WorldWideScience

Sample records for generates wnt protein

  1. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  2. Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins

    NARCIS (Netherlands)

    Harterink, M.; Korswagen, H.C.

    2012-01-01

    The Wnt family of signalling proteins has essential functions in development and adult tissue homoeostasis throughout the animal kingdom. Although signalling cascades triggered by Wnt proteins have been extensively studied, much remains to be learned about how Wnts are produced and secreted. Over

  3. Wnt Signaling Translocates Lys48-Linked Polyubiquitinated Proteins to the Lysosomal Pathway

    Directory of Open Access Journals (Sweden)

    Hyunjoon Kim

    2015-05-01

    Full Text Available Cellular proteins are degraded in either proteasomes or lysosomes depending on the types of ubiquitin chains that covalently modify them. It is not known whether the choice between these two pathways is physiologically regulated. The Lys48-polyubiquitin chain is the major signal directing proteins for degradation in proteasomes. Here, we report the unexpected finding that canonical Wnt signaling translocates some K48-linked polyubiquitinated proteins to the endolysosomal pathway. Proteasomal target proteins, such as β-catenin, Smad1, and Smad4, were targeted into endolysosomes in a process dependent on GSK3 activity. Relocalization was also dependent on Axin1 and the multivesicular body (MVB proteins HRS/Vps27 and Vps4. The Wnt-induced accumulation of K48-linked polyubiquitinated proteins in endolysosomal organelles was accompanied by a transient decrease in cellular levels of free mono-ubiquitin, which may contribute to Wnt-regulated stabilization of proteins (Wnt/STOP. We conclude that Wnt redirects Lys48-polyubiquitinated proteins that are normally degraded in proteasomes to endolysosomes.

  4. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  5. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    Science.gov (United States)

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (pPCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    International Nuclear Information System (INIS)

    Kawamoto, E.M.; Gleichmann, M.; Yshii, L.M.; Sá Lima, L. de; Mattson, M.P.; Scavone, C.

    2011-01-01

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ 25-35 ; 50 µM). Cells (1 × 10 6 cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases

  7. Mechanisms of Wnt signaling and control.

    Science.gov (United States)

    Grainger, Stephanie; Willert, Karl

    2018-03-30

    The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration. © 2018 Wiley Periodicals, Inc.

  8. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  9. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  10. Inflammation Intensity-dependent Expression of Osteoinductive Wnt Proteins is Critical for Ectopic New Bone Formation in Ankylosing Spondylitis.

    Science.gov (United States)

    Li, Xiang; Wang, Jianru; Zhan, Zhongping; Li, Sibei; Zheng, Zhaomin; Wang, Taiping; Zhang, Kuibo; Pan, Hehai; Li, Zemin; Zhang, Nu; Liu, Hui

    2018-02-26

    To investigate the molecular mechanism underlying the inflammation- related ectopic new bone formation in ankylosing spondylitis (AS). Spinal tissues and sera were collected from patients or normal volunteers to detect the expression of Wnt proteins. An in vitro cell culture system mimicking the local inflammatory microenvironment of bone-forming sites was established to study the relationship between inflammation and Wnt expression, the regulatory mechanism of inflammation-induced Wnt expression and the role of Wnt signaling in new bone formation. A modified collagen-induced arthritis (mCIA) and a proteoglycan -induced spondylitis (PGIS) animal model were used to confirm the key findings in vivo. The levels of osteoinductive Wnt proteins were obviously increased in the sera and spinal ligament tissues of patients with AS. Only constitutive low-intensity TNF-α stimulation, but not short-term or high-intensity TNF-α stimulation, induced persistent expression of osteoinductive Wnt proteins and subsequent bone formation through NF-κB (p65) and JNK/AP-1 (c-Jun) signaling pathways. Furthermore, inhibition of either Wnt/β-catenin or Wnt/PKCδ pathway significantly suppressed new bone formation. The increased expression of Wnt proteins was confirmed in both mCIA and PGIS models. A kyphotic and ankylosing phenotype of the spine was observed during long-term observation in mCIA model. Inhibition of either Wnt/β-catenin or Wnt/PKCδ signaling pathway significantly reduced the incidence and severity of this phenotype. Inflammation intensity-dependent expression of osteoinductive Wnt proteins is a key link between inflammation and ectopic new bone formation in AS. Activation of both canonical Wnt/β-catenin and noncanonical Wnt/PKCδ pathways is required for inflammation-induced new bone formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Role of WNT signaling in epididymal sperm maturation.

    Science.gov (United States)

    Cheng, Jin-Mei; Tang, Ji-Xin; Li, Jian; Wang, Yu-Qian; Wang, Xiu-Xia; Zhang, Yan; Chen, Su-Ren; Liu, Yi-Xun

    2018-02-01

    Spermatozoa maturation, a process required for spermatozoa to acquire progressive motility and the ability to fertilize ova, primarily occurs in the caput and corpus of the epididymis. Despite considerable efforts, the factor(s) promoting epididymal sperm maturation remains unclear. Recently, WNT signaling has been implicated in epididymal sperm maturation. To further investigate WNT signaling function in epididymal sperm maturation, we generated Wntless conditional knockout mice (Wls cKO), Wls flox/flox ; Lcn5-Cre. In these mice, WNTLESS (WLS), a conserved membrane protein required for all WNT protein secretion, was specifically disrupted in the principal cells of the caput epididymidis. Immunoblot analysis showed that WLS was significantly reduced in the caput epididymidis of Wls cKO mice. In the caput epididymidis of Wls cKO mice, WNT 10A and WNT 2b, which are typically secreted by the principal cells of the caput epididymis, were not secreted. Interestingly, sperm motility analysis showed that the WLS deficiency in the caput epididymidis had no effect on sperm motility. Moreover, fertility tests showed that Wls cKO male mice had normal fertility. These results indicate that the disruption of WLS in principal cells of the caput epididymidis inhibits WNT protein secretion but has no effect on sperm motility and male fertility, suggesting that WNT signaling in the caput epididymidis may be dispensable for epididymal sperm maturation in mice.

  12. Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer.

    Science.gov (United States)

    Thompson, Joshua J; Williams, Christopher S

    2018-02-26

    Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase-composed of a structural, regulatory, and catalytic subunit-that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components-especially the multitude of regulatory subunits-has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.

  13. β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+ pathway in xenopus gastrulation.

    Directory of Open Access Journals (Sweden)

    Katharina Seitz

    Full Text Available β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca(2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca(2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca(2+ signaling cascade upstream of Protein Kinase C (PKC and Ca(2+/Calmodulin-dependent Protein Kinase II (CamKII. We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca(2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.

  14. Use of a molecular genetic platform technology to produce human Wnt proteins reveals distinct local and distal signaling abilities.

    Directory of Open Access Journals (Sweden)

    Jennifer L Green

    Full Text Available Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation. Additionally, in contrast to WNT3A, WNT1 only exhibits activity when cell-associated, and thus only signals to neighboring cells. The reporter assay also revealed a rapid decline of Wnt activity at 37°C, indicating that Wnt activity is highly labile. These engineered cell lines will reduce the cost of making and purifying Wnt proteins and serve as a continuous, reliable and regulatable source of Wnts to research laboratories around the world.

  15. A Wnt5 Activity Asymmetry and Intercellular Signaling via PCP Proteins Polarize Node Cells for Left-Right Symmetry Breaking.

    Science.gov (United States)

    Minegishi, Katsura; Hashimoto, Masakazu; Ajima, Rieko; Takaoka, Katsuyoshi; Shinohara, Kyosuke; Ikawa, Yayoi; Nishimura, Hiromi; McMahon, Andrew P; Willert, Karl; Okada, Yasushi; Sasaki, Hiroshi; Shi, Dongbo; Fujimori, Toshihiko; Ohtsuka, Toshihisa; Igarashi, Yasunobu; Yamaguchi, Terry P; Shimono, Akihiko; Shiratori, Hidetaka; Hamada, Hiroshi

    2017-03-13

    Polarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly. Here we show that polarization of node cells is impaired in Wnt5a -/- Wnt5b -/- and Sfrp mutant embryos, and also in the presence of a uniform distribution of Wnt5a or Sfrp1, suggesting that Wnt5 and Sfrp proteins act as instructive signals in this process. The absence of planar cell polarity (PCP) core proteins Prickle1 and Prickle2 in individual cells or local forced expression of Wnt5a perturbed polarization of neighboring wild-type cells. Our results suggest that opposing gradients of Wnt5a and Wnt5b and of their Sfrp inhibitors, together with intercellular signaling via PCP proteins, polarize node cells along the anterior-posterior axis for breaking of left-right symmetry. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina

    2012-05-01

    Full Text Available Abstract Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2 axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions

  17. Sailing with the Wnt: charting the Wnt processing and secretion route

    NARCIS (Netherlands)

    Lorenowicz, M.J.; Korswagen, H.C.

    2009-01-01

    Wnt proteins are members of a highly conserved family of signalling molecules that play a central role in development and disease. During the past years, the different signalling pathways that are triggered by Wnt proteins have been studied in detail, but it is still largely unknown how a functional

  18. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion

    NARCIS (Netherlands)

    Harterink, M.; Port, F.; Lorenowicz, M.J.; McGough, I.J.; Silhankova, M.; Betist, M.C.; van Weering, J.R.; van Heesbeen, R.G.; Middelkoop, T.C.; Basler, K.; Cullen, P.J.; Korswagen, H.C.

    2011-01-01

    Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently

  19. Mitotic Spindle Asymmetry: A Wnt/PCP-Regulated Mechanism Generating Asymmetrical Division in Cortical Precursors

    Directory of Open Access Journals (Sweden)

    Delphine Delaunay

    2014-01-01

    Full Text Available The regulation of asymmetric cell division (ACD during corticogenesis is incompletely understood. We document that spindle-size asymmetry (SSA between the two poles occurs during corticogenesis and parallels ACD. SSA appears at metaphase and is maintained throughout division, and we show it is necessary for proper neurogenesis. Imaging of spindle behavior and division outcome reveals that neurons preferentially arise from the larger-spindle pole. Mechanistically, SSA magnitude is controlled by Wnt7a and Vangl2, both members of the Wnt/planar cell polarity (PCP-signaling pathway, and relayed to the cell cortex by P-ERM proteins. In vivo, Vangl2 and P-ERM downregulation promotes early cell-cycle exit and prevents the proper generation of late-born neurons. Thus, SSA is a core component of ACD that is conserved in invertebrates and vertebrates and plays a key role in the tight spatiotemporal control of self-renewal and differentiation during mammalian corticogenesis.

  20. Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Lalefar, Nahal R.; Witkowski, Andrzej; Simonsen, Jens Bæk

    2016-01-01

    Background : Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound palm...... to Lin- Sca-1+ c-Kit+ cell expansion, an effect that was not mediated through β-catenin. Conclusions : The data indicate Wnt3a ND constitute a water-soluble transport vehicle capable of promoting ex vivo expansion of HSPC.......Background : Wnt proteins modulate development, stem cell fate and cancer through interactions with cell surface receptors. Wnts are cysteine-rich, glycosylated, lipid modified, two domain proteins that are prone to aggregation. The culprit responsible for this behavior is a covalently bound...... palmitoleoyl moiety in the N-terminal domain. Results : By combining murine Wnt3a with phospholipid and apolipoprotein A-I, ternary complexes termed nanodisks (ND) were generated. ND-associated Wnt3a is soluble in the absence of detergent micelles and gel filtration chromatography revealed that Wnt3a co...

  1. WNT Signaling Is Required for Peritoneal Membrane Angiogenesis.

    Science.gov (United States)

    Padwal, Manreet Kaur; Cheng, Genyang; Liu, Limin; Boivin, Felix J; Gangji, Azim; Brimble, Kenneth Scott; Bridgewater, Darren; Margetts, Peter J

    2018-01-24

    The WNT signaling pathway is involved in wound healing and fibrosis. We evaluated the WNT signaling pathway in peritoneal membrane injury. We assessed WNT1 protein expression in the peritoneal effluents of 54 stable peritoneal dialysis (PD) patients and WNT-related gene expression in ex vivo mesothelial cell cultures from 21 PD patients. In a transforming growth factor beta (TGFB) mediated animal model of peritoneal fibrosis, we evaluated regulation of the WNT pathway and the effect of WNT inhibition on peritoneal fibrosis and angiogenesis. WNT1 and WNT2 gene expression were positively correlated with peritoneal membrane solute transport in PD patients. In the mouse peritoneum, TGFΒ-induced peritoneal fibrosis was associated with increased expression of WNT2 and WNT4. Peritoneal b-catenin protein was significantly upregulated after infection with AdTGFB along with elements of the WNT signaling pathway. Treatment with a b-catenin inhibitor (ICG-001) in mice with AdTGFB-induced peritoneal fibrosis resulted in attenuation of peritoneal angiogenesis and reduced vascular endothelial growth factor. Similar results were also observed with the WNT antagonist Dickkopf related protein (DKK) 1. In addition to this, DKK-1 blocked epithelial to mesenchymal transition and increased levels of the cell adhesion protein E-cadherin. We provide evidence that WNT signaling is active in the setting of experimental peritoneal fibrosis and WNT1 correlates with patient peritoneal membrane solute transport in PD patients. Intervention in this pathway is a possible therapy for peritoneal membrane injury.

  2. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells.

    NARCIS (Netherlands)

    Yang, P.T.; Lorenowicz, M.J.; Silhankova, M.; Coudreuse, D.Y.M.; Betist, M.C.; Korswagen, H.C.

    2008-01-01

    Wnt proteins are secreted signaling molecules that play a central role in development and adult tissue homeostasis. We have previously shown that Wnt signaling requires retromer function in Wnt-producing cells. The retromer is a multiprotein complex that mediates endosome-to-Golgi transport of

  3. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    Energy Technology Data Exchange (ETDEWEB)

    Marschall, Zofia von [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States); Fisher, Larry W., E-mail: lfisher@dir.nidcr.nih.gov [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD (United States)

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  4. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    International Nuclear Information System (INIS)

    Marschall, Zofia von; Fisher, Larry W.

    2010-01-01

    Research highlights: → sFRP2 enhances the Wnt3a-induced β-catenin stabilization and its nuclear translocation. → sFRP2 enhances LRP6 phosphorylation and Wnt3a/β-catenin transcriptional reporter activity. → Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. → sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic β-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/β-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  5. The PTK7-Related Transmembrane Proteins Off-track and Off-track 2 Are Co-receptors for Drosophila Wnt2 Required for Male Fertility

    OpenAIRE

    Linnemannstöns, Karen; Ripp, Caroline; Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas

    2014-01-01

    Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-recept...

  6. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway.

    Science.gov (United States)

    Przybyl, Joanna; Kidzinski, Lukasz; Hastie, Trevor; Debiec-Rychter, Maria; Nusse, Roel; van de Rijn, Matt

    2018-05-01

    Low-grade endometrial stromal sarcomas (LGESS) harbor chromosomal translocations that affect proteins associated with chromatin remodeling Polycomb Repressive Complex 2 (PRC2), including SUZ12, PHF1 and EPC1. Roughly half of LGESS also demonstrate nuclear accumulation of β-catenin, which is a hallmark of Wnt signaling activation. However, the targets affected by the fusion proteins and the role of Wnt signaling in the pathogenesis of these tumors remain largely unknown. Here we report the results of a meta-analysis of three independent gene expression profiling studies on LGESS and immunohistochemical evaluation of nuclear expression of β-catenin and Lef1 in 112 uterine sarcoma specimens obtained from 20 LGESS and 89 LMS patients. Our results demonstrate that 143 out of 310 genes overexpressed in LGESS are known to be directly regulated by SUZ12. In addition, our gene expression meta-analysis shows activation of multiple genes implicated in Wnt signaling. We further emphasize the role of the Wnt signaling pathway by demonstrating concordant nuclear expression of β-catenin and Lef1 in 7/16 LGESS. Based on our findings, we suggest that LGESS-specific fusion proteins disrupt the repressive function of the PRC2 complex similar to the mechanism seen in synovial sarcoma, where the SS18-SSX fusion proteins disrupt the mSWI/SNF (BAF) chromatin remodeling complex. We propose that these fusion proteins in LGESS contribute to overexpression of Wnt ligands with subsequent activation of Wnt signaling pathway and formation of an active β-catenin/Lef1 transcriptional complex. These observations could lead to novel therapeutic approaches that focus on the Wnt pathway in LGESS. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Unraveling the Wnt secretion pathway

    NARCIS (Netherlands)

    Harterink, M.

    2011-01-01

    The Wnt family of signaling proteins has essential functions in development and adult tissue homeostasis throughout the animal kingdom. Although signaling cascades triggered by Wnt proteins have been extensively studied, much remains to be learned about how Wnts are produced and secreted and how

  8. Data on chemical activation of Wnt/β-catenin during axolotl limb regeneration

    Directory of Open Access Journals (Sweden)

    Sabina Wischin

    2017-04-01

    Full Text Available Limb amputation in axolotls was performed to obtain data demonstrating that a chemical agonist of Wnt (int-related protein/β-catenin signalling can have a role in axolotl limb regeneration (Wischin et al., 2017 [1]. The data revealed that active β-catenin protein was present during limb regeneration in some Leydig cells in the epithelium; after the chemical treatment, it was observed in more Leydig cells. In addition, the chemical agonist of Wnt generated distinct limb malformation.

  9. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.

    Science.gov (United States)

    Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.

  10. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C.

    Directory of Open Access Journals (Sweden)

    Young Mi Whang

    Full Text Available Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE cells (NHBE, BEAS-2B, 1799, 1198 and 1170I at different malignant stages established by exposure to cigarette smoke condensate (CSC. Abnormal up-regulation of Wnt5a mRNA and proteins was detected in CSC-exposed transformed 1198 and tumorigenic 1170I cells as compared with other non-CSC exposed HBE cells. Tumor tissues obtained from smokers showed higher Wnt5a expressions than matched normal tissues. In non-CSC exposed 1799 cells, treatment of recombinant Wnt5a caused the activations of PKC and Akt, and the blockage of Wnt5a and PKC significantly decreased the viabilities of CSC-transformed 1198 cells expressing high levels of Wnt5a. This reduced cell survival rate was associated with increased apoptosis via the down-regulation of Bcl2 and the induction of cleaved poly ADP-ribose polymerase. Moreover, CSC-treated 1799 cells showed induction of Wnt5a expression and enhanced colony-forming capacity. The CSC-induced colony forming efficiency was suppressed by the co-incubation with a PKC inhibitor. In conclusion, these results suggest that cigarette smoke induces Wnt5a-coupled PKC activity during lung carcinogenesis, which causes Akt activity and anti-apoptosis in lung cancer. Therefore, current study provides novel clues for the crucial role of Wnt5a in the smoking-related lung carcinogenesis.

  11. ERAD-dependent control of the Wnt secretory factor Evi.

    Science.gov (United States)

    Glaeser, Kathrin; Urban, Manuela; Fenech, Emma; Voloshanenko, Oksana; Kranz, Dominique; Lari, Federica; Christianson, John C; Boutros, Michael

    2018-02-15

    Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling

    NARCIS (Netherlands)

    Janda, Claudia Y.; Dang, Luke T.; You, Changjiang; Chang, Junlei; Lau, Wim De; Zhong, Zhendong A.; Yan, Kelley S.; Marecic, Owen; Siepe, DIrk; Li, Xingnan; Moody, James D.; Williams, Bart O.; Clevers, Hans; Piehler, Jacob; Baker, David; Kuo, Calvin J.; Garcia, K. Christopher

    2017-01-01

    Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19

  13. Updating the Wnt pathways

    Science.gov (United States)

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  14. TMEM59 potentiates Wnt signaling by promoting signalosome formation.

    Science.gov (United States)

    Gerlach, Jan P; Jordens, Ingrid; Tauriello, Daniele V F; van 't Land-Kuper, Ineke; Bugter, Jeroen M; Noordstra, Ivar; van der Kooij, Johanneke; Low, Teck Y; Pimentel-Muiños, Felipe X; Xanthakis, Despina; Fenderico, Nicola; Rabouille, Catherine; Heck, Albert J R; Egan, David A; Maurice, Madelon M

    2018-04-09

    Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt-FZD assemblies via intramembrane interactions. Subsequently, these Wnt-FZD-TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions. Copyright © 2018 the Author(s). Published by PNAS.

  15. Wnt signaling: Ig-norrin the dogma.

    Science.gov (United States)

    Clevers, Hans

    2004-06-08

    Secreted Wnt proteins trigger the intracellular Wnt signaling cascade upon engagement of dedicated Frizzled-Lrp receptor complexes. Unexpectedly, a non-Wnt ligand for this receptor complex has now been discovered. This novel ligand, Norrin, is mutated in the hereditary ocular Norrie syndrome. Copyright 2004 Elsevier Ltd.

  16. Fresh WNT into the regulation of mitosis.

    Science.gov (United States)

    Stolz, Ailine; Bastians, Holger

    2015-01-01

    Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.

  17. WNT-mediated Modulation of Bone Metabolism: Implications for WNT Targeting to Treat Extraskeletal Disorders.

    Science.gov (United States)

    Bullock, Whitney A; Robling, Alexander G

    2017-10-01

    The WNT-signaling pathway is involved in cellular and tissue functions that control such diverse processes as body axis patterning, cellular proliferation, differentiation, and life span. The long list of molecules that can participate or modify WNT signaling makes this pathway one of the most complex in cell biology. In bone tissues, WNT signaling is required for proper skeletal development, and human mutations in various components of the cascade revealed insights into pharmacologic targeting that can be harnessed to improve skeletal health. In particular, mutations in genes that code for the WNT-signaling inhibitor sclerostin or the WNT coreceptor lipoprotein receptor-related protein 5 have highlighted the potential therapeutic value of recapitulating those effects in patients with low bone mass. A constant challenge in this area is selectively modifying WNT components in the tissue of interest, as WNT has manifold effects in nearly every tissue.

  18. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    Science.gov (United States)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Secreted and Transmembrane Wnt Inhibitors and Activators

    Science.gov (United States)

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-01-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  20. Wnt secretion and signaling in Caenorhabditis elegans

    NARCIS (Netherlands)

    Yang, P.T.

    2008-01-01

    Wnt proteins are a highly conserved family of signaling molecules that play a central role during development and in adult tissue homeostasis. Wnt proteins regulate a variety of biological processes, ranging from cell proliferation and cell fate determination to cell migration, axon guidance and

  1. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-12-26

    To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs). CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs. CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed sFRP1-induced

  2. Wise, a context-dependent activator and inhibitor of Wnt signalling.

    Science.gov (United States)

    Itasaki, Nobue; Jones, C Michael; Mercurio, Sara; Rowe, Alison; Domingos, Pedro M; Smith, James C; Krumlauf, Robb

    2003-09-01

    We have isolated a novel secreted molecule, Wise, by a functional screen for activities that alter the anteroposterior character of neuralised Xenopus animal caps. Wise encodes a secreted protein capable of inducing posterior neural markers at a distance. Phenotypes arising from ectopic expression or depletion of Wise resemble those obtained when Wnt signalling is altered. In animal cap assays, posterior neural markers can be induced by Wnt family members, and induction of these markers by Wise requires components of the canonical Wnt pathway. This indicates that in this context Wise activates the Wnt signalling cascade by mimicking some of the effects of Wnt ligands. Activation of the pathway was further confirmed by nuclear accumulation of beta-catenin driven by Wise. By contrast, in an assay for secondary axis induction, extracellularly Wise antagonises the axis-inducing ability of Wnt8. Thus, Wise can activate or inhibit Wnt signalling in a context-dependent manner. The Wise protein physically interacts with the Wnt co-receptor, lipoprotein receptor-related protein 6 (LRP6), and is able to compete with Wnt8 for binding to LRP6. These activities of Wise provide a new mechanism for integrating inputs through the Wnt coreceptor complex to modulate the balance of Wnt signalling.

  3. WNT4 signaling in female gonadal development.

    Science.gov (United States)

    Pellegrino, Miriam; Maiorino, Raffaella; Schonauer, Sergio

    2010-06-01

    WNT4 signaling pathways represent an important step in the multi-faceted process of mammalian gonadal differentiation and the development of internal genitalia. WNT4 protein controls the cytoplasmatic stability of specific transcriptional coactivator beta catenin during both embriogenesis and adult homeostasis. The biological significance of WNT4 consists in determining the final female reproductive system, inhibiting Wolff ducts' differentiation, male steroidogenesis and vascular cell migration. An overview of WNT4 cellular mechanisms is given in order to understand its critical role in the genesis of various human diseases such as congenital malformations and gynecological disorders like polycystic ovary syndrome (PCOS). The final discussion focusses on several possible therapeutic uses of Wnt4 both during pregnancy in order to correct the genetic loss of function of the protein and during adulthood in order to normalize fertility in PCOS-affected females planning pregnancy.

  4. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  5. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    International Nuclear Information System (INIS)

    Railo, Antti; Pajunen, Antti; Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka; Vainio, Seppo

    2009-01-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-β-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of β-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  6. WNT5A inhibits human dental papilla cell proliferation and migration

    International Nuclear Information System (INIS)

    Peng, L.; Ye, L.; Dong, G.; Ren, L.B.; Wang, C.L.; Xu, P.; Zhou, X.D.

    2009-01-01

    WNT proteins are a large family of cysteine-rich secreted molecules that are linked to both canonical and non-canonical signal pathways, and have been implicated in oncogenesis and tissue development. Canonical WNT proteins have been proven to play critical roles in tooth development, while little is known about the role of non-canonical WNT proteins such as WNT5A. In this study, WNT5A was localized to human dental papilla tissue and human dental papilla cells (HDPCs) cultured in vitro, using immunochemistry and RT-PCR. Recombinant adenovirus encoding full-length Wnt5a cDNA was constructed to investigate the biological role of WNT5A on HDPCs. The BrdU incorporation assay, the MTT assay and flow cytometric analysis showed that over-expression of Wnt5a strongly inhibited the proliferation of HDPCs in vitro. Wound healing and transwell migration assays indicated that over-expression of WNT5A reduced migration of HDPCs. In conclusion, our results showed that WNT5A negatively regulates both proliferation and migration of HDPCs, suggesting its important role in odontogenesis via controlling the HDPCs.

  7. The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility.

    Science.gov (United States)

    Linnemannstöns, Karen; Ripp, Caroline; Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas

    2014-07-01

    Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract.

  8. Winding through the WNT pathway during cellular development and demise.

    Science.gov (United States)

    Li, F; Chong, Z Z; Maiese, K

    2006-01-01

    In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.

  9. Non-conventional Frizzled ligands and Wnt receptors.

    Science.gov (United States)

    Hendrickx, Marijke; Leyns, Luc

    2008-05-01

    The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.

  10. WNT signalling and haematopoiesis: a WNT-WNT situation.

    NARCIS (Netherlands)

    Staal, F.J.T.; Clevers, J.C.

    2005-01-01

    The evolutionarily conserved WNT-signalling pathway has pivotal roles during the development of many organ systems, and dysregulated WNT signalling is a key factor in the initiation of various tumours. Recent studies have implicated a role for WNT signal transduction at several stages of lymphocyte

  11. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/β-catenin signaling pathway

    International Nuclear Information System (INIS)

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-01-01

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/β-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/β-catenin signaling pathway. The β-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3β phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated β-catenin. Nuclear β-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the β-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/β-catenin signaling pathway.

  12. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals.

    Science.gov (United States)

    Lintern, Katherine B; Guidato, Sonia; Rowe, Alison; Saldanha, José W; Itasaki, Nobue

    2009-08-21

    Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.

  13. Wnt-11 signaling leads to down-regulation of the Wnt/β-catenin, JNK/AP-1 and NF-κB pathways and promotes viability in the CHO-K1 cells

    International Nuclear Information System (INIS)

    Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka; Vainio, Seppo

    2008-01-01

    The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical β-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical β-catenin mediated Wnt signaling but also JNK/AP-1 and NF-κB signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-κB pathway. Consistent with the central role of Akt, JNK and NF-κB in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways

  14. The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility.

    Directory of Open Access Journals (Sweden)

    Karen Linnemannstöns

    2014-07-01

    Full Text Available Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7 was identified as a Wnt co-receptor required for control of planar cell polarity (PCP in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964, which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract.

  15. Mesd Is a Universal Inhibitor of Wnt Co-receptor LRP5/6 and Blocks Wnt/β-catenin Signaling in Cancer Cells†

    Science.gov (United States)

    Lu, Wenyan; Liu, Chia-Chen; Thottassery, Jaideep V.; Bu, Guojun; Li, Yonghe

    2010-01-01

    Mesd is a specialized chaperone for the low-density lipoprotein receptor-related protein-5 (LRP5) and LRP6. In our previous studies, we found that Mesd binds to mature LRP6 on the cell surface and blocks the binding of Wnt antagonist Dickkopf-1(Dkk1) to LRP6. Herein, we demonstrated that Mesd also binds to LRP5 with a high affinity, and is a universal inhibitor of LRP5/6 ligands. Mesd not only blocks Wnt antagonists Dkk1 and Sclerostin binding to LRP5/6, but also inhibits Wnt3A and Rspondin1-induced Wnt/β-catenin signaling in LRP5/6 expressing cells. We also found that Mesd, Dkk1 and Sclerostin compete with one another for binding to LRP5 and LRP6 at the cell surface. More importantly, we demonstrated that Mesd is able to suppress LRP6 phosphorylation and Wnt/β-catenin signaling in prostate cancer PC-3 cells, and inhibits PC-3 cell proliferation. Our results indicate that recombinant Mesd protein is a useful tool for studying Wnt/β-catenin signaling on the cell surface, and has a potential therapeutic role in Wnt-dependent cancers. PMID:20446724

  16. Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting.

    Science.gov (United States)

    Hankey, William; Frankel, Wendy L; Groden, Joanna

    2018-03-01

    The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.

  17. Expression patterns of Wnt genes during development of an anterior part of the chicken eye

    OpenAIRE

    Fokina, Valentina M.; Frolova, Elena I.

    2006-01-01

    To address the roles of Wnts in the development of the anterior eye, we used a chicken model to perform comprehensive expression analysis of all Wnt genes during anterior eye development. In analyzing the available genomic sequences, we found that the chicken genome encodes 18 Wnt proteins that are homologous to corresponding human and mouse proteins. The mRNA sequences for 12 chicken Wnt genes are available in GenBank, and mRNAs for six other Wnt genes (Wnt2, Wnt5b, Wnt7b, Wnt8b, Wnt9b and W...

  18. Chemical Modulation of WNT Signaling in Cancer.

    Science.gov (United States)

    Zhang, Li-Shu; Lum, Lawrence

    2018-01-01

    Genetically based observations stemming from defects in development and in regeneration form the foundation of our understanding regarding how the secreted WNT proteins control coordinated cell fate decision-making in adult tissues. At the same time, our anticipation of potential benefits and unwanted toxicities associated with candidate anticancer agents targeting WNT signal transduction are also reliant upon this blueprint of WNT-associated physiology. Despite the long established role of WNT signaling in cancer, the emergence of WNT signaling as a suppressor of immunological attack in melanoma reveals an unanticipated anticancer potential in targeting WNT signaling. Here we review the literature associated with WNT signaling in cancer and discuss potential challenges that may be associated with the chemical attack of this important cellular process in achieving therapeutic goals. Although a number of small molecules targeting WNT signaling are introduced here, we center our discussion on antagonists of the WNT acyltransferase porcupine (PORCN) given the recent entry of two candidate molecules in clinical testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Regulation of Wnt/β-catenin signaling by posttranslational modifications

    Science.gov (United States)

    2014-01-01

    The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin. PMID:24594309

  20. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    Science.gov (United States)

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.

  1. The Ewing sarcoma secretome and its response to activation of Wnt/beta-catenin signaling.

    Science.gov (United States)

    Hawkins, Allegra G; Basrur, Venkatesha; da Veiga Leprevost, Felipe; Pedersen, Elisabeth; Sperring, Colin; Nesvizhskii, Alexey I; Lawlor, Elizabeth R

    2018-01-31

    Tumor: tumor microenvironment (TME) interactions are critical for tumor progression and the composition and structure of the local extracellular matrix (ECM) are key determinants of tumor metastasis. We recently reported that activation of Wnt/beta-catenin signaling in Ewing sarcoma cells induces widespread transcriptional changes that are associated with acquisition of a metastatic tumor phenotype. Significantly, ECM protein-encoding genes were found to be enriched among Wnt/beta-catenin induced transcripts, leading us to hypothesize that activation of canonical Wnt signaling might induce changes in the Ewing sarcoma secretome. To address this hypothesis, conditioned media from Ewing sarcoma cell lines cultured in the presence or absence of Wnt3a was collected for proteomic analysis. Label-free mass spectrometry was used to identify and quantify differentially secreted proteins. We then used in silico databases to identify only proteins annotated as secreted. Comparison of the secretomes of two Ewing sarcoma cell lines revealed numerous shared proteins, as well as a degree of heterogeneity, in both basal and Wnt-stimulated conditions. Gene set enrichment analysis of secreted proteins revealed that Wnt stimulation reproducibly resulted in increased secretion of proteins involved in ECM organization, ECM receptor interactions, and collagen formation. In particular, Wnt-stimulated Ewing sarcoma cells upregulated secretion of structural collagens, as well as matricellular proteins, such as the metastasis-associated protein, tenascin C (TNC). Interrogation of published databases confirmed reproducible correlations between Wnt/beta-catenin activation and TNC and COL1A1 expression in patient tumors. In summary, this first study of the Ewing sarcoma secretome reveals that Wnt/beta-catenin activated tumor cells upregulate secretion of ECM proteins. Such Wnt/beta-catenin mediated changes are likely to impact on tumor: TME interactions that contribute to metastatic

  2. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  3. Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Qi, Lisha; Song, Wangzhao; Liu, Zhiyong; Zhao, Xiulan; Cao, Wenfeng; Sun, Baocun

    2015-08-10

    Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p colon cancer samples showed increased Wnt3a expression (p colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.

  4. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    International Nuclear Information System (INIS)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.; Sobel, Burton E.

    2006-01-01

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not. Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state

  5. Efficient Purification and Optimization of Wnt3a, a Novel Therapeutic for Tissue Regeneration

    Science.gov (United States)

    Madhav, D.; Helms, J.; Dhamdhere, G.

    2012-12-01

    Wnt is a secreted protein that is present naturally in the body. When an organism is injured the amount of Wnt in the affected area increases. This protein acts as an activator of adult stem cells and signals them to begin differentiating and proliferating. This stem cell response augments the ongoing efforts of injured cells to heal faster by becoming the cells that were damaged by the injury. Adult stem cells play a great role in the healing of wounds, but as organisms age the amount of stem cells in their body decreases. This decrease, in effect, slows the healing of injuries because no stem cells are present to help the regenerative efforts of the body. The Wnt protein induces these stem cells not only to differentiate and proliferate, but also to self-replicate. The ability of Wnt to induce adult stem cells to self -replicate gives us an option to use the protein as a potential tissue regenerative drug. Post-translational Wnt has a lipid modification that makes the protein insoluble in water. To overcome this we fuse the protein with a liposome. A liposome is a lipid sphere with an aqueous center and a phospholipid membrane. The Wnt protein does not lose its function when joined with a liposome. Using this knowledge we can develop a viable means to inject the Wnt protein directly into organisms. The big problem now is to make enough purified Wnt to manufacture on a large scale.

  6. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  7. A Monoclonal Antibody against Wnt-1 Induces Apoptosis in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Biao He

    2004-01-01

    Full Text Available Aberrant activation of the Wingless-type (Wnt/β-catenin signaling pathway is associated with a variety of human cancers. Little is known regarding the role that Wnt ligands play in human carcinogenesis. To test whether a Wnt-1 signal is a survival factor in human cancer cells and thus may serve as a potential cancer therapeutic target, we investigated the effect of inhibition of Wnt-1 signaling in a variety of human cancer cell lines, including non small cell lung cancer, breast cancer, mesothelioma, and sarcoma. Both monoclonal antibody and RNA interference (RNAi were used to inhibit Wnt-1 signaling. We found that incubation of a monoclonal anti-Wnt-1 antibody induced apoptosis and caused downstream protein changes in cancer cells overexpressing Wnt-1. In contrast, apoptosis was not detected in cells lacking or having minimal Wnt-1 expression after the antibody incubation. RNAi targeting of Wnt-1 in cancer cells overexpressing Wnt-1 demonstrated similar downstream protein changes and induction of apoptosis. The antibody also suppressed tumor growth in vivo. Our results indicate that both monoclonal anti-Wnt-1 antibody and Wnt-1 siRNA inhibit Wnt-1 signaling and can induce apoptosis in human cancer cells. These findings hold promise as a novel therapeutic strategy for cancer.

  8. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  9. Epstein-Barr virus associated modulation of Wnt pathway is not dependent on latent membrane protein-1.

    Directory of Open Access Journals (Sweden)

    Natasha Webb

    2008-09-01

    Full Text Available Previous studies have indicated that Epstein-Barr virus (EBV can modulate the Wnt pathway in virus-infected cells and this effect is mediated by EBV-encoded oncogene latent membrane protein 1 (LMP1. Here we have reassessed the role of LMP1 in regulating the expression of various mediators of the canonical Wnt cascade. Contradicting the previous finding, we found that the levels of E-cadherin, beta-catenin, Glycogen Synthase Kinase 3ss (GSK3beta, axin and alpha-catenin were not affected by the expression of LMP1 sequences from normal B cells or nasopharyngeal carcinoma. Moreover, we also show that LMP1 expression had no detectable effect on the E-cadherin and beta-catenin interaction and did not induce transcriptional activation of beta-catenin. Taken together these studies demonstrate that EBV-mediated activation of Wnt pathway is not dependent on the expression of LMP1.

  10. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S

    2013-02-01

    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  11. Unterschiede und Gemeinsamkeiten der nicht-kanonischen Wnt-Liganden Wnt5a und Wnt11

    OpenAIRE

    Wallkamm, Veronika

    2014-01-01

    Die nicht-kanonischen Zweige des Wnt-Signalnetzwerkes sind Regulatoren der konvergenten Extension während der Xenopus Gastrulation. Dabei übernehmen die nicht-kanonischen Wnt-Liganden Wnt5a und Wnt11 nicht-redundante Aufgaben.

  12. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    International Nuclear Information System (INIS)

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat

    2015-01-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation

  13. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  14. Wnt signaling and polarity in freshwater sponges.

    Science.gov (United States)

    Windsor Reid, Pamela J; Matveev, Eugueni; McClymont, Alexandra; Posfai, Dora; Hill, April L; Leys, Sally P

    2018-02-02

    The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.

  15. Apcdd1 is a novel Wnt inhibitor Mutated in Hereditary Hypotrichosis Simplex

    Science.gov (United States)

    Shimomura, Yutaka; Agalliu, Dritan; Vonica, Alin; Luria, Victor; Wajid, Muhammad; Baumer, Alessandra; Belli, Serena; Petukhova, Lynn; Schinzel, Albert; Brivanlou, Ali H.; Barres, Ben A.; Christiano, Angela M.

    2011-01-01

    Hereditary hypotrichosis simplex (HHS) is a rare autosomal dominant form of hair loss characterized by hair follicle (HF) miniaturization1, 2. Using genetic linkage analysis, we mapped a novel locus for HHS to chromosome 18p11.22, and identified a mutation (L9R) in the APCDD1 gene in three families. We show that APCDD1 is a membrane-bound glycoprotein that is abundantly expressed in human HFs, and can interact in vitro with WNT3A and LRP5, two essential components of Wnt signaling. Functional studies revealed that APCDD1 inhibits Wnt signaling in a cell-autonomous manner and functions upstream of β-catenin. Moreover, APCDD1 represses activation of Wnt reporters and target genes, and inhibits the biological effects of Wnt signaling during both the generation of neurons from progenitors in the developing chick nervous system, and axis specification in Xenopus embryos. The mutation L9R is located in the signal peptide of APCDD1, and perturbs its translational processing from ER to the plasma membrane. L9R-APCDD1 likely functions in a dominant-negative manner to inhibit the stability and membrane localization of the wild-type protein. These findings describe a novel inhibitor of the Wnt signaling pathway with an essential role in human hair growth. Since APCDD1 is expressed in a broad repertoire of cell types3, our findings suggest that APCDD1 may regulate a diversity of biological processes controlled by Wnt signaling. PMID:20393562

  16. Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Ng, O H; Erbilgin, Y; Firtina, S; Celkan, T; Karakas, Z; Aydogan, G; Turkkan, E; Yildirmak, Y; Timur, C; Zengin, E; Dongen, J J M van; Staal, F J T; Ozbek, U; Sayitoglu, M

    2014-01-01

    WNT signaling has been implicated in the regulation of hematopoietic stem cells and plays an important role during T-cell development in thymus. Here we investigated WNT pathway activation in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. To evaluate the potential role of WNT signaling in T-cell leukomogenesis, we performed expression analysis of key components of WNT pathway. More than 85% of the childhood T-ALL patients showed upregulated β-catenin expression at the protein level compared with normal human thymocytes. The impact of this upregulation was reflected in high expression of known target genes (AXIN2, c-MYC, TCF1 and LEF). Especially AXIN2, the universal target gene of WNT pathway, was upregulated at both mRNA and protein levels in ∼40% of the patients. When β-CATENIN gene was silenced by small interfering RNA, the cancer cells showed higher rates of apoptosis. These results demonstrate that abnormal WNT signaling activation occurs in a significant fraction of human T-ALL cases independent of known T-ALL risk factors. We conclude that deregulated WNT signaling is a novel oncogenic event in childhood T-ALL

  17. p38 MAP kinase is required for Wnt3a-mediated osterix expression independently of Wnt-LRP5/6-GSK3β signaling axis in dental follicle cells

    International Nuclear Information System (INIS)

    Sakisaka, Yukihiko; Kanaya, Sousuke; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2016-01-01

    Wnt3a is a secreted glycoprotein that activates the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway through low-density-lipoprotein receptor-related protein (LRP)5/6 co-receptors. Wnt3a has been implicated in periodontal development and homeostasis, as well as in cementum formation. Recently, we have reported that Wnt3a increases alkaline phosphatase expression through the induction of osterix (Osx) expression in dental follicle cells, a precursor of cementoblasts. However, the molecular mechanism by which Wnt3a induces Osx expression is still unknown. In this study, we show that Wnt3a-induced Osx expression was inhibited in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and SB202190) at gene and protein levels, as assessed by real-time PCR and immunocytohistochemistry, respectively. Pretreatment of cells with Dickkopf-1, a potent canonical Wnt antagonist binding to LRP5/6 co-receptors, did not influence Wnt3a-mediated p38 MAPK phosphorylation, suggesting that Wnt3a activates p38 MAPK through LRP5/6-independent signaling. On the other hand, pretreatment with p38 MAPK inhibitors had no effects on the phosphorylated status of GSK3β and β-catenin as well as β-catenin nuclear translocation, but inhibited Wnt3a-mediated β-catenin transcriptional activity. These findings suggest that p38 MAPK modulates canonical Wnt signaling at the β-catenin transcriptional level without any crosstalk with the Wnt3a-mediated LRP5/6-GSK3β signaling axis and subsequent β-catenin nuclear translocation. These findings expand our knowledge of the mechanisms controlling periodontal development and regeneration. - Highlights: • Wnt3a induces Osx expression via p38 MAPK signaling in dental follicle cells. • p38 MAPK has no crosstalk with Wnt3a-mediated LRP5/6 and GSK3β signaling. • p38 MAPK is required for Wnt signaling at the β-catenin transcriptional level.

  18. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells.

    Science.gov (United States)

    Kriz, Vitezslav; Korinek, Vladimir

    2018-01-08

    In this review, we address aspects of Wnt, R-Spondin (RSPO) and Hippo signalling, in both healthy and transformed intestinal epithelium. In intestinal stem cells (ISCs), the Wnt pathway is essential for intestinal crypt formation and renewal, whereas RSPO-mediated signalling mainly affects ISC numbers. In human colorectal cancer (CRC), aberrant Wnt signalling is the driving mechanism initiating this type of neoplasia. The signalling role of the RSPO-binding transmembrane proteins, the leucine-rich-repeat-containing G-protein-coupled receptors (LGRs), is possibly more pleiotropic and not only limited to the enhancement of Wnt signalling. There is growing evidence for multiple crosstalk between Hippo and Wnt/β-catenin signalling. In the ON state, Hippo signalling results in serine/threonine phosphorylation of Yes-associated protein (YAP1) and tafazzin (TAZ), promoting formation of the β-catenin destruction complex. In contrast, YAP1 or TAZ dephosphorylation (and YAP1 methylation) results in β-catenin destruction complex deactivation and β-catenin nuclear localization. In the Hippo OFF state, YAP1 and TAZ are engaged with the nuclear β-catenin and participate in the β-catenin-dependent transcription program. Interestingly, YAP1/TAZ are dispensable for intestinal homeostasis; however, upon Wnt pathway hyperactivation, the proteins together with TEA domain (TEAD) transcription factors drive the transcriptional program essential for intestinal cell transformation. In addition, in many CRC cells, YAP1 phosphorylation by YES proto-oncogene 1 tyrosine kinase (YES1) leads to the formation of a transcriptional complex that includes YAP1, β-catenin and T-box 5 (TBX5) DNA-binding protein. YAP1/β-catenin/T-box 5-mediated transcription is necessary for CRC cell proliferation and survival. Interestingly, dishevelled (DVL) appears to be an important mediator involved in both Wnt and Hippo (YAP1/TAZ) signalling and some of the DVL functions were assigned to the nuclear DVL

  19. Wnt signaling inhibits CTL memory programming.

    Science.gov (United States)

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-12-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    International Nuclear Information System (INIS)

    Ohnishi, Masatoshi; Urasaki, Tomoka; Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito; Inoue, Atsuko

    2015-01-01

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram

  1. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Masatoshi, E-mail: ohnishi@fupharm.fukuyama-u.ac.jp [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Urasaki, Tomoka [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito [Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Inoue, Atsuko [Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan); Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292 (Japan)

    2015-11-13

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3′, 5’-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt4 expression in the adult rat brain after 24 h, and the increases in wnt4 mRNA and protein levels reached statistical significance in the hippocampus and striatum, respectively. This is the first finding to help elucidate the selective biosynthesis of central wnt4 through cAMP-stimulated microglia and astrocytes interaction. - Highlights: • Dibutyryl cAMP increased wnt4, but not wnt3a, 5a, 7a and 11, mRNA in mixed glia. • Wnt4 protein increased in astrocytes co-cultivated with microglia. • It took a long time to robustly increase wnt4 expression. • Rolipram

  2. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  3. Identification and expression characterization of WntA during intestinal regeneration in the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Li, Xiaoni; Sun, Lina; Yang, Hongsheng; Zhang, Libin; Miao, Ting; Xing, Lili; Huo, Da

    2017-08-01

    Wnt genes encode secreted glycoproteins that act as signaling molecules; these molecules direct cell proliferation, migration, differentiation and survival during animal development, maintenance of homeostasis and regeneration. At present, although the regeneration mechanism in Apostichopus japonicus has been studied, there is a little research on the Wnt signaling pathway in A. japonicus. To understand the potential role of the Wnt signaling pathway in A. japonicus, we cloned and sequenced the WntA gene in A. japonicus. Protein localization analysis showed that WntA protein was ubiquitously expressed in epidermal cells, the muscle and submucosa of the intestinal tissue. After stimulation and evisceration, the dynamic changes in expression of the WntA gene and protein showed that WntA was constitutively expressed during different stages of intestine regeneration in A. japonicus, with higher levels during the early wound healing stage and late lumen formation in the residual and nascent intestinal tissues, indicating its response to intestinal regeneration. Simultaneously, cell proliferation and apoptosis analysis showed that the patterns of cell proliferation were similar to the patterns of WntA protein expression during different intestinal regeneration stages in this organism. Taken together, these results suggested that WntA might participate in intestinal regeneration and may be connected with cell proliferation, apoptosis in different intestinal layers. This research could establish a basis for further examination of WntA functions in A. japonicus and Wnt genes in other echinoderms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β-catenin in bone healing of hip arthroplasty patients.

    Science.gov (United States)

    Cassuto, Jean; Folestad, Agnetha; Göthlin, Jan; Malchau, Henrik; Kärrholm, Johan

    2018-02-01

    We still lack understanding of why some implants fail while most remain stable after decades of use. Proinflammatory cytokines, matrix proteins and bone regulating cytokines of the RANKL/OPG (receptor activator of nuclear factor kappa B ligand/osteoprotegerin) and Wnt/β-catenin pathways are mandatory for normal bone repair but their spatial and temporal role in the healing of primary total hip arthroplasties (THA) has not been previously shown. Twenty-four osteoarthritis patients with one-sided well-fixed primary THA were prospectively monitored during 18years (18Y) with repeated blood samples, clinical variables and radiographs. Eighty-one healthy donors divided in three age- and gender-matched groups and twenty osteoarthritis patients awaiting THA and serving as control of the validity of stored plasma in THA patients, were included. Plasma was analyzed for C-reactive protein (CRP), interleukin (IL)-6, IL-8, IL-1β, tumor necrosis factor (TNF)-α, osteopontin (OPN), secreted protein acidic and rich in cysteine (SPARC/osteonectin), osteocalcin (OC), bone specific alkaline phosphatase (BALP), N-terminal propeptide of collagen type I (P1NP), RANKL, OPG, the Wnt agonistic ligands (Wnt)-1 and Wnt-3a, and the Wnt antagonists sclerostin, Dickkopf (Dkk)-1, Dkk-3, Dkk-4, secreted frizzled related protein (sFRP)-1, sFRP-3 and Wnt inhibitory factor-1 (Wif-1). Inflammatory mediators in arthroplasty patients (CRP, IL-6, OPN) increased significantly on day one after surgery vs preoperative value (PR) and healthy subjects and returned to baseline at 6W. TNF-α did not change relative preoperative level or healthy subjects. SPARC and OC increased in a biphasic fashion with the primary phase beginning shortly after surgery and lasting 3M (SPARC) and 2Y (OC) while the secondary phase peaked at 1Y (SPARC) and 13Y (OC), with both returning to basal level at 15Y. BALP peaked at 3M after surgery with a return to basal level at 2Y followed by a continuous increase from 5Y until 18Y. P

  5. International Union of Basic and Clinical Pharmacology Review: WNT/Frizzled signalling: receptor–ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3

    Science.gov (United States)

    Dijksterhuis, J P; Petersen, J; Schulte, G

    2014-01-01

    The wingless/int1 (WNT)/Frizzled (FZD) signalling pathway controls numerous cellular processes such as proliferation, differentiation, cell-fate decisions, migration and plays a crucial role during embryonic development. Nineteen mammalian WNTs can bind to 10 FZDs thereby activating different downstream pathways such as WNT/β-catenin, WNT/planar cell polarity and WNT/Ca2+. However, the mechanisms of signalling specification and the involvement of heterotrimeric G proteins are still unclear. Disturbances in the pathways can lead to various diseases ranging from cancer, inflammatory diseases to metabolic and neurological disorders. Due to the presence of seven-transmembrane segments, evidence for coupling between FZDs and G proteins and substantial structural differences in class A, B or C GPCRs, FZDs were grouped separately in the IUPHAR GPCR database as the class FZD within the superfamily of GPCRs. Recently, important progress has been made pointing to a direct activation of G proteins after WNT stimulation. WNT/FZD and G protein coupling remain to be fully explored, although the basic observation supporting the nature of FZDs as GPCRs is compelling. Because the involvement of different (i) WNTs; (ii) FZDs; and (iii) intracellular binding partners could selectively affect signalling specification, in this review we present the current understanding of receptor/ligand selectivity of FZDs and WNTs. We pinpoint what is known about signalling specification and the physiological relevance of these interactions with special emphasis on FZD–G protein interactions. LINKED ARTICLESThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24032637

  6. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Science.gov (United States)

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  7. Wnt and the Wnt signaling pathway in bone development and disease

    Science.gov (United States)

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  8. WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13.

    Science.gov (United States)

    Arthofer, Elisa; Hot, Belma; Petersen, Julian; Strakova, Katerina; Jäger, Stefan; Grundmann, Manuel; Kostenis, Evi; Gutkind, J Silvio; Schulte, Gunnar

    2016-10-01

    Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Functional Consequences of 17q21.31/WNT3-WNT9B Amplification in hPSCs with Respect to Neural Differentiation

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2015-02-01

    Full Text Available Human pluripotent stem cell (hPSC lines exhibit repeated patterns of genetic variation, which can alter in vitro properties as well as suitability for clinical use. We examined associations between copy-number variations (CNVs on chromosome 17 and hPSC mesodiencephalic dopaminergic (mDA differentiation. Among 24 hPSC lines, two karyotypically normal lines, BG03 and CT3, and BG01V2, with trisomy 17, exhibited amplification of the WNT3/WNT9B region and rapid mDA differentiation. In hPSC lines with amplified WNT3/WNT9B, basic fibroblast growth factor (bFGF signaling through mitogen-activated protein kinase (MAPK/ERK amplifies canonical WNT signaling by phosphorylating LRP6, resulting in enhanced undifferentiated proliferation. When bFGF is absent, noncanonical WNT signaling becomes dominant due to upregulation of SIAH2, enhancing JNK signaling and promoting loss of pluripotency. When bFGF is present during mDA differentiation, stabilization of canonical WNT signaling causes upregulation of LMX1A and mDA induction. Therefore, CNVs in 17q21.31, a “hot spot” for genetic variation, have multiple and complex effects on hPSC cellular phenotype.

  10. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation*

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C.

    2016-01-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  11. Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana

    Directory of Open Access Journals (Sweden)

    John E. Chesebro

    2012-12-01

    Sequential addition of segments in the posteriorly growing end of the embryo is a developmental mechanism common to many bilaterians. However, posterior growth and patterning in most animals also entails the establishment of a ‘posterior organiser’ that expresses the Caudal and Wnt proteins and has been proposed to be an ancestral feature of animal development. We have studied the functional relationships between the Wnt-driven organiser and the segmentation mechanisms in a basal insect, the cockroach Periplaneta americana. Here, posteriorly-expressed Wnt1 promotes caudal and Delta expression early in development to generate a growth zone from which segments will later bud off. caudal maintains the undifferentiated growth zone by dampening Delta expression, and hence Notch-mediated segmentation occurs just outside the caudal domain. In turn, Delta expression maintains Wnt1, maintaining this posterior gene network until all segments have formed. This feedback between caudal, Wnt and Notch-signalling in regulating growth and segmentation seems conserved in other arthropods, with some aspects found even in vertebrates. Thus our findings not only support an ancestral Wnt posterior organiser, but also impinge on the proposals for a common origin of segmentation in arthropods, annelids and vertebrates.

  12. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-01-01

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  13. [Expression of ICAT and Wnt signaling-related proteins in the monocytic differentiation of HL-60 cells induced by a new steroidal drug NSC67657].

    Science.gov (United States)

    Wang, J S; Wang, W J; Wang, T; Zhang, Y

    2016-04-01

    To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (Pcells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (Pprotein, and down-regulated the expression of β-catenin mRNA and protin (Pprotein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (Pcells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.

  14. Mesenchymal Wnt/β-catenin signaling limits tooth number.

    Science.gov (United States)

    Järvinen, Elina; Shimomura-Kuroki, Junko; Balic, Anamaria; Jussila, Maria; Thesleff, Irma

    2018-02-21

    Tooth agenesis is one of the predominant developmental anomalies in humans, usually affecting the permanent dentition generated by sequential tooth formation and, in most cases, caused by mutations perturbing epithelial Wnt/β-catenin signaling. In addition, loss-of-function mutations in the Wnt feedback inhibitor AXIN2 lead to human tooth agenesis. We have investigated the functions of Wnt/β-catenin signaling during sequential formation of molar teeth using mouse models. Continuous initiation of new teeth, which is observed after genetic activation of Wnt/β-catenin signaling in the oral epithelium, was accompanied by enhanced expression of Wnt antagonists and a downregulation of Wnt/β-catenin signaling in the dental mesenchyme. Genetic and pharmacological activation of mesenchymal Wnt/β-catenin signaling negatively regulated sequential tooth formation, an effect partly mediated by Bmp4. Runx2 , a gene whose loss-of-function mutations result in sequential formation of supernumerary teeth in the human cleidocranial dysplasia syndrome, suppressed the expression of Wnt inhibitors Axin2 and Drapc1 in dental mesenchyme. Our data indicate that increased mesenchymal Wnt signaling inhibits the sequential formation of teeth, and suggest that Axin2 / Runx2 antagonistic interactions modulate the level of mesenchymal Wnt/β-catenin signaling, underlying the contrasting dental phenotypes caused by human AXIN2 and RUNX2 mutations. © 2018. Published by The Company of Biologists Ltd.

  15. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.

    Science.gov (United States)

    Ackers, Ian; Malgor, Ramiro

    2018-01-01

    Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.

  16. Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation

    OpenAIRE

    Hardy, Katharine M.; Garriock, Robert J.; Yatskievych, Tatiana A.; D'Agostino, Susan L.; Antin, Parker B.; Krieg, Paul A.

    2008-01-01

    Knowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediat...

  17. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism

    OpenAIRE

    Cawthorn, William P.; Bree, Adam J.; Yao, Yao; Du, Baowen; Hemati, Nahid; Martinez-Santibañez, Gabriel; MacDougald, Ormond A.

    2011-01-01

    Wnt10b is an established regulator of mesenchymal stem cell (MSC) fate that inhibits adipogenesis and stimulates osteoblastogenesis, thereby impacting bone mass in vivo. However, downstream mechanisms through which Wnt10b exerts these effects are poorly understood. Moreover, whether other endogenous Wnt ligands also modulate MSC fate remains to be fully addressed. In this study, we identify Wnt6 and Wnt10a as additional Wnt family members that, like Wnt10b, are downregulated during developmen...

  18. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies.

    Directory of Open Access Journals (Sweden)

    Yan Gong

    Full Text Available β-Catenin-dependent Wnt signaling is initiated as Wnt binds to both the receptor FZD and coreceptor LRP5/6, which then assembles a multimeric complex at the cytoplasmic membrane face to recruit and inactivate the kinase GSK3. The large number and sequence diversity of Wnt isoforms suggest the possibility of domain-specific ligand-coreceptor interactions, and distinct binding sites on LRP6 for Wnt3a and Wnt9b have recently been identified in vitro. Whether mechanistically different interactions between Wnts and coreceptors might mediate signaling remains to be determined. It is also not clear whether coreceptor homodimerization induced extracellularly can activate Wnt signaling, as is the case for receptor tyrosine kinases. We generated monoclonal antibodies against LRP6 with the unexpected ability to inhibit signaling by some Wnt isoforms and potentiate signaling by other isoforms. In cell culture, two antibodies characterized further show reciprocal activities on most Wnts, with one antibody antagonizing and the other potentiating. We demonstrate that these antibodies bind to different regions of LRP6 protein, and inhibition of signaling results from blocking Wnt binding. Antibody-mediated dimerization of LRP6 can potentiate signaling only when a Wnt isoform is also able to bind the complex, presumably recruiting FZD. Endogenous autocrine Wnt signaling in different tumor cell lines can be either antagonized or enhanced by the LRP6 antibodies, indicating expression of different Wnt isoforms. As anticipated from the roles of Wnt signaling in cancer and bone development, antibody activities can also be observed in mice for inhibition of tumor growth and in organ culture for enhancement of bone mineral density. Collectively, our results indicate that separate binding sites for different subsets of Wnt isoforms determine the inhibition or potentiation of signaling conferred by LRP6 antibodies. This complexity of coreceptor-ligand interactions may

  19. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells.

    Science.gov (United States)

    Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; López-Sánchez, Inmaculada; Marra, Michele; Di Chiaro, Pierluigi; Kypta, Robert

    2017-10-01

    Wnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.

  20. Wnt/β-catenin signaling activates nephronectin expression in osteoblasts

    International Nuclear Information System (INIS)

    Ikehata, Mikiko; Yamada, Atsushi; Morimura, Naoko; Itose, Masakatsu; Suzawa, Tetsuo; Shirota, Tatsuo; Chikazu, Daichi; Kamijo, Ryutaro

    2017-01-01

    Nephronectin (Npnt), an extracellular matrix protein, is considered to play critical roles as an adhesion molecule in the development and functions of various organs and tissues, such as the kidneys and bone. In the present study, we found that Wnt3a strongly enhanced Npnt mRNA expression in osteoblast-like MC3T3-E1 cells, while it also induced an increase in Npnt gene expression in both time- and dose-dependent manners via the Wnt/β-catenin signaling pathway. These results suggest novel mechanisms for Wnt3a-induced osteoblast proliferation and cell survival via Npnt gene expression. - Highlights: • Wnt3a enhances nephronectin gene expression. • Nephronectin gene induction by Wnt3a is occurred by time- and dose-dependent manner. • Expression of nephronectin is regulated via β-catenin activation.

  1. High-frequency deregulated expression of Wnt signaling pathway members in breast carcinomas.

    Science.gov (United States)

    Khan, Zahid; Arafah, Maha; Shaik, Jilani Purusottapatnam; Mahale, Alka; Alanazi, Mohammad Saud

    2018-01-01

    Breast carcinoma is the most common malignancy and leading cause of cancer-related deaths in women worldwide including Saudi Arabia. Breast cancer in Saudi women develops at a much early age with median age of onset of 49 years compared to 62 years observed in patients from USA. Aberrations in wingless and integration site growth factor (Wnt) signaling pathway have been pathologically implicated in development of breast cancers and hence its role was examined in Saudi patients. We immunohistochemically examined various components of Wnt signaling pathway including β-catenin, tumor suppressor proteins, adenomatous polyposis coli (APC), and Axin, expression of naturally occurring pathway antagonists such as Dickkopf Wnt signaling pathway inhibitor 3 (DKK3), FRP2, and WIF1, as well as Wnt target cyclin D1 and c-Myc to establish if the pathway is constitutively activated in breast cancers arising in Saudi women. Cytoplasmic β-catenin, indicative of activation of the pathway, was observed in 24% of cases. Expression of APC and Axin, which are components of β-catenin destruction complex, was lost in 5% and 10% of tumors, respectively. Additionally, Wnt signaling inhibitors DKK3, FRP2, and Wnt inhibitory factor 1 (WIF1) were not expressed in 8%, 14%, and 5% breast tumors, respectively. Overall, accumulation of cytoplasmic β-catenin and downregulation of other Wnt pathway proteins (APC/Axin/DKK3/FRP2/WIF1) were found in approximately half of the breast cancers (47%) in our cohort. Consistent with this, analysis of Wnt target genes demonstrated moderate-to-strong expression of c-Myc in 58% and cyclin D1 in 50% of breast cancers. Deregulation of Wnt pathway was not associated with age of onset of the disease, tumor grade, and triple-negative status of breast cancers. High level of deregulated expression of Wnt pathway proteins suggests its important role in pathogenesis of breast cancers arising in Saudi women who may benefit from development of therapeutic drugs

  2. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  3. Wnt/catenin β1/microRNA 183 predicts recurrence and prognosis of patients with colorectal cancer.

    Science.gov (United States)

    Chen, Yuzhuo; Song, Weiliang

    2018-04-01

    The present study assessed the association between the Wnt/catenin β1 (CTNNB1)/microRNA (miR)183 signaling pathway and the recurrence and prognosis of colorectal cancer. The expression of Wnt, CTNNB1 and miR183 in primary colorectal cancer tissue was increased compared with that in the paracarcinoma tissue. Disease-free survival and overall survival were decreased in patients with colorectal cancer and increased miR183 expression compared with those in patients with colorectal cancer and decreased miR183 expression. The human colorectal cancer cell line HCT-116 was treated with 5 µM inhibitor of Wnt response (IWR-2) for 24 h to inhibit Wnt protein expression. Downregulating Wnt and CTNNB1 expression inhibited the viability of, and induced cell death and caspase 3 protein expression in, HCT-116 cells. The expression of BCL2 associated X protein and miR183 was increased, and cyclin D1 protein expression was suppressed, by the downregulation of Wnt and CTNNB1 expression in HCT-116 cells. Collectively, the results of the present study suggested that the Wnt/CTNNB1/miR183 signaling pathway may represent a promising biomarker for the recurrence and prognosis of colorectal cancer.

  4. Inhibition of adipocytogenesis by canonical WNT signaling in human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Shen, Longxiang; Glowacki, Julie; Zhou, Shuanhu

    2011-01-01

    The WNT signaling pathway plays important roles in the self-renewal and differentiation of mesenchymal stem cells (MSCs). Little is known about WNT signaling in adipocyte differentiation of human MSCs. In this study, we tested the hypothesis that canonical and non-canonical WNTs differentially regulate in vitro adipocytogenesis in human MSCs. The expression of adipocyte gene PPARγ2, lipoprotein lipase, and adipsin increased during adipocytogenesis of hMSCs. Simultaneously, the expression of canonical WNT2, 10B, 13, and 14 decreased, whereas non-canonical WNT4 and 11 increased, and WNT5A was unchanged. A small molecule WNT mimetic, SB-216763, increased accumulation of β-catenin protein, inhibited induction of WNT4 and 11 and inhibited adipocytogenesis. In contrast, knockdown of β-catenin with siRNA resulted in spontaneous adipocytogenesis. These findings support the view that canonical WNT signaling inhibits and non-canonical WNT signaling promotes adipocytogenesis in adult human marrow-derived mesenchymal stem cells.

  5. Wnt/β-catenin signaling: new (and old) players and new insights

    OpenAIRE

    Huang, He; He, Xi

    2008-01-01

    Wnt/β-catenin signaling has central roles in embryogenesis and human diseases including cancer. A central scheme of the Wnt pathway is to stabilize the transcription coactivator β-catenin by preventing its phosphorylation-dependent degradation. Significant progress has been made towards the understanding of this critical regulatory pathway, including the protein complex that promotes β-catenin phosphorylation-degradation, and the mechanism by which the extracellular Wnt ligand engages cell su...

  6. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins.

    Science.gov (United States)

    Bu, Qixin; Li, Zhiqiang; Zhang, Junying; Xu, Fei; Liu, Jianmei; Liu, Heli

    2017-09-29

    The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis , the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    Science.gov (United States)

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  8. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    Science.gov (United States)

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  10. Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate

    Directory of Open Access Journals (Sweden)

    Priya Srikanth

    2015-09-01

    Full Text Available Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1 as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11 translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.

  11. Wnt-10b promotes differentiation of skin epithelial cells in vitro

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC

  12. Wnt5b-associated exosomes promote cancer cell migration and proliferation.

    Science.gov (United States)

    Harada, Takeshi; Yamamoto, Hideki; Kishida, Shosei; Kishida, Michiko; Awada, Chihiro; Takao, Toshifumi; Kikuchi, Akira

    2017-01-01

    Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency.

    Science.gov (United States)

    Workman, Aspen; Zhu, Liqian; Keel, Brittney N; Smith, Timothy P L; Jones, Clinton

    2018-04-01

    Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency. IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons

  14. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm.

    Directory of Open Access Journals (Sweden)

    Marta Luz

    Full Text Available BACKGROUND: Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. RESULTS: We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. CONCLUSIONS: Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.

  15. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm.

    Science.gov (United States)

    Luz, Marta; Spannl-Müller, Stephanie; Özhan, Günes; Kagermeier-Schenk, Birgit; Rhinn, Muriel; Weidinger, Gilbert; Brand, Michael

    2014-01-01

    Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.

  16. Wnt signaling in form deprivation myopia of the mice retina.

    Directory of Open Access Journals (Sweden)

    Mingming Ma

    Full Text Available BACKGROUND: The canonical Wnt signaling pathway plays important roles in cellular proliferation and differentiation, axonal outgrowth, cellular maintenance in retinas. Here we test the hypothesis that elements of the Wnt signaling pathway are involved in the regulation of eye growth and prevention of myopia, in the mouse form-deprivation myopia model. METHODOLOGY/PRINCIPAL FINDINGS: (1 One hundred twenty-five C57BL/6 mice were randomly distributed into form-deprivation myopia and control groups. Form-deprivation myopia (FDM was induced by suturing the right eyelid, while the control group received no treatment. After 1, 2, and 4 weeks of treatment, eyes were assessed in vivo by cycloplegic retinoscopic refraction and axial length measurement by photography or A-scan ultrasonography. Levels of retinal Wnt2b, Fzd5 and β-catenin mRNA and protein were evaluated using RT-PCR and western blotting, respectively. (2 Another 96 mice were divided into three groups: control, drugs-only, and drugs+FDM (by diffuser. Experimentally treated eyes in the last two groups received intravitreal injections of vehicle or the proteins, DKK-1 (Wnt-pathway antagonist or Norrin (Wnt-pathway agonist, once every three days, for 4 injections total. Axial length and retinoscopic refraction were measured on the 14th day of form deprivation. Following form-deprivation for 1, 2, and 4 weeks, FDM eyes had a relatively myopic refractive error, compared with contralateral eyes. There were no significant differences in refractive error between right and left eye in control group. The amounts of Wnt2b, Fzd5 and β-catenin mRNA and protein were significantly greater in form-deprived myopia eyes than in control eyes.DKK-1 (antagonist reduced the myopic shift in refractive error and increase in axial elongation, whereas Norrin had the opposite effect in FDM eyes. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the Wnt2b signaling pathway may play a role in the

  17. IQ-domain GTPase-activating protein 1 promotes the malignant phenotype of invasive ductal breast carcinoma via canonical Wnt pathway.

    Science.gov (United States)

    Zhao, Huan-Yu; Han, Yang; Wang, Jian; Yang, Lian-He; Zheng, Xiao-Ying; Du, Jiang; Wu, Guang-Ping; Wang, En-Hua

    2017-06-01

    IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.

  18. Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs.

    Science.gov (United States)

    Ghosh, Sukla; Roy, Stéphane; Séguin, Carl; Bryant, Susan V; Gardiner, David M

    2008-05-01

    Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.

  19. Exogenous DKK-3/REIC inhibits Wnt/β-catenin signaling and cell proliferation in human kidney cancer KPK1.

    Science.gov (United States)

    Xu, Jiaqi; Sadahira, Takuya; Kinoshita, Rie; Li, Shun-Ai; Huang, Peng; Wada, Koichiro; Araki, Motoo; Ochiai, Kazuhiko; Noguchi, Hirofumi; Sakaguchi, Masakiyo; Nasu, Yasutomo; Watanabe, Masami

    2017-11-01

    The third member of the Dickkopf family (DKK-3), also known as reduced expression in immortalized cells (REIC), is a tumor suppressor present in a variety of tumor cells. Regarding the regulation of the Wnt/β-catenin signaling pathway, exogenous DKK-1 and DKK-2 are reported to inhibit Wnt signaling by binding the associated effectors. However, whether exogenous DKK-3 inhibits Wnt signaling remains unclear. A recombinant protein of human full-length DKK-3 was used to investigate the exogenous effects of the protein in vitro in KPK1 human renal cell carcinoma cells. It was demonstrated that the expression of phosphorylated (p-)β-catenin (inactive form as the transcriptional factor) was increased in KPK1 cells treated with the exogenous DKK-3 protein. The levels of non-p-β-catenin (activated form of β-catenin) were consistently decreased. It was revealed that the expression of transcription factor (TCF) 1 and c-Myc, the downstream transcription factors of the Wnt/β-catenin signaling pathway, was inhibited following treatment with DKK-3. A cancer cell viability assay confirmed the anti-proliferative effects of exogenous DKK-3 protein, which was consistent with a suppressed Wnt/β-catenin signaling cascade. In addition, as low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor of DKK-1 and DKK-2 and their interaction on the cell surface inhibits Wnt/β-catenin signaling, it was examined whether the exogenous DKK-3 protein affects LRP6-mediated Wnt/β-catenin signaling. The LRP6 gene was silenced and the effects of DKK-3 on the time course of the upregulation of p-β-catenin expression were subsequently analyzed. Notably, LRP6 depletion elevated the base level of p-β-catenin; however, there was no significant effect on its upregulation course or expression pattern. These findings indicate that exogenous DKK-3 upregulates p-β-catenin and inhibits Wnt/β-catenin signaling in an LRP6-independent manner. Therefore, exogenous DKK-3 protein may inhibit

  20. WNT-er is coming’: WNT signalling in chronic lung diseases

    Science.gov (United States)

    Baarsma, H A

    2017-01-01

    Chronic lung diseases represent a major public health problem with only limited therapeutic options. An important unmet need is to identify compounds and drugs that target key molecular pathways involved in the pathogenesis of chronic lung diseases. Over the last decade, there has been extensive interest in investigating Wingless/integrase-1 (WNT) signalling pathways; and WNT signal alterations have been linked to pulmonary disease pathogenesis and progression. Here, we comprehensively review the cumulative evidence for WNT pathway alterations in chronic lung pathologies, including idiopathic pulmonary fibrosis, pulmonary arterial hypertension, asthma and COPD. While many studies have focused on the canonical WNT/β-catenin signalling pathway, recent reports highlight that non-canonical WNT signalling may also significantly contribute to chronic lung pathologies; these studies will be particularly featured in this review. We further discuss recent advances uncovering the role of WNT signalling early in life, the potential of pharmaceutically modulating WNT signalling pathways and highlight (pre)clinical studies describing promising new therapies for chronic lung diseases. PMID:28416592

  1. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study.

    Science.gov (United States)

    Chen, Fei; Wang, Haoxiang; Xiang, Xin; Yuan, Jichao; Chu, Weihua; Xue, Xingsen; Zhu, Haitao; Ge, Hongfei; Zou, Mingming; Feng, Hua; Lin, Jiangkai

    2014-12-01

    The objective of the present study was to clarify the relationship between the neuroprotective effects of curcumin and the classical wnt signaling pathway. Using Sprague-Dawley rats at a gestational age of 14.5 d, we isolated neural stem cells from the anterior two-thirds of the fetal rat brain. The neural stem cells were passaged three times using the half media replacement method and identified using cellular immunofluorescence. After passaging for three generations, we cultured cells in media without basic fibroblast growth factor and epidermal growth factor. Then we treated cells in five different ways, including a blank control group, a group treated with IWR1 (10 μmol/L), a group treated with curcumin (500 nmol/L), a group treated with IWR1 + curcumin, and a group treated with dimethyl sulfoxide (10 μmol/L). We then measured the protein and RNA expression levels for wnt3a and β-catenin using Western blotting and Reverse transcription-polymerase chain reaction (RT-PCR). Western-blotting: after the third generation of cells had been treated for 72 h, we observed that wnt3a and β-catenin expression was significantly increased in the group receiving 500 nmol/L curcumin but not in the other groups. Furthermore, cells in the IWR1-treated group showed decreased wnt3a and β-catenin expression, and wnt3a and β-catenin was also decreased in the IWR1 + 500 nmol/L curcumin group. No obvious change was observed in the dimethyl sulfoxide group. RT-PCR showed similar changes to those observed with the Western blotting experiments. Our study suggests that curcumin can activate the wnt signaling pathway, which provides evidence that curcumin exhibits a neuroprotective effect through the classical wnt signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis.

    Science.gov (United States)

    Yang, Yingzi

    2003-11-01

    In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.

  3. A novel gene's role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos.

    Science.gov (United States)

    Khadka, Anita; Martínez-Bartolomé, Marina; Burr, Stephanie D; Range, Ryan C

    2018-01-01

    The anterior neuroectoderm (ANE) in many deuterostome embryos (echinoderms, hemichordates, urochordates, cephalochordates, and vertebrates) is progressively restricted along the anterior-posterior axis to a domain around the anterior pole. In the sea urchin embryo, three integrated Wnt signaling branches (Wnt/β-catenin, Wnt/JNK, and Wnt/PKC) govern this progressive restriction process, which begins around the 32- to 60-cell stage and terminates by the early gastrula stage. We previously have established that several secreted Wnt modulators of the Dickkopf and secreted Frizzled-related protein families (Dkk1, Dkk3, and sFRP-1/5) are expressed within the ANE and play important roles in modulating the Wnt signaling network during this process. In this study, we use morpholino and dominant-negative interference approaches to characterize the function of a novel Frizzled-related protein, secreted Frizzled-related protein 1 (sFRP-1), during ANE restriction. sFRP-1 appears to be related to a secreted Wnt modulator, sFRP3/4, that is essential to block Wnt signaling and establish the ANE in vertebrates. Here, we show that the sea urchin sFRP3/4 orthologue is not expressed during ANE restriction in the sea urchin embryo. Instead, our results indicate that ubiquitously expressed maternal sFRP-1 and Fzl1/2/7 signaling act together as early as the 32- to 60-cell stage to antagonize the ANE restriction mechanism mediated by Wnt/β-catenin and Wnt/JNK signaling. Then, starting from the blastula stage, Fzl5/8 signaling activates zygotic sFRP-1 within the ANE territory, where it works with the secreted Wnt antagonist Dkk1 (also activated by Fzl5/8 signaling) to antagonize Wnt1/Wnt8-Fzl5/8-JNK signaling in a negative feedback mechanism that defines the outer ANE territory boundary. Together, these data indicate that maternal and zygotic sFRP-1 protects the ANE territory by antagonizing the Wnt1/Wnt8-Fzl5/8-JNK signaling pathway throughout ANE restriction, providing precise

  4. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  5. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    International Nuclear Information System (INIS)

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-01-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression

  6. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans.

    Science.gov (United States)

    Mentink, Remco A; Middelkoop, Teije C; Rella, Lorenzo; Ji, Ni; Tang, Chung Yin; Betist, Marco C; van Oudenaarden, Alexander; Korswagen, Hendrik C

    2014-10-27

    Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/β-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.

  7. NRAGE induces β-catenin/Arm O-GlcNAcylation and negatively regulates Wnt signaling

    International Nuclear Information System (INIS)

    Chen, Yuxin; Jin, Lei; Xue, Bin; Jin, Dong; Sun, Fenyong; Wen, Chuanjun

    2017-01-01

    The Wnt pathway is crucial for animal development, as well as tumor formation. Understanding the regulation of Wnt signaling will help to elucidate the mechanism of the cell cycle, cell differentiation and tumorigenesis. It is generally accepted that in response to Wnt signals, β-catenin accumulates in the cytoplasm and is imported into the nucleus where it recruits LEF/TCF transcription factors to activate the expression of target genes. In this study, we report that human NRAGE, a neurotrophin receptor p75 (p75NTR) binding protein, markedly suppresses the expression of genes activated by the Wnt pathway. Consistent with this finding, loss of function of NRAGE by RNA interference (RNAi) activates the Wnt pathway. Moreover, NRAGE suppresses the induction of axis duplication by microinjected β-catenin in Xenopus embryos. To our surprise, NRAGE induces nuclear localization of β-catenin and increases its DNA binding ability. Further studies reveal that NRAGE leads to the modification of β-catenin/Arm with O-linked beta-N-acetylglucosamine (O-GlcNAc), and failure of the association between β-catenin/Arm and pygopus(pygo) protein, which is required for transcriptional activation of Wnt target genes. Therefore, our findings suggest a novel mechanism for regulating Wnt signaling. - Highlights: • NRAGE suppresses the expressions of Wnt pathway downstream genes. • NRAGE induces nuclear localization of β-catenin and increases its DNA binding ability. • NRAGE activity leads to the O-GlcNAcylation of β-catenin.

  8. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.

    Science.gov (United States)

    Voloshanenko, Oksana; Gmach, Philipp; Winter, Jan; Kranz, Dominique; Boutros, Michael

    2017-11-01

    Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1 , FZD2 , and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand-receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.-Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. © The Author(s).

  9. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function

    Directory of Open Access Journals (Sweden)

    Alvarez Alejandra R

    2009-11-01

    Full Text Available Abstract Background The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. Results We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. Conclusion Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.

  10. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    Science.gov (United States)

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  11. Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6.

    Science.gov (United States)

    Guidato, Sonia; Itasaki, Nobue

    2007-10-15

    The Wnt signaling pathway is tightly regulated by extracellular and intracellular modulators. Wise was isolated as a secreted protein capable of interacting with the Wnt co-receptor LRP6. Studies in Xenopus embryos revealed that Wise either enhances or inhibits the Wnt pathway depending on the cellular context. Here we show that the cellular localization of Wise has distinct effects on the Wnt pathway readout. While secreted Wise either synergizes or inhibits the Wnt signals depending on the partner ligand, ER-retained Wise consistently blocks the Wnt pathway. ER-retained Wise reduces LRP6 on the cell surface, making cells less susceptible to the Wnt signal. This study provides a cellular mechanism for the action of Wise and introduces the modulation of cellular susceptibility to Wnt signals as a novel mechanism of the regulation of the Wnt pathway.

  12. Wnt signaling in cancer

    Science.gov (United States)

    Zhan, T; Rindtorff, N; Boutros, M

    2017-01-01

    Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches. PMID:27617575

  13. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr

    2015-01-30

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.

  14. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    International Nuclear Information System (INIS)

    Kim, Inae; Hur, Jung; Jeong, Sunjoo

    2015-01-01

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells

  15. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  16. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wada

    Full Text Available BACKGROUND: Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue. MATERIALS AND METHODS: We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells. RESULTS: The Wnt5b, Wnt6, Frizzled 6 (Fzd6, and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6 were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII and phosphorylated Jun N-terminal kinase (p-JNK were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin. CONCLUSION: Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors

  17. A novel gene’s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior–posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    Anita Khadka

    2018-01-01

    Full Text Available Abstract The anterior neuroectoderm (ANE in many deuterostome embryos (echinoderms, hemichordates, urochordates, cephalochordates, and vertebrates is progressively restricted along the anterior–posterior axis to a domain around the anterior pole. In the sea urchin embryo, three integrated Wnt signaling branches (Wnt/β-catenin, Wnt/JNK, and Wnt/PKC govern this progressive restriction process, which begins around the 32- to 60-cell stage and terminates by the early gastrula stage. We previously have established that several secreted Wnt modulators of the Dickkopf and secreted Frizzled-related protein families (Dkk1, Dkk3, and sFRP-1/5 are expressed within the ANE and play important roles in modulating the Wnt signaling network during this process. In this study, we use morpholino and dominant-negative interference approaches to characterize the function of a novel Frizzled-related protein, secreted Frizzled-related protein 1 (sFRP-1, during ANE restriction. sFRP-1 appears to be related to a secreted Wnt modulator, sFRP3/4, that is essential to block Wnt signaling and establish the ANE in vertebrates. Here, we show that the sea urchin sFRP3/4 orthologue is not expressed during ANE restriction in the sea urchin embryo. Instead, our results indicate that ubiquitously expressed maternal sFRP-1 and Fzl1/2/7 signaling act together as early as the 32- to 60-cell stage to antagonize the ANE restriction mechanism mediated by Wnt/β-catenin and Wnt/JNK signaling. Then, starting from the blastula stage, Fzl5/8 signaling activates zygotic sFRP-1 within the ANE territory, where it works with the secreted Wnt antagonist Dkk1 (also activated by Fzl5/8 signaling to antagonize Wnt1/Wnt8–Fzl5/8–JNK signaling in a negative feedback mechanism that defines the outer ANE territory boundary. Together, these data indicate that maternal and zygotic sFRP-1 protects the ANE territory by antagonizing the Wnt1/Wnt8–Fzl5/8–JNK signaling pathway throughout ANE

  18. Discovery and characterization of a potent Wnt and hedgehog signaling pathways dual inhibitor.

    Science.gov (United States)

    Ma, Haikuo; Chen, Qin; Zhu, Fang; Zheng, Jiyue; Li, Jiajun; Zhang, Hongjian; Chen, Shuaishuai; Xing, Haimei; Luo, Lusong; Zheng, Long Tai; He, Sudan; Zhang, Xiaohu

    2018-04-10

    Embryonic stem cell pathways such as hedgehog and Wnt pathways are central to the tumorigenic properties of cancer stem cells (CSC). Since CSCs are characterized by their ability to self-renew, form differentiated progeny, and develop resistance to anticancer therapies, targeting the Wnt and hedgehog signaling pathways has been an important strategy for cancer treatment. Although molecules targeting either Wnt or hedgehog are common, to the best of our knowledge, those targeting both pathways have not been documented. Here we report a small molecule (compound 1) that inhibits both Wnt (IC 50  = 0.5 nM) and hedgehog (IC 50  = 71 nM) pathways based on reporter gene assays. We further identified that the molecular target of 1 for Wnt pathway inhibition was porcupine (a member of the membrane-bound O-acyltransferase family of proteins), a post-translational modification node in Wnt signaling; while the target of 1 mitigating hedgehog pathway was Smoothened, a key G protein coupled receptor (GPCR) mediating hedgehog signal transduction. Preliminary analysis of structure-activity-relationship identified key functional elements for hedgehog/Wnt inhibition. In in vivo studies, compound 1 demonstrated good oral exposure and bioavailability while eliciting no overt toxicity in mice. An important consideration in cancer treatment is the potential therapeutic escape through compensatory activation of an interconnected pathway when only one signaling pathway is inhibited. Toward this end, compound 1 may not only lead to the development of new therapeutics for Wnt and hedgehog related cancers, but may also help to develop potential cancer treatment which needs to target Wnt and hedgehog signaling simultaneously. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms

    Science.gov (United States)

    Novellasdemunt, Laura; Antas, Pedro

    2015-01-01

    The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery. PMID:26289750

  20. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans

    NARCIS (Netherlands)

    Mentink, Remco A; Middelkoop, Teije C; Rella, Lorenzo; Ji, Ni; Tang, Chung Yin; Betist, Marco C; van Oudenaarden, Alexander; Korswagen, Hendrik C

    2014-01-01

    Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into

  1. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos.

    Directory of Open Access Journals (Sweden)

    Anthony J Robertson

    Full Text Available The Runt homology domain (Runx defines a metazoan family of sequence-specific transcriptional regulatory proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during embryogenesis for cell survival and differentiation.Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU incorporation and direct cell counts. Reverse transcription coupled polymerase chain reaction (RT-PCR studies show that the cell proliferation deficit is presaged by a deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP indicates that Runx target sites within 5' sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late blastula stage. Furthermore, experiments using a green fluorescent protein (GFP reporter transgene show that the blastula-stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol. 288: 545-558, 2005 is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK-3.These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback circuit that controls cell proliferation during development.

  2. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal.

    Science.gov (United States)

    Yan, Kelley S; Janda, Claudia Y; Chang, Junlei; Zheng, Grace X Y; Larkin, Kathryn A; Luca, Vincent C; Chia, Luis A; Mah, Amanda T; Han, Arnold; Terry, Jessica M; Ootani, Akifumi; Roelf, Kelly; Lee, Mark; Yuan, Jenny; Li, Xiao; Bolen, Christopher R; Wilhelmy, Julie; Davies, Paige S; Ueno, Hiroo; von Furstenberg, Richard J; Belgrader, Phillip; Ziraldo, Solongo B; Ordonez, Heather; Henning, Susan J; Wong, Melissa H; Snyder, Michael P; Weissman, Irving L; Hsueh, Aaron J; Mikkelsen, Tarjei S; Garcia, K Christopher; Kuo, Calvin J

    2017-05-11

    The canonical Wnt/β-catenin signalling pathway governs diverse developmental, homeostatic and pathological processes. Palmitoylated Wnt ligands engage cell-surface frizzled (FZD) receptors and LRP5 and LRP6 co-receptors, enabling β-catenin nuclear translocation and TCF/LEF-dependent gene transactivation. Mutations in Wnt downstream signalling components have revealed diverse functions thought to be carried out by Wnt ligands themselves. However, redundancy between the 19 mammalian Wnt proteins and 10 FZD receptors and Wnt hydrophobicity have made it difficult to attribute these functions directly to Wnt ligands. For example, individual mutations in Wnt ligands have not revealed homeostatic phenotypes in the intestinal epithelium-an archetypal canonical, Wnt pathway-dependent, rapidly self-renewing tissue, the regeneration of which is fueled by proliferative crypt Lgr5 + intestinal stem cells (ISCs). R-spondin ligands (RSPO1-RSPO4) engage distinct LGR4-LGR6, RNF43 and ZNRF3 receptor classes, markedly potentiate canonical Wnt/β-catenin signalling, and induce intestinal organoid growth in vitro and Lgr5 + ISCs in vivo. However, the interchangeability, functional cooperation and relative contributions of Wnt versus RSPO ligands to in vivo canonical Wnt signalling and ISC biology remain unknown. Here we identify the functional roles of Wnt and RSPO ligands in the intestinal crypt stem-cell niche. We show that the default fate of Lgr5 + ISCs is to differentiate, unless both RSPO and Wnt ligands are present. However, gain-of-function studies using RSPO ligands and a new non-lipidated Wnt analogue reveal that these ligands have qualitatively distinct, non-interchangeable roles in ISCs. Wnt proteins are unable to induce Lgr5 + ISC self-renewal, but instead confer a basal competency by maintaining RSPO receptor expression that enables RSPO ligands to actively drive and specify the extent of stem-cell expansion. This functionally non-equivalent yet cooperative interaction

  3. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    International Nuclear Information System (INIS)

    Santiago, Francisco; Oguma, Junya; Brown, Anthony M.C.; Laurence, Jeffrey

    2012-01-01

    Highlights: ► First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. ► Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. ► Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. ► Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/β-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of β-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, β-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in regulation of osteoclast differentiation, and its modulation by a clinically important drug, ritonavir. These studies

  4. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.

    Science.gov (United States)

    Krishnamurthy, Nithya; Kurzrock, Razelle

    2018-01-01

    The Wnt/beta-catenin pathway is a family of proteins that is implicated in many vital cellular functions such as stem cell regeneration and organogenesis. Several intra-cellular signal transduction pathways are induced by Wnt, notably the Wnt/beta-catenin dependent pathway or canonical pathway and the non-canonical or beta-catenin-independent pathway; the latter includes the Wnt/Ca2+ and Planar Cell Polarity pathway (PCP). Wnt activation occurs at the intestinal crypt floor, and is critical to optimal maintenance of stem cells. Colorectal cancers show evidence of Wnt signaling pathway activation and this is associated with loss of function of the tumor regulator APC. Wnt activation has been observed in breast, lung, and hematopoietic malignancies and contributes to tumor recurrence. The Wnt pathway cross talks with the Notch and Sonic Hedgehog pathways, which has implications for therapeutic interventions in cancers. There are significant challenges in targeting the Wnt pathway, including finding agents that are efficacious without damaging the system of normal somatic stem cell function in cellular repair and tissue homeostasis. Here, we comprehensively review the Wnt pathway and its interactions with the Notch and Sonic Hedgehog pathways. We present the state of the field in effectors and inhibitors of Wnt signaling, including updates on clinical trials in various cancers with inhibitors of Wnt, Notch, and Sonic Hedgehog. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Spatio-temporal expression patterns of Wnt signaling pathway during the development of temporomandibular condylar cartilage.

    Science.gov (United States)

    Chen, Kan; Quan, Huixin; Chen, Gang; Xiao, Di

    2017-11-01

    There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sequence analysis and molecular characterization of Wnt4 gene in metacestodes of Taenia solium.

    Science.gov (United States)

    Hou, Junling; Luo, Xuenong; Wang, Shuai; Yin, Cai; Zhang, Shaohua; Zhu, Xueliang; Dou, Yongxi; Cai, Xuepeng

    2014-04-01

    Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.

  7. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  8. Wnt ligand presentation and reception: from the stem cell niche to tissue engineering.

    Science.gov (United States)

    Mills, Kate M; Szczerkowski, James L A; Habib, Shukry J

    2017-08-01

    Stem cells reside in niches where spatially restricted signals maintain a delicate balance between stem cell self-renewal and differentiation. Wnt family proteins are particularly suited for this role as they are modified by lipids, which constrain and spatially regulate their signalling range. In recent years, Wnt/β-catenin signalling has been shown to be essential for the self-renewal of a variety of mammalian stem cells. In this review, we discuss Wnt-responsive stem cells in their niche, and mechanisms by which Wnt ligands are presented to responsive cells. We also highlight recent progress in molecular visualization that has allowed for the monitoring of Wnt signalling within the stem cell compartment and new approaches to recapitulate this niche signalling in vitro Indeed, new technologies that present Wnt in a localized manner and mimic the three-dimensional microenvironment of stem cells will advance our understanding of Wnt signalling in the stem cell niche. These advances will expand current horizons to exploit Wnt ligands in the rapidly evolving fields of tissue engineering and regenerative medicine. © 2017 The Authors.

  9. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells

    International Nuclear Information System (INIS)

    Kordes, Claus; Sawitza, Iris; Haeussinger, Dieter

    2008-01-01

    It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that β-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3β, led to reduced β-catenin phosphorylation, induced nuclear translocation of β-catenin, elevated glutamine synthetase production, impeded synthesis of α-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that β-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate

  10. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2015-01-01

    Full Text Available Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4 to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  11. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor.

    Science.gov (United States)

    Povinelli, Benjamin J; Nemeth, Michael J

    2014-01-01

    Proper regulation of the balance between hematopoietic stem cell (HSC) proliferation, self-renewal, and differentiation is necessary to maintain hematopoiesis throughout life. The Wnt family of ligands has been implicated as critical regulators of these processes through a network of signaling pathways. Previously, we have demonstrated that the Wnt5a ligand can induce HSC quiescence through a noncanonical Wnt pathway, resulting in an increased ability to reconstitute hematopoiesis. In this study, we tested the hypothesis that the Ryk protein, a Wnt ligand receptor that can bind the Wnt5a ligand, regulated the response of HSCs to Wnt5a. We observed that inhibiting Ryk blocked the ability of Wnt5a to induce HSC quiescence and enhance short-term and long-term hematopoietic repopulation. We found that Wnt5a suppressed production of reactive oxygen species, a known inducer of HSC proliferation. The ability of Wnt5a to inhibit ROS production was also regulated by Ryk. From these data, we propose that Wnt5a regulates HSC quiescence and hematopoietic repopulation through the Ryk receptor and that this process is mediated by suppression of reactive oxygen species. © 2013 AlphaMed Press.

  12. FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors.

    Directory of Open Access Journals (Sweden)

    Jon Christensen

    Full Text Available BACKGROUND: The forkhead box transcription factor FOXQ1 has been shown to be upregulated in colorectal cancer (CRC and metastatic breast cancer and involved in tumor development, epithelial-mesenchymal transition and chemoresistance. Yet, its transcriptional regulation is still unknown. METHODS: FOXQ1 mRNA and protein expression were analysed in a panel of CRC cell lines, and laser micro-dissected human biopsy samples by qRT-PCR, microarray GeneChip® U133 Plus 2.0 and western blots. FOXQ1 regulation was assayed by chromatin immunoprecipitation and luciferase reporter assays. RESULTS: FOXQ1 was robustly induced in CRC compared to other tumors, but had no predictive value with regards to grade, metastasis and survival in CRC. Prototype-based gene coexpression and gene set enrichment analysis showed a significant association between FOXQ1 and the Wnt pathway in tumors and cancer cell lines from different tissues. In vitro experiments confirmed, on a molecular level, FOXQ1 as a direct Wnt target. Analysis of known Wnt targets identified FOXQ1 as the most suitable marker for canonical Wnt activation across a wide panel of cell lines derived from different tissues. CONCLUSIONS: Our data show that FOXQ1 is one of the most over-expressed genes in CRC and a direct target of the canonical Wnt pathway. It is a potential new marker for detection of early CRC and Wnt activation in tumors of different origins.

  13. Wnt/β-catenin signaling is required for distraction osteogenesis in rats.

    Science.gov (United States)

    Wang, Xuemei; Luo, En; Bi, Ruiye; Ye, Bin; Hu, Jing; Zou, Shujuan

    2018-01-01

    The Wnt signaling pathway plays crucial roles in embryonic skeletal development and postnatal bone regeneration. However, mechanisms of Wnt signaling functioning in distraction osteogenesis (DO) haven't been well characterized. We established a DO model using Sprague-Dawley rat tibia. And a Wnt signaling blocking agent, recombinant rat Dickkopf-related protein 1 (rrDkk1), was locally applied in the distracted gap to study the role of Wnt signaling during DO process. Animals in the experimental group received rrDkk1 injections (dose = 25 μg/kg) once daily during distraction period and every third day during consolidation stage (n = 48). Animals in the control group received saline under the same injection strategy (n = 48). Animals at different time points during DO process (1, 3, 6, 12 days after distraction, 10 days and 6 weeks after consolidation) were killed and tissues in the distraction region were harvested for radiography, dual energy X-ray absorptiometry, micro-computed tomography (micro-CT), and histological analyses. Most Wnt ligands, cofactors, receptors, and antagonists were widely expressed in the distraction callus and were significantly upregulated during DO process. After rrDkk1 administration, the majority of these factors were downregulated at the mRNA level, except sFRP and GSK-3β. At the protein level, both β-catenin and Lef-1 were also suppressed by rrDkk1. In the long term, restricted bone healing was observed in the distracted callus in the rrDkk1 injection group. These findings were confirmed by histological and micro-CT analyses. Our findings suggest that Wnt signaling participates in the process of DO, and clinical therapeutic approaches of DO may do well to avoid Wnt pathway suppression.

  14. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Role of TRIM33 in Wnt signaling during mesendoderm differentiation.

    Science.gov (United States)

    Xia, Xiaojie; Zuo, Feifei; Luo, Maoguo; Sun, Ye; Bai, Jianbo; Xi, Qiaoran

    2017-10-01

    Tripartite motif 33 (TRIM33), a member of the transcription intermediate factor 1 (TIF1) family of transcription cofactors, mediates transforming growth factor-beta (TGF-β) signaling through its PHD-Bromo cassette in mesendoderm differentiation during early mouse embryonic development. However, the role of the TRIM33 RING domain in embryonic differentiation is less clear. Here, we report that TRIM33 mediates Wnt signaling by directly regulating the expression of a specific subset of Wnt target genes, and this action is independent of its RING domain. We show that TRIM33 interacts with β-catenin, a central player in Wnt signaling in mouse embryonic stem cells (mESCs). In contrast to previous reports in cancer cell lines, the RING domain does not appear to function as the E3 ligase for β-catenin, since neither knockout nor overexpression of TRIM33 had an effect on β-catenin protein levels in mESCs. Furthermore, we show that although TRIM33 seems to be dispensable for Wnt signaling through a reporter assay, loss of TRIM33 significantly impairs the expression of a subset of Wnt target genes, including Mixl1, in a Wnt signaling-dependent manner. Together, our results indicate that TRIM33 regulates Wnt signaling independent of the E3 ligase activity of its RING domain for β-catenin in mESCs.

  16. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    International Nuclear Information System (INIS)

    Adachi, Atsuo; Takahashi, Tomosaburo; Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko; Ueyama, Tomomi; Matsubara, Hiroaki

    2012-01-01

    Highlights: ► NFAT5 protein expression is downregulated during cardiomyogenesis. ► Inhibition of NFAT5 function suppresses canonical Wnt signaling. ► Inhibition of NFAT5 function attenuates mesodermal induction. ► NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2′Z, 3′E]-6-bromoindirubin-3′-oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  17. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    Science.gov (United States)

    Miyamoto, Kentaro; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Hirakawa, Akihiro; Sakai, Tadahiro; Hiraiwa, Hideki; Hamada, Takashi; Ishiguro, Naoki; Ohno, Kinji

    2017-01-01

    Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA) pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI), down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator), and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling) and Mmp13 (matrix metalloproteinase 13). Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.

  18. Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Kentaro Miyamoto

    Full Text Available Abnormal activation of the Wnt/β-catenin signaling is implicated in the osteoarthritis (OA pathology. We searched for a pre-approved drug that suppresses abnormally activated Wnt/β-catenin signaling and has a potency to reduce joint pathology in OA. We introduced the TOPFlash reporter plasmid into HCS-2/8 human chondrosarcoma cells to estimate the Wnt/β-catenin activity in the presence of 10 μM each compound in a panel of pre-approved drugs. We found that fluoxetine, an antidepressant in the class of selective serotonin reuptake inhibitors (SSRI, down-regulated Wnt/β-catenin signaling in human chondrosarcoma cells. Fluoxetine inhibited both Wnt3A- and LiCl-induced loss of proteoglycans in chondrogenically differentiated ATDC5 cells. Fluoxetine increased expression of Sox9 (the chondrogenic master regulator, and decreased expressions of Axin2 (a marker for Wnt/β-catenin signaling and Mmp13 (matrix metalloproteinase 13. Fluoxetine suppressed a LiCl-induced increase of total β-catenin and a LiCl-induced decrease of phosphorylated β-catenin in a dose-dependent manner. An in vitro protein-binding assay showed that fluoxetine enhanced binding of β-catenin with Axin1, which is a scaffold protein forming the degradation complex for β-catenin. Fluoxetine suppressed LiCl-induced β-catenin accumulation in human OA chondrocytes. Intraarticular injection of fluoxetine in a rat OA model ameliorated OA progression and suppressed β-catenin accumulation.

  19. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  20. Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity

    International Nuclear Information System (INIS)

    Svirshchevskaya, Elena V; Mariotti, Jacopo; Wright, Mollie H; Viskova, Natalia Y; Telford, William; Fowler, Daniel H; Varticovski, Lyuba

    2008-01-01

    Rapamycin, an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. However, the role of Rapamycin-induced immune suppression on tumor progression has not been examined. We developed a transplantation model for generation of mammary tumors in syngeneic recipients that can be used to address the role of the immune system on tumor progression. We examined the effect of Rapamycin on the immune system and growth of MMTV-driven Wnt-1 mammary tumors which were transplanted into irradiated and bone marrow-reconstituted, or naïve mice. Rapamycin induced severe immunosuppression and significantly delayed the growth of Wnt-1 tumors. T cell depletion in spleen and thymus and reduction in T cell cytokine secretion were evident within 7 days of therapy. By day 20, splenic but not thymic T cell counts, and cytokine secretion recovered. We determined whether adoptive T cell therapy enhances the anti-cancer effect using ex vivo generated Rapamycin-resistant T cells. However, T cell transfer during Rapamycin therapy did not improve the outcome relative to drug therapy alone. Thus, we could not confirm that suppression of T cell immunity contributes to tumor growth in this model. Consistent with suppression of the mTOR pathway, decreased 4E-BP1, p70 S6-kinase, and S6 protein phosphorylation correlated with a decrease in Wnt-1 tumor cell proliferation. Rapamycin has a direct anti-tumor effect on Wnt-1 breast cancer in vivo that involves inhibition of the mTOR pathway at doses that also suppress host immune responses

  1. Wnt5a Is Associated with Cigarette Smoke-Related Lung Carcinogenesis via Protein Kinase C

    OpenAIRE

    Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation ...

  2. The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas.

    Science.gov (United States)

    Pereira, Thaís Dos Santos Fontes; Diniz, Marina Gonçalves; França, Josiane Alves; Moreira, Rennan Garcias; Menezes, Grazielle Helena Ferreira de; Sousa, Sílvia Ferreira de; Castro, Wagner Henriques de; Gomes, Carolina Cavaliéri; Gomez, Ricardo Santiago

    2018-02-01

    The molecular pathogenesis of cemento ossifying fibroma (COF) is unclear. The purpose of this study was to investigate mutations in 50 oncogenes and tumor suppressor genes, including APC and CTNNB1, in which mutations in COF have been previously reported. In addition, we assessed the transcriptional levels of the Wnt/β-catenin pathway genes in COF. We used a quantitative polymerase chain reaction array to evaluate the transcriptional levels of 44 Wnt/β-catenin pathway genes in 6 COF samples, in comparison with 6 samples of healthy jaws. By using next-generation sequencing (NGS) in 7 COF samples, we investigated approximately 2800 mutations in 50 genes. The expression assay revealed 12 differentially expressed Wnt/β-catenin pathway genes in COF, including the upregulation of CTNNB1, TCF7, NKD1, and WNT5 A, and downregulation of CTNNBIP1, FRZB, FZD6, RHOU, SFRP4, WNT10 A, WNT3 A, and WNT4, suggesting activation of the Wnt/β-catenin signaling pathway. NGS revealed 5 single nucleotide variants: TP53 (rs1042522), PIK3 CA (rs2230461), MET (rs33917957), KIT (rs3822214), and APC (rs33974176), but none of them was pathogenic. Although NGS detected no oncogenic mutation, deregulation of key Wnt/β-catenin signaling pathway genes appears to be relevant to the molecular pathogenesis of COF. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  4. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic?

    Science.gov (United States)

    Bryja, Vítězslav; Červenka, Igor; Čajánek, Lukáš

    2017-12-01

    Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.

  5. The Wnt antagonist, Dickkopf-1, as a target for the treatment of neurodegenerative disorders

    NARCIS (Netherlands)

    Caraci, Filippo; Busceti, Carla; Biagioni, Francesca; Aronica, Eleonora; Mastroiacovo, Federica; Cappuccio, Irene; Battaglia, Giuseppe; Bruno, Valeria; Caricasole, Andrea; Copani, Agata; Nicoletti, Ferdinando

    2008-01-01

    The canonical Wnt pathway contributes to the regulation of neuronal survival and homeostasis in the CNS. Recent evidence suggests that an increased expression of Dickkopf-1 (Dkk-1), a secreted protein that negatively modulates the canonical Wnt pathway, is causally related to processes of

  6. Wnt1 Neuroprotection Translates into Improved Neurological Function during Oxidant Stress and Cerebral Ischemia Through AKT1 and Mitochondrial Apoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    2010-01-01

    Full Text Available Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  7. Amphioxus Sp5 is a member of a conserved Specificity Protein complement and is modulated by Wnt/beta-catenin signalling

    Czech Academy of Sciences Publication Activity Database

    Dailey, S.C.; Kozmiková, Iryna; Somorjai, I.M.L.

    2017-01-01

    Roč. 61, č. 10-12 (2017), s. 723-732 ISSN 0214-6282 R&D Projects: GA ČR GC15-21285J Institutional support: RVO:68378050 Keywords : Specificity protein * Brachyury * Branchiostoma * Wnt * Sp5 Subject RIV: EB - Gene tics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.981, year: 2016

  8. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate

    Directory of Open Access Journals (Sweden)

    Esteve Pilar

    2008-08-01

    Full Text Available Abstract Background Secreted frizzled related proteins (SFRPs are multifunctional modulators of Wnt and BMP (Bone Morphogenetic Protein signalling necessary for the development of most organs and the homeostasis of different adult tissues. SFRPs fold in two independent domains: the cysteine rich domain (SfrpCRD related to the extracellular portion of Frizzled (Fz, Wnt receptors and the Netrin module (SfrpNTR defined by homologies with molecules such as Netrin-1, inhibitors of metalloproteinases and complement proteins. Due to its structural relationship with Fz, it is believed that SfrpCRD interferes with Wnt signalling by binding and sequestering the ligand. In contrast, the functional relevance of the SfrpNTR has been barely addressed. Results Here, we combine biochemical studies, mutational analysis and functional assays in cell culture and medaka-fish embryos to show that the Sfrp1NTR mimics the function of the entire molecule, binds to Wnt8 and antagonizes Wnt canonical signalling. This activity requires intact tertiary structure and is shared by the distantly related Netrin-1NTR. In contrast, the Sfrp1CRD cannot mirror the function of the entire molecule in vivo but interacts with Fz receptors and antagonizes Wnt8-mediated β-catenin transcriptional activity. Conclusion On the basis of these results, we propose that SFRP modulation of Wnt signalling may involve multiple and differential interactions among Wnt, Fz and SFRPs.

  9. Wnt5 is required for notochord cell intercalation in the ascidian Halocynthia roretzi.

    Science.gov (United States)

    Niwano, Tomoko; Takatori, Naohito; Kumano, Gaku; Nishida, Hiroki

    2009-08-25

    In the embryos of various animals, the body elongates after gastrulation by morphogenetic movements involving convergent extension. The Wnt/PCP (planar cell polarity) pathway plays roles in this process, particularly mediolateral polarization and intercalation of the embryonic cells. In ascidians, several factors in this pathway, including Wnt5, have been identified and found to be involved in the intercalation process of notochord cells. In the present study, the role of the Wnt5 genes, Hr-Wnt5alpha (Halocynthia roretzi Wnt5alpha) and Hr-Wnt5beta, in convergent extension was investigated in the ascidian H. roretzi by injecting antisense oligonucleotides and mRNAs into single precursor blastomeres of various tissues, including notochord, at the 64-cell stage. Hr-Wnt5alpha is expressed in developing notochord and was essential for notochord morphogenesis. Precise quantitative control of its expression level was crucial for proper cell intercalation. Overexpression of Wnt5 proteins in notochord and other tissues that surround the notochord indicated that Wnt5alpha plays a role within the notochord, and is unlikely to be the source of polarizing cues arising outside the notochord. Detailed mosaic analysis of the behaviour of individual notochord cells overexpressing Wnt5alpha indicated that a Wnt5alpha-manipulated cell does not affect the behaviour of neighbouring notochord cells, suggesting that Wnt5alpha works in a cell-autonomous manner. This is further supported by comparison of the results of Wnt5alpha and Dsh (Dishevelled) knockdown experiments. In addition, our results suggest that the Wnt/PCP pathway is also involved in mediolateral intercalation of cells of the ventral row of the nerve cord (floor plate) and the endodermal strand. The present study highlights the role of the Wnt5alpha signal in notochord convergent extension movements in ascidian embryos. Our results raise the novel possibility that Wnt5alpha functions in a cell-autonomous manner in

  10. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    Science.gov (United States)

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  11. Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling

    Directory of Open Access Journals (Sweden)

    Jin-A Kim

    2015-05-01

    Full Text Available Mesenchymal stromal cells (MSCs have been extensively utilized for various cell therapeutic trials, but the signals regulating their stromal function remain largely unclear. Here, we show that canonical Wnt signals distinctively regulate MSCs in a biphasic manner depending on signal intensity, i.e., MSCs exhibit proliferation and progenitor self-renewal under low Wnt/β-catenin signaling, whereas they exhibit enhanced osteogenic differentiation with priming to osteoblast-like lineages under high Wnt/β-catenin signaling. Moreover, low or high levels of β-catenin in MSCs distinctly regulated the hematopoietic support of MSCs to promote proliferation or the undifferentiated state of hematopoietic progenitors, respectively. A gene expression study demonstrated that different intracellular levels of β-catenin in MSCs induce distinct transcriptomic changes in subsets of genes belonging to different gene function categories. Different β-catenin levels also induced differences in intracellular levels of the β-catenin co-factors, Tcf-1 and Lef-1. Moreover, nano-scale mass spectrometry of proteins that co-precipitated with β-catenin revealed distinctive spectra of proteins selectively interacting with β-catenin at specific expression levels. Together, these results show that Wnt/β-catenin signals can coax distinct transcription milieu to induce different transcription profiles in MSCs depending on the signal intensity and that fine-tuning of the canonical Wnt signaling intensity can regulate the phase-specific functionality of MSCs.

  12. Scaffold attachment factor B1 (SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced tumorigenesis

    Directory of Open Access Journals (Sweden)

    Lewis Michael T

    2009-03-01

    Full Text Available Abstract Background Scaffold Attachment Factor B1 (SAFB1 is a multifunctional protein which has been implicated in breast cancer previously. We recently generated SAFB1 knockout mice (SAFB1-/-, but pleiotropic phenotypes including high lethality, dwarfism associated with low IGF-I levels, and infertility and subfertility in male and female mice, respectively, do not allow for straightforward tumorigenesis studies in these mice. Therefore, we asked whether SAFB1 heterozygosity would influence tumor development and progression in MMTV-Wnt-1 oncomice or DMBA induced tumorigenicity, in a manner consistent with haploinsufficiency of the remaining allele. Methods We crossed female SAFB1+/- (C57B6/129 mice with male MMTV-Wnt-1 (C57B6/SJL mice to obtain SAFB1+/+/Wnt-1, SAFB1+/-/Wnt-1, and SAFB1+/- mice. For the chemical induced tumorigenesis study we treated 8 weeks old SAFB1+/- and SAFB+/+ BALB/c mice with 1 mg DMBA once per week for 6 weeks. Animals were monitored for tumor incidence and tumor growth. Tumors were characterized by performing H&E, and by staining for markers of proliferation and apoptosis. Results We did not detect significant differences in tumor incidence and growth between SAFB1+/+/Wnt-1 and SAFB1+/-/Wnt-1 mice, and between DMBA-treated SAFB1+/+ and SAFB1+/-mice. Histological evaluation of tumors showed that SAFB1 heterozygosity did not lead to changes in proliferation or apoptosis. There were, however, significant differences in the distribution of tumor histologies with an increase in papillary and cribriform tumors, and a decrease in squamous tumors in the SAFB1+/-/Wnt-1 compared to the SAFB1+/+/Wnt-1 tumors. Of note, DMBA treatment resulted in shortened survival of SAFB1+/- mice compared to their wildtype littermates, however this trend did not reach statistical significance. Conclusion Our data show that SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced mammary tumorigenesis.

  13. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development

    Science.gov (United States)

    Darras, Sébastien; Fritzenwanker, Jens H.; Uhlinger, Kevin R.; Farrelly, Ellyn; Pani, Ariel M.; Hurley, Imogen A.; Norris, Rachael P.; Osovitz, Michelle; Terasaki, Mark; Wu, Mike; Aronowicz, Jochanan; Kirschner, Marc; Gerhart, John C.

    2018-01-01

    The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in

  14. Hyaluronic acid enhances proliferation of human amniotic mesenchymal stem cells through activation of Wnt/β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ru-Ming; Sun, Ren-Gang; Zhang, Ling-Tao; Zhang, Qing-Fang; Chen, Dai-Xiong [Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000 (China); Zhong, Jian-Jiang, E-mail: jjzhong@sjtu.edu.cn [State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240 (China); Xiao, Jian-Hui, E-mail: jhxiao@yahoo.com [Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000 (China)

    2016-07-15

    This study investigated the pro-proliferative effect of hyaluronic acid (HA) on human amniotic mesenchymal stem cells (hAMSCs) and the underlying mechanisms. Treatment with HA increased cell population growth in a dose- and time-dependent manner. Analyses by flow cytometry and immunocytochemistry revealed that HA did not change the cytophenotypes of hAMSCs. Additionally, the osteogenic, chondrogenic, and adipogenic differentiation capabilities of these hAMSCs were retained after HA treatment. Moreover, HA increased the mRNA expressions of wnt1, wnt3a, wnt8a, cyclin D1, Ki-67, and β-catenin as well as the protein level of β-catenin and cyclin D1 in hAMSCs; and the nuclear localization of β-catenin was also enhanced. Furthermore, the pro-proliferative effect of HA and up-regulated expression of Wnt/β-catenin pathway-associated proteins - wnt3a, β-catenin and cyclin D1 in hAMSCs were significantly inhibited upon pre-treatment with Wnt-C59, an inhibitor of the Wnt/β-catenin pathway. These results suggest that HA may positively regulate hAMSCs proliferation through regulation of the Wnt/β-catenin signaling pathway. - Highlights: • Hyaluronic acid (HA) could promote the proliferation of hAMSCs. • HA treatment dose not affect the pluripotency of hAMSCs. • HA increases hAMSCs proliferation through activation of Wnt/β-catenin signaling.

  15. Genetic Screening of WNT4 and WNT5B in Two Populations with Deviating Bone Mineral Densities

    DEFF Research Database (Denmark)

    Hendrickx, Gretl; Boudin, Eveline; Steenackers, Ellen

    2017-01-01

    A role for WNT4 and WNT5B in bone metabolism was indicated by genome-wide association studies (GWAS) and a Wnt4 knockout mouse model. The aim of this study was therefore to replicate and further investigate the causality between genetic variation in WNT4 and WNT5B and deviating bone mineral density...... (BMD) values. A WNT4 and WNT5B mutation screening was performed in patients with craniotubular hyperostosis using Sanger sequencing. Here, no putative causal mutations were detected. Moreover, a high and low BMD cohort was selected from the Odense Androgen Study population for re-sequencing. In WNT4 we...

  16. L-carnitine contributes to enhancement of neurogenesis from mesenchymal stem cells through Wnt/β-catenin and PKA pathway.

    Science.gov (United States)

    Fathi, Ezzatollah; Farahzadi, Raheleh; Charoudeh, Hojjatollah Nozad

    2017-03-01

    The identification of factors capable of enhancing neurogenesis has great potential for cellular therapies in neurodegenerative diseases. Multiple studies have shown the neuroprotective effects of L-carnitine (LC). This study determined whether neuronal differentiation of rat adipose tissue-derived mesenchymal stem cells (ADSCs) can be activated by LC. In this study, protein kinase A (PKA) and Wnt/β-catenin pathways were detected to show if this activation was due to these pathways. The expression of LC-induced neurogenesis markers in ADSCs was characterized using real-time PCR. ELISA was conducted to assess the expression of cyclic adenosine monophosphate (cAMP) and PKA. The expression of β-catenin, reduced dickkopf1 (DKK1), low-density lipoprotein receptor-related protein 5 (LRP5), Wnt1, and Wnt3a genes as Wnt/β-catenin signaling members were used to detect the Wnt/β-catenin pathway. It was observed that LC could promote neurogenesis in ADSCs as well as expression of some neurogenic markers. Moreover, LC causes to increase the cAMP levels and PKA activity. Treatment of ADSCs with H-89 (dihydrochloride hydrate) as PKA inhibitor significantly inhibited the promotion of neurogenic markers, indicating that the PKA signaling pathway could be involved in neurogenesis induction. Analyses of real-time PCR data showed that the mRNA expressions of β-catenin, DKK1, LRP5c-myc, Wnt1, and Wnt3a were increased in the presence of LC. Therefore, the present study showed that LC promotes ADSCs neurogenesis and the LC-induced neurogenic markers could be due to both the PKA and Wnt/β-catenin signaling pathway. Impact statement Neural tissue has long been believed as incapable of regeneration and the identification of cell types and factors capable of neuronal differentiation has generated intense interest. Mesenchymal stem cells (MSCs) are considered as potential targets for stem cell-based therapy. L-carnitin (LC) as an antioxidant may have neuroprotective effects in

  17. Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2015-01-01

    Full Text Available The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, ca-spase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.

  18. β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling.

    Science.gov (United States)

    Long, Marcus John; Lin, Hong-Yu; Parvez, Saba; Zhao, Yi; Poganik, Jesse Richard; Huang, Paul; Aye, Yimon

    2017-08-17

    Simultaneous hyperactivation of Wnt and antioxidant response (AR) are often observed during oncogenesis. However, it remains unclear how the β-catenin-driven Wnt and the Nrf2-driven AR mutually regulate each other. The situation is compounded because many players in these two pathways are redox sensors, rendering bolus redox signal-dosing methods uninformative. Herein we examine the ramifications of single-protein target-specific AR upregulation in various knockdown lines. Our data document that Nrf2/AR strongly inhibits β-catenin/Wnt. The magnitude and mechanism of this negative regulation are dependent on the direct interaction between β-catenin N terminus and β-TrCP1 (an antagonist of both Nrf2 and β-catenin), and independent of binding between Nrf2 and β-TrCP1. Intriguingly, β-catenin positively regulates AR. Because AR is a negative regulator of Wnt regardless of β-catenin N terminus, this switch of function is likely sufficient to establish a new Wnt/AR equilibrium during tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation

    International Nuclear Information System (INIS)

    Ochoa-Hernández, Alejandra B; Bravo-Cuellar, Alejandro; Jave-Suarez, Luis F; Barros-Núñez, Patricio; Aguilar-Lemarroy, Adriana; Ramos-Solano, Moisés; Meza-Canales, Ivan D; García-Castro, Beatriz; Rosales-Reynoso, Mónica A; Rosales-Aviña, Judith A; Barrera-Chairez, Esperanza; Ortíz-Lazareno, Pablo C; Hernández-Flores, Georgina

    2012-01-01

    WNT7a, a member of the Wnt ligand family implicated in several developmental processes, has also been reported to be dysregulated in some types of tumors; however, its function and implication in oncogenesis is poorly understood. Moreover, the expression of this gene and the role that it plays in the biology of blood cells remains unclear. In addition to determining the expression of the WNT7A gene in blood cells, in leukemia-derived cell lines, and in samples of patients with leukemia, the aim of this study was to seek the effect of this gene in proliferation. We analyzed peripheral blood mononuclear cells, sorted CD3 and CD19 cells, four leukemia-derived cell lines, and blood samples from 14 patients with Acute lymphoblastic leukemia (ALL), and 19 clinically healthy subjects. Reverse transcription followed by quantitative Real-time Polymerase chain reaction (qRT-PCR) analysis were performed to determine relative WNT7A expression. Restoration of WNT7a was done employing a lentiviral system and by using a recombinant human protein. Cell proliferation was measured by addition of WST-1 to cell cultures. WNT7a is mainly produced by CD3 T-lymphocytes, its expression decreases upon activation, and it is severely reduced in leukemia-derived cell lines, as well as in the blood samples of patients with ALL when compared with healthy controls (p ≤0.001). By restoring WNT7A expression in leukemia-derived cells, we were able to demonstrate that WNT7a inhibits cell growth. A similar effect was observed when a recombinant human WNT7a protein was used. Interestingly, restoration of WNT7A expression in Jurkat cells did not activate the canonical Wnt/β-catenin pathway. To our knowledge, this is the first report evidencing quantitatively decreased WNT7A levels in leukemia-derived cells and that WNT7A restoration in T-lymphocytes inhibits cell proliferation. In addition, our results also support the possible function of WNT7A as a tumor suppressor gene as well as a therapeutic

  20. LRRK2: an éminence grise of Wnt-mediated neurogenesis?

    Directory of Open Access Journals (Sweden)

    Daniel C Berwick

    2013-05-01

    Full Text Available The importance of Leucine-Rich Repeat Kinase 2 (LRRK2 to mature neurons is well-established, since mutations in PARK8, the gene encoding LRRK2, are the most common known cause of Parkinson’s disease. Nonetheless, despite the LRRK2 knockout mouse having no overt neurodevelopmental defect, numerous lines of in vitro data point towards a central role for this protein in neurogenesis. Roles for LRRK2 have been described in many key processes, including neurite outgrowth and the regulation of microtubule dynamics. Moreover, LRRK2 has been implicated in cell cycle control, suggesting additional roles in neurogenesis that precede terminal differentiation. However, we contend that the suggested function of LRRK2 as a scaffolding protein at the heart of numerous Wnt signaling cascades provides the most tantalizing link to neurogenesis in the developing brain. Numerous lines of evidence show a critical requirement for multiple Wnt pathways in the development of certain brain regions, not least the dopaminergic neurons of the ventral mid-brain. In conclusion, these observations indicate a function of LRRK2 as a subtle yet critical mediator of the action of Wnt ligands on developing neurons. We suggest that LRRK2 loss- or gain-of-function are likely modifiers of developmental phenotypes seen in animal models of Wnt signaling deregulation, a hypothesis that can be tested by cross-breeding relevant genetically modified experimental strains.

  1. Targeting Wnt Pathways in Disease

    Science.gov (United States)

    Zimmerman, Zachary F.; Moon, Randall T.

    2012-01-01

    Wnt-mediated signal transduction pathways have long been recognized for their roles in regulating embryonic development, and have more recently been linked to cancer, neurologic diseases, inflammatory diseases, and disorders of endocrine function and bone metabolism in adults. Although therapies targeting Wnt signaling are attractive in theory, in practice it has been difficult to obtain specific therapeutics because many components of Wnt signaling pathways are also involved in other cellular processes, thereby reducing the specificity of candidate therapeutics. New technologies, and advances in understanding the mechanisms of Wnt signaling, have improved our understanding of the nuances of Wnt signaling and are leading to promising new strategies to target Wnt signaling pathways. PMID:23001988

  2. Lens regeneration from the cornea requires suppression of Wnt/β-catenin signaling.

    Science.gov (United States)

    Hamilton, Paul W; Sun, Yu; Henry, Jonathan J

    2016-04-01

    regeneration. In contrast, inhibition of Wnt signaling using either the small molecule IWR-1, treatment with recombinant human Dickkopf-1 (rhDKK1) protein, or transgenic expression of Xenopus DKK1, did not significantly affect the percentage of successful regeneration. Together, these results suggest a model where Wnt/β-catenin signaling is active in the cornea epithelium and needs to be suppressed during early lens regeneration in order for these cornea cells to give rise to a new lentoid. While this finding differs from what has been described in the newt, it closely resembles the role of Wnt signaling during the initial formation of the lens placode from the surface ectoderm during early embryogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Julia Brun

    Full Text Available BACKGROUND: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2 acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model. METHODOLOGY/PRINCIPAL FINDINGS: Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/β-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.

  4. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans.

    Science.gov (United States)

    Florica, Roxana Oriana; Hipolito, Victoria; Bautista, Stephen; Anvari, Homa; Rapp, Chloe; El-Rass, Suzan; Asgharian, Alimohammad; Antonescu, Costin N; Killeen, Marie T

    2017-10-01

    The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development

    Science.gov (United States)

    Uchiyama, Kazuhiko; Sakiyama, Toshio; Hasebe, Takumu; Musch, Mark W.; Miyoshi, Hiroyuki; Nakagawa, Yasushi; He, Tong-Chuan; Lichtenstein, Lev; Naito, Yuji; Itoh, Yoshito; Yoshikawa, Toshikazu; Jabri, Bana; Stappenbeck, Thaddeus; Chang, Eugene B.

    2016-01-01

    Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation. PMID:27561676

  6. The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Andrei Avanesov

    Full Text Available Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh signals. Members of the Wnt Inhibitory Factor-1 (WIF1 family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding "EGF-like" domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the "WIF" domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling.

  7. [Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells].

    Science.gov (United States)

    Wen, Bin; Sun, Haitao; He, Songqi; Cheng, Yang; Jia, Wenyan; Fan, Eryan; Pang, Jie

    2014-12-01

    To study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma. HepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR. Biejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex. Biejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.

  8. A Glimpse of the Pathogenetic Mechanisms of Wnt/β-Catenin Signaling in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Li Xiao

    2013-01-01

    Full Text Available The Wnt family of proteins belongs to a group of secreted lipid-modified glycoproteins with highly conserved cysteine residues. Prior results indicate that Wnt/β-catenin signaling plays a prominent role in cell differentiation, adhesion, survival, and apoptosis and is involved in organ development, tumorigenesis, and tissue fibrosis, among other functions. Accumulating evidence has suggested that Wnt/β-catenin exhibits a pivotal function in the progression of diabetic nephropathy (DN. In this review, we focused on discussing the dual role of Wnt/β-catenin in apoptosis and epithelial mesenchymal transition (EMT formation of mesangial cells. Moreover, we also elucidated the effect of Wnt/β-catenin in podocyte dysfunction, tubular EMT formation, and renal fibrosis under DN conditions. In addition, the molecular mechanisms involved in this process are introduced. This information provides a novel molecular target of Wnt/β-catenin for the protection of kidney damage and in delay of the progression of DN.

  9. MicroRNA-200b Suppresses Arsenic-transformed Cell Migration by Targeting Protein Kinase Cα and Wnt5b-Protein Kinase Cα Positive Feedback Loop and Inhibiting Rac1 Activation*

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-01-01

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3′-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. PMID:24841200

  10. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation.

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-06-27

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3'-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. © 2014 by The American Society for Biochemistry and Molecular

  11. Lentiviral Modulation of Wnt/β-Catenin Signaling Affects In Vivo LTP.

    Science.gov (United States)

    Ivanova, Olga Ya; Dobryakova, Yulia V; Salozhin, Sergey V; Aniol, Viktor A; Onufriev, Mikhail V; Gulyaeva, Natalia V; Markevich, Vladimir A

    2017-10-01

    Wnt signaling is involved in hippocampal development and synaptogenesis. Numerous recent studies have been focused on the role of Wnt ligands in the regulation of synaptic plasticity. Inhibitors and activators of canonical Wnt signaling were demonstrated to decrease or increase, respectively, in vitro long-term potentiation (LTP) maintenance in hippocampal slices (Chen et al. in J Biol Chem 281:11910-11916, 2006; Vargas et al. in J Neurosci 34:2191-2202, 2014, Vargas et al. in Exp Neurol 264:14-25, 2015). Using lentiviral approach to down- and up-regulate the canonical Wnt signaling, we explored whether Wnt/β-catenin signaling is critical for the in vivo LTP. Chronic suppression of Wnt signaling induced an impairment of in vivo LTP expression 14 days after lentiviral suspension injection, while overexpression of Wnt3 was associated with a transient enhancement of in vivo LTP magnitude. Both effects were related to the early phase LTP and did not affect LTP maintenance. A loss-of-function study demonstrated decreased initial paired pulse facilitation ratio, β-catenin, and phGSK-3β levels. A gain-of-function study revealed not only an increase in PSD-95, β-catenin, and Cyclin D1 protein levels, but also a reduced phGSK-3β level and enhanced GSK-3β kinase activity. These results suggest a presynaptic dysfunction predominantly underlying LTP impairment while postsynaptic modifications are primarily involved in transient LTP amplification. This study is the first demonstration of the involvement of Wnt/β-catenin signaling in synaptic plasticity regulation in an in vivo LTP model.

  12. New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway.

    Science.gov (United States)

    Ge, Yun-Xuan; Wang, Chang-Hui; Hu, Fu-Yong; Pan, Lin-Xin; Min, Jie; Niu, Kai-Yuan; Zhang, Lei; Li, Jun; Xu, Tao

    2018-01-01

    Transmembrane protein 88 (TMEM88), a newly discovered protein localized on the cell membrane. Recent studies showed that TMEM88 was involved in the regulation of several types of cancer. TMEM88 was expressed at significantly higher levels in breast cancer (BC) cell line than in normal breast cell line with co-localized with Dishevelled (DVL) in the cytoplasm of BC cell line. TMEM88 silencing in the ovarian cancer cell line CP70 resulted in significant upregulation of Wnt downstream genes (c-Myc, cyclin-D1) and other Wnt target genes including JUN, PTIX2, CTNNB1 (β-catenin), further supporting that TMEM88 inhibits canonical Wnt signaling pathway. Wnt signaling pathway has been known to play important roles in many diseases, especially in cancer. For instance, hepatocellular carcinoma (HCC) has become one of the most common tumors harboring mutations in the Wnt signaling pathway. As the inhibitor of Wnt signaling, TMEM88 has been considered to act as an oncogene or a tumor suppressor. Up-regulated TMEM88 or gene therapy approaches could be an effective therapeutic approach against tumor as TMEM88 inhibits Wnt signaling through direct interaction with DVL. Here, we review the current knowledge on the functional role and potential clinical application of TMEM88 in the control of various cancers. Highlights Wnt signaling displays an important role in several pathogenesis of cancer. Wnt signaling pathway is activated during cancer development. TMEM88 has an impact on cancer by inhibiting canonical Wnt signaling. We discuss the importance and new applications of TMEM88 in cancer therapy. © 2017 Wiley Periodicals, Inc.

  13. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway.

    Science.gov (United States)

    Jin, Luyuan; Cao, Yu; Yu, Guoxia; Wang, Jinsong; Lin, Xiao; Ge, Lihua; Du, Juan; Wang, Liping; Diao, Shu; Lian, Xiaomeng; Wang, Songlin; Dong, Rui; Shan, Zhaochen

    2017-01-01

    Exploring the molecular mechanisms underlying directed differentiation is helpful in the development of clinical applications of mesenchymal stem cells (MSCs). Our previous study on dental tissue-derived MSCs demonstrated that secreted frizzled-related protein 2 (SFRP2), a Wnt inhibitor, could enhance osteogenic differentiation in stem cells from the apical papilla (SCAPs). However, how SFRP2 promotes osteogenic differentiation of dental tissue-derived MSCs remains unclear. In this study, we used SCAPs to investigate the underlying mechanisms. SCAPs were isolated from the apical papilla of immature third molars. Western blot and real-time RT-PCR were applied to detect the expression of β-catenin and Wnt target genes. Alizarin Red staining, quantitative calcium analysis, transwell cultures and in vivo transplantation experiments were used to study the osteogenic differentiation potential of SCAPs. SFRP2 inhibited canonical Wnt signaling by enhancing phosphorylation and decreasing the expression of nuclear β-catenin in vitro and in vivo . In addition, the target genes of the Wnt signaling pathway, AXIN2 (axin-related protein 2) and MMP7 (matrix metalloproteinase-7), were downregulated by SFRP2 . WNT1 inhibited the osteogenic differentiation potential of SCAPs. SFRP2 could rescue this WNT1 -impaired osteogenic differentiation potential. The results suggest that SFRP2 could bind to locally present Wnt ligands and alter the balance of intracellular Wnt signaling to antagonize the canonical Wnt pathway in SCAPs. This elucidates the molecular mechanism underlying the SFRP2-mediated directed differentiation of SCAPs and indicates potential target genes for improving dental tissue regeneration.

  14. Rac1 Guides Porf-2 to Wnt Pathway to Mediate Neural Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xi-Tao Yang

    2017-06-01

    Full Text Available The molecular and cellular mechanisms underlying the anti-proliferative effects of preoptic regulator factor 2 (Porf-2 on neural stem cells (NSCs remain largely unknown. Here, we found that Porf-2 inhibits the activity of ras-related C3 botulinum toxin substrate 1 (Rac1 protein in hippocampus-derived rat NSCs. Reduced Rac1 activity impaired the nuclear translocation of β-catenin, ultimately causing a repression of NSCs proliferation. Porf-2 knockdown enhanced NSCs proliferation but not in the presence of small molecule inhibitors of Rac1 or Wnt. At the same time, the repression of NSCs proliferation caused by Porf-2 overexpression was counteracted by small molecule activators of Rac1 or Wnt. By using a rat optic nerve crush model, we observed that Porf-2 knockdown enhanced the recovery of visual function. In particular, optic nerve injury in rats led to increased Wnt family member 3a (Wnt3a protein expression, which we found responsible for enhancing Porf-2 knockdown-induced NSCs proliferation. These findings suggest that Porf-2 exerts its inhibitory effect on NSCs proliferation via Rac1-Wnt/β-catenin pathway. Porf-2 may therefore represent and interesting target for optic nerve injury recovery and therapy.

  15. Bone Morphogenetic Protein 15 (BMP15) Acts as a BMP and Wnt Inhibitor during Early Embryogenesis*

    Science.gov (United States)

    Di Pasquale, Elisa; Brivanlou, Ali H.

    2009-01-01

    Bone morphogenetic protein 15 (BMP15) belongs to an unusual subgroup of the transforming growth factor β (TGFβ) superfamily of signaling ligands as it lacks a key cysteine residue in the mature region required for proper intermolecular dimerization. Naturally occurring BMP15 mutation leads to early ovarian failure in humans, and BMP15 has been shown to activate the Smad1/5/8 pathway in that context. Despite its important role in germ cell specification, the embryological function of BMP15 remains unknown. Surprisingly, we find that during early Xenopus embryogenesis BMP15 acts solely as an inhibitor of the Smad1/5/8 pathway and the Wnt pathway. BMP15 gain-of-function leads to embryos with secondary ectopic heads and to direct neural induction in intact explants. BMP15 inhibits BMP4-mediated epidermal induction in dissociated explants. BMP15 strongly inhibits BRE response induced by BMP4 and blocks phosphorylation and activation of Smad1/5/8 MH2-domain. Mechanistically, BMP15 protein specifically interacts with BMP4 protein, suggesting inhibition upstream of receptor binding. Loss-of-function experiments using morpholinos or a naturally occurring human BMP15 dominant-negative mutant (BMP15-Y235C) leads to embryos lacking head. BMP15-Y235C also eliminates the inhibitory activity of BMP15 on BRE (BMP-responsive element). Finally, we show that BMP15 inhibits the canonical branch of the Wnt pathway, upstream of β-catenin. We, thus, demonstrate that BMP15 is necessary and sufficient for the specification of dorso-anterior structures and highlight novel mechanisms of BMP15 function that strongly suggest a reinterpretation of its function in ovaries specially for ovarian failure. PMID:19553676

  16. Computational Biophysical, Biochemical, and Evolutionary Signature of Human R-Spondin Family Proteins, the Member of Canonical Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ashish Ranjan Sharma

    2014-01-01

    Full Text Available In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspos are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspos serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspos is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspos thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspos family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n=60 with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspos in various disease models.

  17. (Pro)renin Receptor Is an Amplifier of Wnt/β-Catenin Signaling in Kidney Injury and Fibrosis.

    Science.gov (United States)

    Li, Zhen; Zhou, Lili; Wang, Yongping; Miao, Jinhua; Hong, Xue; Hou, Fan Fan; Liu, Youhua

    2017-08-01

    The (pro)renin receptor (PRR) is a transmembrane protein with multiple functions. However, its regulation and role in the pathogenesis of CKD remain poorly defined. Here, we report that PRR is a downstream target and an essential component of Wnt/ β -catenin signaling. In mouse models, induction of CKD by ischemia-reperfusion injury (IRI), adriamycin, or angiotensin II infusion upregulated PRR expression in kidney tubular epithelium. Immunohistochemical staining of kidney biopsy specimens also revealed induction of renal PRR in human CKD. Overexpression of either Wnt1 or β -catenin induced PRR mRNA and protein expression in vitro Notably, forced expression of PRR potentiated Wnt1-mediated β -catenin activation and augmented the expression of downstream targets such as fibronectin, plasminogen activator inhibitor 1, and α -smooth muscle actin ( α -SMA). Conversely, knockdown of PRR by siRNA abolished β -catenin activation. PRR potentiation of Wnt/ β -catenin signaling did not require renin, but required vacuolar H + ATPase activity. In the mouse model of IRI, transfection with PRR or Wnt1 expression vectors promoted β -catenin activation, aggravated kidney dysfunction, and worsened renal inflammation and fibrotic lesions. Coexpression of PRR and Wnt1 had a synergistic effect. In contrast, knockdown of PRR expression ameliorated kidney injury and fibrosis after IRI. These results indicate that PRR is both a downstream target and a crucial element in Wnt signal transmission. We conclude that PRR can promote kidney injury and fibrosis by amplifying Wnt/ β -catenin signaling. Copyright © 2017 by the American Society of Nephrology.

  18. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways.

    Science.gov (United States)

    Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui

    2017-07-01

    Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (Ppathways statistically further increased the levels of CDMP1 and SOX9 (Ppathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (Ppathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bauhinia championi (Benth.) Benth. polysaccharides upregulate Wnt/β-catenin signaling in chondrocytes.

    Science.gov (United States)

    Li, Huiting; Li, Xihai; Liu, Guozhong; Chen, Jiashou; Weng, Xiaping; Liu, Fayuan; Xu, Huifeng; Liu, Xianxiang; Ye, Hongzhi

    2013-12-01

    Bauhinia championi (Benth.) Benth. polysaccharides (BCBPs), extracted from Bauhinia championi (Benth.) Benth., which has been used in traditional Chinese medicine (TCM) for the treatment of osteoarthritis (OA), are the bioactive constituents of Bauhinia championi (Benth.) rattan. However, the molecular mechanisms responsible for their effects on OA are poorly understood. The Wnt/β-catenin signaling pathway plays an important role in the proliferation of chondrocytes. In the present study, the effects of BCBPs on Wnt/β-catenin signaling in chondrocytes were investigated. BCBPs were obtained by hot-water extraction and identified by the modified high performance liquid chromatography (HPLC) method. Chondrocytes were isolated from the knees of Sprague‑Dawley rats and identified by type II collagen immunohistochemistry. The chondrocytes were treated with or without BCBPs for 48 h. Cell viability was evaluated by MTT assay. The mRNA and protein levels of Wnt-4, β-catenin, Frizzled-2, glycogen synthase kinase (GSK)-3β, cyclin D1 and collagen II were detected by western blot analysis and reverse transcription PCR (RT-PCR), respectively. We found that the BCBPs contained at least seven monosaccharides, including D-mannose, rhamnose, D-(+) glucuronic acid, D-(+) galacturonic acid, D-glucose, galactose and arabinose. The cell viability of the chondrocytes treated with 50, 100 and 200 µg/ml BCBPs was significantly higher than that of the chondroctyes in the control group (treated with 0 µg/ml BCBPs). Furthermore, compared with the control group, the mRNA and protein expression of Wnt-4, β-catenin, Frizzled-2 and cyclin D1 in the BCBP-treated groups markedly increased, whereas the mRNA and protein expression of GSK-3β significantly decreased. Of note, the dose of 100 µg/ml BCBPs was more effective than the dose of 50 µg/ml BCBPs and 200 µg/ml BCBPs. In addition, we found that treatment with BCBPs upregulated the protein levels of collagen II in the

  20. Transforming Growth Factor β Activation Primes Canonical Wnt Signaling Through Down-Regulation of Axin-2.

    Science.gov (United States)

    Gillespie, Justin; Ross, Rebecca L; Corinaldesi, Clarissa; Esteves, Filomena; Derrett-Smith, Emma; McDermott, Michael F; Doody, Gina M; Denton, Christopher P; Emery, Paul; Del Galdo, Francesco

    2018-02-06

    Aberrant activation of Wnt signaling has been observed in tissues from patients with systemic sclerosis (SSc). This study aimed to determine the role of transforming growth factor β (TGFβ) in driving the increased Wnt signaling, through modulation of axis inhibition protein 2 (Axin-2), a critical regulator of the Wnt canonical pathway. Canonical Wnt signaling activation was analyzed by TOPflash T cell factor/lymphoid enhancer factor promoter assays. Axin-2 was evaluated in vitro by analysis of Axin-2 primary/mature transcript expression and decay, TGFβ receptor type I (TGFβRI) blockade, small interfering RNA-mediated depletion of tristetraprolin 1, and XAV-939-mediated Axin-2 stabilization. In vivo, Axin-2 messenger RNA (mRNA) and protein expression was determined in skin and lung biopsy samples from mice that express a kinase-deficient TGFβRII specifically on fibroblasts (TβRIIΔk-fib-transgenic mice) and from littermate controls. SSc fibroblasts displayed an increased response to canonical Wnt ligands despite basal levels of Wnt signaling that were comparable to those in healthy control fibroblasts in vitro. Notably, we showed that SSc fibroblasts had reduced basal expression of Axin-2, which was caused by an endogenous TGFβ-dependent increase in Axin-2 mRNA decay. Accordingly, we observed that TGFβ decreased Axin-2 expression both in vitro in healthy control fibroblasts and in vivo in TβRIIΔk-fib-transgenic mice. Additionally, using Axin-2 gain- and loss-of-function experiments, we demonstrated that the TGFβ-induced increased response to Wnt activation characteristic of SSc fibroblasts depended on reduced bioavailability of Axin-2. This study highlights the importance of reduced bioavailability of Axin-2 in mediating the increased canonical Wnt response observed in SSc fibroblasts. This novel mechanism extends our understanding of the processes involved in Wnt/β-catenin-driven pathology and supports the rationale for targeting the TGFβ pathway

  1. TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/β-catenin signaling.

    Science.gov (United States)

    Peng, Yun; Cao, Jun; Yao, Xiao-Yi; Wang, Jian-Xin; Zhong, Mei-Zuo; Gan, Ping-Ping; Li, Jian-Huang

    2017-08-08

    We investigated the effects of tumor suppressor candidate 3 ( TUSC3 ) on autophagy in human non-small cell lung cancer (NSCLC) cells. A total of 118 NSCLC patients (88 males and 30 females) who underwent surgery at our institute were enrolled in the study. Immunohistochemical analysis revealed that TUSC3 protein expression was lower in NSCLC specimens than adjacent normal tissue. Correspondingly, there was greater methylation of TUSC3 in NSCLC than adjacent normal tissue. After transient transfection of A549 NSCLC cells with constructs designed to up-regulate or down-regulate TUSC3 expression, we analyzed the effects of inhibiting the Wnt pathway (XAV939) and autophagy (chloroquine, CQ) on the behavior of NSCLC cells. We also performed TOP/FOP-Flash reporter assays, MTT assays, Annexin V-FITC/propidium iodide staining, and acridine orange staining to evaluate Wnt/β-catenin signaling, cell proliferation, apoptosis, and autophagy, respectively. Expression of Wnt/β-catenin pathway components and autophagy-related proteins was analyzed using qRT-PCR and Western blotting. We found that TUSC3 inhibited cell proliferation and promoted both apoptosis and autophagy in A549 cells. In addition, TUSC3 increased expression of autophagy-related proteins. It also increased expression of Wnt/β-catenin signaling pathway components and promoted nuclear transfer of β-catenin, resulting in activation of Wnt/β-catenin signaling. TUSC3 thus induces autophagy in human NSCLC cells through activation of the Wnt/β-catenin signaling pathway.

  2. The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells

    International Nuclear Information System (INIS)

    Roche, Marc de la; Worm, Jesper; Bienz, Mariann

    2008-01-01

    Most cases of colorectal cancer are initiated by hyperactivation of the Wnt/β-catenin pathway due to mutations in the APC tumour suppressor, or in β-catenin itself. A recently discovered component of this pathway is Legless, which is essential for Wnt-induced transcription during Drosophila development. Limited functional information is available for its two mammalian relatives, BCL9 and B9L/BCL9-2: like Legless, these proteins bind to β-catenin, and RNAi-mediated depletion of B9L/BCL9-2 has revealed that this protein is required for efficient β-catenin-mediated transcription in mammalian cell lines. No loss-of-function data are available for BCL9. We have used overexpression of dominant-negative forms of BCL9, and RNAi-mediated depletion, to study its function in human cell lines with elevated Wnt pathway activity, including colorectal cancer cells. We found that BCL9 is required for efficient β-catenin-mediated transcription in Wnt-stimulated HEK 293 cells, and in the SW480 colorectal cancer cell line whose Wnt pathway is active due to APC mutation. Dominant-negative mutants of BCL9 indicated that its function depends not only on its β-catenin ligand, but also on an unknown ligand of its C-terminus. Finally, we show that BCL9 and B9L are both Wnt-inducible genes, hyperexpressed in colorectal cancer cell lines, indicating that they are part of a positive feedback loop. BCL9 is required for efficient β-catenin-mediated transcription in human cell lines whose Wnt pathway is active, including colorectal cancer cells, indicating its potential as a drug target in colorectal cancer

  3. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    Full Text Available BACKGROUND: Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities. METHODS AND RESULTS: We examined the effects of H2O2 on mouse CSCs (mCSCs, and observed that hydrogen peroxide (H2O2 treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2 or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway. CONCLUSIONS: Our results provide the first evidences that Wnt1 plays an important role in CSCs' defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.

  4. Wnt5a Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Marwa S. Asem

    2016-08-01

    Full Text Available Wnt5a is involved in activating several non-canonical WNT signaling pathways, through binding to different members of the Frizzled- and Ror-family receptors. Wnt5a signaling is critical for regulating normal developmental processes, including proliferation, differentiation, migration, adhesion and polarity. However, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a in regulating cancer cell invasion, metastasis, metabolism and inflammation. In this article, we review findings regarding the molecular mechanisms and roles of Wnt5a signaling in various cancer types, and highlight Wnt5a in ovarian cancer.

  5. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Science.gov (United States)

    Suzuki, H; Toyota, M; Caraway, H; Gabrielson, E; Ohmura, T; Fujikane, T; Nishikawa, N; Sogabe, Y; Nojima, M; Sonoda, T; Mori, M; Hirata, K; Imai, K; Shinomura, Y; Baylin, S B; Tokino, T

    2008-01-01

    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis. PMID:18283316

  6. Wnt signaling in limb organogenesis

    OpenAIRE

    Geetha-Loganathan, Poongodi; Nimmagadda, Suresh; Scaal, Martin

    2008-01-01

    Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Und...

  7. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signalling

    Directory of Open Access Journals (Sweden)

    Martin eKnöfler

    2013-09-01

    Full Text Available Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signalling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signalling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β-catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signalling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signalling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β-catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signalling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodelling. Moreover, changes in Wnt signalling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signalling in physiological and abnormal

  8. β-Catenin-Dependent Wnt Signaling in C. elegans: Teaching an Old Dog a New Trick

    Science.gov (United States)

    Jackson, Belinda M.; Eisenmann, David M.

    2012-01-01

    Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans. PMID:22745286

  9. Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Sini, Patrizia; Schlange, Thomas; MacDonald, Gwen; Hynes, Nancy E.

    2009-01-01

    Untangling the signaling pathways involved in endothelial cell biology is of central interest for the development of antiangiogenesis based therapies. Here we report that Wnt3a induces the proliferation and migration of HUVECs, but does not affect their survival. Wnt3a-induced proliferation was VEGFR signaling independent, but reduced upon CamKII inhibition. In a search for the downstream mediators of Wnt3a's effects on HUVEC biology, we found that Wnt3a treatment leads to phosphorylation of DVL3 and stabilization of β-catenin. Moreover, under the same conditions we observed an upregulation in c-MYC, TIE-2 and GJA1 mRNA transcripts. Although treatment of HUVECs with Wnt5a induced DVL3 phosphorylation, we did not observe any of the other effects seen upon Wnt3a stimulation. Taken together, our data indicate that Wnt3a induces canonical and non-canonical Wnt signaling in HUVECs, and stimulates their proliferation and migration.

  10. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Kalkman Hans

    2012-10-01

    Full Text Available Abstract Microdeletion and microduplication copy number variations are found in patients with autism spectrum disorder and in a number of cases they include genes that are involved in the canonical Wnt signaling pathway (for example, FZD9, BCL9 or CDH8. Association studies investigating WNT2, DISC1, MET, DOCK4 or AHI1 also provide evidence that the canonical Wnt pathway might be affected in autism. Prenatal medication with sodium-valproate or antidepressant drugs increases autism risk. In animal studies, it has been found that these medications promote Wnt signaling, including among others an increase in Wnt2 gene expression. Notably, the available genetic information indicates that not only canonical Wnt pathway activation, but also inhibition seems to increase autism risk. The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may generate a similar set of behavioral and cognitive symptoms. However, without a validated biomarker to stratify for deviant canonical Wnt pathway activity, it is probably too dangerous to treat patients with compounds that modify pathway activity.

  11. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling

    Science.gov (United States)

    Lien, Wen-Hui; Fuchs, Elaine

    2014-01-01

    In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells—embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells—in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects. PMID:25030692

  12. Canonical Wnt signaling in diabetic retinopathy.

    Science.gov (United States)

    Chen, Qian; Ma, Jian-Xing

    2017-10-01

    Diabetic retinopathy (DR) is a common eye complication of diabetes, and the pathogenic mechanism of DR is still under investigation. The canonical Wnt signaling pathway is an evolutionarily conserved pathway that plays fundamental roles in embryogenesis and adult tissue homeostasis. Wnt signaling regulates expression of multiple genes that control retinal development and eye organogenesis, and dysregulated Wnt signaling plays pathophysiological roles in many ocular diseases, including DR. This review highlights recent progress in studies of Wnt signaling in DR. We discuss Wnt signaling regulation in the retina and dysregulation of Wnt signaling associated with ocular diseases with an emphasis on DR. We also discuss the therapeutic potential of modulating Wnt signaling in DR. Continued studies in this field will advance our current understanding on DR and contribute to the development of new treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Effect of total glucosides of paeony on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats].

    Science.gov (United States)

    Chang, Bao-Chao; Chen, Wei-Dong; Zhang, Yan; Yang, Ping; Liu, Lei; Wang, Jing

    2014-10-01

    The study is to explore the effect of total glucosides of paeony (TGP)on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats, and discuss the protection of TGP in diabetic nephropathy and possible mechanism. Ninety male SD rats of 8 weeks age were randomly divided into normal control group (n = 10) and model group (n = 80). Rats of the normal control group were fed with regular diet, while rats of the model group were fed with high-fat high-sugar diet and 4 weeks later were given an intraperitoneal injection of 35 mg x kg(-1) streptozotocin (STZ). The successfully induced type 2 diabetic rat models were then randomly divided into DM group, three TGP (50, 100, 200 mg x kg(-1) x d(-1)) treatment group and tripterygium wilfordii glycosides (8 mg x kg(-1) x d(-1)) control group. Rats of DM group and each treatment group were given high-fat high-sugar diet. At week 14, the levels of blood sugar, 24 hour urine protein, serum creatinine and blood urea nitrogen were tested. The rats were then sacrificed. Renal pathological changes were examined. Renal tissue Wnt-1 and β-catenin expressions were detected by immunohistochemical assay. Wnt-1 mRNA and β-catenin mRNA expression was semi-quantified by RT-PCR. Wnt-1 protein and β-catenin protein expression was semi-quantified by Western blot. The Result show that Wnt-1 and β-catenin expression increased in kidney of high-fat high-sugar induced type 2 diabetic rats. Compared with diabetic group, the level of serum creatinine, blood urea nitrogen, 24 h urine protein, mean glomerular area and mean glomerular volume were decreased, renal histopathology were improved, expression of Wnt-1 and β-catenin mRNA and protein was reduced in TGP group. Tripterygium wilfordii glycosides had the similar effect. In conclusion, these results showed that Wnt/β-catenin abnormal activation in kidney of type 2 diabetic rats, TGP can improve kidney damage in diabetic rats and delay the development of diabetic

  14. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  15. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  16. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro.

    Science.gov (United States)

    Zhu, Xuejiao; Wen, Libin; Sheng, Shaoyang; Wang, Wei; Xiao, Qi; Qu, Meng; Hu, Yiyi; Liu, Chuanmin; He, Kongwang

    2018-01-01

    Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro . Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro , elucidated the mechanism of P1's inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS), laying a foundation for elucidating the pathogenesis of P1.

  17. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jeong, Woo-Jeong; Ro, Eun Ji; Choi, Kang-Yell

    2018-01-01

    Aberrant activation of the Wnt/β-catenin and RAS-extracellular signal-regulated kinase (ERK) pathways play important roles in the tumorigenesis of many different types of cancer, most notably colorectal cancer (CRC). Genes for these two pathways, such as adenomatous polyposis coli ( APC ) and KRAS are frequently mutated in human CRC, and involved in the initiation and progression of the tumorigenesis, respectively. Moreover, recent studies revealed interaction of APC and KRAS mutations in the various stages of colorectal tumorigenesis and even in metastasis accompanying activation of the cancer stem cells (CSCs). A key event in the synergistic cooperation between Wnt/β-catenin and RAS-ERK pathways is a stabilization of both β-catenin and RAS especially mutant KRAS by APC loss, and pathological significance of this was indicated by correlation of increased β-catenin and RAS levels in human CRC where APC mutations occur as high as 90% of CRC patients. Together with the notion of the protein activity reduction by lowering its level, inhibition of both β-catenin and RAS especially by degradation could be a new ideal strategy for development of anti-cancer drugs for CRC. In this review, we will discuss interaction between the Wnt/β-catenin and RAS-ERK pathways in the colorectal tumorigenesis by providing the mechanism of RAS stabilization by aberrant activation of Wnt/β-catenin. We will also discuss our small molecular anti-cancer approach controlling CRC by induction of specific degradations of both β-catenin and RAS via targeting Wnt/β-catenin pathway especially for the KYA1797K, a small molecule specifically binding at the regulator of G-protein signaling (RGS)-domain of Axin.

  18. A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts

    OpenAIRE

    Thorne, Curtis A.; Lafleur, Bonnie; Lewis, Michelle; Hanson, Alison J.; Jernigan, Kristin K.; Weaver, David C.; Huppert, Kari A.; Chen, Tony W.; Wichadiit, Chonlarat; Cselenyi, Christopher S.; Tahinci, Emilios; Meyers, Kelly C.; Waskow, Emily; Orton, Darren; Salic, Adrian

    2011-01-01

    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the...

  19. R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Floriane Lacour

    2017-03-01

    Full Text Available Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo family of secreted proteins potently activates the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/β-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/β-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.

  20. A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

    Science.gov (United States)

    Salašová, Alena; Yokota, Chika; Potěšil, David; Zdráhal, Zbyněk; Bryja, Vítězslav; Arenas, Ernest

    2017-07-11

    Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. Our study shows for the first time that LRRK2 activates the WNT

  1. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  2. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  3. Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression

    International Nuclear Information System (INIS)

    Zhang, Long; Shi, Songting; Zhang, Juan; Zhou, Fangfang; Dijke, Peter ten

    2012-01-01

    Highlights: ► Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. ► Wnt3a induces Id3 expression via canonical Wnt/β-catenin pathway. ► Wnt3a-induced Id3 expression does not depend on BMP signaling activation. ► Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a β-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However, Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/β-catenin induced gene in myoblast cell fate determination.

  4. Neural stem cells inhibit melanin production by activation of Wnt inhibitors.

    Science.gov (United States)

    Hwang, Insik; Park, Ju-Hwang; Park, Hang-Soo; Choi, Kyung-Ah; Seol, Ki-Cheon; Oh, Seung-Ick; Kang, Seongman; Hong, Sunghoi

    2013-12-01

    Melanin for skin pigmentation is synthesized from tyrosine via an enzymatic cascade that is controlled by tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase/tyrosinase related protein 2 (Dct/TRP2), which are the targets of microphthalmia-associated transcription factor (MITF). MITF is a master regulator of pigmentation and a target of β-catenin in Wnt/β-catenin signaling during melanocyte differentiation. Stem cells have been used in skin pigmentation studies, but the mechanisms were not determined for the conditioned medium (CM)-mediated effects. In this study, the inhibition and mechanisms of melanin synthesis were elucidated in B16 melanoma cells and UV-B irradiated C57/BL-6 mice that were treated with human neural stem cell-conditioned medium (NSC-CM). B16-F10 melanoma cells (1.5×10(4)cells/well) and the shaved dorsal skin of mice were pretreated with various amount (5, 10, 20, 50, and 100%) of NSC-CM. Melanin contents and TYR activity were measured by a Spectramax spectrophotometer. The expression of TYR, TRP1, Dct/TRP2, MITF, β-catenin and Wnt inhibitors were evaluated by RT-PCR and western blot. The dorsal skin samples were analyzed by immunofluorescence with various antibodies and compared with that control of tissues. Marked decreases were evident in melanin content and TYR, TRP1, DCT/TRP2, MITF, and β-catenin expression in B16 cells and C57/BL-6 mice. NSC-CM negatively regulated Wnt/β-catenin signaling by decreasing the expression of β-catenin protein, which resulted from robust expression of Wnt inhibitors Dickkopf-1 (DKK1) and secreted frizzled-related protein 2 (sFRP2). These results demonstrate that NSC-CM suppresses melanin production in vitro and in vivo, suggesting that factors in NSC-CM may play an important role in deregulation of epidermal melanogenesis. Copyright © 2013 Japanese Society for Investigative Dermatology. All rights reserved.

  5. The Protective Effects of Curcumin on Obesity-Related Glomerulopathy Are Associated with Inhibition of Wnt/β-Catenin Signaling Activation in Podocytes

    Directory of Open Access Journals (Sweden)

    Bao-li Liu

    2015-01-01

    Full Text Available The present study investigated the effects of curcumin, one of the most important active ingredients of turmeric, on podocyte injury in vitro and obesity-related glomerulopathy (ORG in vivo. Cellular experiments in vitro showed that curcumin significantly antagonized leptin-induced downregulation of the mRNA and protein expression of podocyte-associated molecules including nephrin, podocin, podoplanin, and podocalyxin. Animal experiments in vivo showed that curcumin significantly reduced the body weight, Lee’s index, abdominal fat index, urinary protein excretion, and average glomerular diameter and significantly upregulated the mRNA and protein expressions of the above podocyte-associated molecules in ORG mice. Furthermore, the experiments in vitro and in vivo both displayed that curcumin could downregulate the mRNA and protein expressions of Wnt1, Wnt2b, Wnt6, and β-catenin and upregulate the phosphorylation level of β-catenin protein in podocytes and renal tissue. In conclusion, curcumin is able to alleviate the harmful reaction of leptin on podocytes and reduce the severity of ORG. The above protective effects are associated with the inhibition of Wnt/β-catenin signaling activation in podocytes.

  6. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2014-01-01

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially

  7. IL-1β-induced, matrix metalloproteinase-3-regulated proliferation of embryonic stem cell-derived odontoblastic cells is mediated by the Wnt5 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan)

    2014-10-15

    We previously established a method for differentiating induced pluripotent stem cells and embryonic stem (ES) cells into α2 integrin-positive odontoblast-like cells. We also reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation and suppresses apoptosis in these cells, suggesting that MMP-3 plays a potentially unique physiological role in the regeneration of odontoblast-like cells. Here, we examined whether up-regulation of MMP-3 activity by IL-1β was mediated by Wnt signaling and led to increased proliferation of odontoblast-like cells. IL-1β increased mRNA and protein levels of Wnt5a, Wnt5b and the Wnt receptor Lrp5. Exogenous Wnt5a and Wnt5b were found to increase MMP-3 mRNA, protein and activity, and interestingly the rate of proliferation in these cells. Treatment with siRNAs against Wnt5a, Wnt5b and Lrp5 suppressed the IL-1β-induced increase in MMP-3 expression and suppressed cell proliferation, an effect rescued by application of exogenous Wnt5. These results demonstrate the sequential involvement of Wnt5, Lrp5 and MMP-3 in effecting IL-1β-induced proliferation of ES cell-derived odontoblast-like cells. - Highlights: • IL-1β induces Wnt5, Lrp5/Fzd9 and MMP-3 in ES cell-derived odontoblast-like cells. • IL-1β-induced Wnt5 expression results in increased cell proliferation. • Exogenous Wnt5 increases MMP-3 activity and cell proliferation. • Exogenous Wnt5 rescues IL-1β-driven proliferation with anti-Wnt5 siRNA suppression. • IL-1β-induced cell proliferation involves Wnt5, Lrp5, and MMP-3 sequentially.

  8. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Xuejiao Zhu

    2018-03-01

    Full Text Available Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro. Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro, elucidated the mechanism of P1’s inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS, laying a foundation for elucidating the pathogenesis of P1.

  9. The Wnt Transcriptional Switch: TLE Removal or Inactivation?

    Science.gov (United States)

    Ramakrishnan, Aravinda-Bharathi; Sinha, Abhishek; Fan, Vinson B; Cadigan, Ken M

    2018-02-01

    Many targets of the Wnt/β-catenin signaling pathway are regulated by TCF transcription factors, which play important roles in animal development, stem cell biology, and oncogenesis. TCFs can regulate Wnt targets through a "transcriptional switch," repressing gene expression in unstimulated cells and promoting transcription upon Wnt signaling. However, it is not clear whether this switch mechanism is a general feature of Wnt gene regulation or limited to a subset of Wnt targets. Co-repressors of the TLE family are known to contribute to the repression of Wnt targets in the absence of signaling, but how they are inactivated or displaced by Wnt signaling is poorly understood. In this mini-review, we discuss several recent reports that address the prevalence and molecular mechanisms of the Wnt transcription switch, including the finding of Wnt-dependent ubiquitination/inactivation of TLEs. Together, these findings highlight the growing complexity of the regulation of gene expression by the Wnt pathway. © 2017 WILEY Periodicals, Inc.

  10. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  11. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  12. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    Science.gov (United States)

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  13. Parkin protects dopaminergic neurons from excessive Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-01-01

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates β-catenin protein levels in vivo. Stabilization of β-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of β-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and β-catenin-induced cell death.

  14. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Nina [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Corti, Olga [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sacchetti, Paola [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Ardilla-Osorio, Hector [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sehat, Bita [Cancer Center Karolinska, Karolinska Institute, S-17177 Stockholm (Sweden); Brice, Alexis [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Department of Genetics and Cytogenetics, AP-HP, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Arenas, Ernest, E-mail: Ernest.Arenas@ki.se [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  15. Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development.

    Directory of Open Access Journals (Sweden)

    Peter Walentek

    Full Text Available Breakage of bilateral symmetry in amphibian embryos depends on the development of a ciliated epithelium at the gastrocoel roof during early neurulation. Motile cilia at the gastrocoel roof plate (GRP give rise to leftward flow of extracellular fluids. Flow is required for asymmetric gene expression and organ morphogenesis. Wnt signaling has previously been involved in two steps, Wnt/ß-catenin mediated induction of Foxj1, a regulator of motile cilia, and Wnt/planar cell polarity (PCP dependent cilia polarization to the posterior pole of cells. We have studied Wnt11b in the context of laterality determination, as this ligand was reported to activate canonical and non-canonical Wnt signaling. Wnt11b was found to be expressed in the so-called superficial mesoderm (SM, from which the GRP derives. Surprisingly, Foxj1 was only marginally affected in loss-of-function experiments, indicating that another ligand acts in this early step of laterality specification. Wnt11b was required, however, for polarization of GRP cilia and GRP morphogenesis, in line with the known function of Wnt/PCP in cilia-driven leftward flow. In addition Xnr1 and Coco expression in the lateral-most GRP cells, which sense flow and generate the first asymmetric signal, was attenuated in morphants, involving Wnt signaling in yet another process related to symmetry breakage in Xenopus.

  16. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  17. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    International Nuclear Information System (INIS)

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal

    2006-01-01

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS

  18. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells.

    Science.gov (United States)

    Park, Young-Kwon; Park, Bongju; Lee, Seongyeol; Choi, Kang; Moon, Yunwon; Park, Hyunsung

    2013-09-06

    Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation.

  19. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  20. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.

    Science.gov (United States)

    Li, C; Lan, Y; Krumlauf, R; Jiang, R

    2017-10-01

    Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9 del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9 del/del ;Wise -/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored

  1. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-26

    The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by

  2. Wnt Signaling in Skeletal Muscle Development and Regeneration.

    Science.gov (United States)

    Girardi, Francesco; Le Grand, Fabien

    2018-01-01

    Wnt is a family of signaling molecules involved in embryogenesis, adult tissue repair, and cancer. They activate canonical and noncanonical Wnt signaling cascades in target cells. Several studies, within the last decades, showed that several Wnt ligands are involved in myogenesis and both canonical and noncanonical Wnt pathways regulate muscle formation and the maintenance of adult tissue homeostasis. In this review, we provide a comprehensive overview of the roles of Wnt signaling during muscle development and an updated description of Wnt functions during muscle repair. Lastly, we discuss the crosstalk between Wnt and TGFβ signaling pathways in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Wnt Signaling in Kidney Development and Disease.

    Science.gov (United States)

    Wang, Yongping; Zhou, Chengji J; Liu, Youhua

    2018-01-01

    Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Yuan Tian

    2016-08-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC. The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients.

  5. The function of endocytosis in Wnt signaling.

    Science.gov (United States)

    Brunt, Lucy; Scholpp, Steffen

    2018-03-01

    Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.

  6. Wnt-1 Signaling in Mammary Carcinogenesis

    Science.gov (United States)

    2000-04-01

    and the notochord (4), Wnt-5A/LRP6 or LRP6 (higher doses) alone induced trunk axis duplication with muscle and neural tissues but lacking head or the... notochord (Fig. lb). It remains unclear whether this is due to quantitative or qualitative differences between Wnt-5a/LRP6 and Wnt-5a/hFz5 co...2 ng) or Wnt-5a (20 pg) plus LRP6 (100 pg) induced trunk axis duplication lacking head and the notochord . Top: the whole embryo phenotype at stage 40

  7. Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Desheng Lu

    Full Text Available BACKGROUND: Aberrant activation of Wnt/beta-catenin signaling promotes the development of several cancers. It has been demonstrated that the Wnt signaling pathway is activated in chronic lymphocytic leukemia (CLL cells, and that uncontrolled Wnt/beta-catenin signaling may contribute to the defect in apoptosis that characterizes this malignancy. Thus, the Wnt signaling pathway is an attractive candidate for developing targeted therapies for CLL. METHODOLOGY/PRINCIPAL FINDINGS: The diuretic agent ethacrynic acid (EA was identified as a Wnt inhibitor using a cell-based Wnt reporter assay. In vitro assays further confirmed the inhibitory effect of EA on Wnt/beta-catenin signaling. Cell viability assays showed that EA selectively induced cell death in primary CLL cells. Exposure of CLL cells to EA decreased the expression of Wnt/beta-catenin target genes, including LEF-1, cyclin D1 and fibronectin. Immune co-precipitation experiments demonstrated that EA could directly bind to LEF-1 protein and destabilize the LEF-1/beta-catenin complex. N-acetyl-L-cysteine (NAC, which can react with the alpha, beta-unsaturated ketone in EA, but not other anti-oxidants, prevented the drug's inhibition of Wnt/beta-catenin activation and its ability to induce apoptosis in CLL cells. CONCLUSIONS/SIGNIFICANCE: Our studies indicate that EA selectively suppresses CLL survival due to inhibition of Wnt/beta-catenin signaling. Antagonizing Wnt signaling in CLL with EA or related drugs may represent an effective treatment of this disease.

  8. Crosstalk between long non-coding RNAs and Wnt/β-catenin signalling in cancer.

    Science.gov (United States)

    Yang, Gang; Shen, Tianyi; Yi, Xiaoming; Zhang, Zhengyu; Tang, Chaopeng; Wang, Longxin; Zhou, Yulin; Zhou, Wenquan

    2018-04-01

    Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the human genome which perform crucial functions in diverse biological processes. The abnormal expression of some lncRNAs has been found in tumorigenesis, development and therapy resistance of cancers. They may act as oncogenes or tumour suppressors and can be used as diagnostic or prognostic markers, prompting their therapeutic potentials in cancer treatments. Studies have indicated that many lncRNAs are involved in the regulation of several signal pathways, including Wnt/β-catenin signalling pathway, which has been reported to play a significant role in regulating embryogenesis, cell proliferation and controlling tumour biology. Emerging evidences have suggested that lncRNAs can interact with several components of the Wnt/β-catenin signalling pathway to regulate the expression of Wnt target genes in cancer. Moreover, the expression of lncRNAs can also be influenced by the pathway. Nevertheless, Wnt/β-catenin signalling pathway-related lncRNAs and their interactions in cancer are not systematically analysed before. Considering these, this review emphasized the associations between lncRNAs and Wnt/β-catenin signalling pathway in cancer initiation, progression and their therapeutic influence. We also provided an overview on characteristics of lncRNAs and Wnt/β-catenin signalling pathway and discussed their functions in tumour biology. Finally, targeting lncRNAs or/and molecules associated with the Wnt/β-catenin signalling pathway may be a feasible therapeutic method in the future. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways.

    Science.gov (United States)

    Sagomonyants, Karen; Mina, Mina

    2014-08-01

    Odontoblast differentiation during physiological and reparative dentinogenesis is dependent upon multiple signaling molecules, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs) and Wingless/Integrated (Wnt) ligands. Recent studies in our laboratory showed that continuous exposure of primary dental pulp cultures to FGF2 exerted biphasic effects on the expression of markers of dentinogenesis. In the present study, we examined the possible involvement of the BMP and Wnt signaling pathways in mediating the effects of FGF2 on dental pulp cells. Our results showed that stimulatory effects of FGF2 on dentinogenesis during the proliferation phase of growth were associated with increased expression of the components of the BMP (Bmp2, Dlx5, Msx2, Osx) and Wnt (Wnt10a, Wisp2) pathways, and decreased expression of an inhibitor of the Wnt signaling, Nkd2. Further addition of FGF2 during the differentiation/mineralization phase of growth resulted in decreased expression of components of the BMP signaling (Bmp2, Runx2, Osx) and increased expression of inhibitors of the Wnt signaling (Nkd2, Dkk3). This suggests that both BMP and Wnt pathways may be involved in mediating the effects of FGF2 on dental pulp cells.

  10. Aberrant Wnt Signaling in Leukemia

    Directory of Open Access Journals (Sweden)

    Frank J. T. Staal

    2016-08-01

    Full Text Available The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment.

  11. Wnt signaling in triple-negative breast cancer

    Science.gov (United States)

    Pohl, SÖ-G; Brook, N; Agostino, M; Arfuso, F; Kumar, A P; Dharmarajan, A

    2017-01-01

    Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease. PMID:28368389

  12. Wnt/β-catenin Signaling in Osteoarthritis and in Other Forms of Arthritis.

    Science.gov (United States)

    Zhou, Yachuan; Wang, Tingyu; Hamilton, John L; Chen, Di

    2017-09-01

    Arthritis defines a large group of diseases primarily affecting the joint. It is the leading cause of pain and disability in adults. Osteoarthritis (OA) affecting the knee or hip is the most common form among over 100 types of arthritis. Other types of arthritis include erosive hand OA, temporomandibular joint (TMJ) OA, facet joint OA, diffuse idiopathic skeletal hyperostosis (DISH), and spondyloarthritis (SpA). However, the specific molecular signals involved in the development and progression of OA and related forms of arthritis remain largely unknown. The canonical wingless/integrated (Wnt)/β-catenin signaling pathway could play a unique role in the pathogenesis of arthritis. In this review article, we will focus on the molecular mechanisms of Wnt/β-catenin signaling in the pathogenesis of OA and other types of arthritis. Emerging evidence demonstrates that Wnts and Wnt-related molecules are involved in arthritis development and progression in human genetic studies and in vitro studies. Also, mouse models have been generated to determine the role of Wnt/β-catenin signaling in the pathogenesis of arthritis. Wnt/β-catenin signaling represents a unique signaling pathway regulating arthritis development and progression, and the molecules in this particular pathway may serve as targets for the therapeutic intervention of arthritis. Mediators and downstream effectors of Wnt/β-catenin signaling are increased in OA as well other forms of arthritis, including DISH and SpA. Through extensive investigations, including pre-clinical studies in transgenic mice and translational and human studies, the Wnt/β-catenin signaling pathway has been proven to play roles in bone and joint pathology by directly affecting bone, cartilage, and synovial tissue; further, these pathologies can be reduced through targeting this pathway. Continued investigation into the distinct molecular signaling of the Wnt/β-catenin pathway will provide additional insights toward the therapeutic

  13. Epsin is required for Dishevelled stability and Wnt signalling activation in colon cancer development.

    Science.gov (United States)

    Chang, Baojun; Tessneer, Kandice L; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-03-16

    Uncontrolled canonical Wnt signalling supports colon epithelial tumour expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, the involvement of epsins in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signalling effector, dishevelled (Dvl2), and impairing Wnt signalling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signalling in colon cancer cells to ensure robust colon cancer progression. The pro-carcinogenic role of Epsins suggests that they are potential therapeutic targets to combat colon cancer.

  14. TC-1 (c8orf4) enhances aggressive biologic behavior in lung cancer through the Wnt/β-catenin pathway.

    Science.gov (United States)

    Su, Kai; Huang, Lijun; Li, Wenhai; Yan, Xiaolong; Li, Xiaofei; Zhang, Zhipei; Jin, Faguang; Lei, Jie; Ba, Guangzhen; Liu, Boya; Wang, Xiaoping; Wang, Yunjie

    2013-11-01

    The thyroid cancer-1 (TC-1) or c8orf4 gene encodes a 106-residue naturally disordered protein that has been found to be associated with thyroid, gastric, and breast cancer. A recent study has indicated that the protein functions as a positive regulator in the Wnt/β-catenin signaling pathway in human breast cancer. However, no research has been done in the area of lung cancer. Therefore, the goal of the present study was to confirm the relationship among TC-1, lung cancer, and the Wnt/β-catenin signaling pathway. The expression of TC-1 was immunohistochemically examined in 147 patients with non-small-cell lung cancer. TC-1-overexpressed and silenced A549 cells were infected using lentivirus and MTT cell proliferation analysis, and Matrigel invasion assays and scratch-wound assays were performed to confirm the biologic behavioral changes in different A549 cell subsets. The Wnt/β-catenin signaling pathway, key gene β-catenin, target genes of vascular endothelial growth factor, cyclin D1, matrix metalloproteinase-7, c-myc, and survivin were tested at the mRNA and protein level. TC-1 was detected in 97 of the 147 non-small-cell lung cancer primary tumor specimens, and its expression correlated with the TNM stage and regional lymph node metastasis (P cell line. Furthermore, expression of TC-1 protein affected the Wnt/β-catenin signaling pathway's downstream genes, such as vascular endothelial growth factor and matrix metalloproteinase-7, at the mRNA and protein level. TC-1 expression is associated with aggressive biologic behavior in lung cancer and might coordinate with the Wnt/β-catenin pathway as a positive upstream regulator that induces these behaviors. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. CACN-1/Cactin plays a role in Wnt signaling in C. elegans.

    Directory of Open Access Journals (Sweden)

    Melissa LaBonty

    Full Text Available Wnt signaling is tightly regulated during animal development and controls cell proliferation and differentiation. In C. elegans, activation of Wnt signaling alters the activity of the TCF/LEF transcription factor, POP-1, through activation of the Wnt/β-catenin or Wnt/β-catenin asymmetry pathways. In this study, we have identified CACN-1 as a potential regulator of POP-1 in C. elegans larval development. CACN-1/Cactin is a well-conserved protein of unknown molecular function previously implicated in the regulation of several developmental signaling pathways. Here we have used activation of POPTOP, a POP-1-responsive reporter construct, as a proxy for Wnt signaling. POPTOP requires POP-1 and SYS-1/β-catenin for activation in L4 uterine cells. RNAi depletion experiments show that CACN-1 is needed to prevent excessive activation of POPTOP and for proper levels and/or localization of POP-1. Surprisingly, high POPTOP expression correlates with increased levels of POP-1 in uterine nuclei, suggesting POPTOP may not mirror endogenous gene expression in all respects. Genetic interaction studies suggest that CACN-1 may act partially through LIT-1/NLK to alter POP-1 localization and POPTOP activation. Additionally, CACN-1 is required for proper proliferation of larval seam cells. Depletion of CACN-1 results in a loss of POP-1 asymmetry and reduction of terminal seam cell number, suggesting an adoption of the anterior, differentiated fate by the posterior daughter cells. These findings suggest CACN-1/Cactin modulates Wnt signaling during larval development.

  16. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Castelo-Branco, Morgana TL; Pizzatti, Luciana; Abdelhay, Eliana

    2012-01-01

    The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy. This resistance has been associated with the overexpression of ABCB1, which gives rise to the multidrug resistance (MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by ABCB1) has been implicated as the major cause of its emergence. Wnt signaling has been demonstrated to be important in several aspects of CML. Recently, Wnt signaling was linked to ABCB1 regulation through its canonical pathway, which is mediated by β-catenin, in other types of cancer. In this study, we investigated the involvement of the Wnt/β-catenin pathway in the regulation of ABCB1 transcription in CML, as the basal promoter of ABCB1 has several β-catenin binding sites. β-catenin is the mediator of canonical Wnt signaling, which is important for CML progression. In this work we used the K562 cell line and its derived MDR-resistant cell line Lucena (K562/VCR) as CML study models. Real time PCR (RT-qPCR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), flow cytometry (FACS), western blot, immunofluorescence, RNA knockdown (siRNA) and Luciferase reporter approaches were used. β-catenin was present in the protein complex on the basal promoter of ABCB1 in both cell lines in vitro, but its binding was more pronounced in the resistant cell line in vivo. Lucena cells also exhibited higher β-catenin levels compared to its parental cell line. Wnt1 and β-catenin depletion and overexpression of nuclear β-catenin, together with TCF binding sites activation demonstrated that ABCB1 is positively regulated by the canonical pathway of Wnt signaling. These results suggest, for the first time, that the Wnt/β-catenin pathway regulates ABCB1 in CML

  17. [Wnt/β-catenin pathway involved in the regulation of rat mesangial cell proliferation by adipose-derived mesenchymal stem cells].

    Science.gov (United States)

    Li, Zhi; Zhang, Mengying; Li, Xueqin; Lu, Jinming; Xu, Liang

    2016-11-01

    Objective To investigate the effect of adipose-derived mesenchymal stem cells (ADSCs) on glomerular mesangial cell proliferation via Wnt/β-catenin pathway. Methods The rat glomerular mesangial cells (HBZY-1) were incubated in conditioned ADSC medium. Cell cycle was analyzed with flow cytometry; the proliferation rate of HBZY-1 and the expression levels of relative genes and proteins of Wnt signaling pathway were measured using RNA interference, quantitative real-time PCR and Western blotting, respectively. Results HBZY-1 proliferation was significantly inhibited under the action of conditioned ADSC medium, whereas dickkopf WNT signaling pathway inhibitor 1 (DKK1) mRNA level was up-regulated. Fibronectin and TGF-β1 mRNA expression as well as β-catenin and Bcl-2 protein levels of HBZY-1 were significantly down-regulated. DKK1 gene expression level in ADSCs was significantly higher than that of HBZY-1. After RNA interference, DKK1 expression level in ADSCs was markedly inhibited, yet the β-catenin protein level was notably elevated. The β-catenin and Bcl-2 protein levels of HBZY-1 were also significantly raised in HBZY-1 after cultured with conditioned medium containing ADSCs treated with RNA interference. Conclusion Wnt/β-catenin may be a potential signaling pathway involved in the regulative effect of ADSCs on glomerular mesangial cell proliferation.

  18. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Xiaozhi Rong

    Full Text Available The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3 is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3 domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  19. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    Science.gov (United States)

    Lu, Gong-biao; Niu, Fu-wen; Zhang, Ying-chun; Du, Lin; Liang, Zhi-yuan; Gao, Yuan; Yan, Ting-zhen; Nie, Zhi-kui; Gao, Kai

    2016-01-01

    Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway. PMID:28123427

  20. Human cytomegalovirus infection dysregulates the canonical Wnt/β-catenin signaling pathway.

    Directory of Open Access Journals (Sweden)

    Magdalena Angelova

    Full Text Available Human Cytomegalovirus (HCMV is a ubiquitous herpesvirus that currently infects a large percentage of the world population. Although usually asymptomatic in healthy individuals, HCMV infection during pregnancy may cause spontaneous abortions, premature delivery, or permanent neurological disabilities in infants infected in utero. During infection, the virus exerts control over a multitude of host signaling pathways. Wnt/β-catenin signaling, an essential pathway involved in cell cycle control, differentiation, embryonic development, placentation and metastasis, is frequently dysregulated by viruses. How HCMV infection affects this critical pathway is not currently known. In this study, we demonstrate that HCMV dysregulates Wnt/β-catenin signaling in dermal fibroblasts and human placental extravillous trophoblasts. Infection inhibits Wnt-induced transcriptional activity of β-catenin and expression of β-catenin target genes in these cells. HCMV infection leads to β-catenin protein accumulation in a discrete juxtanuclear region. Levels of β-catenin in membrane-associated and cytosolic pools, as well as nuclear β-catenin, are reduced after infection; while transcription of the β-catenin gene is unchanged, suggesting enhanced degradation. Given the critical role of Wnt/β-catenin signaling in cellular processes, these findings represent a novel and important mechanism whereby HCMV disrupts normal cellular function.

  1. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers.

    Science.gov (United States)

    Cleary, Allison S; Leonard, Travis L; Gestl, Shelley A; Gunther, Edward J

    2014-04-03

    Cancer genome sequencing studies indicate that a single breast cancer typically harbours multiple genetically distinct subclones. As carcinogenesis involves a breakdown in the cell-cell cooperation that normally maintains epithelial tissue architecture, individual subclones within a malignant microenvironment are commonly depicted as self-interested competitors. Alternatively, breast cancer subclones might interact cooperatively to gain a selective growth advantage in some cases. Although interclonal cooperation has been shown to drive tumorigenesis in fruitfly models, definitive evidence for functional cooperation between epithelial tumour cell subclones in mammals is lacking. Here we use mouse models of breast cancer to show that interclonal cooperation can be essential for tumour maintenance. Aberrant expression of the secreted signalling molecule Wnt1 generates mixed-lineage mammary tumours composed of basal and luminal tumour cell subtypes, which purportedly derive from a bipotent malignant progenitor cell residing atop a tumour cell hierarchy. Using somatic Hras mutations as clonal markers, we show that some Wnt tumours indeed conform to a hierarchical configuration, but that others unexpectedly harbour genetically distinct basal Hras mutant and luminal Hras wild-type subclones. Both subclones are required for efficient tumour propagation, which strictly depends on luminally produced Wnt1. When biclonal tumours were challenged with Wnt withdrawal to simulate targeted therapy, analysis of tumour regression and relapse revealed that basal subclones recruit heterologous Wnt-producing cells to restore tumour growth. Alternatively, in the absence of a substitute Wnt source, the original subclones often evolve to rescue Wnt pathway activation and drive relapse, either by restoring cooperation or by switching to a defector strategy. Uncovering similar modes of interclonal cooperation in human cancers may inform efforts aimed at eradicating tumour cell communities.

  2. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway

    Directory of Open Access Journals (Sweden)

    Zakia A. Abdelhamed

    2015-06-01

    Full Text Available Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3 cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67tm1Dgen/H1 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2 upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital

  3. NRP1 Accelerates Odontoblast Differentiation of Dental Pulp Stem Cells Through Classical Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Song, Yihua; Liu, Xiaojuan; Feng, Xingmei; Gu, Zhifeng; Gu, Yongchun; Lian, Min; Xiao, Jingwen; Cao, Peipei; Zheng, Ke; Gu, Xiaobing; Li, Dongping; He, Ping; Wang, Chenfei

    2017-10-01

    Neuropilin-1 (NRP1) is one of the members of neuropilin family. It can combine with disparate ligands involved in regulating cell proliferation, apoptosis, and differentiation. The binding of NRP1 to Sema3A stimulates osteoblast differentiation through the classical Wnt/β-catenin pathway. However, the functions of NRP1 in dental pulp stem cells (DPSCs) are not clear. The aim of our study was to investigate how NRP1 controlled odontoblast differentiation in DPSCs and clarified the underlying mechanisms. NRP1 expression was increased in time-dependent manner along with cell odontoblast differentiation. Overexpression of NRP1 upregulated dentin matrix protein-1, dentin sialophosphoprotein, alkaline phosphatase protein level, and mineralization in DPSCs, while knockdown of NRP1 induced the opposite effects. SiNRP1 similar to DKK1 availably blocked classical Wnt/β-catenin signaling and odontoblast differentiation. In summary, NRP1, as a promoter of odontoblast differentiation, regulates DPSCs via the classical Wnt/β-catenin pathway.

  4. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling

    Science.gov (United States)

    Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary

    2014-01-01

    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905

  5. Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus.

    Science.gov (United States)

    Lee, Jaemeun; Kim, Kyungchan; Yu, Seong-Woon; Kim, Eun-Kyoung

    2016-03-08

    Insulin plays diverse roles in the brain. Although insulin produced by pancreatic β-cells that crosses the blood-brain barrier is a major source of brain insulin, recent studies suggest that insulin is also produced locally within the brain. However, the mechanisms underlying the production of brain-derived insulin (BDI) are not yet known. Here, we examined the effect of Wnt3a on BDI production in a hypothalamic cell line and hypothalamic tissue. In N39 hypothalamic cells, Wnt3a treatment significantly increased the expression of the Ins2 gene, which encodes the insulin isoform predominant in the mouse brain, by activating Wnt/β-catenin signaling. The concentration of insulin was higher in culture medium of Wnt3a-treated cells than in that of untreated cells. Interestingly, neurogenic differentiation 1 (NeuroD1), a target of Wnt/β-catenin signaling and one of transcription factors for insulin, was also induced by Wnt3a treatment in a time- and dose-dependent manner. In addition, the treatment of BIO, a GSK3 inhibitor, also increased the expression of Ins2 and NeuroD1. Knockdown of NeuroD1 by lentiviral shRNAs reduced the basal expression of Ins2 and suppressed Wnt3a-induced Ins2 expression. To confirm the Wnt3a-induced increase in Ins2 expression in vivo, Wnt3a was injected into the hypothalamus of mice. Wnt3a increased the expression of NeuroD1 and Ins2 in the hypothalamus in a manner similar to that observed in vitro. Taken together, these results suggest that BDI production is regulated by the Wnt/β-catenin/NeuroD1 pathway in the hypothalamus. Our findings will help to unravel the regulation of BDI production in the hypothalamus.

  6. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  7. The function and evolution of Wnt genes in arthropods.

    Science.gov (United States)

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Wnt Signaling in Cancer Stem Cell Biology

    NARCIS (Netherlands)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells

  9. The way Wnt works: Components and mechanism

    Science.gov (United States)

    SAITO-DIAZ, KENYI; CHEN, TONY W.; WANG, XIAOXI; THORNE, CURTIS A.; WALLACE, HEATHER A.; PAGE-MCCAW, ANDREA; LEE, ETHAN

    2013-01-01

    The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a “futile cycle” of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway. PMID:23256519

  10. Wnt-5a and Wnt-4 Regulates Cell Growth in C57MG Mammary Epithelial Cells

    National Research Council Canada - National Science Library

    Olson, Daniel

    1998-01-01

    .... That is, it is important ultimately to understand whether the inappropriate down regulation of certain wnt-genes that are spatially-temporally expressed in developing mammary glands, such as wnt-5a...

  11. Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma.

    Science.gov (United States)

    Januskevicius, Andrius; Vaitkiene, Simona; Gosens, Reinoud; Janulaityte, Ieva; Hoppenot, Deimante; Sakalauskas, Raimundas; Malakauskas, Kestutis

    2016-06-13

    Recent studies have suggested that eosinophils may have a direct effect on airway smooth muscle cells (ASMC), causing their proliferation in patients with asthma, but the precise mechanism of the interaction between these cells remains unknown. We propose that changes in Wnt signaling activity and extracellular matrix (ECM) production may help explain these findings. Therefore, the aim of this study was to investigate the effect of eosinophils from asthmatic and non-asthmatic subjects on Wnt-5a, transforming growth factor β1 (TGF-β1), and ECM protein (fibronectin and collagen) gene expression and ASMC proliferation. A total of 18 subjects were involved in the study: 8 steroid-free asthma patients and 10 healthy subjects. Peripheral blood eosinophils were isolated using centrifugation and magnetic separation. An individual co-culture of eosinophils with human ASMC was prepared for each study subject. Adhesion of eosinophils to ASMC (evaluated by assaying eosinophil peroxidase activity) was determined following various incubation periods (30, 45, 60, 120, and 240 min). The expression of Wnt-5a, TGF-β1, and ECM protein genes in ASMC was measured using quantitative real-time polymerase chain reaction (PCR) after 24 h of co-culture. Proliferation of ASMC was measured using the Alamar blue method after 48 h and 72 h of co-culture with eosinophils. Eosinophils from asthmatic subjects demonstrated increased adhesion to ASMC compared with eosinophils from healthy subjects (p eosinophils from asthmatic subjects, while co-culture of ASMC with eosinophils from healthy subjects increased only TGF-β1 and fibronectin gene expression. ASMC proliferation was augmented after co-culture with eosinophils from asthma patients compared with co-culture with eosinophils from healthy subjects (p Eosinophils enhance Wnt-5a, TGF-β1, fibronectin, and collagen gene expression in ASMC and promote proliferation of these cells in asthma. ClinicalTrials.gov Identifier: NCT02648074 .

  12. A Wnt Oscillator Model for Somitogenesis

    OpenAIRE

    Jensen, Peter B.; Pedersen, Lykke; Krishna, Sandeep; Jensen, Mogens H.

    2010-01-01

    We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by β-catenin, which in turn is degraded by a complex of GSK3β and Axin2. The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often sp...

  13. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells.

    Science.gov (United States)

    Sturgeon, Christopher M; Ditadi, Andrea; Awong, Geneve; Kennedy, Marion; Keller, Gordon

    2014-06-01

    Efforts to derive hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) are complicated by the fact that embryonic hematopoiesis consists of two programs, primitive and definitive, that differ in developmental potential. As only definitive hematopoiesis generates HSCs, understanding how this program develops is essential for being able to produce this cell population in vitro. Here we show that both hematopoietic programs transition through hemogenic endothelial intermediates and develop from KDR(+)CD34(-)CD144(-) progenitors that are distinguished by CD235a expression. Generation of primitive progenitors (KDR(+)CD235a(+)) depends on stage-specific activin-nodal signaling and inhibition of the Wnt-β-catenin pathway, whereas specification of definitive progenitors (KDR(+)CD235a(-)) requires Wnt-β-catenin signaling during this same time frame. Together, these findings establish simple selective differentiation strategies for the generation of primitive or definitive hematopoietic progenitors by Wnt-β-catenin manipulation, and in doing so provide access to enriched populations for future studies on hPSC-derived hematopoietic development.

  14. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures.

    Science.gov (United States)

    Kakar, Sanjeev; Einhorn, Thomas A; Vora, Siddharth; Miara, Lincoln J; Hon, Gregory; Wigner, Nathan A; Toben, Daniel; Jacobsen, Kimberly A; Al-Sebaei, Maisa O; Song, Michael; Trackman, Philip C; Morgan, Elise F; Gerstenfeld, Louis C; Barnes, George L

    2007-12-01

    Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Since FDA approval of PTH [PTH(1-34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 microg/kg PTH(1-34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Quantitative muCT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to

  15. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways.

    Science.gov (United States)

    Chong, Zhao Zhong; Li, Faqi; Maiese, Kenneth

    2007-06-01

    Initially described as a modulator of embryogenesis for a number of organ systems, Wnt1 has recently been linked to the development of several neurodegenerative disorders, none being of greater significance than Alzheimer's disease. We therefore examined the ability of Wnt1 to oversee vital pathways responsible for cell survival during beta-amyloid (Abeta1-42) exposure. Here we show that Wnt1 is critical for protection in the SH-SY5Y neuronal cell line against genomic DNA degradation, membrane phosphatidylserine (PS) exposure, and microglial activation, since these neuroprotective attributes of Wnt1 are lost during gene silencing of Wnt1 protein expression. Intimately tied to Wnt1 protection is the presence and activation of Akt1. Pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression can abrogate the protective capacity of Wnt1. Closely aligned with Wnt1 and Akt1 are the integrated canonical pathways of synthase kinase-3beta (GSK-3beta) and beta-catenin. Through Akt1 dependent pathways, Wnt1 phosphorylates GSK-3beta and maintains beta-catenin integrity to insure its translocation from the cytoplasm to the nucleus to block apoptosis. Our work outlines a highly novel role for Wnt1 and its integration with Akt1, GSK-3beta, and beta-catenin to foster neuronal cell survival and repress inflammatory microglial activation that can identify new avenues of therapy against neurodegenerative disorders.

  16. Efficacy of Wnt-1 monoclonal antibody in sarcoma cells

    International Nuclear Information System (INIS)

    Mikami, Iwao; Koizumi, Kiyoshi; Jablons, David M; You, Liang; He, Biao; Xu, Zhidong; Batra, Sonny; Lee, Amie Y; Mazieres, Julien; Reguart, Noemi; Uematsu, Kazutsugu

    2005-01-01

    Sarcomas are one of the most refractory diseases among malignant tumors. More effective therapies based on an increased understanding of the molecular biology of sarcomas are needed as current forms of therapy remain inadequate. Recently, it has been reported that Wnt-1/β-catenin signaling inhibits apoptosis in several cancers. In this study, we investigated the efficacy of a monoclonal anti-Wnt-1 antibody in sarcoma cells. We treated cell lines A-204, SJSA-1, and fresh primary cultures of lung metastasis of sarcoma with a monoclonal anti-Wnt-1 antibody. Wnt-1 siRNA treatment was carried out in A-204. We assessed cell death using Crystal Violet staining. Apoptosis induction was estimated by flow cytometry analysis (Annexin V and PI staining). Cell signaling changes were determined by western blotting analysis. We detected Wnt-1 expression in all tissue samples and cell lines. Significant apoptosis induction was found in monoclonal anti-Wnt-1 antibody treated cells compared to control monoclonal antibody treated cells (p < 0.02). Similarly, we observed increased apoptosis in Wnt-1 siRNA treated cells. Blockade of Wnt-1 signaling in both experiments was confirmed by analyzing intracellular levels of Dishevelled-3 and of cytosolic β-catenin. Furthermore, the monoclonal anti-Wnt-1 antibody also induced cell death in fresh primary cultures of metastatic sarcoma in which Wnt-1 signaling was active. Our results indicate that Wnt-1 blockade by either monoclonal antibody or siRNA induces cell death in sarcoma cells. These data suggest that Wnt-1 may be a novel therapeutic target for the treatment of a subset of sarcoma cells in which Wnt-1/β-catenin signaling is active

  17. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans.

    Science.gov (United States)

    Saied-Santiago, Kristian; Townley, Robert A; Attonito, John D; da Cunha, Dayse S; Díaz-Balzac, Carlos A; Tecle, Eillen; Bülow, Hannes E

    2017-08-01

    Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning. Copyright © 2017 by the Genetics Society of America.

  18. The role of Wnt/β-catenin signaling in enterocyte turnover during methotrexate-induced intestinal mucositis in a rat.

    Directory of Open Access Journals (Sweden)

    Igor Sukhotnik

    Full Text Available BACKGROUND/AIMS: Intestinal mucositis is a common side-effect in patients who receive aggressive chemotherapy. The Wnt signaling pathway is critical for establishing and maintaining the proliferative compartment of the intestine. In the present study, we tested whether Wnt/β-catenin signaling is involved in methotrexate (MTX-induced intestinal damage in a rat model. METHODS: Non-pretreated and pretreated with MTX Caco-2 cells were evaluated for cell proliferation and apoptosis using FACS analysis. Adult rats were divided into three experimental groups: Control rats; MTX-2 animals were treated with a single dose of MTX given IP and were sacrificed on day 2, and MTX-4 rats were treated with MTX similar to group B and were sacrificed on day 4. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation, and enterocyte apoptosis were measured at sacrifice. Real Time PCR and Western blot was used to determine the level of Wnt/β-catenin related genes and protein expression. RESULTS: In the vitro experiment, treatment with MTX resulted in marked decrease in early cell proliferation rates following by a 17-fold increase in late cell proliferation rates compared to early proliferation. Treatment with MTX resulted in a significant increase in early and late apoptosis compared to Caco-2 untreated cells. In the vivo experiment, MTX-2 and MTX-4 rats demonstrated intestinal mucosal hypoplasia. MTX-2 rats demonstrated a significant decrease in FRZ-2, Wnt 3A Wnt 5A, β-catenin, c-myc mRNA expression and a significant decrease in β-catenin and Akt protein levels compared to control animals. Four days following MTX administration, rats demonstrated a trend toward a restoration of Wnt/β-catenin signaling especially in ileum. CONCLUSIONS: Wnt/β-catenin signaling is involved in enterocyte turnover during MTX-induced intestinal mucositis in a rat.

  19. Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Dorota Kurek

    2015-01-01

    Full Text Available Therapeutic application of human embryonic stem cells (hESCs requires precise control over their differentiation. However, spontaneous differentiation is prevalent, and growth factors induce multiple cell types; e.g., the mesoderm inducer BMP4 generates both mesoderm and trophoblast. Here we identify endogenous WNT signals as BMP targets that are required and sufficient for mesoderm induction, while trophoblast induction is WNT independent, enabling the exclusive differentiation toward either lineage. Furthermore, endogenous WNT signals induce loss of pluripotency in hESCs and their murine counterparts, epiblast stem cells (EpiSCs. WNT inhibition obviates the need to manually remove differentiated cells to maintain cultures and improves the efficiency of directed differentiation. In EpiSCs, WNT inhibition stabilizes a pregastrula epiblast state with novel characteristics, including the ability to contribute to blastocyst chimeras. Our findings show that endogenous WNT signals function as hidden mediators of growth factor-induced differentiation and play critical roles in the self-renewal of hESCs and EpiSCs.

  20. Wnt ligands signal in a cooperative manner to promote foregut organogenesis

    OpenAIRE

    Miller, Mayumi F.; Cohen, Ethan David; Baggs, Julie E.; Lu, Min Min; Hogenesch, John B.; Morrisey, Edward E.

    2012-01-01

    Endoderm-mesenchyme cross-talk is a central process in the development of foregut-derived organs. How signaling pathways integrate the activity of multiple ligands to guide organ development is poorly understood. We show that two Wnt ligands, Wnt2 and Wnt7b, cooperatively induce Wnt signaling without affecting the stabilization of the Wnt canonical effector β-catenin despite it being necessary for Wnt2–Wnt7b cooperativity. Wnt2–Wnt7b cooperation is specific for mesenchymal cell lineages and t...

  1. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Bo [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Song, Youngwoo; Kim, Changhee [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  2. Dynamic Wnt5a expression in murine hair follicle cycle and its inhibitory effects on follicular.

    Science.gov (United States)

    Fang, De-Ren; Lv, Zhong-Fa; Qiao, Gang

    2014-04-01

    To analyze the dynamic expression of Wnt family member 5A (Wingless-type MMTV integration Wnt site family, member 5a) in murine hair cycle and its inhibitory effects on follicle in vivo. Situ hybridization in full-thickness skin was used to observe the change of mouse protein expression in different growth stages, and Ad-Wnt5a was injected after defeathering to observe the hair follicle growth in vivo. The Wnt5a mRNA was expressed at birth, and was firstly increased then decreased along with the progress of the hair cycle. It reached the peak in advanced stage of growth cycle (P<0.05). Rhoa and β-catenin expression levels were significantly decreased in three groups. Rac2 expression was significantly up-regulated, and the expression level of Wnt5a, Shh and Frizzled2 was increased, but less significantly than group 2. The expression of Wnt5a mRNA is consistent with change of murine follicle cycle, and has obvious inhibitory effects on the growth of hair follicle in vivo, indicating that it is antagonistic to Wnts pathway and interferes the growth of follicle together. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  4. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice

    DEFF Research Database (Denmark)

    Parish, Clare L; Castelo-Branco, Gonçalo; Rawal, Nina

    2008-01-01

    have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs......Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation......) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain...

  5. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    International Nuclear Information System (INIS)

    Timmermans-Sprang, Elpetra P. M.; Gracanin, Ana; Mol, Jan A.

    2015-01-01

    Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated

  6. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  7. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes.

    Science.gov (United States)

    Borrell-Pages, Maria; Carolina Romero, July; Badimon, Lina

    2015-08-01

    Inflammation is triggered after invasion or injury to restore homeostasis. Although the activation of Wnt/β-catenin signaling is one of the first molecular responses to cellular damage, its role in inflammation is still unclear. It was our hypothesis that the low-density lipoprotein (LDL) receptor-related protein 5 (LRP5) and the canonical Wnt signaling pathway are modulators of inflammatory mechanisms. Wild-type (WT) and LRP5(-/-) mice were fed a hypercholesterolemic (HC) diet to trigger dislipidemia and chronic inflammation. Diets were supplemented with plant sterol esters (PSEs) to induce LDL cholesterol lowering and the reduction of inflammation. HC WT mice showed increased serum cholesterol levels that correlated with increased Lrp5 and Wnt/β-catenin gene expression while in the HC LRP5(-/-) mice Wnt/β-catenin pathway was shut down. Functionally, HC induced pro-inflammatory gene expression in LRP5(-/-) mice, suggesting an inhibitory role of the Wnt pathway in inflammation. Dietary PSE administration downregulated serum cholesterol levels in WT and LRP5(-/-) mice. Furthermore, in WT mice PSE increased anti-inflammatory genes expression and inhibited Wnt/β-catenin activation. Hepatic gene expression of Vldlr, Lrp2 and Lrp6 was increased after HC feeding in WT mice but not in LRP5(-/-) mice, suggesting a role for these receptors in the clearance of plasmatic lipoproteins. Finally, an antiatherogenic role for LRP5 was demonstrated as HC LRP5(-/-) mice developed larger aortic atherosclerotic lesions than WT mice. Our results show an anti-inflammatory, pro-survival role for LRP5 and the Wnt signaling pathway in peripheral blood leukocytes.

  8. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myofibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (qRT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myofibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling

  9. Wnt and β-Catenin Signaling and Skeletal Muscle Myogenesis in Response to Muscle Damage and Resistance Exercise and Training

    Directory of Open Access Journals (Sweden)

    Dan Newmire

    2015-10-01

    Full Text Available The factors that regulate skeletal muscle hypertrophy in human adults in response to resistance training (RT has largely focused on endogenous endocrine responses. However, the endocrine response to RT as having an obligatory role in muscle hypertrophy has come under scrutiny, as other mechanisms and pathways seem to also be involved in up-regulating muscle protein synthesis (MPS. Skeletal muscle myogenesis is a multifactorial process of tissue growth and repair in response to resistance training is regulated by many factors.  As a result, satellite cell-fused myogenesis is a possible factor in skeletal muscle regeneration and hypertrophy in response to RT.  The Wnt family ligands interact with various receptors and activate different downstream signaling pathways and have been classified as either canonical (β-catenin dependent or non-canonical (β-catenin independent.  Wnt is secreted from numerous tissues in a paracrine fashion. The Wnt/β-catenin signaling pathway is a highly-regulated and intricate pathway that is essential to skeletal muscle myogenesis.  The canonical Wnt/β-catenin pathway may influence satellite cells to myogenic commitment, differentiation, and fusion into muscle fibers in response to injury or trauma, self-renewal, and normal basal turnover.  The current literature has shown that, in response mechanical overload from acute resistance exercise and chronic resistance training, that the Wnt/β-catenin signaling pathway is stimulated which may actuate the process of muscle repair and hypertrophy in response to exercise-induced muscle damage. The purpose of this review is to elaborate on the Wnt/β-catenin signaling  pathway, the current literature investigating the relationship of the Wnt/β-catenin pathway and its effects on myogenesis is response to muscle damage and resistance exercise and training.      Keywords: skeletal muscle, hypertrophy, myogenesis, cell signaling, protein synthesis, resistance

  10. Destabilization of Heterologous Proteins Mediated by the GSK3β Phosphorylation Domain of the β-Catenin Protein

    Directory of Open Access Journals (Sweden)

    Yuhan Kong

    2013-11-01

    Full Text Available Background and Aims: Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. Methods and Results: We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP. In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. Conclusion: Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.

  11. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    Science.gov (United States)

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    Directory of Open Access Journals (Sweden)

    Roberto Narcisi

    2015-03-01

    Full Text Available Mesenchymal stem cells (MSCs are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair.

  13. Effect of Huayu Tongluo Herbs on Reduction of Proteinuria via Inhibition of Wnt/β-Catenin Signaling Pathway in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2017-01-01

    Full Text Available The study investigated the expression of Wnt/β-catenin pathway in diabetic rats and the intervention effect of Huayu Tongluo herbs (HTH. Ten rats were randomly selected as control group and the remaining rats were established as diabetic models. The diabetic rats were randomly divided into model group and HTH treatment group. The intervention was intragastric administration in all rats for 20 weeks. At the end of every 4 weeks, fasting blood glucose and 24 h urinary total protein quantitatively were measured. At the end of the 20th week, biochemical parameters and body weight were tested. The kidney tissues were observed under light microscope and transmission electron microscopy. We examined Wnt/beta-catenin signaling pathway key proteins and renal interstitial fibrosis related molecular markers expression. The results showed that HTH could reduce urinary protein excretion and relieve renal pathological damage. Wnt4, p-GSK3β (S9, and β-catenin expression were decreased in the signaling pathway, but GSK3β level was not changed by HTH in diabetic rats. Furthermore, the expressions of TGF-β1 and ILK were decreased, but the level of E-cadherin was increased in diabetic rats after treatment with HTH. This study demonstrated that HTH could inhibit the high expression of Wnt/β-catenin pathway in kidney of diabetic rats. The effect might be one of the main ways to reduce urinary protein excretion.

  14. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs.

    Directory of Open Access Journals (Sweden)

    Jesús Villar

    Full Text Available BACKGROUND: Mechanical ventilation (MV with high tidal volumes (V(T can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI. The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS: Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T (6 mL/kg or high V(T (20 mL/kg. Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41 β-catenin, matrix metalloproteinase-7 (MMP-7, cyclin D1, vascular endothelial growth factor (VEGF, and axis inhibition protein 2 (AXIN2 protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41 β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.

  15. A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer.

    Science.gov (United States)

    Reabroi, Somrudee; Chairoungdua, Arthit; Saeeng, Rungnapha; Kasemsuk, Teerapich; Saengsawang, Witchuda; Zhu, Weiming; Piyachaturawat, Pawinee

    2018-05-01

    Hyperactivation of Wnt/β-catenin signaling implicated in oncogenesis of colorectal cancer (CRC) is a potential molecular target for chemotherapy. An andrographolide analogue, 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) has previously been reported to be potently cytotoxic toward cancer cells by unknown molecular mechanisms. The present study explored the anti-cancer activity of analogue 3A.1 on Wnt/β-catenin signaling in colon cancer cells (HT29 cells) which were more sensitive to the others (HCT116 and SW480 cells). Analogue 3A.1 inhibited viability of HT29 cells with IC 50 value of 11.1 ± 1.4 μM at 24 h, which was more potent than that of the parent andrographolide. Analogue 3A.1 also suppressed the proliferation of HT29 cells and induced cell apoptosis in a dose-dependent manner. Its apoptotic activity was accompanied with increased expressions of proteins related to DNA damages; PARP-1 and γ-H2AX. In addition, analogue 3A.1 significantly inhibited T-cell factor and lymphoid enhancer factor (TCF/LEF) promoter activity of Wnt/β-catenin signaling. Accordingly, the expressions of Wnt target genes and β-catenin protein were suppressed. Moreover, analogue 3A.1 increased the activity of GSK-3β kinase, which is a negative regulator responsible for degradation of intracellular β-catenin. This mode of action was further supported by the absence of the effects after treatment with a GSK-3β inhibitor, and over-expression of a mutant β-catenin (S33Y). Our findings reveal, for the first time, an insight into the molecular mechanism of the anti-cancer activity of analogue 3A.1 through the inhibition of Wnt/β-catenin/GSK-3β pathway and provide a therapeutic potential of the andrographolide analogue 3A.1 in CRC treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Uncovering Wnt signaling mechanisms in control of cell migration in C. elegans

    NARCIS (Netherlands)

    Mentink, R.A.

    2014-01-01

    Morphogens such as Wnt proteins play a central role in embryonic patterning by providing positional information to cells in developing tissues. In recent years, it has become clear that such morphogenic gradients also contribute to the guidance of migrating cells and axons in the developing nervous

  17. Andrographolide Exerts Pro-Osteogenic Effect by Activation of Wnt/β-Catenin Signaling Pathway in Vitro

    Directory of Open Access Journals (Sweden)

    Tongmeng Jiang

    2015-07-01

    Full Text Available Background/Aims: Osteoporosis is a metabolic bone disorders that tortures about millions of people worldwide. Recent studies showed that Andrographolide (AP is a promising natural compound for the treatment of osteoclast-related bone diseases. However, its potential in treatment of osteoporosis has not been fully explored. Methods: In this study, the effect of AP on osteoblasts metabolism was investigated via the detection of cell proliferation, cell viability, ALP activity, the expression of osteogenic specific genes including runt-related transcription factor 2 (RUNX2, bone sialoprotein (BSP, osteocalcin (OCN, Bone morphogenic protein-2 (BMP2 and Alkaline phosphatase(ALP for 3, 5 and 7 days respectively. Further exploration of the association of AP with WNT/β-catenin signaling pathway was performed by examination of the expression of WNT related genes and proteins. Results: Results showed that AP of 4.46 and 8.92 µM, especially 8.92 µM was beneficial to osteogenic differentiation by upregulating ALP activity and expression of osteogenic related genes (PConclusion: This study indicates that AP exerts its pro-osteogenic potential via activation of the WNT/β-catenin in osteoblasts and thus may represent a candidate of therapeutic agent for osteoporosis.

  18. Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells

    Directory of Open Access Journals (Sweden)

    Kumiko Terada

    2013-01-01

    Full Text Available Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8 activity, we examined the role of Wnt4 signaling during muscle differentiation in the C2C12 myoblast cell line. Among several extrinsic signaling molecules examined in a microarray analysis of C2C12 cells during the transition from cell proliferation to differentiation after mitogen deprivation, bone morphogenetic protein 4 (BMP4 expression was prominently increased. Wnt4 overexpression had similar effects on BMP4 expression. BMP4 was able to inhibit muscle differentiation when added to the culture medium. BMP4 and noggin had no effects on the cellular localization of β-catenin induced by Wnt3a; however, the BMP4-induced phosphorylation of Smad1/5/8 was enhanced by Wnt4, but not by Wnt3a. The BMP antagonist noggin effectively stimulated muscle differentiation through binding to endogenous BMPs, and the effect of noggin was enhanced by the presence of Wnt3a and Wnt4. Conclusion. These results suggest that BMP/Smad pathways are modified through Wnt signaling during the transition from progenitor cell proliferation to myogenic differentiation, although Wnt/β-catenin signaling is not modified with BMP/Smad signaling.

  19. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia.

    Science.gov (United States)

    Adaimy, Lynn; Chouery, Eliane; Megarbane, Hala; Mroueh, Salman; Delague, Valerie; Nicolas, Elsa; Belguith, Hanen; de Mazancourt, Philippe; Megarbane, Andre

    2007-10-01

    Odonto-onycho-dermal dysplasia is a rare autosomal recessive syndrome in which the presenting phenotype is dry hair, severe hypodontia, smooth tongue with marked reduction of fungiform and filiform papillae, onychodysplasia, keratoderma and hyperhidrosis of palms and soles, and hyperkeratosis of the skin. We studied three consanguineous Lebanese Muslim Shiite families that included six individuals affected with odonto-onycho-dermal dysplasia. Using a homozygosity-mapping strategy, we assigned the disease locus to an ~9-cM region at chromosome 2q35-q36.2, located between markers rs16853834 and D2S353, with a maximum multipoint LOD score of 5.7. Screening of candidate genes in this region led us to identify the same c.697G-->T (p.Glu233X) homozygous nonsense mutation in exon 3 of the WNT10A gene in all patients. At the protein level, the mutation is predicted to result in a premature truncated protein of 232 aa instead of 417 aa. This is the first report to our knowledge of a human phenotype resulting from a mutation in WNT10A, and it is the first demonstration of an ectodermal dysplasia caused by an altered WNT signaling pathway, expanding the list of WNT-related diseases.

  20. The regulation and deregulation of Wnt signaling by PARK genes in health and disease.

    Science.gov (United States)

    Berwick, Daniel C; Harvey, Kirsten

    2014-02-01

    Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied in the field of embryogenesis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neurones. However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progressive loss of a subset of midbrain dopaminergic neurones in the substantia nigra leading to typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the last two decades has identified a growing number of genetic defects that underlie this condition. Here we review a growing body of data connecting genes implicated in PD--most notably the PARK genes--with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanism leading to PD. These observations have implications for the pathogenesis and treatment of neurodegenerative diseases in general.

  1. Niclosamide suppresses hepatoma cell proliferation via the Wnt pathway

    Directory of Open Access Journals (Sweden)

    Tomizawa M

    2013-11-01

    Full Text Available Minoru Tomizawa,1 Fuminobu Shinozaki,2 Yasufumi Motoyoshi,3 Takao Sugiyama,4 Shigenori Yamamoto,5 Makoto Sueishi,4 Takanobu Yoshida6 1Department of Gastroenterology, 2Department of Radiology, 3Department of Neurology, 4Department of Rheumatology, 5Department of Pediatrics, 6Department of Internal Medicine, National Hospital Organization Shimoshizu Hospital, Yotsukaido City, Chiba, Japan Background: The Wnt pathway plays an important role in hepatocarcinogenesis. We analyzed the association of the Wnt pathway with the proliferation of hepatoma cells using Wnt3a and niclosamide, a drug used to treat tapeworm infection. Methods: We performed an MTS assay to determine whether Wnt3a stimulated proliferation of Huh-6 and Hep3B human hepatoma cell lines after 72 hours of incubation with Wnt3a in serum-free medium. The cells were subjected to hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL after 48 hours of incubation. RNA was isolated 48 hours after addition of Wnt3a or niclosamide, and cyclin D1 expression levels were analyzed by real-time quantitative polymerase chain reaction. The promoter activity of T-cell factor was analyzed by luciferase assay 48 hours after transfection of TOPflash. Western blot analysis was performed with antibodies against β-catenin, dishevelled 2, and cyclin D1. Results: Cell proliferation increased with Wnt3a. Niclosamide suppressed proliferation with or without Wnt3a. Hematoxylin and eosin and TUNEL staining suggested that apoptosis occurred in cells with niclosamide. Cyclin D1 was upregulated in the presence of Wnt3a and downregulated with addition of niclosamide. The promoter activity of T-cell factor increased with Wnt3a, whereas T-cell factor promoter activity decreased with niclosamide. Western blot analysis showed that Wnt3a upregulated β-catenin, dishevelled 2, and cyclin D1, while niclosamide downregulated them. Conclusion: Niclosamide is a potential

  2. A Wnt oscillator model for somitogenesis

    DEFF Research Database (Denmark)

    Jensen, Peter B; Pedersen, Lykke; Krishna, Sandeep

    2010-01-01

    We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by beta-catenin, which in turn is degraded by a complex of GSK3beta and Axin2....... The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often spiky, where low concentration values of beta-catenin are interrupted by sharp peaks. Necessary...

  3. MGAT1 is a novel transcriptional target of Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Akiva, Izzet; Birgül Iyison, Necla

    2018-01-08

    The Wnt/β-catenin signaling pathway is an evolutionary conserved pathway, which has important functions in vertebrate early development, axis formation, cellular proliferation and morphogenesis. Additionally, Wnt/β-catenin signaling pathway is one of the most important intracellular pathways that controls cancer progression. To date most of the identified targets of this pathway are shown to harbor tumorigenic properties. We previously showed that Mannosyl glycoprotein acetylglucosaminyl-transferase (MGAT1) enzyme is among the Wnt/β-catenin signaling putative target genes in hepatocellular carcinoma cell lines (Huh7). MGAT1 protein levels were determined by Western Blotting from Huh7 cell lines in which Wnt/β-catenin pathway was activated by means of different approaches such as LiCl treatment and mutant β-catenin overexpression. Luciferase reporter assay was used to analyze the promoter activity of MGAT1. The mRNA levels of MGAT1 were determined by quantitative real-time PCR from Huh7 cells that were treated with either Wnt agonist or GSK-3β inhibitor. Wound healing and XTT cell proliferation assays were performed in order to determine the proliferation and migration capacities of MGAT1 overexpressing stable Huh7 cells. Finally, xenograft experiments were carried out to measure the tumor formation capacities in vivo. In this study we showed that the activation of Wnt/β-catenin pathway culminates in the upregulation of MGAT1 enzyme both at transcriptional and post-transcriptional levels. We also showed that overexpression of the β-catenin gene (CTNNB1) increased the promoter activity of MGAT1. We applied a set of complementary approaches to elucidate the functional importance of MGAT1 as a vital target of Wnt/β-catenin signaling in Huh7 cells. Our analyses related to cell proliferation and migration assays showed that in comparison to the control cells, MGAT1 expressing Huh7 cells have greater proliferative and invasive capabilities. Furthermore, the

  4. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer

    International Nuclear Information System (INIS)

    Loh, Yan Ni; Hedditch, Ellen L; Baker, Laura A; Jary, Eve; Ward, Robyn L; Ford, Caroline E

    2013-01-01

    Acquired resistance to Tamoxifen remains a critical problem in breast cancer patient treatment, yet the underlying causes of resistance have not been fully elucidated. Abberations in the Wnt signalling pathway have been linked to many human cancers, including breast cancer, and appear to be associated with more metastatic and aggressive types of cancer. Here, our aim was to investigate if this key pathway was involved in acquired Tamoxifen resistance, and could be targeted therapeutically. An in vitro model of acquired Tamoxifen resistance (named TamR) was generated by growing the estrogen receptor alpha (ER) positive MCF7 breast cancer cell line in increasing concentrations of Tamoxifen (up to 5 uM). Alterations in the Wnt signalling pathway and epithelial to mesenchymal transition (EMT) in response to Tamoxifen and treatment with the Wnt inhibitor, IWP-2 were measured via quantitative RT-PCR (qPCR) and TOP/FOP Wnt reporter assays. Resistance to Tamoxifen, and effects of IWP-2 treatment were determined by MTT proliferation assays. TamR cells exhibited increased Wnt signalling as measured via the TOP/FOP Wnt luciferase reporter assays. Genes associated with both the β-catenin dependent (AXIN2, MYC, CSNK1A1) and independent arms (ROR2, JUN), as well as general Wnt secretion (PORCN) of the Wnt signalling pathway were upregulated in the TamR cells compared to the parental MCF7 cell line. Treatment of the TamR cell line with human recombinant Wnt3a (rWnt3a) further increased the resistance of both MCF7 and TamR cells to the anti-proliferative effects of Tamoxifen treatment. TamR cells demonstrated increased expression of EMT markers (VIM, TWIST1, SNAI2) and decreased CDH1, which may contribute to their resistance to Tamoxifen. Treatment with the Wnt inhibitor, IWP-2 inhibited cell proliferation and markers of EMT. These data support the role of the Wnt signalling pathway in acquired resistance to Tamoxifen. Further research into the mechanism by which activated Wnt

  5. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.

    Science.gov (United States)

    Reichman, David E; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P; Taketo, Makoto M; Rosenwaks, Zev; James, Daylon

    2018-01-08

    Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. © 2018. Published by The Company of Biologists Ltd.

  6. LncRNAs in Secondary Hair Follicle of Cashmere Goat: Identification, Expression, and Their Regulatory Network in Wnt Signaling Pathway.

    Science.gov (United States)

    Bai, Wen L; Zhao, Su J; Wang, Ze Y; Zhu, Yu B; Dang, Yun L; Cong, Yu Y; Xue, Hui L; Wang, Wei; Deng, Liang; Guo, Dan; Wang, Shi Q; Zhu, Yan X; Yin, Rong H

    2018-07-03

    Long noncoding RNAs (lncRNAs) are a novel class of eukaryotic transcripts. They are thought to act as a critical regulator of protein-coding gene expression. Herein, we identified and characterized 13 putative lncRNAs from the expressed sequence tags from secondary hair follicle of Cashmere goat. Furthermore, we investigated their transcriptional pattern in secondary hair follicle of Liaoning Cashmere goat during telogen and anagen phases. Also, we generated intracellular regulatory networks of upregulated lncRNAs at anagen in Wnt signaling pathway based on bioinformatics analysis. The relative expression of six putative lncRNAs (lncRNA-599618, -599556, -599554, -599547, -599531, and -599509) at the anagen phase is significantly higher than that at telogen. Compared with anagen, the relative expression of four putative lncRNAs (lncRNA-599528, -599518, -599511, and -599497) was found to be significantly upregulated at telogen phase. The network generated showed that a rich and complex regulatory relationship of the putative lncRNAs and related miRNAs with their target genes in Wnt signaling pathway. Our results from the present study provided a foundation for further elucidating the functional and regulatory mechanisms of these putative lncRNAs in the development of secondary hair follicle and cashmere fiber growth of Cashmere goat.

  7. β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina

    Directory of Open Access Journals (Sweden)

    Meyers Jason R

    2012-08-01

    Full Text Available Abstract Background The zebrafish retina maintains two populations of stem cells: first, the germinal zone or ciliary marginal zone (CMZ contains multipotent retinal progenitors that add cells to the retinal periphery as the fish continue to grow; second, radial glia (Müller cells occasionally divide asymmetrically to generate committed progenitors that differentiate into rod photoreceptors, which are added interstitially throughout the retina with growth. Retinal injury stimulates Müller glia to dedifferentiate, re-enter the cell cycle, and generate multipotent retinal progenitors similar to those in the CMZ to replace missing neurons. The specific signals that maintain these two distinct populations of endogenous retinal stem cells are not understood. Results We used genetic and pharmacological manipulation of the β-catenin/Wnt signaling pathway to show that it is required to maintain proliferation in the CMZ and that hyperstimulation of β-catenin/Wnt signaling inhibits normal retinal differentiation and expands the population of proliferative retinal progenitors. To test whether similar effects occur during regeneration, we developed a method for making rapid, selective photoreceptor ablations in larval zebrafish with intense light. We found that dephosphorylated β-catenin accumulates in Müller glia as they re-enter the cell cycle following injury, but not in Müller glia that remain quiescent. Activation of Wnt signaling is required for regenerative proliferation, and hyperstimulation results in loss of Müller glia from the INL as all proliferative cells move into the ONL. Conclusions β-catenin/Wnt signaling is thus required for the maintenance of retinal progenitors during both initial development and lesion-induced regeneration, and is sufficient to prevent differentiation of those progenitors and maintain them in a proliferative state. This suggests that the β-catenin/Wnt cascade is part of the shared molecular circuitry that

  8. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Relevance of Wnt10b and activation of β-catenin/GCMa/syncytin-1 pathway in BeWo cell fusion.

    Science.gov (United States)

    Malhotra, Sudha Saryu; Banerjee, Priyanka; Chaudhary, Piyush; Pal, Rahul; Gupta, Satish Kumar

    2017-10-01

    To study the involvement of specific Wnt(s) ligand during trophoblastic BeWo cell differentiation. BeWo cells on treatment with forskolin/human chorionic gonadotropin (hCG) were studied for cell fusion by desmoplakin I+II staining and/or hCG secretion by ELISA. Levels of Wnt10b/β-catenin/glial cell missing a (GCMa)/syncytin-1 were studied by qPCR/Western blotting in forskolin-/hCG-treated control siRNA and Wnt10b silenced BeWo cells. BeWo cells on treatment with hCG (5 IU/mL) led to a 94-fold increase in Wnt10b transcript. Wnt10b silencing showed significant decrease in forskolin-/hCG-mediated BeWo cell fusion and/or hCG secretion. It led to down-regulation of β-catenin (nuclear and cytoplasmic), GCMa and syncytin-1 expression. Treatment of BeWo cells with H89, protein kinase A (PKA) signaling inhibitor, significantly reduced forskolin-/hCG-induced Wnt10b, β-catenin, and syncytin-1 expression, which also resulted in reduced cell fusion. Wnt10b is involved in forskolin/hCG-mediated BeWo cell fusion via β-catenin/GCMa/syncytin pathway, which may also involve activation of PKA. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The vitamin D receptor is required for activation of cWnt and hedgehog signaling in keratinocytes.

    Science.gov (United States)

    Lisse, Thomas S; Saini, Vaibhav; Zhao, Hengguang; Luderer, Hilary F; Gori, Francesca; Demay, Marie B

    2014-10-01

    Alopecia (hair loss) in vitamin D receptor (VDR)-null mice is due to absence of ligand-independent actions of the VDR that are required for initiation of postmorphogenic hair cycles. Investigations were undertaken to determine whether the VDR is required for the induction of signaling pathways that play an important role in this process. The induction of cWnt and hedgehog target genes that characterizes early anagen was found to be dramatically attenuated in VDR(-/-) mice, relative to wild-type (WT) mice. To determine whether this reflects impaired responsiveness to cWnt ligands, in vitro studies were performed in primary keratinocytes. These studies demonstrated impaired induction of cWnt target genes in response to Wnt3a in VDR(-/-) keratinocytes, relative to wild-type keratinocytes. Chromatin immunoprecipitation analyses revealed that the VDR was recruited to the regulatory regions of cWnt and hedgehog target genes in WT keratinocytes but not in VDR(-/-) or Lef1(-/-) keratinocytes. Lef1 was enriched on these same regulatory regions in WT keratinocytes but not in VDR(-/-) keratinocytes. In vivo studies were performed to determine whether activation of the hedgehog pathway could bypass the defect in cWnt signaling observed in the absence of the unliganded VDR. In WT, but not VDR(-/-), mice, hedgehog agonist treatment resulted in an induction of cWnt and hedgehog target genes and the generation of mature anagen hair follicles. Thus, these studies demonstrate that the unliganded VDR interacts with regulatory regions in the cWnt and hedgehog target genes and is required for the induction of these pathways during the postnatal hair cycle.

  11. The human PKP2/plakophilin-2 gene is induced by Wnt/β-catenin in normal and colon cancer-associated fibroblasts.

    Science.gov (United States)

    Niell, Núria; Larriba, María Jesús; Ferrer-Mayorga, Gemma; Sánchez-Pérez, Isabel; Cantero, Ramón; Real, Francisco X; Del Peso, Luis; Muñoz, Alberto; González-Sancho, José Manuel

    2018-02-15

    Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/β-catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD-18Co cells. A set of genes encoding inhibitors of the Wnt/β-catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin-2 is a novel direct transcriptional target of Wnt/β-catenin in normal and colon cancer-associated fibroblasts. PKP2 is induced by β-catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin-2 antagonizes Wnt/β-catenin transcriptional activity in HEK-293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/β-catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin-2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  12. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  13. Wnt5a and Wnt11 are essential for second heart field progenitor development

    OpenAIRE

    Cohen, Ethan David; Miller, Mayumi F.; Wang, Zichao; Moon, Randall T.; Morrisey, Edward E.

    2012-01-01

    Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflectin...

  14. Evaluation of expression of the Wnt signaling components in canine mammary tumors via RT2 Profiler PCR Array and immunochemistry assays.

    Science.gov (United States)

    Yu, Fang; Rasotto, Roberta; Zhang, Hong; Pei, Shimin; Zhou, Bin; Yang, Xu; Jin, Yipeng; Zhang, Di; Lin, Degui

    2017-09-30

    The Wnt signaling pathway and its key component β-catenin have critical roles in the development of diseases such as tumors in mammals. However, little has been reported about involvement of the Wnt/β-catenin signaling pathway in canine mammary tumors (CMTs). The present study detected expression of 30 Wnt signaling pathway-related genes in CMTs; the results are potentially useful for molecular-based diagnosis of CMTs and the development of new targeted therapies. Significant upregulations of dickkopf-1 protein, secreted frizzled-related sequence protein 1 (SFRP1), frizzled 3, β-catenin, and lymphoid enhancer-binding factor 1 (LEF1) were detected in highly malignant CMTs compared to levels in normal mammary gland tissues; moreover, highly significant upregulation of WNT5A was observed in low malignancy CMTs. Downregulation was only detected for SFRP4 in malignant CMT samples. The subcellular location of β-catenin and cyclin D1 in 100 CMT samples was investigated via immunohistochemical analysis, and significantly increased expressions of β-catenin in cytoplasm and cyclin D1 in nuclei were revealed. Western blotting analysis revealed that the expression of β-catenin and LEF1 increased in in the majority of CMT samples. Taken together, the results provide important evidence of the activation status of the Wnt pathway in CMTs and valuable clues to identifying biomarkers for molecular-based diagnosis of CMT.

  15. Probing the canonicity of the Wnt/Wingless signaling pathway.

    Directory of Open Access Journals (Sweden)

    Alexandra Franz

    2017-04-01

    Full Text Available The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin and Pangolin (Pan, Drosophila TCF in the Wnt/Wingless(Wg-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system.

  16. Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Folke, Jonas; Pakkenberg, Bente; Brudek, Tomasz

    2018-01-01

    Wnt pathway is involved in synaptic plasticity and neuronal survival, and alterations in Wnt signaling have previously been reported both in aging and neurodegenerative diseases, including Alzheimer's disease (AD). This study sought to evaluate Wnt signaling pathway interplay integrity across......, in addition to downstream effects associated with disease progression and cognitive decline. This study is the first that comprehensively evaluates Wnt signaling pathway in the prefrontal cortical lobe structures of AD brains, in relation to age-related coordinated Wnt signaling changes. Our findings further...

  17. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Jessica C. Kling

    2018-03-01

    Full Text Available Natural killer T (NKT cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs. It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls, to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal

  18. Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling.

    Science.gov (United States)

    Kling, Jessica C; Jordan, Margaret A; Pitt, Lauren A; Meiners, Jana; Thanh-Tran, Thao; Tran, Le Son; Nguyen, Tam T K; Mittal, Deepak; Villani, Rehan; Steptoe, Raymond J; Khosrotehrani, Kiarash; Berzins, Stuart P; Baxter, Alan G; Godfrey, Dale I; Blumenthal, Antje

    2018-01-01

    Natural killer T (NKT) cells are prominent innate-like lymphocytes in the liver with critical roles in immune responses during infection, cancer, and autoimmunity. Interferon gamma (IFN-γ) and IL-4 are key cytokines rapidly produced by NKT cells upon recognition of glycolipid antigens presented by antigen-presenting cells (APCs). It has previously been reported that the transcriptional coactivator β-catenin regulates NKT cell differentiation and functionally biases NKT cell responses toward IL-4, at the expense of IFN-γ production. β-Catenin is not only a central effector of Wnt signaling but also contributes to other signaling networks. It is currently unknown whether Wnt ligands regulate NKT cell functions. We thus investigated how Wnt ligands and β-catenin activity shape liver NKT cell functions in vivo in response to the glycolipid antigen, α-galactosylceramide (α-GalCer) using a mouse model. Pharmacologic targeting of β-catenin activity with ICG001, as well as myeloid-specific genetic ablation of Wntless (Wls) , to specifically target Wnt protein release by APCs, enhanced early IFN-γ responses. By contrast, within several hours of α-GalCer challenge, myeloid-specific Wls deficiency, as well as pharmacologic targeting of Wnt release using the small molecule inhibitor IWP-2 impaired α-GalCer-induced IFN-γ responses, independent of β-catenin activity. These data suggest that myeloid cell-derived Wnt ligands drive early Wnt/β-catenin signaling that curbs IFN-γ responses, but that, subsequently, Wnt ligands sustain IFN-γ expression independent of β-catenin activity. Our analyses in ICG001-treated mice confirmed a role for β-catenin activity in driving early IL-4 responses by liver NKT cells. However, neither pharmacologic nor genetic perturbation of Wnt production affected the IL-4 response, suggesting that IL-4 production by NKT cells in response to α-GalCer is not driven by released Wnt ligands. Collectively, these data reveal complex temporal

  19. Wnt5a regulates midbrain dopaminergic axon growth and guidance.

    Directory of Open Access Journals (Sweden)

    Brette D Blakely

    2011-03-01

    Full Text Available During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM the cues that guide dopaminergic (DA axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway. Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.

  20. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    2007-11-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  1. Tiam1 Regulates the Wnt/Dvl/Rac1 Signaling Pathway and the Differentiation of Midbrain Dopaminergic Neurons

    Science.gov (United States)

    Čajánek, Lukáš; Ganji, Ranjani Sri; Henriques-Oliveira, Catarina; Theofilopoulos, Spyridon; Koník, Peter

    2013-01-01

    Understanding the mechanisms that drive the differentiation of dopaminergic (DA) neurons is crucial for successful development of novel therapies for Parkinson's disease, in which DA neurons progressively degenerate. However, the mechanisms underlying the differentiation-promoting effects of Wnt5a on DA precursors are poorly understood. Here, we present the molecular and functional characterization of a signaling pathway downstream of Wnt5a, the Wnt/Dvl/Rac1 pathway. First, we characterize the interaction between Rac1 and Dvl and identify the N-terminal part of Dvl3 as necessary for Rac1 binding. Next, we show that Tiam1, a Rac1 guanosine exchange factor (GEF), is expressed in the ventral midbrain, interacts with Dvl, facilitates Dvl-Rac1 interaction, and is required for Dvl- or Wnt5a-induced activation of Rac1. Moreover, we show that Wnt5a promotes whereas casein kinase 1 (CK1), a negative regulator of the Wnt/Dvl/Rac1 pathway, abolishes the interactions between Dvl and Tiam1. Finally, using ventral midbrain neurosphere cultures, we demonstrate that the generation of DA neurons in culture is impaired after Tiam1 knockdown, indicating that Tiam1 is required for midbrain DA differentiation. In summary, our data identify Tiam1 as a novel regulator of DA neuron development and as a Dvl-associated and Rac1-specific GEF acting in the Wnt/Dvl/Rac1 pathway. PMID:23109420

  2. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  3. Deficiency in LRP6-Mediated Wnt Signaling Contributes to Synaptic Abnormalities and Amyloid Pathology in Alzheimer’s Disease

    OpenAIRE

    Liu, Chia-Chen; Tsai, Chih-Wei; Deak, Ferenc; Rogers, Justin; Penuliar, Michael; Sung, You Me; Maher, James N.; Fu, Yuan; Li, Xia; Xu, Huaxi; Estus, Steven; Hoe, Hyang-Sook; Fryer, John D.; Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Alzheimer’s disease (AD) is an age-related neurological disorder characterized by synaptic loss and dementia. The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential co-receptor for Wnt signaling and its genetic variants have been linked to AD risk. Here we report that neuronal LRP6-mediated Wnt signaling is critical for synaptic function and cognition. Conditional deletion of Lrp6 gene in mouse forebrain neurons leads to age-dependent deficits in synaptic integrity and ...

  4. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    2013-01-01

    Full Text Available RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation. Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC, has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for

  5. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    Science.gov (United States)

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit

  6. Boehmenan, a lignan from Hibiscus ficulneus, showed Wnt signal inhibitory activity.

    Science.gov (United States)

    Shono, Takumi; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Ahmed, Firoj; Sadhu, Samir K; Ishibashi, Masami

    2015-07-15

    The Wnt signal pathway modulates numerous biological processes, and its aberrant activation is related to various diseases. Therefore, inhibition of the Wnt signal may provide an effective (or efficient) strategy for these diseases. Cell-based luciferase assay targeting the Wnt signal (TOP assay) revealed that Hibiscus ficulneus extract inhibited the Wnt signal. The activity-guided isolation of the MeOH extract of H. ficulneus stems yielded four known (1-4) lignans along with myriceric acid (5). Compounds 1-4 potently inhibited the Wnt signal with TOPflash IC50 values of 1.0, 4.5, 6.3, and 1.9 μM, respectively. Compound 1 exhibited cytotoxicity against both Wnt-dependent (HCT116) and Wnt-independent (RKO) cells. Western blot analysis showed that 1 decreased the expression of full, cytosolic and nuclear β-catenin along with c-myc in STF/293 cells. Our results suggested that 1 may have inhibited the Wnt signal by decreasing β-catenin levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies

    Science.gov (United States)

    Yang, Ke; Wang, Xin; Zhang, Hongmei; Wang, Zhongliang; Nan, Guoxin; Li, Yasha; Zhang, Fugui; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Bi, Yang; He, Tong-Chuan

    2015-01-01

    The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the ‘destruction complex’, consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of crosstalk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway. PMID:26618721

  8. Secreted Wnt antagonists in leukemia: A road yet to be paved.

    Science.gov (United States)

    Pehlivan, Melek; Çalışkan, Ceyda; Yüce, Zeynep; Sercan, Hakki Ogun

    2018-03-28

    Wnt signaling has been a topic of research for many years for its diverse and fundamental functions in physiological (such as embryogenesis, organogenesis, proliferation, tissue repair and cellular differentiation) and pathological (carcinogenesis, congenital/genetic diseases, and tissue degeneration) processes. Wnt signaling pathway aberrations are associated with both solid tumors and hematological malignancies. Unregulated Wnt signaling observed in malignancies may be due to a wide spectrum of abnormalities, from mutations in the genes of key players to epigenetic modifications of Wnt antagonists. Of these, Wnt antagonists are gaining significant attention for their potential of being targets for treatment and inhibition of Wnt signaling. In this review, we discuss and summarize the significance of Wnt signaling antagonists in the pathogenesis and treatment of hematological malignancies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Genotype-phenotype analysis of a rare type of osteogenesis imperfecta in four Chinese families with WNT1 mutations.

    Science.gov (United States)

    Liu, Yi; Song, Lijie; Ma, Doudou; Lv, Fang; Xu, Xiaojie; Wang, Jianyi; Xia, Weibo; Jiang, Yan; Wang, Ou; Song, Yuwen; Xing, Xiaoping; Asan; Li, Mei

    2016-10-01

    Osteogenesis imperfecta (OI) is a rare inherited disease characterized by increased bone fragility and vulnerability to fractures. Recently, WNT1 is identified as a new candidate gene for OI, here we detect pathogenic mutations in WNT1 and analyze the genotype-phenotype association in four Chinese families with OI. We designed a targeted next generation sequencing panel with known fourteen OI-related genes. We applied the approach to detect pathogenic mutations in OI patients and confirmed the mutations with Sanger sequencing and cosegregation analysis. Clinical fractures, bone mineral density (BMD) and the other clinical manifestations were evaluated. We also observed the effects of bisphosphonates in OI patients with WNT1 mutations. Four compound heterozygous mutations (c.110T>C; c.505 G>T; c. 385G>A; c.506 G>A) in WNT1 were detected in three unrelated families. These four mutations had not been reported yet. A recurrent homozygous mutation (c.506dupG) was identified in the other two families. These patients had moderate to severe OI, white to blue sclera, absence of dentinogenesis imperfecta and no brain malformation. We did not observe clear genotype-phenotype correlation in WNT1 mutated OI patients. Though bisphosphonates increased BMD in WNT1 related OI patients, height did not increase and fracture continued. We reported four novel heterozygous variants and confirmed a previous reported WNT1 mutation in four Chinese families with a clinical diagnosis of OI. Our study expanded OI spectrum and confirmed moderate to severe bone fragility induced by WNT1 defects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  11. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Briolay, A. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lencel, P. [Physiopathology of Inflammatory Bone Diseases, EA4490, ULCO. Quai Masset, Bassin Napoléon BP120, 62327 Boulogne/Mer (France); Bessueille, L. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Caverzasio, J. [Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14 (Switzerland); Buchet, R. [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Magne, D., E-mail: david.magne@univ-lyon1.fr [ICBMS, UMR CNRS 5246, University of Lyon 1, Bâtiment Raulin, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France)

    2013-01-18

    Highlights: ► Ankylosing spondylitis (AS) leads to bone fusions and ankylosis. ► TNF-α stimulates osteoblasts through growth factors in AS. ► We compare the involvement of canonical vs non-canonical Wnt signaling. ► Canonical Wnt signaling is not involved in TNF-α effects in differentiating hMSCs. ► TNF-α stimulates osteoblasts through Wnt5a autocrine secretion in hMSCs. -- Abstract: Although anti-tumor necrosis factor (TNF)-α treatments efficiently block inflammation in ankylosing spondylitis (AS), they are inefficient to prevent excessive bone formation. In AS, ossification seems more prone to develop in sites where inflammation has resolved following anti-TNF therapy, suggesting that TNF-α indirectly stimulates ossification. In this context, our objectives were to determine and compare the involvement of Wnt proteins, which are potent growth factors of bone formation, in the effects of TNF-α on osteoblast function. In human mesenchymal stem cells (MSCs), TNF-α significantly increased the levels of Wnt10b and Wnt5a. Associated with this effect, TNF-α stimulated tissue-non specific alkaline phosphatase (TNAP) and mineralization. This effect was mimicked by activation of the canonical β-catenin pathway with either anti-Dkk1 antibodies, lithium chloride (LiCl) or SB216763. TNF-α reduced, and activation of β-catenin had little effect on expression of osteocalcin, a late marker of osteoblast differentiation. Surprisingly, TNF-α failed to stabilize β-catenin and Dkk1 did not inhibit TNF-α effects. In fact, Dkk1 expression was also enhanced in response to TNF-α, perhaps explaining why canonical signaling by Wnt10b was not activated by TNF-α. However, we found that Wnt5a also stimulated TNAP in MSCs cultured in osteogenic conditions, and increased the levels of inflammatory markers such as COX-2. Interestingly, treatment with anti-Wnt5a antibodies reduced endogenous TNAP expression and activity. Collectively, these data suggest that increased

  12. Nitric Oxide Mediates Crosstalk between Interleukin 1β and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression.

    Science.gov (United States)

    Zhong, Leilei; Schivo, Stefano; Huang, Xiaobin; Leijten, Jeroen; Karperien, Marcel; Post, Janine N

    2017-11-22

    Interleukin 1 beta (IL1β) and Wingless-Type MMTV Integration Site Family (WNT) signaling are major players in Osteoarthritis (OA) pathogenesis. Despite having a large functional overlap in OA onset and development, the mechanism of IL1β and WNT crosstalk has remained largely unknown. In this study, we have used a combination of computational modeling and molecular biology to reveal direct or indirect crosstalk between these pathways. Specifically, we revealed a mechanism by which IL1β upregulates WNT signaling via downregulating WNT antagonists, DKK1 and FRZB. In human chondrocytes, IL1β decreased the expression of Dickkopf-1 (DKK1) and Frizzled related protein (FRZB) through upregulation of nitric oxide synthase (iNOS), thereby activating the transcription of WNT target genes. This effect could be reversed by iNOS inhibitor 1400W, which restored DKK1 and FRZB expression and their inhibitory effect on WNT signaling. In addition, 1400W also inhibited both the matrix metalloproteinase (MMP) expression and cytokine-induced apoptosis. We concluded that iNOS/NO play a pivotal role in the inflammatory response of human OA through indirect upregulation of WNT signaling. Blocking NO production may inhibit the loss of the articular phenotype in OA by preventing downregulation of the expression of DKK1 and FRZB.

  13. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells.

    Science.gov (United States)

    Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V

    2012-03-30

    Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results

  14. Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway

    OpenAIRE

    Zhang, Hao; Singh, Rajesh R.; Talukder, Amjad H.; Kumar, Rakesh

    2006-01-01

    Here we show that expression of MTA3 inhibits ductal branching in virgin and pregnant murine transgenic mammary glands. MTA3 also suppresses the Wnt4 pathway and, thus, these findings parallel phenotypic changes in Wnt4-null mice. MTA3 represses Wnt4 transcription and Wnt4 secretion, inhibiting Wnt-target genes in mammary epithelial cells. Accordingly, knockdown of endogenous MTA3 stimulates Wnt4 expression and Wnt cellular targets. The MTA3–NuRD (nucleosome remodeling and deacetylase) comple...

  15. Wnt Signalling in Gastrointestinal Epithelial Stem Cells

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2018-03-01

    Full Text Available Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.

  16. CTHRC1 Acts as a Prognostic Factor and Promotes Invasiveness of Gastrointestinal Stromal Tumors by Activating Wnt/PCP-Rho Signaling

    Directory of Open Access Journals (Sweden)

    Ming-Ze Ma

    2014-03-01

    Full Text Available Gastrointestinal stromal tumors (GISTs are the major gastrointestinal mesenchymal tumors with a variable malignancy ranging from a curable disorder to highly malignant sarcomas. Metastasis and recurrence are the main causes of death in GIST patients. To further explore the mechanism of metastasis and to more accurately estimate the recurrence risk of GISTs after surgery, the clinical significance and functional role of collagen triple helix repeat containing-1 (CTHRC1 in GIST were investigated. We found that CTHRC1 expression was gradually elevated as the risk grade of NIH classification increased, and was closely correlated with disease-free survival and overall survival in 412 GIST patients. In vitro experiments showed that recombinant CTHRC1 protein promoted the migration and invasion capacities of primary GIST cells. A luciferase reporter assay and pull down assay demonstrated that recombinant CTHRC1 protein activated noncanonical Wnt/PCP-Rho signaling but inhibited canonical Wnt signaling. The pro-motility effect of CTHRC1 on GIST cells was reversed by using a Wnt5a neutralizing antibody and inhibitors of Rac1 or ROCK. Taken together, these data indicate that CTHRC1 may serve as a new predictor of recurrence risk and prognosis in post-operative GIST patients and may play an important role in facilitating GIST progression. Furthermore, CTHRC1 promotes GIST cell migration and invasion by activating Wnt/PCP-Rho signaling, suggesting that the CTHRC1-Wnt/PCP-Rho axis may be a new therapeutic target for interventions against GIST invasion and metastasis.

  17. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  18. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sylvie Maubant

    Full Text Available The canonical Wnt/β-catenin pathway is activated in triple-negative breast cancer (TNBC. The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change > 1.3 of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGFβ, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change >1.3 which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors.

  19. The Wnt Signaling Landscape of Mammary Stem Cells and Breast Tumors.

    Science.gov (United States)

    Alexander, Caroline M

    2018-01-01

    Attention has been focused on Wnt signaling in the mouse mammary gland for several decades, firstly by the discovery of several Wnt loci among the oncogenes revealed by MMTV-based insertional mutagenesis screening of mouse mammary gland, and then by the remarkable visualization of Wnt-dependent specification of mammary placodes in embryonic skin. This review aims to summarize the impact of recent data for our understanding of the roles of Wnt signaling in these roles. The amount and identity of both familiar and novel Wnt signaling components is examined for mouse mammary epithelial cells. The hierarchical arrangement of mammary epithelial cell progenitors and stem cells inferred from the study of isolated cells is reinterpreted in an era that has demonstrated almost limitless cellular plasticity. Functional definitions of stem and progenitor activities are reevaluated with the discovery of novel stem cell activities and regulators, and we draw parallels with the arrangement of replication-competent cells in other tissues. Although Wnt signaling is highly oncogenic for mouse mammary epithelia, the data supporting Wnt signaling as a tumor driver for human breast cancer are still flimsy, and there is little support for the recruitment of normal Wnt-dependent breast stem cells as tumor precursor cells for either mouse or human. We discuss possible explanations for this paradox and questions still unanswered, including the potential impact of recent discoveries of Wnt-secreting microenvironments, oncogenic changes in the Rspo/Lgr/Ubiquitin ligase amplifier complex, as they could apply to breast tissues, and the feedback suppression of Wnt signaling that characterizes its developmental activity and may hide Wnt signatures in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Novel Mutation of LRP6 Identified in Chinese Han Population Links Canonical WNT Signaling to Neural Tube Defects.

    Science.gov (United States)

    Shi, Zhiwen; Yang, Xueyan; Li, Bin-Bin; Chen, Shuxia; Yang, Luming; Cheng, Liangping; Zhang, Ting; Wang, Hongyan; Zheng, Yufang

    2018-01-15

    Neural tube defects (NTDs), the second most frequent cause of human congenital abnormalities, are debilitating birth defects due to failure of neural tube closure. It has been shown that noncanonical WNT/planar cell polarity (PCP) signaling is required for convergent extension (CE), the initiation step of neural tube closure (NTC). But the effect of canonical WNT//β-catenin signaling during NTC is still elusive. LRP6 (low density lipoprotein receptor related proteins 6) was identified as a co-receptor for WNT/β-catenin signaling, but recent studies showed that it also can mediate WNT/PCP signaling. In this study, we screened mutations in the LRP6 gene in 343 NTDs and 215 ethnically matched normal controls of Chinese Han population. Three rare missense mutations (c.1514A>G, p.Y505C); c.2984A>G, p.D995G; and c.4280C>A, p.P1427Q) of the LRP6 gene were identified in Chinese NTD patients. The Y505C mutation is a loss-of-function mutation on both WNT/β-catenin and PCP signaling. The D995G mutation only partially lost inhibition on PCP signaling without affecting WNT/β-catenin signaling. The P1427Q mutation dramatically increased WNT/β-catenin signaling but only mildly loss of inhibition on PCP signaling. All three mutations failed to rescue CE defects caused by lrp6 morpholino oligos knockdown in zebrafish. Of interest, when overexpressed, D995G did not induce any defects, but Y505C and P1427Q caused more severe CE defects in zebrafish. Our results suggested that over-active canonical WNT signaling induced by gain-of-function mutation in LRP6 could also contribute to human NTDs, and a balanced WNT/β-catenin and PCP signaling is probably required for proper neural tube development. Birth Defects Research 110:63-71, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Activation of the Wnt/β-catenin pathway in pancreatic beta cells during the compensatory islet hyperplasia in prediabetic mice

    International Nuclear Information System (INIS)

    Maschio, D.A.; Oliveira, R.B.; Santos, M.R.; Carvalho, C.P.F.; Barbosa-Sampaio, H.C.L.; Collares-Buzato, C.B.

    2016-01-01

    The Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, plays a role in cell proliferation and differentiation in several tissues/organs. It has been recently described in humans a relationship between type 2 diabetes (T2DM) and mutation in the gene encoding the transcription factor TCF7L2 associated to the Wnt/β-catenin pathway. In the present study, we demonstrated that hyperplastic pancreatic islets from prediabetic mice fed a high-fat diet (HFD) for 60 d displayed nuclear translocation of active β-catenin associated with significant increases in protein content and gene expression of β-catenin as well as of cyclins D1, D2 and c-Myc (target genes of the Wnt pathway) but not of Tcf7l2 (the transcription factor). Meanwhile, these alterations were not observed in pancreatic islets from 30 d HFD-fed mice, that do not display significant beta cell hyperplasia. These data suggest that the Wnt/β-catenin pathway is activated in pancreatic islets during prediabetes and may play a role in the induction of the compensatory beta cell hyperplasia observed at early phase of T2DM. - Highlights: • Exposure to high-fat diet for 60 days induced prediabetes and beta cell mass expansion. • Hyperplastic pancreatic islets displayed nuclear translocation of active β-catenin. • Hyperplastic islets showed increased expression of target genes of the Wnt/β-catenin pathway. • Wnt/β-catenin pathway is activated during compensatory beta cell hyperplasia in mice.

  2. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Xiaoyan Jiao

    2017-12-01

    Full Text Available Background/Aims: Cisplatin-induced acute kidney injury (AKI involves damage to tubular cells via excess reactive oxygen species (ROS generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC-derived conditioned medium (CM against cisplatin-induced AKI. Methods: In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. Results: CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data

  3. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury.

    Science.gov (United States)

    Jiao, Xiaoyan; Cai, Jieru; Yu, Xiaofang; Ding, Xiaoqiang

    2017-01-01

    Cisplatin-induced acute kidney injury (AKI) involves damage to tubular cells via excess reactive oxygen species (ROS) generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived conditioned medium (CM) against cisplatin-induced AKI. In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data showed that the tubular β-catenin level was lower in

  4. Loss of FTO antagonises Wnt signaling and leads to developmental defects associated with ciliopathies.

    Directory of Open Access Journals (Sweden)

    Daniel P S Osborn

    Full Text Available Common intronic variants in the Human fat mass and obesity-associated gene (FTO are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish and in vitro (Fto(-/- MEFs and HEK293T. Canonical Wnt signalling is down regulated by abrogated β-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+ pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.

  5. Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Moriya, Kei; Nishiofuku, Mariko; Matsuda, Ryosuke; Ishizaka, Shigeaki

    2008-01-01

    Although Wnts are expressed in hair follicles throughout life from embryo to adult, and considered to be critical for their development and maturation, their roles remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, Wnt-5a, Wnt-10b, and Wnt-11) on epithelial cell differentiation using adult mouse-derived primary skin epithelial cell (MPSEC) cultures and hair growth using hair follicle organ cultures. Only Wnt-10b showed evident promotion of epithelial cell differentiation and hair shaft growth, in contrast to Wnt-3a, 5a, and 11. Our results suggest that Wnt-10b is unique and plays an important role in differentiation of epithelial cells in the hair follicle

  6. APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.

    Science.gov (United States)

    Saito-Diaz, Kenyi; Benchabane, Hassina; Tiwari, Ajit; Tian, Ai; Li, Bin; Thompson, Joshua J; Hyde, Annastasia S; Sawyer, Leah M; Jodoin, Jeanne N; Santos, Eduardo; Lee, Laura A; Coffey, Robert J; Beauchamp, R Daniel; Williams, Christopher S; Kenworthy, Anne K; Robbins, David J; Ahmed, Yashi; Lee, Ethan

    2018-03-12

    Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Role of LncRNA TUG1 in intervertebral disc degeneration and nucleus pulposus cells via regulating Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Chen, Jiang; Jia, Yu-Song; Liu, Gen-Zhe; Sun, Qi; Zhang, Fan; Ma, Sheng; Wang, Yong-Jun

    2017-09-23

    To investigate the role of TUG1 in intervertebral disc degeneration (IDD) and human nucleus pulposus cells (NPCs) via regulating Wnt/β-catenin pathway. The study collected nucleus pulposus (NP) tissue samples from 30 patients with lumbar disc herniation (LDH) (Case group) and 18 patients with lumbar spine trauma (Control group). NPCs induced by TNF-α in vitro were divided into Blank, Vector, TUG1, TUG1-siRNA, XAV-939, TUG1 + XAV-939 groups. qRT-PCR was used to detect the expression of TUG1 and ECM-related genes, Western blot to determine the expression of Wnt/β-catenin pathway and apoptosis-related proteins, and ELISA to measure the expression of ECM-related proteins. The apoptosis was detected by TUNEL and Annexin V-FITC/PI double-staining. The proliferation and senescence were tested by CCK-8 and SA-β-gal staining respectively. TUG1 was upregulated in patients with IDD, which was positively related to Wnt and β-catenin. Besides, TUG1, Wnt1 and β-catenin were greatly increased in the NPCs after TNF-α induction. Compared with the Blank group, TUG1-siRNA and XAV-939 can appreciably down-regulate the expressions of Wnt1, β-catenin, Caspase-3, Bax, MMP3 and ADAMTS5, up-regulate the expression of Bcl-2, Aggrecan and COL2A1, inhibit the apoptosis and senescence, and promote cell proliferation; however, the TUG1 group had the completely opposite results. Silencing TUG1 may not only protect human NPCs from TNF-α-induced apoptosis and senescence, but also promote cell proliferation by blocking Wnt/β-catenin pathway, which provides a theoretical basis for the clinical treatment of IDD. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)

    2012-11-16

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  9. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis.

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2017-10-27

    Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.

  10. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/β-catenin signaling pathway in HCT116 cells

    International Nuclear Information System (INIS)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju; Kim, Chul Young; Nho, Chu Won

    2012-01-01

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/β-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: ► Gomisins J and N inhibited Wnt/β-catenin signaling pathway in HCT116 cells. ► Gomisins J and N disrupted the binding of β-catenin to specific DNA sequences, TBE. ► Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. ► Gomisins J and N inhibited the expression of Cyc D1, a Wnt/β-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/β-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/β-catenin signaling by disrupting the interaction between β-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the β-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/β-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/β-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  11. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells.

    Science.gov (United States)

    Ye, Jun; Liu, Shanxi; Shang, Yangyang; Chen, Haoyuan; Wang, Rongquan

    2018-06-25

    The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133 + CD44 + CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133 + CD44 + CRC population, but not in the CD133 - CD44 - CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133 + CD44 + or CRC CD133 - CD44 - populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133 + CD44 + CRC population, thus conferring their self-renewal.

  12. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  13. VDR Activation Reduces Proteinuria and High-Glucose-Induced Injury of Kidneys and Podocytes by Regulating Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-08-01

    Full Text Available Background: Diabetic nephropathy (DN is a major cause of end-stage renal disease and proteinuria is one of the most prominent clinical manifestations. The expression of Vitamin D receptor (VDR in patients with chronic kidney diseases was decreased, while VDR agonists could partially alleviate the proteinuria of DN in animal models. The present study was designed to determine the expression of VDR in renal tissues and its relationship with proteinuria the diabetic model db/db mice. Methods: The regulation effects of VDR on the Wnt signaling pathway were analyzed using RNA interference and VDR agonist paricalcitol. Results: With the increase in age of the db/db mice, the VDR protein and mRNA levels in renal tissues were decreased, proteinuria increased, and the protein and mRNA levels of GSK-3β of and β-catenin increased. Paricalcitol treatment resulted in the up-regulation of VDR and down-regulation of GSK-3β and β-catenin, indicating that VDR had a regulatory effect on the Wnt signaling pathway. Conclusion: VDR activation could reduce proteinuria of DN mice and alleviate high-glucose-induced injury of kidneys and podocytes by regulating the key molecules of Wnt signaling pathway.

  14. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials

    Directory of Open Access Journals (Sweden)

    Benjamin Lu

    2016-09-01

    Full Text Available The Wnt signaling pathway is intricately involved in many aspects of development and is the root cause of an increasing number of diseases. For example, colorectal cancer is the second leading cause of death in the industrialized world and aberration of Wnt signaling within the colonic stem cell is the cause of more than 90% of these cancers. Despite our advances in successfully targeting other pathways, such as Human Epidermal Growth Factor Receptor 2 (HER2, there are no clinically relevant therapies available for Wnt-related diseases. Here, we investigated where research activities are focused with respect to Wnt signaling modulators by searching the United States Patent and Trade Office (USPTO for patents and patent applications related to Wnt modulators and compared this to clinical trials focusing on Wnt modulation. We found that while the transition of intellectual property surrounding the Wnt ligand-receptor interface to clinical trials is robust, this is not true for specific inhibitors of β-catenin, which is constitutively active in many cancers. Considering the ubiquitous use of the synthetic T-cell Factor/Lymphoid Enhancer Factor (TCF/Lef reporter system and its success in identifying novel modulators in vitro, we speculate that this model of drug discovery does not capture the complexity of in vivo Wnt signaling that may be required if we are to successfully target the Wnt pathway in the clinic. Notwithstanding, increasingly more complex models are being developed, which may not be high throughput, but more pragmatic in our pursuit to control Wnt signaling.

  15. Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium.

    Science.gov (United States)

    Potla, Ratnakar; Tulapurkar, Mohan E; Luzina, Irina G; Atamas, Sergei P; Singh, Ishwar S; Hasday, Jeffrey D

    2018-02-01

    As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).

  16. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  17. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer.

    Science.gov (United States)

    Bernard, Pascal; Ryan, Janelle; Sim, Helena; Czech, Daniel P; Sinclair, Andrew H; Koopman, Peter; Harley, Vincent R

    2012-02-01

    Genome analysis of patients with disorders of sex development, and gain- and loss-of-function studies in mice indicate that gonadal development is regulated by opposing signals. In females, the Wnt/β-catenin canonical pathway blocks testicular differentiation by repressing the expression of the Sertoli cell-specific gene Sox9 by an unknown mechanism. Using cell and embryonic gonad culture models, we show that activation of the Wnt/β-catenin pathway inhibits the expression of Sox9 and Amh, whereas mRNA and protein levels of Sry and steroidogenic factor 1 (Sf1), two key transcriptional regulators of Sox9, are not altered. Ectopic activation of Wnt/β-catenin signaling in male gonads led to a loss of Sf1 binding to the Tesco enhancer and absent Sox9 expression that we also observed in wild-type ovaries. Moreover, ectopic Wnt/β-catenin signaling induced the expression of the female somatic cell markers, Bmp2 and Rspo1, as a likely consequence of Sox9 loss. Wnt/β-catenin signaling in XY gonads did not, however, affect gene expression of the steroidogenic Leydig cell Sf1 target gene, Cyp11a1, or Sf1 binding to the Cyp11a1 promoter. Our data support a model in ovary development whereby activation of β-catenin prevents Sf1 binding to the Sox9 enhancer, thereby inhibiting Sox9 expression and Sertoli cell differentiation.

  18. Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells.

    Science.gov (United States)

    Schwab, Renate H M; Amin, Nancy; Flanagan, Dustin J; Johanson, Timothy M; Phesse, Toby J; Vincan, Elizabeth

    2018-03-01

    Metastasis underlies most colorectal cancer mortality. Cancer cells spread through the body as single cells or small clusters of cells that have an invasive, mesenchymal, nonproliferative phenotype. At the secondary site, they revert to a proliferative "tumor constructing" epithelial phenotype to rebuild a tumor. We previously developed a unique in vitro three-dimensional model, called LIM1863-Mph, which faithfully recapitulates these reversible transitions that underpin colorectal cancer metastasis. Wnt signaling plays a key role in these transitions and is initiated by the coupling of extracellular Wnt to Frizzled (FZD). Using the LIM1863-Mph model system we demonstrated that the Wnt receptor FZD7 is necessary for mesenchymal to epithelial transition (MET). Here we investigate the role of Wnt in MET. Wnt secretion is dependent on palmitoylation by Porcupine (PORC). A PORC inhibitor (IWP2) that prevents Wnt secretion, blocked the epithelial transition of mesenchymal LIM1863-Mph cells. Wnt gene array analysis identified several Wnts that are upregulated in epithelial compared with mesenchymal LIM1863-Mph cells, suggesting these ligands in MET. Wnt2B was the most abundant differentially expressed Wnt gene. Indeed, recombinant Wnt2B could overcome the IWP2-mediated block in epithelial transition of mesenchymal LIM1863-Mph cells. Wnt2B co-operates with Frizzled7 to mediate MET in colorectal cancer. Developmental Dynamics 247:521-530, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    International Nuclear Information System (INIS)

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-01-01

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage

  20. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Misu, Masayasu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kawai, Norikazu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nishimura, Fumihiko [Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakamura-Uchiyama, Fukumi [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  1. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    Science.gov (United States)

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  2. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM 1 81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  3. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  4. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  5. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.

    Science.gov (United States)

    Hübner, Kathleen; Grassme, Kathrin S; Rao, Jyoti; Wenke, Nina K; Zimmer, Cordula L; Korte, Laura; Mu Ller, Katja; Sumanas, Saulius; Greber, Boris; Herzog, Wiebke

    2017-10-01

    During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of β-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel β-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 BAC :Venus-Pest) mu288 ; Tg(14TCF:loxP-STOP-loxP-dGFP) mu202 ). We therefore can detect β-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of β-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis. Copyright © 2017. Published by Elsevier Inc.

  6. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  7. The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Prasuna Paluru

    2014-03-01

    Full Text Available The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41 + CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP. Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.

  8. Melatonin Inhibits Neural Cell Apoptosis and Promotes Locomotor Recovery via Activation of the Wnt/β-Catenin Signaling Pathway After Spinal Cord Injury.

    Science.gov (United States)

    Shen, Zhaoliang; Zhou, Zipeng; Gao, Shuang; Guo, Yue; Gao, Kai; Wang, Haoyu; Dang, Xiaoqian

    2017-08-01

    The spinal cord is highly sensitive to spinal cord injury (SCI) by external mechanical damage, resulting in irreversible neurological damage. Activation of the Wnt/β-catenin signaling pathway can effectively reduce apoptosis and protect against SCI. Melatonin, an indoleamine originally isolated from bovine pineal tissue, exerts neuroprotective effects after SCI through activation of the Wnt/β-catenin signaling pathway. In this study, we demonstrated that melatonin exhibited neuroprotective effects on neuronal apoptosis and supported functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. We found that melatonin administration after SCI significantly upregulated the expression of low-density lipoprotein receptor related protein 6 phosphorylation (p-LRP-6), lymphoid enhancer factor-1 (LEF-1) and β-catenin protein in the spinal cord. Melatonin enhanced motor neuronal survival in the spinal cord ventral horn and improved the locomotor functions of rats after SCI. Melatonin administration after SCI also reduced the expression levels of Bax and cleaved caspase-3 in the spinal cord and the proportion of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) positive cells, but increased the expression level of Bcl-2. These results suggest that melatonin attenuated SCI by activating the Wnt/β-catenin signaling pathway.

  9. The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Huang, Xiaobin; Zhong, Leilei; Hendriks, Jan; Post, Janine N; Karperien, Marcel

    2018-02-13

    Mesenchymal stem cells (MSCs) are multipotent cells, mainly from bone marrow, and an ideal source of cells in bone and cartilage tissue engineering. A study of the chondrogenic differentiation of MSCs is of particular interest for MSCs-based cartilage regeneration. In this study, we aimed to optimize the conditions for the chrondogenic differentiation of MSCs by regulating WNT signaling using the small molecule WNT inhibitor PKF118-310 and activator BIO. Human mesenchymal stem cells (hMSCs) were isolated from bone marrow aspirates and cultured in hMSCs proliferation medium. Pellet culture was subsequently established for three-dimensional chondrogenic differentiation of 5 weeks. WNT signaling was increased by the small molecule glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3-oxim (BIO) and decreased by the WNT inhibitor PKF118-310 (PKF). The effects of BIO and PKF on the chondrogenesis of hMSCs was examined by real-time PCR, histological methods, and ELISA. We found that activation of canonical WNT-signaling by BIO significantly downregulated the expression of cartilage-specific genes SOX9 , COL2A1, and ACAN , and matrix metalloproteinase genes MMP1/3/9/13, but increased ADAMTS 4/5 . Inhibition of WNT signaling by PKF increased the expression of SOX9 , COL2A1 , ACAN , and MMP9, but decreased MMP13 and ADAMTS4/5 . In addition, a high level of WNT signaling induced the expression of hypertrophic markers COL10A1, ALPL , and RUNX2, the dedifferentiation marker COL1A1 , and glycolysis genes GULT1 and PGK1 . Deposition of glycosaminoglycan (GAG) and collagen type II in the pellet matrix was significantly lost in the BIO-treated group and increased in the PKF-treated group. The protein level of COL10A1 was also highly induced in the BIO group. Interestingly, BIO decreased the number of apoptotic cells while PKF significantly induced apoptosis during chondrogenesis. The natural WNT antagonist DKK1 and the protein level of MMP1 in the pellet culture medium were

  10. The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaobin Huang

    2018-02-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent cells, mainly from bone marrow, and an ideal source of cells in bone and cartilage tissue engineering. A study of the chondrogenic differentiation of MSCs is of particular interest for MSCs-based cartilage regeneration. In this study, we aimed to optimize the conditions for the chrondogenic differentiation of MSCs by regulating WNT signaling using the small molecule WNT inhibitor PKF118-310 and activator BIO. Human mesenchymal stem cells (hMSCs were isolated from bone marrow aspirates and cultured in hMSCs proliferation medium. Pellet culture was subsequently established for three-dimensional chondrogenic differentiation of 5 weeks. WNT signaling was increased by the small molecule glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3-oxim (BIO and decreased by the WNT inhibitor PKF118-310 (PKF. The effects of BIO and PKF on the chondrogenesis of hMSCs was examined by real-time PCR, histological methods, and ELISA. We found that activation of canonical WNT-signaling by BIO significantly downregulated the expression of cartilage-specific genes SOX9, COL2A1, and ACAN, and matrix metalloproteinase genes MMP1/3/9/13, but increased ADAMTS 4/5. Inhibition of WNT signaling by PKF increased the expression of SOX9, COL2A1, ACAN, and MMP9, but decreased MMP13 and ADAMTS4/5. In addition, a high level of WNT signaling induced the expression of hypertrophic markers COL10A1, ALPL, and RUNX2, the dedifferentiation marker COL1A1, and glycolysis genes GULT1 and PGK1. Deposition of glycosaminoglycan (GAG and collagen type II in the pellet matrix was significantly lost in the BIO-treated group and increased in the PKF-treated group. The protein level of COL10A1 was also highly induced in the BIO group. Interestingly, BIO decreased the number of apoptotic cells while PKF significantly induced apoptosis during chondrogenesis. The natural WNT antagonist DKK1 and the protein level of MMP1 in the pellet culture medium were

  11. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.

    Science.gov (United States)

    Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T

    2016-10-18

    In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.

  12. miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation

    Directory of Open Access Journals (Sweden)

    Roberto De Gregorio

    2018-04-01

    Full Text Available Summary: The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons. : In this article, Bellenchi and colleagues show that the microRNA miR-34b/c is expressed in FACS-purified Pitx3-GFP+ neurons and promotes dopaminergic differentiation by negative modulating Wnt1 and the downstream WNT signaling pathway. Induced dopaminergic cells, expressing miR-34b/c, synthesize dopamine and show the electrophysiological properties featured by brain dopaminergic neurons. Keywords: microRNA, dopamine, mESC, miR34b/c, epiSC, transdifferentiation, Wnt1, Wnt pathway, reprogramming

  13. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    Directory of Open Access Journals (Sweden)

    Pluchino Stefano

    2011-07-01

    Full Text Available Abstract Background Dopamine-synthesizing (dopaminergic, DA neurons in the ventral midbrain (VM constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+ neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd

  14. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields

    Science.gov (United States)

    Mandal, Amrita; Holowiecki, Andrew; Song, Yuntao Charlie; Waxman, Joshua S.

    2017-01-01

    Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos. PMID:28087459

  15. Mitogen-Activated Protein Kinases Promote WNT/beta-Catenin Signaling via Phosphorylation of LRP6

    Czech Academy of Sciences Publication Activity Database

    Červenka, I.; Wolf, J.; Mašek, J.; Krejčí, Pavel; Wilcox, W. R.; Kozubík, Alois; Schulte, G.; Gutkind, J.S.; Bryja, Vítězslav

    2011-01-01

    Roč. 31, č. 1 (2011), s. 179-189 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GC204/09/J030 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : WNT RECEPTOR ACTIVATION * BETA-CATENIN * CORECEPTOR LRP6 Subject RIV: BO - Biophysics Impact factor: 5.527, year: 2011

  16. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    International Nuclear Information System (INIS)

    Fox, Simon A.; Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi; Bolitho, Erin M.; Mutsaers, Steven E.; Dharmarajan, Arun M.

    2013-01-01

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer

  17. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Simon A., E-mail: s.fox@curtin.edu.au [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Bolitho, Erin M. [Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA (Australia); Mutsaers, Steven E. [Lung Institute of Western Australia, Centre for Asthma Allergy and Respiratory Research, University of Western Australia, Nedlands (Australia); Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Western Australian Institute for Medical Research, Nedlands (Australia); Dharmarajan, Arun M. [School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia)

    2013-10-11

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.

  18. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Inestrosa, Nibaldo C

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative pathology characterized by aggregates of amyloid-β (Aβ) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD, mainly as a neuroprotective factor against Aβ toxicity and tau phosphorylation. However, dysfunction of Wnt/β-catenin signaling might also play a role in the onset and development of the disease. J20 APPswInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre-symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aβ 1-42 peptide levels, decreased Aβ42/Aβ40 ratio and Aβ 1-42 concentration in the cerebral spinal fluid, and high levels of soluble Aβ species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild-type (WT) mice, including behavioral impairment, tau phosphorylation, increased Aβ 1-42 in the hippocampus, decreased Aβ 1-42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's-like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD. Read the Editorial Highlight for this article on page 356. © 2017 International Society for Neurochemistry.

  19. Hsa-miR-11181 regulates Wnt signaling pathway through targeting of APC2 transcripts in SW480 cell line.

    Science.gov (United States)

    Dokanehiifard, Sadat; Soltani, Bahram M

    2018-01-30

    Wnt signaling plays important roles in differentiation, morphogenesis and development. This signaling pathway is highly regulated at all levels and microRNAs are small noncoding RNAs regulating Wnt signaling. Here, we intended to investigate hsa-miR-11181 (a novel miRNA located in TrkC gene) effect on Wnt signaling pathway in SW480 cell line. TOP/FOP flash assay indicated up-regulation of Wnt signaling, following the overexpression of hsa-miR-11181, verified through RT-qPCR. Bioinformatics analysis predicted APC1, APC2 and Axin1 might be targeted by hsa-miR-11181. Then, RT-qPCR analysis indicated that APC2 and Axin1 have been significantly down-regulated following the hsa-miR-11181 overexpression. However dual luciferase assay analysis supported only APC2 3'-UTR is directly targeted by this miRNA. Then, treatment of SW480 cells with Wnt-inhibitory small molecules supported the effect of hsa-miR-11181 at the inhibitory complex level containing APC2 protein. Consistently, viability of SW480 cells overexpressing hsa-miR-11181 was significantly elevated, measured through MTT assay. Overall, these results suggest that hsa-miR-11181 may play a crucial role in Wnt signaling regulation and confirmed that APC2 3'-UTR is targeted by hsa-miR-11181 and propose the presence of its recognition sites in the promoter or coding regions of Axin1 gene. Copyright © 2017. Published by Elsevier B.V.

  20. Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states.

    Science.gov (United States)

    Sulaiman, Andrew; McGarry, Sarah; Li, Li; Jia, Deyong; Ooi, Sarah; Addison, Christina; Dimitroulakos, Jim; Arnaout, Angel; Nessim, Carolyn; Yao, Zemin; Ji, Guang; Song, Haiyan; Gadde, Suresh; Li, Xuguang; Wang, Lisheng

    2018-04-01

    Triple-negative breast cancer (TNBC), the most refractory subtype of breast cancer to current treatments, accounts disproportionately for the majority of breast cancer-related deaths. This is largely due to cancer plasticity and the development of cancer stem cells (CSCs). Recently, distinct yet interconvertible mesenchymal-like and epithelial-like states have been revealed in breast CSCs. Thus, strategies capable of simultaneously inhibiting bulk and CSC populations in both mesenchymal and epithelial states have yet to be developed. Wnt/β-catenin and Hippo/YAP pathways are crucial in tumorigenesis, but importantly also possess tumor suppressor functions in certain contexts. One possibility is that TNBC cells in epithelial or mesenchymal state may differently affect Wnt/β-catenin and Hippo/YAP signaling and CSC phenotypes. In this report, we found that YAP signaling and CD44 high /CD24 -/low CSCs were upregulated while Wnt/β-catenin signaling and ALDH+ CSCs were downregulated in mesenchymal-like TNBC cells, and vice versa in their epithelial-like counterparts. Dual knockdown of YAP and Wnt/β-catenin, but neither alone, was required for effective suppression of both CD44 high /CD24 -/low and ALDH+ CSC populations in mesenchymal and epithelial TNBC cells. These observations were confirmed with cultured tumor fragments prepared from patients with TNBC after treatment with Wnt inhibitor ICG-001 and YAP inhibitor simvastatin. In addition, a clinical database showed that decreased gene expression of Wnt and YAP was positively correlated with decreased ALDH and CD44 expression in patients' samples while increased patient survival. Furthermore, tumor growth of TNBC cells in either epithelial or mesenchymal state was retarded, and both CD44 high /CD24 -/low and ALDH+ CSC subpopulations were diminished in a human xenograft model after dual administration of ICG-001 and simvastatin. Tumorigenicity was also hampered after secondary transplantation. These data suggest a new

  1. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  2. Epilepsy and the Wnt Signaling Pathway

    Science.gov (United States)

    2015-06-01

    forebrain development. The primary target is Wnt 8b, which is elevated in this period 4. Fox G1 is also genetically associated with infantile spasms 8...the Warburg effect’s role in non- cancerous tissues is largely unexplored. Second, in other diseases such as diabetes , Wnt signaling has emerged as...epilepsy and infantile spasms, we found that both mechanisms appeared to contribute. Two of the three genes came from our observation that several genes

  3. Making sense of Wnt signaling – linking hair cell regeneration to development

    Directory of Open Access Journals (Sweden)

    Lina eJansson

    2015-03-01

    Full Text Available Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.

  4. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  5. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    International Nuclear Information System (INIS)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-01-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  6. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  7. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells

    International Nuclear Information System (INIS)

    Liu, Yang; Han, Dong; Wang, Lei; Feng, Hailan

    2013-01-01

    Highlights: •Down-regulation of Wnt10a in dental mesenchymal cells impairs odontogenesis of reassociated tooth germs. •Dspp is down- and up-regulated after Wnt10a-knockdown and overexpression in dental mesenchymal cells. •Down-regulation of Wnt10a inhibits proliferation of dental mesenchymal cells. -- Abstract: The WNT10a mutation has been found in patients with abnormal odontogenesis. In mice, Wnt10a expression is found in the tooth germ, but its role has not yet been elucidated. We aimed to investigate the role of Wnt10a in odontogenesis. Mesenchymal cells of the first mandibular molar germ at the bell stage were isolated, transfected with Wnt10a SiRNA or plasmid, and reassociated with epithelial part of the molar germ. Scrambled SiRNA or empty vector was used in the control group. The reassociated tooth germs were transplanted into mice subrenal capsules. After gene modification, dental mesenchymal cells cultured in vitro were checked for cell proliferation and the expression of Dspp was examined. All 12 reassociated tooth germs in the control group resumed odontogenesis, while only 5 of 12 in the Wnt10a knockdown group developed into teeth. After Wnt10a knockdown, the mesenchymal cells cultured in vitro presented repressed proliferation. Wnt10a knockdown and overexpression led to both down- and up-regulation of Dspp. We conclude that the down-regulation of Wnt10a impairs odontogensis and cell proliferation, and that Wnt10a regulates Dspp expression in mesenchymal cells. These findings help to elucidate the mechanism of abnormal tooth development in patients with the WNT10A mutation

  8. DIXDC1 activates the Wnt signaling pathway and promotes gastric cancer cell invasion and metastasis.

    Science.gov (United States)

    Tan, Cong; Qiao, Fan; Wei, Ping; Chi, Yayun; Wang, Weige; Ni, Shujuan; Wang, Qifeng; Chen, Tongzhen; Sheng, Weiqi; Du, Xiang; Wang, Lei

    2016-04-01

    DIXDC1 (Dishevelled-Axin domain containing 1) is a DIX (Dishevelled-Axin) domain-possessing protein that promotes colon cancer cell proliferation and increases the invasion and migration ability of non-small-cell lung cancer via the PI3K pathway. As a positive regulator of the Wnt/β-catenin pathway, the biological role of DIXDC1 in human gastric cancer and the relationship between DIXDC1 and the Wnt pathway are unclear. In the current study, the upregulation of DIXDC1 was detected in gastric cancer and was associated with advanced TNM stage cancer, lymph node metastasis, and poor prognosis. We also found that the overexpression of DIXDC1 could promote the invasion and migration of gastric cancer cells. The upregulation of MMPs and the downregulation of E-cadherin were found to be involved in the process. DIXDC1 enhanced β-catenin nuclear accumulation, which activated the Wnt pathway. Additionally, the inhibition of β-catenin in DIXDC1-overexpressing cells reversed the metastasis promotion effects of DIXDC1. These results demonstrate that the expression of DIXDC1 is associated with poor prognosis of gastric cancer patients and that DIXDC1 promotes gastric cancer invasion and metastasis through the activation of the Wnt pathway; E-cadherin and MMPs are also involved in this process. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Activation and Inhibition of The Wnt3A Signaling Pathway in Buffalo (Bubalus bubalis Embryonic Stem Cells: Effects of WNT3A, Bio and Dkk1

    Directory of Open Access Journals (Sweden)

    Mohammad Zandi

    2015-07-01

    Full Text Available Background: This research studies the effects of activation and inhibition of Wnt3A signaling pathway in buffalo (Bubalus bubalis embryonic stem (ES cell-like cells. Materials and Methods: To carry on this experimental study, the effects of activation and inhibition of Wnt3A signaling in buffalo ES cell-like cells were examined using Bio (0.5 mM combined with WNT3A (200 ng/ml, as an activator, and Dickkopf-1 (Dkk1, 250 ng/ml, as an inhibitor, of the pathway. ES cells were cultured up to three weeks in ES cell medium without fibroblast growth factor-2 (FGF-2 and leukemia inhibitory factor (LIF, but in the presence of Bio, WNT3A, Bio+WNT3A and Dkk1. The effects of these supplements were measured on the mean area of ES cell colonies and on the expression levels of a number of important genes related to pluripotency (Oct4, Nanog, Sox2 and c-Myc and the Wnt pathway (β-catenin. ES cell colonies cultured in ES cell medium that contained optimized quantities of LIF and FGF-2 were used as the control. Data were collected for week-1 and week-3 treated cultures. In addition, WNT3A-transfected ES cells were compared with the respective mock-transfected colonies, either alone or in combination with Dkk1 for expression of β-catenin and the pluripotency-related genes. Data were analyzed by ANOVA, and statistical significance was accepted at P<0.05. Results: Among various examined concentrations of Bio (0.5-5 mM, the optimum effect was observed at the 0.5 mM dose as indicated by colony area and expressions of pluripotency- related genes at both weeks-1 and -3 culture periods. At this concentration,the expressions of Nanog, Oct3/4, Sox2, c-Myc and β-catenin genes were nonsignificantly higher compared to the controls. Expressions of these genes were highest in the Bio+WNT3A treated group, followed by the WNT3A and Bio-supplemented groups, and lowest in the Dkk1-treated group. The WNT-transfected colonies showed higher expressions compared to both mock and Dkk1

  10. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD

    Science.gov (United States)

    Baarsma, Hoeke A.; John-Schuster, Gerrit; Heinzelmann, Katharina; Dagouassat, Maylis; Boczkowski, Jorge; Brusselle, Guy G.; Smits, Ron; Yildirim, Ali Ö.

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT–β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin–driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal–epithelial cross talk in COPD pathogenesis, which is amenable to therapy. PMID:27979969

  11. Rac1 augments Wnt signaling by stimulating β-catenin–lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import

    Science.gov (United States)

    Jamieson, Cara; Lui, Christina; Brocardo, Mariana G.; Martino-Echarri, Estefania; Henderson, Beric R.

    2015-01-01

    ABSTRACT β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1–β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin–lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin–LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling. PMID:26403202

  12. Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning.

    Directory of Open Access Journals (Sweden)

    Maja Adamska

    2007-10-01

    Full Text Available The origin of metazoan development and differentiation was contingent upon the evolution of cell adhesion, communication and cooperation mechanisms. While components of many of the major cell signalling pathways have been identified in a range of sponges (phylum Porifera, their roles in development have not been investigated and remain largely unknown. Here, we take the first steps toward reconstructing the developmental signalling systems used in the last common ancestor to living sponges and eumetazoans by studying the expression of genes encoding Wnt and TGF-beta signalling ligands during the embryonic development of a sponge.Using resources generated in the recent sponge Amphimedon queenslandica (Demospongiae genome project, we have recovered genes encoding Wnt and TGF-beta signalling ligands that are critical in patterning metazoan embryos. Both genes are expressed from the earliest stages of Amphimedon embryonic development in highly dynamic patterns. At the time when the Amphimedon embryos begin to display anterior-posterior polarity, Wnt expression becomes localised to the posterior pole and this expression continues until the swimming larva stage. In contrast, TGF-beta expression is highest at the anterior pole. As in complex animals, sponge Wnt and TGF-beta expression patterns intersect later in development during the patterning of a sub-community of cells that form a simple tissue-like structure, the pigment ring. Throughout development, Wnt and TGF-beta are expressed radially along the anterior-posterior axis.We infer from the expression of Wnt and TGF-beta in Amphimedon that the ancestor that gave rise to sponges, cnidarians and bilaterians had already evolved the capacity to direct the formation of relatively sophisticated body plans, with axes and tissues. The radially symmetrical expression patterns of Wnt and TGF-beta along the anterior-posterior axis of sponge embryos and larvae suggest that these signalling pathways

  13. The human HECA interacts with cyclins and CDKs to antagonize Wnt-mediated proliferation and chemoresistance of head and neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dowejko, Albert, E-mail: Albert.Dowejko@klinik.uni-regensburg.de [Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Bauer, Richard; Bauer, Karin [Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Mueller-Richter, Urs D.A. [Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg (Germany); Reichert, Torsten E. [Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany)

    2012-03-10

    There is a growing evidence that the human homologue of the Drosophila headcase (HECA) plays an important role in human carcinogenesis. So far specific protein interaction partners and affected signaling pathways of HECA are still elusive. In a recent study we showed that HECA overexpression in oral squamous-cell carcinoma (OSCC) keratinocytes has tumor suppressive effects resulting in a recuperation of cell cycle control concerning the entry and progression of S-phase, G2- and M-phase. Currently, quantitative RT-PCR and immunohistochemical analysis of primary tumor tissue from OSCC patients demonstrate that HECA expression is markedly decreased compared to normal control patients with abundant HECA expression. Additionally, there is nearly no HECA expression in OSCC metastases. Here, we show that HECA expression is negatively controlled by the Wnt-pathway and TCF4, a Wnt related transcription factor, binds to the HECA promoter. Furthermore, immunocytochemistry reveals colocalization of HECA with the cyclin dependent kinase CDK9. Immunoprecipitation experiments and proximity ligation assays further reveal an interaction of HECA with CDK2, CDK9, Cyclin A and Cyclin K, a direct transcriptional target of the p53 tumor suppressor. Silencing HECA in OSCC cell lines leads to a significant increase of cell division and a markedly increased resistance against the chemotherapeutic cisplatin. On the contrary, HECA overexpressing OSCC cell lines show decreased resistance of OSCC cells against cisplatin. Therefore, HECA could be considered as future therapeutic agent against Wnt-dependent tumor progression. -- Highlights: Black-Right-Pointing-Pointer HECA is a new cell cycle regulator with anti-tumor features in head and neck cancer. Black-Right-Pointing-Pointer During tumor progression HECA mRNA and protein expression decrease. Black-Right-Pointing-Pointer The HECA promotor is a direct target of the Wnt/beta-catenin/TCF-pathway. Black-Right-Pointing-Pointer The HECA protein

  14. Renal Tubule Repair: Is Wnt/β-Catenin a Friend or Foe?

    Science.gov (United States)

    Gewin, Leslie S

    2018-01-24

    Wnt/β-catenin signaling is extremely important for proper kidney development. This pathway is also upregulated in injured renal tubular epithelia, both in acute kidney injury and chronic kidney disease. The renal tubular epithelium is an important target of kidney injury, and its response (repair versus persistent injury) is critical for determining whether tubulointerstitial fibrosis, the hallmark of chronic kidney disease, develops. This review discusses how Wnt/β-catenin signaling in the injured tubular epithelia promotes either repair or fibrosis after kidney injury. There is data suggesting that epithelial Wnt/β-catenin signaling is beneficial in acute kidney injury and important in tubular progenitors responsible for epithelial repair. The role of Wnt/β-catenin signaling in chronically injured epithelia is less clear. There is convincing data that Wnt/β-catenin signaling in interstitial fibroblasts and pericytes contributes to the extracellular matrix accumulation that defines fibrosis. However, some recent studies question whether Wnt/β-catenin signaling in chronically injured epithelia actually promotes fibrosis or repair.

  15. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model.

    Science.gov (United States)

    He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua

    2014-04-01

    Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted

  16. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  17. Conditional Expression of Wnt4 during Chondrogenesis Leads to Dwarfism in Mice

    Science.gov (United States)

    Lee, Hu-Hui; Behringer, Richard R.

    2007-01-01

    Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26) locus by gene targeting in embryonic stem (ES) cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo) that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF). These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype. PMID:17505543

  18. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice.

    Directory of Open Access Journals (Sweden)

    Hu-Hui Lee

    Full Text Available Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26 locus by gene targeting in embryonic stem (ES cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF. These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.

  19. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.

    Science.gov (United States)

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    2016-12-09

    The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    Science.gov (United States)

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  1. Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model.

    Science.gov (United States)

    Stoddart, Angela; Wang, Jianghong; Hu, Chunmei; Fernald, Anthony A; Davis, Elizabeth M; Cheng, Jason X; Le Beau, Michelle M

    2017-06-01

    There is accumulating evidence that functional alteration(s) of the bone marrow (BM) microenvironment contribute to the development of some myeloid disorders, such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In addition to a cell-intrinsic role of WNT activation in leukemia stem cells, WNT activation in the BM niche is also thought to contribute to the pathogenesis of MDS and AML. We previously showed that the Apc -haploinsufficient mice ( Apc del/+ ) model MDS induced by an aberrant BM microenvironment. We sought to determine whether Apc, a multifunctional protein and key negative regulator of the canonical β-catenin (Ctnnb1)/WNT-signaling pathway, mediates this disease through modulating WNT signaling, and whether inhibition of WNT signaling prevents the development of MDS in Apc del/+ mice. Here, we demonstrate that loss of 1 copy of Ctnnb1 is sufficient to prevent the development of MDS in Apc del/+ mice and that altered canonical WNT signaling in the microenvironment is responsible for the disease. Furthermore, the US Food and Drug Administration (FDA)-approved drug pyrvinium delays and/or inhibits disease in Apc del /+ mice, even when it is administered after the presentation of anemia. Other groups have observed increased nuclear CTNNB1 in stromal cells from a high frequency of MDS/AML patients, a finding that together with our results highlights a potential new strategy for treating some myeloid disorders. © 2017 by The American Society of Hematology.

  2. Canonical Wnts, specifically Wnt-10b, show ability to maintain dermal papilla cells

    Energy Technology Data Exchange (ETDEWEB)

    Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp

    2013-08-30

    Highlights: •First report on effects of various Wnts on DP cells. •Wnt-10b promoted trichogenesis, while Wnt-3a showed to a limited extent. •Canonical Wnts, specifically Wnt-10b, is important for DP cells maintenance. -- Abstract: Although Wnts are expressed in hair follicles (HFs) and considered to be crucial for maintaining dermal papilla (DP) cells, the functional differences among them remain largely unknown. In the present study, we investigated the effects of Wnts (Wnt-3a, 5a, 10b, 11) on the proliferation of mouse-derived primary DP cells in vitro as well as their trichogenesis-promoting ability using an in vivo skin reconstitution protocol. Wnt-10b promoted cell proliferation and trichogenesis, while Wnt-3a showed those abilities to a limited extent, and Wnt-5a and 11 had no effects. Furthermore, we investigated the effects of these Wnts on cultured DP cells obtained from versican-GFP transgenic mice and found that Wnt-10b had a potent ability to sustain their GFP-positivity. These results suggest that canonical Wnts, specifically Wnt-10b, play important roles in the maintenance of DP cells and trichogenesis.

  3. Kinase cogs go forward and reverse in the Wnt signaling machine.

    Science.gov (United States)

    Dale, Trevor

    2006-01-01

    An important link between Wnt binding at the cell surface and nuclear -catenin-TCF-dependent transcription has been made with the identification of kinases that promote the association of the Wnt receptor and -catenin turnover complexes. Surprisingly, the enzymes implicated had previously been suggested to inhibit rather than promote Wnt signaling.

  4. beta-Arrestin Interacts with the Beta/Gamma Subunits of Trimeric G-Proteins and Dishevelled in the Wnt/Ca2+ Pathway in Xenopus Gastrulation

    Czech Academy of Sciences Publication Activity Database

    Seitz, K.; Dursch, V.; Harnoš, J.; Bryja, Vítězslav; Gentzel, M.; Schambony, A.

    2014-01-01

    Roč. 9, č. 1 (2014) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GC204/09/J030 Grant - others:GA ČR(CZ) GA204/09/0498 Institutional support: RVO:68081707 Keywords : CONVERGENT EXTENSION MOVEMENTS * WNT SIGNALING PATHWAYS * WNT/BETA-CATENIN Subject RIV: BO - Biophysics Impact factor: 3.234, year: 2014

  5. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.

    Science.gov (United States)

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Wu, Hao; Edge, Albert S B; Shi, Fuxin

    2016-09-07

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient

  6. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  7. Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.

    Science.gov (United States)

    Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae

    2009-08-01

    It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.

  8. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts

    Directory of Open Access Journals (Sweden)

    Saeed Ur Rahman

    2017-11-01

    Full Text Available Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF optimal motif (TOP reporter activity than the cells on tissue culture dishes (OCCM30-TCD, indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54. Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation.

  9. To Wnt or Lose: The Missing Non-Coding Linc in Colorectal Cancer.

    Science.gov (United States)

    Shen, Peng; Pichler, Martin; Chen, Meng; Calin, George A; Ling, Hui

    2017-09-20

    Colorectal cancer (CRC) is the third most frequent cancer and one of the leading causes for cancer-related mortality. Aberrant activation of the Wnt signaling is an essential initiating factor in colon carcinogenesis, and a driving force of CRC progression. Recently, long non-coding RNAs (lncRNAs) have emerged as significant players in CRC pathogenesis through diversified mechanisms. Although both Wnt signaling and lncRNAs represent interesting research areas for CRC, an effort of directly connecting these two areas is lacking. To fill in the knowledge gap, we focus on the reported findings of lncRNAs that regulate Wnt signaling or essential Wnt signaling targets. These include several newly discovered lncRNAs originated from the amplified cancer-associated chromosome 8q24 region that surrounds the essential Wnt target MYC gene, lncRNAs reported to be involved in CRC stem cells, and several individual lncRNAs connected to Wnt signaling through other mechanisms. This review will provide essential information that assists in understanding the missing link of lncRNAs to the classical Wnt signaling in CRC.

  10. Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway.

    Science.gov (United States)

    Rhoads, A R; Karkera, J D; Detera-Wadleigh, S D

    1999-09-01

    Lithium, an effective drug in the treatment of bipolar disorder, has been proposed to disrupt the Wnt signaling pathway. To facilitate analysis of the possible involvement of elements of the Wnt pathway in human bipolar disorder, a high resolution radiation hybrid mapping (RHM) of these genes was performed. A fine physical location has been obtained for Wnt 7A, frizzled 3, 4 and 5, dishevelled 1, 2 and 3, GSK3beta, axin, alpha-catenin, the Armadillo repeat-containing genes (delta-catenin and ARVCF), and a frizzled-like protein (frpHE) using the Stanford Human Genome Center (SHGC) G3 panel. Most of these genes were previously mapped by fluorescence in situ hybridization (FISH). Frizzled 4, axin and frpHE did not have a previous chromosomal assignment and were linked by RHM to chromosome markers, SHGC-35131 at 11q22.1, NIB1488 at 16p13.3 and D7S2919 at 7p15.2, respectively. Interestingly, some of these genes were found to map within potential regions underlying susceptibility to bipolar disorder and schizophrenia as well as disorders of neurodevelopmental origin. This alternative approach of establishing the precise location of selected genetic components of a candidate pathway and determining if they map within previously defined susceptibility loci should help to identify plausible candidate genes that warrant further analysis through association and mutational scanning.

  11. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2.

    Science.gov (United States)

    Rabadán, M Angeles; Herrera, Antonio; Fanlo, Lucia; Usieto, Susana; Carmona-Fontaine, Carlos; Barriga, Elias H; Mayor, Roberto; Pons, Sebastián; Martí, Elisa

    2016-06-15

    Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination. © 2016. Published by The Company of Biologists Ltd.

  12. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  13. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. WNT4 drives a novel signaling pathway in ILC cells, with a

  14. Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy.

    Science.gov (United States)

    Wang, Zhongxiao; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Favazza, Tara L; Morss, Peyton C; Saba, Nicholas J; Fredrick, Thomas W; He, Xi; Akula, James D; Chen, Jing

    2016-10-01

    Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.

    NARCIS (Netherlands)

    Glass, D.A.; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, J.C.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; Karsenty, G.

    2005-01-01

    Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast

  16. CAFET algorithm reveals Wnt/PCP signature in lung squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Yue Hu

    Full Text Available We analyzed the gene expression patterns of 138 Non-Small Cell Lung Cancer (NSCLC samples and developed a new algorithm called Coverage Analysis with Fisher's Exact Test (CAFET to identify molecular pathways that are differentially activated in squamous cell carcinoma (SCC and adenocarcinoma (AC subtypes. Analysis of the lung cancer samples demonstrated hierarchical clustering according to the histological subtype and revealed a strong enrichment for the Wnt signaling pathway components in the cluster consisting predominantly of SCC samples. The specific gene expression pattern observed correlated with enhanced activation of the Wnt Planar Cell Polarity (PCP pathway and inhibition of the canonical Wnt signaling branch. Further real time RT-PCR follow-up with additional primary tumor samples and lung cancer cell lines confirmed enrichment of Wnt/PCP pathway associated genes in the SCC subtype. Dysregulation of the canonical Wnt pathway, characterized by increased levels of β-catenin and epigenetic silencing of negative regulators, has been reported in adenocarcinoma of the lung. Our results suggest that SCC and AC utilize different branches of the Wnt pathway during oncogenesis.

  17. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    Science.gov (United States)

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  18. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  19. Wnt modulates MCL1 to control cell survival in triple negative breast cancer

    International Nuclear Information System (INIS)

    Yang, Lixin; Zhang, Hang; Zheng, Shu; Liu, Zheng; Ann, David; Yen, Yun; Perez, Aldwin Apollo; Fujie, Sayuri; Warden, Charles; Li, Jie; Wang, Yafan; Yung, Bryan; Chen, Yun-Ru; Liu, Xiyong

    2014-01-01

    Triple negative breast cancer (TNBC) has higher rates of recurrence and distant metastasis, and poorer outcome as compared to non-TNBC. Aberrant activation of WNT signaling has been detected in TNBC, which might be important for triggering oncogenic conversion of breast epithelial cell. Therefore, we directed our focus on identifying the WNT ligand and its underlying mechanism in TNBC cells. We performed large-scale analysis of public microarray data to screen the WNT ligands and the clinical significance of the responsible ligand in TNBC. WNT5B was identified and its overexpression in TNBC was confirmed by immunohistochemistry staining, Western blot and ELISA. ShRNA was used to knockdown WNT5B expression (shWNT5B). Cellular functional alteration with shWNT5B treatment was determined by using wound healing assay, mammosphere assay; while cell cycle and apoptosis were examined by flowcytometry. Mitochondrial morphology was photographed by electron microscope. Biological change of mitochondria was detected by RT-PCR and oxygen consumption assay. Activation of WNT pathway and its downstream targets were evaluated by liciferase assay, immunohistochemistry staining and immunoblot analysis. Statistical methods used in the experiments besides microarray analysis was two-tailed t-test. WNT5B was elevated both in the tumor and the patients’ serum. Suppression of WNT5B remarkably impaired cell growth, migration and mammosphere formation. Additionally, G0/G1 cell cycle arrest and caspase-independent apoptosis was observed. Study of the possible mechanism indicated that these effects occurred through suppression of mitochondrial biogenesis, as evidenced by reduced mitochondrial DNA (MtDNA) and compromised oxidative phosphorylation (OXPHOS). In Vivo and in vitro data uncovered that WNT5B modulated mitochondrial physiology was mediated by MCL1, which was regulated by WNT/β-catenin responsive gene, Myc. Clinic data analysis revealed that both WNT5B and MCL1 are associated with

  20. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    Directory of Open Access Journals (Sweden)

    Mei Zhang

    Full Text Available The Protein Kinase A (PKA and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling.

  1. Involvement of wnt signaling pathways in the metamorphosis of the bryozoan bugula neritina

    KAUST Repository

    Wong, Yue Him

    2012-03-20

    In this study, we analyzed the metamorphosis of the marine bryozoan Bugula neritina. We observed the morphogenesis of the ancestrula. We defined three distinct pre-ancestrula stages based on the anatomy of the developing polypide and the overall morphology of pre-ancestrula. We then used an annotation based enrichment analysis tool to analyze the B. neritina transcriptome and identified over-representation of genes related to Wnt signaling pathways, suggesting its involvement in metamorphosis. Finally, we studied the temporal-spatial gene expression studies of several Wnt pathway genes. We found that one of the Wnt ligand, BnWnt10, was expressed spatially opposite to the Wnt antagonist BnsFRP within the blastemas, which is the presumptive polypide. Down-stream components of the canonical Wnt signaling pathway were exclusively expressed in the blastemas. Bn?catenin and BnFz5/8 were exclusively expressed in the blastemas throughout the metamorphosis. Based on the genes expression patterns, we propose that BnWnt10 and BnsFRP may relate to the patterning of the polypide, in which the two genes served as positional signals and contributed to the polarization of the blastemas. Another Wnt ligand, BnWnt6, was expressed in the apical part of the pre-ancestrula epidermis. Overall, our findings suggest that the Wnt signaling pathway may be important to the pattern formation of polypide and the development of epidermis. © 2012 Wong et al.

  2. Involvement of wnt signaling pathways in the metamorphosis of the bryozoan bugula neritina

    KAUST Repository

    Wong, Yue Him; Wang, Hao; Ravasi, Timothy; Qian, Pei-Yuan

    2012-01-01

    In this study, we analyzed the metamorphosis of the marine bryozoan Bugula neritina. We observed the morphogenesis of the ancestrula. We defined three distinct pre-ancestrula stages based on the anatomy of the developing polypide and the overall morphology of pre-ancestrula. We then used an annotation based enrichment analysis tool to analyze the B. neritina transcriptome and identified over-representation of genes related to Wnt signaling pathways, suggesting its involvement in metamorphosis. Finally, we studied the temporal-spatial gene expression studies of several Wnt pathway genes. We found that one of the Wnt ligand, BnWnt10, was expressed spatially opposite to the Wnt antagonist BnsFRP within the blastemas, which is the presumptive polypide. Down-stream components of the canonical Wnt signaling pathway were exclusively expressed in the blastemas. Bn?catenin and BnFz5/8 were exclusively expressed in the blastemas throughout the metamorphosis. Based on the genes expression patterns, we propose that BnWnt10 and BnsFRP may relate to the patterning of the polypide, in which the two genes served as positional signals and contributed to the polarization of the blastemas. Another Wnt ligand, BnWnt6, was expressed in the apical part of the pre-ancestrula epidermis. Overall, our findings suggest that the Wnt signaling pathway may be important to the pattern formation of polypide and the development of epidermis. © 2012 Wong et al.

  3. Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Bravo, Dawn T; Yang, Yi-Lin; Kuchenbecker, Kristopher; Hung, Ming-Szu; Xu, Zhidong; Jablons, David M; You, Liang

    2013-01-01

    Wnt-2 plays an oncogenic role in cancer, but which Frizzled receptor(s) mediates the Wnt-2 signaling pathway in lung cancer remains unclear. We sought to (1) identify and evaluate the activation of Wnt-2 signaling through Frizzled-8 in non-small cell lung cancer, and (2) test whether a novel expression construct dominant negative Wnt-2 (dnhWnt-2) reduces tumor growth in a colony formation assay and in a xenograft mouse model. Semi-quantitative RT-PCR was used to identify the expression of Wnt-2 and Frizzled-8 in 50 lung cancer tissues from patients. The TCF reporter assay (TOP/FOP) was used to detect the activation of the Wnt canonical pathway in vitro. A novel dnhWnt-2 construct was designed and used to inhibit activation of Wnt-2 signaling through Frizzled-8 in 293T, 293, A549 and A427 cells and in a xenograft mouse model. Statistical comparisons were made using Student’s t-test. Among the 50 lung cancer samples, we identified a 91% correlation between the transcriptional increase of Wnt-2 and Frizzled-8 (p<0.05). The Wnt canonical pathway was activated when both Wnt-2 and Frizzled-8 were co-expressed in 293T, 293, A549 and A427 cells. The dnhWnt-2 construct we used inhibited the activation of Wnt-2 signaling in 293T, 293, A549 and A427 cells, and reduced the colony formation of NSCLC cells when β-catenin was present (p<0.05). Inhibition of Wnt-2 activation by the dnhWnt-2 construct further reduced the size and mass of tumors in the xenograft mouse model (p<0.05). The inhibition also decreased the expression of target genes of Wnt signaling in these tumors. We demonstrated an activation of Wnt-2 signaling via the Frizzled-8 receptor in NSCLC cells. A novel dnhWnt-2 construct significantly inhibits Wnt-2 signaling, reduces colony formation of NSCLC cells in vitro and tumor growth in a xenograft mouse model. The dnhWnt-2 construct may provide a new therapeutic avenue for targeting the Wnt pathway in lung cancer

  4. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  5. An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool.

    Directory of Open Access Journals (Sweden)

    Angela Anderegg

    Full Text Available MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key

  6. Wnt/β-catenin expression does not correlate with serum alkaline phosphatase concentration in canine osteosarcoma patients.

    Directory of Open Access Journals (Sweden)

    Caroline M Piskun

    Full Text Available Osteosarcoma is an aggressive malignancy of the bone and an increase in serum alkaline phosphatase concentration has clinical prognostic value in both humans and canines. Increased serum alkaline phosphatase concentration at the time of diagnosis has been associated with poorer outcomes for osteosarcoma patients. The biology underlying this negative prognostic factor is poorly understood. Given that activation of the Wnt signaling pathway has been associated with alkaline phosphatase expression in osteoblasts, we hypothesized that the Wnt/β-catenin signaling pathway would be differentially activated in osteosarcoma tissue based on serum ALP status. Archived canine osteosarcoma samples and primary canine osteosarcoma cell lines were used to evaluate the status of Wnt/β-catenin signaling pathway activity through immunohistochemical staining, western immunoblot analyses, quantitative reverse-transcription polymerase chain reaction, and a Wnt-responsive promoter activity assay. We found no significant difference in β-catenin expression or activation between OSA populations differing in serum ALP concentration. Pathway activity was mildly increased in the primary OSA cell line generated from a patient with increased serum ALP compared to the normal serum ALP OSA cell line. Further investigation into the mechanisms underlying differences in serum ALP concentration is necessary to improve our understanding of the biological implications of this negative prognostic indicator.

  7. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures

    International Nuclear Information System (INIS)

    Hirsch, Cordula; Campano, Louise M.; Woehrle, Simon; Hecht, Andreas

    2007-01-01

    Canonical Wnt signaling triggers the formation of heterodimeric transcription factor complexes consisting of β-catenin and T cell factors, and thereby controls the execution of specific genetic programs. During the expansion and neurogenic phases of embryonic neural development canonical Wnt signaling initially controls proliferation of neural progenitor cells, and later neuronal differentiation. Whether Wnt growth factors affect neural progenitor cells postnatally is not known. Therefore, we have analyzed the impact of Wnt signaling on neural progenitors isolated from cerebral cortices of newborn mice. Expression profiling of pathway components revealed that these cells are fully equipped to respond to Wnt signals. However, Wnt pathway activation affected only a subset of neonatal progenitors and elicited a limited increase in proliferation and neuronal differentiation in distinct subsets of cells. Moreover, Wnt pathway activation only transiently stimulated S-phase entry but did not support long-term proliferation of progenitor cultures. The dampened nature of the Wnt response correlates with the predominant expression of inhibitory pathway components and the rapid actuation of negative feedback mechanisms. Interestingly, in differentiating cell cultures activation of canonical Wnt signaling reduced Hes1 and Hes5 expression suggesting that during postnatal neural development, Wnt/β-catenin signaling enhances neurogenesis from progenitor cells by interfering with Notch pathway activity

  8. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    Science.gov (United States)

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  9. Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells.

    Science.gov (United States)

    Price, Feodor D; Yin, Hang; Jones, Andrew; van Ijcken, Wilfred; Grosveld, Frank; Rudnicki, Michael A

    2013-04-01

    Activation of the canonical Wnt signaling pathway synergizes with leukemia inhibitory factor (LIF) to maintain pluripotency of mouse embryonic stem cells (mESCs). However, in the absence of LIF, Wnt signaling is unable to maintain ESCs in the undifferentiated state. To investigate the role of canonical Wnt signaling in pluripotency and lineage specification, we expressed Wnt3a in mESCs and characterized them in growth and differentiation. We found that activated canonical Wnt signaling induced the formation of a reversible metastable primitive endoderm state in mESC. Upon subsequent differentiation, Wnt3a-stimulated mESCs gave rise to large quantities of visceral endoderm. Furthermore, we determined that the ability of canonical Wnt signaling to induce a metastable primitive endoderm state was mediated by Tbx3. Our data demonstrates a specific role for canonical Wnt signaling in promoting pluripotency while at the same time priming cells for subsequent differentiation into the primitive endoderm lineage. Copyright © 2013 AlphaMed Press.

  10. EXPRESSION OF E-CADHERIN AND WNT PATHWAY PROTEINS BETACATENIN, APC, TCF-4 AND SURVIVIN IN GASTRIC ADENOCARCINOMA: CLINICAL AND PATHOLOGICAL IMPLICATION.

    Science.gov (United States)

    Lins, Rodrigo Rego; Oshima, Celina Tizuko Fujiyama; Oliveira, Levindo Alves de; Silva, Marcelo Souza; Mader, Ana Maria Amaral Antonio; Waisberg, Jaques

    2016-01-01

    Gastric cancer is the fifth most frequent cancer and the third most common cause of cancer-related deaths worldwide.It has been reported that Wnt/ betacatenin pathway is activated in 30-50% of these tumors. However,the deregulation of this pathway has not been fully elucidated. To determine the expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins in gastric adenocarcinoma tissues and correlate with clinical and pathological parameters. Seventy-one patients with gastric adenocarcinoma undergoing gastrectomy were enrolled. The expression of E-cadherin, betacatenin, APC, TCF-4 and survivin proteins was detected by immunohistochemistryand related to the clinical and pathological parameters. The expression rates of E-cadherin in the membrane was 3%; betacatenin in the cytoplasm and nucleus were 23,4% and 3,1% respectively; APC in the cytoplasm was 94,6%; TCF-4 in the nucleus was 19,4%; and survivin in the nucleus 93,9%. The expression rate of E-cadherin was correlated with older patients (p=0,007), while betacatenin with tumors citoplasma e 3,1% no núcleo; APC em 94,6% no citoplasma; TCF-4 em19,4% no núcleo; e survivina em 93,9% no núcleo. Houve relação entre expressão da proteína E-caderina com a idade mais avançada (p=0,007); betacatenina com tumores <5 cm de diâmetro (p=0,041);APC com tumores proximais (p=0,047); e TCF-4 com tipo difuso da classificação de Lauren (p=0,017) e com o grau de penetração tumoral (p=0,002). A via Wnt/betacatenina não está envolvida na carcinogênese gástrica. Porém, a frequência elevada de survivina permite sugerir que outras vias sinalizadoras devam estar envolvidas na transformação do tecido gástrico.

  11. Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanjun Kim

    2015-01-01

    Full Text Available Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor or negatively (IWR-1-endo, Axin stabilizer control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

  12. Wnt/beta-Catenin Signaling and Small Molecule Inhibitors

    Science.gov (United States)

    Voronkov, Andrey; Krauss, Stefan

    2012-01-01

    Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions. PMID:23016862

  13. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  14. Concurrent Transient Activation of Wnt/β-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    International Nuclear Information System (INIS)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-01-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/β-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/β-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/β-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/β-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  15. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans

    DEFF Research Database (Denmark)

    Pataki, Csilla A; Couchman, John R; Brábek, Jan

    2015-01-01

    /planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development...... and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some...

  16. Therapy for BRAFi-Resistant Melanomas: Is WNT5A the Answer?

    International Nuclear Information System (INIS)

    Prasad, Chandra Prakash; Mohapatra, Purusottam; Andersson, Tommy

    2015-01-01

    In recent years, scientists have advocated the use of targeted therapies in the form of drugs that modulate genes and proteins that are directly associated with cancer progression and metastasis. Malignant melanoma is a dreadful cancer type that has been associated with the rapid dissemination of primary tumors to multiple sites, including bone, brain, liver and lungs. The discovery that approximately 40%–50% of malignant melanomas contain a mutation in BRAF at codon 600 gave scientists a new approach to tackle this disease. However, clinical studies on patients have shown that although BRAFi (BRAF inhibitors) trigger early anti-tumor responses, the majority of patients later develop resistance to the therapy. Recent studies have shown that WNT5A plays a key role in enhancing the resistance of melanoma cells to BRAFi. The focus of the current review will be on melanoma development, signaling pathways important to acquired resistance to BRAFi, and why WNT5A inhibitors are attractive candidates to be included in combinatorial therapies for melanoma

  17. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    Science.gov (United States)

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  18. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  19. The Wnt signaling pathway in familial exudative vitreoretinopathy and Norrie disease.

    Science.gov (United States)

    Warden, Scott M; Andreoli, Christopher M; Mukai, Shizuo

    2007-01-01

    The Wnt signaling pathway is highly conserved among species and has an important role in many cell biological processes throughout the body. This signaling cascade is involved in regulating ocular growth and development, and recent findings indicate that this is particularly true in the retina. Mutations involving different aspects of the Wnt signaling pathway are being linked to several diseases of retinal development. The aim of this article is to first review the Wnt signaling pathway. We will then describe two conditions, familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND), which have been shown to be caused in part by defects in the Wnt signaling cascade.

  20. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling.

    Science.gov (United States)

    Bresson, Laura; Faraldo, Marisa M; Di-Cicco, Amandine; Quintanilla, Miguel; Glukhova, Marina A; Deugnier, Marie-Ange

    2018-02-21

    Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis. © 2018. Published by The Company of Biologists Ltd.

  1. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  2. Tricho-odonto-onycho-dermal dysplasia and WNT10A mutations.

    Science.gov (United States)

    Kantaputra, P; Kaewgahya, M; Jotikasthira, D; Kantaputra, W

    2014-04-01

    We report on three novel (IVS2+1G>A splice site, c.1066G>T, and c.1039G>T, and one previously reported (c.637G>A) WNT10A mutations in three patients affected with odonto-onycho-dermal dysplasia (OODD; OMIM 275980). OODD is a rare form of autosomal recessive ectodermal dysplasia involving hair, teeth, nails, and skin, characterized by hypodontia (tooth agenesis), smooth tongue with marked reduction of filiform and fungiform papillae, nail dysplasia, dry skin, palmoplantar keratoderma, and hyperhidrosis of palms and soles. The novel IVS+1G>A splice site mutation is predicted to cause significant protein alteration. The other novel mutations we found including c.1066G>T and c.1039G>T are predicted to cause p.Gly356Cys and p.Glu347X, respectively. Barrel-shaped mandibular incisors and severe hypodontia appear to be associated with homozygous or compound heterozygous mutations of WNT10A. The name "tricho-odonto-onycho-dermal dysplasia" is suggested to replace "odonto-onycho-dermal dysplasia" because hair anomalies including hypotrichosis and slow-growing hair have been reported in numerous reported patients with this syndrome. © 2014 Wiley Periodicals, Inc.

  3. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Grepper Susan

    2009-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is an aggressive cancer, and is the third leading cause of cancer death worldwide. Standard therapy is ineffective partly because HCC is intrinsically resistant to conventional chemotherapy. Its poor prognosis and limited treatment options make it critical to develop novel and selective chemotherapeutic agents. Since the Wnt/β-catenin pathway is essential in HCC carcinogenesis, we studied the inhibition of Wnt-1-mediated signaling as a potential molecular target in HCC. Results We demonstrated that Wnt-1 is highly expressed in human hepatoma cell lines and a subgroup of human HCC tissues compared to paired adjacent non-tumor tissues. An anti-Wnt-1 antibody dose-dependently decreased viability and proliferation of Huh7 and Hep40 cells over-expressing Wnt-1 and harboring wild type β-catenin, but did not affect normal hepatocytes with undetectable Wnt-1 expression. Apoptosis was also observed in Huh7 and Hep40 cells after treatment with anti-Wnt-1 antibody. In these two cell lines, the anti-Wnt-1 antibody decreased β-catenin/Tcf4 transcriptional activities, which were associated with down-regulation of the endogenous β-catenin/Tcf4 target genes c-Myc, cyclin D1, and survivin. Intratumoral injection of anti-Wnt-1 antibody suppressed in vivo tumor growth in a Huh7 xenograft model, which was also associated with apoptosis and reduced c-Myc, cyclin D1, and survivin expressions. Conclusion Our results suggest that Wnt-1 is a survival factor for HCC cells, and that the blockade of Wnt-1-mediated signaling may offer a potential pathway-specific therapeutic strategy for the treatment of a subgroup of HCC that over-expresses Wnt-1.

  4. Wnt target genes and where to find them [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Aravinda-Bharathi Ramakrishnan

    2017-05-01

    Full Text Available Wnt/β-catenin signaling is highly conserved throughout metazoans, is required for numerous essential events in development, and serves as a stem cell niche signal in many contexts. Misregulation of the pathway is linked to several human pathologies, most notably cancer. Wnt stimulation results in stabilization and nuclear import of β-catenin, which then acts as a transcriptional co-activator. Transcription factors of the T-cell family (TCF are the best-characterized nuclear binding partners of β-catenin and mediators of Wnt gene regulation. This review provides an update on what is known about the transcriptional activation of Wnt target genes, highlighting recent work that modifies the conventional model. Wnt/β-catenin signaling regulates genes in a highly context-dependent manner, and the role of other signaling pathways and TCF co-factors in this process will be discussed. Understanding Wnt gene regulation has served to elucidate many biological roles of the pathway, and we will use examples from stem cell biology, metabolism, and evolution to illustrate some of the rich Wnt biology that has been uncovered.

  5. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  6. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    Science.gov (United States)

    Shi, Juan; Chi, Shuhong; Xue, Jing; Yang, Jiali; Li, Feng; Liu, Xiaoming

    2016-01-01

    The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs), a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases. PMID:27110577

  7. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Juan Shi

    2016-01-01

    Full Text Available The Wnt signaling pathway plays a key role in many biological aspects, such as cellular proliferation, tissue regeneration, embryonic development, and other systemic effects. Under a physiological condition, it is tightly controlled at different layers and arrays, and a dysregulated activation of this signaling has been implicated into the pathogenesis of various human disorders, including autoimmune diseases. Despite the fact that therapeutic interventions are available for ameliorating disease manifestations, there is no curative therapy currently available for autoimmune disorders. Increasing lines of evidence have suggested a crucial role of Wnt signaling during the pathogenesis of many autoimmune diseases; in addition, some of microRNAs (miRNAs, a class of small, noncoding RNA molecules capable of transcriptionally regulating gene expression, have also recently been demonstrated to possess both physiological and pathological roles in autoimmune diseases by regulating the Wnt signaling pathway. This review summarizes currently our understanding of the pathogenic roles of Wnt signaling in several major autoimmune disorders and miRNAs, those targeting Wnt signaling in autoimmune diseases, with a focus on the implication of the Wnt signaling as potential biomarkers and therapeutic targets in immune diseases, as well as miRNA-mediated regulation of Wnt signaling activation in the development of autoimmune diseases.

  8. Rational design of DKK3 structure-based small peptides as antagonists of Wnt signaling pathway and in silico evaluation of their efficiency.

    Directory of Open Access Journals (Sweden)

    Mansour Poorebrahim

    Full Text Available Dysregulated Wnt signaling pathway is highly associated with the pathogenesis of several human cancers. Dickkopf proteins (DKKs are thought to inhibit Wnt signaling pathway through binding to lipoprotein receptor-related protein (LRP 5/6. In this study, based on the 3-dimensional (3D structure of DKK3 Cys-rich domain 2 (CRD2, we have designed and developed several peptide inhibitors of Wnt signaling pathway. Modeller 9.15 package was used to predict 3D structure of CRD2 based on the Homology modeling (HM protocol. After refinement and minimization with GalaxyRefine and NOMAD-REF servers, the quality of selected models was evaluated utilizing VADAR, SAVES and ProSA servers. Molecular docking studies as well as literature-based information revealed two distinct boxes located at CRD2 which are actively involved in the DKK3-LRP5/6 interaction. A peptide library was constructed conducting the backrub sequence tolerance scanning protocol in Rosetta3.5 according to the DKK3-LRP5/6 binding sites. Seven tolerated peptides were chosen and their binding affinity and stability were improved by some logical amino acid substitutions. Molecular dynamics (MD simulations of peptide-LRP5/6 complexes were carried out using GROMACS package. After evaluation of binding free energies, stability, electrostatic potential and some physicochemical properties utilizing computational approaches, three peptides (PEP-I1, PEP-I3 and PEP-II2 demonstrated desirable features. However, all seven improved peptides could sufficiently block the Wnt-binding site of LRP6 in silico. In conclusion, we have designed and improved several small peptides based on the LRP6-binding site of CRD2 of DKK3. These peptides are highly capable of binding to LRP6 in silico, and may prevent the formation of active Wnt-LRP6-Fz complex.

  9. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  10. Wnt/β-Catenin Signaling during Cardiac Development and Repair

    Directory of Open Access Journals (Sweden)

    Jan W. Buikema

    2014-05-01

    Full Text Available Active Wnt/β-catenin signaling is essential for proper cardiac specification, progenitor expansion and myocardial growth. During development, the mass of the embryonic heart increases multiple times to achieve the dimensions of adult ventricular chambers. Cell division in the embryonic heart is fairly present, whereas cell turnover in the adult myocardium is extremely low. Understanding of embryonic cardiomyocyte cell-replication, therefore, could improve strategies for cardiac regenerative therapeutics. Here, we review which role Wnt signaling plays in cardiac development and highlight a selection of attempts that have been made to modulate Wnt signaling after cardiac ischemic injury to improve cardiac function and reduce infarct size.

  11. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-01-01

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1 G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP + astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  12. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenneth C. Valkenburg

    2011-04-01

    Full Text Available The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.

  13. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    DEFF Research Database (Denmark)

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente

    2015-01-01

    alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase...... on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions...

  14. Small Molecules Inspired by the Natural Product Withanolides as Potent Inhibitors of Wnt Signaling.

    Science.gov (United States)

    Sheremet, Michael; Kapoor, Shobhna; Schröder, Peter; Kumar, Kamal; Ziegler, Slava; Waldmann, Herbert

    2017-09-19

    Wnt signaling is a fundamental pathway that drives embryonic development and is essential for stem cell maintenance and tissue homeostasis. Dysregulation of Wnt signaling is linked to various diseases, and a constitutively active Wnt pathway drives tumorigenesis. Thus, disruption of the Wnt response is deemed a promising strategy for cancer drug discovery. However, only few clinical drug candidates that target Wnt signaling are available so far, and new small-molecule modulators of Wnt-related processes are in high demand. Here we describe the synthesis of small molecules inspired by withanolide natural products by using a pregnenolone-derived β-lactone as the key intermediate that was transformed into a δ-lactone appended to the D-ring of the steroidal scaffold. This natural-product-inspired compound library contained potent inhibitors of Wnt signaling that act upstream of the destruction complex to stabilize Axin in a tankyrase-independent manner. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Medulloblastoma in China: clinicopathologic analyses of SHH, WNT, and non-SHH/WNT molecular subgroups reveal different therapeutic responses to adjuvant chemotherapy.

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Zhang

    Full Text Available Medulloblastoma (MB is one of the most common primary central nervous system tumors in children. Data is lacking of a large cohort of medulloblastoma patients in China. Also, our knowledge on the sensitivity of different molecular subgroups of MB to adjuvant radiation therapy (RT or chemotherapy (CHT is still limited. The authors performed a retrospective study of 173 medulloblastoma patients treated at two institutions from 2002 to 2011. Formalin-fixed paraffin embedded (FFPE tissues were available in all the cases and sections were stained to classify histological and molecular subgroups. Univariate and multivariate analyses were used to investigate prognostic factors. Of 173 patients, there were 118 children and 55 adults, 112 males and 61 females. Estimated 5-year overall survival (OS rates for all patients, children and adults were 52%, 48% and 63%, respectively. After multivariate analysis, postoperative primary radiation therapy (RT and chemotherapy (CHT were revealed as favorable prognostic factors influencing OS and EFS. Postoperative primary chemotherapy (CHT was found significantly improving the survival of children (p<0.001 while it was not a significant prognostic factor for adult patients. Moreover, patients in WNT subtype had better OS (p = 0.028 than others (SHH and Non-SHH/WNT subtypes given postoperative adjuvant therapies. Postoperative primary RT was found to be a strong prognostic factor influencing the survival in all histological and molecular subgroups (p<0.001. Postoperative primary CHT was found significantly to influence the survival of classic medulloblastoma (CMB (OS p<0.001, EFS p<0.001, SHH subgroup (OS p = 0.020, EFS p = 0.049 and WNT subgroup (OS p = 0.003, EFS p = 0.016 but not in desmoplastic/nodular medulloblastoma (DMB (OS p = 0.361, EFS p = 0.834 and Non-SHH/WNT subgroup (OS p = 0.127, EFS p = 0.055. Our study showed postoperative primary CHT significantly influence the

  16. Plasma membrane recruitment of dephosphorylated beta-catenin upon activation of the Wnt pathway

    NARCIS (Netherlands)

    Hendriksen, Jolita; Jansen, Marnix; Brown, Carolyn M.; van der Velde, Hella; van Ham, Marco; Galjart, Niels; Offerhaus, G. Johan; Fagotto, Francois; Fornerod, Maarten

    2008-01-01

    The standard model of Wnt signaling specifies that after receipt of a Wnt ligand at the membranous receptor complex, downstream mediators inhibit a cytoplasmic destruction complex, allowing beta-catenin to accumulate in the cytosol and nucleus and co-activate Wnt target genes. Unexpectedly, shortly

  17. Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects.

    Directory of Open Access Journals (Sweden)

    Dominik M Schulte

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue. These inflammatory cells affect adipocytes not only by classical cytokines but also by the secreted glycopeptide wnt5a. Healthy adipocytes are able to release the wnt5a inhibitor sFRP5. This protective effect, however, was found to be diminished in obesity. The aim of the present study was to examine (1 whether obese human subjects exhibit increased serum concentrations of wnt5a and (2 whether wnt5a and/or sFRP5 serum concentrations in obese subjects can be influenced by caloric restriction.23 obese human subjects (BMI 44.1 ± 1.1 kg/m(2 and 12 age- and sex-matched lean controls (BMI 22.3 ± 0.4 kg/m(2 were included in the study. Obese subjects were treated with a very low-calorie diet (approximately 800 kcal/d for 12 weeks. Body composition was assessed by impedance analysis, insulin sensitivity was estimated by HOMA-IR and the leptin-to-adiponectin ratio and wnt5a and sFRP5 serum concentrations were measured by ELISA. sFRP5 expression in human adipose tissue biopsies was further determined on protein level by immunohistology.Pro-inflammatory wnt5a was not measurable in any serum sample of lean control subjects. In patients with obesity, however, wnt5a became significantly detectable consistent with low grade inflammation in such subjects. Caloric restriction resulted in a weight loss from 131.9 ± 4.0 to 112.3 ± 3.2 kg in the obese patients group. This was accompanied by a significant decrease of HOMA-IR and leptin-to-adiponectin ratio, indicating improved insulin sensitivity. Interestingly, these metabolic improvements were associated with a significant increase in serum concentrations of the anti-inflammatory factor and wnt5a-inhibitor sFRP5.Obesity is associated with elevated serum levels of pro-inflammatory wnt5a in humans. Furthermore, caloric restriction beneficially affects serum concentrations of anti-inflammatory sFRP5 in such subjects. These findings suggest a

  18. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  19. Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver.

    Science.gov (United States)

    Degirmenci, Bahar; Hausmann, George; Valenta, Tomas; Basler, Konrad

    2018-01-01

    The term "Wnt signaling" does not refer to one uniform signal transduction cascade. Instead, it describes the multiple discrete signals elicited by Wnt ligands following their interaction with distinct receptor complexes. The interaction of stem cells with niche cells is coordinated by the involvement of different signaling pathways, including Wnt signaling. The stem cell populations are highly sensitive to modulation of Wnt pathway activity. Wnt signaling is of paramount importance for stem cell self-renewal, survival, proliferation, differentiation, movement, and cell polarity. Aberrant activation of Wnt/β-catenin signaling is associated with the pathology of many types of cancer, such as colorectal cancer and hepatocellular carcinoma. Importantly, although often initiated by mutation(s) downstream of the Wnt-receptor complex, the progression of colorectal cancer still seems to be augmented by Wnt ligand-mediated signaling. This chapter focuses on the role of Wnt ligands in the intestine and the liver during homeostasis and cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Wnt Signaling in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-06-01

    Full Text Available Renal cell carcinoma (RCC accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.

  1. Notch and Wnt signaling in the emergence of hematopoietic stem cells

    DEFF Research Database (Denmark)

    Bigas, Anna; Guiu, Jordi; Gama-Norton, Leonor

    2013-01-01

    Hematopoietic stem cells (HSC), which reside in the marrow of adult mammals and sustain hematopoiesis for the lifetime of the organism, are specified and generated during embryonic development. We are just beginning to understand how HSC develop from more primitive cells and the complexity of the...... of the signaling pathways involved. In this work, we review the role of two crucial pathways, Notch and Wnt, in the specification and development of HSC and their nascent microenvironment, the arterial vessels....

  2. Wnt3 and Gata4 regulate axon regeneration in adult mouse DRG neurons.

    Science.gov (United States)

    Duan, Run-Shan; Liu, Pei-Pei; Xi, Feng; Wang, Wei-Hua; Tang, Gang-Bin; Wang, Rui-Ying; Saijilafu; Liu, Chang-Mei

    2018-05-05

    Neurons in the adult central nervous system (CNS) have a poor intrinsic axon growth potential after injury, but the underlying mechanisms are largely unknown. Wingless-related mouse mammary tumor virus integration site (WNT) family members regulate neural stem cell proliferation, axon tract and forebrain development in the nervous system. Here we report that Wnt3 is an important modulator of axon regeneration. Downregulation or overexpression of Wnt3 in adult dorsal root ganglion (DRG) neurons enhances or inhibits their axon regeneration ability respectively in vitro and in vivo. Especially, we show that Wnt3 modulates axon regeneration by repressing mRNA translation of the important transcription factor Gata4 via binding to the three prime untranslated region (3'UTR). Downregulation of Gata4 could restore the phenotype exhibited by Wnt3 downregulation in DRG neurons. Taken together, these data indicate that Wnt3 is a key intrinsic regulator of axon growth ability of the nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Wnt signaling in the intestinal epithelium: from endoderm to cancer.

    NARCIS (Netherlands)

    Gregorieff, A.; Clevers, J.C.

    2005-01-01

    The Wnt pathway controls cell fate during embryonic development. It also persists as a key regulator of homeostasis in adult self-renewing tissues. In these tissues, mutational deregulation of the Wnt cascade is closely associated with malignant transformation. The intestinal epithelium represents

  4. Epithelium-Derived Wnt Ligands Are Essential for Maintenance of Underlying Digit Bone.

    Science.gov (United States)

    Takeo, Makoto; Hale, Christopher S; Ito, Mayumi

    2016-07-01

    Clinically, many nail disorders accompany bone deformities, but whether the two defects are causally related is under debate. To investigate the potential interactions between the two tissue types, we analyzed epithelial-specific β-catenin-deficient mice, in which nail differentiation is abrogated. These mice showed regression of not only the nail plate but also of the underlying digit bone. Characterization of these bone defects revealed active bone resorption, which is suppressed by Wnt activation in osteoblast and osteoclast precursors. Furthermore, we found that Wntless expression, essential for Wnt ligand secretion, was lacking in the β-catenin-deficient nail epithelium and that genetic deletion of Wntless (Wls) in the nail epithelium led to the lack of Wnt activation in osteoblast and osteoclast precursors and subsequently led to defective regression of the underlying digit bone. Together, these data show that epithelial Wnt ligands can ultimately regulate Wnt signaling in osteoblast and osteoclast precursors, known to regulate bone homeostasis. These results reveal a critical role for the nail epithelium on the digit bone during homeostatic regeneration and show that Wnt/β-catenin signaling is critical for this interaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  6. The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org; Tewari, Shruti, E-mail: stewari@tcmedc.org; Atamna, Wafa, E-mail: watamna@tcmedc.org; Lazarova, Darina L., E-mail: dlazarova@tcmedc.org

    2011-06-10

    Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.

  7. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern.

    Directory of Open Access Journals (Sweden)

    Carlos González-Fernández

    Full Text Available Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression.Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor.Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.

  8. Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina

    Directory of Open Access Journals (Sweden)

    Yi Hyun

    2007-12-01

    Full Text Available Abstract Background The Wnt signaling pathway is a cellular communication pathway that plays critical roles in development and disease. A major class of Wnt signaling regulators is the Dickkopf (Dkk family of secreted glycoproteins. Although the biological properties of Dickkopf 1 (Dkk1 and Dickkopf 2 (Dkk2 are well characterized, little is known about the function of the related Dickkopf 3 (Dkk3 protein in vivo or in cell lines. We recently demonstrated that Dkk3 transcripts are upregulated during photoreceptor death in a mouse model of retinal degeneration. In this study, we characterized the activity of Dkk3 in Wnt signaling and cell death. Results Dkk3 was localized to Müller glia and retinal ganglion cells in developing and adult mouse retina. Western blotting confirmed that Dkk3 is secreted from Müller glia cells in culture. We demonstrated that Dkk3 potentiated Wnt signaling in Müller glia and HEK293 cells but not in COS7 cells, indicating that it is a cell-type specific regulator of Wnt signaling. This unique Dkk3 activity was blocked by co-expression of Dkk1. Additionally, Dkk3 displayed pro-survival properties by decreasing caspase activation and increasing viability in HEK293 cells exposed to staurosporine and H2O2. In contrast, Dkk3 did not protect COS7 cells from apoptosis. Conclusion These data demonstrate that Dkk3 is a positive regulator of Wnt signaling, in contrast to its family member Dkk1. Furthermore, Dkk3 protects against apoptosis by reducing caspase activity, suggesting that Dkk3 may play a cytoprotective role in the retina.

  9. Wnt-10b secreted from lymphocytes promotes differentiation of skin epithelial cells

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    Wnt-10b was originally isolated from lymphoid tissue and is known to be involved in a wide range of biological actions, while recently it was found to be expressed early in the development of hair follicles. However, few studies have been conducted concerning the role of Wnt-10b with the differentiation of skin epithelial cells. To evaluate its role in epithelial differentiation, we purified Wnt-10b from the supernatant of a concanavalin A-stimulated lymphocyte culture using an affinity column and investigated its effects on the differentiation of adult mouse-derived primary skin epithelial cells (MPSEC). MPSEC cultured with Wnt-10b showed morphological changes from cuboidal to spindle-shaped with inhibited proliferation, and also obtained characteristics of the hair shaft and inner root sheath of the hair follicle, represented by red-colored Ayoub Shklar staining, and reactions to AE-13 and AE-15 as seen with immunocytology. Further, RT-PCR analysis demonstrated the expression of mRNA for keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5, in Wnt-10b-treated MPSEC. In addition, involvement of the canonical Wnt signal pathway was demonstrated by a TCF reporter (pTOPFLASH) assay. These results suggest that Wnt-10b promotes the differentiation of MPSEC and may play an important role in hair follicle development by promoting differentiation of epithelial cells

  10. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome.

    Science.gov (United States)

    Désert, Romain; Mebarki, Sihem; Desille, Mireille; Sicard, Marie; Lavergne, Elise; Renaud, Stéphanie; Bergeat, Damien; Sulpice, Laurent; Perret, Christine; Turlin, Bruno; Clément, Bruno; Musso, Orlando

    2016-12-01

    Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Frontline Science: Wnt/β-catenin pathway promotes early engraftment of fetal hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Kwarteng, Edward O; Hétu-Arbour, Roxann; Heinonen, Krista M

    2018-03-01

    The switch from fetal to adult hematopoietic stem/progenitor cells (HSPCs) is associated with profound changes in several genetic programs. Although HSPC ageing corresponds to alterations in Wnt signaling, relatively little is known about the relative roles of different Wnt signaling pathways in HSPC ontogeny. We hypothesized that proliferating fetal HSPCs would be more dependent on canonical β-catenin-dependent Wnt signaling when compared to quiescent adult bone marrow HSPCs. We have compared here Wnt signaling activities in murine fetal and adult HSPCs and demonstrate a shift from Wnt/β-catenin-dependent signaling in fetal liver HSPCs to more predominantly noncanonical Wnt/polarity signaling in adult HSPCs. β-Catenin was selectively required for fetal HSPC competitiveness shortly after transplant, and protected cells from oxidative stress. Our results emphasize the complexity of Wnt signaling dynamics in HSPC maintenance and function. ©2018 Society for Leukocyte Biology.

  12. WNT Inhibitory Activity of Malus Pumila miller cv Annurca and Malus domestica cv Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations.

    Science.gov (United States)

    Riccio, Gennaro; Maisto, Maria; Bottone, Sara; Badolati, Nadia; Rossi, Giovanni Battista; Tenore, Gian Carlo; Stornaiuolo, Mariano; Novellino, Ettore

    2017-11-18

    Inhibitors of the Wingless-related Integration site (WNT)/β-catenin pathway have recently been under consideration as potential chemopreventive agents against Familial Adenomatous Polyposis (FAP). This autosomal-dominant syndrome is caused by germline mutations in the gene coding for the protein APC and leads to hyperactivation of the WNT/β-catenin signaling pathway, uncontrolled intestinal cell proliferation and formation of adenocarcinomas. The aim of the present work was to: (i) test, on in vitro cultures of cells carrying FAP mutations and on ex vivo biopsies of FAP patients, the WNT inhibitory activity of extracts from two common southern Italian apples, Malus pumila Miller cv. 'Annurca' and Malus domestica cv 'Limoncella'; (ii) identify the mechanisms underpinning their activities and; (iii) evaluate their potency upon gastrointestinal digestion. We here show that both Annurca and Limoncella apple extracts act as WNT inhibitors, mostly thanks to their polyphenolic contents. They inhibit the pathway in colon cells carrying FAP mutations with active dilutions falling in ranges close to consumer-relevant concentrations. Food-grade manufacturing of apple extracts increases their WNT inhibitory activity as result of the conversion of quercetin glycosides into the aglycone quercetin, a potent WNT inhibitor absent in the fresh fruit extract. However, in vitro simulated gastrointestinal digestion severely affected WNT inhibitory activity of apple extracts, as result of a loss of polyphenols. In conclusion, our results show that apple extracts inhibit the WNT pathway in colon cells carrying FAP mutations and represent a potential nutraceutical alternative for the treatment of this pathology. Enteric coating is advisable to preserve the activity of the extracts in the colon-rectal section of the digestive tract.

  13. WNT Inhibitory Activity of Malus Pumila miller cv Annurca and Malus domestica cv Limoncella Apple Extracts on Human Colon-Rectal Cells Carrying Familial Adenomatous Polyposis Mutations

    Directory of Open Access Journals (Sweden)

    Gennaro Riccio

    2017-11-01

    Full Text Available Inhibitors of the Wingless-related Integration site (WNT/β-catenin pathway have recently been under consideration as potential chemopreventive agents against Familial Adenomatous Polyposis (FAP. This autosomal-dominant syndrome is caused by germline mutations in the gene coding for the protein APC and leads to hyperactivation of the WNT/β-catenin signaling pathway, uncontrolled intestinal cell proliferation and formation of adenocarcinomas. The aim of the present work was to: (i test, on in vitro cultures of cells carrying FAP mutations and on ex vivo biopsies of FAP patients, the WNT inhibitory activity of extracts from two common southern Italian apples, Malus pumila Miller cv. ‘Annurca’ and Malus domestica cv ‘Limoncella’; (ii identify the mechanisms underpinning their activities and; (iii evaluate their potency upon gastrointestinal digestion. We here show that both Annurca and Limoncella apple extracts act as WNT inhibitors, mostly thanks to their polyphenolic contents. They inhibit the pathway in colon cells carrying FAP mutations with active dilutions falling in ranges close to consumer-relevant concentrations. Food-grade manufacturing of apple extracts increases their WNT inhibitory activity as result of the conversion of quercetin glycosides into the aglycone quercetin, a potent WNT inhibitor absent in the fresh fruit extract. However, in vitro simulated gastrointestinal digestion severely affected WNT inhibitory activity of apple extracts, as result of a loss of polyphenols. In conclusion, our results show that apple extracts inhibit the WNT pathway in colon cells carrying FAP mutations and represent a potential nutraceutical alternative for the treatment of this pathology. Enteric coating is advisable to preserve the activity of the extracts in the colon-rectal section of the digestive tract.

  14. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Li, Youjun, E-mail: liyoujunn@126.com [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong [Central Hospital Affiliated to Shenyang Medical College (China)

    2016-03-18

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  15. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    International Nuclear Information System (INIS)

    Li, Zhi; Li, Youjun; Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong

    2016-01-01

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  16. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins

    Directory of Open Access Journals (Sweden)

    Jesus Omar Muñoz Bello

    2015-08-01

    Full Text Available Cell signaling pathways are the mechanisms by which cells transduce external stimuli, which control the transcription of genes, to regulate diverse biological effects. In cancer, distinct signaling pathways, such as the Wnt/β-catenin pathway, have been implicated in the deregulation of critical molecular processes that affect cell proliferation and differentiation. For example, changes in β-catenin localization have been identified in Human Papillomavirus (HPV-related cancers as the lesion progresses. Specifically, β-catenin relocates from the membrane/cytoplasm to the nucleus, suggesting that this transcription regulator participates in cervical carcinogenesis. The E6 and E7 oncoproteins are responsible for the transforming activity of HPV, and some studies have implicated these viral oncoproteins in the regulation of the Wnt/β-catenin pathway. Nevertheless, new interactions of HPV oncoproteins with cellular proteins are emerging, and the study of the biological effects of such interactions will help to understand HPV-related carcinogenesis. Viruses 2015, 7 4735 This review addresses the accumulated evidence of the involvement of the HPV E6 and E7 oncoproteins in the activation of the Wnt/β-catenin pathway.

  17. Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells.

    Science.gov (United States)

    Kintner, Jennifer; Moore, Cheryl G; Whittimore, Judy D; Butler, Megan; Hall, Jennifer V

    2017-01-01

    Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures ( p Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis .

  18. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  19. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Directory of Open Access Journals (Sweden)

    Sindhu Subramaniam

    Full Text Available Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2. Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation. Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for

  20. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Science.gov (United States)

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  1. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    International Nuclear Information System (INIS)

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-01-01

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation

  2. Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine

    Directory of Open Access Journals (Sweden)

    Ashlee M. Strubberg

    2018-01-01

    Conclusions: CF intestine shows increased ISC proliferation and Wnt/β-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/β-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.

  3. Uterine Msx-1 and Wnt4 signaling becomes aberrant in mice with the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novel cytokine-homeobox-Wnt signaling in implantation.

    Science.gov (United States)

    Daikoku, Takiko; Song, Haengseok; Guo, Yong; Riesewijk, Anne; Mosselman, Sietse; Das, Sanjoy K; Dey, Sudhansu K

    2004-05-01

    Successful implantation absolutely depends on the reciprocal interaction between the implantation-competent blastocyst and the receptive uterus. Expression and gene targeting studies have shown that leukemia inhibitory factor (LIF), a cytokine of the IL-6 family, and Hoxa-10, an abdominalB-like homeobox gene, are crucial to implantation and decidualization in mice. Using these mutant mice, we sought to determine the importance of Msx-1 (another homeobox gene formerly known as Hox-7.1) and of Wnt4 (a ligand of the Wnt family) signaling in implantation because of their reported functions during development. We observed that Msx-1, Wnt4, and a Wnt antagonist sFRP4 are differentially expressed in the mouse uterus during the periimplantation period, suggesting their role in implantation. In addition, we observed an aberrant uterine expression of Msx-1 and sFRP4 in Lif mutant mice, and of Wnt4 and sFRP4 in Hoxa-10 mutant mice, further reinforcing the importance of these signaling pathways in implantation. Collectively, the present results provide evidence for a novel cytokine-homeotic-Wnt signaling network in implantation.

  4. The role of APC in WNT pathway activation in serrated neoplasia.

    Science.gov (United States)

    Borowsky, Jennifer; Dumenil, Troy; Bettington, Mark; Pearson, Sally-Ann; Bond, Catherine; Fennell, Lochlan; Liu, Cheng; McKeone, Diane; Rosty, Christophe; Brown, Ian; Walker, Neal; Leggett, Barbara; Whitehall, Vicki

    2018-03-01

    Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown. We examined aberrant nuclear β-catenin immunolocalization as a surrogate for WNT pathway activation and analyzed the entire APC gene coding sequence in serrated and conventional pathway polyps and cancers. WNT pathway activation was a common event in conventional pathway lesions with aberrant nuclear immunolocalization of β-catenin and truncating APC mutations in 90% and 89% of conventional adenomas and 82% and 70% of BRAF wild-type cancers, respectively. WNT pathway activation was seen to a lesser extent in serrated pathway lesions. It occurred at the transition to dysplasia in serrated polyps with a significant increase in nuclear β-catenin labeling from sessile serrated adenomas (10%) to sessile serrated adenomas with dysplasia (55%) and traditional serrated adenomas (9%) to traditional serrated adenomas with dysplasia (39%) (P=0.0001). However, unlike the conventional pathway, truncating APC mutations were rare in the serrated pathway lesions especially sessile serrated adenomas even when dysplastic (15%) and in the BRAF mutant cancers with microsatellite instability that arise from them (8%). In contrast, APC missense mutations that were rare in conventional pathway adenomas and cancers (3% in BRAF wild-type cancers) were more frequent in BRAF mutant cancers with microsatellite instability (32%). We conclude that increased WNT signaling is important in the transition to malignancy in the serrated pathway but that APC mutation is less common and the spectrum of mutations is different than in conventional colorectal carcinogenesis. Moderate impact APC mutations and non-APC-related causes of increased WNT signaling may have a more important role in serrated neoplasia than the truncating APC mutations

  5. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments.

    Science.gov (United States)

    Sezgin, Erdinc; Azbazdar, Yagmur; Ng, Xue W; Teh, Cathleen; Simons, Kai; Weidinger, Gilbert; Wohland, Thorsten; Eggeling, Christian; Ozhan, Gunes

    2017-08-01

    While the cytosolic events of Wnt/β-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/β-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  6. Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas

    International Nuclear Information System (INIS)

    Voorham, Quirinus JM; Mulder, Chris JJ; Engeland, Manon van; Meijer, Gerrit A; Steenbergen, Renske DM; Carvalho, Beatriz; Janssen, Jerry; Tijssen, Marianne; Snellenberg, Suzanne; Mongera, Sandra; Grieken, Nicole CT van; Grabsch, Heike; Kliment, Martin; Rembacken, Bjorn J

    2013-01-01

    Nonpolypoid adenomas are a subgroup of colorectal adenomas that have been associated with a more aggressive clinical behaviour compared to their polypoid counterparts. A substantial proportion of nonpolypoid and polypoid adenomas lack APC mutations, APC methylation or chromosomal loss of the APC locus on chromosome 5q, suggesting the involvement of other Wnt-pathway genes. The present study investigated promoter methylation of several Wnt-pathway antagonists in both nonpolypoid and polypoid adenomas. Quantitative methylation-specific PCR (qMSP) was used to evaluate methylation of four Wnt-antagonists, SFRP2, WIF-1, DKK3 and SOX17 in 18 normal colorectal mucosa samples, 9 colorectal cancer cell lines, 18 carcinomas, 44 nonpolypoid and 44 polypoid adenomas. Results were integrated with previously obtained data on APC mutation, methylation and chromosome 5q status from the same samples. Increased methylation of all genes was found in the majority of cell lines, adenomas and carcinomas compared to normal controls. WIF-1 and DKK3 showed a significantly lower level of methylation in nonpolypoid compared to polypoid adenomas (p < 0.01). Combining both adenoma types, a positive trend between APC mutation and both WIF-1 and DKK3 methylation was observed (p < 0.05). Methylation of Wnt-pathway antagonists represents an additional mechanism of constitutive Wnt-pathway activation in colorectal adenomas. Current results further substantiate the existence of partially alternative Wnt-pathway disruption mechanisms in nonpolypoid compared to polypoid adenomas, in line with previous observations

  7. Research progress in the radioprotective effect of the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Wang, Jin-Feng; Liu, Chao; Zhang, Qu; Huang, Guan-Hong

    2013-01-01

    Irradiation from diverse sources is ubiquitous and closely associated with human activities. Radiation therapy (RT), an important component of multiple radiation origins, is a common therapeutic modality for cancer. More importantly, RT provides significant contribution to oncotherapy by killing tumor cells. However, during the course of therapy, irradiation of normal tissues can result in a wide range of side effects, including self-limited acute toxicities, mild chronic symptoms, or severe organ dysfunction. Although numerous promising radioprotective agents have emerged, only a few have successfully entered the market because of various limitations. At present, the widely accepted hypothesis for protection against radiation-caused injury involves the Wnt canonical pathway. Activating the Wnt/β-catenin signaling pathway may protect the salivary gland, oral mucosa, and gastrointestinal epithelium from radiation damage. The underlying mechanisms include inhibiting apoptosis and preserving normal tissue functions. However, aberrant Wnt signaling underlies a wide range of pathologies in humans, and its various components contribute to cancer. Moreover, studies have suggested that Wnt/β-catenin signaling may lead to radioresistance of cancer stem cell. These facts markedly complicate any definition of the exact function of the Wnt pathway

  8. Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis

    Science.gov (United States)

    Aurrekoetxea, Maitane; Irastorza, Igor; García-Gallastegui, Patricia; Jiménez-Rojo, Lucia; Nakamura, Takashi; Yamada, Yoshihiko; Ibarretxe, Gaskon; Unda, Fernando J.

    2016-01-01

    Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. Results: Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts. PMID:27066482

  9. Wnt/β-catenin regulates the activity of Epiprofin/Sp6, SHH, FGF and BMP to coordinate the stages of odontogenesis

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2016-03-01

    Full Text Available Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO, a specific inhibitor of GSK-3 activity. Results: Overactivatingthe Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh, Epiprofin (Epfn and Fibroblast growth factor8 (Fgf8, which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4, Fibroblast growth factor10 (Fgf10, Muscle segment homeobox 1 (Msx-1, Bone Morphogenetic protein 4 (Bmp4 and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1 were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.

  10. Synergistic role of 5-azacytidine and ascorbic acid in directing cardiosphere derived cells to cardiomyocytes in vitro by downregulating Wnt signaling pathway via phosphorylation of β-catenin.

    Directory of Open Access Journals (Sweden)

    Reddy Sailaja Mundre

    Full Text Available Cardiosphere derived cells (CDCs represent a valuable source in stem cell based therapy for cardiovascular diseases, yet poor differentiation rate hinders the transplantation efficiency. The aim of this study is to check the ability of 5-Azacytidine (Aza alone and in combination with ascorbic acid (Aza+AA in delineating CDCs to cardiomyogenesis and the underlying Wnt signaling mechanism in induced differentiation.CDCs were treated with Aza and Aza+AA for a period of 14 days to examine the expression of cardiac specific markers and Wnt downstream regulators by immunofluorescence, real time PCR and western blot.Results revealed that Aza+AA induced efficient commitment of CDCs to cardiomyogenic lineage. Immunofluorescence analysis showed significant augment for Nkx 2.5, GATA 4 and α-Sarcomeric actinin markers in Aza+AA group than control group (p = 0.0118, p = 0.009 and p = 0.0091, respectively. Relative upregulation of cardiac markers, Nkx 2.5 (p = 0.0156, GATA 4 (p = 0.0087 and down regulation of Wnt markers, β-catenin (p = 0.0107 and Cyclin D1 (p = 0. 0116 in Aza+AA group was revealed by RNA expression analysis. Moreover, the Aza+AA induced prominent expression of GATA 4, α-Sarcomeric actinin and phospho β-catenin while non phospho β-catenin and Cyclin D1 expression was significantly suppressed as displayed in protein expression analysis. Generation of spontaneous beating in Aza+AA treated CDCs further reinforced that Aza+AA accelerates the cardiomyogenic potential of CDCs.Combined treatment of Aza along with AA implicit in inducing cardiomyogenic potential of CDCs and is associated with down regulating Wnt signaling pathway. Altogether, CDCs represent a valuable tool for the treatment of cardiovascular disorders.

  11. Wnt-inducible protein (WISP-1 is a key regulator of alveolar epithelial cell hyperplasia in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    2006-12-01

    Full Text Available Fibrotic lung disease is characterized by distorted lung architecture and severe loss of respiratory function secondary to alveolar epithelial cell (AEC hyperplasia, enhanced extracellular matrix (ECM deposition and fibroblast proliferation. Repetitive epithelial injuries with impaired alveolar wound healing and altered AEC gene expression represent a trigger mechanism for development of fibrosis. To reveal gene regulatory networks in lung fibrosis, we compared gene expression profiles of freshly isolated AEC obtained from mice 14 days after saline or bleomycin (BM instillation using whole genome microarray analysis. Several genes of the Wnt signaling pathway, in particular WISP-1, a member of the CCN family, were highly regulated. WISP-1 protein expression was demonstrated in proliferating AEC in BM-treated lungs by immunofluorescence. When analyzing all six CCN family members, WISP-1 was upregulated the most 14 days after BM challenge, as analyzed by qRT-PCR. To elucidate WISP-1 function, cultured primary mouse AEC were stimulated with WISP-1 and demonstrated a 230% increase in proliferation, analyzed by 3H-thymidine incorporation. This was mediated through enhanced phosphorylation, but not expression of protein kinase B (PKB/Akt, as detected by immunoblot. Finally, increased expression of WISP-1 was detected in lung homogenates and isolated AEC from IPF patients, using qRT-PCR. Immunohistochemical analysis of WISP-1 and Ki67 verified the existence of hyperplastic and proliferative AEC expressing WISP-1 in vivo. Our study thus identifies WISP-1 as a novel regulator of AEC injury and repair, and suggests that WISP-1 is a key mediator in pulmonary fibrosis.

  12. Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy.

    Science.gov (United States)

    Melucci, Elisa; Casini, Beatrice; Ronchetti, Livia; Pizzuti, Laura; Sperati, Francesca; Pallocca, Matteo; De Nicola, Francesca; Goeman, Frauke; Gallo, Enzo; Amoreo, Carla Azzurra; Sergi, Domenico; Terrenato, Irene; Vici, Patrizia; Di Lauro, Luigi; Diodoro, Maria Grazia; Pescarmona, Edoardo; Barba, Maddalena; Mazzotta, Marco; Mottolese, Marcella; Fanciulli, Maurizio; Ciliberto, Gennaro; De Maria, Ruggero; Buglioni, Simonetta; Maugeri-Saccà, Marcello

    2018-02-05

    An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZ pos /WNT mut ) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZ pos /WNT mut signature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZ pos /WNT mut signature negatively impacted overall survival. Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be

  13. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    International Nuclear Information System (INIS)

    Perkins, Timothy N.; Dentener, Mieke A.; Stassen, Frank R.; Rohde, Gernot G.; Mossman, Brooke T.; Wouters, Emiel F.M.; Reynaert, Niki L.

    2016-01-01

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  14. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Timothy N.; Dentener, Mieke A. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Stassen, Frank R. [Department of Medical Microbiology, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Rohde, Gernot G. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Mossman, Brooke T. [Department of Pathology, University of Vermont College of Medicine, Burlington, VT (United States); Wouters, Emiel F.M. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Reynaert, Niki L., E-mail: n.reynaert@maastrichtuniversity.nl [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands)

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  15. Derricin and derricidin inhibit Wnt/β-catenin signaling and suppress colon cancer cell growth in vitro.

    Directory of Open Access Journals (Sweden)

    Barbara F Fonseca

    Full Text Available Overactivation of the Wnt/β-catenin pathway in adult tissues has been implicated in many diseases, such as colorectal cancer. Finding chemical substances that can prevent this phenomenon is an emerging problem. Recently, several natural compounds have been described as Wnt/β-catenin inhibitors and might be promising agents for the control of carcinogenesis. Here, we describe two natural substances, derricin and derricidin, belonging to the chalcone subclass, that show potent transcriptional inhibition of the Wnt/β-catenin pathway. Both chalcones are able to affect the cell distribution of β-catenin, and inhibit Wnt-specific reporter activity in HCT116 cells and in Xenopus embryos. Derricin and derricidin also strongly inhibited canonical Wnt activity in vitro, and rescued the Wnt-induced double axis phenotype in Xenopus embryos. As a consequence of Wnt/β-catenin inhibition, derricin and derricidin treatments reduce cell viability and lead to cell cycle arrest in colorectal cancer cell lines. Taken together, our results strongly support these chalcones as novel negative modulators of the Wnt/β-catenin pathway and colon cancer cell growth in vitro.

  16. Crossroads of Wnt and Hippo in epithelial tissues.

    Science.gov (United States)

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  18. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis.

    Science.gov (United States)

    Später, Daniela; Hill, Theo P; O'sullivan, Roderick J; Gruber, Michaela; Conner, David A; Hartmann, Christine

    2006-08-01

    Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.

  19. Parameter-free methods distinguish Wnt pathway models and guide design of experiments

    KAUST Repository

    MacLean, Adam L.

    2015-02-17

    The canonical Wnt signaling pathway, mediated by β-catenin, is crucially involved in development, adult stem cell tissue maintenance, and a host of diseases including cancer. We analyze existing mathematical models of Wnt and compare them to a new Wnt signaling model that targets spatial localization; our aim is to distinguish between the models and distill biological insight from them. Using Bayesian methods we infer parameters for each model from mammalian Wnt signaling data and find that all models can fit this time course. We appeal to algebraic methods (concepts from chemical reaction network theory and matroid theory) to analyze the models without recourse to specific parameter values. These approaches provide insight into aspects of Wnt regulation: the new model, via control of shuttling and degradation parameters, permits multiple stable steady states corresponding to stem-like vs. committed cell states in the differentiation hierarchy. Our analysis also identifies groups of variables that should be measured to fully characterize and discriminate between competing models, and thus serves as a guide for performing minimal experiments for model comparison.

  20. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    Directory of Open Access Journals (Sweden)

    Ana Gracanin

    Full Text Available Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1 and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.