WorldWideScience

Sample records for generating high-energy-density matter

  1. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  2. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  3. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  4. HEDgeHOB High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Wouchuk, G; Deutsch, C; Fortov, V E; Hoffmann, D H H; Schmidt, R

    2007-01-01

    This paper presents an overview of the theoretical work that has been carried out during the past few years to assess the capabilities of intense heavy ion beams to induce states of High-Energy Density (HED) in matter. This work has shown that two different experimental schemes can be used to study HED physics employing intense ion beams. These schemes have been named HIHEX [Heavy Ion Heating and EXpansion] and LAPLAS [LAboratory PLAnetary Sciences], respectively. The first scheme involves isochoric and uniform heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB [High Energy Density Matter Generated by Heavy Ion Beams] collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future accelerator facility, FAIR [Facility for Antipr...

  5. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  6. Generation of intense X-radiation and high-energy-density matter by laser-accelerated electrons; Erzeugung von intensiver Roentgenstrahlung und Materie hoher Energiedichte durch Laserbeschleunigte Elektronen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Andreas

    2015-07-01

    Aim of this thesis was to study the processes of the interaction between highly intense short-pulse laser and matter. The focus lied thereby on the generation of intense X-radiation and warm dense matter. The studies performed for this thesis comprehend thereby the influence of laser parameters like energy, pulse length, focus size, and intensity as well as the influence of the target geometry on the interaction and generation of high-energy-density matter. In this thesis for this two selected experiments are presented. First a silver foil was used as target, in order to study the generation of radiation at 21 keV. Both bremsstrahlung and characteristic X-radiation were used in order to characterize the interaction. For the second experiment freely standing titanium wires were used as target. Hereby the focus lied on the characterization of the heated matter.

  7. Strongly Interacting Matter at Very High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2011-06-05

    The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.

  8. Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, L.

    2010-06-09

    These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.

  9. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  10. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  11. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    Science.gov (United States)

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  12. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sio, H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-09-15

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  13. Femtosecond laser-generated high-energy-density states studied by x-ray FELs

    Science.gov (United States)

    Nakatsutsumi, M.; Appel, K.; Baehtz, C.; Chen, B.; Cowan, T. E.; Göde, S.; Konopkova, Z.; Pelka, A.; Priebe, G.; Schmidt, A.; Sukharnikov, K.; Thorpe, I.; Tschentscher, Th; Zastrau, U.

    2017-01-01

    The combination of powerful optical lasers and an x-ray free-electron laser (XFEL) provides unique capabilities to study the transient behaviour of matter in extreme conditions. The high energy density science instrument (HED instrument) at the European XFEL will provide the experimental platform on which an unique x-ray source can be combined with various types of high-power optical lasers. In this paper, we highlight selected scientific examples together with the associated x-ray techniques, with particular emphasis on femtosecond (fs)-timescale pump-probe experiments. Subsequently, we present the current design status of the HED instrument, outlining how the experiments could be performed. First user experiments will start at the beginning of 2018, after which various optical lasers will be commissioned and made available to the international scientific community.

  14. Note: A high-energy-density Tesla-type pulse generator with novel insulating oil

    Science.gov (United States)

    Liu, Sheng; Su, Jiancang; Fan, Xuliang

    2017-09-01

    A 10-GW high-energy-density Tesla-type pulse generator is developed with an improved insulating liquid based on a modified Tesla pulser—TPG700, of which the pulse forming line (PFL) is filled with novel insulating oil instead of transformer oil. Properties of insulating oil determining the stored energy density of the PFL are analyzed, and a criterion for appropriate oil is proposed. Midel 7131 is chosen as an application example. The results of insulating property experiment under tens-of-microsecond pulse charging demonstrate that the insulation capability of Midel 7131 is better than that of KI45X transformer oil. The application test in Tesla pulser TPG700 shows that the output power is increased to 10.5 GW with Midel 7131. The output energy density of TPG700 increases for about 60% with Midel 7131.

  15. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator.

    Science.gov (United States)

    Hall, G N; Burdiak, G C; Suttle, L; Stuart, N H; Swadling, G F; Lebedev, S V; Smith, R A; Patankar, S; Suzuki-Vidal, F; de Grouchy, P; Harvey-Thompson, A J; Bennett, M; Bland, S N; Pickworth, L; Skidmore, J

    2014-11-01

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  16. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: gareth.hall@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J. [The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2014-11-15

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  17. Studies of equation of state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany)]. E-mail: n.tahir@gsi.de; Spiller, P. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Udrea, S. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Cortazar, O.D. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Deutsch, C. [LPGP, Universite Paris-Sud, 91405 Orsay (France); Fortov, V.E. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Gryaznov, V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Hoffmann, D.H.H. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Lomonosov, I.V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Ni, P. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Piriz, A.R. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Temporal, M. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Varentsov, D. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany)

    2006-04-15

    This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.

  18. Studies of equation of state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration

    Science.gov (United States)

    Tahir, N. A.; Spiller, P.; Udrea, S.; Cortazar, O. D.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Lomonosov, I. V.; Ni, P.; Piriz, A. R.; Shutov, A.; Temporal, M.; Varentsov, D.

    2006-04-01

    This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.

  19. Megagauss field generation for high-energy-density plasma science experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-10-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

  20. Using Magnetic Fields to Create and Control High Energy Density Matter

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Mark [Sandia National Laboratory

    2012-05-09

    The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.

  1. Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power

    Science.gov (United States)

    2008-12-01

    very effective at maintaining a constant voltage and stroke as the HCCI combustion pressure varies during engine warmup. The current is modulated by the...Comparison of Measured and Predicted Two- Stroke Engine Power Output for Jet-A and Propane 5 The exhaust emissions of the 300 W MICE generator with HCCI ...1 Two-Stroke Engine Double- Helix Spring Linear Alternator Magnet Pole Permanent Magnet Alternator Coil Spring Casing Coil Standoff Double-Helix

  2. Prospects of Turbulence Studies in High-Energy Density Laser-Generated Plasma: Numerical Investigations in Two Dimensions

    CERN Document Server

    Handy, Timothy; Drake, R Paul; Zhiglo, Andrey

    2013-01-01

    We investigate the possibility of generating and studying turbulence in plasma by means of high-energy density laser-driven experiments. Our focus is to create supersonic, self-magnetized turbulence with characteristics that resemble those found in the interstellar medium (ISM). We consider a target made of a spherical core surrounded by a shell made of denser material. The shell is irradiated by a sequence of laser pulses sending inward-propagating shocks that convert the inner core into plasma and create turbulence. In the context of the evolution of the ISM, the shocks play the role of supernova remnant shocks and the core represents the ionized interstellar medium. We consider the effects of both pre-existing and self-generating magnetic fields and study the evolution of the system by means of two-dimensional numerical simulations. We find that the evolution of the turbulent core is generally, subsonic with rms-Mach number $M_t\\approx 0.2$. We observe an isotropic, turbulent velocity field with an inertia...

  3. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  4. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  5. FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, A; Beach, R; Bibeau, C; Chanteloup, J; Ebbers, C; Emanuel, M; Freitas, B; Fulkerson, S; Kanz, K; Hinz, A; Marshall, C; Mills, S; Nakano, H; Orth, C; Rothenberg, J; Schaffers, K; Seppala, L; Skidmore, I; Smith, L; Sutton, S; Telford, S; Zapata, L

    2000-05-23

    The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

  6. FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, A.; Beach, R.; Bibeau, C.; Chanteloup, J.-C.; Ebbers, C.; Emanuel, M.; Freitas, B.; Fulkerson, S.; Kanz, K.; Hinz, A.; Marshall, C.; Mills, S.; Nakano, H.; Orth, C.; Rothenberg, J.; Schaffers, K.; Seppala, L.; Skidmore, J.; Smith, L.; Sutton, S.; Telford, S.; Zapata, L.

    2000-05-25

    The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

  7. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  8. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    Science.gov (United States)

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  9. High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics

    Science.gov (United States)

    Fujioka, S.; Zhang, Z.; Yamamoto, N.; Ohira, S.; Fujii, Y.; Ishihara, K.; Johzaki, T.; Sunahara, A.; Arikawa, Y.; Shigemori, K.; Hironaka, Y.; Sakawa, Y.; Nakata, Y.; Kawanaka, J.; Nagatomo, H.; Shiraga, H.; Miyanaga, N.; Norimatsu, T.; Nishimura, H.; Azechi, H.

    2012-12-01

    The world's largest peta watt (PW) laser LFEX, which delivers energy up to 2 kJ in a 1.5 ps pulse, has been constructed beside the GEKKO XII laser at the Institute of Laser Engineering, Osaka University. The GEKKO-LFEX laser facility enables the creation of materials having high-energy-density which do not exist naturally on the Earth and have an energy density comparable to that of stars. High-energy-density plasma is a source of safe, secure, environmentally sustainable fusion energy. Direct-drive fast-ignition laser fusion has been intensively studied at this facility under the auspices of the Fast Ignition Realization Experiment (FIREX) project. In this paper, we describe improvement of the LFEX laser and investigations of advanced target design to increase the energy coupling efficiency of the fast-ignition scheme. The pedestal of the LFEX pulse, which produces a long preformed plasma and results in the generation of electrons too energetic to heat the fuel core, was reduced by introducing an amplified optical parametric fluorescence quencher and saturable absorbers in the front-end system of the LFEX laser. Since fast electrons are scattered and stopped by the strong electric field of highly ionized high-Z (i.e. gold) ions, a low-Z cone was studied for reducing the energy loss of fast electrons in the cone tip region. A diamond-like carbon cone was fabricated for the fast-ignition experiment. An external magnetic field, which is demonstrated to be generated by a laser-driven capacitor-coil target, will be applied to the compression of the fuel capsule to form a strong magnetic field to guide the fast electrons to the fuel core. In addition, the facility offers a powerful means to test and validate astronomical models and computations in the laboratory. As well as demonstrating the ability to recreate extreme astronomical conditions by the facilities, our theoretical description of the laboratory experiment was compared with the generally accepted explanation

  10. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  11. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  12. Theoretical and experimental studies of the radiative properties of matter at high energy densities and their application to the problems of inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, O. B.; Orlov, N. Yu. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2011-09-15

    The paper presents the results of theoretical and experimental studies of the radiative properties of plasmas produced by heating and compression of various materials to high energy densities. The specific features of the theoretical plasma model known as the ion model, which is used to calculate the radiative characteristics of plasmas of complex chemical composition, are discussed. The theoretical approach based on this model is applied to the plasma produced during the explosion of the X-pinch wires. The theoretical estimate of the radiation efficiency is compared with the experimental data on the total energy yield from an X-pinch made of two different wires (NiCr and Alloy 188). The radiative characteristics of (C12 H16 O8) and (C8 H12 O6) plasmas are calculated for the temperature diagnostics of plasmas produced from porous targets employed in inertial confinement fusion experiments with the use of laser radiation and heavy-ion beams.

  13. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  14. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  15. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

  16. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  17. High energy-density physics: From nuclear testing to the superlasers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  18. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  19. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  20. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  1. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  2. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  3. Hydrodynamic Instabilities in High-Energy-Density Settings

    Science.gov (United States)

    Smalyuk, Vladimir

    2016-10-01

    Our understanding of hydrodynamic instabilities, such as the Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities, in high-energy-density (HED) settings over past two decades has progressed enormously. The range of conditions where hydrodynamic instabilities are experimentally observed now includes direct and indirect drive inertial confinement fusion (ICF) where surprises continue to emerge, linear and nonlinear regimes, classical interfaces vs. stabilized ablation fronts, tenuous ideal plasmas vs. high density Fermi degenerate plasmas, bulk fluid interpenetration vs. mixing down to the atomic level, in the presence of magnetic fields and/or intense radiation, and in solid state plastic flow at high pressures and strain rates. Regimes in ICF can involve extreme conditions of matter with temperatures up to kilovolts, densities of a thousand times solid densities, and time scales of nanoseconds. On the other hand, scaled conditions can be generated that map to exploding stars (supernovae) with length and time scales of millions of kilometers and hours to days or even years of instability evolution, planetary formation dynamics involving solid-state plastic flow which severely modifies the RT growth and continues to challenge reliable theoretical descriptions. This review will look broadly at progress in probing and understanding hydrodynamic instabilities in these very diverse HED settings, and then will examine a few cases in more depth to illustrate the detailed science involved. Experimental results on large-scale HED facilities such as the Omega, Nike, Gekko, and Shenguang lasers will be reviewed and the latest developments at the National Ignition Facility (NIF) and Z machine will be covered. Finally, current overarching questions and challenges will be summarized to motivate research directions for future. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  4. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  5. Diagnostics for ion beam driven high energy density physics experimentsa)

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Lidia, S.; Ni, P. A.

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K+ beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  6. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  7. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  8. Collapsing Bubble in Metal for High Energy Density Physics Study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  9. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  10. High Energy Density Physics and Exotic Acceleration Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  11. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  12. Preface to Special Topic: High-Energy Density Laboratory Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, Siegfried H.; /SLAC

    2017-04-01

    In the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems. These facilities routinely produce states of matter in the high-energy density physics regime, i.e., pressures above a million atmospheres, 1011 J/m3, and employ a suite of temporally and spatially resolving imaging and scattering measurements that were originally developed to understand the behavior of inertial confinement fusion plasmas. These capabilities bring to the field of astrophysics critical experimental tests of simulations in relevant regimes that are far from the conditions that can otherwise be routinely produced on earth.5 These astrophysical motivated studies are now finding their way into the laboratory plasma community. Further, laboratory astrophysics helped to motivate the development of new precision experimental capabilities; the latest being the world-class Linac Coherent Light Source (LCLS) x-ray laser at the Matter in Extreme Conditions instrument at Stanford that is dedicated to fundamental research.

  13. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  14. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  15. Improving Robotic Assembly of Planar High Energy Density Targets

    Science.gov (United States)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  16. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  17. High Energy Density Physics and Exotic Acceleration Schemes

    Science.gov (United States)

    Cowan, Thomas; Colby, Eric

    2002-12-01

    We summarize the reported results and the principal technical discussions that occurred in our Working Group on High Energy Density Physics and Exotic Acceleration Schemes at the 2002 workshop on Advanced Accelerator Concepts at the Mandalay Beach resort, June 22-28, 2002.

  18. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  19. High-Energy Density science with an ultra-bright x-ray laser

    Science.gov (United States)

    Glenzer, Siegfried

    2015-11-01

    This talk will review recent progress in high-energy density physics using the world's brightest x-ray source, the Linac Coherent Light Source, SLAC's free electron x-ray laser. These experiments investigate laser-driven matter in extreme conditions where powerful x-ray scattering and imaging techniques have been applied to resolve ionic interactions at atomic (Ångstrom) scale lengths and to visualize the formation of dense plasma states. Major research areas include dynamic compression experiments of solid targets to determine structural properties and to discover and characterize phase transitions at mega-bar pressures. A second area studies extreme fields produced by high-intensity radiation where fundamental questions of laboratory plasmas can be related to cosmological phenomena. Each of these areas takes advantage of the unique properties of the LCLS x-ray beam. They include small foci for achieving high intensity or high spatial resolution, high photon flux for dynamic structure factor measurements in single shots, and high spectral bandwidth to resolve plasmon (Langmuir) waves or ion acoustic waves in dense plasmas. We will further describe new developments of ultrafast pump-probe technique at high repetition rates. These include studies on dense cryogenic hydrogen that have begun providing fundamental insights into the physical properties of matter in extreme conditions that are important for astrophysics, fusion experiments and generation of radiation sources. This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182.

  20. Charged Particle Transport in High-Energy-Density Matter

    Science.gov (United States)

    Stanton, Liam; Murillo, Michael

    2016-10-01

    Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. High energy density nanocomposite capacitors using non-ferroelectric nanowires

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-02-01

    A high energy density nanocomposite capacitor is fabricated by incorporating high aspect ratio functionalized TiO2 nanowires (NWs) into a polyvinylidene-fluoride matrix. These nanocomposites exhibited energy density as high as 12.4 J/cc at 450 MV/m, which is nine times larger than commercial biaxially oriented polypropylene polypropylene capacitors (1.2 J/cc at 640 MV/m). Also, the power density can reach 1.77 MW/cc with a discharge speed of 2.89 μs. The results presented here demonstrate that nanowires can be used to develop nanocomposite capacitors with high energy density and fast discharge speed for future pulsed-power applications.

  2. High energy density capacitor testing for the AFWL SHIVA

    Science.gov (United States)

    Smith, D. L.; Reinovsky, R. E.

    Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and 2 microsec quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  3. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  4. Ultra High Energy Density Cathodes with Carbon Nanotubes

    Science.gov (United States)

    2013-12-10

    34Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries," ACS Nano, vol. 4, pp. 6121- 6131...2010/10/26 2010. [2] S. L. Chou, et al., "Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0170 TR-2013-0170 ULTRA HIGH ENERGY DENSITY CATHODES WITH CARBON NANOTUBES Brian J. Landi, et al. Rochester

  5. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  6. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  7. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  8. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The National Ignition Facility and the Golden Age of High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W; Moses, E I; Newton, M

    2007-09-27

    The National Ignition Facility (NIF) is a 192-beam Nd:glass laser facility being constructed at the Lawrence Livermore National Laboratory (LLNL) to conduct research in inertial confinement fusion (ICF) and high energy density (HED) science. When completed, NIF will produce 1.8 MJ, 500 TW of ultraviolet light, making it the world's largest and highest-energy laser system. The NIF is poised to become the world's preeminent facility for conducting ICF and fusion energy research and for studying matter at extreme densities and temperatures.

  10. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  11. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  12. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  13. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  14. Upgrading of biorenewables to high energy density fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. " " Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  15. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  16. Nuclear isomers as ultra-high-energy-density materials

    Science.gov (United States)

    Poppe, C. H.; Weiss, M. S.; Anderson, J. D.

    1992-09-01

    A major energy advance could result if the enormous potential of nuclear energy storage could be tapped without the penalty of radioactive by-products. Recent research has uncovered a new method for nuclear energy storage with high energy density and no residual radioactivity. Nuclear isomers are metastable states of atomic nuclei which release their energy in a prompt burst of electromagnetic radiation; in many cases the product remaining after decay of isomer is stable and no activity is produced by the electromagnetic decay. Two kinds of nuclear isomers are known: spin isomers and shape isomers. The former lacks a release mechanism. Theory has predicted the existence of shape isomers in the mass range around mercury and gold where decay by fission is prohibited. Experiments on the existence of fissionless shape isomers have resulted in evidence for 27 different shape isomers in isotopes of mercury, lead, and thallium. Three potential candidates for release mechanisms have been identified to date: neutron catalysis (Hf- 178), laser-electron-nuclear coupling (Th-229), and Stark-shift-induced mixing (speculative). Ways of producing nonfissioning shape isomers are discussed.

  17. High energy density capacitors using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  18. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  19. Ion beam driven high energy density physics studies at FAIR at darmstadt: the HEDgeHOB collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A.; Spiller, P. [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Shutov, A.; Zharkov, A.P. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Piriz, A.R.; Rodriguez Prietoc, G. [LPGP, Universite Paris-Sud, Orsay (France); Deutsch, C. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real (Spain); Stoehlker, T. [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Friedrich-Schiller-Universitaet, Jena (Germany); Helmholz-Institut Jena, Jena (Germany)

    2013-05-15

    High Energy Density (HED) physics spans over numerous areas of basic and applied physics, for example, astrophysics, planetary physics, geophysics, inertial fusion and many others. Due to this reason, it has been a subject of very active research over the past many decades. Static as well as dynamic methods have been applied to generate samples of HED matter in the laboratory. The most commonly used tool in the static techniques is the diamond anvil cell while the dynamic methods involve shock compression of matter. During the past fifteen years, great progress has been made on the development of bunched intense particle beams that have emerged as an additional new tool for studying HED physics. In this paper we present two experiment designs that have been worked out for HED physics studies at the Facility for Antiprotons and Ion Research (FAIR) at Darmstadt. This facility has entered into construction phase and will provide one of the largest and most powerful particle accelerators in the world. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  1. Studies of high energy density physics and laboratory astrophysics driven by intense lasers

    Science.gov (United States)

    Zhang, J.

    2016-10-01

    Laser plasmas are capable of creating unique physical conditions with extreme high energy density, which are not only closely relevant to inertial fusion energy studies, but also to laboratory simulation of some astrophysical processes. In this paper, we highlight some recent progress made by our research teams. The first part is about directional hot electron beam generation and transport for fast ignition of inertial confinement fusion, as well as a new scheme of fast ignition by use of a strong external DC magnetic field. The second part concerns laboratory modeling of some astrophysical phenomena, including 1) studies of the topological structure of magnetic reconnection/annihilation that relates closely to geomagnetic substorms, loop-top X-ray source and mass ejection in solar flares, and 2) magnetic field generation and evolution in collisionless shock formation.

  2. High Energy Density Battery Lithium Thionyl Chloride Improved Reverse Voltage Design.

    Science.gov (United States)

    1981-12-01

    BATTERY LITHIUM THIONYL CHLORIDE IMPROVED R-ETC(U) DEC 81 A E ZOLLA N660011-C-0310...HIGH ENERGY DENSITY BATTERY LITHIUM THIONYL CHLORIDE IMPROVED REVERSE VOLTAGE DESIGN Dr. A. E. Zolla Altus Corporation C:1 1610 Crane Court San Jose...reverse aide If necesary and identify by block number) Lithium Battery Lithium Thionyl Chloride High Energy Density Battery Voltage Reversal Battery

  3. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility.

    Science.gov (United States)

    Fiksel, G; Agliata, A; Barnak, D; Brent, G; Chang, P-Y; Folnsbee, L; Gates, G; Hasset, D; Lonobile, D; Magoon, J; Mastrosimone, D; Shoup, M J; Betti, R

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  4. Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility

    Science.gov (United States)

    Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P.-Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, M. J.; Betti, R.

    2015-01-01

    An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

  5. A novel zirconium Kα imager for high energy density physics research.

    Science.gov (United States)

    Akli, K U; Sanchez del Rio, M; Jiang, S; Storm, M S; Krygier, A; Stephens, R B; Pereira, N R; Baronova, E O; Theobald, W; Ping, Y; McLean, H S; Patel, P K; Key, M H; Freeman, R R

    2011-12-01

    We report on the development and characterization of a zirconium Kα imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R(int)) and temperature dependent collection efficiency (η(Te)) to that of the widely used Cu Kα imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 μm thick tracer layer of zirconium, the contribution to Kα production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets.

  6. A 100 J-level nanosecond DPSSL for high energy density experiments

    Science.gov (United States)

    Butcher, Thomas; Mason, Paul; Banerjee, Saumyabrata; Ertel, Klaus; Phillips, P. Jonathan; Smith, Jodie; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilat, Jan; Priebe, Gerd; Toncian, Toma; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John

    2017-05-01

    We present an overview of the cryo-amplifier concept and design utilized in the DiPOLE100 laser system built for use at the HiLASE Center, which has been successfully tested operating at an average power of 1kW. Following this we describe the alterations made to the design in the second generation system being constructed for high energy density (HED) experiments in the HED beamline at the European XFEL. These changes are predominantly geometric in nature, however also include improved mount design and improved control over the temporal shape of the output pulse. Finally, we comment on future plans for development of the DiPOLE laser amplifier architecture.

  7. High Energy Density Physics:. the Laser Field of Tomorrow

    Science.gov (United States)

    Freeman, Richard R.

    2013-03-01

    Ever since its invention, the laser has become an increasingly important tool for physics research. Indeed, the laser has made it possible to not only study many extant physical phenomena, but also to actually produce matter in conditions that don't exist in nature, or more precisely, don't exist on the earth. In this lecture, I discuss how the development of lasers that produce ultra-short (˜fsec) and ultra-intense (≥1020 W/cm2) laser pulses actually produce plasmas that are at a density and temperature that exist only in stars. In doing so I discuss some of the basics of these extreme pulses interacting with electrons, yielding surprisingly intriguing physical phenomena. Finally, I argue that this field is an essential element in any comprehensive physical research endeavor, explicitly citing its fundamental relationship with the development of clean, unlimited fusion energy power.

  8. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...

  9. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently...

  10. Development of novel cathodes for high energy density lithium batteries

    Science.gov (United States)

    Bhargav, Amruth

    Lithium based batteries have become ubiquitous with our everyday life. They have propelled a generation of smart personal electronics and electric transport. Their use is now percolating to various fields as a source of energy to facilitate the operation of devices from nanoscale to mega scale. This need for a portable energy source has led to tremendous scientific interest in this field to develop electrochemical devices like batteries with higher capacities, longer cycle life and increased safety at a low cost. To this end, the research presented in this thesis focuses on two emerging and promising technologies called lithium-oxygen (Li-O2) and lithium-sulfur (Li-S) batteries. These batteries can offer an order of magnitude higher capacities through cheap, environmentally safe and abundant elements namely oxygen and sulfur. The first work introduces the concept of closed system lithium-oxygen batteries wherein the cell contains the discharge product of Li-O2 batteries namely, lithium peroxide (Li2O2) as the starting active material. The reversibility of this system is analyzed along with its rate performance. The possible use of such a cathode in a full cell is explored. Also, this concept is used to verify if all the lithium can be extracted from the cathode in the first charge. In the following work, lithium peroxide is chemically synthesized and deposited in a carbon nanofiber matrix. This forms a free standing cathode that shows high reversibility. It can be cycled up to 20 times and while using capacity control protocol, a cycle life of 50 is obtained. The cause of cell degradation and failure is also analyzed. In the work on full cell lithium-sulfur system, a novel electrolyte is developed that can support reversible lithium insertion and extraction from a graphite anode. A method to deposit solid lithium polysulfide is developed for the cathode. Coupling a lithiated graphite anode with the cathode using the new electrolyte yields a full cell whose

  11. High Energy Density Solid State Li-ion Battery with Enhanced Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  12. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  13. High Energy Density Li-ion Batteries Designed for Low Temperature Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NEI Corporation proposes to develop a mixed metal oxide nanocomposite cathode that is designed for delivering high energy density with good rate performance at low...

  14. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  15. Report of the Interagency Task Force on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  16. Magnetic reconnection in high-energy-density plasmas in the presence of an external magnetic field

    Science.gov (United States)

    Fox, W.; Bhattacharjee, A.; Fiksel, G.; Nilson, P.; Hu, S.; Chang, P.-Y.; Barnak, D.; Betti, R.

    2012-10-01

    Magnetic reconnection has recently been observed and studied in high-energy-density, laser-produced plasmas. These experiments are interesting both for obtaining fundamental data on reconnection, and may also be relevant for inertial fusion, as this magnetic reconnection geometry, with multiple, colliding, magnetized plasma bubbles, occurs naturally inside ICF hohlraums. We present initial results of experiments conducted on the OMEGA EP facility on magnetic reconnection between colliding, magnetized blowoff plasmas. While in previous experiments the magnetic fields were self-generated in the plasma by the Biermann battery effect, in these experiments the seed magnetic field is generated by pulsing current through a pair of external foils using the MIFEDS current generator (Magneto-Inertial Fusion Electrical Discharge System) developed at LLE. Time-resolved images of the magnetic fields and plasma dynamics are obtained from proton radiography and x-ray self-emission, respectively. We present initial results of the experiments, including comparison to ``null'' experiments with zero MIFEDS magnetic field, and associated modeling using the radiation-hydro code DRACO and the particle-in-cell code PSC.

  17. Fully-kinetic simulations of the Rayleigh-Taylor instability in high-energy-density plasmas

    Science.gov (United States)

    Alves, E. Paulo; Mori, Warren B.; Fiuza, Frederico

    2016-10-01

    The Rayleigh-Taylor instability (RTI) in high-energy-density (HED) plasmas is a central problem in a wide range of scenarios. It dictates, for instance, the dynamics of supernovae in astrophysical plasmas, and is also recognized as a critical challenge to achieving ignition in inertial confinement fusion. In some of these conditions the Larmor radius or Coulomb mean free path (m.f.p.) is finite, allowing kinetic effects to become important, and it is not fully clear how the development of the RTI deviates from standard hydrodynamic behavior. In order to obtain an accurate description of the RTI in these HED conditions it is essential to capture the self-consistent interplay between collisional and collisionless plasma processes, and the role of self-generated electric and magnetic fields. We have explored the dynamics of the RTI in HED plasma conditions using first-principles particle-in-cell simulations combined with Monte Carlo binary collisions. Our simulations capture the role of kinetic diffusion as well as the self-generated electric (e.g. space-charge) and magnetic (e.g. Biermann battery) fields on the growth rate and nonlinear evolution of the RTI for different plasma conditions. We will discuss how different collisional m.f.p. relative to the collisionless plasma skin depth affect the RTI development. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  18. Characterization of magnetic reconnection in the high-energy-density regime.

    Science.gov (United States)

    Xu, Z; Qiao, B; Chang, H X; Yao, W P; Wu, S Z; Yan, X Q; Zhou, C T; Wang, X G; He, X T

    2016-03-01

    The dynamics of magnetic reconnection (MR) in the high-energy-density (HED) regime, where the plasma inflow is strongly driven and the thermal pressure is larger than the magnetic pressure (β>1), is reexamined theoretically and by particle-in-cell simulations. Interactions of two colliding laser-produced plasma bubbles with self-generated poloidal magnetic fields of, respectively, antiparallel and parallel field lines are considered. Through comparison, it is found that the quadrupole magnetic field, bipolar poloidal electric field, plasma heating, and even the out-of-plane electric field can appear in both cases due to the mere plasma bubble collision, which may not be individually recognized as evidences of MR in the HED regime separately. The Lorentz-invariant scalar quantity D(e) ≃ γ(e)j · (E + v(e) × B) (γ(e) = [1-(v(e)/c)(2)](-1/2)) in the electron dissipation region is proposed as the key sign of MR occurrence in this regime.

  19. The Atlas pulsed power facility for high energy density physics experiments

    CERN Document Server

    Miller, R B; Barr, G W; Bowman, D W; Cochrane, J C; Davis, H A; Elizondo, J M; Gribble, R F; Griego, J R; Hicks, R D; Hinckley, W B; Hosack, K W; Nielsen, K E; Parker, J V; Parsons, M O; Rickets, R L; Salazar, H R; Sánchez, P G; Scudder, D W; Shapiro, C; Thompson, M C; Trainor, R J; Valdez, G A; Vigil, B N; Watt, R G; Wysocki, F J; Kirbie, H C

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. Here, the authors describe how the primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently- removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the Marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-ys risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line compo...

  20. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    Science.gov (United States)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  1. Machine learning applied to proton radiography of high-energy-density plasmas

    Science.gov (United States)

    Chen, Nicholas F. Y.; Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Ratan, Naren; Sadler, James; Levy, Matthew C.; Trines, Raoul; Bingham, Robert; Norreys, Peter

    2017-04-01

    Proton radiography is a technique extensively used to resolve magnetic field structures in high-energy-density plasmas, revealing a whole variety of interesting phenomena such as magnetic reconnection and collisionless shocks found in astrophysical systems. Existing methods of analyzing proton radiographs give mostly qualitative results or specific quantitative parameters, such as magnetic field strength, and recent work showed that the line-integrated transverse magnetic field can be reconstructed in specific regimes where many simplifying assumptions were needed. Using artificial neural networks, we demonstrate for the first time 3D reconstruction of magnetic fields in the nonlinear regime, an improvement over existing methods, which reconstruct only in 2D and in the linear regime. A proof of concept is presented here, with mean reconstruction errors of less than 5% even after introducing noise. We demonstrate that over the long term, this approach is more computationally efficient compared to other techniques. We also highlight the need for proton tomography because (i) certain field structures cannot be reconstructed from a single radiograph and (ii) errors can be further reduced when reconstruction is performed on radiographs generated by proton beams fired in different directions.

  2. High-resolution 17-75 keV backlighters for high energy density experiments

    Science.gov (United States)

    Park, H.-S.; Maddox, B. R.; Giraldez, E.; Hatchett, S. P.; Hudson, L. T.; Izumi, N.; Key, M. H.; Le Pape, S.; MacKinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Phillips, T. W.; Remington, B. A.; Seely, J. F.; Tommasini, R.; Town, R.; Workman, J.; Brambrink, E.

    2008-07-01

    17-75keV one- and two-dimensional high-resolution (1017W /cm2. High-resolution point projection one- and two-dimensional radiography has been achieved using microfoil and microwire targets attached to low-Z substrate materials. The microwire size was 10μm×10μm×300μm on a 300μm×300μm×5μm polystyrene substrate. The radiography experiments were performed using the Titan laser at Lawrence Livermore National Laboratory. The results show that the resolution is dominated by the microwire target size and there is very little degradation from the plasma plume, implying that the high-energy x-ray photons are generated mostly within the microwire volume. There are enough Kα photons created with a 300J, 1-ω, 40ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density experiments at many new high-power laser facilities.

  3. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.

    Science.gov (United States)

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-10-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.

  4. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  5. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  6. High-Energy-Density Physics Fundamentals, Inertial Fusion, and Experimental Astrophysics

    CERN Document Server

    Drake, R. Paul; Horie, Yasuyuki

    2006-01-01

    The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This book introduces the reader to the fundamental tools and discoveries of high-energy-density physics. It surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-ene...

  7. Experimental and Computational Studies of High Energy Density Plasma Streams Ablated from Fine Wires

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John B. [Cornell University; Seyler, Charles [Cornell University

    2014-03-30

    Experimental and computational studies of high energy density plasma streams ablated from fine wires. Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University. Principal Investigators: Dr. John B. Greenly and Dr. Charles E. Seyler. This report summarizes progress during the final year of this project to study the physics of high energy density (HED) plasma streams of 10^17-10^20/cm3 density and high velocity (~100-500 km/s). Such streams are produced from 5-250 micrometer diameter wires heated and ionized by a 1 MA, 250 ns current pulse on the COBRA pulsed power facility at Cornell University. Plasma is ablated from the wires and is driven away to high velocity by unbalanced JxB force. A wire, or an array of wires, can persist as an essentially stationary, continuous source of this streaming plasma for >200 ns, even with driving magnetic fields of many Tesla and peak current densities in the plasma of many MA/cm2. At the heart of the ablation stream generation is the continuous transport of mass from the relatively cold, near-solid-density wire "core" into current-carrying plasma within 1 mm of the wire, followed by the magnetic acceleration of that plasma and its trapped flux to form a directed stream. In the first two years of this program, an advancing understanding of ablation physics led to the discovery of several novel wire ablation experimental regimes. In the final year, one of these new HED plasma regimes has been studied in quantitative detail. This regime studies highly reproducible magnetic reconnection in strongly radiating plasma with supersonic and superalfvenic flow, and shock structures in the outflow. The key discovery is that very heavy wires, e.g. 250 micrometer diameter Al or 150 micrometer Cu, behave in a qualitatively different way than the lighter wires typically used in wire-array Z-pinches. Such wires can be configured to produce a static magnetic X-point null geometry that stores magnetic and

  8. High Energy Density Physics Research Using Intense Heavy Ion Beam at FAIR: The HEDgeHOB Program

    Science.gov (United States)

    Tahir, N. A.; Shutov, A.; Piriz, A. R.; Deutsch, C.; Stöhlker, Th.

    2016-03-01

    International project, Facility for Antiprotons and Ion Research (FAIR), has entered in its construction phase at Darmstadt. It is expected that the new powerful heavy ion synchrotron, SIS100 will deliver a strongly bunched intense beam of energetic uranium ions that will provide the scientists with an efficient and novel tool to research High Energy Density (HED) Physics in the laboratory. Over the past 15 years, substantial theoretical work has been done to design numerous experiments that can be done at this facility in this field. This work has resulted in an extensive scientific proposal named HEDgeHOB, that includes experiment proposals addressing various aspects of HED matter, for example, planetary physics, equation of state, hydrodynamic instabilities and others. In this paper we present a summary of this work.

  9. Enhancing Understanding of High Energy Density Plasmas Using Fluid Modeling with Kinetic Closures

    Science.gov (United States)

    Hansen, David; Held, Eric; Srinivasan, Bhuvana; Masti, Robert; King, Jake

    2016-10-01

    This work seeks to understand possible stabilization mechanisms of the early-time electrothermal instability in the evolution of the Rayleigh-Taylor instability in MagLIF (Magnetized Liner Inertial Fusion) experiments. Such mechanisms may include electron thermal conduction, viscosity, and large magnetic fields. Experiments have shown that the high-energy density plasmas from wire-array implosions require physics modelling that goes well beyond simple models such as ideal MHD. The plan is to develop a multi-fluid extended-MHD model that includes kinetic closures for thermal conductivity, resistivity, and viscosity using codes that are easily available to the wider research community. Such an effort would provide the community with a well-benchmarked tool capable of advanced modeling of high-energy-density plasmas.

  10. High-energy-density Targets Fabricated by The University of Michigan

    Science.gov (United States)

    Klein, Sallee; Davis, J. S.; Gao, L.; Gillespie, R. S.; MacDonald, M. J.; Malamud, G.; Manuel, M. J.-E.; Wan, W. C.; Young, R. P.; Kuranz, C. C.; Keiter, P. A.; Drake, R. P.

    2016-10-01

    The University of Michigan has been fabricating their own targets for high-energy-density physics experiments for well over the past decade. We utilize the process of machined acrylic bodies and tightly toleranced mating components that serve as constraints, enabling our group to build repeatable targets. We favor traditional machining, utilizing 3D printing when it suits, taking advantage of the very best part of both of these methods of creating precision parts for our targets. Here we present several campaigns shot at the OMEGA, Titan and Trident facilities and methods used to those fabricate targets. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719.

  11. Atlas: A Facility for High Energy Density Physics Research at Los Alamos National Laboratory

    Science.gov (United States)

    1995-07-01

    LOS ALAMOS NATIONAL LABORATORY W. M. Parsons, W. A. Reass, J. ~-Griego, D. W. Bowman...C. Thompson, R. F. Gribble, J. S. Shlachter, C. A. Ekdahl, P. D. Goldstone, and S.M. Younger Los Alamos National Laboratory Los Alamos, NM. 87545...Atlas A Facility For High Energy Density Physics Research At Los Alamos National Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  12. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat N [University of California San Diego

    2013-08-14

    Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and

  13. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat N [University of California San Diego

    2013-08-14

    Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and

  14. Publications of Proceedings for the RF 2005 7th Workshop on High Energy Density and High Power RF

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, Jr, N C

    2006-01-01

    The University of California, Davis hosted the High Energy Density and High Power RF 7th Workshop on High Energy Density and High Power RF in Kalamata, Greece, 13-17 June, 2005. The Proceedings cost was supported by these funds from the U.S. Department of Energy. The Proceedings was published through the American Institute of Physics.

  15. Final Report for Statistical Nonlinear Optics of High Energy Density Plasmas: The Physics of Multiple Crossing Laser Beams

    Energy Technology Data Exchange (ETDEWEB)

    Afeyan, Bedros [Polymath Research Inc., Pleasanton, CA (United States); Hueller, Stefan [Centre de Physique Theorique de l' Ecole Polytechnique (France); Montgomery, David S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hammer, James H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meezan, Nathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heebner, John E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    The various implementations of the STUD pulse program (spike trains of uneven duration and delay) for LPI (laser-plasma instability) control were studied in depth, and novel regimes were found. How to generate STUD pulses with large time-bandwidth products, how to measure their optical scattering signatures, and how to experimentally demonstrate their usefulness were explored. Theoretical and numerical studies were conducted on Stimulated Brillouin Scattering (SBS) and Crossed Beam Energy Transfer (CBET) including statistical models. We established how LPI can be tamed and gain democratized in space and time. Implementing STUD pulses on NIF was also studied. Future high rep rate lasers and fast diagnostics will aid in the adoption of the whole STUD pulse program for LPI control in High Energy Density Plasmas (HEDP).

  16. Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.

    2008-04-01

    In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.

  17. Investigation of High Energy Density Matter for Science-Based Stockpile Stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B.

    1998-11-20

    The statement of work for this contract is to activate the Nevada Terawatt Facility (NTF). Experimentally investigate z-pinch physics, in collaboration with SNL, LANL, and LLNL. Develop x-ray and laser diagnostics for the NTF, SNL-Z, and LANL-ATLAS. Refine atomic and radiation physics calculations and data to meet the challenges of EUV and x-ray diagnostic development. Progress to date is reported.

  18. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  19. A Discussion of the High Energy Density Primary Battery Employed in the FOTON M3 Mission

    Science.gov (United States)

    Bennetti, A.; Reece, D.; Spurrett, R.; Schautz, M.; Green, K.

    2008-09-01

    In 2005, ABSL Space Products (ABSL) was contracted by QinetiQ to deliver the lithium sulfuryl chloride primary battery system for the FOTON M3 ESA (European Space Agency) mission. FOTON M3 was led by the ESA Directorate of Human Spaceflight & Exploration and carried a number of materials science, fluid physics and biology experiments as well as technology demonstration payloads. A number of the experiments required a very high energy density primary battery power source. This battery was manufactured by ABSL, and the mission was successfully completed in September 2007 following a twelve days orbiting in Low Earth Orbit (LEO).

  20. The Early Years of Indirect Drive Development for High Energy Density Physics Experiments at AWE

    Science.gov (United States)

    Thomas, Brian

    2016-10-01

    The importance of laser driven indirect drive for high energy density physics experiments was recognised at A WE in 1971. The two beam 1TW HELEN laser was procured to work in this area and experiments with this system began in 1980. Early experiments in hohlraum coupling and performance scaling with both l.06μm and 0.53μm will be described together with experiments specifically designed to confirm the understanding of radiation wave propagation, hohlraum heating and hohlraum plasma filling. The use of indirect drive for early experiments to study spherical and cylindrical implosions, opacity, EOS, mix and planar radiation hydrodynamics experiments will also be described.

  1. Design and simulation of high-energy-density shear experiments on OMEGA and the NIF

    Science.gov (United States)

    Doss, F. W.; Devolder, B.; di Stefano, C.; Flippo, K. A.; Kline, J. L.; Kot, L.; Loomis, E. N.; Merritt, E. C.; Perry, T. S.; MacLaren, S. A.; Wang, P.; Zhou, Y. K.

    2015-11-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models' ability to function in the high-energy-density, inertial-fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of > 100 km/s, which initiate a strong shear instability across an initially solid density, 20 micron thick Al plate, variations of the experiment have been performed and are studied. These variations have included increasing the fluid density (by modifying the metal plate material from Al to Ti), imposing sinusoidal perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. In addition to examining the shear-induced mixing, the simulations reveal other physics, such as how the interaction of our indirect-drive halfraums with a mated shock tube's ablator impedes a stagnation-driven shock. This work is conducted by the US DOE by LANL under contract DE-AC52-06NA25396, and NIF facility operations by LLNL under contract DE-AC52-07NA27344.

  2. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  3. Tin-based inorganic-organic hybrid polymers for high energy-density applications

    Science.gov (United States)

    Tran, Huan; Kuma, Arun; Pilania, Ghanshyam; Ramprasad, Rampi

    2014-03-01

    In one of our recent works[1], an organotin polymer was synthesized and suggested to be promising polymeric dielectric, simultaneously exhibiting a high dielectric constant ɛ and a high band gap Eg. Motivated by this result, we study a family of inorganic-organic hybrid polymers based on -(SnF2) x-(CH2) y - as the repeating structural unit (x = 2 , y = 4 , 8 , and 12). The stable structures of these hybrid polymers, predicted by the minima-hopping method, are studied by first-principles calculations at the level of density functional theory. Our calculations show that these polymers are wide band gap materials (up to 6.07 eV). In addition, their dielectric constants are between 4.6 and 7.8, well above that of polypropylene (ɛ ~= 2 . 2), the standard dielectric material for high energy-density capacitors. Therefore, we suggest that the hybrid polymers based on -(SnF2) x-(CH2) y - are promising candidates for high energy-density applications. Our work is supported by the Office of Naval Research through the Multidisciplinary University Research Initiative (MURI).

  4. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    Science.gov (United States)

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-07-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh.g-1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.

  5. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles.

  6. High-Energy Density and Superhard Nitrogen-Rich B-N Compounds

    Science.gov (United States)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Lu, Siyu; Tse, John S.

    2015-09-01

    The pressure-induced transformation of diatomic nitrogen into nonmolecular polymeric phases may produce potentially useful high-energy-density materials. We combine first-principles calculations with structure searching to predict a new class of nitrogen-rich boron nitrides with a stoichiometry of B3N5 that are stable or metastable relative to solid N2 and h -BN at ambient pressure. The most stable phase at ambient pressure has a layered structure (h -B3N5 ) containing hexagonal B3N3 layers sandwiched with intercalated freely rotating N2 molecules. At 15 GPa, a three-dimensional C 2 2 21 structure with single N-N bonds becomes the most stable. This pressure is much lower than that required for triple-to-single bond transformation in pure solid nitrogen (110 GPa). More importantly, C 2 2 21-B3N5 is metastable, and can be recovered under ambient conditions. Its energy density of ˜3.44 kJ /g makes it a potential high-energy-density material. In addition, stress-strain calculations estimate a Vicker's hardness of ˜4 4 GPa . Structure searching reveals a new clathrate sodalitelike BN structure that is metastable under ambient conditions.

  7. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    Science.gov (United States)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  8. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    Science.gov (United States)

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors.

  9. Performance of bent-crystal x-ray microscopes for high energy density physics research.

    Science.gov (United States)

    Schollmeier, Marius S; Geissel, Matthias; Shores, Jonathon E; Smith, Ian C; Porter, John L

    2015-06-01

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. The analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. This enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  10. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    Science.gov (United States)

    Prevosto, L.; Artana, G.; Mancinelli, B.; Kelly, H.

    2010-01-01

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  11. Infant-mortality testing of high-energy-density capacitors used on Nova

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, B.T.; Whitham, K.

    1983-01-01

    Nova is a solid-state large laser for inertial-confinement fusion research. Its flashlamps are driven by a 60-MJ capacitor bank. Part of this bank is being built with high-energy-density capacitors, 52-..mu..F, 22 kV, 12.5 kJ. A total of 2645 of these capacitors have been purchased from two manufacturers. Each capacitor was infant-mortality tested. The first test consisted of a high-potential test, bushing-to-case, since these capacitors have dual bushings. Then the capacitors were discharged 500 times with circuit conditions approximating the capacitors normal flashlamp load. Failure of either of these tests or if the capacitor was leaking was cause for rejection.

  12. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    Science.gov (United States)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  13. Asymmetric battery having a semi-solid cathode and high energy density anode

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2016-09-06

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  14. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence (France)

    2015-08-15

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  15. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    Science.gov (United States)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.

    2015-08-01

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  16. First-principle Calculations of Equation of State for Metals at High Energy Density

    Science.gov (United States)

    Minakov, Dmitry; Levashov, Pavel; Khishchenko, Konstantin

    2012-02-01

    In this work, we present quantum molecular dynamics calculations of the shock Hugoniots of solid and porous samples as well as release isentropes and isentropic sound velocity behind the shock front for aluminum. Also we perform similar calculations for nickel and iron. We use the VASP code with ultrasoft and PAW pseudopotentials and GGA exchange-correlation functional. Up to 512 particles have been used in calculations. To calculate Hugoniots we solve the Hugoniot equation numerically. To obtain release isentropes, we use Zel'dovich's approach and integrate an ordinary differential equation for the temperature thus restoring all thermodynamic parameters. Isentropic sound velocity is calculated by differentiation of pressure along isentropes. The results of our calculations are in good agreement with experimental data at densities both higher and lower than the normal one. Thus, quantum molecular dynamics results can be effectively used for verification or calibration of semiempirical equations of state under conditions of lack of experimental information at high energy densities.

  17. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).

  18. Nuclear science research with dynamic high energy density plasmas at NIF

    Science.gov (United States)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  19. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  20. Evaluation of Digestible lysine levels in diets with high energy density for finishing pigs

    Directory of Open Access Journals (Sweden)

    Janeth Colina R

    2015-05-01

    Full Text Available ABSTRACT Objective. To evaluate the effects of different levels of digestible lysine in diets with high energy density on productive performance and carcass characteristics of finishing pigs. Materials and Methods. Seventy crossbred barrows (initial body weight of 83.36 kg were used and allotted in a randomized block design with five treatments, seven replications and two pigs per experimental unit. Pigs were fed ad libitum with diets containing 3.5 kcal/kg of ME and five levels of digestible lysine (0.46, 0.52, 0.58, 0.64 and 0.70% during four weeks. Final live weight (FLW, daily feed intake (DFI, daily weight gain (DWG, feed conversion (FC, daily lysine intake (DLI, and the amount of lysine per body weight gain (DLI/DWG, were evaluated. At the end of the experiment, blood samples were taken from each pig to determine urea nitrogen concentration (UN in serum and slaughtered to evaluate quantitative and qualitative carcass characteristics. Results. The FLW increased linearly (p<0.05.There were no differences among treatments for DFI, DWG, FC, carcass characteristics and UN. The DLI and DLI/DWG varied significantly (p<0.001 and increased linearly (p<0.001 with each lysine level. Pigs that consumed the limiting diet in lysine (0.46% showed less DLI and DLI/DWG (p<0.001 than pigs fed the other diets. Conclusions. The amount of DLI/DWG increased with the evaluated levels of digestible lysine in diets with high energy density, without effects on productive performance and carcass characteristics of finishing pigs.

  1. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    Science.gov (United States)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  2. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10.

    Science.gov (United States)

    Qin, Xiao-Mei; Xie, Hu-Jun; Yue, Lei; Lu, Xiao-Xing; Fang, Wen-Jun

    2014-04-01

    The density functional theory (DFT) calculations at the M06-2X/6-31++G(d,p) level have been performed to explore the molecular structure, electronic structure, C-H bond dissociation enthalpy, and reaction enthalpies for five isodesmic reactions of a high energy-density endothermic hydrocarbon fuel JP-10. On the basis of the calculations, it is found that the carbonium ion C-6 isomer formed from the catalytic cracking at the C₆ site of JP-10 has the lowest energy, and the R-5 radical generated from the thermal cracking at the C₅ site of JP-10 is the most stable isomer. Furthermore, a series of hypothetical and isodesmic work reactions containing similar bond environments are used to calculate the reaction enthalpies for target compounds. For the same isodesmic reaction, the reaction enthalpy of each carbon site radical has also been calculated. The present work is of fundamental significance and strategic importance to provide some valuable insights into the component design and energy utilization of advanced endothermic fuels.

  3. Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment.

    Science.gov (United States)

    Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C

    2012-10-12

    Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.

  4. High resolution 17 keV to 75 keV backlighters for High Energy Density experiments

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Maddox, B R; Giraldez, E; Hatchett, S P; Hudson, L; Izumi, N; Key, M H; Pape, S L; MacKinnon, A J; MacPhee, A G; Patel, P K; Phillips, T W; Remington, B A; Seely, J F; Tommasini, R; Town, R; Workman, J

    2008-02-25

    We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution (< 10 {micro}m) radiography using high-intensity short pulse lasers. High energy K-{alpha} sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.

  5. Development of a Big Area BackLighter for high energy density experiments.

    Science.gov (United States)

    Flippo, K A; Kline, J L; Doss, F W; Loomis, E N; Emerich, M; Devolder, B; Murphy, T J; Fournier, K B; Kalantar, D H; Regan, S P; Barrios, M A; Merritt, E C; Perry, T S; Tregillis, I L; Welser-Sherrill, L; Fincke, J R

    2014-09-01

    A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 × 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing ~4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles.

  6. High-Energy-Density Poly(styrene-co-acrylonitrile) Thin Films

    Science.gov (United States)

    Wen, Fei; Xu, Zhuo; Xia, Weimin; Ye, Hongjun; Wei, Xiaoyong; Zhang, Zhicheng

    2013-12-01

    The dielectric response of poly(styrene-co-acrylonitrile) (PSAN) thin films fabricated by a solution casting process was investigated in this work. Linear dielectric behavior was obtained in PSAN films under an electric field at frequencies from 100 Hz to 1 MHz and temperature of -50°C to 100°C. The polymer films exhibited an intermediate dielectric permittivity of 4 and low dielectric loss (tan δ) of 0.027. Under 400 MV/m, the energy density of the PSAN films was 6.8 J/cm3, which is three times higher than that of biaxially oriented polypropylene (BOPP) (about 1.6 J/cm3). However, their charge-discharge efficiency (about 90%) was rather close to that of BOPP. The calculated effective dielectric permittivity of the PSAN films under high electric field was as high as 9, which may be attributed to the improved displacement of the cyanide groups (-CN) polarized at high electric fields. These high-performance features make PSAN attractive for high-energy-density capacitor applications.

  7. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    Science.gov (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  8. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  9. A journey from nuclear criticality methods to high energy density radflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacity platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.

  10. Metal azides under pressure: An emerging class of high energy density materials

    Indian Academy of Sciences (India)

    G Vaitheeswaran; K Ramesh Babu

    2012-11-01

    Metal azides are well-known for their explosive properties such as detonation or deflagration. As chemically pure sources of nitrogen, alkali metal azides under high pressure have the ability to form polymeric nitrogen, an ultimate green high energy density material with energy density three times greater than that of known high energetic materials. With this motive, in this present work, we try to address the high-pressure behaviour of LiN3 and KN3 by means of density functional calculations. All the calculations are performed with the inclusion of van derWaals interactions at semi empirical level, as these materials are typical molecular solids. We found that both LiN3 and KN3 are structurally stable up to the studied pressure range of 60 GPa and 16 GPa, respectively. At ambient conditions both the materials are insulators with a gap of 3.48 eV (LiN3) and 4.08 eV (KN3) and as pressure increases the band gap decreases and show semiconducting nature at high pressures.We also found that the compressibility of both the crystals is anisotropic which is in good agreement with experiment. Our theoretical study proved that the materials under study may have the ability to form polymeric nitrogen because of the decrease in interazide ion distance and possible overlapping of N atomic orbitals.

  11. α MnMoO₄/graphene hybrid composite: high energy density supercapacitor electrode material.

    Science.gov (United States)

    Ghosh, Debasis; Giri, Soumen; Moniruzzaman, Md; Basu, Tanya; Mandal, Manas; Das, Chapal Kumar

    2014-07-28

    A unique and cost effective hydrothermal procedure has been carried out for the synthesis of hexahedron shaped α MnMoO4 and its hybrid composite with graphene using three different weight percentages of graphene. Characterization techniques, such as XRD, Raman and FTIR analysis, established the phase and formation of the composite. The electrochemical characterization of the pseudocapacitive MnMoO4 and the MnMoO4/graphene composites in 1 M Na2SO4 displayed highest specific capacitances of 234 F g(-1) and 364 F g(-1), respectively at a current density of 2 A g(-1). Unlike many other pseudocapacitive electrode materials our prepared materials responded in a wide range of working potentials of (-)1 V to (+)1 V, which indeed resulted in a high energy density without substantial loss of power density. The highest energy densities of 130 Wh kg(-1) and 202.2 Wh kg(-1) were achieved, respectively for the MnMoO4 and the MnMoO4/graphene composite at a constant power delivery rate of 2000 W kg(-1). The synergistic effect of the graphene with the pseudocapacitive MnMoO4 caused an increased cycle stability of 88% specific capacitance retention after 1000 consecutive charge discharge cycles at 8 A g(-1) constant current density, which was higher than the virgin MnMoO4 with 84% specific capacitance retention.

  12. Additions and improvements to the high energy density physics capabilities in the FLASH code

    Science.gov (United States)

    Lamb, D. Q.; Flocke, N.; Graziani, C.; Tzeferacos, P.; Weide, K.

    2016-10-01

    FLASH is an open source, finite-volume Eulerian, spatially adaptive radiation magnetohydrodynamics code that has the capabilities to treat a broad range of physical processes. FLASH performs well on a wide range of computer architectures, and has a broad user base. Extensive high energy density physics (HEDP) capabilities have been added to FLASH to make it an open toolset for the academic HEDP community. We summarize these capabilities, emphasizing recent additions and improvements. In particular, we showcase the ability of FLASH to simulate the Faraday Rotation Measure produced by the presence of magnetic fields; and proton radiography, proton self-emission, and Thomson scattering diagnostics with and without the presence of magnetic fields. We also describe several collaborations with the academic HEDP community in which FLASH simulations were used to design and interpret HEDP experiments. This work was supported in part at the University of Chicago by the DOE NNSA ASC through the Argonne Institute for Computing in Science under field work proposal 57789; and the NSF under Grant PHY-0903997.

  13. A journey from nuclear criticality methods to high energy density radflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-30

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacity platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy, but they sure are fun.

  14. First-principles investigation of high energy density in PVDF copolymers

    Science.gov (United States)

    Ranjan, V.; Lu, Liping; Buongiorno Nardelli, M.; Bernholc, J.

    2008-03-01

    PVDF and its copolymers exhibit excellent electromechanical properties and in the case of PVDF-CTFE also a very high energy density [1]. We have investigated the phase diagram of these systems and can quantitatively explain the observed energy density of PVDF-CTFE as due to a para to ferroelectric phase transition in a disordered, multidomain structure [2]. Our results show that pure PVDF prefers the α phase at zero field. Electric field lowers the free energy of the β phase, resulting in a structural phase transition at a sufficiently high field. Copolymer admixture lowers the critical field and eventually leads to an energetic preference for the β phase even at zero field. For PVDF-CTFE with CTFE content below 17 %, the α phase is still preferred and the field-induced phase transformation reversibly stores large amounts of energy. For PVDF-TeFE, the total energy difference between the two phases is much smaller, resulting in substantially smaller energy density. [1] B. Chu et al., Science 313, 334 (2006). [2] V. Ranjan et al., PRL 99, 047801 (2007).

  15. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials.

    Science.gov (United States)

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2015-04-15

    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials.

  16. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  17. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  18. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    Science.gov (United States)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  19. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    Science.gov (United States)

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  20. Strongly Driven Magnetic Reconnection in a Magnetized High-Energy-Density Plasma

    Science.gov (United States)

    Fiksel, G.; Barnak, D. H.; Chang, P.-Y.; Haberberger, D.; Hu, S. X.; Ivancic, S.; Nilson, P. M.; Fox, W.; Deng, W.; Bhattacharjee, A.; Germaschewski, K.

    2014-10-01

    Magnetic reconnection in a magnetized high-energy-density plasma is characterized by measuring the dynamics of the plasma density and magnetic field between two counter-propagating and colliding plasma flows. The density and magnetic field were profiled using the 4 ω angular filter refractometry and fast proton deflectometry diagnostics, respectively. The plasma flows are created by irradiating oppositely placed plastic targets with 1.8-kJ, 2-ns laser beams on the OMEGA EP Laser System. The two plumes are magnetized by an externally controlled magnetic field with an x-type null point geometry with B = 0 at the midplane and B = 8 T at the targets. The interaction region is pre-filled with a low-density background plasma. The counterflowing super-Alfvénic plasma plumes sweep up and compress the magnetic field and the background plasma into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing for the first detailed observation of a stretched current sheet in laser-driven reconnection experiments. The measurements are in good agreement with first-principles particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and NLUF Grant DE-SC0008655.

  1. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  2. New class of two-dimensional bimetallic nanoplatelets for high energy density and electrochemically stable hybrid supercapacitors

    DEFF Research Database (Denmark)

    Liu, Zhiting; Ma, Peng; Ulstrup, Jens

    2017-01-01

    Currently, the application of supercapacitors (SCs) in portable electronic devices and vehicles is limited by their low energy density. Developing high-energy density SCs without sacrificing their advantages, such as their long-term stability and high power density, has thus become an increasing...... and a 96.1% retention of the initial capacitance over 5,000 cycles. We exploited the novel 2D nanoplatelets as cathode materials to assemble a hybrid SC for full-cell tests. The resulting SCs operated in a wide potential window of 0 - 1.7 V, exhibited a high energy density over 50 Wh·kg-1, and sustained...

  3. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors

    Science.gov (United States)

    Kan, Kan; Wang, Lei; Yu, Peng; Jiang, Baojiang; Shi, Keying; Fu, Honggang

    2016-05-01

    Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are intercalated into the interlayers of the expanded EG with the assistance of a vacuum. Subsequently, the intercalated aniline monomers could assemble on the interlayer surface of the expanded EG, accompanied by the in situ polymerization from aniline monomers to polyaniline. Meanwhile, the expanded EG could be exfoliated to graphite nanosheets. By subsequent pyrolysis and activation processes, the QNPC nanohybrids could be prepared. As supercapacitor electrodes, a typical QNPC12-700 sample derived from the precursor containing an EG content of 12%, with a high level of nitrogen doping of 5.22 at%, offers a high specific capacitance of 305.7 F g-1 (1 A g-1), excellent rate-capability and long-term stability. Notably, an extremely high energy density of 95.7 Wh kg-1 at a power density of 449.7 W kg-1 in an ionic liquid electrolyte can be achieved. The unique structural features and moderate heteroatom doping of the QNPC nanohybrids combines electrochemical double layer and faradaic capacitance contributions, which make these nanohybrids ideal candidates as electrode materials for high-performance energy storage devices.Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are

  4. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  5. Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid

    Institute of Scientific and Technical Information of China (English)

    XU XiaoJuan; ZHU WeiHua; GONG XueDong; XIAO HeMing

    2008-01-01

    A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G* level. It was found that the HOFs of the 26 isomers with the same number of -ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q), detonation velocities (D), and detonation pressures (P) using the Kamlet-Jacobs equations, it was found that when n=7~8, the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O-N (EO-N) showed that the adamantyl nitrates with gemi -ONO2always have the worst stability among the isomers, and all the adamantyl nitrates with gemi -ONO2 have similar stability. Due to the complexity of their structures, values of Eo-, do not decrease with the increase of the substituent number n obviously, and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement, only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c, P-1, P212121, P21, Pbca, C2/c, and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O-NO2 bond is the trigger bond during thermolysis, which agrees with the result derived from the study of dissociation energies of O-N bonds.

  6. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  7. Molecular Design for High Energy Density Materials%高能量密度材料的分子设计

    Institute of Scientific and Technical Information of China (English)

    董喜城; 陈敏伯

    2000-01-01

    CERIUS2 program was employed on an Indigo2 SGI workstation to investigate the vacuum and crystal structures of the high energy density materials (HEDM). Over 20 known HEDM were first studied with an emphasis on the enthalpy of formation, optimal lattice forms, crystal lattice energy and crystal density. On the basis of the study, about 20 potential HEDM were designed.

  8. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  9. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm‑3), highly conductive (39 S cm‑1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm‑3 at 2 mV s‑1 in a three-electrode cell and 300 F cm‑3 at 175.7 mA cm‑3 (568 mF cm‑2 at 0.5 mA cm‑2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm‑3 with a maximum power density of 1600 mW cm‑3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  10. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm(-3)), highly conductive (39 S cm(-1)), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm(-3) at 2 mV s(-1) in a three-electrode cell and 300 F cm(-3) at 175.7 mA cm(-3) (568 mF cm(-2) at 0.5 mA cm(-2)) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm(-3) with a maximum power density of 1600 mW cm(-3), outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  11. Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G level. It was found that the HOFs of the 26 isomers with the same number of —ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q),detonation velocities (D),and detonation pressures (P) using the Kamlet-Jacobs equations,it was found that when n=7~8,the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O—N (EO—N) showed that the adamantyl nitrates with gemi —ONO2 always have the worst stability among the isomers,and all the adamantyl nitrates with gemi —ONO2 have similar stability. Due to the complexity of their structures,values of EO—N do not decrease with the increase of the substituent number n obviously,and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement,only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c,P-1,P212121,P21,Pbca,C2/c,and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O—NO2 bond is the trigger bond during thermolysis,which agrees with the result derived from the study of dissociation energies of O—N bonds.

  12. Ultra high energy density nanocomposite capacitors using surface-functionalized BaTiO3 nanowires and PVDF-TrFE-CFE

    Science.gov (United States)

    Tang, Haixiong; Lin, Yirong; Sodano, Henry A.

    2012-04-01

    High energy density capacitors are critically important in advanced electronic devices and electric power systems due to their reduced weight, size and cost to meet desired applications. Nanocomposites hold strong potential for increased performance, however, the energy density of most nanocomposites is still low compared to commercial capacitors and neat polymers. Here, high energy density nanocomposite capacitors are fabricated using surface-functionalized high aspect ratio barium titanate (BaTiO3) nanowires (NWs) in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) matrix. These nanocomposites have 63.5% higher dielectric permittivity compared to previous nanocomposites with BaTiO3 nanoparticles and also have high breakdown strength. At a 17.5% volume fraction, the nanocomposites show more than 145.3% increase in energy density above that of the pure P(VDF-TrFE- CFE) polymer (10.48 J/cm3 compared to 7.21 J/cm3). This value is significant and exceeds those reported for the conventional polymer-ceramic composites; it is also more than two times larger than high performance commercial materials. The findings of this research could lead to broad interest due to the potential for fabricating next generation energy storage devices.

  13. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  14. High energy density physics with intense ion and laser beams. Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Weyrich, K. (comp.)

    2004-07-01

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  15. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    Science.gov (United States)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  16. An Overview of the Los Alamos Inertial Confinement Fusion and High-Energy-Density Physics Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-07-15

    The Los Alamos Inertial Confinement Fusion and Science Programs engage in a vigorous array of experiments, theory, and modeling. We use the three major High Energy Density facilities, NIF, Omega, and Z to perform experiments. These include opacity, radiation transport, hydrodynamics, ignition science, and burn experiments to aid the ICF and Science campaigns in reaching their stewardship goals. The ICF program operates two nuclear diagnostics at NIF, the neutron imaging system and the gamma reaction history instruments. Both systems are being expanded with significant capability enhancements.

  17. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Efthimion, P; Pablant, N A; Lu, J; Beiersdorfer, P; Chen, H; Magee, E

    2014-11-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10,000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  18. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches.

    Science.gov (United States)

    Yue, Ming; Zhang, Xiangyi; Liu, J Ping

    2017-03-06

    Nanostructured permanent magnetic materials, including exchange-coupled nanocomposite permanent magnets, are considered as the next generation of high-strength magnets for future applications in energy-saving and renewable energy technologies. However, fabrication of bulk nanostructured magnets remains very challenging because conventional compaction and sintering techniques cannot be used for nanostructured bulk material processing. In this paper we review recent efforts at producing bulk nanostructured single-phase and composite magnetic materials with emphasis on grain size control, anisotropy generation and interface modification.

  19. High energy density and extreme field physics in the transparent-overdense regime

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn Manuel [Los Alamos National Laboratory; Yin, Kin [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Bowers, Kevin J [Los Alamos National Laboratory; Gautier, C [Los Alamos National Laboratory; Huang, C [Los Alamos National Laboratory; Jung, D [Los Alamos National Laboratory; Letzring, S [Los Alamos National Laboratory; Palaniyappan, S [Los Alamos National Laboratory; Shah, R [Los Alamos National Laboratory; Wu, H [Los Alamos National Laboratory; Fernandez, J. C. [Los Alamos National Laboratory; Dromey, B [QUEENS UNIV BELFAST; Henig, A [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Horlein, R [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Kefer, D. [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Tajima, T [LUDWIG-MAXIMILIN-UNIV MUNCHEN; Yan, X [QUEENS UNIV BELFAST; Habs, D [LUDWIG-MAXIMILIAN-UNIV MUNCHEN

    2011-01-31

    Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

  20. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.

    Science.gov (United States)

    Yin, Ping; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-01-19

    Nitrogen-rich heterocycles represent a unique class of energetic frameworks featuring high heats of formation and high nitrogen content, which have generated considerable research interest in the field of high energy density materials (HEDMs). Although traditional C-functionalization methodology of aromatic hydrocarbons has been fully established, studies on N-functionalization strategies of nitrogen-containing heterocycles still have great potential to be exploited by virtue of forming diverse N-X bonds (X = C, N, O, B, halogen, etc.), which are capable of regulating energy performance and the stability of the resulting energetic compounds. In this sense, versatile N-functionalization of N-heterocyclic frameworks offers a flexible strategy to meet the requirements of developing new-generation HEDMs. In this Account, the role of strategic N-functionalization in designing new energetic frameworks, including the formation of N-C, N-N, N-O, N-B and N-halogen bonds, is emphasized. In the family of N-functionalized HEDMs, energetic derivatives, by virtue of forming N-C bonds, are the most widely used type due to the good nucleophilic capacity of most heterocyclic backbones. Although introduction of carbon tends to decrease energetic performance, significant improvement in material sensitivity makes this strategy attractive for safety concerns. More importantly, most "explosophores" can be readily introduced into the N-C linkage, thus providing a promising route to various HEDMs. Formation of additional N-N bonds typically gives rise to higher heats of formation, implying the potential enhancement in detonation performance. In many cases, the increased hydrogen bonding interactions within N-N functionalized heterocycles also improve thermal stability accordingly. Introduction of a single N,N'-azo bridge into several azole moieties leads to an extended nitrogen chain, demonstrating a new strategy for designing high-nitrogen compounds. The strategy of N-O functionalization

  1. High-Energy-Density LCA-Coupled Structural Energetic Materials for Counter WMD Applications

    Science.gov (United States)

    2014-04-01

    morphology , etc.) of reactants. In the case of the equivolumetric Ta+Fe2O3 powder mixtures, pre-densification results in generating Fe2O3 as the more...published in the following papers. • N.N. Thadhani and J.K. Cochran, "Energetic Materials", DTRA Basic and Applied Research Program Newsletter , V2, N3, p

  2. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  3. A Low Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Li, Xianfeng; Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin

    2017-10-05

    Flow battery (FB) is one of the most promising stationary energy storage devices for storing renewable energies. However, commercial progress of the FBs is limited by their high cost and low energy density. Here we report a neutral zinc-iron FB with very low cost and high energy density. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh/L can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66% can be obtained at 40 mA/cm2 and the battery can run stably for more than 100 cycles. Furthermore, a porous membrane with low cost was employed to lower the capital cost to less than 50 $/kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB becomes a promising candidate for stationary energy storage applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    Science.gov (United States)

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  5. Tuning Phase Composition of Polymer Nanocomposites toward High Energy Density and High Discharge Efficiency by Nonequilibrium Processing.

    Science.gov (United States)

    Jiang, Jianyong; Zhang, Xin; Dan, Zhenkang; Ma, Jing; Lin, Yuanhua; Li, Ming; Nan, Ce-Wen; Shen, Yang

    2017-09-06

    Polymer nanocomposite dielectrics with high energy density and low loss are major enablers for a number of applications in modern electronic and electrical industry. Conventional fabrication of nanocomposites by solution routes involves equilibrium process, which is slow and results in structural imperfections, hence high leakage current and compromised reliability of the nanocomposites. We propose and demonstrate that a nonequilibrium process, which synergistically integrates electrospinning, hot-pressing and thermal quenching, is capable of yielding nanocomposites of very high quality. In the nonequilibrium nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and BaTiO3 nanoparticles (BTO_nps), an ultrahigh Weibull modulus β of ∼30 is achieved, which is comparable to the quality of the bench-mark biaxially oriented polypropylene (BOPP) fabricated with melt-extrusion process by much more sophisticated and expensive industrial apparatus. Favorable phase composition and small crystalline size are also induced by the nonequilibrium process, which leads to concomitant enhancement of electric displacement and breakdown strength of the nanocomposite hence a high energy density of ∼21 J/cm(3). Study on the polarization behavior and phase transformation at high electric field indicates that BTO_nps could facilitate the phase transformation from α- to β-polymorph at low electric field.

  6. Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment

    Science.gov (United States)

    Doss, F. W.; Flippo, K. A.; Merritt, E. C.

    2016-08-01

    Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg /cm3 ) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (Δ U > 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with the primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. This analysis indicates shear-induced specific turbulent energies 103-104 times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.

  7. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    Science.gov (United States)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  8. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  9. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  10. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  11. Development of high energy density fuels from mild gasification of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  12. Development of high energy density fuels from mild gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  13. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility

  14. Radiation from Ag high energy density Z-pinch plasmas and applications to lasing

    Energy Technology Data Exchange (ETDEWEB)

    Weller, M. E., E-mail: mweller@unr.edu; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P.; Giuliani, J. L. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Chuvatin, A. S. [Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-15

    Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8 keV) observed on the Zebra generator so far and upwards of 30 kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.5–5.0 Å. With this, L-shell Ag as well as cold L{sub α} and L{sub β} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8 keV). Along with PCD signals, other signals, such as filtered XRD (>0.2 keV) and Si-diodes (SiD) (>9 keV), are analyzed covering a broad range of energies from a few eV to greater than 53 keV. The observation and analysis of cold L{sub α} and L{sub β} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6 cm{sup −1} for various 3p → 3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.

  15. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis

    2006-11-01

    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  16. Laser-driven magnetic-flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R

    2009-11-20

    The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.

  17. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  18. Integrated modelling framework for short pulse high energy density physics experiments

    Science.gov (United States)

    Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.

    2016-03-01

    Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.

  19. Laser-driven ultraintense proton beams for high energy-density physics

    Science.gov (United States)

    Jablonski, Slawomir; Badziak, Jan; Parys, Piotr; Rosinski, Marcin; Wolowski, Jerzy; Szydlowski, Adam; Antici, P.; Fuchs, J.; Mancic, A.

    2008-04-01

    The results of studies of high-intensity proton beam generation from thin (1 -- 3μm) solid targets irradiated by 0.35-ps laser pulse of energy up to 15J and intensity up to 2x10^19 W/cm^2 are reported. It is shown that the proton beams of multi-TW power and intensity above 10^18 W/cm^2 at the source can be produced when the laser-target interaction conditions approach the Skin-Layer Ponderomotive Acceleration requirements. The laser-protons energy conversion efficiency and proton beam parameters remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 -- 0.2μm Au front layer) results in two-fold higher conversion efficiency and proton beam intensity than in the case of a plastic target. The values of proton beam intensities attained in our experiment are the highest among the ones measured so far.

  20. Pie-like electrode design for high-energy density lithium-sulfur batteries

    Science.gov (United States)

    Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen (David)

    2015-11-01

    Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a `pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers `filling' and amino-functionalized graphene `crust', the free-standing paper electrode (S mass loading: 3.6 mg cm-2) delivers high specific capacity of 1,314 mAh g-1 (4.7 mAh cm-2) at 0.1 C (0.6 mA cm-2) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm-2 by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm-2.

  1. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  2. Design of high energy density thermoelectric energy conversion unit by using FGM compliant pads

    CERN Document Server

    Kambe, M

    1999-01-01

    In order to provide increasingly large amounts of electrical power to space and terrestrial systems with a sufficiently high level of reliability at a reasonable cost, thermoelectric (TE) energy conversion system by using $9 functionally graded material (FGM) compliant pads has been focused. To achieve high thermal energy density in TE power conversion systems, conductively coupling the TE units to the hot and cold heat exchangers is the most effective $9 configuration. This is accomplished by two sets of FGM compliant pads. This design strategy provides (1) a high flux, direct conduction path to heat source and heat sink, (2) the structural flexibility to protect the cell from high $9 stress due to thermal expansion, (3) an extended durability by a simple FGM structure, and (4) manufacturing cost reduction by spark plasma sintering. High thermal energy density of ten times as much as conventional radioisotope $9 thermoelectric generator is expected. Manufacturing of Cu/Al/sub 2/O/sub 3//Cu symmetrical FGM co...

  3. Proceedings of the High Energy Density Matter (HEDM) Conference Held in Rosslyn, Virginia on 12-13 May 1987,

    Science.gov (United States)

    1987-09-01

    laser initiated decomposition, IR, UV-Vis, ultraviolet, visible, spectroscopy, H 30, N 202, dinitrogen dioxide , CO, carbon monoxide, CH, high spin...asymmetric dinitrogen dioxide (a-N202), is an analogue of fluorine azide (FN3) and is predicted to be a cryogenic solid. Benard reported that FN3 can be...DETECTION OF H4 * PHOTODISSOCIATION TO FORM H2(B) - A 500 nm - DETECT H2 (B) EMISSION WITH PMT - FLASHLAMP PHOTOLYSIS, X = 200 TO 800 nm - LASER

  4. Proceedings of the High Energy Density Matter (HEDM) Conference Held in New Orleans, Louisiana on 12-15 March 1989

    Science.gov (United States)

    1989-07-01

    distance in a planar arrangement of ArH3 , with the argon directly above the apical hydrogen. Matcha and 3, Milleur’ confined their calculations for...Phys. .11, 27 (1976). 7. W. J. Stevens, H-. Basch, and M. Krauss, J. Chem. Phys. il 6026 (1984). 8. R. L. Matcha , and Mac B. Milleur, J. Chem. Phys. f2

  5. New approaches for high energy density lithium-sulfur battery cathodes.

    Science.gov (United States)

    Evers, Scott; Nazar, Linda F

    2013-05-21

    The goal of replacing combustion engines or reducing their use presents a daunting problem for society. Current lithium-ion technologies provide a stepping stone for this dramatic but inevitable change. However, the theoretical gravimetric capacity (∼300 mA h g(-1)) is too low to overcome the problems of limited range in electric vehicles, and their cost is too high to sustain the commercial viability of electrified transportation. Sulfur is the one of the most promising next generation cathode materials. Since the 1960s, researchers have studied sulfur as a cathode, but only recently have great strides been made in preparing viable composites that can be used commercially. Sulfur batteries implement inexpensive, earth-abundant elements at the cathode while offering up to a five-fold increase in energy density compared with present Li-ion batteries. Over the past few years, researchers have come closer to solving the challenges associated with the sulfur cathode. Using carbon or conducting polymers, researchers have wired up sulfur, an excellent insulator, successfully. These conductive hosts also function to encapsulate the active sulfur mass upon reduction/oxidation when highly soluble lithium polysulfides are formed. These soluble discharge products remain a crux of the Li-S cell and need to be contained in order to increase cycle life and capacity retention. The use of mesoporous carbons and tailored designs featuring porous carbon hollow spheres have led to highly stable discharge capacities greater than 900 mA h g(-1) over 100 cycles. In an attempt to fully limit polysulfide dissolution, methods that rely on coating carbon/sulfur composites with polymers have led to surprisingly stable capacities (∼90% of initial capacity retained). Additives will also play an important role in sulfur electrode design. For example, small fractions (> 3 wt%) of porous silica or titania effectively act as polysulfide reservoirs, decreasing their concentration in the

  6. Theoretical studies on a series of 1,2,4-triazoles derivatives as potential high energy density compounds

    Indian Academy of Sciences (India)

    Zhang Rui-Zhou; Li Xiao-Hong; Zhang Xian-Zhou

    2012-09-01

    Density functional theory calculations at B3LYP/6-31G∗∗ and B3P86/6-31G∗∗ levels were performed to predict the densities (), detonation velocities (D), pressures (P) and the thermal stabilities for a series of 1,2,4-triazole derivatives for looking high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the position of the subsitutent group has great effect on the BDE and the BDEs of the initial scission step are between 31 and 65 kcal/mol. In addition, the condensed phase heats of formation are also calculated for the title compounds. These results would provide basic information for further studies of HEDCs.

  7. Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, K. A.; Doss, F. W.; Kline, J. L.; Merritt, E. C.; Capelli, D.; Cardenas, T.; DeVolder, B.; Fierro, F.; Huntington, C. M.; Kot, L.; Loomis, E. N.; MacLaren, S. A.; Murphy, T. J.; Nagel, S. R.; Perry, T. S.; Randolph, R. B.; Rivera, G.; Schmidt, D. W.

    2016-11-23

    Using a large volume high-energy-density fluid shear experiment (8.5 cm3) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

  8. The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    CERN Document Server

    Moses, E I

    2001-01-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

  9. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  10. Swim pressure: stress generation in active matter.

    Science.gov (United States)

    Takatori, S C; Yan, W; Brady, J F

    2014-07-11

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  11. Swim Pressure: Stress Generation in Active Matter

    Science.gov (United States)

    Takatori, S. C.; Yan, W.; Brady, J. F.

    2014-07-01

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries—this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  12. Zirconia doped barium titanate induced electroactive β polymorph in PVDF-HFP: high energy density and dielectric properties

    Science.gov (United States)

    Sharma, Maya; Ranganatha, S.; Kalyani, Ajay Kumar; Ranjan, Rajeev; Madras, Giridhar; Bose, Suryasarathi

    2014-12-01

    Zirconium-doped barium titanate (BZT-08, Ba(Ti0.92 Zr0.08)O3) particles were synthesized and PVDF-HFP-based composites were prepared by melt mixing to design materials with tunable dielectric and ferroelectric properties. Composites of PVDF-HFP and barium titanate (BT) particles were also prepared to realize the exceptional properties associated with the BZT-08-like stabilization of two ferroelectric phases, i.e. tetragonal and orthorhombic at room temperature. To facilitate the uniform dispersion and interfacial adhesion with the matrix, the particles were modified with (3-aminopropyl) triethoxysilane. The dependence of the dielectric and ferroelectric properties of the as-prepared composites were systematically investigated in this study with respect to a wide range of frequencies. The composites with BZT-08 exhibited the significantly high dielectric permittivity of ca. 26 (at 100 Hz) and a high energy density (2.7 J cm-3 measured on 100 μm thick film) at room temperature with respect to the control PVDF-HFP and PVDF-HFP/BT composites. Interestingly, the BZT-08 particles facilitated the electroactive β polymorph in the PVDF-HFP and enhanced polarization in the composites, leading to improved ferroelectric properties in the composites.

  13. Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes

    Science.gov (United States)

    Koch, Stephan L.; Morgan, Benjamin J.; Passerini, Stefano; Teobaldi, Gilberto

    2015-11-01

    To explore the potential of molecular gas treatment of freshly cut lithium foils in non-electrolyte-based passivation of high-energy-density Li anodes, density functional theory (DFT) has been used to study the decomposition of molecular gases on metallic lithium surfaces. By combining DFT geometry optimization and Molecular Dynamics, the effects of atmospheric (N2, O2, CO2) and hazardous (F2, SO2) gas decomposition on Li(bcc) (100), (110), and (111) surfaces on relative surface energies, work functions, and emerging electronic and elastic properties are investigated. The simulations suggest that exposure to different molecular gases can be used to induce and control reconstructions of the metal Li surface and substantial changes (up to over 1 eV) in the work function of the passivated system. Contrary to the other considered gases, which form metallic adlayers, SO2 treatment emerges as the most effective in creating an insulating passivation layer for dosages ≤1 mono-layer. The substantial Li → adsorbate charge transfer and adlayer relaxation produce marked elastic stiffening of the interface, with the smallest change shown by nitrogen-treated adlayers.

  14. Three- and Two- Dimensional Simulations of Re-shock Experiments at High Energy Densities at the National Ignition Facility

    Science.gov (United States)

    Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina

    2016-10-01

    We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.

  15. Microstructure and mechanical properties of titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma

    Institute of Scientific and Technical Information of China (English)

    PENG Zhijian; MIAO Hezhuo; QI Longhao; GONG Jianghong; YANG Size; LIU Chizi

    2003-01-01

    Hard, wear-resistant and well-adhesive titanium nitride coatings on cemented carbide cutting tools were prepared by the pulsed high energy density plasma technique at ambient temperature. The results of Auger spectra analysis indicated that the interface between the coating and substrate was more than 250 nm.Under optimized deposition conditions, the highest critical load measured by nanoscratch tester was more than 90 mN, which meant that the TiN film was well adhesive to the substrate; the highest nanohardness and Young's modulus according to nanoindentation tests were near to 27 and 450 GPa. The results of cutting tests evaluated by turning hardened CrWMn steel in industrial conditions indicated that the wear resistance and edge life of the cemented carbide tools were enhanced dramatically because of the deposition of titanium nitride coatings. These improvements were attributed to the three combined effects: the deposition and ion implantation of the pulsed plasma and the becoming finer of the grain sizes.

  16. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes.

    Science.gov (United States)

    Li, Linsen; Jacobs, Ryan; Gao, Peng; Gan, Liyang; Wang, Feng; Morgan, Dane; Jin, Song

    2016-03-02

    Metal fluorides and oxides can store multiple lithium ions through conversion chemistry to enable high-energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage profiles and the consequent low-energy efficiency (hysteresis are rarely studied and poorly understood. Here we employ in situ X-ray absorption spectroscopy, transmission electron microscopy, density functional theory calculations, and galvanostatic intermittent titration technique to first correlate the voltage profile of iron fluoride (FeF3), a representative conversion electrode material, with evolution and spatial distribution of intermediate phases in the electrode. The results reveal that, contrary to conventional belief, the phase evolution in the electrode is symmetrical during discharge and charge. However, the spatial evolution of the electrochemically active phases, which is controlled by reaction kinetics, is different. We further propose that the voltage hysteresis in the FeF3 electrode is kinetic in nature. It is the result of ohmic voltage drop, reaction overpotential, and different spatial distributions of electrochemically active phases (i.e., compositional inhomogeneity). Therefore, the large hysteresis can be expected to be mitigated by rational design and optimization of material microstructure and electrode architecture to improve the energy efficiency of lithium-ion batteries based on conversion chemistry.

  17. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, C

    2001-10-29

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  18. High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system

    Science.gov (United States)

    Han, Pengxian; Han, Xiaoqi; Yao, Jianhua; Zhang, Lixue; Cao, Xiaoyan; Huang, Changshui; Cui, Gunglei

    2015-11-01

    A novel sodium-ion capacitor (NIC) was assembled using graphitic mesocarbon microbead anode and activated carbon cathode in diglyme-based electrolyte. Charge/discharge tests indicate that sodium ions can reversibly co-intercalated with diglyme solvent into graphite anode and show good rate performance. The energy densities of the NICs are as high as 93.5 and 86.5 Wh kg-1 at 573 and 2832 W kg-1 (equal to 4 C and 50 C) in the voltage window at 1-4 V, respectively. By optimizing the voltage ranges, the capacity retention of the NIC at 20 C is 98.3% even after 3000 cycles. Such superior electrochemical performance should be attributed to the reversible intercalated/deintercalated reaction of sodium ions and the formation of ternary graphite intercalation compounds in diglyme-based electrolyte. The present work pioneers new realms of hybrid energy storage system with high energy density, high power density and long cycle life.

  19. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-06-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  20. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers

    Science.gov (United States)

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; Schenkel, Thomas; Barnard, John; Friedman, Alex; Eder, David; Fisher, Aaron; Masters, Nathan

    2016-03-01

    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as well as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.

  1. Density functional calculations for a high energy density compound of formula C6H 6-n (NO 2) n.

    Science.gov (United States)

    Chi, Wei-Jie; Li, Lu-Lin; Li, Bu-Tong; Wu, Hai-Shun

    2012-08-01

    A series of polynitroprismanes, C(6)H(6-n )(NO(2))(n) (n = 1-6) intended for use as high energy density compounds (HEDCs) were designed computationally. Their electronic structures, heats of formation, interactions between nitro groups, specific enthalpies of combustion, bond dissociation energies, and explosive performances (detonation velocities and detonation pressures) were calculated using density functional theory (DFT) with the 6-311 G** basis set. The results showed that all of the polynitroprismanes had high positive heats of formation that increased with the number of substitutions for the prismane derivatives, while the specific enthalpy of combustion decreased as the number of nitro groups increased. In addition, the range of enthalpy of combustion reducing is getting smaller. Interactions between ortho (vicinal) groups deviate from the group additivity rule and decrease as the number of nitro groups increases. In terms of thermodynamic stability, all of the polynitroprismanes had higher bond dissociation energies (BDEs) than RDX and HMX. Detonation velocities and detonation pressures were estimated using modified Kamlet-Jacobs equations based on the heat of detonation (Q) and the theoretical density of the molecule (ρ). It was found that ρ, D, and P are strongly linearly related to the number of nitro groups. Taking both their energetic properties and thermal stabilities into account, pentanitroprismane and hexanitroprismane are potential candidate HEDCs.

  2. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane.

    Science.gov (United States)

    Zhang, Jian-ying; Du, Hong-chen; Wang, Fang; Gong, Xue-dong; Huang, Yin-sheng

    2011-06-23

    Polynitro cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohexaazaisowurtzitane has the same framework with but higher stability than CL-20 and is a potential new high energy density compound (HEDC). In this paper, the B3LYP/6-31G(d,p) method of density functional theory (DFT) has been used to study its heat of formation, IR spectrum, and thermodynamic properties. The stability of the compound was evaluated by the bond dissociation energies. The calculated results show that the first step of pyrolysis is the rupture of the N-NO(2) bond in the side chain and verify the experimental observation that the title compound has better stability than CL-20. The crystal structure obtained by molecular mechanics belongs to the P2(1)2(1)2(1) space group, with lattice parameters a = 12.59 Å, b = 10.52 Å, c = 12.89 Å, Z = 4, and ρ = 2.165 g·cm(-3). Both the detonation velocity of 9.767 km·s(-1) and the detonation pressure of 45.191 GPa estimated using the Kamlet-Jacobs equation are better than those of CL-20. Considering that this cage compound has a better detonation performance and stability than CL-20, it may be a superior HEDC.

  3. Molecular Design and Property Prediction for a Series of Novel Dicyclic Cyclotrimethylene Trinitramines (RDX) Derivatized as High Energy Density Materials.

    Science.gov (United States)

    Shen, Cheng; Wang, Pengcheng; Lu, Ming

    2015-07-23

    Quantum chemistry calculations and thermodynamics methods were carried out to screen out novel high energy density materials (HEDMs) from several new derivatives with dicyclic structures of Cyclotrimethylene trinitramine (RDX). Their volumes, densities, heats of formation, detonation properties and impact sensitivities have been calculated with thermodynamics methods under DFT B3LYP 6-31++g (d, p) level and all of these compounds exhibit good performance as HEDMs. Especially, R4 has given outstanding values as a potential HEDM. Its crystal density (2.07 g/cm(3)), heat of detonation (1.67 kJ/g), detonation velocity (10051m/s), and detonation pressure (48.5 GPa) are even higher than those of CL-20 while its impact sensitivity (h50, 16 cm) remains a relative safety value. The results indicate that the derivative work in common explosives is a good strategy which can design novel HEDMs with high energetic properties and low sensitivity. And furthermore, some mature processes can be used to synthesize them.

  4. Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density.

    Science.gov (United States)

    Nagamuthu, S; Vijayakumar, S; Muralidharan, G

    2014-12-14

    Silver incorporated Mn3O4/amorphous carbon (AC) nanocomposites are synthesized by a green chemistry method. X-ray diffraction studies revealed the structural changes in Mn3O4/AC nanocomposites attributable to the addition of silver. Cyclic voltammetry, charge-discharge and ac-impedance studies indicated that the Ag-Mn3O4/AC-5 electrode was the most suitable candidate for supercapacitor applications. From the galvanostatic charge-discharge studies, a higher specific capacitance of 981 F g(-1) at a specific current of 1 A g(-1) was obtained. An Ag-Mn3O4/AC-symmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as an anode as well as a cathode, and an asymmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as a cathode and an activated carbon as an anode have been fabricated. The symmetric device exhibits a specific cell capacitance of 72 F g(-1) at a specific current of 1 A g(-1) whereas the asymmetric device delivers a specific cell capacitance of 180 F g(-1) at a high current rate of 10 A g(-1). The asymmetric supercapacitor device yields a high energy density of 81 W h kg(-1). This is higher than that of lead acid batteries and comparable with that of nickel hydride batteries.

  5. 3D strain engineered self-rolled thin-film architecture for high-energy density lithium-ion batteries

    Science.gov (United States)

    Godbey, Griffin; Gong, Chen; Yu, Cynthia; Blythe, Clayton; Leite, Marina

    Recently, multiple 3D geometries have been implemented into energy storage devices (e . g . nanowire anodes and arrays of interdigitated rods) in order to better accommodate the large volume expansion experienced by the anode during lithiation and to increase the structure energy density. However, most approached structures are difficult to scale up. Here we show how self-rolled thin-films can maintain a high energy density and can potentially accommodate the volume expansion suffered by the anode. The self-rolled tubes are fabricated by physical deposition of the active layers, creating a stress gradient between thin-film stack due to differences in coefficient of thermal expansion. Upon a sacrificial layer removal, the thin-film rolls to relieve this built-in stress. We predict the final dimension of self-rolled battery tubes using known elastic properties of materials commonly used as the active layers of the device. We will discuss an appropriate figure-of-merit that defines how the winding process can ultimately affect the volumetric capacity of 3D self-rolled batteries.

  6. Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity.

    Science.gov (United States)

    Carnell, Susan; Benson, Leora; Pantazatos, Spiro P; Hirsch, Joy; Geliebter, Allan

    2014-11-01

    The obesogenic environment is pervasive, yet only some people become obese. The aim was to investigate whether obese individuals show differential neural responses to visual and auditory food cues, independent of cue modality. Obese (BMI 29-41, n = 10) and lean (BMI 20-24, n = 10) females underwent fMRI scanning during presentation of auditory (spoken word) and visual (photograph) cues representing high-energy-density (ED) and low-ED foods. The effect of obesity on whole-brain activation, and on functional connectivity with the midbrain/VTA, was examined. Obese compared with lean women showed greater modality-independent activation of the midbrain/VTA and putamen in response to high-ED (vs. low-ED) cues, as well as relatively greater functional connectivity between the midbrain/VTA and cerebellum (P food cues within the midbrain/VTA and putamen, and altered functional connectivity between the midbrain/VTA and cerebellum, could contribute to excessive food intake in obese individuals. © 2014 The Obesity Society.

  7. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  8. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  9. Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent

    Science.gov (United States)

    Zhi, Jian; Yang, Chongyin; Lin, Tianquan; Cui, Houlei; Wang, Zhou; Zhang, Hui; Huang, Fuqiang

    2016-02-01

    Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the negative electrode. In this unique design, NiO nanosheets are used as pseudocapacitive materials and TiO2-x:N nanoparticles serve as the conductive agent. Owing to the excellent electrical conductivity of TiO2-x:N and well defined ``particle on sheet'' planar structure of NiO/TiO2-x:N composites, the 2D morphology of the decorated NiO nanosheets is completely retained, which efficiently reinforces the pseudocapacitive activity and flexibility of the whole all solid state device. The maximum specific capacitance of fabricated the NiO/TiO2-x:N//mesoporous graphene supercapacitor can reach 133 F g-1, which is 2 and 4 times larger than the values of the NiO based ASSSC employing graphene and carbon black as the conductive agent, respectively. In addition, the optimized ASSSC displays intriguing performances with an energy density of 47 W h kg-1 in a voltage region of 0-1.6 V, which is, to the best of our knowledge, the highest value for flexible ASSSC devices. The impressive results presented here may pave the way for promising applications of black titania in high energy density flexible storage systems.Increasing the electrical conductivity of pseudocapacitive materials without changing their morphology is an ideal structural solution to realize both high electrochemical performance and superior flexibility for an all solid state supercapacitor (ASSSC). Herein, we fabricate a flexible ASSSC device employing black titania (TiO2-x:N) decorated two-dimensional (2D) NiO nanosheets as the positive electrode and mesoporous graphene as the

  10. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  11. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  12. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    Science.gov (United States)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  13. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    Science.gov (United States)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  14. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH){sub 2}/carbon nanotube electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe; Tang, Chun-hua; Gong, Hao [Department of Materials Science and Engineering, National University of Singapore (Singapore)

    2012-03-21

    The demand for advanced energy storage devices such as supercapacitors and lithium-ion batteries has been increasing to meet the application requirements of hybrid vehicles and renewable energy systems. A major limitation of state-of-art supercapacitors lies in their relatively low energy density compared with lithium batteries although they have superior power density and cycle life. Here, we report an additive-free, nano-architectured nickel hydroxide/carbon nanotube (Ni(OH){sub 2}/CNT) electrode for high energy density supercapacitors prepared by a facile two-step fabrication method. This Ni(OH){sub 2}/CNT electrode consists of a thick layer of conformable Ni(OH){sub 2} nano-flakes on CNT bundles directly grown on Ni foams (NFs) with a very high areal mass loading of 4.85 mg cm{sup -2} for Ni(OH){sub 2}. Our Ni(OH){sub 2}/CNT/NF electrode demonstrates the highest specific capacitance of 3300 F g{sup -1} and highest areal capacitance of 16 F cm{sup -2}, to the best of our knowledge. An asymmetric supercapacitor using the Ni(OH){sub 2}/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode can achieve a high cell voltage of 1.8 V and an energy density up to 50.6 Wh/kg, over 10 times higher than that of traditional electrochemical double-layer capacitors (EDLCs). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. OZSPEC-2: an improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited).

    Science.gov (United States)

    Heeter, R F; Anderson, S G; Booth, R; Brown, G V; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Schneider, M B; Young, B K F

    2008-10-01

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 microm resolution over a 1500 microm field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/DeltaE>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  16. Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li-S batteries.

    Science.gov (United States)

    Pu, Xiong; Yang, Gang; Yu, Choongho

    2014-11-26

    High energy density and long-term stability of Li-S batteries are achieved by employing a 3D sponge-like carbon nanotube cathode and a liquid-type polysulfide catholyte. Carbon nanotubes not only provide excellent electron pathways and polysulfide reservoirs, but they can also be used as a standalone cathode without current collectors, which greatly alleviates problems arising from insulating sulfur and polysulfide shuttles as well as remarkably increasing the energy density.

  17. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  18. Dark matter and generation of galactic magnetic fields

    CERN Document Server

    Berezhiani, Zurab; Tkachev, I I

    2013-01-01

    A mechanism for creation of galactic and intergalactic magnetic fields at a recent cosmological epoch is proposed. We show that in rotating protogalaxies circular electric currents are generated by the interactions of free electrons with dark matter particles while the impact of such interactions on galactic protons is considerably weaker. Light dark matter particles can be efficient for generation of such currents if these particles have some long range interactions. In particular, millicharged warm dark matter particles or light mirror particles with the photon kinetic mixing to the usual matter are considered. The induced currents may be strong enough to create the observed magnetic fields on the galaxy scales without need for a strong dynamo amplification. On the other hand, the angular momentum transfer from the rotating gas to dark matter component could change the dark matter profile and formation of cusps at galactic centers would be inhibited. We also discuss how the global motion of the ionized gas ...

  19. High contrast Kr gas jet K alpha x-ray source for high energy density physics experiments.

    Science.gov (United States)

    Kugland, N L; Neumayer, P; Döppner, T; Chung, H-K; Constantin, C G; Girard, F; Glenzer, S H; Kemp, A; Niemann, C

    2008-10-01

    A high contrast 12.6 keV Kr K alpha source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (K alpha to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10(-5). Filtered shadowgraphy indicates that the Kr K alpha and K beta x rays are emitted from a roughly 1x2 mm(2) emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e., mean ionization state 13-16), based on the observed ratio of K alpha to K beta. Kr gas jets provide a debris-free high energy K alpha source for time-resolved diagnosis of dense matter.

  20. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., Bethesda, Maryland 20824 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  1. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    Science.gov (United States)

    Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.; Rudakov, L. I.; Esaulov, A. A.; Velikovich, A. L.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.

    2014-03-01

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  2. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E I; Wuest, C R

    2002-10-16

    The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF will provide 192 energetic laser beams that will compress small fusion targets to conditions where they will ignite and burn, liberating more energy than is required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. Research is also underway to develop a shorter pulse capability on NIF for very high power and extreme electromagnetic field research and applications. We discuss here the technology challenges and solutions that have made NIF possible, along with enhancements to NIF's design that could lead to near-exawatt power levels.

  3. Make Learning Matter for the Multitasking Generation

    Science.gov (United States)

    Adams, Jill

    2012-01-01

    Technological advances have created amazing opportunities for people throughout the world to access and share information. These opportunities have helped to create a generation of young adolescents who want to make the most of each minute of the day, seizing opportunities to seek information and communicate at the same time. This generation is…

  4. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A

    2013-04-10

    Nanocomposites combining a high breakdown strength polymer and high dielectric permittivity ceramic filler have shown great potential for pulsed power applications. However, while current nanocomposites improve the dielectric permittivity of the capacitor, the gains come at the expense of the breakdown strength, which limits the ultimate performance of the capacitor. Here, we develop a new synthesis method for the growth of barium strontium titanate nanowires and demonstrate their use in ultra high energy density nanocomposites. This new synthesis process provides a facile approach to the growth of high aspect ratio nanowires with high yield and control over the stoichiometry of the solid solution. The nanowires are grown in the cubic phase with a Ba0.2Sr0.8TiO3 composition and have not been demonstrated prior to this report. The poly(vinylidene fluoride) nanocomposites resulting from this approach have high breakdown strength and high dielectric permittivity which results from the use of high aspect ratio fillers rather than equiaxial particles. The nanocomposites are shown to have an ultra high energy density of 14.86 J/cc at 450 MV/m and provide microsecond discharge time quicker than commercial biaxial oriented polypropylene capacitors. The energy density of our nanocomposites exceeds those reported in the literature for ceramic/polymer composites and is 1138% greater than the reported commercial capacitor with energy density of 1.2 J/cc at 640 MV/m for the current state of the art biaxial oriented polypropylene.

  5. Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor.

    Science.gov (United States)

    Cho, Sunghun; Kim, Minkyu; Lee, Jun Seop; Jang, Jyongsik

    2015-10-14

    This work demonstrates a ternary nanocomposite system, composed of polypropylene (PP), redoped PANI (r-PANI) nanofibers, and reduced graphene oxides (RGOs), for use in a high energy density capacitor. r-PANI nanofibers were fabricated by the combination methods of chemical oxidation polymerization and secondary doping processes, resulting in higher conductivity (σ≈156 S cm(-1)) than that of the primarily doped PANI nanofibers (σ≈16 S cm(-1)). RGO sheets with high electron mobility and thermal stability can enhance the conductivity of r-PANI/RGO (σ≈220 S cm(-1)) and thermal stability of PP matrix. These findings could be extended to combine the advantages of r-PANI nanofibers and RGO sheets for developing an efficient means of preparing PP/r-PANI/RGO nanocomposite. When the r-PANI/RGO cofillers (10 vol %) were added to PP matrix, the resulting PP/r-PANI/RGO nanocomposite exhibited high dielectric constant (ε'≈51.8) with small dielectric loss (ε″≈9.3×10(-3)). Furthermore, the PP/r-PANI/RGO nanocomposite was used for an energy-harvesting device, which demonstrated high energy density (Ue≈12.6 J cm(-3)) and breakdown strength (E≈5.86×10(3) kV cm(-1)).

  6. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg(-1) and 47.5 Wh kg(-1) at a power density of 400 W kg(-1), respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  7. Matter Mass Generation and Theta Vacuum Dynamical Spontaneous Symmetry Breaking

    CERN Document Server

    Roh, H S

    2001-01-01

    This work proposes a stringent concept of matter mass generation and Theta vacuum in the context of local gauge theory for the strong force under the constraint of the flat universe. The matter mass is generated as the consequence of dynamical spontaneous symmetry breaking (DSSB) of gauge symmetry and discrete symmetries, which is motivated by the parameter Theta representing the surface term. Matter mass generation introduces the typical features of constituent particle mass, dual Meissner effect, and hyperfine structure. The Theta term plays important roles on the DSSB of the gauge group and on the quantization of the matter and vacuum space. The Theta vacuum exhibits the intrinsic principal number and intrinsic angular momentum for intrinsic space quantization in analogy with the extrinsic principal number and extrinsic angular momentum for extrinsic space quantization.

  8. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, L. [Univ. of Rochester, Rochester, NY (United States); Nilson, P. M. [Univ. of Rochester, Rochester, NY (United States); Igumenshchev, I. V. [Univ. of Rochester, Rochester, NY (United States); Haines, M. G. [Imperial College, London (United Kingdom); Froula, D. H. [Univ. of Rochester, Rochester, NY (United States); Betti, R. [Univ. of Rochester, Rochester, NY (United States); Meyerhofer, D. D. [Univ. of Rochester, Rochester, NY (United States)

    2015-05-29

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 μm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 x 10¹⁴ W/cm². The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code DRACO when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

  9. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    Science.gov (United States)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser-generated

  10. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.

    Science.gov (United States)

    Huang, Yan; Ip, Wing Shan; Lau, Yuen Ying; Sun, Jinfeng; Zeng, Jie; Yeung, Nga Sze Sea; Ng, Wing Sum; Li, Hongfei; Pei, Zengxia; Xue, Qi; Wang, Yukun; Yu, Jie; Hu, Hong; Zhi, Chunyi

    2017-09-26

    With intrinsic safety and much higher energy densities than supercapacitors, rechargeable nickel/cobalt-zinc-based textile batteries are promising power sources for next generation personalized wearable electronics. However, high-performance wearable nickel/cobalt-zinc-based batteries are rarely reported because there is a lack of industrially weavable and knittable highly conductive yarns. Here, we use scalably produced highly conductive yarns uniformly covered with zinc (as anode) and nickel cobalt hydroxide nanosheets (as cathode) to fabricate rechargeable yarn batteries. They possess a battery level capacity and energy density, as well as a supercapacitor level power density. They deliver high specific capacity of 5 mAh cm(-3) and energy densities of 0.12 mWh cm(-2) and 8 mWh cm(-3) (based on the whole solid battery). They exhibit ultrahigh rate capabilities of 232 C (liquid electrolyte) and 116 C (solid electrolyte), which endows the batteries excellent power densities of 32.8 mW cm(-2) and 2.2 W cm(-3) (based on the whole solid battery). These are among the highest values reported so far. A wrist band battery is further constructed by using a large conductive cloth woven from the conductive yarns by a commercial weaving machine. It powers various electronic devices successfully, enabling dual functions of wearability and energy storage.

  11. Automatic generation of matter-of-opinion video documentaries

    NARCIS (Netherlands)

    S. Bocconi; F.-M. Nack (Frank); L. Hardman (Lynda)

    2008-01-01

    textabstractIn this paper we describe a model for automatically generating video documentaries. This allows viewers to specify the subject and the point of view of the documentary to be generated. The domain is matter-of-opinion documentaries based on interviews. The model combines rhetorical

  12. Automatic generation of matter-of-opinion video documentaries

    NARCIS (Netherlands)

    Bocconi, S.; Nack, F.-M.; Hardman, L.

    2008-01-01

    In this paper we describe a model for automatically generating video documentaries. This allows viewers to specify the subject and the point of view of the documentary to be generated. The domain is matter-of-opinion documentaries based on interviews. The model combines rhetorical presentation patte

  13. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Begishev, I. A.; Theobald, W.; Bromage, J.; Regan, S. P.; Klein, S. R.; Muñoz-Cordovez, G.; Vescovi, M.; Valenzuela-Villaseca, V.; Veloso, F.

    2016-11-01

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ˜1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  14. Poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) copolymers: A nonlinear dielectric material for high energy density storage

    Science.gov (United States)

    Rahimabady, Mojtaba; Qun Xu, Li; Arabnejad, Saeid; Yao, Kui; Lu, Li; Shim, Victor P. W.; Gee Neoh, Koon; Kang, En-Tang

    2013-12-01

    A nonlinear dielectric poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) [P(VDF-HFP)-g-PDMA] graft copolymer with ultra-high energy density of 33 J/cm3 was obtained by thermally initiated radical graft polymerization. It was observed that the dielectric constant of the graft copolymer films was 63% higher than that of P(VDF-HFP), with a large dielectric breakdown strength (>850 MV/m). Theoretical analyses and experimental measurements showed that the significant improvement in the electric polarization was attributed to the introduction of the highly polarizable hydroxyl groups in the PDMA side chains, and the large breakdown strength arose from the strong adhesion bonding of the catechol-containing graft copolymer to the metal electrode.

  15. Investigation of the 2p_{32}-3d_{52} line emission of Au;{53+}-Au;{69+} for diagnosing high energy density plasmas.

    Science.gov (United States)

    Brown, G V; Hansen, S B; Träbert, E; Beiersdorfer, P; Widmann, K; Chen, H; Chung, H K; Clementson, J H T; Gu, M F; Thorn, D B

    2008-06-01

    Measurements of the L -shell emission of highly charged gold ions were made under controlled laboratory conditions using the SuperEBIT electron beam ion trap, allowing detailed spectral observations of lines from Fe-like Au53+ through Ne-like Au69+ . Using atomic data from the Flexible Atomic Code, we have identified strong 3d_{52}-->2p_{32} emission features that can be used to diagnose the charge state distribution in high energy density plasmas, such as those found in the laser entrance hole of hot hohlraum radiation sources. We provide collisional-radiative calculations of the average ion charge Z as a function of temperature and density, which can be used to relate charge state distributions inferred from 3d_{52}-->2p_{32} emission features to plasma conditions, and investigate the effects of plasma density on calculated L -shell Au emission spectra.

  16. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    Science.gov (United States)

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-01

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.

  17. Teller Medal Lecture IFSA2001: Problems and solutions in the design and analysis of early laser driven high energy density and ICF target physics experiments (IFSA 2001)

    Science.gov (United States)

    Rosen, Mordecai D.

    2016-10-01

    The high energy density (HED) and inertial confinement fusion (ICF) physics community relies on increasingly sophisticated high power laser driven experiments to advance the field. We review early work in the design and analysis of such experiments, and discuss the problems encountered. By finding solutions to those problems we put the field on firmer ground, allowing the community to develop it to the exciting stage it is in today. Specific examples include: drive and preheat in complex hohlraum geometries with the complicating effects of sample motion; and issues in the successful design of laboratory soft x-ray lasers and in the invention of methods to reduce the required optical laser driver energy by several orders of magnitude.

  18. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Stoeckl, C.; Mileham, C.; Begishev, I. A.; Theobald, W.; Bromage, J.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Klein, S. R. [Center for Laser Experimental Astrophysical Research, University of Michigan, Ann Arbor, Michigan 48105 (United States); Muñoz-Cordovez, G.; Vescovi, M.; Valenzuela-Villaseca, V.; Veloso, F. [Instituto de Física, Pontificia Universidad Católica de Chile, Macul, Santiago (Chile)

    2016-11-15

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  19. High Energy Density Cryogenic Capacitors

    Science.gov (United States)

    2006-07-07

    solution cast coating process at General Atomics Advanced M aterials T echnologies ...PET Bolmet 5.0 77 LN2 520.00 3.62 3.00 OPP Exxon Mobil 13.0 77 LN2 646.15 3,23 1.74 PP Terfilm 8.5 295 RSO 670.59 3.16 1.58 PP Terfilm 8.5 77 LN2 572.55

  20. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  1. High Energy Density Asymmetric Supercapacitors

    Science.gov (United States)

    2012-04-10

    Precursor Gel Aerogel Dried at atmospheric pressure Dried at supercritical condition of solvent • Solution Chemical Methods - Sol-gel synthesis...UNCLASSIFIED Structure-Function: X-Ray Absorption Teflon Cell Polypropylene Window Gold Mesh Working Electrode Celgard Separator Pt Counter

  2. Proceedings of the High Energy Density Matter (HEDM) Contractor’s Conference Held in Woods Hole, Massachusetts on 6-8 June 1993

    Science.gov (United States)

    1993-11-01

    and L. G. M. Petterson , J. Chem. Phys. 89 5747 (1988). 23. L. B. Knight, Jr., S. T. Corbranchi, J. 0. Herlong, and C. A. Arrington, J. Chem. Phys. 92...vusi. awrpao awlmsa The uJ@e Alin fta he swge* pqwemt do ablatd plam.e l puls prmesn (S), and that obtauned with breakdown pulses only (SO). Bot S and S

  3. Advances in high energy density matter of furazan series%呋咱系列高能量密度材料的发展

    Institute of Scientific and Technical Information of China (English)

    张德雄; 张衍; 王琦

    2004-01-01

    呋咱环是一种氮杂环含能基团,具有生成焓高、热稳定性好和环内存在活性氧的特点,是设计高能量密度材料的一种非常有效的结构单元.文中综述了当前各国呋咱系列研究开发现状,包括各种单呋咱、二呋咱、长链呋咱、大环呋咱、稠环呋咱等化合物的结构、合成路线、安全性能以及推进剂性能.

  4. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  5. Different Generations and the Challenge of Leadership - Does it Matter?

    Science.gov (United States)

    2011-03-21

    Leadership - Does it N/A Matter? 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d. PROJECT NUMBER Lt Col Bridget V. Hamacher...F66570201257. Sc. PROGRAM ELEMENT NUMBER. Enter all program element numbers as they appear in the report, e.g. AFOSR-82-1234. Sd. PROJEC"f NUMBER...characteristics, and their intergenerational relationships.ś Generational personalities are thus influenced by those who preceded that generation

  6. Automatic generation of matter-of-opinion video documentaries

    OpenAIRE

    Bocconi, S.; Nack, Frank; Hardman, Hazel Lynda

    2008-01-01

    In this paper we describe a model for automatically generating video documentaries. This allows viewers to specify the subject and the point of view of the documentary to be generated. The domain is matter-of-opinion documentaries based on interviews. The model combines rhetorical presentation patterns used by documentary makers with a data-driven approach. Rhetorical presentation patterns provide the viewer with an engaging viewing experience, while a data-driven approach can be applied to g...

  7. Generating X-ray lines from annihilating dark matter

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann

    2014-01-01

    We propose different scenarios where a keV dark matter annihilates to produce a monochromatic signal. The process is generated through the exchange of a light scalar of mass of order 300 keV - 50 MeV coupling to photon through loops or higher dimensional operators. For natural values of the couplings and scales, the model can generate a gamma-ray line which can fit with the recently identified 3.5 keV X-ray line.

  8. Impact of Mass Generation for Simplified Dark Matter Models

    CERN Document Server

    Bell, Nicole F; Leane, Rebecca K

    2016-01-01

    In the simplified dark matter models commonly studied, the mass generation mechanism for the dark fields is not typically specified. We demonstrate that the dark matter interaction types, and hence the annihilation processes relevant for relic density and indirect detection, are strongly dictated by the mass generation mechanism chosen for the dark sector particles, and the requirement of gauge invariance. We focus on the class of models in which fermionic dark matter couples to a spin-1 vector or axial-vector mediator. However, in order to generate dark sector mass terms, it is necessary in most cases to introduce a dark Higgs field and thus a spin-0 scalar mediator will also be present. In the case that all the dark sector fields gain masses via coupling to a single dark sector Higgs field, it is mandatory that the axial-vector coupling of the spin-1 mediator to the dark matter is non-zero; the vector coupling may also be present depending on the charge assignments. For all other mass generation options, on...

  9. Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors

    Science.gov (United States)

    Hui, Kwun Nam; Hui, Kwan San; Tang, Zikang; Jadhav, V. V.; Xia, Qi Xun

    2016-10-01

    Hierarchical chestnut-like manganese cobalt oxide (MnCo2O4) nanoneedles (NNs) are successfully grown on nickel foam using a facile and cost-effective hydrothermal method. High resolution TEM image further verifies that the chestnut-like MnCo2O4 structure is assembled by numerous 1D MnCo2O4 nanoneedles, which are formed by numerous interconnected MnCo2O4 nanoparticles with grain diameter of ∼10 nm. The MnCo2O4 electrode exhibits high specific capacitance of 1535 F g-1 at 1 A g-1 and good rate capability (950 F g-1 at 10 A g-1) in a 6 M KOH electrolyte. An asymmetric supercapacitor is fabricated using MnCo2O4 NNs on Ni foam (MnCo2O4 NNs/NF) as the positive electrode and graphene/NF as the negative electrode. The device shows an operation voltage of 1.5 V and delivers a high energy density of ∼60.4 Wh kg-1 at a power density of ∼375 W kg-1. Moreover, the device exhibits an excellent cycling stability of 94.3% capacitance retention after 12000 cycles at 30 A g-1. This work demonstrates that hierarchical chestnut-like MnCo2O4 NNs could be a promising electrode for the high performance energy storage devices.

  10. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors

    Science.gov (United States)

    Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; Zhao, Ruo; Zou, Ruqiang

    2017-02-01

    To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g‑1 at a current density of 1A g‑1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg‑1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg‑1 at power density of 9331 Wkg‑1 coupled long termed stability up to 6000 cycles.

  11. A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility

    Science.gov (United States)

    Nagel, S. R.; Raman, K. S.; Huntington, C. M.; MacLaren, S. A.; Wang, P.; Barrios, M. A.; Baumann, T.; Bender, J. D.; Benedetti, L. R.; Doane, D. M.; Felker, S.; Fitzsimmons, P.; Flippo, K. A.; Holder, J. P.; Kaczala, D. N.; Perry, T. S.; Seugling, R. M.; Savage, L.; Zhou, Y.

    2017-07-01

    A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube containing a pre-machined interface between dense and light materials. The strong shock turns the initially solid target into a plasma and the material boundary into a fluid interface with the imprinted initial condition. The interface evolves by action of the RT and RM instabilities, and the growth is imaged with backlit x-ray radiography. We present our first data involving sinusoidal interface perturbations driven from the heavy side to the light side. Late-time radiographic images show the initial conditions reaching the deeply nonlinear regime, and an evolution of fine structure consistent with a transition to turbulence. We show preliminary comparisons with post-shot numerical simulations and discuss the implications for future campaigns.

  12. Looking for high energy density compounds applicable for propellant among the derivatives of DPO with -N3, -ONO2, and -NNO2 groups.

    Science.gov (United States)

    Wang, Gui-Xiang; Gong, Xue-Dong; Liu, Yan; Du, Hong-Chen; Xu, Xiao-Juan; Xiao, He-Ming

    2011-04-15

    The derivatives of DPO (2,5-dipicryl-1,3,4-oxadiazole) are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G* level. The bond length is focused to primarily predict thermal stability and the pyrolysis mechanism of the title compounds. Detonation properties are evaluated using the modified Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of azido, nitrate, and nitramine groups. According to the largest exothermic principle, the relative specific impulse is investigated by calculating the enthalpy of combustion (ΔH(comb)) and the total heat capacity (C(p,gases)). It is found that the introduction of -N(3), -ONO(2), and -NNO(2) groups could increase the specific impulses and II-4, II-5, and III-5 are potential candidates for High Energy Density Materials (HEDMs). The effect of the azido, nitrate, and nitramine groups on the structure and the properties is discussed.

  13. Theoretical studies on the crystal structure, thermodynamic properties, detonation performance and thermal stability of cage-tetranitrotetraazabicyclooctane as a novel high energy density compound.

    Science.gov (United States)

    Zhao, Guo-zheng; Lu, Ming

    2013-01-01

    The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.1(2,8).0(1,11).0(2,6).0(4,13).0(6,11)]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N-NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna2(1) space group, with cell parameters a=12.840 Å, b=9.129 Å, c=14.346 Å, Z=6 and ρ=2.292 g·cm(-3). Both the detonation velocity of 9.96 km·s(-1) and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.

  14. High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite

    Science.gov (United States)

    Pu, Juan; Wang, Xiaohong; Zhang, Tianyi; Li, Siwei; Liu, Jinghe; Komvopoulos, Kyriakos

    2016-01-01

    Novel all-solid-state microsupercapacitors (MSCs) with three-dimensional (3D) electrodes consisting of active materials (i.e., graphene or activated carbon (AC) particles) and polymer electrolyte (PE) designed for high-energy-density storage applications were fabricated and tested in this work. The incorporation of PE in the electrode material enhances the accessibility of electrolyte ions to the surface of active materials and decreases the ion diffusion path during electrochemical charge/discharge. For a scan rate of 5 mV s-1, the MSCs with graphene/PE and AC/PE composite electrodes demonstrate a very high areal capacitance of 95 and 134 mF cm-2, respectively, comparable to that of 3D MSCs with liquid electrolyte. In addition, the graphene/PE MSCs show a ˜70% increase in specific capacitance after 10 000 charge/discharge cycles, attributed to an electro-activation process resulting from ion intercalation between the graphene nanosheets. The AC/PE MSCs also demonstrate excellent stability. The results of this study illustrate the potential of the present 3D MSCs for various high-density solid-state energy storage applications.

  15. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors

    Science.gov (United States)

    Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; zhao, Ruo; Zou, Ruqiang

    2017-01-01

    To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g−1 at a current density of 1A g−1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg−1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg−1 at power density of 9331 Wkg−1 coupled long termed stability up to 6000 cycles. PMID:28240224

  16. High Energy Density All Solid State Asymmetric Pseudocapacitors Based on Free Standing Reduced Graphene Oxide-Co3O4 Composite Aerogel Electrodes.

    Science.gov (United States)

    Ghosh, Debasis; Lim, Joonwon; Narayan, Rekha; Kim, Sang Ouk

    2016-08-31

    Modern flexible consumer electronics require efficient energy storage devices with flexible free-standing electrodes. We report a simple and cost-effective route to a graphene-based composite aerogel encapsulating metal oxide nanoparticles for high energy density, free-standing, binder-free flexible pseudocapacitive electrodes. Hydrothermally synthesized Co3O4 nanoparticles are successfully housed inside the microporous graphene aerogel network during the room temperature interfacial gelation at the Zn surface. The resultant three-dimensional (3D) rGO-Co3O4 composite aerogel shows mesoporous quasiparallel layer stack morphology with a high loading of Co3O4, which offers numerous channels for ion transport and a 3D interconnected network for high electrical conductivity. All solid state asymmetric pseudocapacitors employing the composite aerogel electrodes have demonstrated high areal energy density of 35.92 μWh/cm(2) and power density of 17.79 mW/cm(2) accompanied by excellent cycle life.

  17. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes.

    Science.gov (United States)

    Zhang, Xiaojun; Shi, Wenhui; Zhu, Jixin; Kharistal, Daniel Julian; Zhao, Weiyun; Lalia, Boor Singh; Hng, Huey Hoon; Yan, Qingyu

    2011-03-22

    We report a simple wet-chemical process to prepare porous CuO nanobelts (NBs) with high surface area and small crystal grains. These CuO NBs were mixed with carbon nanotubes in an appropriate ratio to fabricate pseudocapacitor electrodes with stable cycling performances, which showed a series of high energy densities at different power densities, for example, 130.2, 92, 44, 25, and 20.8 W h kg(-1) at power densities of 1.25, 6.25, 25, and 50 k Wh kg(-1), respectively. CuO-on-single-walled carbon nanotube (SWCNT) flexible hybrid electrodes were also fabricated using the SWCNT films as current collectors. These flexible electrodes showed much higher specific capacitance than that of electrodes made of pure SWCNTs and exhibited more stable cycling performance, for example, effective specific capacitances of >62 F g(-1) for the hybrid electrodes after 1000 cycles in 1 M LiPF6/EC:DEC at a current density of 5 A g(-1) and specific capacitance of only 23.6 F g(-1) for pure SWCNT electrodes under the same testing condition.

  18. Aqueous magnesium ion battery based on carbon-coated FeVO4 as anode and Mg-OMS-1 as cathode with high energy density.

    Science.gov (United States)

    Zhang, Hongyu; Ye, Ke; Zhu, Kai; Cang, Ruibai; Yan, Jun; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-09-21

    The porous FeVO4 is prepared by hydrothermal method and further modified by coating carbon to obtain the FeVO4/C with hierarchical pore structure, which are used as anodic electrodes in aqueous rechargeable magnesium ion battery. And the FeVO4/C material can not only improve the electrical conductivity by coating a carbon layer but also increase the specific surface area by hierarchical pore structure, which is more beneficial for magnesium ion insertion/deinsertion. Therefore, the aqueous rechargeable magnesium ion full battery is successfully constructed by FeVO4/C as anode, Mg-OMS-1 as cathode and in 1.0 mol L-1 MgSO4 as electrolyte. The discharge capacity of Mg-OMS-1 // FeVO4/C aqueous battery can be obtained 58.9 mAh g-1 at the current density of 100 mA g-1 by calculating the total mass of two electrodes and the capacity retention rate of this device is 97.7% after 100 cycles with the nearly 100% coulombic efficiency, which indicates that the system owns a good electrochemical reversibility. More than that, this system can achieve a high energy density of 70.4 Wh kg-1, which provides a powerful evidence to make the aqueous magnesium ion battery possible. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Matter localization on brane-worlds generated by deformed defects

    CERN Document Server

    Bernardini, Alex E

    2016-01-01

    Localization and mass spectrum of bosonic and fermionic matter fields of some novel families of asymmetric thick brane configurations generated by deformed defects are investigated. The localization profiles of spin 0, spin 1/2 and spin 1 bulk fields are identified for novel matter field potentials supported by thick branes with internal structures. The condition for localization is constrained by the brane thickness of each model such that thickest branes strongly induces matter localization. The bulk mass terms for both fermion and boson fields are included in the global action as to produce some imprints on mass-independent potentials of the Kaluza-Klein modes associated to the corresponding Schr\\"odinger equations. In particular, for spin 1/2 fermions, a complete analytical profile of localization is obtained for the four classes of superpotentials here discussed. Regarding the localization of fermion fields, our overall conclusion indicates that thick branes produce a left-right asymmetric chiral localiz...

  20. High energy density of Li3-xNaxV2(PO4)3/C cathode material with high rate cycling performance for lithium-ion batteries

    Science.gov (United States)

    Zuo, Zong-Lin; Deng, Jian-Qiu; Pan, Jin; Luo, Wen-Bin; Yao, Qing-Rong; Wang, Zhong-Min; Zhou, Huai-Ying; Liu, Hua-Kun

    2017-07-01

    A serials of micro-sized Li3-xNaxV2(PO4)3/C composite has been synthesized by sol-gel method, comprised of numerous primary nanocrystals. This structure can efficiently facilitate lithium-ion transport in secondary aggregated individual particles due to the short diffusion distance among primary nanocrystals, along with a high tap density. With the increasing of Na doping content, the structure evolution occurs in Li3-xNaxV2(PO4)3 from a single-phase structure to a two-phase structure. The appearance of rhombohedral phase can provide a larger free volume of the interstitial space, fastening ionic movement to offer an excellent high rate capability. Furthermore, Na doping can stabilize the rhombohedral structure of the V2(PO4)3 framework, leading to the remarkable cycling stability. Among all the composites, Li2.6Na0.4V2(PO4)3/C presents the best electrochemical performance with a high energy density of 478.8 Wh kg-1, delivering high initial discharge capacities of 121.6, 113.8 and 109.7 mAh g-1 at the rate of 5 C, 10 C and 20 C in a voltage range of 3.0 - 4.3 V, respectively. It also exhibit an excellent high rate cycling performance, with capacity retention of 85.9 %, 81.7 % and 76.5 % after 1000 cycles at the rate of 5 C, 10 C and 20 C in a voltage range of 3.0 - 4.3 V.

  1. Radiative neutrino mass generation from WIMP dark matter

    CERN Document Server

    Lineros, Roberto A

    2016-01-01

    The minimal seesaw extension of the Standard Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it potentially detectable at present and near future collider experiments.

  2. Investigation of structure-dielectric property relationships in zirconium oxide, tantalum pentoxide, and oxide-polymer laminate films for high energy density capacitor applications

    Science.gov (United States)

    Sethi, Guneet

    Pulsed power applications involve transformation of electrical energy into high-peak power pulses through capacitors. There is an immediate need for fast-response capacitors with decreased volume, weight, and cost for pulsed power applications and power distribution systems. This research challenge is dominated by energy density. Energy density is directly related to dielectric properties such as dielectric polarization, conductivity and breakdown strength of the capacitor dielectric. This research work correlates processing and microstructure of single and multiple component dielectric films with their dielectric properties. The inorganic materials studied in this dissertation include zirconium oxide (ZrO2) and tantalum pentoxide (Ta 2O5) reactive sputtered films. Film crystallization & structure was studied as a function of sputtering growth variables such as sputtering power, sputtering pressure, source frequency, oxygen pressure, substrate temperature, substrate material, and post-deposition annealing temperature. Polycrystalline phase of ZrO2 and amorphous phase of Ta2O 5 were obtained for most sputtering growth variables. Although the amorphous films have lower permittivity (32 for amorphous & 51 for polycrystalline at 1 kHz), they also have lower AC and DC conductivities (3.4x10-8 S/m for amorphous & 12.2x10 -8 S/m for polycrystalline at 1 kHz), which result in high breakdown strength than polycrystalline films. Amorphous Ta2O5 films are found to be ideal for high-energy density capacitors with energy density of 14 J/cm3 because of their high permittivity, low leakage current density, and high dielectric breakdown strength. Oxide films were combined with different polymers (polyvinyldene flouride-triflouroethylene, polypropylene and polyethylene terephthalate) to produce two different kinds of laminate composites---oxide on polymer and polymer on oxide. Permittivity and conductivity differences in the polymer and oxide films result in an impedance contrast

  3. Synthesis, characterization, and properties of peroxo-based oxygen-rich compounds for potential use as greener high energy density materials

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha Horadugoda

    One main aspect of high energy density material (HEDM) design is to obtain greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into groundwater has resulted in human exposure to ClO4-- ions, which cause disruptions of thyroid related metabolic pathways and even thyroid cancer. Many research efforts to find replacements have gained little success. Thus, there is a need for greener HEDMs. Peroxo-based oxygen-rich compounds are proposed as a potential new class of greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O 2 as the main decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide (MEKP) are the only well-studied highly energetic peroxides. However, due to their high impact and friction sensitivities, low thermal stabilities, and low detonation velocities they have not found any civil or military HEDM applications. In this dissertation research, we have synthesized and fully characterized four categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and the energetic properties for potential use as greener HEDMs. tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to handle. tert-Butyl peroxy esters were all surprisingly energetic (4896--6003 m/s), despite the low oxygen and nitrogen contents. Aromatic tert -butyl peroxy esters were much lower in impact and friction sensitivities with respect to the known peroxo-based explosives. These are among the first low sensitivity peroxo-based compounds that can be categorized as secondary

  4. The generation of warm dense matter samples using pulsed-power generators

    Science.gov (United States)

    Gourdain, P. A.; Seyler, C. E.; Knapp, P. F.

    2016-10-01

    Warm dense matter (WDM) bridges the gap between plasma and condensed matter, with densities similar to that of a solid, but temperature on the order of 1 eV. WDM is key to understanding the formation of gaseous giants, Mega-Earths, planetary collisions and inertial fusion implosions. Yet, the quantum properties of WDM and how they are expressed at the macroscopic level are mostly unknown. This paper uses 3-dimensional numerical simulations to show that cm-scale WDM samples can be generated by pulsed-power machines using a fast plasma closing switch, which virtually eliminates the mixing of WDM with other states of matter, allowing the measurement of its physical properties using line average diagnostics. A pre-ionized gas puff is imploded onto a central metal rod. Initially, most of the discharge current flows inside the gas shell. When the shell reaches the rod the full current switches to the rod in less than 10 ns. The subsequent compression produces WDM. We will discuss how an existing platform to generate cm-scale WDM at 20MA on the Z-machine at Sandia National Laboratories. This research is sponsored by DOE.

  5. Direct detection of fourth generation Majorana neutrino dark matter

    CERN Document Server

    Zhou, Yu-Feng

    2012-01-01

    Heavy stable fourth generation Majorana neutrinos contribute to a small fraction of the relic density of dark matter (DM) in the Universe. Due to its relatively strong coupling to the standard model particles, it can be probed by the current direct and indirect DM detection experiments even it is a subdominant component of the halo DM. We show that the current Xenon100 data constrain the mass of the stable Majorana neutrino to be greater than the mass of the top quark. The effective spin-independent cross section for the neutrino elastic scattering off nucleon is predicted to be $\\sim 1.5\\times 10^{-44} cm^2$, which is insensitive to the neutrino mass and mixing and can be reached by the direct DM detection experiments in the near future. In the same mass region the predicted effective spin-dependent cross section for the heavy neutrino scattering off proton is in the range of $2\\times 10^{-40} cm^2\\sim 2\\times 10^{-39} cm^2$, which is within the reach of the ongoing DM indirect search experiments. We demonst...

  6. Generation of Energetic Particles in Intense Laser Matter Interaction

    Science.gov (United States)

    Ramakrishna, Bhuvanesh; Muhammad, Tayyab; Bagchi, Suman; Mandal, Tirtha; Chakera, Juzer; Naik, Prasad; Gupta, Parshotam Dass; Department of Physics, Indian Institute of Technology Hyderabad, India. Collaboration; Laser Plasma Division, Raja Ramanna CentreAdvanced Technology, Indore, India. Collaboration

    2016-10-01

    The acceleration of high energy ion beams up to several tens of MeV per nucleon following the interaction of an ultra-short (t 1018 W.cm-2. μm-2) laser pulse with solid targets, is one of the burgeoning fields of research in the last few years. Mechanisms leading to forward-accelerated, high quality ion beams, operating at currently accessible laser intensities (up to 1021 W/cm2) in laser-matter interactions, are mainly associated with large electric fields set up at the target rear interface by the laser-accelerated electrons leaving the target. In this paper, we present our recent experimental results on MeV ion generation by mildly relativistic (1019 W / cm - 2) short-pulse (45 fs) laser interaction with foil targets of varying thicknesses, structured / uniform targets (e.g. nano structures on thin metallic foils, sandwich targets). Spectral modification / bunching, and divergence from structured targets will be discussed. DST Ramanujan Fellowship (SR/S2/RJN-25/2012).

  7. ALPS: the Dark Matter Generator (coming in 2019)

    Science.gov (United States)

    Barke, Simon; Bush, Zachary; Baum, Claire; Hollis, Hal; Mueller, Guido; Tanner, David

    2017-01-01

    Very promising dark matter candidates are axion-like particles: sub-eV particles that are expected to (weakly) interact with photons in the presence of a static electric or magnetic field. This interaction can turn photons into axions and back into photons. Hence, in order to generate axions, we will set up a 100 meter long Fabry-Perot cavity that can hold a 150,000 watt laser field and have a 5.3 tesla magnetic field along the entire length. If the theory holds up, a fraction of the photons should transform into relativistic axions. These axions would then propagate through any optical barrier and enter a matched cavity that is situated within an identical magnetic field. Here, some of the axions should turn back into photons of equal energy. Thus these photons resonate in the otherwise empty cavity where they can be detected. It is unknown if axion-like particles exist in the targeted mass range. However, the ALPS detection principle is very convenient because we will know the exact energy of the regenerated photons beforehand thus making a detection much easier.The final stage of the ALPS experiment will be completed by 2019 at the German Electron Synchrotron (DESY) site in Hamburg, Germany. This work is supported by grants from the Heising-Simons Foundation and the National Science Foundation.

  8. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  9. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  10. Second Hydrocarbon—Generation from Organic Matter Trapped in Fluid Inclusions in Carbonate Rocks

    Institute of Scientific and Technical Information of China (English)

    施继锡; 余孝颖

    1999-01-01

    The mechanism and significance of second hydrocarbon-generation from organic matter trapped in fluid inclusions in carbonate rocks are discussed.The types of organic matter and the relationship between them are also reviewed.The organic matter trapped in inclusions and crystals,which account for more than 20%of the total organic matter in carbonate rocks,may be of great significance in the generation of hydrocarbons.High-temperature oil resulting from second hydrocarbon-generation should be an important target,in addition to natural gas,in oilgas prospecting in regions of high-maturity carbonate rocks.

  11. A Novel Type of Oil—generating Organic Matter —Crystal—enclosed Organic Matter

    Institute of Scientific and Technical Information of China (English)

    周中毅; 裴存民; 等

    1992-01-01

    The comparative study of organic matter in carbonate rocks and argillaceous rocks from the same horizon indicates that the organic thermal maturities of carbonate rocks are much lower than those of argillaceous rocks .Ana extensive analysis of extracted and inclused organic matter from the same sample shows that inclused organic matter is different from extracted organic matter,and the thermal maturity of the former is usually lower than that of the latter in terms of biomarker structural parameters.It seems that carbonate mineras could preserve organic matter and retard organic maturation.The inclused organic matter,abundant in most carbonate rocks,will be released from minerals and transformed into oil and gas during the high-thermal maturity stage.

  12. 高能量密度氘、氦的第一原理研究进展%High energy density deuterium and helium, ab initio studies

    Institute of Scientific and Technical Information of China (English)

    王聪; 贺贤土; 张平

    2012-01-01

    极端条件下氘、氦的研究对于凝聚态物理、等离子体物理、天体物理以及惯性约束聚变的研究具有重要意义.文章综述了近年来温稠密区、热稠密区以及低温高压区的最新研究进展,归纳了尚待解决的科学问题,从而为进一步的研究提供参考.%The thermal physical properties of materials such as deuterium and helium, under extreme conditions are of extreme interest in condensed matter physics, plasma physics, astrophysics, and inertial confinement fusion. A brief review is given of recent studies in the warm and hot dense regimes, and the high pressure, low temperature region. The challenges in this research area are also discussed.

  13. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    Science.gov (United States)

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  14. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.; Patankar, S.; Stewart, N. H.; Smith, R. A.; Burdiak, G. C.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Suzuki-Vidal, F.; Bland, S. N.; Kwek, K. H.; Pickworth, L.; Bennett, M.; Hare, J. D. [Plasma Physics Group, Imperial College, London SW6 7LZ (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratory, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  15. Second-generation dark-matter axion search

    Energy Technology Data Exchange (ETDEWEB)

    Sikivie, P.; Sullivan, N.S.; Tanner, D.B. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    This research project is a collaboration with the axion search experiment at Lawrence Livermore National Laboratory. The axion is a particle that affects two important issues in particle physics and astrophysics: the origin of CP symmetry in the strong interactions, and the composition of the dark-matter of the universe. First predicted in 1978, present laboratory, astrophysical, and cosmological constraints suggest axions have a mass in the 1 {mu}eV-1 meV range. Axions are especially significant as dark matter if their mass is in the range 1-10 {mu}eV. These dark matter axions may be detected by their coupling to photons through the E - B interaction in a tunable high-Q microwave cavity permeated by a strong external magnetic field. The present experiment is the first cavity experiment with the sensitivity to possibly observe cosmic axions. It has recently begun taking data and will operate for the next several years. The University of Florida plans to contribute to the operation of this detector and to the design and prototyping of cavities for the experiment.

  16. New generation low-energy probes for ultralight axion and scalar dark matter

    CERN Document Server

    Stadnik, Yevgeny V

    2015-01-01

    We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).

  17. Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter

    Science.gov (United States)

    McDonald, John

    2012-09-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.

  18. Generation of WIMP Miracle-like Densities of Baryons and Dark Matter

    CERN Document Server

    McDonald, John

    2012-01-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Production of unstable scalars carrying baryon number at the LHC would be a clear signature of the model.

  19. Generation of strong magnetic fields in dense quark matter driven by the electroweak interaction of quarks

    Science.gov (United States)

    Dvornikov, Maxim

    2016-12-01

    We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.

  20. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai; Limthongkul, Pimpa

    2017-04-04

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  1. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  2. Computational Simulation of High Energy Density Plasmas

    Science.gov (United States)

    2009-10-30

    the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in

  3. Towards the next generation of simplified Dark Matter models

    CERN Document Server

    Albert, Andreas

    2017-01-01

    This White Paper is an input to the ongoing discussion about the extension and refinement of simplified Dark Matter (DM) models. Based on two concrete examples, we show how existing simplified DM models (SDMM) can be extended to provide a more accurate and comprehensive framework to interpret and characterise collider searches. In the first example we extend the canonical SDMM with a scalar mediator to include mixing with the Higgs boson. We show that this approach not only provides a better description of the underlying kinematic properties that a complete model would possess, but also offers the option of using this more realistic class of scalar mixing models to compare and combine consistently searches based on different experimental signatures. The second example outlines how a new physics signal observed in a visible channel can be connected to DM by extending a simplified model including effective couplings. This discovery scenario uses the recently observed excess in the high-mass diphoton searches of...

  4. High energy-density 0.72Pb(Zr0.47Ti0.53)O3-0.28Pb[(Zn0.45Ni0.55)1/3Nb2/3]O3 thick films fabricated by tape casting for energy-harvesting-device applications

    Science.gov (United States)

    Jeon, Chang Jun; Hwang, Ha Na; Jeong, Young Hun; Yun, Ji Sun; Nam, Joong Hee; Cho, Jeong Ho; Paik, Jong Hoo; Lim, Jong Bong; Nahm, Sahn; Kim, Eung Soo

    2013-11-01

    0.72Pb(Zr0.47Ti0.53)O3-0.28Pb[(Zn0.45Ni0.55)1/3Nb2/3]O3 (0.72PZT-0.28PZNN) thick films were prepared by using a tape casting method to develop new materials with high energy-density applicable to energy-harvesting devices. The piezoelectric strain constant ( d 33), dielectric constant ( ɛ {33/ T }/ ɛ 0), piezoelectric voltage constant ( g 33) and transduction coefficient ( d 33· g 33) of the films were affected by the sintering temperature. These results could be attributed to the crystal structure, microstructures and secondary phases. However, the dielectric loss (tan δ) of the films was not changed remarkably with increasing sintering temperature. Typically, a d 33 of 452 pC/N, ɛ {33/ T }/ ɛ 0 of 1444, d 33· g 33 of 20,340 × 10-15 m2/N and tan δ of 0.15% were obtained for the films sintered at 1050 °C for 1 h. The power generation performance of the piezoelectric unimorph cantilever was assessed to demonstrate the feasibility of the 0.72PZT-0.28PZNN piezoelectric thick film. Also, theoretical models were employed to predict the resonance frequency of the unimorph cantilever generator, and the predicted values were compared with experimental data.

  5. Cultural Differences in Perceiving Sounds Generated by Others: Self Matters

    Directory of Open Access Journals (Sweden)

    Liyu eCao

    2015-12-01

    Full Text Available Sensory consequences resulting from own movements receive different neural processing compared to externally generated sensory consequences (e.g., by a computer, leading to sensory attenuation, i.e., a reduction in perceived loudness or brain evoked responses. However, discrepant findings exist from different cultural regions about whether sensory attenuation is also present for sensory consequences generated by others. In this study, we performed a cross culture (between Chinese and British comparison on the processing of sensory consequences (perceived loudness from self and others compared to an external source in the auditory domain. We found a cultural difference in processing sensory consequences generated by others, with only Chinese and not British showing the sensory attenuation effect. Sensory attenuation in this case was correlated with independent self-construal scores. The sensory attenuation effect for self-generated sensory consequences was not replicated. However, a correlation with delusional ideation was observed for British. These findings are discussed with respects to mechanisms of sensory attenuation.

  6. Organic-matter maturation and petroleum generation model in the Yinggehai and Qiongdongnan basins

    Institute of Scientific and Technical Information of China (English)

    郝芳; 李思田; 孙永传; 张启明

    1996-01-01

    The enhancement of organic-matter maturation and petroleum generation by the migration and accumulation of active hydrothermal fluids in the high thermal-gradient, strongly overpressured environments in the Yinggehai and Qiongdongnan basins is systematically demonstrated by combination of geological, geochemical analysis and basin modeling. The retardation of organic-matter thermal evolution by abnormal pore-pressure is recognized, its manifestation and dynamic mechanism are illustrated, and chemical kinetic modeling of the pressure retardation is carried out. On this basis, the model of organic-matter thermal evolution and petroleum generation in high thermal-gradient, strongly overpressured environments is summarized. A correct understanding of the effects of active hydrothermal fluids and abnormal pore-fluid pressures on organic-matter thermal evolution is of great theoretical and practical significance for thermal history analysis, basin modeling and petroleum resource evaluation.

  7. Flavor Structure, Higgs boson mass and Dark Matter in Supersymmetric Model with Vector-like Generations

    CERN Document Server

    Higaki, Tetsutaro; Takeda, Naoyuki

    2016-01-01

    We study a flavor texture in a supersymmetric model with vector-like generations by using Froggatt-Nielsen mechanism. We find realistic flavor structures which reproduce the Cabbibo-Kobayashi-Maskawa matrix and fermion masses at low-energy. Furthermore, the fermionic component of the gauge singlet field becomes a candidate of dark matter, whereas the vacuum expectation value of the scalar component gives the vector-like mass. In our model, flavor physics and dark matter are explained with moderate size couplings through renormalization group flows, and the presence of dark matter supports the existence of just three generations in low energy scales. We analyze the parameter region where the current thermal relic abundance of dark matter, the Higgs boson mass and the muon $g-2$ can be explained simultaneously.

  8. The generation model of particle physics and the cosmological matter-antimatter asymmetry problem

    CERN Document Server

    Robson, B A

    2016-01-01

    The matter-antimatter asymmetry problem, corresponding to the virtual nonexistence of antimatter in the universe, is one of the greatest mysteries of cosmology. Within the framework of the Generation Model (GM) of particle physics, it is demonstrated that the matter-antimatter asymmetry problem may be understood in terms of the composite leptons and quarks of the GM. It is concluded that there is essentially no matter-antimatter asymmetry in the present universe and that the observed hydrogen-antihydrogen asymmetry may be understood in terms of statistical fluctuations associated with the complex many-body processes involved in the formation of either a hydrogen atom or an antihydrogen atom.

  9. 3,4-二氨基呋咱及其高能量密度衍生物合成研究进展%Progress of synthesis of 3,4-diaminofurazan and high energy density derivatives

    Institute of Scientific and Technical Information of China (English)

    柳沛宏; 曹端林; 王建龙; 冯璐璐; 张楠; 秦宗扬

    2015-01-01

    呋咱类化合物因能量密度高、综合性能好、可作为炸药和推进剂等广泛应用于军事领域。3,4-二氨基呋咱(DAF)作为重要的前体化合物,其大规模合成为呋咱类高能量密度衍生物的应用奠定了基础。本文首先介绍了DAF的合成工艺及其氧化机理,并综述了以其为中间体得到的氧化物、大环、长链和稠环化合物的国内外合成方法及性能,表明呋咱类化合物爆轰性能优良,具有潜在应用前景;但是,不少硝基取代或多呋咱环衍生物存在安定性差、感度高的缺点。据此,提出设计合成新型钝感高能呋咱衍生物是解决上述不足的有效方法;DAF的合成工艺研究及增大呋咱类化合物开发力度是未来的发展重点。%Furazan energetic compounds are widely used as explosives or propellants in the military field because of their high energy density and good comprehensive properties. The large-scale synthesis of 3,4-diaminofurazan (DAF) as an important precursor compound lays a foundation for the application of furazan high energy density derivatives. In this paper,synthesis process and oxidation mechanism of DAF are introduced. Based on DAF as an intermediate,synthesis methods and properties of oxide and large ring,long chain,fused ring compounds are reviewed,which indicates that the detonation properties of furazan compounds are good and have potential application prospects. However,many nitro substituted or more furazan ring derivatives have disadvantages of poor stability and high sensitivity. According to this,the design of synthesizing new insensitive energetic furazan derivatives is considered as the effective strategy. Research on DAF synthesis process and strengthening development of furazan compounds are focuses of the future.

  10. Computer-Generated Holographic Gratings in Soft Matter

    CERN Document Server

    Zito, Gianluigi; Piccirillo, Bruno; Tkachenko, Volodymyr; Santamato, Enrico; Abbate, Giancarlo

    2013-01-01

    Standard multiple-beam holography has been largely used to produce gratings in polymer-liquid crystal composites, like POLICRYPS, H-PDLC gratings and POLIPHEM [1]. In this work we present a different approach to liquid crystalpolymeric grating production, based on the Computer-Generated Holography (CGH). The great advantage of using CGH is that interferometer-based schemes are no longer necessary, avoiding problems related to long term stability of the interference pattern and multi-beam complex optical setup. Moreover, the CGH technique allows a wider choice of pattern designs. In this preliminary work, we obtained promising results, as for instance the patterning of a square-wave refractive index modulation of a LCpolymeric composite, a pattern which is not achievable with standard two-beam holography.

  11. Heavy bino dark matter and collider signals in the MSSM with vectorlike fourth-generation particles

    Science.gov (United States)

    Abdullah, Mohammad; Feng, Jonathan L.; Iwamoto, Sho; Lillard, Benjamin

    2016-11-01

    MSSM4G models, in which the minimal supersymmetric standard model is extended to include vectorlike copies of standard model particles, are promising possibilities for weak-scale supersymmetry. In particular, two models, called QUE and QDEE, realize the major virtues of supersymmetry (naturalness consistent with the 125 GeV Higgs boson, gauge coupling unification, and thermal relic neutralino dark matter) without the need for fine-tuned relations between particle masses. We determine the implications of these models for dark matter and collider searches. The QUE and QDEE models revive the possibility of heavy bino dark matter with mass in the range 300-700 GeV, which is not usually considered. Dark matter direct detection cross sections are typically below current limits, but are naturally expected above the neutrino floor and may be seen at next-generation experiments. Indirect detection prospects are bright at the Cherenkov Telescope Array, provided the fourth-generation leptons have mass above 350 GeV or decay to taus. In a completely complementary way, discovery prospects at the LHC are dim if the fourth-generation leptons are heavy or decay to taus, but are bright for fourth-generation leptons with masses below 350 GeV that decay either to electrons or to muons. We conclude that the combined set of direct detection, CTA, and LHC experiments will discover or exclude these MSSM4G models in the coming few years, assuming the Milky Way has an Einasto dark matter profile.

  12. Health and Young Adulthood: Does Immigrant Generational Status Matter?

    Directory of Open Access Journals (Sweden)

    Carolyn Zambrano

    2010-10-01

    Full Text Available A substantial body of research in international migration focuses on the “immigrant health paradox” and the health benefits immigrants may experience because of it. Less examined are the health outcomes of immigrants’ children and later generations. Will the protective health benefit apply to child migrants and the children of immigrants? Will it endure as they transition to adulthood? Using two waves of data from the Na-tional Longitudinal Study of Adolescent Health, I examine the differences in health out-comes among young immigrants (1.5 generation, children of immigrants (2nd genera-tion, and native-born adolescents with native-born parents (3rd generation+. Self-reported health serves to measure health outcomes. I find that both Hispanic respon-dents and Hispanic second-generation respondents are more likely to report poor health.Un important organisme de recherche dans le domaine de l’immigration internationale s’intéresse au “paradoxe de la santé des immigrants” et aux avantages que les immigrants peuvent en tirer en termes de santé. L’état de santé des enfants des immigrants et des générations ultérieures est moins étudié. Cet avantage en termes de santé s’appliquera-t-il aux enfants migrants et aux enfants des immigrants ? Perdurera-t-il lorsque ceux-ci passeront à l’âge adulte ? A partir de deux vagues de données issues de l’Etude longitudinale nationale sur la santé des adolescents, j’ai comparé l’état de santé de jeunes immigrants (1,5 génération, d’enfants d’immigrants (2ème génération et d’adolescents nés dans le pays d’immigration issus de parents eux-mêmes nés dans le pays d’immigration (3ème génération et au-delà. L’auto-évaluation de la santé sert à mesurer l’état de santé. A l’issue de cette analyse, j’ai découvert que les personnes hispaniques interrogées et les personnes hispaniques de deuxième génération interrogées étaient plus

  13. 高能量密度激光器腔镜有限元分析%Finite element analysis of the mirror in high-energy density laser resonator

    Institute of Scientific and Technical Information of China (English)

    于德利; 桑凤亭; 金玉奇; 孙以珠

    2001-01-01

    通过对高能量密度激光器运行过程中腔镜存在的表面及背面吸收热量的有限元分析,得出腔镜表面在不同吸收热流密度和约束条件条件下热变形分布。指出提高腔镜反射率,改变腔镜的基底材料以及优化腔镜的约束条件是显著降低腔镜反射面变形的有效途径。%Through the Finite Element Analysis (FEA) on the resonator mirror, which absorbs the heat at the front and back surfaces during the operation of high-energy density laser, the thermal displacement distributions are presented under different heat flux and constraint conditions. It is indicated that improving the reflective rate, adopting new mirror substrate material and optimizing the constraint condition of the mirror is an effective method for reducing mirror thermal deformation.

  14. Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO).

    Science.gov (United States)

    Wang, Tianyi; Zheng, Chunmei; Yang, Junqing; Zhang, Xueli; Gong, Xuedong; Xia, Mingzhu

    2014-06-01

    The derivatives of 1,2,3,4-tetrazine may be promising candidates for high-energy density compounds and are receiving more and more attentions. In this study, a new derivative 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO) has been designed. The geometrical structure and IR spectrum in the gas phase were studied at the B3LYP/6-31G* level of density functional theory (DFT). The crystal structure was predicted by molecular mechanics method and refined by the GGA/BOP function of periodic DFT with the basis set of TNP. The gas phase enthalpy of formation was calculated by the homodesmotic reaction method. The enthalpy of sublimation and solid phase enthalpy of formation were also predicted. The detonation properties were estimated with the Kamlet-Jacobs equations based on the predicted density and enthalpy of formation in solid state. The available free space in the lattice and resonance energy were calculated to evaluate its stability. ANPTTO has a high stability and is a promising high energetic component with the density >2 g · cm(-3), detonation velocity >9000 m · s(-1), and detonation pressure >40 GPa. A synthetic route was proposed to provide a consideration for further study.

  15. A Theoretical investigation of a potential high energy density compound 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo[3.1.1.1(2,4]octane

    Directory of Open Access Journals (Sweden)

    Guozheng Zhao

    2013-01-01

    Full Text Available The B3LYP/6-31G (d density functional theory (DFT method was used to study molecular geometry, electronic structure, infrared spectrum (IR and thermodynamic properties. Heat of formation (HOF and calculated density were estimated to evaluate detonation properties using Kamlet-Jacobs equations. Thermal stability of 3,6,7,8-tetranitro-3,6,7,8-tetraaza-tricyclo [3.1.1.1(2,4]octane (TTTO was investigated by calculating bond dissociation energy (BDE at the unrestricted B3LYP/6-31G(d level. Results showed the N-NO2 bond is a trigger bond during the thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM methods belongs to P2(1/C space group, with cell parameters a = 8.239 Å, b = 8.079 Å, c = 16.860 Å, Z = 4 and r = 1.922 g cm-3. Both detonation velocity of 9.79 km s-1 and detonation pressure of 44.22 GPa performed similarly to CL-20. According to the quantitative standards of energetics and stability, TTTO essentially satisfies this requirement as a high energy density compound (HEDC.

  16. Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material.

    Science.gov (United States)

    Wang, Fang; Du, Hongchen; Zhang, Jianying; Gong, Xuedong

    2011-10-27

    Studies have suggested that octanitrocubane (ONC) is one of the most powerful non-nuclear high energy density material (HEDM) currently known. 2,4,6,8-Tetranitro-1,3,5,7-tetraazacubane (TNTAC) studied in this work may also be a novel HEDM due to its high nitrogen content and crystal density. Density functional theory and molecular mechanics methods have been employed to study the crystal structure, IR spectrum, electronic structure, thermodynamic properties, gas-phase and condensed-phase heat of formation, detonation performance, and pyrolysis mechanism of TNTAC. The TNTAC has a predicted density of about 2.12 g/cm(3), and its detonation velocity (10.42 km/s) and detonation pressure (52.82 GPa) are higher than that of ONC. The crystalline packing is P2(1)2(1)2(1), and the corresponding cell parameters are Z = 4, a = 8.87 Å, b = 8.87 Å, and c = 11.47 Å. Both the density of states of the predicted crystal and the bond dissociation energy of the molecule in gas phase show that the cage C-N bond is the trigger bond during thermolysis. The activation energy of the pyrolysis initiation reaction obtained from the B3LYP/6-311++G(2df,2p) level is 125.98 kJ/mol, which indicates that TNTAC meets the thermal stability request as an exploitable HEDM.

  17. Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments

    Science.gov (United States)

    Swadling, G. F.; Ross, J. S.; Manha, D.; Galbraith, J.; Datte, P.; Sorce, C.; Katz, J.; Froula, D. H.; Widmann, K.; Jones, O. S.; Divol, L.; Landen, O. L.; Kilkenny, J. D.; Moody, J. D.

    2017-03-01

    The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity ("x-ray blanking") have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr-1, 250-300 eV). Blanking of fused silica (SiO2) was measured to occur over a range of time-integrated soft x-ray (nitride (Si3N4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. If successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.

  18. The next generation dark matter hunter: XENON1T status and perspective

    Directory of Open Access Journals (Sweden)

    Rizzo A.

    2016-01-01

    Full Text Available The XENON Dark Matter Experiment has been ongoing at LNGS since 2005 with the goal of searching for dark matter WIMPs with liquid xenon as target and detector material. With detectors of increasing target mass and decreasing background, the XENON program has achieved competitive limits on WIMP-nucleon interaction couplings, but also on axions and axion like particles. With the start of the next generation experiment, XENON1T expected in 2015, XENON Dark Matter Experiment will continue to lead field of dark matter direct detection. XENON1T will be the first experiment to use multi-tons of liquid xenon in a time projection chamber and is designed to achieve two orders of magnitude higher sensitivity than the current best limits. I will review the status of construction and the scientific goals of XENON1T.

  19. Generation of strong magnetic fields in dense quark matter driven by the electroweak interaction of quarks

    CERN Document Server

    Dvornikov, Maxim

    2016-01-01

    We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field $10^{12}\\,\\text{G}$ to the strengths $(10^{14}-10^{15})\\,\\text{G}$. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.

  20. Extreme states of matter on earth and in the cosmos

    CERN Document Server

    Fortov, Vladimir E

    2011-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.  

  1. Amorphous LiCoO2sbnd Li2SO4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density

    Science.gov (United States)

    Nagao, Kenji; Hayashi, Akitoshi; Deguchi, Minako; Tsukasaki, Hirofumi; Mori, Shigeo; Tatsumisago, Masahiro

    2017-04-01

    Newly amorphous Li2-x/100Cox/100S1-x/100O4-x/50 (xLiCoO2·(100-x)Li2SO4 (mol%)) positive electrode active materials are synthesized using mechanochemical techniques. SEM observation indicates that average radii of the Li1.2Co0.8S0.2O2.4 (80LiCoO2·20Li2SO4 (mol%)) particles are about 3 μm. HR-TEM images indicate that the particles comprise nano-crystalline and amorphous phases. The crystalline phase is attributable to cubic LiCoO2 phase. These active materials exhibit a high electronic conductivity of around 10-5-10-1 S cm-1 and an ionic conductivity of around 10-7-10-6 S cm-1 at room temperature. Bulk-type all-oxide solid-state cells (Lisbnd In alloy/Li3BO3-based glass-ceramic electrolyte/amorphous Li2-x/100Cox/100S1-x/100O4-x/50) are fabricated by pressing at room temperature without high temperature sintering. Although the cell with the milled LiCoO2 shows no capacity, the cell using the Li1.2Co0.8S0.2O2.4 electrode with no conductive components (ca. 150 μm thickness) operates as a secondary battery at 100 °C, with an average discharge potential of 3.3 V (vs. Li+/Li) and discharge capacity of 163 mAh g-1. A positive electrode with large amounts of active materials is suitable for achieving high energy density in all-solid-state batteries. These newly synthesized amorphous Li2-x/100Cox/100S1-x/100O4-x/50 electrodes with ionic and electronic conductivities and good processability meet that demand.

  2. The Process of Generation of Mass, The Higgs Boson, and Dark Matter

    CERN Document Server

    Delgado, V

    1993-01-01

    A dynamical mechanism of symmetry breaking in which gauge and matter fields play an active role is proposed. It basically represents a covariant generalization of the mechanism responsible for superconductivity, and provides a {\\em natural} mechanism of generation of mass which is not in conflict with the present value of the cosmological constant. When applied to SU(2)$\\times$U(1) leads to exactly the same physics (Lagrangian density) as the Standard Model but modifying {\\em only} the Higgs sector. It also predicts the appearance over all space of a classical scalar field as well as the existence of density fluctuations. According to it, space would be filled with a macroscopically large number of Higgs bosons which now appear as light, stable scalar particles {\\em decoupled} from ordinary matter and radiation. Therefore they would play the same role as the Cooper pairs in superconductivity and would be a natural candidate for dark matter.

  3. Simultaneous Generation of WIMP Miracle-like Densities of Baryons and Dark Matter

    CERN Document Server

    McDonald, John

    2011-01-01

    The observed density of dark matter is of the magnitude expected for a thermal relic weakly-interacting massive particle (WIMP). In addition, the observed baryon density is within an order of magnitude of the dark matter density. This suggests that the baryon density is physically related to a typical thermal relic WIMP dark matter density. We present a model which simultaneously generates thermal relic WIMP-like densities for both baryons and dark matter by modifying a large initial baryon asymmetry. Dark matter is due to O(100) GeV gauge singlet scalars produced in the annihilation of the O(TeV) coloured scalars which is responsible for the final thermal WIMP-like baryon asymmetry. The requirement of no baryon washout implies that there are two gauge singlet scalars. The low temperature transfer of the asymmetry to conventional baryons can be understood if the long-lived O(TeV) coloured scalars have large hypercharge, |Y| > 4/3. Production of such scalars at the LHC would be a clear signature of the model.

  4. Project“High energy density lithium batteries for long range EV”%“长续航动力锂电池新材料与新体系研究”项目介绍

    Institute of Scientific and Technical Information of China (English)

    李泓

    2016-01-01

    2015年科技部组织编制了新能源汽车试点专项实施方案并于11月12日发布了2016年项目指南,共支持19个项目,其中“1.1”为动力电池新材料新体系。通过竞争,中国科学院物理研究所牵头申请的“长续航动力锂电池新材料与新体系研究”项目,与北京大学牵头申请的“高比能动力电池的关键技术和相关基础科学问题研究项目”共同获得了支持。本文介绍了“长续航动力锂电池新材料与新体系研究”项目的目的和意义,研究目标,研究内容,技术指标,课题安排,研究基础,研究挑战和预期效益。%Ministry of Science and Technology of the People’s Republic of China (MOST) initiates national new energy vehicles pilot project in 2015 for next 5 years. Totally 19 projects are announced in 2016. The project 1.1 is a 5-year fundamental research type project (2016—2020) with a 32M¥ budget , aiming to increase the energy density of EV batteries. Two targets are purposed: 400 W·h/kg for Li-ion batteries and 500 W·h/kg for new batteries. After 3 rounds review and defense, a team led by Institute of Physics, CAS wins the project. The title of the project is“High energy density lithium batteries for long range EV”. Scientific problems and technologies of three types batteries will be studied: 400 W·h/kg lithium ion batteries, 500 W·h/kg half-solid Li-S batteries and 600 W·h/kg solid Li-air batteries. This project includes 11 CAS institutes and one company BJEV as partners.

  5. Generating a synthetic axion signal for cold cark matter axion searches using microwave cavities

    CERN Document Server

    AUTHOR|(CDS)2108502; Miceli, Lino

    2017-01-01

    We demonstrated that an axion signal in a RF resonator can be synthesized and controlled with commercially available instrumentation. Although this signal needs refinements, it can be customized to the needs of a specific cold dark matter axion search experiment. Since the modulator in the setup has arbitrary function generator capabilities, this apparatus is already capable to produce the necessary refinements, for instance a maxwellian line shape.

  6. Electricity Generation from Organic Matters in Biocatalyst-Based Microbial Fuel Cells (MFCs)

    DEFF Research Database (Denmark)

    Min, Booki; Zhang, Yifeng; Angelidaki, Irini

    Microbial fuel cells (MFCs) are a novel technology for converting organic matter directly to electricity via biocatalytic reactions by microorganisms. MFCs can also be used for wastewater treatment by the oxidations of organic pollutants during the electricity generation. Several factors for opti......Microbial fuel cells (MFCs) are a novel technology for converting organic matter directly to electricity via biocatalytic reactions by microorganisms. MFCs can also be used for wastewater treatment by the oxidations of organic pollutants during the electricity generation. Several factors...... for optimum power generation in MFC have been investigated at previous studies. A submersible microbial fuel cell (SMFC), which is a novel configuration, was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater without any amendments was used...... as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428±0.003V with a fixed 470Ω resistor from acetate. From the polarization test, the maximum power density of 204mWm−2 was obtained at current density of 595mAm−2 (external resistance = 180Ω). The power...

  7. Lagging and Its Kinetic Mechanism of Hydrocarbon Re-generation from Organic Matters in Coals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the composite analysis of the coal sample series with natural and artificial maturation, the lagging and its kinetic mechanism of the hydrocarbon re-generation from the organic matters in coals were studied using the Rock-Eval gas chromatogram (Py-GC) method. The results show that the maturation at the hydrocarbon re-generation peak shifts regularly forward with increasing the starting maturation and the deadline of the hydrocarbon re-generation lies about at 4. 0% Ro. The difference value between the peak and starting maturation of the hydrocarbon regeneration develops in a parabola-like pattern with increasing the starting maturation, and the resolute and relative laggings evolve in stage, from which the lagging depth could be predicted. The peak half-width of the hydrocarbon re-generation curve develops as the starting maturation increases, which might indicate that the hydrocarbon-derived rocks with the starting maturation lied about at oil-generated peak might be relatively high in the hydrocarbon-regenerated amount. In the meantime, the mean reactivated energy of the coal samples with starting maturation develops in four stages that are highly consistent with those of the hydrocarbon-regenerated amount and lagging, which indicated that the hydrocarbon re-generation is strictly controlled by the geochemical mechanism of the reactive kinetics.

  8. Reliability of Monte Carlo event generators for gamma ray dark matter searches

    CERN Document Server

    Cembranos, J A R; Gammaldi, V; Lineros, R A; Maroto, A L

    2013-01-01

    We study the differences in the gamma ray spectra simulated by four Monte Carlo event generator packages developed in particle physics. Two different versions of PYTHIA and two of HERWIG are analyzed, namely PYTHIA 6.418 and HERWIG 6.5.10 in Fortran and PYTHIA 8.165 and HERWIG 2.6.1 in C++. For all the studied channels, the intrinsic differences between them are shown to be significative and may play an important role in misunderstanding dark matter signals.

  9. SOX2+ cell population from normal human brain white matter is able to generate mature oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Jorge Oliver-De La Cruz

    Full Text Available OBJECTIVES: A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. METHODS: We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. RESULTS: We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+ and mature (MBP+ oligodendrocytes and, to a lesser extent, astrocytes (GFAP+. CONCLUSION: Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures.

  10. Flavor structure, Higgs boson mass, and dark matter in a supersymmetric model with vector-like generations

    Science.gov (United States)

    Higaki, Tetsutaro; Nishida, Michinobu; Takeda, Naoyuki

    2017-08-01

    We study a supersymmetric model in which the Higgs mass, the muon anomalous magnetic moment, and the dark matter are simultaneously explained with extra vector-like generation multiplets. For the explanations, non-trivial flavor structures and a singlet field are required. In this paper, we study the flavor texture by using the Froggatt-Nielsen mechanism, and then find realistic flavor structures that reproduce the Cabbibo-Kobayashi-Maskawa matrix and fermion masses at low energy. Furthermore, we find that the fermion component of the singlet field becomes a good candidate for dark matter. In our model, flavor physics and dark matter are explained with moderate-size couplings through renormalization group flows, and the presence of dark matter supports the existence of just 3 generations in low-energy scales. We analyze the parameter region where the current thermal relic abundance of dark matter, the Higgs boson mass, and the muon g{-}2 can be explained simultaneously.

  11. High-scale leptogenesis with three-loop neutrino mass generation and dark matter

    Science.gov (United States)

    Gu, Pei-Hong

    2017-04-01

    We demonstrate a common origin for high-scale leptogenesis and three-loop neutrino mass generation. Specifically we extend the standard model by two real singlet scalars, two singly charged scalars carrying different quantum numbers under certain global symmetry and two or more singlet fermions with Majorana masses. This global symmetry is only allowed to be softly or spontaneously broken. Our model also respects an exactly conserved Z 2 discrete symmetry. Through the real scalar decays and then the charged scalar decays, we can obtain a lepton asymmetry stored in the standard model leptons. This lepton asymmetry can be partially converted to a baryon asymmetry by the sphaleron processes. The interactions for this leptogenesis can also result in a three-loop diagram to generate the neutrino masses. The lightest singlet fermion can keep stable to serve as a dark matter particle.

  12. Collisional-inhomogeneity-induced generation of matter-wave dark solitons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Kevrekidis, P.G., E-mail: kevrekid@gmail.co [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)

    2010-08-16

    We propose an experimentally relevant protocol for the controlled generation of matter-wave dark solitons in atomic Bose-Einstein condensates (BECs). In particular, using direct numerical simulations, we show that by switching-on a spatially inhomogeneous (step-like) change of the s-wave scattering length, it is possible to generate a controllable number of dark solitons in a quasi-one-dimensional BEC. A similar phenomenology is also found in the two-dimensional setting of 'disk-shaped' BECs but, as the solitons are subject to the snaking instability, they decay into vortex structures. A detailed investigation of how the parameters involved affect the emergence and evolution of solitons and vortices is provided.

  13. Quasi-monoenergetic positron beam generation from ultra-intense laser-matter interactions

    Science.gov (United States)

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2016-10-01

    In ultra-intense laser-matter interactions in which the radiation reaction effect plays an important role, γ-rays are effectively generated that are intense, collimated, and of short duration. These γ-rays propagate through the target, which results in the electron-positron pair creation caused by the interaction of the γ-rays with the nuclear electric fields. The positron beam thus generated has several unique features; it is quasi-monoenergetic in nature with a peak energy of hundreds of MeV, well collimated, and of ultra-short duration. Based on the numerical simulations, the dependences of the number and monochromaticity of the positrons on the laser and target parameters are explored, which leads to the proposal of a new type of the laser-driven positron source.

  14. Vienna Soil-Organic-Matter Modeler--Generating condensed-phase models of humic substances.

    Science.gov (United States)

    Sündermann, Axel; Solc, Roland; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Oostenbrink, Chris

    2015-11-01

    Humic substances are ubiquitous in the environment and have manifold functions. While their composition is well known, information on the chemical structure and three-dimensional conformation is scarce. Here we describe the Vienna Soil-Organic-Matter Modeler, which is an online tool to generate condensed phase computer models of humic substances (http://somm.boku.ac.at). Many different models can be created that reflect the diversity in composition and conformations of the constituting molecules. To exemplify the modeler, 18 different models are generated based on two experimentally determined compositions, to explicitly study the effect of varying e.g. the amount of water molecules in the models or the pH. Molecular dynamics simulations were performed on the models, which were subsequently analyzed in terms of structure, interactions and dynamics, linking macroscopic observables to the microscopic composition of the systems. We are convinced that this new tool opens the way for a wide range of in silico studies on soil organic matter.

  15. Thermally Generated Gauge Singlet Scalars as Self-Interacting Dark Matter

    CERN Document Server

    McDonald, J

    2002-01-01

    We show that a gauge singlet scalar S with a coupling to the Higgs doublet of the form lambda_{S} S^{\\dagger}S H^{\\dagger}H and with the S mass entirely generated by the Higgs expectation value has a thermally generated relic density Omega_{S} \\approx 0.3 if m_{S} \\approx (2.9-10.5)(Omega_{S}/0.3)^{1/5}(h/0.7)^{2/5} MeV for Higgs boson masses in the range 115 GeV to 1 TeV. Remarkably, this is very similar to the range (m_{S} = (6.6-15.4)\\eta^{2/3} MeV) required in order for the self-interaction (\\eta/4)(S^{\\dagger}S)^{2} to account for self-interacting dark matter when \\eta is about 1. The corresponding coupling is lambda_{S} \\approx (2.7 \\times 10^{-10} - 3.6 \\times 10^{-9})(Omega_{S}/0.3)^{2/5}(h/0.7)^{4/5}, implying that such scalars are very weakly coupled to the Standard Model sector. More generally, for the case where the S mass is at least partially due to a bare mass term, if m_{S} \\approx 10 \\eta^{2/3} MeV, corresponding to self-interacting dark matter, then in order not to overpopulate the Universe ...

  16. Some Recent Progress in the Field of High Energy Density Laboratory Astrophysics%高能量密度实验室天体物理近年来的一些进展

    Institute of Scientific and Technical Information of China (English)

    韩波; 王菲鹿; 赵刚

    2013-01-01

    Laboratory astrophysics is one of the youngest branches of astrophysics. Its name was coined about 30 years ago. It is successful because the physical laws we discover on Earth should work everywhere. We use laboratory experiments to expand our understanding of physical processes and then apply these results to the processes throughout the Universe. High energy density laboratory astrophysics (HEDLA) allows a depth study and comparison of the measurements produced by laboratory Z-pinches and lasers. In this paper, we review the recent progress in several fields of HEDLA, such as the supernova explosion, stellar jets, photoionized plasmas, stellar opacity and equation of state (EOS) and solar magnetic reconnection. In some cases laboratory experiments can reproduce similar physics. For example, the charged plasmas can be created in the laboratory to study the interactions among photons, electrons and ions that occur in the stars, the solar corona and the X-ray binaries. In other cases, we need some scales to study the processes behind the astrophysical phenomena by the experiments. For example, the evolution of a laboratory plasma jet, with typical spatial scales of a few mm and characteristic timescales of hundreds of ns, can be a scaled version of large-scale jets from young stars (typically thousands of astronomical units in length and evolving in timescales of many years). In order for this scaling to be valid, both the laboratory and astrophysical jets must have similar dimensionless parameters such as the Mach number, Reynolds number, and Peclet number. HEDLA is being paced by large experiments such as NIF, LMJ, and Shenguang lasers. New experimental techniques, improved simulations codes, and experimental diagnostics provide the ground-based testing which benefits our understanding of the Universe. The most powerful laser project is the National Ignition Facility (NIF), in which 196 laser beams deliver nearly 2 megajoules to a millimeter sized target

  17. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  18. A Study of Cosmic Expansion Generated by Non-conservation of Matter in the Framework of Brans-Dicke Theory

    CERN Document Server

    Roy, Sudipto

    2016-01-01

    The present study, on the expansion of universe, is based on an assumption regarding the possibility of inter-conversion between matter and dark energy, through some interaction of matter with the scalar field in the framework of Brans-Dicke theory. The field equations for a spatially flat space-time have been solved using an empirical dependence of scalar field parameter upon the scale factor. To represent the behaviour regarding the non-conservation of matter, a function, expressed in terms of the Hubble parameter, has been empirically incorporated into the field equations. Their solution shows that, this function, whose value is proportional to the matter content of the universe, decreases monotonically with time. This matter-field interaction generates late time acceleration, causing the deceleration parameter to change its sign from positive to negative. Time dependence of the proportion of dark energy component of the universe has been determined and shown graphically. Time variation of gravitational co...

  19. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarate del Valle, Pedro F. [Departamento de Quimica, Universidad de Guadalajara - CUCEI, Ap. Postal 4-021, Guadalajara, Jalisco CP 44410 (Mexico); Simoneit, Bernd R.T. [Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Building 104, Corvallis, OR 97331-5503 (United States)]. E-mail: simoneit@coas.oregonstate.edu

    2005-12-15

    Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition ({delta} {sup 13}C = -21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka ({sup 14}C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200-250 deg. C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions.

  20. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation

    Energy Technology Data Exchange (ETDEWEB)

    Remington, Bruce A.; Rudd, Robert E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2015-09-15

    Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.

  1. Gravitational wave generation by interaction of high power lasers with matter. Part II: Ablation and Piston models

    CERN Document Server

    Kadlecová, Hedvika; Weber, Stefan; Korn, Georg

    2016-01-01

    We analyze theoretical models of gravitational waves generation in the interaction of high intensity laser with matter, namely ablation and piston models. We analyse the generated gravitational waves in linear approximation of gravitational theory. We derive the analytical formulas and estimates for the metric perturbations and the radiated power of generated gravitational waves. Furthermore we investigate the characteristics of polarization and the behaviour of test particles in the presence of gravitational wave which will be important for the detection.

  2. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  3. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  4. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and ...

  5. High density matter at RHIC

    Indian Academy of Sciences (India)

    Thomas S Ullrich

    2004-02-01

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

  6. Watershed Scale Monitoring and Modeling of Natural Organic Matter (NOM) Generation and Transport

    Science.gov (United States)

    Adams, R.; Rees, P. L.; Reckhow, D. A.; Castellon, C. M.

    2006-05-01

    This study describes a coupled watershed scale monitoring campaign, laboratory study, and hydrological modeling study which has been focused on determining the sources and transport mechanisms for Natural Organic Matter (NOM), in a small, mostly forested New England watershed. For some time, the state conservation authorities and a large metropolitan water authority have been concerned that the level of naturally-occurring disinfection byproducts in drinking water supplied by a large surface water reservoir (Watchusett Reservoir, MA) have been increasing over time. The resulting study has attempted to investigate how these compounds, which are mostly formed by the chlorination process at the water treatment plant, are related to NOM precursor compounds which are generated from organic matter and transported by runoff processes in the watershed of the Watchusett Reservoir. The laboratory study measures disinfection byproduct formation potential (DBPFP) through chlorination of raw water samples obtained through field monitoring. Samples are analysed for trihalomethanes (THMs), and haloacetic acids (HAAs). Samples are also analysed for dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254). The samples have been collected from as many components of the hydrological cycle as possible in one of the subcatchments of Watchusett Reservoir (Stillwater River). To date the samples include, stream runoff, water impounded naturally in small ponds by beaver dams, rainfall, snow, throughfall (drainage from tree canopies) and samples pumped from shallow suction lysimeters which were installed to monitor soil water in the riparian zone. The current monitoring program began in late-Summer 2005, however infrequent stream samples are available dating back to 2000 from an earlier research project and water quality monitoring by various regulatory authorities. The monitoring program has been designed to capture as much seasonal variation in water chemistry as

  7. Approximate Methods for the Generation of Dark Matter Halo Catalogs in the Age of Precision Cosmology

    Directory of Open Access Journals (Sweden)

    Pierluigi Monaco

    2016-10-01

    Full Text Available Precision cosmology has recently triggered new attention on the topic of approximate methods for the clustering of matter on large scales, whose foundations date back to the period from the late 1960s to early 1990s. Indeed, although the prospect of reaching sub-percent accuracy in the measurement of clustering poses a challenge even to full N-body simulations, an accurate estimation of the covariance matrix of clustering statistics, not to mention the sampling of parameter space, requires usage of a large number (hundreds in the most favourable cases of simulated (mock galaxy catalogs. Combination of few N-body simulations with a large number of realizations performed with approximate methods gives the most promising approach to solve these problems with a reasonable amount of resources. In this paper I review this topic, starting from the foundations of the methods, then going through the pioneering efforts of the 1990s, and finally presenting the latest extensions and a few codes that are now being used in present-generation surveys and thoroughly tested to assess their performance in the context of future surveys.

  8. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs)

    Science.gov (United States)

    Banerjee, Abhik; Upadhyay, Kush Kumar; Puthusseri, Dhanya; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2014-03-01

    Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li4Ti5O12 as the anode for high performance Li-HECs. The energy density of the cell is ~65 W h kg-1 which is significantly higher than that achievable with commercially available activated carbon (~36 W h kg-1) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ~20 W h kg-1). The MOF-DC/Li4Ti5O12 Li-HEC assembly also shows good cyclic performance with ~82% of the initial value (~25 W h kg-1) retained after 10 000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration.Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li4Ti5O12 as the anode for high performance Li-HECs. The energy density of the cell is ~65 W h kg-1 which is significantly higher than that achievable with commercially available activated carbon (~36 W h kg-1) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ~20 W h kg-1). The MOF-DC/Li4Ti5O12 Li-HEC assembly also shows good cyclic performance with ~82% of the initial value (~25 W h kg-1) retained after 10 000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration. Electronic supplementary information

  9. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs).

    Science.gov (United States)

    Banerjee, Abhik; Upadhyay, Kush Kumar; Puthusseri, Dhanya; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2014-04-21

    Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li₄Ti₅O₁₂ as the anode for high performance Li-HECs. The energy density of the cell is ∼65 W h kg(-1) which is significantly higher than that achievable with commercially available activated carbon (∼36 W h kg(-1)) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ∼20 W h kg(-1)). The MOF-DC/Li₄Ti₅O₁₂ Li-HEC assembly also shows good cyclic performance with ∼82% of the initial value (∼25 W h kg(-1)) retained after 10,000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration.

  10. Thermal Evolution of Organic Matter and Secondary Hydrocarbon Generation from Upper Paleozoic Coal Deposits in Northern China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The metamorphism and hydrocarbon generation from the Upper Paleozoic coal-bearing strata in Northern China have been widely studied by Chinese geologists since the 1990s.Based on a large amount of data of Ro values, combined with geological background, we have systematically analyzed the thermal evolutionary characteristics of organic matter and the stages of hydrocarbon generation from the Permo-Carboniferous coal deposits and discussed the condition of secondary hydrocarbon generation.The distribution range of secondary hydrocarbon generation in Northern China is thus determined.It is shown that the coal ranks of the Upper Paleozoic coal deposits are higher in the southern and western belts than those in the northern and eastern belts.Really significant secondary hydrocarbon generation is mainly related to the thermal evolution of organic matter during the Himalayan Period.Profitable areas for secondary hydrocarbon generation should be buried at 3000-4000 m up to the present.Maturity of the Permo-Carboniferous source rocks is not very high.It is suggested that the Bohai Bay depression is favourable for secondary hydrocarbon generation and has good oil and gas prospects.

  11. Form--a matter of generation: the relation of generation, form, and function in the epigenetic theory of Caspar F. Wolff.

    Science.gov (United States)

    Witt, Elke

    2008-12-01

    The question, how organisms obtain their specific complex and functional forms, was widely discussed during the eighteenth century. The theory of preformation, which was the dominant theory of generation, was challenged by different alternative epigenetic theories. By the end of the century it was the vitalist approach most famously advocated by Johann Friedrich Blumenbach that prevailed. Yet the alternative theory of generation brought forward by Caspar Friedrich Wolff was an important contribution to the treatment of this question. He turned his attention from the properties of matter and the forces acting on it towards the level of the processes of generation in order to explain the constitution of organismic forms. By regarding organic structures and forms to be the result of the lawfulness of ongoing processes, he opened up the possibility of a functional but non-teleological explanation of generation, and thereby provided an important complement to materialist and vitalist approaches.

  12. Heavy Bino Dark Matter and Collider Signals in the MSSM with Vector-like 4th-Generation Particles

    CERN Document Server

    Abdullah, Mohammad; Iwamoto, Sho; Lillard, Benjamin

    2016-01-01

    MSSM4G models, in which the minimal supersymmetric standard model is extended to include vector-like copies of standard model particles, are promising possibilities for weak-scale supersymmetry. In particular, two models, called QUE and QDEE, realize the major virtues of supersymmetry (naturalness consistent with the 125 GeV Higgs boson, gauge coupling unification, and thermal relic neutralino dark matter) without the need for fine-tuned relations between particle masses. We determine the implications of these models for dark matter and collider searches. The QUE and QDEE models revive the possibility of heavy Bino dark matter with mass in the range 300-700 GeV, which is not usually considered. Dark matter direct detection cross sections are typically below current limits, but are naturally expected above the neutrino floor and may be seen at next-generation experiments. Indirect detection prospects are bright at the Cherenkov Telescope Array, provided the 4th-generation leptons have mass above 350 GeV or dec...

  13. Fast generation method of fuzzy rules and its application to flux optimization in process of matter converting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of two linguistic variables with the degree of certainty and the storage structure of rule base was described.The simulation results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5%.

  14. Determining the Main Gas-generation Phase of Marine Organic Matters in Different Occurrence States using the Kinetic Method

    Institute of Scientific and Technical Information of China (English)

    WANG Yunpeng; ZHAO Changyi; WANG Zhaoyun; WANG Hongjun; ZOU Yanrong; LIU Jinzhong; ZHAO Wenzhi; LIU Dehan; LU Jialan

    2008-01-01

    This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, low-maturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen,Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system.According to our results, the "dead line" of natural gas generation is determined as Ro=3.5% for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example.

  15. Development of a High Energy Density Capacitor for Plasma Thrusters.

    Science.gov (United States)

    1980-10-01

    sparcity of data results in wide confidence bands around the plotted reliability versus discharge life curve. Within the 90% confidence limits, lines...point a 4 mm, *C 161 flossing point, IC -70 (viscous liquid) Pour point. *C -69 Flash point (open cup), IF 330 (t66C) File point. IF 353 (112?C...temperature. confidence bands around the plotted relia- bility vs. discharge-life curve. Within The rear lid is welded to the can once the 90% confidence limits

  16. Achieving tunable sensitivity in composite high-energy density materials

    Science.gov (United States)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Rashkeev, Sergey

    2017-01-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural point defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  17. High Energy Density Non-Aqueous Battery System.

    Science.gov (United States)

    1983-05-31

    Approved for public releSO; DT IS. SUPPLEMENTARY NOTESH-> - Presented at 16A meeting of The Electrochemical Society held in Detroit, Michigan in...at the 162nd meeting of The Electrochemical Society (8). The results of the above study are summarized as follows: o The corrosion of calcium and... Electrochemical Society , 127, 782-789, 1980. 7. E. Peled, and A. Meitev,"Calcium Ca(AlC14)? Thionyl Chloride Cell- Performance ans Safety", Journal of

  18. High Energy Density Solid and Liquid Hydrocarbon Fuels

    Science.gov (United States)

    1989-02-01

    available to the general public, including foreign nations. This technical report has been reviewed and is approved for publica - tion. EF F , USAF...LLLL CCa S28 000 C)C 9 L) C4) UU L4) LOL 29rl LUz C0z o4c4 go =+ I 0 U., o -L WW LU 3:1 30 C’a £30 xI ao 0 0 cr ( ou uL ;: j z UIZ Z au ,ccLL :- LJ

  19. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.

  20. High Energy Density Nastic Structures Using Biological Transport Mechanisms

    Science.gov (United States)

    2007-02-28

    occur at the cell wall and membranes of inter-cellular organelles to transport nutrients in the plant. The concentration of ions from the active and...pp. 459–467. [6] dos Santos, A. C., da Silva, W. S., de Meis, L., and Galina, A., “Proton Transport in Maize Tonoplasts Supported by Fructose-1,6

  1. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  2. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  3. High energy-density liquid rocket fuel performance

    Science.gov (United States)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  4. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  5. High energy density battery based on complex hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  6. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.

  7. Advanced Polymer Electrolytes for High-energy-density Power Sources

    Institute of Scientific and Technical Information of China (English)

    D. Golodnitsky; E. Livshits; R. Kovarsky; E. Peled

    2005-01-01

    @@ 1Introduction The preparation of highly controlled thin films of lithium ion conducting organic materials is becoming a challenging but rewarding goal in view of obtaining high-performance technological devices like solid-state polymer batteries and capacitors. The classical polymer electrolyte consists of organic macromolecules (usually polyether polymer) that are doped with inorganic (typically lithium) salts. Poly(ethylene oxide) (PEO) is the most commonly employed polymer in PEs because of the peculiar array in the (-CH2-CH2-O-)n chain providing the ability to solvate low-lattice-energy lithium salts. For three decades the major research attention was focused on amorphous polymer electrolytes in the belief that ionic conductivity occurs in a manner somewhat analogous to gas diffusion through polymer membranes. Segmental motion of the polymer chains continuously creates free volume, into which the ions migrate, and this process allows ions to progress across the electrolyte. Such a view was established by a number of experiments, and denied the possibility of ionic conductivity in crystalline polymer phases. This concept has been recently overturned by our group, demonstrating that conductivity comes about as a result of permanent conducting pathways for the movement of ions.

  8. Multi-Scale Simulation of High Energy Density Ionic Liquids

    Science.gov (United States)

    2007-06-19

    T=ISOOK of the BMIM +/NO 3 system with 64 ion pairs calculated by the newly defined heterogeneity order parameter.29 30 Each sphere represents the...7 shows the aggregation of methane molecules in BMIM */CL. The aggregation of non-polar molecules decreases with increasing symmetries of the anions

  9. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  10. Synthesis of Novel High Energy Density Materials Using Nitrocarbenes

    Science.gov (United States)

    1992-02-21

    synthesis is our finding that the combination of titanium tetrachloride/methylene bromide/zinc smoothly converts the caged diketone to the bismethylene...AD-A248 465 AO PAGE ft 07ŕ Februa re 21 , 992uq" Final~o Repotm 8//9 -12319 4. TITLE AND SUBTITLE S. FUNOING NUMBERS Synthesis of Novel High Energy...theory to predict the structures and energies of potential energetic molecules and to guide the synthesis of the more promising candidate molecules, 2

  11. The Search for New High-Energy-Density Materials

    Science.gov (United States)

    2014-01-01

    a Mn atom with halogen atoms and stability of its half-filled 3d- shell ”, J. Chem. Phys. 134, 234311 (2011) Pathak, B., Samanta, D., Ahuja, R...Society, Cocoa Beach, FL, February 21-25, 2010 US-Egypt Advanced Studies Institute (ASI) on “Nanomaterials and Nanocatalysis for Energy

  12. Development of high energy density electrical double layer capacitors

    Science.gov (United States)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction potential at 1mA/cm 2. A brief study on non-polar co-solvents for EDLC was studied. Among the solvents studied, fluorinated solvents had low melting point and viscosity due to incorporation of asymmetry. However, because of low dielectric constant, TEABF4 is insoluble and had to be mixed with other solvents. The mixed fluorinated solvents had slightly higher voltage window due to decreased donicity of lone pairs of electrons. The second approach to increasing energy density is to increase capacitance. Capacitance is mainly dependent on surface area and porosity of electrodes. Nanostructured materials which can offer multiple charge storage are currently of interest. Hence, novel NiSi nanotubes were studied as electrodes for supercapacitor applications. Silicon material has high capacity and these inert electrodes can enable higher capacitance by controlling the porosity and functional groups in specific electrolytes. The Silicon wafers were made porous by anodization using hydrofluoric acid. In order to improve the conductivity, the porous silicon was doped, then plated with Ni using electroless plating method and annealed to form nickel mono silicide. Gold was deposited on the back side of the electrode to enhance conductivity. Our porous NiSi electrodes gave capacitance of about 1185muF /cm2 in 0.5 M H 2SO4. Further investigation of oxide formation and modification of functional groups will help achieve higher capacitance.

  13. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  14. Cytogenetic evaluation of extractable agents from airborne particulate matter generated in the city of Catania (Italy).

    Science.gov (United States)

    Motta, Salvatore; Federico, Concetta; Saccone, Salvatore; Librando, Vito; Mosesso, Pasquale

    2004-07-11

    In order to document cytogenetic damage associated with air pollution and, possibly, with health effects in the city of Catania, Sicily (Italy), we analyzed the induction of chromosomal aberrations by extractable agents from airborne particulate matter in a Chinese hamster epithelial liver (CHEL) cells. These cells retain their metabolic competence to activate different classes of promutagens/procarcinogens into biologically active metabolites. Airborne particulate matter was obtained from two stationary samplers (stations I and II) in two areas endowed by an elevated car transit in the centre of Catania. The results obtained clearly indicated that airborne particulate matter from both stations I and II proved to be clastogens in CHEL cells but not in Chinese hamster ovary (CHO) cells without metabolic activation, indicating that airborne particulate mixtures need to be metabolically converted before exerting their genotoxic potential. On the basis of these results we can assert that the test system employed to identify the cytogenetic potential of airborne particulate matter is useful and profitable for environmental control, and helpful to plan specific actions aimed at reducing the hazards derived from exposure to polluted air.

  15. Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target

    Science.gov (United States)

    Schönlein, A.; Boutoux, G.; Pikuz, S.; Antonelli, L.; Batani, D.; Debayle, A.; Franz, A.; Giuffrida, L.; Honrubia, J. J.; Jacoby, J.; Khaghani, D.; Neumayer, P.; Rosmej, O. N.; Sakaki, T.; Santos, J. J.; Sauteray, A.

    2016-05-01

    We studied the interaction of a high-intensity laser with mass-limited Ti-wires. The laser was focused up to 7× 1020 \\text{W/cm}2 , with contrast of 10-10 to produce relativistic electrons. High-spatial-resolution X-ray spectroscopy was used to measure isochoric heating induced by hot electrons propagating along the wire up to 1 mm depth. For the first time it was possible to distinguish surface target regions heated by mixed plasma mechanisms from those heated only by the hot electrons that generate warm dense matter with temperatures up to 50 eV. Our results are compared to simulations that highlight both the role of electron confinement inside the wire and the importance of resistive stopping powers in warm dense matter.

  16. a Next-Generation Cavity Microwave Experiment to Search for Dark-Matter Axions

    Science.gov (United States)

    Bibber, K. Van; Stöffl, W.; Anthony, P. L.; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Železný, V.; Golubev, N. A.; Kazachenko, O. V.; Kravchuk, L. V.; Kuzmin, V.; Romanov, G. V.; Sekachev, I. V.; Rosenberg, L. J.; Hagmann, C.; Moltz, D. M.; Nezrick, F.; Turner, M. S.; Villa, F.

    We propose a large-scale experimental search for dark-matter axions which may constitute an important fraction of our own galactic halo. As shown by Sikivie,1 dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. The principal improvement in power sensitivity over two earlier pilot experiments (×25) derives from the large-volume high field superconducting magnet (the NASA SUMMA coils). The improvement in mass range (1.5 to 12.6 μeV) will result from the use of several microwave cavity arrays, of 2n cavities each, over the course of the experimental program, rather than a single cavity. We are participating in a joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search.

  17. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation

    OpenAIRE

    2012-01-01

    Microalgae excrete relatively large amounts of algal organic matter (AOM) that may interfere with flocculation. The influence of AOM on flocculation of Chlorella vulgaris was studied using five different flocculation methods: aluminum sulfate, chitosan, cationic starch, pH-induced flocculation and electro-coagulation–flocculation (ECF). The presence of AOM was found to inhibit flocculation for all flocculation methods resulting in an increase of dosage demand. For pH-induced flocc...

  18. Relativistic gravity fields and electromagnetic fields generated by flows of matter

    CERN Document Server

    Bogdan, Victor M

    2009-01-01

    One of the highlight of this note is that the author presents the relativistic gravity field that Einstein was looking for. The field is a byproduct of the matter in motion. This field can include both the discrete and continuous components. In free space the waves produced in this field propagate with velocity of light. Another highlight is the proof of amended Feynman's formulas for electromagnetic potentials. This makes the formulas mathematically complete and precise. The main result can be stated as follows. In a fixed Lorentzian frame given is a trajectory $r_2(t,r_0)$ of flow of matter. The parameter $r_0$ changes in a compact set $F$ representing the position of the matter at some initial time $t_0.$ The flow must satisfy certain conditions of regularity. Given any signed measure $q(Q)$ of finite variation defined on Borel subsets of $F,$ representing total charge contained in the set $Q\\subset F,$ such a flow determines the scalar $\\phi$ and the vector $A$ potentials for a pair $(E,B)$ of fields sati...

  19. Fermion condensate generates a new state of matter by making flat bands

    Science.gov (United States)

    Shaginyan, V. R.; Popov, K. G.; Khodel, V. A.

    2014-09-01

    This short review paper is devoted to 90th anniversary of S.T. Belyaev birthday. Belyaev's ideas associated with the condensate state in Bose interacting systems have stimulated intensive studies of the possible manifestation of such a condensation in Fermi systems. In many Fermi systems and compounds at zero temperature a phase transition happens that leads to a quite specific state called fermion condensation. As a signal of such a fermion condensation quantum phase transition (FCQPT) serves unlimited increase of the effective mass of quasiparticles that determines the excitation spectrum and creates flat bands. We show that the class of Fermi liquids with the fermion condensate forms a new state of matter. We discuss the phase diagrams and the physical properties of systems located near that phase transition. A common and essential feature of such systems is quasiparticles different from those suggested by L.D. Landau by crucial dependence of their effective mass on temperature, external magnetic field, pressure, etc. It is demonstrated that a huge amount of experimental data collected on different compounds suggest that they, starting from some temperature and down, form the new state of matter, and are governed by the fermion condensation. Our discussion shows that the theory of fermion condensation develops completely good description of the NFL behavior of strongly correlated Fermi systems. Moreover, the fermion condensation can be considered as the universal reason for the NFL behavior observed in various HF metals, liquids, compounds with quantum spin liquids, and quasicrystals. We show that these systems exhibit universal scaling behavior of their thermodynamic properties. Therefore, the quantum critical physics of different strongly correlated compounds is universal, and emerges regardless of the underlying microscopic details of the compounds. This uniform behavior, governed by the universal quantum critical physics, allows us to view it as the main

  20. Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter.

    Science.gov (United States)

    Albinet, Alexandre; Minero, Claudio; Vione, Davide

    2010-07-15

    This paper focuses on the study of the photochemical activity of dissolved organic matter present in rainwater. Formation rates of the reactive species hydroxyl radical (OH(*)), singlet oxygen ((1)O(2)) and dissolved organic matter triplet states ((3)DOM()) were determined by irradiation (UV-A) of wet-only rainwater samples collected in Turin (Italy) in the presence of specific scavengers (benzene, furfuryl alcohol and phenol, respectively). Photo-formation rates of OH(*) ( approximately 3.10(-)(11)Ms(-)(1)) and (1)O(2) ( approximately 10(-)(14)Ms(-)(1)) were lower (1 or 2 orders of magnitude) or largely lower (4 to 10 orders of magnitude) than those determined for fog and cloud samples in previous studies. (3)DOM() formation rate values were either negligible or quite low ( approximately 10(-)(12)Ms(-)(1)) by comparison with those evaluated for surface water samples. Deduced steady-state [OH(*)] were in the same range as those reported for fog samples in the literature (8.7.10(-)(16) to 1.5.10(-)(15)M), while [(1)O(2)] was often several orders of magnitude lower and, therefore, could be considered as negligible. Nitrite (NO(2)(-)) constituted the main source of OH(*) (69 + or - 21 to 138 + or - 36%), and the deduced contribution of DOM was low or nil. All the results obtained in this study tend to demonstrate that DOM (including HUmic LIke Substances, HULIS) present in rainwater is poorly or not photoactive. Therefore, there could be considerable difference between rainwater DOM (HULIS included) and the organic matter present in surface waters, particularly the humic substances, as far as the photochemical activity is concerned.

  1. Photochemical generation of reactive species upon irradiation of rainwater: Negligible photoactivity of dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Albinet, Alexandre, E-mail: alexandre.albinet@gmail.com [Dipartimento di Chimica Analitica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Minero, Claudio [Dipartimento di Chimica Analitica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide, E-mail: davide.vione@unito.it [Dipartimento di Chimica Analitica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy)

    2010-07-15

    This paper focuses on the study of the photochemical activity of dissolved organic matter present in rainwater. Formation rates of the reactive species hydroxyl radical (OH{sup {center_dot}}), singlet oxygen ({sup 1}O{sub 2}) and dissolved organic matter triplet states ({sup 3}DOM{sup *}) were determined by irradiation (UV-A) of wet-only rainwater samples collected in Turin (Italy) in the presence of specific scavengers (benzene, furfuryl alcohol and phenol, respectively). Photo-formation rates of OH{sup {center_dot}} ({approx} 3 . 10{sup -11} M s{sup -1}) and {sup 1}O{sub 2} ({approx} 10{sup -14} M s{sup -1}) were lower (1 or 2 orders of magnitude) or largely lower (4 to 10 orders of magnitude) than those determined for fog and cloud samples in previous studies. {sup 3}DOM{sup *} formation rate values were either negligible or quite low ({approx} 10{sup -12} M s{sup -1}) by comparison with those evaluated for surface water samples. Deduced steady-state [OH{sup {center_dot}}] were in the same range as those reported for fog samples in the literature (8.7 . 10{sup -16} to 1.5 . 10{sup -15} M), while [{sup 1}O{sub 2}] was often several orders of magnitude lower and, therefore, could be considered as negligible. Nitrite (NO{sub 2}{sup -}) constituted the main source of OH{sup {center_dot}} (69 {+-} 21 to 138 {+-} 36%), and the deduced contribution of DOM was low or nil. All the results obtained in this study tend to demonstrate that DOM (including HUmic LIke Substances, HULIS) present in rainwater is poorly or not photoactive. Therefore, there could be considerable difference between rainwater DOM (HULIS included) and the organic matter present in surface waters, particularly the humic substances, as far as the photochemical activity is concerned.

  2. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  3. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  4. An accurate tool for the fast generation of dark matter halo catalogs

    CERN Document Server

    Monaco, P; Borgani, S; Crocce, M; Fosalba, P; Sheth, R K; Theuns, T

    2013-01-01

    We present a new parallel implementation of the PINpointing Orbit Crossing-Collapsed HIerarchical Objects (PINOCCHIO) algorithm, a quick tool, based on Lagrangian Perturbation Theory, for the hierarchical build-up of Dark Matter halos in cosmological volumes. To assess its ability to predict halo correlations on large scales, we compare its results with those of an N-body simulation of a 3 Gpc/h box sampled with 2048^3 particles taken from the MICE suite, matching the same seeds for the initial conditions. Thanks to the FFTW libraries and to the relatively simple design, the code shows very good scaling properties. The CPU time required by PINOCCHIO is a tiny fraction (~1/2000) of that required by the MICE simulation. Varying some of PINOCCHIO numerical parameters allows one to produce a universal mass function that lies in the range allowed by published fits, although it underestimates the MICE mass function of FoF halos in the high mass tail. We compare the matter-halo and the halo-halo power spectra with t...

  5. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  6. 新型高能化学电源电极过程及其研究方法的进展%Progresses in the Research of Electrode Processes andMeasuring Techniques in the Development of New High Energy-density Electrochemical Power Sources

    Institute of Scientific and Technical Information of China (English)

    林祖赓; 杨勇; 尤金跨

    2001-01-01

    简要介绍国际上新型高能化学电源的一些研究现状,并主要结合课题组的研究工作,就锂离子电池纳米相电极材料,金属氢化物电极表面电化学性能及其相关电极过程和化学电源研究中谱学电化学方法的应用等进行了总结和回顾.%Some new progresses in the development of new high energy-density electrochemical power sources have been briefly reviewed. The research work carried out in our lab about study of electrode materials in nano-scale for Li-ion batteries, surface properties of the metal-hydride electrodes and related electrode reaction mechanism and development of in-situ spectroelectrochemical techniques for study of electrode processes in electrochemical power sources have been introduced and reviewed.

  7. Generating Merger Trees for Dark Matter Haloes: A Comparison of Methods

    CERN Document Server

    Jiang, Fangzhou

    2013-01-01

    Halo merger trees describe the hierarchical mass assembly of dark matter haloes, and are the backbone for modeling galaxy formation and evolution. Merger trees constructed using Monte Carlo algorithms based on the extended Press-Schechter (EPS) formalism are complementary to those extracted from N-body simulations, and have the advantage that they are not trammeled by limited numerical resolution and uncertainties in identifying (sub)haloes and linking them between snapshots. This paper compares multiple EPS-based merger tree algorithms to simulation results using four diagnostics: progenitor mass function (PMF), mass assembly history (MAH), merger rate per descendant halo, and the unevolved subhalo mass function (USMF). In general, algorithms based on spherical collapse yield major-merger rates that are too high by a factor of two, resulting in MAHs that are systematically offset. Assuming ellipsoidal collapse solves most of these issues, but the particular algorithm investigated here that incorporates ellip...

  8. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation.

    Science.gov (United States)

    Vandamme, Dries; Foubert, Imogen; Fraeye, Ilse; Muylaert, Koenraad

    2012-11-01

    Microalgae excrete relatively large amounts of algal organic matter (AOM) that may interfere with flocculation. The influence of AOM on flocculation of Chlorella vulgaris was studied using five different flocculation methods: aluminum sulfate, chitosan, cationic starch, pH-induced flocculation and electro-coagulation-flocculation (ECF). The presence of AOM was found to inhibit flocculation for all flocculation methods resulting in an increase of dosage demand. For pH-induced flocculation, the dosage required to achieve 85% flocculation increased only 2-fold when AOM was present, while for chitosan, this dosage increased 9-fold. For alum, ECF and cationic starch flocculation, the dosage increased 5-6-fold. Interference by AOM is an important parameter to consider in the assessment of flocculation-based harvesting of microalgae.

  9. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell.

    Science.gov (United States)

    Li, Hui; Tian, Yu; Zuo, Wei; Zhang, Jun; Pan, Xiaoyue; Li, Lipin; Su, Xinying

    2016-04-01

    The microbial fuel cell (MFC) was evaluated as an alternative way to recover electricity from canteen based food waste. Characteristics of the organics in food waste before and after the MFC treatment were analyzed to investigate how the organic matters were biodegraded and transformed during the MFC treatment. A maximum power density of 5.6W/m(3) and an average output voltage of 0.51V were obtained. During the MFC operation, the hydrophilic and acidic fractions were more readily degraded, compared to the neutral fractions. Additionally, aromatic compounds in the hydrophilic fraction were more preferentially removed than non-aromatic compounds. The MFC could easily remove the tryptophan protein-like substances in all fractions and aromatic proteins in hydrophilic and hydrophobic neutral fractions. Additionally, the hydrophobic amide-1 proteins and aliphatic components were readily hydrolyzed and biodegraded in the MFC. These findings may facilitate the pretreatment and posttreatment choices for MFC system fed with food waste.

  10. The impact of three dimensional MHD instabilities on the generation of warm dense matter using a MA-class linear transformer driver

    Science.gov (United States)

    Gourdain, P.-A.; Seyler, C. E.

    2017-09-01

    Warm dense matter is difficult to generate since it corresponds to a state of matter which pressure is order of magnitude larger than can be handled by natural materials. A diamond anvil can be used to pressurize matter up to one Gbar, this matter is at high density but at room temperature. High power lasers and heavy ion beams can generate warm dense matter on time scales where measuring quasi-static transport coefficients such as viscosity or heat conduction proves difficult since both experimental techniques relies on inertial confinement. We present here a third method to generate warm dense matter. It uses a pulsed-power driver which current rise time is substantially shortened by using a plasma opening switch, limiting the development of electrothermal instabilities. The switch relies on the implosion of a gas puff Z-pinch which carries most of the discharge current until the pinch reaches the sample. After that, the sample is compressed until it reaches the warm dense matter regime. Three-dimensional magnetohydrodynamics computations show that if the density of the gas is low enough no detectable instabilities (e.g. kinks and sausages modes) impede the remainder of the implosion.

  11. Does nativity matter?: Correlates of immigrant health by generation in the Russian Federation

    Directory of Open Access Journals (Sweden)

    Cynthia Buckley

    2011-06-01

    Full Text Available The Russian Federation has experienced simultaneous declines in health and rises in international migration. Guided by the "healthy migrant effect" found elsewhere, we examine two questions. First, do the foreign-born in the Russian Federation exhibit better overall health than the native-born? Second, to the extent positive health selectivity exists, is it transferred to the second generation? Using the first wave of the Russian Generations and Gender Survey, our findings support the idea of positive health selection among international migrants from non-Slavic regions. The effect of migrant status, regardless of origin, diminishes when age, sex, and native language are taken into account.

  12. Does Online Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance

    NARCIS (Netherlands)

    S. Tirunillai (Seshadri); G.J. Tellis (Gerard)

    2011-01-01

    textabstractUser-Generated Content in online platforms or chatter for short provides a valuable source of consumer feedback on market performance of firms. This study examines whether chatter can predict stock market performance, which metric of chatter has the strongest relationship, and what the d

  13. Sustainability in Science Education? How the Next Generation Science Standards Approach Sustainability, and Why It Matters

    Science.gov (United States)

    Feinstein, Noah Weeth; Kirchgasler, Kathryn L.

    2015-01-01

    In this essay, we explore how sustainability is embodied in the Next Generation Science Standards (NGSS), analyzing how the NGSS explicitly define and implicitly characterize sustainability. We identify three themes (universalism, scientism, and technocentrism) that are common in scientific discourse around sustainability and show how they appear…

  14. Sustainability in Science Education? How the Next Generation Science Standards Approach Sustainability, and Why It Matters

    Science.gov (United States)

    Feinstein, Noah Weeth; Kirchgasler, Kathryn L.

    2015-01-01

    In this essay, we explore how sustainability is embodied in the Next Generation Science Standards (NGSS), analyzing how the NGSS explicitly define and implicitly characterize sustainability. We identify three themes (universalism, scientism, and technocentrism) that are common in scientific discourse around sustainability and show how they appear…

  15. Does Online Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance

    NARCIS (Netherlands)

    S. Tirunillai (Seshadri); G.J. Tellis (Gerard)

    2011-01-01

    textabstractUser-Generated Content in online platforms or chatter for short provides a valuable source of consumer feedback on market performance of firms. This study examines whether chatter can predict stock market performance, which metric of chatter has the strongest relationship, and what the

  16. Determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry.

    Science.gov (United States)

    Silva, Laiana O B; Leao, Danilo J; dos Santos, Debora C; Matos, Geraldo D; de Andrade, Jailson B; Ferreira, Sergio L C

    2014-09-01

    The present paper describes the development of a method for the determination of copper in airborne particulate matter using slurry sampling and chemical vapor generation atomic absorption spectrometry (CVG AAS). Chemometric tools were employed to characterize the influence of several factors on the generation of volatile copper species. First, a two-level full factorial design was performed that included the following chemical variables: hydrochloric acid concentration, tetrahydroborate concentration, sulfanilamide concentration and tetrahydroborate volume, using absorbance as the response. Under the established experimental conditions, the hydrochloric acid concentration had the greatest influence on the generation of volatile copper species. Subsequently, a Box-Behnken design was performed to determine the optimum conditions for these parameters. A second chemometric study employing a two-level full factorial design was performed to evaluate the following physical factors: tetrahydroborate flow rate, flame composition, alcohol volume and sample volume. The results of this study demonstrated that the tetrahydroborate flow rate was critical for the process. The chemometric experiments determined the following experimental conditions for the method: hydrochloric acid concentration, 0.208 M; tetrahydroborate concentration, 4.59%; sulfanilamide concentration, 0.79%; tetrahydroborate volume, 2.50 mL; tetrahydroborate flow rate, 6.50 mL min(-1); alcohol volume, 200 µL; and sample volume, 7.0 mL. Thus, this method, using a slurry volume of 500 µL and a final dilution of 7 mL, allowed for the determination of copper with limits of detection and quantification of 0.30 and 0.99 µg L(-1), respectively. Precisions, expressed as RSD%, of 4.6 and 2.8% were obtained using copper solutions at concentrations of 5.0 and 50.0 µg L(-1), respectively. The accuracy was evaluated by the analysis of a certified reference material of urban particulate matter. The copper concentration

  17. Generating merger trees for dark matter haloes: a comparison of methods

    Science.gov (United States)

    Jiang, Fangzhou; van den Bosch, Frank C.

    2014-05-01

    Halo merger trees describe the hierarchical assembly of dark matter haloes, and are the backbone for modelling galaxy formation and evolution. Merger trees constructed using Monte Carlo algorithms based on the extended Press-Schechter (EPS) formalism are complementary to using N-body simulations and have the advantage that they are not trammelled by limited numerical resolution and uncertainties in identifying and linking (sub)haloes. This paper compares multiple EPS-based merger tree algorithms to simulation results using four diagnostics: progenitor mass function, mass assembly history (MAH), merger rate per descendant halo and the unevolved subhalo mass function. Spherical collapse-based methods typically overpredict major-merger rates, whereas ellipsoidal collapse dramatically overpredicts the minor-merger rate for massive haloes. The only algorithm in our comparison that yields results in good agreement with simulations is that by Parkinson et al. (P08). We emphasize, though, that the simulation results used as benchmarks in testing the merger trees are hampered by significant uncertainties themselves: MAHs and merger rates from different studies easily disagree by 50 per cent, even when based on the same simulation. Given this status quo, the P08 merger trees can be considered as accurate as those extracted from simulations.

  18. Investigation into the oxidative potential generated by the formation of particulate matter from incense combustion.

    Science.gov (United States)

    Chuang, Hsiao-Chi; BéruBé, Kelly; Lung, Shih-Chun C; Bai, Kuan-Jen; Jones, Tim

    2013-01-15

    The formation of aerosols during combustion plays an important role in allowing released products to interreact, leading to an increase in particulate matter oxidative potential. This study investigated the physicochemistry of incense combustion-derived pollutants, which were emitted into the ambient air as solid and gas phases, followed by the determination of their oxidative potential. Upon combustion of a joss stick, approximately 60% of the mass of incense raw ingredients was released into the ambient air as combustion products including 349.51 mg/g PM(10), 145.48 mg/g CO and 0.16 mg/g NOx. Furthermore, incense combustion produced significant number of primary particles (incense combustion was able to react with CaCO(3) to produce the final product of Ca(NO(3))(2) in the ambient air. Moreover, coagulation could be a vital process for the growth of primary incense combustion particles through the intermixing with volatile organics. The incense particle's reactions with other combustion-derived products could be responsible for their significant oxidative capacity of 33.1-43.4% oxidative DNA damage. This study demonstrated that the oxidative potential of incense particles appeared to be related to the process of particle formation, and also provided novel data for the respiratory exposure assessment.

  19. Producing 30 Tons of Underground Argon for the Next Generation Dark Matter Detector

    Science.gov (United States)

    Alexander, Thomas; DarkSide Collaboration Collaboration

    2017-01-01

    The DarkSide-20k experiment seeks to collect and purify 10s of tons of argon gas derived from the Doe Canyon CO2 well in southwestern Colorado, which has been shown to have a 39 Ar concentration of 0.73% of that found in argon collected from the atmosphere. Building upon the work of the DarkSide-50 collaboration, the DarkSide-20k experiment is building and installing a plant capable of producing 100 kg/day of 99.9% pure argon from the same underground source. To achieve this rate, the next generation plant (named Urania) will need to be able to mitigate minor contaminants in the well gas that hampered the previous generation plant. In this talk we will describe the new extraction plant, the identification of the minor contaminates, and how these contaminates are being mitigated.

  20. Why discourse structures in medical reports matter for the validity of automatically generated text knowledge bases.

    Science.gov (United States)

    Hahn, U; Romacker, M; Schulz, S

    1998-01-01

    The automatic analysis of medical full-texts currently suffers from neglecting text coherence phenomena such as reference relations between discourse units. This has unwarranted effects on the description adequacy of medical knowledge bases automatically generated from texts. The resulting representation bias can be characterized in terms of artificially fragmented, incomplete and invalid knowledge structures. We discuss three types of textual phenomena (pronominal and nominal anaphora, as well as textual ellipsis) and outline basic methodologies how to deal with them.

  1. Out-of-plane stretching for simultaneous generation of different morphological wrinkles on a soft matter

    Science.gov (United States)

    Li, Xin; Zhao, Zhi-Jun; Park, Sang-Hu

    2016-07-01

    This study demonstrates a simple and flexible out-of-plane induced mechanical stretching method for generating labyrinthic, waving, and straight orderly microscale directional wrinkles. Different complex wrinkling patterns were fabricated simultaneously using a UV-curable thin layer of resin NOA-68T that was coated on a soft foundation. Then an out-of-plane pre-straining deformation was applied by a specially designed punch to generate internal elastic instabilities. The surface wrinkling pattern characteristics (shapes and size) changed according to the amount of punch stroke (pre-strain) and the cross-sectional shape of the punch. This study confirms the usefulness of this method for controlling and generating local wrinkling patterns for diverse applications. As an example, the contact angles of a water droplet on a local area of the same pattern were measured to identify the change in wettability with respect to different wrinkling shapes. This method can be utilized in topographical tunable wrinkle fabrication for local surface modification.

  2. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels.

    Science.gov (United States)

    Borrok, David M; Gieré, Reto; Ren, Minghua; Landa, Edward R

    2010-12-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  3. Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks.

    Science.gov (United States)

    Lung, Shih-Chun Candice; Hu, Shu-Chuan

    2003-02-01

    The generation rates and emission factors of particulate matter and associated polycyclic aromatic hydrocarbons (PAHs) from incense burning were assessed in a laboratory setting. The differences among different segments of the same stick, among different sticks of the same kind of incense, and between two kinds of manually made Chih-Chen incense sticks (A and B) were evaluated. Joss sticks were burned inside a 44 cm long elutriator; personal environmental monitors fitted into the top of the elutriator were used to take PM2.5 and PM10 samples of incense smoke. Samples were analyzed for PAHs by gas chromatography-flame ionization Detector. It was found that particle and associated PAHs were generated approximately at 561 microg/min (geometric standard deviation (GSD) = 1.1) and 0.56 microg/min (GSD = 1.1) from Incense A, and at 661 microg/min (GSD = 1.7) and 0.46 microg/min (GSD = 1.3) from Incense B, respectively. One gram of Incense A emitted about 19.8 mg (GSD = 1.1) particulate matter and 17.1 microg (GSD = 1.2) particulate-phase PAHs, while one gram of Incense B produced around 43.6 mg (GSD = 1.1) of particles and 25.2 microg (GSD = 1.2) of particle-bound PAHs. There were significant differences in emissions between Incenses A and B, although they belong to the same class of incense. A 10-20% variability in emissions was observed in the main part of the manually produced stick, and a larger variation was found at both tips of the combustible part.

  4. Synthesis, characterization, thermal behaviour and single crystal X-ray analysis of two new insensitive high energy density materials [8-hydroxyquinolinium 5-(2,4,6-trinitrophenyl)barbiturate (I) and 8-hydroxyquinolinium 5-(5-chloro-2,4-dinitrophenyl)-1,3-dimethyl barbiturate (II)

    Science.gov (United States)

    Manickkam, V.; Devi, P. Poornima; Kalaivani, D.

    2014-12-01

    Barbiturates I and II have been synthesized as maroon red and red orange coloured solids by mixing the ethanolic solutions of 2-chloro-1,3,5-trinitrobenzene ( TNCB), pyrimidine-2,4,6(1 H,3 H,5 H)-trione [barbituric acid ( BA)] and 8-hydroxyquinoline and 1,3-dichloro-4,6-dinitrobenzene ( DCDNB), 1,3-dimethylpyrimidine-2,4,6(1 H,3 H,5 H)-trione(1,3-dimethylbarbituric acid) and 8-hydroxyquinoline respectively. The structures of these two barbiturates have been predicted from the spectral studies (UV-VIS, IR, 1H NMR, 13C NMR, mass) and elemental analysis. Qualitative tests have been carried out to infer the presence of nitrogen and nitro groups and also chlorine atom in barbiturate II. Slow evaporation of ethanol-dimethylsulphoxide/ethanol solutions of barbiturate I/barbiturate II at 293 K yielded good for X-Ray diffraction crystals. Single crystal X-ray diffraction studies of the crystals further confirm the putative structures of the barbiturates. The asymmetric unit of the barbiturate I comprises of 8-hydroxyquinolinium cation, 5-(2,4,6-trinitrophenyl) barbiturate anion and a molecule of dimethylsulphoxide (DMSO), which is used as a recrystallizing solvent. It crystallizes in the triclinic system with space group (centrosymmetric). Barbiturate II crystallizes in the orthorhombic system with space group P212121 (non-centrosymmetric). Barbiturates I and II are stable towards an impact sensitivity test, when a weight of 2 kg mass hammer is dropped from a height of 160 cm of the instrument. TGA/ DTA analyses at four different heating rates (5, 10, 20, and 40 K/min) imply that they undergo exothermic decomposition (˜85%) in three different stages between 273 and 873 K. Activation energies for these decomposition processes have been calculated by employing Kissinger and Ozawa plots. Impact sensitivity test and activation energies have revealed that the titled barbiturates are insensitive high energy density materials ( IHEDMS).

  5. Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction

    CERN Document Server

    Sarri, G; Cecchetti, C A; Kar, S; Liseykina, T V; Yang, X H; Dieckmann, M E; Fuchs, J; Galimberti, M; Gizzi, L A; Jung, R; Kourakis, I; Osterholz, J; Pegoraro, F; Robinson, A P L; Romagnani, L; Willi, O; Borghesi, M

    2012-01-01

    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.

  6. Fermion Family Generation, Mass and Charge Hierarchies from 10D Matter-Gauge Models

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, M. [DEX, Universidade Federal de Lavras, MG (Brazil); Andrade, M.A. de [Universidade do Estado do Rio de Janeiro, RJ (Brazil); Coletto, L.P. [CEFET-RJ UnED-Petropolis, RJ (Brazil); Matheus-Valle, J.L. [DF-ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Assis, L.P.G. De; Helayel-Neto, J.A. [CBPF-LAFEX, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: The aim of this work is to study massless and source less field theories in higher dimensions, particularly in D=5+5 and D=1+9, can lead to an interpretation of massive Majorana and Dirac spinors in D=1+3. From higher dimension gauge field formulation we do verify the behavior of the remained dimension to the mass and the sources in D=1+3. By adopting suitable representations of the Dirac matrices in higher dimensions as the vector fields, we pursue the investigation of which higher dimensional space-times and which mass-shell relation concerning massless Dirac equations in higher dimensions may induce massive spinors and gauge fields in D=1+3. Starting off from Majorana-Weyl massless spinors written in the Weyl representation for the Dirac matrices, we remark some peculiar facts, as a duality type of symmetry in the decomposition of space-time that yields two families of equivalent D=1+4 or D=2+3 massive spinors, with symmetric disjoint sets of space-time coordinates. These symmetries yield to the degeneracy of the mass spectrum of the lower space-time spinor model. We explore a matrix representation of the spinor fields and the relation to their decomposition/reduction. So, the proposal in our approach might allow to understand the origin of a fourth, or higher, generation of fermionic particles in lower dimensions. Furthermore, the decomposition of the higher space-time as we advocate here yields a pattern of mass and charge generation for the families of reduced fermionic particles. The mass and charge hierarchies present in the particle spectrum is traced back to the D=5+5 reduced-form Abelian and non-Abelian gauge field coupling. (author)

  7. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions

    Science.gov (United States)

    Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.

    2014-01-01

    Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254

  8. Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell.

    Science.gov (United States)

    Ghosh Ray, S; Ghangrekar, M M

    2015-01-01

    For enhancing organic matter removal from cereal-based distillery stillage two-stage treatment consisting of fermentation by Aspergillus awamori followed by microbial fuel cell (MFC) is proposed. Considerable reduction in total and soluble chemical oxygen demand (COD) up to 70% and 40%, respectively, along with 98% reduction of suspended solids (SS) has been achieved during fungal pretreatment. The process generated chitosan, a useful fermentation byproduct from fungal mycelia, as 0.6-0.7g/l of settled sludge with mycelium (3.8% solids). Prior treatment of wastewater with fungal strain enhanced the power generation in MFC by 2.9 times at an organic loading rate of 1.5kgCOD/m(3)day, demonstrating soluble COD reduction of 92% in MFC. While treating distillery wastewater, this two-stage integrated biological process demonstrated overall 99% COD removal and almost complete removal of SS, delivering ample scope for scale-up and industrial application to offer effective solution for distillery wastewater treatment.

  9. PAH in airborne particulate matter.. Carcinogenic character of PM10 samples and assessment of the energy generation impact

    Energy Technology Data Exchange (ETDEWEB)

    Callen, M.S.; Cruz, M.T. de la; Lopez, J.M.; Mastral, A.M. [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2011-02-15

    One of the main anthropogenic sources producing Polycyclic Aromatic Hydrocarbons (PAH) is related to combustion processes especially transport, power generation processes and other industrial activities. Therefore, the main cities constitute one of the main pollution sources for population. Due to the carcinogenic character of some of these pollutants, Directive 2004/107/EC established a target value of 1.0 ng/m{sup 3} with regard to Benzo(a)pyrene (BaP) for the total content in the particulate matter fraction averaged over a calendar year. Nevertheless, the consideration of only BaP can underestimate the carcinogenic character of the particulate matter. In this work, the carcinogenic character of the airborne PM10 of Zaragoza was studied during 2003-2004 by determining the concentration of BaP equivalents (BaP-eq), using toxic equivalent factors provided by Larsen and Larsen. Diagnostic ratios were used to discern regarding the main pollution sources in Zaragoza city in which the prevailing emission sources were related to diesel emissions and combustion sources. As PAH can travel long distances around the world, the impact of local pollution sources and long-range atmospheric transport on those samples exceeding 1.0 ng/m{sup 3} of BaP-eq that imply higher risk for human health were assessed by considering BaA/Chry and BaP/BeP ratios and by studying the origin of the air masses with the backward air trajectories according to the HYSPLIT model. Those samples were mainly produced during cold season. The local pollution sources were the dominant sources although one episode of long-range transport from European countries could be observed. (author)

  10. D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment

    Science.gov (United States)

    Taylor, Will; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.

  11. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation

    Science.gov (United States)

    Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.

    2016-04-01

    The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine

  12. Macrophages treated with particulate matter PM2.5 induce selective neurotoxicity through glutaminase-mediated glutamate generation.

    Science.gov (United States)

    Liu, Fang; Huang, Yunlong; Zhang, Fang; Chen, Qiang; Wu, Beiqing; Rui, Wei; Zheng, Jialin C; Ding, Wenjun

    2015-07-01

    Exposure to atmospheric particulate matter PM2.5 (aerodynamic diameter ≤ 2.5 μm) has been epidemiologically associated with respiratory illnesses. However, recent data have suggested that PM2.5 is able to infiltrate into circulation and elicit a systemic inflammatory response. Potential adverse effects of air pollutants to the central nervous system (CNS) have raised concerns, but whether PM2.5 causes neurotoxicity remains unclear. In this study, we have demonstrated that PM2.5 impairs the tight junction of endothelial cells and increases permeability and monocyte transmigration across endothelial monolayer in vitro, indicating that PM2.5 is able to disrupt blood-brain barrier integrity and gain access to the CNS. Exposure of primary neuronal cultures to PM2.5 resulted in decrease in cell viability and loss of neuronal antigens. Furthermore, supernatants collected from PM2.5 -treated macrophages and microglia were also neurotoxic. These macrophages and microglia significantly increased extracellular levels of glutamate following PM2.5 exposure, which were negatively correlated with neuronal viability. Pre-treatment with NMDA receptor antagonist MK801 alleviated neuron loss, suggesting that PM2.5 neurotoxicity is mediated by glutamate. To determine the potential source of excess glutamate production, we investigated glutaminase, the main enzyme for glutamate generation. Glutaminase was reduced in PM2.5 -treated macrophages and increased in extracellular vesicles, suggesting that PM2.5 induces glutaminase release through extracellular vesicles. In conclusion, these findings indicate PM2.5 as a potential neurotoxic factor, crucial to understanding the effects of air pollution on the CNS.

  13. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  14. Next-generation batteries and fuel cells for commercial, military, and space applications

    CERN Document Server

    Jha, A R

    2012-01-01

    Distilling complex theoretical physical concepts into an understandable technical framework, Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications describes primary and secondary (rechargeable) batteries for various commercial, military, spacecraft, and satellite applications for covert communications, surveillance, and reconnaissance missions. It emphasizes the cost, reliability, longevity, and safety of the next generation of high-capacity batteries for applications where high energy density, minimum weight and size, and reliability in harsh conditions are

  15. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    Science.gov (United States)

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

  16. A COMPUTER-CONTROLLED SYSTEM FOR GENERATING UNIFORM SURFACE DEPOSITS TO STUDY THE TRANSPORT OF PARTICULATE MATTER

    Science.gov (United States)

    Improved methods for measuring and assessing microenvironmental exposure in individuals are needed. How human activities affect particulate matter in the personal cloud is poorly understood. A quality assurance tool to aid the study of particle transport mechanisms (e.g., re-en...

  17. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    Science.gov (United States)

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  18. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  19. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation

    OpenAIRE

    2012-01-01

    Microalgae excrete relatively large amounts of algal organic matter (AOM) that may interfere with flocculation. The influence of AOM on flocculation of Chlorella vulgaris was studied using five different flocculation methods: aluminum sulfate, chitosan, cationic starch, pH-induced flocculation and electro-coagulation-flocculation (ECF). The presence of AOM was found to inhibit flocculation for all flocculation methods resulting in an increase of dosage demand. For pH-induced flocculation, the...

  20. Ion-beam-driven warm dense matter experiments

    Science.gov (United States)

    Bieniosek, F. M.; Barnard, J. J.; Friedman, A.; Henestroza, E.; Jung, J. Y.; Leitner, M. A.; Lidia, S.; Logan, B. G.; More, R. M.; Ni, P. A.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.

    2010-08-01

    As a technique for heating matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition to a relatively large sample. The US heavy ion fusion science program has developed techniques for heating and diagnosing warm dense matter (WDM) targets. We have developed a WDM target chamber and a suite of target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments heat targets by both the compressed and uncompressed parts of the NDCX-I beam, and explore measurement of temperature, droplet formation and other target parameters. Continued improvements in beam tuning, bunch compression, and other upgrades are expected to yield higher temperature and pressure in the WDM targets. Future experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  1. Megagauss magnetic field generation and related topics. Report on the third international conference, Novosibirsk, USSR, 13-17 June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P.J. (Washington Research Lab., R and D Associates, Alexandria, VA (USA))

    1983-10-01

    This paper reports on the Third International Conference on Megagauss magnetic field generation and related topics, held on 13-17 June 1983, in Novosibirsk, USSR. Papers presented at the Conference included discussions of magnetic-flux compression techniques, multi-megampere electrical pulses, behaviour of plasmas and solids at megagauss magnetic-field levels. The use of very high magnetic field systems to generate and/or confine high energy density plasmas was a topic of considerable interest at the Conference.

  2. The Phase-Contrast Imaging Instrument at the Matter in Extreme Conditions Endstation at LCLS

    CERN Document Server

    Nagler, Bob; Galtier, Eric C; Arnold, Brice; Brown, Shaughnessy B; Fry, Alan; Gleason, Arianna; Granados, Eduardo; Hashim, Akel; Hastings, Jerome B; Samberg, Dirk; Seiboth, Frank; Tavella, Franz; Xing, Zhou; Lee, Hae Ja; Schroer, Christian G

    2016-01-01

    We describe the Phase-Contrast Imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 femtosecond. It was specifically designed for studies relevant to High-Energy-Density Science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  3. The application of profluorescent nitroxides to detect reactive oxygen species derived from combustion-generated particulate matter: Cigarette smoke - A case study

    Science.gov (United States)

    Miljevic, B.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D.

    2010-06-01

    Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.

  4. Event generation and production of signal inputs for the search of dark matter mediator signal at a future hadron collider

    CERN Document Server

    Chalise, Darshan

    2017-01-01

    The interaction between Dark Matter particles and Standard Model particles is possible through a force mediated by a Dark Matter(DM) - Standard Model(SM) mediator. If that mediator decays through a dijet event, the reconstructed invariant mass of the jets will peak at a specific value, in contrast to the smooth QCD background. This analysis is a preliminary work towards the understanding of how changes in detector conditions at the Future Circular Collider affect the sensitivity of the mediator signal. MadGraph 5 was used to produce events with 30 TeV DM mediator and Heppy was used to produce flat n-tuples for ROOT analysis. MadAnalysis 5 was then used to produce histograms of MadGraph events and PyRoot was used to analyze Heppy output. Histograms of invariant mass of the jets after event production through MadGraph as well as after Heppy analysis showed a peak at 30 TeV. This verified the production of a 30 TeV mediator during event production.

  5. Generation and analysis of networks with a prescribed degree sequence and subgraph family: Higher-order structure matters

    CERN Document Server

    Ritchie, Martin; Kiss, Istvan Z

    2015-01-01

    Designing algorithms that generate networks with a given degree sequence while varying both subgraph composition and distribution of subgraphs around nodes is an important but challenging research problem. Current algorithms lack control of key network parameters, the ability to specify to what subgraphs a node belongs to, come at a considerable complexity cost or, critically, sample from a limited ensemble of networks. To enable controlled investigations of the impact and role of subgraphs, especially for epidemics, neuronal activity or complex contagion, it is essential that the generation process be versatile and the generated networks as diverse as possible. In this paper, we present two new network generation algorithms that use subgraphs as building blocks to construct networks preserving a given degree sequence. Additionally, these algorithms provide control over clustering both at node and global level. In both cases, we show that, despite being constrained by a degree sequence and global clustering, ...

  6. Issues in Equation of State data generation for Hot Dense MatterA Note on Generalized Radial Mesh Generation for Plasma Electronic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B G; Sonnad, V

    2011-02-14

    Precise electronic structure calculations of ions in plasmas benefit from optimized numerical radial meshes. A new closed form expression for obtaining non-linear parameters for the efficient generation of analytic log-linear radial meshes is presented. In conjunction with the (very simple) algorithm for the rapid high precision evaluation of Lambert's W-function, the above identity allows the precise construction of generalized log-linear radial meshes adapted to various constraints.

  7. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Intense shock waves and extreme states of matter

    Science.gov (United States)

    Fortov, Vladimir E.

    2007-04-01

    The physical properties of hot dense matter over a broad domain of the phase diagram are of immediate interest in astrophysics, planetary physics, power engineering, controlled thermonuclear fusion, impulse technologies, enginery, and several special applications. The use of intense shock waves in dynamic physics and high-pressure chemistry has made the exotic high-energy-density states of matter a subject of laboratory experiments and enabled advancing by many orders of magnitude along the pressure scale to range into the megabars and even gigabars. The present report reviews the latest experimental research involving shock waves in nonideal plasmas under conditions of strong collective interparticle interaction. The results of investigations into the thermodynamic, transport, and optical properties of strongly compressed hot matter, as well as into its composition and conductivity, are discussed. Experimental techniques for high energy density cumulation, the drivers of intense shock waves, and methods for the fast diagnostics of high-energy plasma are considered. Also discussed are compression-stimulated physical effects: pressure-induced ionization, plasma phase transitions, the deformation of bound states, plasma blooming ('transparentization' of plasma), etc. Suggestions for future research are put forward.

  8. A Note on Child Policy and Fertility in an Overlapping Generations Small Open Economy: When the Labour Market Institutions Matter

    Directory of Open Access Journals (Sweden)

    Luciano Fanti

    2012-01-01

    Full Text Available We examine how fertility reacts to the public provision of child allowances in a small open economy with overlapping generations. When the labour market is competitive, we find that a child allowance policy acts as a fertility-enhancing device. In contrast, when the labour market is unionised the child policy may be ineffective.

  9. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and 2; Order Approving the... authorizes the possession, use, and operation of the Comanche Peak Nuclear Power Plant, Units 1 and 2 (CPNPP... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  10. The Competition That Really Matters: Comparing U.S., Chinese, and Indian Investments in the Next-Generation Workforce

    Science.gov (United States)

    Cooper, Donna; Hersh, Adam; O'Leary, Ann

    2012-01-01

    As a collaborative effort of the Center for American Progress and The Center for the Next Generation, this report examines where the United States is today and how that compares with two of its fiercest competitors for the jobs and thought leadership of the future, China and India. This report shows that their governments have embarked on…

  11. To whom do national days matter? A comparison of national belonging across generations and ethnic groups in the Netherlands

    NARCIS (Netherlands)

    Coopmans, Manja; Lubbers, Marcel; Meuleman, Roza

    2015-01-01

    This paper studies to what extent participating in days for national commemoration and celebration is associated with feelings of national belonging, and to what extent this is comparable across generations and ethnic groups. Utilizing data from a national survey (N = 4,505), three major national da

  12. Forest inventories generate scientifically sound information on the forest resource, but do our data and information really matter?

    Science.gov (United States)

    Christoph Keinn; Goran Stahl

    2009-01-01

    Current research in forest inventory focuses very much on technical-statistical problems geared mainly to the optimization of data collection and information generation. The basic assumption is that better information leads to better decisions and, therefore, to better forest management and forest policy. Not many studies, however, strive to explicitly establish the...

  13. Does retrieval intentionality really matter? Similarities and differences between involuntary memories and directly and generatively retrieved voluntary memories

    DEFF Research Database (Denmark)

    Barzykowski, Krystian; Staugaard, Søren Risløv

    2016-01-01

    Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember......). However, it is unclear how intention and effort interacts. For example, involuntary memories and directly retrieved memories have been used interchangeably in the literature to refer to the same phenomenon of effortless, nonstrategic retrieval. More recent theoretical advances suggest...... that they are separate types of retrieval, one unintentional (involuntary), another intentional and effortless (direct voluntary retrieval), and a third intentional and effortful (generative voluntary retrieval). Whether this also entails differing phenomenological characteristics, such as vividness, rehearsal...

  14. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.

    2017-08-01

    Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.

  15. Antibaryonic dark matter

    CERN Document Server

    Gorbunov, D

    2013-01-01

    Assuming existence of (very) heavy fourth generation of quarks and antiquarks we argue that antibaryon composed of the three heavy antiquarks can be light, stable and invisible, hence a good candidate for the Dark matter particle. Such opportunity allows to keep the baryon number conservation for the generation of the visible baryon asymmetry. The dark matter particles traveling through the ordinary matter will annihilate with nucleons inducing proton(neutron)-decay-like events with ~5GeV energy release in outcoming particles.

  16. A new generation of high resolution mass analyzer to study organic and mineral matters simulating those of Titan and Enceladus: the Cosmorbitrap project

    Science.gov (United States)

    Selliez-Vandernotte, Laura; Briois, Christelle; Carrasco, Nathalie; Thirkell, Laurent; Cosmorbitrap Team

    2016-10-01

    Cassini mission highlighted for the first time, among many discoveries, the chemistry occurring in Titan atmosphere (with the detection of positive and negative ions at very high masses) and the presence of organic matter hidden in Enceladus plumes (1; 2). Can you imagine which results would have been obtained with a better resolution?Today, in lab, a new generation of high resolution mass analyzer called OrbitrapTM can reach a resolution of 106 at m/z=200 (3; 4). It gives a precise reading of the mass on charge, using a purely electric field and applying a Fourier transform. A project named Cosmorbitrap is trying to incorporate an OrbitrapTM analyzer, as a part of a mass spectrometer instrument, in order to propose it for a future mission toward the Saturn moons but also toward many other objects in the Solar System (5).Among the various tests required, we are optimizing the analysis of mineral and organic matter. This includes mass precision, resolution, isotopic detection, isotopic ratios and identification of unknown molecules. Starting with simple molecules, we will study more and more complex molecules and mixtures like Titan and Enceladus analogs. This meeting could be a great opportunity to explain our last results, to present benefits and limits of this instrument.(1) Waite et al, 2007, Science(2) Waite et al, 2009, Nature(3) Makarov, 2000(4) Denisov et al, 2012(5) Briois et al, 2016, Planetary and Space Science (in press)

  17. Does retrieval intentionality really matter? Similarities and differences between involuntary memories and directly and generatively retrieved voluntary memories

    DEFF Research Database (Denmark)

    Barzykowski, Krystian; Staugaard, Søren Risløv

    2016-01-01

    Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember...... differences between the characteristics of involuntary and directly retrieved memories. The results imply that retrieval intention seems to differentiate how a memory appears in a person’s mind. Furthermore, we argue that these differences in part could result from differences in encoding and consolidation....

  18. Does retrieval intentionality really matter? Similarities and differences between involuntary memories and directly and generatively retrieved voluntary memories.

    Science.gov (United States)

    Barzykowski, Krystian; Staugaard, Søren Risløv

    2016-08-01

    Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember). However, it is unclear how intention and effort interacts. For example, involuntary memories and directly retrieved memories have been used interchangeably in the literature to refer to the same phenomenon of effortless, non-strategic retrieval. More recent theoretical advances suggest that they are separate types of retrieval, one unintentional (involuntary), another intentional and effortless (direct voluntary retrieval), and a third intentional and effortful (generative voluntary retrieval). Whether this also entails differing phenomenological characteristics, such as vividness, rehearsal, or emotional valence, has not been previously investigated. In the current study, participants reported memories in an experimental paradigm designed to elicit voluntary and involuntary memories and rated them on a number of characteristics. If intention affects the retrieval process, then we should expect differences between the characteristics of involuntary and directly retrieved memories. The results imply that retrieval intention seems to differentiate how a memory appears in a person's mind. Furthermore, we argue that these differences in part could result from differences in encoding and consolidation.

  19. Role of minerals in the thermal alteration of organic matter. III. Generation of bitumen in laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, B.J.; Tannenbaum, E.; Kaplan, I.R.

    1987-01-01

    A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite and illite, to a lesser extent, alter bitumen during dry pyrolysis. Montmorillonite and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of montmorillonite and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.

  20. The role of minerals in the thermal alteration of organic matter. III - Generation of bitumen in laboratory experiments

    Science.gov (United States)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, I. R.

    A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite (M) and illite, to a lesser extent, alter bitumen during dry pyrolysis. M and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of M and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.

  1. The role of minerals in the thermal alteration of organic matter. III - Generation of bitumen in laboratory experiments

    Science.gov (United States)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, I. R.

    1987-01-01

    A series of pyrolysis experiments, utilizing two different immature kerogens (from the Monterey and Green River Formations) mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the impact of the mineral matrix on the bitumen that was generated. Calcite has no significant influence on the thermal evolution of bitumen and also shows virtually no adsorption capacity for any of the pyrolysate. In contrast, montmorillonite (M) and illite, to a lesser extent, alter bitumen during dry pyrolysis. M and illite also display strong adsorption capacities for the polar constituents of bitumen. By this process, hydrocarbons are substantially concentrated within the pyrolysate that is not strongly adsorbed on the clay matrices. The effects of the clay minerals are significantly reduced during hydrous pyrolysis. The strong adsorption capacities of M and illite, as well as their thermocatalytic properties, may in part explain why light oils and gases are generated from certain argillaceous source-rock assemblages, whereas heavy immature oils are often derived from carbonate source rocks.

  2. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Ceballos Guillermo

    2009-06-01

    Full Text Available Abstract Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5. Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises.

  3. Ion Beam Driven Warm Dense Matter Experiments

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Lidia, S. M.; Logan, B. G.; More, R. M.; Ni, P. A.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.

    2008-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  4. Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....

  5. Dark Matter

    OpenAIRE

    Einasto, Jaan

    2013-01-01

    I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic...

  6. Next Generation Very Large Array Memo No. 7 Science Working Group 2: "Galaxy Ecosystems": The Matter Cycle in and Around Galaxies

    CERN Document Server

    Leroy, Adam K; Armus, Lee; Brogan, Crystal; Meyer, Jennifer Donovan; Evans, Aaron; Hunter, Todd; Johnson, Kelsey; Koda, Jin; Meier, David S; Menten, Karl; Mills, Elizabeth; Momjian, Emmanuel; Ott, Juergen; Owen, Frazer; Reid, Mark; Rosolowsky, Erik; Schinnerer, Eva; Scoville, Nicholas; Spekkens, Kristine; van Zee, Liese; Wong, Tony

    2015-01-01

    This white paper discusses how a "next-generation" Very Large Array (ngVLA) operating in the frequency range 1-116 GHz could be a groundbreaking tool to study the detailed astrophysics of the "matter cycle" in the Milky Way and other galaxies. If optimized for high brightness sensitivity, the ngVLA would bring detailed microwave spectroscopy and modeling of the full radio spectral energy distribution into regular use as survey tools at resolutions of 0.1- 1 arcseconds. This wavelength range includes powerful diagnostics of density, excitation, and chemistry in the cold ISM, as well as multiple tracers of the rate of recent star formation, the magnetic field, shocks, and properties of the ionized ISM. We highlight design considerations that would make this facility revolutionary in this area, the foremost of which is a large amount of collecting area on ~km-length baselines. We also emphasize the strong case for harnessing the large proposed collecting area of the ngVLA for very long baseline applications as p...

  7. The origin of dark matter, matter-anti-matter asymmetry, and inflation

    CERN Document Server

    Mazumdar, Anupam

    2011-01-01

    A rapid phase of accelerated expansion in the early universe, known as inflation, dilutes all matter except the vacuum induced quantum fluctuations. These are responsible for seeding the initial perturbations in the baryonic matter, the non-baryonic dark matter and the observed temperature anisotropy in the cosmic microwave background (CMB) radiation. To explain the universe observed today, the end of inflation must also excite a thermal bath filled with baryons, an amount of baryon asymmetry, and dark matter. We review the current understanding of inflation, dark matter, mechanisms for generating matter-anti-matter asymmetry, and the prospects for testing them at ground and space based experiments.

  8. Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers.

    Science.gov (United States)

    Ranjan, V; Yu, L; Nakhmanson, Serge; Bernholc, Jerry; Nardelli, M Buongiorno

    2010-09-01

    Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar alpha and polar beta phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the beta phase, whereas the alpha phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations (< or = 12%) undergo a transition from the alpha to the beta phase until a breakdown field of approximately 600 MV m(-1) is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

  9. Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics

    Science.gov (United States)

    2013-04-02

    capillary tubes that double as fluidic connections and vacuum packaging . In this design we use pure oxygen, instead of air, for the chemical reaction...higher-performance low-bandgap PV cells, vacuum packaging , and high-efficiency microreactor and recuperator designs. Indeed, we believe μTPV

  10. Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruigang; Mizuno, Fuminori; Ling, Chen; Whittingham, Stanley M.; Zhang, Ruibo; Chen, Zehua

    2017-08-01

    A positive electrode comprising .epsilon.-VOPO.sub.4 and/or Na.sub.x(.epsilon.-VOPO.sub.4) wherein x is a value from 0.1 to 1.0 as an active ingredient, wherein the electrode is capable of insertion and release of sodium ions and a reversible sodium battery containing the positive electrode are provided.

  11. Studies on High Energy Density Reactions for Development of Nanostructured Hybrid Supercapacitors

    Science.gov (United States)

    2015-09-25

    chem.mu.ac.in, akschbu@yahoo.com Institution : Address : Professor Department of Chemistry University of Mumbai Vidyanagari, Santa Cruz...III) in the presence of Cu and is very stable in the presence of relatively large amounts of surfactant and organic compounds which also make it hold

  12. High energy density processing of a free form nickel-alumina nanocomposite

    NARCIS (Netherlands)

    Viswanathan, V; Agarwal, A; Ocelik, V; De Hosson, J T M; Sobczak, N; Seal, S

    2006-01-01

    The development of a free form bulk Nickel reinforced Alumina matrix nano composites using Air Plasma Spray and laser processing has been presented. The process consumes less time and requires further minimal machining and therefore is cost effective. The relative differences in using APS over laser

  13. SiLix-C Nanocomposites for High Energy Density Li-ion Battery Anodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project Superior Graphite Co. (Chicago, IL, USA), the leading worldwide industrial carbon manufacturer and the only large scale battery grade graphitic...

  14. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    Science.gov (United States)

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; Furnish, M. D.

    2016-12-01

    We applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM) max of 50×10-5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount ( 1 cm/s) to avert collision a year in advance. Comet model calculations indicate for CM=5×10-4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5×1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.

  15. Functionalization of Polypyrrole Nanopipes with Redox-Active Polyoxometalates for High Energy Density Supercapacitors.

    Science.gov (United States)

    Dubal, Deepak P; Ballesteros, Belén; Mohite, Ashwini A; Gómez-Romero, Pedro

    2017-02-22

    Hybrid materials are very attractive for the fabrication of high-performance supercapacitors. Here, we have explored organic-inorganic hybrid materials based on open-end porous 1 D polypyrrole nanopipes (PPy-NPipes) and heteropolyoxometalates (phosphotungstate ([PW12 O40 ](3-) , PW12 ) or phosphomolybdate ([PMo12 O40 ](3-) , PMo12 )) that display excellent areal capacitances. Two different hybrid materials (PMo12 @PPy and PW12 @PPy) were effectively synthesized and used for symmetric supercapacitors. The anchoring of the inorganic nanoclusters onto the conducting polymer nanopipes led to electrodes that stood up to our best expectations exhibiting outstanding areal capacitances that are almost 1.5 to 2 fold higher than that of pristine PPy-NPipes. In addition, symmetric cells based on PMo12 @PPy and PW12 @PPy hybrid electrodes were fabricated and showed significant improvement in cell performance with very high volumetric capacitances in the range of 6.3-6.8 F cm(-3) (considering the volume of whole device). Indeed, they provide extended potential windows in acidic electrolytes (up to 1.5 V) which led to ultrahigh energy densities of 1.5 and 2.2 mWh cm(-3) for PMo12 @PPy and PW12 @PPy cells, respectively. Thus, these unique organic-inorganic hybrid symmetric cells displayed extraordinary electrochemical performances far exceeding those of more complex asymmetric systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tomographic reconstruction of high energy density plasmas with picosecond temporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K L

    2005-09-20

    Three-dimensional reconstruction of the electron density in a plasma can be obtained by passing multiple beams at different field angles simultaneously through a plasma and performing a tomographic reconstruction of the measured field-dependent phase profiles. In this letter, a relatively simple experimental setup is proposed and simulations are carried out to verify the technique. The plasma distribution is modeled as a discreet number of phase screens and a Zernike polynomial representation of the phase screens is used to reconstruct the plasma profile. Using a subpicosecond laser, the complete three-dimensional electron density of the plasma can be obtained with a time resolution limited only by the transit time of the probe through the plasma.

  17. Deoxyribonucleic acid-based hybrid thin films for potential application as high energy density capacitors

    Science.gov (United States)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grabowski, Christopher A.; Terry Murray, P.; Grote, James G.

    2014-03-01

    Deoxyribonucleic acid (DNA) based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA (cetyltrimethylammonium) complex/sol-gel ceramic hybrid thin film devices have demonstrated reproducibility and stability in temperature- and frequency-dependent dielectric properties with dielectric constant k ˜ 5.0 (1 kHz), as well as reliability in DC voltage breakdown measurements, attaining values consistently in the range of 300-350 V/μm. The electrical/dielectric characteristics of DNA-CTMA films with sol-gel-derived ceramics were examined to determine the critical energy storage parameters such as voltage breakdown and dielectric constant.

  18. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    CERN Document Server

    Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D

    2012-01-01

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.

  19. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  20. Raman backscatter as a remote laser power sensor in high-energy-density plasmas

    CERN Document Server

    Moody, J D; Divol, L; Michel, P; Robey, H F; LePape, S; Ralph, J; Ross, J S; Glenzer, S H; Kirkwood, R K; Landen, O L; MacGowan, B J; Nikroo, A; Williams, E A

    2013-01-01

    Stimulated Raman backscatter (SRS) is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching SRS between a shot reducing outer vs a shot reducing inner power we infer that ~half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous non-disruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

  1. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    Science.gov (United States)

    Dasgupta, A.; Clark, R. W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, D. J.; Hansen, S. B.; Jennings, C.; Harvey-Thompson, A. J.; Jones, B.; Flanagan, T. M.; Bell, K. S.; Apruzese, J. P.; Fournier, K. B.; Scott, H. A.; May, M. J.; Barrios, M. A.; Colvin, J. D.; Kemp, G. E.

    2016-10-01

    Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.

  2. Novel Anodes for Rapid Recharge High Energy Density Lithium-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TIAX proposes to develop as a novel negative electrode active material for rechargeable lithium-ion batteries. This material will fill the gap between the...

  3. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  4. High Energy-Density Electrodes for Alkali-Metal Battery Systems

    Science.gov (United States)

    1977-11-29

    to measure the variation of the chemical potential and diffusivity of sodium with composition x in Na TaSa where x varies from 0 to 1, 0, The...measure the chemical potential and diffusivity ■ Na (s)/Na (propylene carbonate)/Na TaSa (A) of sodium in Na TaSa . x Experimental Tantalum...Results The measured values of emf as a function of composition x of Na TaSa are shown in Fig. 3. The measured emf can be fitted by a linear function of

  5. Development of online quasimonochromatic X-ray backlighter for high energy density physics studies

    Indian Academy of Sciences (India)

    S Chaurasia; P Leshma; D S Munda

    2013-11-01

    Monochromatic X-ray backlighting has been employed with great success in various laser plasma experiments including inertial confinement fusion (ICF) research. However, implementation of a monochromatic backlighting system typically requires extremely high quality spherically bent crystals which are difficult to manufacture and are also expensive. In this paper, we present a quasimonochromatic X-ray backlighting system using flat thallium acid pthalate (TAP) crystal. The detailed characterization of the system is discussed. The X-ray backlighter spectral range is caliberated using Cu spectrum in the spectral range 7–9 Å (1.38–1.77 keV). Gold plasma produces continuous X-ray spectrum (M band) in this range. The spectral, spatial and temporal resolutions of the system measured are 30 mÅ, 50 m and 1.5 ns respectively. The spectral width of the X-ray pulse is 2 Å ( = 0.39 keV).

  6. Implicit filtered PN for high-energy density thermal radiation transport using discontinuous Galerkin finite elements

    Science.gov (United States)

    Laboure, Vincent M.; McClarren, Ryan G.; Hauck, Cory D.

    2016-09-01

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FPN) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.

  7. Implicit Filtered PN for High-Energy Density Thermal Radiation Transport using Discontinuous Galerkin Finite Elements

    CERN Document Server

    Laboure, Vincent M; Hauck, Cory D

    2016-01-01

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FPN) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system in the streaming limit, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte-Carlo (IMC) calculations.

  8. Optimal condition of torrefaction for high energy density solid fuel of fast growing tree species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hun; Na, Byeong-Il; Lee, Hyoung-Woo; Lee, Jae-Won [College of Agriculture and Life Sciences, Chonnam National University, Gwangju (Korea, Republic of); Ahn, Byoung-Jun [Korea Forest Research Institute, Seoul (Korea, Republic of)

    2015-08-15

    The torrefaction properties of Acacia (Acacia mangium) and Albasia (Paraserianthes falcataria) were investigated by response surface methodology. Torrefaction was performed at 220-280 .deg. C for 20-80 min depending on severity factor. Carbon content in the torrefied biomass increased with severity factor, whereas hydrogen and oxygen contents decreased both biomass. The calorific value of torrefied Acacia ranged from 20.03 to 21.60 MJ/kg, suggesting that the energy contained in the torrefied biomass increased by 5.09 to 13.62%, when compared with that in the untreated biomass. However, the calorific value of Albasia was relatively low, compared to that of torrefied Acacia. The weight loss of Albasia was higher than that of Acacia under a given torrefaction condition. The reaction temperature for torrefaction was an important factor to obtain high energy yield, whereas the effect of time was considerable lower. High temperature and short torrefaction time is required to obtain the highest energy yield from torrefaction using Acacia and Albasia.

  9. Preliminary study of high energy density Zn/Ni flow batteries

    Science.gov (United States)

    Liu, Jin; Wang, Yan

    2015-10-01

    The escalation of power system promotes the development of energy storage technologies (ESTs). Among all of ESTs, battery technologies develop quickly and diversely because of its huge application market. Aqueous redox flow batteries (RFBs) are very attractive to customers in the energy grid system, and their noticeable technological innovations in past decades are driving them to gradually replace the conventional ESTs under certain circumstance. Here, the first fully-flow-able zinc-nickel flow battery (ZNFB) is preliminary reported in this paper, and its superior performance is supposed to be suitable for both large-scale storage need and carry-on powertrain in cars. Through using semi-solid fuel cell (SSFC) technology, we incorporates the beneficial features of Zn/Ni chemistry (essentially sustainable, eco-friendly and deposit-abundant) into RFB structure to make a ;hybrid; flow battery system, which can take the advantage of both. The relationship between carbon loading and suspension conductivity is determined. Electrochemical properties of ZNFB as static test, cycling test, and fully flowing test are studied to demonstrate our design.

  10. Hybrid Kinetic-Fluid Electromagnetic Simulations of Imploding High Energy Density Plasmas for IFE

    Science.gov (United States)

    Welch, Dale; Rose, Dave; Thoma, Carsten; Genoni, Thomas; Bruner, Nichelle; Clark, Robert; Stygar, William; Leeper, Ramon

    2011-10-01

    A new simulation technique is being developed to study high current and moderate density-radius product (ρR) z-pinch plasmas relevant to Inertial Fusion Energy (IFE). Fully kinetic, collisional, and electromagnetic simulations of the time evolution of up to 40-MA current (deuterium and DT) z-pinches, but with relatively low ρR, have yielded new insights into the mechanisms of neutron production. At fusion relevant conditions (ρR > 0.01 gm/cm2) , however, this technique requires a prohibitively large number of cells and particles. A new hybrid implicit technique has been developed that accurately describes high-density and magnetized imploding plasmas. The technique adapts a recently published algorithm, that enables accurate descriptions of highly magnetized particle orbits, to high density plasmas and also makes use of an improved kinetic particle remap technique. We will discuss the new technique, stable range of operation, and application to an IFE relevant z-pinch design at 60 MA. Work supported by Sandia National Laboratories.

  11. High-power solid-state lasers and high-energy-density physics at CAEP

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H. S.; Zhang, W. Y. [China Academy of Engineering Physics, Mianyang, Sichuan (China)

    2006-07-15

    Significant progress has been made in high-power solid-state laser development and related laser fusion and strong-field studies at the CAEP (China Academy of Engineering Physics) in recent years. A Ti:sapphire laser system, SILEX-I, was completed early in 2004 and could deliver 26- fs pulses at 300TW to targets. The SILEX-I has been operated very stably since its completion for experiments in exploring a number of frontiers, demonstrating that it is the most powerful femtosecond Ti:sapphire laser for applications in the world. The SG-III Nd:glass laser facility has been under final design to meet the requirements from laser fusion applications and will produce 3- to 5-ns pulses at 0.35 {mu}m with an output energy of about 150 kJ. The eight-beamline TIL (technical integration line), the prototype of the SG-III laser facility, has been activated in the new laboratory in Mianyang and will be completed in 2006 for operation. The SG-II laser at the Shanghai Institute of Optics and Fine Mechanics has been operating as a major facility for experiments on fusion physics since 2001. Experiments on hohlraum and implosion physics have been conducted. Simultaneously, advanced plasma diagnostic technologies for implosion hydrodynamics have been developed.

  12. Measurements of Ion Stopping around the Bragg Peak in High-Energy-Density Plasmas (HEDP)

    Science.gov (United States)

    Frenje, J.; Li, C. K.; Seguin, F. H.; Gatu Johnson, M.; Petrasso, R.; Nagayama, T.; Mancini, R.; Hernandez, R.; Grabowski, P.; Yu Glebov, V.

    2016-10-01

    Ion stopping around the Bragg peak and its dependence on plasma conditions was recently measured for the first time in HEDP. The data support most stopping-power models for ion velocities (vi) larger than the average velocity of the thermal electrons (vth), but there are some differences at vi vth, which could not be validated. The work described here makes significant advances over the first experimental effort by quantitatively assessing the characteristics of the ion stopping around the Bragg peak while at the same time more accurately characterizing the plasma conditions. This effort represents the most sensitive test of plasma-stopping-power models around the Bragg peak to date, which is an important first step in our efforts of getting a fundamental understanding of DT-alpha stopping in HEDP, a prerequisite for understanding ignition margins in various implosion designs. The work was performed under NLUF and supported by DOE, LLNL and LLE. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  13. Multilayer co-extrusion technique for developing high energy density organic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy (Army Research Lab, Adelphi, MD); Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow (Army Research Lab, Adelphi, MD); Stavig, Mark Edwin; Cole, Phillip James (Northrop-Grumman, Herndon, VA); Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

    2009-11-01

    The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

  14. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  15. SiLix-C Nanocomposites for High Energy Density Li-ion Battery Anodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project Superior Graphite Co. (Chicago, IL, USA), the leading worldwide industrial carbon manufacturer and the only large scale battery grade graphitic...

  16. The detonation parameters of high energy density explosive predicted with a new revised VLW EOS

    Energy Technology Data Exchange (ETDEWEB)

    Xinping, L.; Xiaohua, J. [Southwest Institut of Chemical Mat. Chengdu Sichuan (China); Xiong, W. [Xian Modern Chemistry Research Institute (China)

    1996-12-31

    Some new target explosive compounds whose detonation performance significantly exceeds that of HMX have been predicted with the new revised VLM equation of state, which includes up to the sixth viral term. The two different hypotheses have been used in the calculation; solid carbon exists in detonation products as graphite or as diamond. (authors) 10 refs.

  17. MnBi particles with high energy density made by spark erosion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PK; Jin, SH; Berkowitz, AE

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20-30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M-S, albeit with H-C of a few kOe. If lightly milled, the agglomerates are broken up to yield H-C of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH)(MAX) similar to 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes. (C) 2014 AIP Publishing LLC.

  18. MnBi particles with high energy density made by spark erosion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phi-Khanh, E-mail: phi@ucsd.edu; Jin, Sungho [Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States); Berkowitz, Ami E. [Physics Department, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20–30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M{sub S}, albeit with H{sub C} of a few kOe. If lightly milled, the agglomerates are broken up to yield H{sub C} of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH){sub MAX} ∼ 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes.

  19. A novel, high energy-density electrical storage device for electric weapons

    Science.gov (United States)

    Schroeder, Jon M.

    1992-08-01

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L(sup 2)) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, we also found that the L(sup 2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  20. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes

    Science.gov (United States)

    Bitsch, Boris; Gallasch, Tobias; Schroeder, Melanie; Börner, Markus; Winter, Martin; Willenbacher, Norbert

    2016-10-01

    We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm-2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.

  1. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H. W., E-mail: herrmann@lanl.gov; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, R. M. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); Rubery, M. S.; Horsfield, C. J. [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shmayda, W. T. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  2. Series multilayer internal electrodes for high energy density glass-ceramic capacitors

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; DU Jun; TANG Qun; MAO ChangHui

    2009-01-01

    The glass-ceramic dielectrics and internal electrode structures are investigated for improving the general energy storage density of capacitors.Calculation indicates that glass-ceramics acquired from glass matrix annealing at 850℃ for 3 hours can be approximately up to 17 J/cm3 in energy storage density.They are appropriately chosen as the dielectrics for preparing high energy storage density capacitors (HESDCs).A series multilayer structure of internal electrode is developed for the HESDCs,in which each layer is a combination of gold film and silver paste.This electrode structure promises the capacitor immune from the residual porosity defects inevitably brought by electrode paste sintering process,and specifically improves the electrical breakdown strength of the capacitor.Based on this new electrode structure,the energy storage densities of capacitors are increased by more than one order of magnitude compared with those traditional ones with only single layer of internal electrode.Thus,HESDCs based on the optimized glass-ceramic dielectrics can potentially achieve 7.5 J/cm3 in energy storage density,even taking into consideration the enlargement of total capacitor volumes while encapsulating practicable capacitors from dielectrics media.

  3. Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor

    Science.gov (United States)

    Zhang, Sheng S.

    2017-03-01

    Pre-lithiation is an indispensable step for making hybrid lithium-ion capacitors (LICs), its high cost and process complexity have greatly hindered the commercialization of LICs. Aiming to eliminate the pre-lithiation step, we propose an in-situ lithiation concept by introducing a Li+ ion source material into the positive electrode to enable the lithiation to be completed in the formation cycle. In this paper we start with the fundamental principle of LICs to discuss the requirements for Li+ ion source materials and demonstrate this concept by employing Li-rich Li2CuO2 as the Li+ ion source material, natural graphite and activated carbon (AC) as the negative and positive electrode materials. It is shown that the LICs made such behave as a pure capacitor with ability to deliver the same level of specific capacity and specific capacitance, i.e., 56 mAh g-1 and 143 F g-1 vs. the mass of AC in the voltage range between 2.8 V and 4.2 V, as those obtained from the counterpart Li/AC half-cell. The present concept is also applicable to other LICs with the negative electrode required to be pre-lithiated.

  4. A Novel, High Energy-Density Electrical Storage Device for Electric Weapons

    Science.gov (United States)

    1992-08-25

    18 I. Task Objectives The primary object of the Phase I effort was to design a Million...field, which drives current at the voltage needed to power a variety of electric weapons such railguns, coilguns , and directed energy devices. Three... inductive , double ring circuit. Tremendous repulsion forces are exerted on the rings when the current circulation reaches Meg-Amp current levels. One

  5. High Energy-Density Plasma Dynamics in Plasma-Filled Rod-Pinch Diodes

    Science.gov (United States)

    2013-06-01

    at about 30 eV at the time of maximum energy density, and that the time-averaged ionization is about +17, similar to MHD model predictions [2... MHD model predictions [2]. The plasma mass distribution is inferred from x-ray distribution measurements. The time-dependent mass distribution is used...Previous modeling [2] assumed the tungsten plasma had a time-dependent Gaussian radial profile and a fixed length of 3.5 mm, consistent with time

  6. Composite Conducting Polymer Cathodes For High Energy Density Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA planetary exploration missions require secondary (rechargeable) batteries that can operate at extreme temperatures (-60oC to 60oC) yet deliver high...

  7. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai; Belharouak, Ilias; Yahia, Hamdi B.; Wu, Huiming; Assary, Rajeev; Curtiss, Larry A.; Amine, Khalil

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and the abnormal high capacity associated with these high energy cathode materials.

  8. High Energy-Density Materials with Fast Energy Release: Molecular Scale Shock Response of Explosives

    Science.gov (United States)

    2013-05-01

    ORGANIZATION. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information...Transient absorption spectroscopy of laser shocked explosives”, presented by S. D. McGrane 2012 LANL Advanced Thermometry Workshop, “Femtosecond...condensed phases using femtosecond stimulated Raman scattering”, presented by Nhan Dang Poster presentations: 2010 LANL Chemistry Capabilities

  9. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experimentsa)

    Science.gov (United States)

    Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.; Batha, S. H.

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ˜400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  10. Star Formation in High Pressure, High Energy Density Environments: Laboratory Experiments of ISM Dust Analogs

    Energy Technology Data Exchange (ETDEWEB)

    van Breugel, W; Bajt, S; Bradley, J; Bringa, E; Dai, Z; Felter, T; Graham, G; Kucheyev, S; Torres, D; Tielens, A; Baragiola, R; Dukes, C; Loeffler, M

    2005-01-05

    Dust grains control the chemistry and cooling, and thus the gravitational collapse of interstellar clouds. Energetic particles, shocks and ionizing radiation can have a profound influence on the structure, lifetime and chemical reactivity of the dust, and therefore on the star formation efficiency. This would be especially important in forming galaxies, which exhibit powerful starburst (supernovae) and AGN (active galactic nucleus) activity. How dust properties are affected in such environments may be crucial for a proper understanding of galaxy formation and evolution. The authors present the results of experiments at LLNL which show that irradiation of the interstellar medium (ISM) dust analog forsterite (Mg{sub 2}SiO{sub 4}) with swift heavy ions (10 MeV Xe) and a large electronic energy deposition amorphizes its crystalline structure, without changing its chemical composition. From the data they predict that silicate grains in the ISM, even in dense and cold giant molecular clouds, can be amorphized by heavy cosmic rays (CR's). This might provide an explanation for the observed absence of crystalline dust in the ISM clouds of the Milky Way galaxy. This processing of dust by CR's would be even more important in forming galaxies and galaxies with active black holes.

  11. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    Science.gov (United States)

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  12. High Energy Density Li-Ion Batteries Designed for Low Temperature Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The state-of-the-art Li-ion batteries do not fully meet the energy density, power density and safety requirements specified by NASA for future exploration missions....

  13. Advanced separators based on aromatic polymer for high energy density lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Woo, Jung-Je; Amine, Khalil

    2017-03-21

    A process includes casting a solution including poly(phenylene oxide), inorganic nanoparticles, a solvent, and a non-solvent on a substrate; and removing the solvent to form a porous film; wherein: the porous film is configured for use as a porous separator for a lithium ion battery.

  14. Development of an All Solid High Energy Density Space Rated Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's intends to develop an all-solid 600 Wh/kg, flexible form-factor lithium rechargeable energy device for advanced space power applications. Quallion's...

  15. Crystal structure of the high-energy-density material guanylurea dipicrylamide

    Directory of Open Access Journals (Sweden)

    Raik Deblitz

    2014-08-01

    Full Text Available The title compound, 1-carbamoylguanidinium bis(2,4,6-trinitrophenylamide [H2NC(=ONHC(NH22]+[N{C6H2(NO23-2,4,6}2]− (= guanylurea dipicrylamide, was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicrylamide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicrylamide anions. The crystal packing is dominated by an extensive network of N—H...O hydrogen bonds, resulting in a high density of 1.795 Mg m−3, which makes the title compound a potential secondary explosive.

  16. Crystal structure of the high-energy-density material guanylurea dipicryl-amide.

    Science.gov (United States)

    Deblitz, Raik; Hrib, Cristian G; Hilfert, Liane; Edelmann, Frank T

    2014-08-01

    The title compound, 1-carbamoylguanidinium bis-(2,4,6-tri-nitro-phen-yl)amide [H2NC(=O)NHC(NH2)2](+)[N{C6H2(NO2)3-2,4,6}2](-) (= guanylurea dipicryl-amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl-amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl-amide anions. The crystal packing is dominated by an extensive network of N-H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m(-3), which makes the title compound a potential secondary explosive.

  17. High Energy Density, High Power Density, High Cycle Life Flywheel Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies (BT), LLC proposes to leverage technologies developed by and resident in BT, The University of Texas Center for Electromechanics (CEM) and...

  18. High-energy-density, aqueous, metal-polyiodide redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-08-29

    Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M.sup.2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I.sup.-, anions of I.sub.x (for x.gtoreq.3), or both in an aqueous solution, wherein the I.sup.- and the anions of I.sub.x (for x.gtoreq.3) compose an active redox couple in a second half-cell.

  19. Promise and reality of post-lithium-ion batteries with high energy densities

    Science.gov (United States)

    Choi, Jang Wook; Aurbach, Doron

    2016-04-01

    Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead-acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations.

  20. Thermodynamics and equations of state of matter from ideal gas to quark-gluon plasma

    CERN Document Server

    Fortov, Vladimir

    2016-01-01

    The monograph presents a comparative analysis of different thermodynamic models of the equations of state. The basic ideological premises of the theoretical methods and the experiment are considered. The principal attention is on the description of states that are of greatest interest for the physics of high energy concentrations which are either already attained or can be reached in the near future in controlled terrestrial conditions, or are realized in astrophysical objects at different stages of their evolution. Ultra-extreme astrophysical and nuclear-physical applications are also analyzed where the thermodynamics of matter is affected substantially by relativism, high-power gravitational and magnetic fields, thermal radiation, transformation of nuclear particles, nucleon neutronization, and quark deconfinement. The book is intended for a wide range of specialists engaged in the study of the equations of state of matter and high energy density physics, as well as for senior students and postgraduates.