    2012-11-01

    improvements in air traffic management, the efficiency gain in the search engines and alternative fuels to kerosene are the basic pillars of the strategy to address the environmental consequences of air transport. however the technological innovations that aim by themselves can hardly reduce sector emissions to the numbers required for an effective fight against climate change. (Author) 32 refs.

  11. RESULTS OF RESEARCH OF AIR POLLUTION BY AUTOMOBILE TRANSPORT IN THE STREETS OF KHARKIV

    Directory of Open Access Journals (Sweden)

    Lezhneva, E.

    2013-06-01

    Full Text Available Results of the research of the atmospheric air of residential area roadside territory at functioning of motor transport are presented. Architectural and planning activities to improve the environmental performance of the local area of Kharkiv are offered.

  12. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  13. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  14. Transport of high fluxes of hydrogen plasma in a linear plasma generator

    NARCIS (Netherlands)

    Vijvers, W.A.J.; Al, R.S.; Lopes Cardozo, N.J.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Meiden, van der H.J.; Peppel, van de R.J.E.; Schram, D.C.; Shumack, A.E.; Westerhout, J.; Rooij, van G.J.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased

  15. Compact and air-transportable ultrasonic turbine disc bore inspection system

    International Nuclear Information System (INIS)

    Larsen, R.E.; Leon-Salamanca, T.

    1990-01-01

    A compact, lightweight, air-transportable ultrasonic inspection system for bore and keyway regions of shrunk-on turbine discs has been developed. The system utilizes a proprietary ultrasound liquid coupling technique in conjunction with a single pair of gimballed search units to achieve rapid and thorough coverage of bores and keyways in both heavy nuclear and standard fossil discs of nearly any size and having any conceivable web surface contour. Search unit positioning and angulation parameter settings are established in near real-time through a computation algorithm based on a compact vector ray tracing protocol. Modular construction and the use of lightweight, stiff materials throughout facilitates air shipment of the system and its rapid deployment at continental and overseas field sites. Mechanical and ultrasonic features of the system are described. Development and application of the computation algorithm to the ultrasonic inspection of heavy discs at an overseas power station is discussed

  16. Detecting air traffic controller interventions in recorded air transportation system data

    Science.gov (United States)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  17. Global Positioning System: Observations on Quarterly Reports from the Air Force

    Science.gov (United States)

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning , navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX)

  18. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  19. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  20. Tracking Legionella in air generated from a biological treatment plant: a case study of the outbreak of legionellosis in Norway

    Science.gov (United States)

    Blatny, Janet M.; Olsen, Jaran S.; Andreassen, Øyvind; Waagen, Viggo; Reif, Bjørn Anders P.

    2011-05-01

    Two outbreaks of legionellosis occurred in the Sarpsborg/Fredrikstad region southeast of Norway in 2005 and 2008 where more than 60 exposed individuals were infected and 10 case patients died. The air scrubber at Borregaard, a wood-based chemical factory, was identified as the outbreak source. High concentration levels of Legionella species, including the etiological agent L. pneumophila SG1 was found in the aeration ponds, which belongs to Borregaard's biological treatment plant. Results showed that these ponds were able to generate Legionella-containing aerosols that were transported by the wind as such aerosols were measured up to 200 meters downwind of the pond. Our studies did not detect L. pneumophila SG1 isolates, only L. pneumophila SG4 during the air sampling measurement campaign. Furthermore, the operational conditions of the air scrubber proved to be harsh for Legionella growth as the outbreak L. pneumophila strains were not able to grow at 45ºC and pH8 (conditions during the outbreaks). These results, together, lead us to suggest that the aeration pond should be regarded as the primary amplifier and disseminator of Legionella and L. pneumophila and thereby most likely being the outbreak source.

  1. Valuation of social and health effects of transport-related air pollution in Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, Andres; Guerrero, Maria-Jose [Transport Department, Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros de Caminos, C. y P., Caminos, Ciudad Universitaria, s/n, 28040 Madrid (Spain)

    2004-12-01

    Social impacts of pollutants from mobile sources are a key element in urban design and traffic planning. One of the most relevant impacts is health effects associated with high pollution periods. Madrid is a city that suffers chronic congestion levels and some periods of very stable atmospheric conditions; as a result, pollution levels exceed air quality standards for certain pollutants.This paper focuses on the social evaluation of transport-related emissions. A new methodology to evaluate those impacts in monetary terms has been designed and applied to Madrid. The method takes into account costs associated with losses in working time, mortality and human suffering; calculated using an impact pathway approach linked to CORINAIR emissions. This also allows the calculation of social costs associated with greenhouse gas impacts. As costs have been calculated individually by effect and mode of transport, they can be used to design pricing policies based on real social costs. This paper concludes that the health and social costs of transport-related air pollution in Madrid is 357 Meuro. In these circumstances, the recent public health tax applied in Madrid is clearly correct and sensible with a fair pricing policy on car use.

  2. Valuation of social and health effects of transport-related air pollution in Madrid (Spain)

    International Nuclear Information System (INIS)

    Monzon, Andres; Guerrero, Maria-Jose

    2004-01-01

    Social impacts of pollutants from mobile sources are a key element in urban design and traffic planning. One of the most relevant impacts is health effects associated with high pollution periods. Madrid is a city that suffers chronic congestion levels and some periods of very stable atmospheric conditions; as a result, pollution levels exceed air quality standards for certain pollutants. This paper focuses on the social evaluation of transport-related emissions. A new methodology to evaluate those impacts in monetary terms has been designed and applied to Madrid. The method takes into account costs associated with losses in working time, mortality and human suffering; calculated using an impact pathway approach linked to CORINAIR emissions. This also allows the calculation of social costs associated with greenhouse gas impacts. As costs have been calculated individually by effect and mode of transport, they can be used to design pricing policies based on real social costs. This paper concludes that the health and social costs of transport-related air pollution in Madrid is 357 Meuro. In these circumstances, the recent public health tax applied in Madrid is clearly correct and sensible with a fair pricing policy on car use

  3. Generation of transportation fuel from solid municipal waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin

    2010-09-15

    Transportation fuels derived from fossil fuels are subjected to the price fluctuations of the global marketplace, and constitute a major expense in the operation of a vehicle. Emissions from the evaporation and combustion of these fuels contribute to a range of environmental problems, causing poor air quality and emitting greenhouse gases that contribute to global warming. Alternative fuels created from domestic sources have been proposed as a solution to these problems, and many fuels are being developed based on biomass and other renewable sources. Natural State Research, Inc. developed different alternative hydrocarbon fuel which is produced from waste plastic materials.

  4. The Conference Proceedings of the 1998 Air Transport Research Group (ATRG) of the WCTR Society. Volume 1

    Science.gov (United States)

    Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).

  5. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    Science.gov (United States)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  6. The Symposium Proceedings of the 1998 Air Transport Research Group (ATRG). Volume 3

    Science.gov (United States)

    Reynolds-Feighan, Aisling (Editor); Bowen, Brent D. (Editor)

    1998-01-01

    Contents include the following: airline deregulation in Australia: a medium term assessment; why can't Japan deregulate the airline industry and open the sky immediately?; toward a market-oriented air transport system?: present developments in Russian civil aviation performance and policy; the asian economic crisis and its implications for aviation policy in asia pacific: industry outlook approaching the next millennium; a tale of two airlines: the post privatization performance of two caribbean airlines: the role of capital productivity in British Airways' financial recovery; airline privatization: does it matter?; airfright demand: responding to new developments in logistics; and air cargo business relationships.

  7. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Science.gov (United States)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  8. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    Science.gov (United States)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  9. Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study

    Science.gov (United States)

    The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3/ can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phas...

  10. Suprathermal-electron generation, transport, and deposition in CO2-laser-irradiated targets

    International Nuclear Information System (INIS)

    Hauer, A.; Goldman, R.; Kristal, R.

    1982-01-01

    Experiments on both axial and lateral energy transport and deposition in spherical targets are described. A variety of diagnostics have been used to measure hot-electron transport and deposition including bremsstrahlung and inner-shell radiation and soft x-ray temperature measurements. Self-generated electric and magnetic fields play an important role in the transport and deposition of the hot electrons. In some cases distinct patterns of surface deposition consistent with magnetic-field configurations have been observed

  11. Air immunogenicity in quito: activation of immune responses by particulate matter

    OpenAIRE

    Cevallos Bonilla, Victoria Maritza

    2016-01-01

    Urban development experienced around the world in recent years has resulted in the degradation of air quality caused by air pollutants, which are emitted mainly as a product of burning fossil fuels for transportation, in the generation of electricity, and in industrial processes. Exposure to air particulate matter (PM) affects human health, and has been linked to respiratory, cardiovascular and neurological diseases. The mechanisms underlying inflammation in these diverse diseases and to what...

  12. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.

  13. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    Science.gov (United States)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  14. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    Science.gov (United States)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  15. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  16. Association of Long-Term Exposure to Transportation Noise and Traffic-Related Air Pollution with the Incidence of Diabetes: A Prospective Cohort Study.

    Science.gov (United States)

    Clark, Charlotte; Sbihi, Hind; Tamburic, Lillian; Brauer, Michael; Frank, Lawrence D; Davies, Hugh W

    2017-08-31

    Evidence for an association between transportation noise and cardiovascular disease has increased; however, few studies have examined metabolic outcomes such as diabetes or accounted for environmental coexposures such as air pollution, greenness, or walkability. Because diabetes prevalence is increasing and may be on the causal pathway between noise and cardiovascular disease, we examined the influence of long-term residential transportation noise exposure and traffic-related air pollution on the incidence of diabetes using a population-based cohort in British Columbia, Canada. We examined the influence of transportation noise exposure over a 5-y period (1994-1998) on incident diabetes cases in a population-based prospective cohort study (n=380,738) of metropolitan Vancouver (BC) residents who were 45-85 y old, with 4-y of follow-up (1999-2002). Annual average transportation noise (Lden), air pollution [black carbon, particulate matter with aerodynamic diameter Transportation noise was associated with the incidence of diabetes [interquartile range (IQR) increase, 6.8 A-weighted decibels (dBA); OR=1.08 (95% CI: 1.05, 1.10)]. This association remained after adjustment for environmental coexposures including traffic-related air pollutants, greenness, and neighborhood walkability. After adjustment for coexposure to noise, traffic-related air pollutants were not associated with the incidence of diabetes, whereas greenness was protective. We found a positive association between residential transportation noise and diabetes, adding to the growing body of evidence that noise pollution exposure may be independently linked to metabolic health and should be considered when developing public health interventions. https://doi.org/10.1289/EHP1279.

  17. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    Science.gov (United States)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  18. Episodic air quality impacts of plug-in electric vehicles

    Science.gov (United States)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  19. The rhetoric and realities of integrating air quality into the local transport planning process in English local authorities.

    Science.gov (United States)

    Olowoporoku, Dotun; Hayes, Enda; Longhurst, James; Parkhurst, Graham

    2012-06-30

    Regardless of its intent and purposes, the first decade of the Local Air Quality Management (LAQM) framework had little or no effect in reducing traffic-related air pollution in the UK. Apart from the impact of increased traffic volumes, the major factor attributed to this failure is that of policy disconnect between the process of diagnosing air pollution and its management, thereby limiting the capability of local authorities to control traffic-related sources of air pollution. Integrating air quality management into the Local Transport Plan (LTP) process therefore presents opportunities for enabling political will, funding and joined-up policy approach to reduce this limitation. However, despite the increased access to resources for air quality measures within the LTP process, there are local institutional, political and funding constraints which reduce the impact of these policy interventions on air quality management. This paper illustrate the policy implementation gaps between central government policy intentions and the local government process by providing evidence of the deprioritisation of air quality management compared to the other shared priorities in the LTP process. We draw conclusions on the policy and practice of integrating air quality management into transport planning. The evidence thereby indicate the need for a policy shift from a solely localised hotspot management approach, in which the LAQM framework operates, to a more holistic management of vehicular emissions within wider spatial administrative areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Integration of steam injection and inlet air cooling for a gas turbine generation system

    International Nuclear Information System (INIS)

    Wang, F.J.; Chiou, J.S.

    2004-01-01

    The temperature of exhaust gases from simple cycle gas turbine generation sets (GENSETs) is usually very high (around 500 deg. C), and a heat recovery steam generator (HRSG) is often used to recover the energy from the exhaust gases and generate steam. The generated steams can be either used for many useful processes (heating, drying, separation etc.) or used back in the power generation system for enhancing power generation capacity and efficiency. Two well-proven techniques, namely steam injection gas turbine (STIG) and inlet air cooling (IAC) are very effective features that can use the generated steam to improve the power generation capacity and efficiency. Since the energy level of the generated steam needed for steam injection is different from that needed by an absorption chiller to cool the inlet air, a proper arrangement is required to implement both the STIG and the IAC features into the simple cycle GENSET. In this study, a computer code was developed to simulate a Tai power's Frame 7B simple cycle GENSET. Under the condition of local summer weather, the benefits obtained from the system implementing both STIG and IAC features are more than a 70% boost in power and 20.4% improvement in heat rate

  1. GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors

    OpenAIRE

    H. Wang; H. Wang; H. Wang; H. Wang; H. Chen; H. Chen; Q. Wu; Q. Wu; J. Lin; X. Chen; X. Xie; R. Wang; R. Wang; X. Tang; Z. Wang

    2017-01-01

    The Global Nested Air Quality Prediction Modeling System (GNAQPMS) is the global version of the Nested Air Quality Prediction Modeling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present the porting and optimisation of GNAQPMS on a second-generation Intel Xeon Phi processor, codenamed Knights Landing (KNL). Compared with the first-generation Xeon Phi coprocessor (code...

  2. Air quality impacts of distributed power generation in the South Coast Air Basin of California 1: Scenario development and modeling analysis

    Science.gov (United States)

    Rodriguez, M. A.; Carreras-Sospedra, M.; Medrano, M.; Brouwer, J.; Samuelsen, G. S.; Dabdub, D.

    Distributed generation (DG) is generally defined as the operation of many small stationary power generators throughout an urban air basin. Although DG has the potential to supply a significant portion of the increased power demands in California and the rest of the United States, it may lead to increased levels of in-basin pollutants and adversely impact urban air quality. This study focuses on two main objectives: (1) the systematic characterization of DG installation in urban air basins, and (2) the simulation of potential air quality impacts using a state-of-the-art three-dimensional computational model. A general and systematic approach is devised to construct five realistic and 21 spanning scenarios of DG implementation in the South Coast Air Basin (SoCAB) of California. Realistic scenarios reflect an anticipated level of DG deployment in the SoCAB by the year 2010. Spanning scenarios are developed to determine the potential impacts of unexpected outcomes. Realistic implementations of DG in the SoCAB result in small differences in ozone and particulate matter concentrations in the basin compared to the baseline simulations. The baseline accounts for population increase, but does not consider any future emissions control measures. Model results for spanning implementations with extra high DG market penetration show that domain-wide ozone peak concentrations increase significantly. Also, air quality impacts of spanning implementations when DG operate during a 6-h period are larger than when the same amount of emissions are introduced during a 24-h period.

  3. Computational and experimental optimization of the exhaust air energy recovery wind turbine generator

    International Nuclear Information System (INIS)

    Tabatabaeikia, Seyedsaeed; Ghazali, Nik Nazri Bin Nik; Chong, Wen Tong; Shahizare, Behzad; Izadyar, Nima; Esmaeilzadeh, Alireza; Fazlizan, Ahmad

    2016-01-01

    Highlights: • Studying the viability of harvesting wasted energy by exhaust air recovery generator. • Optimizing the design using response surface methodology. • Validation of optimization and computation result by performing experimental tests. • Investigation of flow behaviour using computational fluid dynamic simulations. • Performing the technical and economic study of the exhaust air recovery generator. - Abstract: This paper studies the optimization of an innovative exhaust air recovery wind turbine generator through computational fluid dynamic (CFD) simulations. The optimization strategy aims to optimize the overall system energy generation and simultaneously guarantee that it does not violate the cooling tower performance in terms of decreasing airflow intake and increasing fan motor power consumption. The wind turbine rotor position, modifying diffuser plates, and introducing separator plates to the design are considered as the variable factors for the optimization. The generated power coefficient is selected as optimization objective. Unlike most of previous optimizations in field of wind turbines, in this study, response surface methodology (RSM) as a method of analytical procedures optimization has been utilised by using multivariate statistic techniques. A comprehensive study on CFD parameters including the mesh resolution, the turbulence model and transient time step values is presented. The system is simulated using SST K-ω turbulence model and then both computational and optimization results are validated by experimental data obtained in laboratory. Results show that the optimization strategy can improve the wind turbine generated power by 48.6% compared to baseline design. Meanwhile, it is able to enhance the fan intake airflow rate and decrease fan motor power consumption. The obtained optimization equations are also validated by both CFD and experimental results and a negligible deviation in range of 6–8.5% is observed.

  4. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  5. Potential of public transit as a transportation control measure: Case studies

    Energy Technology Data Exchange (ETDEWEB)

    Sillings, M.

    1998-07-01

    This report is the final product of the Clean Air Project of the National Association of Regional Councils/NARC. It documents a nationwide study of transit projects and programs initiated in the wake of the 1990 Clean Air Act Amendments/CAAA and the Intermodal Surface Transportation Efficiency Act of 1991/ISTEA. The study purpose was to assess the experience, limitations, and value of public transit as a potential transportation control measure/TCM, i.e., generates significant air quality benefits by eliminating or reducing emissions from motor vehicles. Four in-depth case studies and six additional projects featured as innovations in transportation are offered as examples investigating the potential of transit as a TCM. These case studies and innovations highlight the efforts of ten metropolitan areas and transit agencies which have succeed in developing and implementing innovative transit strategies.

  6. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    Science.gov (United States)

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  7. How sustainable are 1{sup st} and 2{sup nd} generation biofuels for transportation?

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Guido; Hienz, Gunnar [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2013-06-01

    After the successful implementation of 1{sup st} generation biofuels in the transport sector of several countries all over the world, 2{sup nd} generation biofuels are also being produced in the meantime. Recently, there is a distinct increase in publications on the question and the concerns of many stakeholders whether these biofuels are sustainable and public awareness of this issue is prevalent. This paper summarises the state of the art of the debate whether 1{sup st} and 2{sup nd} generation biofuels are a sustainable alternative for fossil fuels for transportation. Results of several life cycle assessments are compared and conclusions are stated. An environmental assessment identifies the potentials for a sustainable development of biofuels for transportation. Conclusions are that 1{sup st} and 2{sup nd} generation biofuels show both environmental advantages and disadvantages. The analyses of energy and greenhouse gas balances show a wide range of results. Lifecycle assessments and environmental impact assessments provide a method to determine whether biofuels are environmentally sustainable. Impacts on sustainable development are exemplified in the categories land use competition, biomass use competition and CO{sub 2} avoidance costs. Not all biofuels are regarded as being advantageous from an environmental perspective. However, 1{sup st} and 2{sup nd} generation biofuels for transportation show a great potential that needs to be harmonised with other needs (e.g. land for food production or biomass use for industry and chemistry towards an overall sustainable approach). (orig.)

  8. Modelling the Contribution of Long-range Transport of Ammonium Nitrates to Urban Air Pollution and Human Exposure in the United Kingdom

    Science.gov (United States)

    Reis, S.; Vieno, M.; Beck, R.; Ots, R.; Moring, A.; Steinle, S.; Heal, M. R.; Doherty, R. M.

    2014-12-01

    Urban air pollution and its effects on human health remain to be a challenge in spite of substantial reductions in the emissions of air pollutants (e.g. sulphur dioxide, nitrogen oxides) over the past decades in Europe. While primary pollutants play a vital role in urban air pollution, recent model studies highlight and quantify the relevance of long-range transport of secondary pollution (e.g. secondary inorganic aerosols such as ammonium sulphates and nitrates, or ground level ozone) for the exceedance of local air quality limit values in urban areas across Europe. This contribution can be seen in recurring episodes, for instance in spring 2014, with very high levels of fine particulate matter (PM2.5) in Paris, London and other European cities, as well as in elevated background levels throughout the year. While we will focus on the contribution to exceedances of PM2.5 limit values here, this transboundary transport has wider implications for the deposition of reactive nitrogen far from the source as well. As local authorities are tasked with ensuring the attainment of air quality limit values, exceedances caused by long-range transport, with emissions originating from sources outside of their jurisdiction present substantial challenges. Furthermore, while policy measures have successfully addressed emissions from large point sources in the past, and made progress towards reducing pollution from road vehicles, emissions of ammonia from agricultural sources - a key component for the long-range transport of secondary inorganic aerosols - have remained relatively stable in Europe. Using the example of Europe and the UK, we demonstrate in our presentation how atmospheric chemistry transport modelling across different scales (from regional to local) can provide vital insight in the mechanisms of and relative contributions to the formation of secondary inorganic aerosols. In addition, we illustrate how this modelling capability can inform the design of efficient control

  9. Measurements of ozone and nonmethane hydrocarbons at Chichi-jima island, a remote island in the western Pacific: long-range transport of polluted air from the Pacific rim region

    Science.gov (United States)

    Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi

    Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.

  10. A multi-methodological approach to study the temporal and spatial distribution of air quality related to road transport emissions in Madrid, Spain

    Science.gov (United States)

    Perez, Pedro; Miranda, Regina

    2013-04-01

    The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local

  11. Concept of Operations for the Next Generation Air Transportation System. Version 3.0

    Science.gov (United States)

    2010-01-01

    flight rules [ IFR ]), and communication with the ANSP via voice radio. In airspace where HP-TBO is used (Section 2.3), the minimum ability includes the...wing aircraft, and they often perform unique and demanding missions. Transport category IFR -capable rotorcraft are being acquired in larger numbers...could include consent/approval, disapproval, or a recommendation to amend the plan to include easements, noise mitigation, and disclosure requirements

  12. Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences.

    Science.gov (United States)

    Ge, Baozhu; Wang, Zifa; Lin, Weili; Xu, Xiaobin; Li, Jie; Ji, Dongshen; Ma, Zhiqiang

    2018-03-01

    High concentrations of the fine particles (PM 2.5 ) are frequently observed during all seasons over the North China Plain (NCP) region in recent years. In NCP, the contributions of regional transports to certain area, e.g. Beijing city, are often discussed and estimated by models when considering an effective air pollution controlling strategy. In this study, we selected three sites from southwest to northeast in NCP, in which the concentrations of air pollutants displayed a multi-step decreasing trend in space. An approach based on the measurement results at these sites has been developed to calculate the relative contributions of the minimal local emission (MinLEC) and the maximum regional transport (MaxRTC) to the air pollutants (e.g., SO 2 , NO 2 , CO, PM 2.5 ) in Beijing. The minimal influence of local emission is estimated by the difference of the air pollutants' concentrations between urban and rural areas under the assumption of a similar influence of regional transport. Therefore, it's convenient to estimate the contributions of local emission from regional transport based on the selective measurement results instead of the complex numerical model simulation. For the whole year of 2013, the averaged contributions of MinLEC (MaxRTC) for NO 2 , SO 2 , PM 2.5 and CO are 61.7% (30.7%), 46.6% (48%), 52.1% (40.2%) and 35.8% (45.5%), respectively. The diurnal variation of MaxRTC for SO 2 , PM 2.5 and CO shows an increased pattern during the afternoon and reached a peak (more than 50%) around 18:00, which indicates that the regional transport is the important role for the daytime air pollution in Beijing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modeling of Trans-boundary Transport of Air Pollutants in the California-Mexico Border Region during Cal-Mex 2010

    Science.gov (United States)

    Bei, N.; Zavala, M. A.; Lei, W.; Li, G.; Molina, L. T.

    2010-12-01

    The US and Mexico share a common air basin along the ~200 km border between California and Baja California. The economical activities in this region are heavily influenced by the international trade and commerce between Mexico and the US that mainly occurs through the borders of the sister cities of San Diego-Tijuana and Calexico-Mexicali. The diversity and differences in the characteristics of emissions sources of air pollutants in the California-Mexico border region make this an important area for the study of the chemistry and trans-boundary transport of air pollutants. During May-June of 2010, the Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region and assessing the possible impacts of these emissions on local and regional air quality. In this work we will present the results of the use of the Comprehensive Air quality model with extensions (CAMx) in a modeling domain that includes the sister cities of San Diego-Tijuana and Calexico-Mexicali for studying events of trans-boundary transport of air pollutants during Cal-Mex 2010. The measurements obtained during the Cal-Mex 2010 field campaign are used in the evaluation of the model performance and in the design of air quality improvement policies in the California-Mexico border region.

  14. Air and Water Transportation Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    Science.gov (United States)

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on air and water transportation occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include civil aviation workers, air…

  15. In the wake of liberalisation: long-term developments in the EU air transport market

    NARCIS (Netherlands)

    Burghouwt, G.; de Wit, J.G.

    2015-01-01

    Using a 24-year analysis period (1990-2013), a new perspective is offered on long-term first- and second-order developments following liberalisation of the intra-EU air transport market. The focus of the analysis is on supply-side issues, such as airline output, structure of supply, yields, business

  16. Air pollution knows no boundaries: defining air catchment areas and making sense of physical and political boundaries in air quality management

    CSIR Research Space (South Africa)

    Scott, G

    2005-10-01

    Full Text Available Topics under discussion: Scales of transport and turbulence in the atmosphere; Examples of global, regional and local scale transports – concepts of an “air catchment”; Defining air quality management zones - international practice; Defining air...

  17. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  18. Generational Differences in the Perception of Corporate Culture in European Transport Enterprises

    Directory of Open Access Journals (Sweden)

    Rudolf Kampf

    2017-09-01

    Full Text Available The workforce of an enterprise consists of employees of various ages with different personality types. Members of each generation differ not only in their behaviour, but also in their attitudes and opinions. A manager should identify generational differences. Subsequently, the management style, leadership and employee motivation should be adapted forasmuch as well-motivated employees are able to affect the efficiency of enterprise processes in right way. The objective of the paper is to identify differences in perception of the preferred level of corporate culture in terms of various generations. Preferred level of corporate culture in six areas is evaluated using a questionnaire consisting of 24 questions. Sixty-four European transport enterprises are engaged in the survey. Following the outcomes, we find that all generations of respondents working in the European transport enterprises prefer clan corporate culture in the course of five years. This culture puts emphasis on employees, customers and traditions. Loyalty and teamwork are considered to be the essential tools for business success. Following the statistical verification using the ANOVA test, we can state that the hypothesis regarding the existence of generational differences in the perception of corporate culture was not confirmed.

  19. Emission Rates of Multiple Air Pollutants Generated from Chinese Residential Cooking.

    Science.gov (United States)

    Chen, Chen; Zhao, Yuejing; Zhao, Bin

    2018-02-06

    Household air pollution generated from cooking is severe, especially for Chinese-style cooking. We measured the emission rates of multiple air pollutants including fine particles (PM 2.5 ), ultrafine particles (UFPs), and volatile organic compounds (VOCs, including formaldehyde, benzene, and toluene) that were generated from typical Chinese cooking in a residential kitchen. The experiment was designed through five-factor and five-level orthogonal testing. The five key factors were cooking method, ingredient weight, type of meat, type of oil, and meat/vegetable ratio. The measured emission rates (mean value ± standard deviation) of PM 2.5 , UFPs, formaldehyde, total volatile organic compounds (TVOCs), benzene, and toluene were 2.056 ± 3.034 mg/min, 9.102 ± 6.909 × 10 12 #/min, 1.273 ± 0.736 mg/min, 1.349 ± 1.376 mg/min, 0.074 ± 0.039 mg/min, and 0.004 ± 0.004 mg/min. Cooking method was the most influencing factor for the emission rates of PM 2.5 , UFPs, formaldehyde, TVOCs, and benzene but not for toluene. Meanwhile, the emission rate of PM 2.5 was also significantly influenced by ingredient weight, type of meat, and meat/vegetable ratio. Exhausting the range hood decreased the emission rates by approximately 58%, with a corresponding air change rate of 21.38/h for the kitchen room.

  20. Generation and quality assessment of route choice sets in public transport networks by means of RP data analysis

    DEFF Research Database (Denmark)

    Larsen, Marie Karen; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2010-01-01

    Literature in route choice modelling shows that a lot of attention has been devoted to route choices of car drivers, but much less attention has been dedicated to route choices of public transport users. As modelling route choice behaviour consists of generating relevant routes and estimating...... discrete choice models, this paper focuses on the issue of choice set generation in public transport networks. Specifically, this paper describes the generation of choice sets for users of the Greater Copenhagen public transport system by applying a doubly stochastic path generation algorithm...

  1. Sensitivity of neutron air transport to nitrogen cross section uncertainties

    International Nuclear Information System (INIS)

    Niiler, A.; Beverly, W.B.; Banks, N.E.

    1975-01-01

    The sensitivity of the transport of 14-MeV neutrons in sea level air to uncertainties in the ENDF/B-III values of the various Nitrogen cross sections has been calculated using the correlated sampling Monte Carlo neutron transport code SAMCEP. The source consisted of a 14.0- to 14.9-MeV band of isotropic neutrons and the fluences (0.5 to 15.0 MeV) were calculated at radii from 50 to 1500 metres. The maximum perturbations, assigned to the ENDF/B-III or base cross section set in the 6.0- to 14.5-MeV energy range were; (1) 2 percent to the total, (2) 10 percent to the total elastic, (3) 40 percent to the inelastic and absorption and (4) 20 percent to the first Legendre coefficient and 10 percent to the second Legendre coefficient of the elastic angular distribtuions. Transport calculations were carried out using various physically realistic sets of perturbed cross sections, bounded by evaluator-assigned uncertainties, as well as the base set. Results show that in some energy intervals at 1500 metres, the differential fluence level with a perturbed set differed by almost a factor of two from the differential fluence level with the base set. 5 figures

  2. Specification of test criteria and probabilistic approach: the case of plutonium air transport

    International Nuclear Information System (INIS)

    Hubert, P.; Pages, P.; Ringot, C.; Tomachewsky, E.

    1989-03-01

    The safety of international transportation relies on compliance with IAEA regulations which specify a serie of test which the package is supposed to withstand. For Plutonium air transport some national regulations are more stringent than the IAEA one, namely the US one. For example the drop test is to be performed at 129 m.s -1 instead of 13.4 m.s -1 . The development of international Plutonium exchanges has raised the question of the adequacy of both those standards. The purpose of this paper is to show how a probabilistic approach helps in assessing the efficiency of a move towards more stringent tests

  3. Timetable-based simulation method for choice set generation in large-scale public transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær; Anderson, Marie Karen; Nielsen, Otto Anker

    2016-01-01

    The composition and size of the choice sets are a key for the correct estimation of and prediction by route choice models. While existing literature has posed a great deal of attention towards the generation of path choice sets for private transport problems, the same does not apply to public...... transport problems. This study proposes a timetable-based simulation method for generating path choice sets in a multimodal public transport network. Moreover, this study illustrates the feasibility of its implementation by applying the method to reproduce 5131 real-life trips in the Greater Copenhagen Area...... and to assess the choice set quality in a complex multimodal transport network. Results illustrate the applicability of the algorithm and the relevance of the utility specification chosen for the reproduction of real-life path choices. Moreover, results show that the level of stochasticity used in choice set...

  4. Comparison of a Padded Patient Litter and Long Spine Board for Spinal Immobilization in Air Medical Transport.

    Science.gov (United States)

    Weber, Steven R; Rauscher, Patrick; Winsett, Rebecca P

    2015-01-01

    The long spinal board is the immobilization standard during prehospital transport. The flat surface of the board increases the pressure placed on both the thoracic kyphosis and the sacrum and increases the risk for pressure ulcers. This study compared patient stability and comfort between a padded litter system used in air medical transport and the long spine board. The study was completed at a large 350-bed Magnet Recognized nonteaching hospital. The hospital owns and operates an air medical transport service. Subjects were secured to a padded litter and a long spinal board with a cervical collar and head blocks and 3 straps. Laser pointers were used to mark neutral at points on the subject's head, sternum, and pelvis. The subject was tilted 45 degrees left and right with movement measured in inches. Comfort level was measured before and after. Paired t-tests were used to detect differences in movement. No statistical difference in movement was found between devices for the head; however, there was statistically significant greater movement on the padded litter for the sternum and pelvis. The padded litter did not immobilize as tightly as the long board although the effect of the differences was small. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  5. A Data-Driven Air Transportation Delay Propagation Model Using Epidemic Process Models

    Directory of Open Access Journals (Sweden)

    B. Baspinar

    2016-01-01

    Full Text Available In air transport network management, in addition to defining the performance behavior of the system’s components, identification of their interaction dynamics is a delicate issue in both strategic and tactical decision-making process so as to decide which elements of the system are “controlled” and how. This paper introduces a novel delay propagation model utilizing epidemic spreading process, which enables the definition of novel performance indicators and interaction rates of the elements of the air transportation network. In order to understand the behavior of the delay propagation over the network at different levels, we have constructed two different data-driven epidemic models approximating the dynamics of the system: (a flight-based epidemic model and (b airport-based epidemic model. The flight-based epidemic model utilizing SIS epidemic model focuses on the individual flights where each flight can be in susceptible or infected states. The airport-centric epidemic model, in addition to the flight-to-flight interactions, allows us to define the collective behavior of the airports, which are modeled as metapopulations. In network model construction, we have utilized historical flight-track data of Europe and performed analysis for certain days involving certain disturbances. Through this effort, we have validated the proposed delay propagation models under disruptive events.

  6. Impact of Asian Dust on Climate and Air Quality

    Science.gov (United States)

    Chin, Mian; Tan, Qian; Diehl, Thomas; Yu, Hongbin

    2010-01-01

    Dust generated from Asian permanent desert and desertification areas can be efficiently transported around the globe, making significant radiative impact through their absorbing and scattering solar radiation and through their deposition on snow and ice to modify the surface albedo. Asian dust is also a major concern of surface air quality not only in the source and immediate downwind regions but also areas thousands of miles away across the Pacific. We present here a global model, GOCART, analysis of data from satellite remote sensing instrument (MODIS, MISR, CALIPSO, OMI) and other observations on Asian dust sources, transport, and deposition, and use the model to assess the Asian dust impact on global climate and air quality.

  7. Development of the Next Generation Air Quality Modeling System (20th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA)

    Science.gov (United States)

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  8. Study on THz wave generation from air plasma induced by quasi-square Airy beam

    Science.gov (United States)

    Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.

  9. CO{sub 2} audit 1990/2005. Emissions from energy generation and transport; CO{sub 2}-Bilanz 1990/2005. Energie- und verkehrsbedingte Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Lueth, B.; Hoffmann-Kallen, A. (comps.)

    2007-04-15

    There were two studies investigating changes in energy related CO{sub 2} emissions (including CO{sub 2} equivalents) for Hannover (Federal Republic of Germany) within the period 1990 to 2005. CO{sub 2} emissions result from the combustion of fossil fuels. These have been divided into emissions due to energy consumption (electricity and heating) and the transport sector. The first study, 'Emissions caused by energy consumption (electricity and heating)' depicts the development of energy and CO{sub 2} audits for the years 1990 to 2005. Heating energy demand for 2005 was 8% lower than for 1990 due to increased energy efficiency. Furthermore, CO{sub 2} emissions were in effect reduced by 19% due to increases in the use of district heating and natural gas as alternatives to heating oil and coal. Although electricity consumption rose by 17% an increase of only 1% in CO{sub 2} emissions was registered due to improved energy efficiency through the deployment of combined heat and power plants for electricity generation. The second study, 'CO{sub 2} emissions from the transport sector' examined data for motorised traffic, local public transport, rail and air travel. Although traffic volume for these areas of transport increased during the period 1990 to 2005, effectively energy consumption for the total distance travelled decreased. Road traffic increased by 9% in Hannover over the period but fuel savings from more efficient vehicle engines resulted in an overall reduction of 6% in CO{sub 2} emissions. Despite an increase in carrying capacity of 31% (measured in seat-kilometres), CO{sub 2} emissions could be reduced by 22%. A similar trend was identified in the German rail traffic sector (local- and long-distance). Despite an overall increase in traveller kilometres across Germany, when relating this to the population of Hannover a local reduction in CO{sub 2} emissions of 17% was recorded. Air travel has doubled in Germany over the last 15 years. Thus

  10. Unexpected high 35S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia

    Science.gov (United States)

    Lin, Mang; Zhang, Zhisheng; Su, Lin; Su, Binbin; Liu, Lanzhong; Tao, Jun; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-03-01

    October is the monsoon transitional period in East Asia (EA) involving a series of synoptic activities that may enhance the downward transport of stratospheric air to the planetary boundary layer (PBL). Here we use cosmogenic 35S in sulfate aerosols (35SO42-) as a tracer for air masses originating from the stratosphere and transported downward to quantify these mixing processes. From 1 year 35SO42- measurements (March 2014 to February 2015) at a background station in EA we find remarkably enhanced 35SO42- concentration (3150 atoms m-3) in October, the highest value ever reported for natural sulfate aerosols. A four-box 1-D model and meteorological analysis reveal that strong downward transport from the free troposphere is a vital process entraining aged stratospheric air masses to the PBL. The aged stratospheric masses are accumulated in the PBL, accelerating the SO2 transformation to SO42-. Implications for the tropospheric O3 budget and the CO2 biogeochemical cycle are discussed.

  11. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.

  12. 41 CFR 304-3.8 - Must I adhere to the provisions of the Fly America Act when I receive air transportation to a...

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Must I adhere to the provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non... provisions of the Fly America Act when I receive air transportation to a meeting furnished or paid by a non...

  13. Evaluation of next generation biomass derived fuels for the transport sector

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2013-01-01

    This paper evaluates next generation biomass derived fuels for the transport sector, employing the Analytic Hierarchy Process. Eight different alternatives of fuels are considered in this paper: bio-hydrogen, bio-synthetic natural gas, bio-dimethyl ether, bio-methanol, hydro thermal upgrading diesel, bio-ethanol, algal biofuel and electricity from biomass incineration. The evaluation of alternative fuels is performed according to various criteria that include economic, technical, social and policy aspects. In order to evaluate each alternative fuel, one base scenario and five alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all alternative scenarios. It is concluded that synthetic natural gas and electricity from biomass incineration are the most suitable next generation biomass derived fuels for the transport sector. -- Highlights: •Eight alternative fuels for the transport sector have been evaluated. •The method of the AHP was used. •The evaluation is performed according to economic, technical, social and policy criteria. •Bio-SNG and electricity from biomass incineration are the most suitable fuels

  14. Nanoscale thermal transport: Theoretical method and application

    Science.gov (United States)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  15. First pediatric transatlantic air ambulance transportation on a Berlin Heart EXCOR left ventricular assist device as a bridge to transplantation.

    Science.gov (United States)

    Tissot, Cecile; Buchholz, Holger; Mitchell, Max B; da Cruz, Eduardo; Miyamoto, Shelley D; Pietra, Bill A; Charpentier, Arnaud; Ghez, Olivier

    2010-03-01

    Mechanical circulatory devices are indicated in patients with refractory cardiac failure as a bridge to recovery or to transplantation. Whenever required, transportation while on mechanical support is a challenge and still limited by technical restrictions or distance. We report the first pediatric case of transatlantic air transportation on a Berlin Heart EXCOR ventricular assist device (Berlin Heart, Berlin, Germany) of a 13-yr-old American female who presented in cardiogenic shock with severe systolic dysfunction while vacationing in France. Rapid hemodynamic deterioration occurred despite maximal medical treatment, and she was supported initially with extracorporeal membrane oxygenation converted to a Berlin Heart EXCOR left ventricular assist device. Long-distance air transportation of the patient was accomplished 3 wks after implantation from Marseille, France, to Denver, Colorado. No adverse hemodynamic effects were encountered during the 13.5-hr flight (8770 km). The patient did not recover sufficient cardiac function and underwent successful orthotopic heart transplantation 3 months after the initial event. Our experience suggests that long-distance air transportation of pediatric patients using the Berlin Heart EXCOR mobile unit as a bridge to recovery or transplantation is feasible and appears safe.

  16. Project and construction of a pneumatic system for the transference of samples to a neutron generator

    International Nuclear Information System (INIS)

    Carvalho, A.N. de

    1983-01-01

    A prototype of a system for the transport of irradiated samples to and from a neutron generator, was constructed, using compressed air as propeller agent. Compressed air was injected through electrically driven values. The sample, transported by the pressure wave, was inserted into a PVC tube 50m long and weighing 23.0 g. The first tests were carried out in order to determine the times needed to transport the above-mentioned PVC support along a PVC tube of 3m length and 3/4 diameter for different air pressures applied; it was verified that for pressures between 3.0 and 8.0 kgf/cm 2 , transport times were always smaller than 2 seconds. These results showed the viability of constructing a definitive system, already projected. (C.L.B.) [pt

  17. The relative impacts of distributed and centralized generation of electricity on local air quality in the South Coast Air Basin of California

    International Nuclear Information System (INIS)

    Jing Qiguo; Venkatram, Akula

    2011-01-01

    This paper examines the air quality impact of using distributed generation (DG) to satisfy future growth in power demand in the South Coast Air Basin of Los Angeles, relative to the impact when the demand is met by expanding current central generation (CG) capacity. The impact of decreasing boiler emissions by capturing the waste heat from DGs is not examined. The air quality impacts of these two alternate scenarios are quantified in terms of hourly maximum ground-level and annually averaged primary NO x concentrations, which are estimated using AERMOD. This study focuses on the impact of primary emissions at source-receptor distances of tens of kilometers. We find that the shift to DGs has the potential for decreasing maximum hourly impacts of power generation in the vicinity of the DGs. The maximum hourly concentration is reduced from 25 to 6 ppb if DGs rather than CGs are used to generate power. However, the annually averaged concentrations are likely to be higher than for the scenario in which existing CGs are used to satisfy power demand growth. Future DG penetration will add an annual average of 0.1 ppb to the current basin average, 20 ppb, while expanding existing CGs will add 0.05 ppb. - Highlights: → NO x levels in the LA basin will change by shifting to distributed generation (DG). → Shifting to DG will reduce the maximum hourly concentration from 25 to 6 ppb. → DG will add 0.1 ppb versus 0.05 ppb for CG to the annual average of 20 ppb.

  18. Development of ultra low dew-point clean air generator; Cho tei roten seijo kuki hassei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, H.; Okamura, N. [Takasago thermal Engineering Co., Ltd., Kanagawa (Japan)

    2000-05-10

    To reduce the manufacturing cost of semiconductors, some systems have been proposed that use a cheap and high purity Clean Dry Air (CDA). CDA can reduce process step such as wafer cleaning, because CDA flow in stocker prevents the wafer surface from adsorbing of moisture and organic impurities. We have already optimized a two-stage rotary dehumidifier and have conducted a study of methods for cheaply manufacturing air that has a low dew-point of -70 degree C to -50 degree C. We have further developed the method in which a dry dehumidifier is used, and developed an ultra low dew-point air generator. The air generator is a three-stage rotary dehumidifier in which a further stage is added to the two-stage rotary dehumidifier. The main component of the rotors is metal silicate. The air generator can supply dry air with a dew-point of -110 degree C. or less, in which the concentration in all gaseous contaminants is far below 1 ppb. We made a trial calculation of the manufacturing cost, and an average cost of 0.25 yen/m{sup 3} was obtained. (author)

  19. Public Opinion shifts to the favour of nuclear energy due to steam generator transport

    International Nuclear Information System (INIS)

    Lengar, I.; Nemec, T.

    2000-01-01

    In late August and early September of 1999, nuclear energy topics occupied a central place in the Slovenian media because of the transport of two new steam generators to the Krsko nuclear power plant, and also due to the protest action of an Austrian Green peace group. Before these events, the public opinion in Slovenia was not in favour or nuclear energy ;and Green peace had a good reputation. In September it has lost much credibility because of their clumsy :action of protest, and in just one month this caused a shift of public opinion in Slovenia towards support of Slovenian's only nuclear power plant. The Green peace protest action occurred during the transport of the two new steam generators to Krsko. By replacement of the old steam generators the operation of the Krsko NPP will be extended until 2023. The transport envoy travelled during the first half of September '99 across a considerable part of Slovene territory, passing by the capital of Ljubljana. (authors)

  20. Trip Generation by Transportation Mode of Private School, Semi-private and Public. Case Study in Merida-Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Quintero Petit, A.M.; Diaz Gallardo, M.I.; Moreno Gonzalez, E.G.

    2016-07-01

    The trip generation model (TGM) is the first step in transportation forecasting, this is useful for estimating travel demand because it can predict travel from or to a particular land use. Typically, the analysis focuses in residential trip generation as a function of the social and economic attributes of households, but nonresidential land use suggests others variables. Travel generator poles such as: Private school, Semi-private and Public, have not been studied in Venezuela. The TGMs that shows the Institute of Transportation Engineers (ITE), EE.UU, are used typically and could be not appropriate. By using stepwise regression and transformation of data, high correlation coefficients and substantial improvements in the variability of data from several schools they were found. The trip generation rates (TGRs) by transportation mode: walking, motorcycle, public transport and cars, can be compared and be included in the Ibero-American Network of travel attractors poles. (Author)

  1. New particle formation in air mass transported between two measurement sites in Northern Finland

    Directory of Open Access Journals (Sweden)

    M. Komppula

    2006-01-01

    Full Text Available This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the

  2. Influence of ventilation structure on air flow distribution of large turbo-generator

    Science.gov (United States)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  3. The role of transition metal interfaces on the electronic transport in lithium–air batteries

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Hummelshøj, Jens S.; Thygesen, Kristian Sommer

    2011-01-01

    Low electronic conduction is expected to be a main limiting factor in the performance of reversible lithium–air, Li–O2, batteries. Here, we apply density functional theory and non-equilibrium Green's function calculations to determine the electronic transport through lithium peroxide, Li2O2, formed...... at the cathode during battery discharge. We find the transport to depend on the orientation and lattice matching of the insulator–metal interface in the presence of Au and Pt catalysts. Bulk lithium vacancies are found to be available and mobile under battery charging conditions, and found to pin the Fermi level...

  4. Inactive trials of transport systems

    International Nuclear Information System (INIS)

    Haberlin, M.M.; Hardy, A.R.

    1985-06-01

    The design and manufacture of a mock-up of a crate handling and size reduction (CHSR) facility, an experimental programme on the evaluation of a commercial air-transporter, and the selection, manufacture and commissioning trials of an integrated conveyor system for transporting crated waste into and within the mock-up facility, are considered. The mock-up facility was used for the test programme on the air-transporter and conveyor system. The air-transporter was considered suitable for transporting waste on the metal floor in the main dismantling area of the CHSR facility because it can tolerate asymmetric loading, the exhaust air flow liberated from the air-pads is low and it has excellent manoeuvrability. Commissioning trials were carried out on a commercial conveyor system consisting of unpowered rollers in the reception area, a powered slatted conveyor in the air-lock and an unpowered roller table placed on the air-transporter in the working area. It was demonstrated that a large asymmetrically loaded wooden crate can be transported into and within the facility by this method. Further design and experimental work necessary before the system can be used for remote operation is discussed. (author)

  5. Critical Care Air Transport Team severe traumatic brain injury short-term outcomes during flight for Operation Iraqi Freedom/Operation Enduring Freedom.

    Science.gov (United States)

    Boyd, L Renee; Borawski, J; Lairet, J; Limkakeng, A T

    2017-10-01

    Our understanding of the expertise and equipment required to air transport injured soldiers with severe traumatic brain injuries (TBIs) continue to evolve. We conducted a retrospective chart review of characteristics, interventions required and short-term outcomes of patients with severe TBI managed by the US Air Force Critical Care Air Transport Teams (CCATTs) deployed in support of Operation Iraqi Freedom and Operation Enduring Freedom between 1 June 2007 and 31 August 2010. Patients were cared for based on guidelines given by the Brain Trauma Foundation and the Joint Theater Trauma System by non-neurosurgeon physicians with dedicated neurocritical care training. We report basic characteristics, injuries, interventions required and complications during transport. Intracranial haemorrhage was the most common diagnosis in this cohort. Most injuries were weapon related. During this study, there were no reported in-flight deaths. The majority of patients were mechanically ventilated. There were 45 patients who required at least one vasopressor to maintain adequate tissue perfusion, including four patients who required three or more. Some patients required intracranial pressure (ICP) management, treatment of diabetes insipidus and/or seizure prophylaxis medications. Air transport personnel must be prepared to provide standard critical care but also care specific to TBIs, including ICP control and management of diabetes insipidus. Although these patients and their potential complications are traditionally managed by neurosurgeons, those providers without neurosurgical backgrounds can be provided this training to help fill a wartime need. This study provides data for the future development of air transport guidelines for validating and clearing flight surgeons. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. A model for the estimation of energy consumption and air pollutant emissions from rail transport

    DEFF Research Database (Denmark)

    Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C

    2003-01-01

    A model is presented for the calculation of energy consumption and air pollutant emissions from rail transport. It is based on the estimation of energy consumption from a matirx describing the distribution of speeds and accelerations for operation. It is shown that calculations can be performed...

  7. Economic and Legal Aspects of Air Transport in Turkey

    Directory of Open Access Journals (Sweden)

    Gisoo Mihandoust

    2017-12-01

    Full Text Available The aviation sector has highlighted the importance of economic and legal regulations in conjunction with the changes in the conditions of competition with the acceleration of globalization. The regulations in the aviation sector directly or indirectly affect the airline operators, which is critical as a result of its effects on the economic systems of the countries. Legal responsibilities in terms of influencing passenger rights and competition law issues; has a natural impact on shaping aviation regulations, sector dynamics and competitive conditions which is effecting the dynamic structure of the sector. This study aims to examine the economic and legal aspects of air transportation carried out in Turkey and to contribute to the literature as a result of the researches.

  8. A metric of influential spreading during contagion dynamics through the air transportation network.

    Directory of Open Access Journals (Sweden)

    Christos Nicolaides

    Full Text Available The spread of infectious diseases at the global scale is mediated by long-range human travel. Our ability to predict the impact of an outbreak on human health requires understanding the spatiotemporal signature of early-time spreading from a specific location. Here, we show that network topology, geography, traffic structure and individual mobility patterns are all essential for accurate predictions of disease spreading. Specifically, we study contagion dynamics through the air transportation network by means of a stochastic agent-tracking model that accounts for the spatial distribution of airports, detailed air traffic and the correlated nature of mobility patterns and waiting-time distributions of individual agents. From the simulation results and the empirical air-travel data, we formulate a metric of influential spreading--the geographic spreading centrality--which accounts for spatial organization and the hierarchical structure of the network traffic, and provides an accurate measure of the early-time spreading power of individual nodes.

  9. [Transport and differentiation of polycyclic aromatic hydrocarbons in air from Dashiwei karst Sinkholes in Guangxi, China].

    Science.gov (United States)

    Kong, Xiang-Sheng; Qi, Shi-Hua; Sun, Qian; Huang, Bao-Jian

    2012-12-01

    The typical karst Dashiwei Sinkholes located in Leye County, Guangxi were chosen as the study object. The air samples from the opening of Dashiwei Sinkholes to the underground river profiles were collected by polyurethane foam passive samplers (PUF-PAS), and the meteorological parameters were observed. The 16 PAHs were analyzed using GC-MS. The results showed that the total PAHs concentration in air in Dashiwei Sinkholes ranged from 33.76 ng x d(-1) to 150.86 ng x d(-1), with an average of 80.36 ng x d(-1). The mean concentrations in the cliff, the bottom and the underground river profiles were 67.17, 85.36 and 101.67 ng x d(-1), respectively. The 2-3 rings PAHs (including phenanthrene, anthracene, napnthalene and fluorene) accounted for 87.97% of the total of PAHs. The transport and accumulation processes of PAHs in air in Dashiwei Sinkholes were: the ground to the cliff section to the bottom section and then to the underground river, and the total PAHs concentrations showed an obvious increasing tendency with the decrease in altitude or increase in the length of the underground river. Low molecular weight PAHs compounds (including phenanthrene, anthracene, flourene and fluoranthene) in air went through differentiation at the bottom of the west peak, the bottom of the sinkhole and the underground river. The primary sources of PAHs were pyrogenic sources with atmosphere transport. Ambient temperature was the predominating factor influencing the transport and accumulation of gas phase PAHs in Dashiwei Sinkholes, following by wind speed, wind direction and relative humidity. Relative humidity and the temperature were the predominating factors influencing the differentiation, following by wind speed and wind direction. As a whole, a "cold trapping effect" of POPs was showed obviously in Dashiwei Sinkholes.

  10. Royal Decree 1749/1984 of 1 August approving the national regulations on the safe transport of dangerous goods by air together with technical instructions for the safe transport of dangerous goods by air

    International Nuclear Information System (INIS)

    1984-01-01

    This Royal Decree approves the national Regulations on the safe transport of dangerous goods by air. The Regulations as well as the attached detailed technical instructions are based on the 1981 revised text of the Annex concerning dangerous goods of the Chicago Convention on International Civil Aviation. It also covers radioactive materials. (NEA) [fr

  11. The Economic Effect of Competition in the Air Transportation Industry

    Science.gov (United States)

    Hubbard, H. B.

    1972-01-01

    The air transportation industry has been described as a highly-competitive, regulated oligopoly or as a price-regulated cartel with blocked entry, resulting in excessive service and low load factors. The current structure of the industry has been strongly influenced by the hypotheses that increased levels of competition are desirable per se, and that more competing carriers can be economically supported in larger markets, in longer haul markets, with lower unit costs, and with higher fare levels. An elementary application of competition/game theory casts doubt on the validity of these hypotheses, but rather emphasizes the critical importance of the short-term non-variable costs in determining economic levels of competition.

  12. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  13. Air protection strategy in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk, B.

    1995-12-31

    Air quality is one of the basic factors determining the environmental quality and influencing the life conditions of people. There is a shortage of proper quality air in many regions of Poland. In consequence, and due to unhindered transport, air pollution is the direct cause of losses in the national economy (reduction of crops, losses in forestry, corrosion of buildings and constructions, worsening of people`s health). Poland is believed to be one of the most contaminated European countries. The reason for this, primarily, is the pollution concomitant with energy-generating fuel combustion; in our case it means the use of solid fuels: hard coal and lignite. This monocultural economy of energy generation is accompanied by low efficiency of energy use (high rates of energy loss from buildings, heat transmission pipelines, energy-consuming industrial processes). This inefficiency results in the unnecessary production of energy and pollution. Among other reasons, this results from the fact that in the past Poland did not sign any international agreements concerning the reduction of the emission of pollution. The activities aimes at air protection in Poland are conducted based on the Environmental Formation and Protection Act in effect since 1980 (with many further amendments) and the The Ecological Policy of the state (1991). The goals of the Polish air pollution reduction program for the period 1994-2000 are presented.

  14. Impacts of transported background ozone on California air quality during the ARCTAS-CARB period – a multi-scale modeling study

    Directory of Open Access Journals (Sweden)

    M. Huang

    2010-07-01

    Full Text Available Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of transported background ozone (O3 from the eastern Pacific on California air quality during the ARCTAS-CARB experiment conducted in June, 2008. Previous work has focused on the importance of long-range transport of O3 to North America air quality in springtime. However during this summer experiment the long-range transport of O3 is also shown to be important. Simulated and observed O3 transport patterns from the coast to inland northern California are shown to vary based on meteorological conditions and the O3 profiles over the oceans, which are strongly episodically affected by Asian inflows. Analysis of the correlations of O3 at various altitudes above the coastal site at Trinidad Head and at a downwind surface site in northern California, show that under long-range transport events, high O3 air-masses (O3>60 ppb at altitudes between about 2 and 4 km can be transported inland and can significantly influence surface O3 20–30 h later. These results show the importance of characterizing the vertical structure of the lateral boundary conditions (LBC needed in air quality simulations. The importance of the LBC on O3 prediction during this period is further studied through a series of sensitivity studies using different forms of LBC. It is shown that the use of the LBC downscaled from RAQMS global model that assimilated MLS and OMI data improves the model performance. We also show that the predictions can be further improved through the use of LBC based on NASA DC-8 airborne observations during the ARCTAS-CARB experiment. These results indicate the need to develop observational strategies to provide information on the three-dimensional nature of pollutant distributions, in order to improve our capability to predict

  15. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  16. Modelling and simulation of wood chip combustion in a hot air generator system.

    Science.gov (United States)

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  17. Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor

    International Nuclear Information System (INIS)

    Liu, Jin-Long; Wang, Jian-Hua

    2015-01-01

    Based on CAES (compressed air energy storage) and PM (pneumatic motor), a novel tri-generation system (heat energy, mechanical energy and cooling power) is proposed in this paper. Both the cheap electricity generated at night and the excess power from undelivered renewable energy due to instability, can be stored as compressed air and hot water by the proposed system. When energy is in great demand, the compressed air stored in this system is released to drive PM to generate mechanical power. The discharged air from PM can be further utilized as valuable cooling power. Compared to conventional CAES systems, the biggest characteristic of the proposed system is that the discharged air usually abandoned is used as cooling power. In order to study the performances of this system, a thermodynamic analysis and an experimental investigation are carried out. The thermodynamic model is validated by the experimental data. Using the validated thermodynamic model, the mechanical energy output, cooling capacity and temperature of discharged air, as well as the efficiency of the system are analyzed. The theoretical analysis indicates that the additional application of discharged air can improve total energy efficiency by 20–30%. Therefore, this system is very worthy of consideration and being popularized. - Highlights: • The proposed system can provide mechanical energy, heat energy and cooling power. • The exhaust air of pneumatic motor is used as cooling power instead of abandoned. • A thermodynamic model of the proposed system is constructed and validated. • The effects of several parameters on system performance are examined. • The proposed system can improve total energy efficiency of CAES system by 20–30%.

  18. THE MANAGERIAL BENEFITS AND LIMITATIONS OF BIODIESEL USAGE IN MARITIME TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    MARIAN BUNEA

    2016-06-01

    Full Text Available The global economy development has not only positive effects but also negative consequences, in terms of air pollution with a major impact against the climate change and human health. This fact stimulated the intensification of research endeavours to identify and develop new options for sustainable energy supply and further for reducing the dependence on fossil fuels, as considered the major air pollutants globally. Among the non-polluting fuels, the currently biodiesel second generation becomes a viable solution in order to develop an alternative sustainable source of fueling. Even if this type of fuel has been implemented and approved as viable for land and air transportation meanings, the maritime transportation sector is still reluctant in implementing this new fuel on board to commercial vessels. In this article were approached the major advantages of using biodiesel powered engines, being detailed the technical, operational and legal solutions to eliminate the current reserve in adopting this innovative cleaner fuel on maritime transportation practice.

  19. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events.

    Science.gov (United States)

    Ault, Andrew P; Moore, Meagan J; Furutani, Hiroshi; Prather, Kimberly A

    2009-05-15

    Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.

  20. On generating neutron transport tables with the NJOY system

    International Nuclear Information System (INIS)

    Caldeira, Alexandre D.; Claro, Luiz H.

    2013-01-01

    Incorrect values for the product of the average number of neutrons released per fission and the fission microscopic cross-section were detected in several energy groups of a neutron transport table generated with the most updated version of the NJOY system. It was verified that the problem persists when older versions of this system are utilized. Although this problem exists for, at least, ten years, it is still an open question. (author)

  1. Fast electron generation and transport in a turbulent, magnetized plasma

    International Nuclear Information System (INIS)

    Stoneking, W.R.

    1994-05-01

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 x 10 6 m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 x 10 11 cm -3 independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a∼0.9, but rises the level of the expected total particle losses inside r/a∼0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST

  2. Air Cargo Transportation Route Choice Analysis

    Science.gov (United States)

    Obashi, Hiroshi; Kim, Tae-Seung; Oum, Tae Hoon

    2003-01-01

    Using a unique feature of air cargo transshipment data in the Northeast Asian region, this paper identifies the critical factors that determine the transshipment route choice. Taking advantage of the variations in the transport characteristics in each origin-destination airports pair, the paper uses a discrete choice model to describe the transshipping route choice decision made by an agent (i.e., freight forwarder, consolidator, and large shipper). The analysis incorporates two major factors, monetary cost (such as line-haul cost and landing fee) and time cost (i.e., aircraft turnaround time, including loading and unloading time, custom clearance time, and expected scheduled delay), along with other controls. The estimation method considers the presence of unobserved attributes, and corrects for resulting endogeneity by use of appropriate instrumental variables. Estimation results find that transshipment volumes are more sensitive to time cost, and that the reduction in aircraft turnaround time by 1 hour would be worth the increase in airport charges by more than $1000. Simulation exercises measures the impacts of alternative policy scenarios for a Korean airport, which has recently declared their intention to be a future regional hub in the Northeast Asian region. The results suggest that reducing aircraft turnaround time at the airport be an effective strategy, rather than subsidizing to reduce airport charges.

  3. Regional decision-making and competitive funding : metropolitan planning organizations and the transportation investments generating economic recovery program.

    Science.gov (United States)

    2014-08-01

    Transportation benefits and economic stimulus were behind the creation of the Transportation Investment Generating Economic Recovery (TIGER) program in 2009. New transportation funding programs exist in a landscape of other programs, and in addition ...

  4. New airborne pathogen transport model for upper-room UVGI spaces conditioned by chilled ceiling and mixed displacement ventilation: Enhancing air quality and energy performance

    International Nuclear Information System (INIS)

    Kanaan, Mohamad; Ghaddar, Nesreen; Ghali, Kamel; Araj, Georges

    2014-01-01

    Highlights: • A model of bacteria transport is developed in CC/DV conditioned spaces with UVGI. • The model identifies buoyant, partially mixed, and fully mixed transport zones. • The predicted bacteria concentration agreed well with CFD results. • The higher the supply flow rate, the more restrictive is return air mixing ratio. • Upper-room UVGI results in higher return mixing and 33% in energy savings. - Abstract: The maximum allowable return air ratio in chilled ceiling (CC) and mixed displacement ventilation (DV) system for good air quality is regulated by acceptable levels of CO 2 concentration not to exceed 700 ppm and airborne bacterial count to satisfy World Health Organization (WHO) requirement for bacterial count not to exceed 500 CFU/m 3 . Since the CC/DV system relies on buoyancy effects for driving the contaminated air upwards, infectious particles will recirculate in the upper zone allowing effective utilization of upper-room ultraviolet germicidal irradiation (UVGI) to clean return air. The aim of this work is to develop a new airborne bacteria transport plume-multi-layer zonal model at low computational cost to predict bacteria concentration distribution in mixed CC/DV conditioned room without and with upper-room UVGI installed. The results of the simplified model were compared with layer-averaged concentration predictions of a detailed and experimentally-validated 3-D computational fluid dynamics (CFD) model. The comparison showed good agreement between bacteria transport model results and CFD predictions of room air bacteria concentration with maximum error of ±10.4 CFU/m 3 in exhaust air. The simplified model captured the vertical bacteria concentration distribution in room air as well as the locking effect of highest concentration happening at the stratification level. The developed bacteria transport model was used in a case study to determine the return air mixing ratio that minimizes energy consumption and maintains acceptable IAQ

  5. Air medical transport personnel experiences with and opinions about research.

    Science.gov (United States)

    Fox, Jolene; Thomas, Frank; Carpenter, Judi; Handrahan, Diana

    2010-01-01

    This study examined air medical transport (AMT) personnel's experiences with and opinions about prehospital and AMT research. A Web-based questionnaire was sent to eight randomly selected AMT programs from each of six Association of Air Medical Services (AAMS) regions. Responders were defined by university association (UA) and AMT professional role. Forty-eight of 54 (89%) contacted programs and 536 of 1,282 (42%) individuals responded. Non-UA responders (74%) had significantly more work experience in emergency medical services (EMS) (13.5 +/- 8.5 vs. 10.8 +/- 8.3 years, P = .002) and AMT (8.3 +/- 6.3 vs. 6.8 +/- 5.7 years, P = .008), whereas UA responders (26%) had more research training (51% vs. 37%, P = .006), experience (79% vs. 59%, P < .001), and grants (7% vs. 2%, P = .006). By AMT role, administrators had the most work experience, and physicians had the most research experience. Research productivity of responders was low, with only 9% having presented and 10% having published research; and UA made no difference in productivity. A majority of responders advocated research: EMS (66%) and AMT (68%), program (53%). Willingness to participate in research was high for both EMS research (87%) and AMT research (92%). Although AMT personnel were strong advocates of and willing to participate in research, few had research knowledge. For AMT personnel, disparity exists between advocating for and producing research. Copyright 2010 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  6. Accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) model on Intel Xeon Phi processors

    OpenAIRE

    Wang, Hui; Chen, Huansheng; Wu, Qizhong; Lin, Junming; Chen, Xueshun; Xie, Xinwei; Wang, Rongrong; Tang, Xiao; Wang, Zifa

    2017-01-01

    The GNAQPMS model is the global version of the Nested Air Quality Prediction Modelling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present our work of porting and optimizing the GNAQPMS model on the second generation Intel Xeon Phi processor codename “Knights Landing” (KNL). Compared with the first generation Xeon Phi coprocessor, KNL introduced many new hardware features such as a boo...

  7. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  8. Operational procedure for computer program for design point characteristics of a compressed-air generator with through-flow combustor for V/STOL applications

    Science.gov (United States)

    Krebs, R. P.

    1971-01-01

    The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.

  9. Panorama 2009 - greenhouse gas emissions and the transport sector

    International Nuclear Information System (INIS)

    2008-01-01

    The fact that the transport sector is growing quickly brings advantages, such as quick access to any geographical location on earth, but also disadvantages: noise, congestion and polluting emissions such as carbon dioxide (CO 2 ), the greenhouse gas (GHG) primarily responsible for global warming. In the effort to bring GHG emissions under control, improving results in the transport sector is a prime long-term objective. What proportion of CO 2 emissions generated at global and national level are due to the road, air, maritime and rail transport sectors, respectively? What mechanisms can be used to reduce GHG emissions in the transport sector at large?

  10. Years of life lost and morbidity cases attributable to transportation noise and air pollution: A comparative health risk assessment for Switzerland in 2010.

    Science.gov (United States)

    Vienneau, Danielle; Perez, Laura; Schindler, Christian; Lieb, Christoph; Sommer, Heini; Probst-Hensch, Nicole; Künzli, Nino; Röösli, Martin

    2015-08-01

    There is growing evidence that chronic exposure to transportation related noise and air pollution affects human health. However, health burden to a country of these two pollutants have been rarely compared. As an input for external cost quantification, we estimated the cardiorespiratory health burden from transportation related noise and air pollution in Switzerland, incorporating the most recent findings related to the health effects of noise. Spatially resolved noise and air pollution models for the year 2010 were derived for road, rail and aircraft sources. Average day-evening-night sound level (Lden) and particulate matter (PM10) were selected as indicators, and population-weighted exposures derived by transportation source. Cause-specific exposure-response functions were derived from a meta-analysis for noise and literature review for PM10. Years of life lost (YLL) were calculated using life table methods; population attributable fraction was used for deriving attributable cases for hospitalisations, respiratory illnesses, visits to general practitioners and restricted activity days. The mean population weighted exposure above a threshold of 48dB(A) was 8.74dB(A), 1.89dB(A) and 0.37dB(A) for road, rail and aircraft noise. Corresponding mean exposure contributions were 4.4, 0.54, 0.12μg/m(3) for PM10. We estimated that in 2010 in Switzerland transportation caused 6000 and 14,000 YLL from noise and air pollution exposure, respectively. While there were a total of 8700 cardiorespiratory hospital days attributed to air pollution exposure, estimated burden due to noise alone amounted to 22,500 hospital days. YLL due to transportation related pollution in Switzerland is dominated by air pollution from road traffic, whereas consequences for morbidity and indicators of quality of life are dominated by noise. In terms of total external costs the burden of noise equals that of air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  12. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    Science.gov (United States)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  13. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  14. Table - Impacts of the Proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems

    Science.gov (United States)

    This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.

  15. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  16. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  17. Air pollution and climate change co-benefit opportunities in the road transportation sector in Durban, South Africa

    CSIR Research Space (South Africa)

    Thambiran T, Diab RD

    2011-01-01

    Full Text Available The contribution of the road transportation sector to emissions of air pollutants and greenhouse gases is a growing concern in developing countries. Emission control measures implemented within this sector can have varying counteracting influences...

  18. Next-generation air measurement technologies | Science ...

    Science.gov (United States)

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  19. Boundary layer parameterizations and long-range transport

    International Nuclear Information System (INIS)

    Irwin, J.S.

    1992-01-01

    A joint work group between the American Meteorological Society (AMS) and the EPA is perusing the construction of an air quality model that incorporates boundary layer parameterizations of dispersion and transport. This model could replace the currently accepted model, the Industrial Source Complex (ISC) model. The ISC model is a Gaussian-plume multiple point-source model that provides for consideration of fugitive emissions, aerodynamic wake effects, gravitational settling and dry deposition. A work group of several Federal and State agencies is perusing the construction of an air quality modeling system for use in assessing and tracking visibility impairment resulting from long-range transport of pollutants. The modeling system is designed to use the hourly vertical profiles of wind, temperature and moisture resulting from a mesoscale meteorological processor that employs four dimensional data assimilation (FDDA). FDDA involves adding forcing functions to the governing model equations to gradually ''nudge'' the model state toward the observations (12-hourly upper air observations of wind, temperature and moisture, and 3-hourly surface observations of wind and moisture). In this way it is possible to generate data sets whose accuracy, in terms of transport, precipitation, and dynamic consistency is superior to both direct interpolation of synoptic-scale analyses of observations and purely predictive mode model result. (AB) ( 19 refs.)

  20. Formation flying as an innovative air transportation system for long-haul commercial flight : A focus on operational feasibility and potential gain

    NARCIS (Netherlands)

    Herinckx, L.E.; Gutleb, T.L.M.; Van Nunen, R.; Van Rompuy, E.; Bos, D.A.; Dijkers, H.P.A.; De Wit, J.; Radfar, H.; Sahin, S.E.; Beelarts van Blokland, W.W.A.

    2011-01-01

    Formation flying is introduced as a new and innovative air transportation system for long-haul commercial flight. With this paper the operational feasibility of formation flying is addressed, both from a market demand and economic, as well as an air traffic control perspective. Preliminary results