WorldWideScience

Sample records for generates oxidized linoleic

  1. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  2. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  3. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  4. Oxidative modifications of conjugated and unconjugated linoleic acid during heating.

    Science.gov (United States)

    Giua, L; Blasi, F; Simonetti, M S; Cossignani, L

    2013-10-15

    The oxidative stability of conjugated linoleic (CLA) and linoleic (LA) acids in different chemical forms (free acids, methyl esters and homogeneous triacylglycerols) was compared. All model systems were heated at 180°C for different times (15, 30, 45 and 60min). The primary oxidation products were evaluated by spectrophometric analysis, while the volatile compounds were determined by solid phase micro-extraction (SPME), coupled with gas chromatography-mass spectrometry (HRGC-MS). The isomer profile modifications were investigated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) equipped with an UV detector. Generally, peroxide values decreased during the heating time. Among the volatiles, saturated aldehydes were the most represented compounds. Isomerization of cis,trans and trans,cis CLA to trans,trans isomers was observed mainly for the methyl form of CLA. The three different chemical forms of LA never showed isomerization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Vitamin E supplementation in elderly lowers the oxidation rate of linoleic acid in LDL.

    NARCIS (Netherlands)

    Waart, de F.; Moser, U.; Kok, F.J.

    1997-01-01

    .Oxidation of LDL–linoleic acid (LDL–LA), a major substrate for lipid peroxidation, may be counteracted by the antioxidant vitamin E. In a 3-month randomized double-blind placebo-controlled trial in 83 apparently healthy Dutch elderly, aged 67–85 years, the direct protective effect of 100 IU vitamin

  6. Emulsifying Property and Antioxidative Activity of Cuttlefish Skin Gelatin Modified with Oxidized Linoleic Acid and Oxidized Tannic Acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    Cuttlefish skin gelatins modified with oxidized linoleic acid (OLA) and oxidized tannic acid (OTA) were characterized and determined for emulsifying properties and antioxidative activity. Modification of gelatin with 5% OTA increased the total phenolic content and 1,1-diphenyl-2-picrylhydrazyl,

  7. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  8. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  9. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa

    Science.gov (United States)

    Song, Hao; Lavoie, Michel; Fan, Xiaoji; Tan, Hana; Liu, Guangfu; Xu, Pengfei; Fu, Zhengwei; Paerl, Hans W; Qian, Haifeng

    2017-01-01

    The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors. PMID:28398349

  10. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa.

    Science.gov (United States)

    Song, Hao; Lavoie, Michel; Fan, Xiaoji; Tan, Hana; Liu, Guangfu; Xu, Pengfei; Fu, Zhengwei; Paerl, Hans W; Qian, Haifeng

    2017-08-01

    The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors.

  11. Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis and Clarias batrachus)

    International Nuclear Information System (INIS)

    Bandyopadhyay, G.K.; Dutta, J.; Ghosh, S.

    1982-01-01

    The fate of [1(- 14 C] linoleic acid and [1( 14 C] linolenic acid in the liver slices and also in the liver tissues of live carnivorous catfish, Heteropneustes fossilis and Clarias batrachus, was studied. Incorporation of the fatty acids into different lipid classes in the live fish differed greatly from the tissue slices, indicating certain physiological control operative in vivo. The extent of desaturation and chain elongation of linoleic and linolenic acids into long-chain polyunsaturated fatty acids was low. Linolenic acid was oxidized (thus labeling the saturated fatty acid with liberated 14 C-acetyl-CoA) in preference to linoleic acid, and this oxidation also seemed to be under physiological control since both of the fatty acids were poorly oxidized in the tissue slices and in the killed fish. These fish can therefore recognize the difference in the acyl chain structures of linoleate and linolenate. The higher oxidation of linolenic acid and poor capacity for its conversion to longer chain, highly unsaturated derivatives indicates a higher demand for the dietary supply of these essential fatty acids in these two species

  12. Characterization and stability analysis of zinc oxide nanoencapsulated conjugated linoleic acid.

    Science.gov (United States)

    Choy, Jin-Ho; Shin, Jiwon; Lim, Seung-Yong; Oh, Jae-Min; Oh, Mi-Hwa; Oh, Sangsuk

    2010-08-01

    Nanoencapsulation technology has a diverse range of applications, including drug-delivery systems (DDS) and cosmetic and chemical carriers, because it can deliver various bio- and organic-molecules and improve their stabilities. Conjugated linoleic acid (CLA) has health benefits, including being an anticancer agent, but it decreases flavor due to volatiles from oxidation. To improve the stability of CLA for food applications, nanoencapsulated CLA was synthesized for use in zinc basic salt (ZBS) and characterized by powder X-ray diffractometry, thermogravimetric analysis (TGA), elemental CHN analysis, inductively coupled plasma (ICP) analysis, UV/VIS spectroscopy, and FTIR spectroscopy. The thermal stability of nanoencapsulated CLA at 180 degrees C, a temperature similar to that used in cooking, was analyzed by gas chromatography. The gallery height of nanoencapsulated CLA was determined to be approximately 26 A through powder X-ray diffractometry; therefore, the CLA molecules were closely packed with zig-zag form between the intracrystalline spaces of nano particles. Elemental CHN analysis and ICP data determined the chemical composition of nanoencapsulated CLA to be Zn(4.86)(OH)(8.78)(CLA)(0.94). By TGA, it was determined about 45% (wt/wt) of weight loss corresponded to CLA, which is good agreement with the 42.13% (wt/wt) determined from high-performance liquid chromatography (HPLC) and elemental CHN analysis. UV/VIS spectroscopy and Fourier-transformed infrared (FTIR) spectroscopy showed encapsulated CLA maintained a conjugated diene structure, supporting the presence of CLA. Nanoencapsulation improved the thermal stability of CLA by about 25%, compared to pristine CLA. Practical Application: This system can be used for protection of encapsulated negatively-charged food ingredients from thermal processing.

  13. Conjugated Linoleic Acid: good or bad nutrient

    Directory of Open Access Journals (Sweden)

    Gonçalves Daniela C

    2010-10-01

    Full Text Available Abstract Conjugated linoleic acid (CLA is a class of 28 positional and geometric isomers of linoleic acid octadecadienoic.Currently, it has been described many benefits related to the supplementation of CLA in animals and humans, as in the treatment of cancer, oxidative stress, in atherosclerosis, in bone formation and composition in obesity, in diabetes and the immune system. However, our results show that, CLA appears to be not a good supplement in patients with cachexia.

  14. Purification and site-directed mutagenesis of linoleate 9S-dioxygenase-allene oxide synthase of Fusarium oxysporum confirms the oxygenation mechanism.

    Science.gov (United States)

    Chen, Yang; Jernerén, Fredrik; Oliw, Ernst H

    2017-07-01

    Plants and fungi form jasmonic acid from α-linolenic acid. The first two steps of biosynthesis in plants occur by sequential transformation by 13S-lipoxygenase and allene oxide synthase (AOS). The biosynthesis in fungi may follow this classical scheme, but the only fungal AOS discovered so far are cytochromes P450 (CYP) fused to 8- and 9-dioxygenases (DOX). In the present report, we purified recombinant 9S-DOX-AOS of Fusarium oxysporum from cell lysate by cobalt affinity chromatography to near homogeneity and studied key residues by site-directed mutagenesis. Sequence homology with 8R-DOX-linoleate diol synthases (8R-DOX-LDS) suggested that Tyr414 catalyzes hydrogen abstraction and that Cys1051 forms the heme thiolate ligand. Site-directed mutagenesis (Tyr414Phe; Cys1051Ser) led to loss of 9S-DOX and 9S-AOS activities, respectively, but other important residues in the CYP parts of 5,8- and 7,8-LDS or 9R-AOS were not conserved. The UV-visible spectrum of 9S-DOX-AOS showed a Soret band at 409 nm, which shifted to 413 nm in the Cys1051Ser mutant. The 9S-AOS of the Tyr414Phe mutant transformed 9S-hydroperoxides of α-linolenic and linoleic acids to allene oxides/α-ketols, but it did not transform 13-hydroperoxides. We conclude that 9S- and 8R-DOX catalyze hydrogen abstraction at C-11 and C-8, respectively, by homologous Tyr residues. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Distribution of 14C after oral administration of [U-14C]labeled methyl linoleate hydroperoxides and their secondary oxidation products in rats

    International Nuclear Information System (INIS)

    Oarada, M.; Miyazawa, T.; Kaneda, T.

    1986-01-01

    To study the toxicity of low molecular weight (LMW) compounds formed during the autoxidation of oils, 14 C-labeled primary monomeric compounds (methyl linoleate hydroperoxides) and secondary oxidation products, i.e., polymer and LMW compounds prepared from autoxidized methyl [U- 14 C]linoleate hydroperoxides (MLHPO) were orally administered to rats, and their radioactive distributions in tissues and organs were compared. The polymeric fraction consisted mainly of dimers of MLHPO. For the LMW fraction, 4-hydroxy-2-nonenal, 8-hydroxy methyl octanoate and 10-formyl methyl-9-decenoate were identified as major constituents by gas chromatography-mass spectrometry (GC-MS) after chemical reduction and derivatization. When LMW compounds were administered to rats, 14 CO 2 expiration and the excreted radioactivity in urine in 12 hr were significantly higher than those from polymer or MLHPO administration. Maximum 14 CO 2 expiration appeared 2-4 hr after the dose of LMW compounds. Radioactivity of the upper part of small intestines six hr after the dose of LMW compounds was higher than the values from administered polymer or MLHPO. The remaining radioactivity in the digestive contents and feces 12 hr after administration of LMW compounds was much lower than the values observed from administered polymer or MLHPO. Among internal organs, the liver contained the highest concentration of radioactivities from polymer, MLHPO and LMW fractions, and an especially higher level of radioactivity was found in liver six hr after the administration of LMW compounds. Six hours after the dose of LMW compounds, a relatively higher level of radioactivity also was detected in kidney, brain, heart and lung

  16. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing.

    Science.gov (United States)

    Rosner, Elisabeth; Voigt, Christian C

    2018-02-19

    Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats ( Nyctalus noctula ). Pre-hibernating noctule bats that were fed 13 C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared with conspecifics fed 13 C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on five subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13 C enrichment (excess atom percentage, APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13 C-enriched LA than in bats fed 13 C-enriched PA for both states (torpor and arousal), and also for both periods. Thus, hibernating bats selectively oxidized endogenous LA instead of PA, probably because of faster transportation rates of polyunsaturated fatty acids compared with saturated fatty acids. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality. © 2018. Published by The Company of Biologists Ltd.

  17. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  18. Suplementação com ácido linoléico conjugado: estabilidade oxidativa dos suplementos e correlações com conteúdo dos lípides totais hepáticos e indicadores da oxidação dos lípides biológicos de ratos Wistar Conjugated linoleic acid supplementation: oxidative stability of supplements and correlations with total hepatic lipid contents and biological lipid oxidation indicators in Wistar rats

    Directory of Open Access Journals (Sweden)

    Lilia Ferreira Santos-Zago

    2009-02-01

    Full Text Available OBJETIVO:O objetivo do trabalho foi avaliar a estabilidade oxidativa de misturas comerciais de ácido linoléico conjugado e buscar possível correlação entre a suplementação e o conteúdo total de lípides hepáticos, e também de alguns indicadores da oxidação lipídica em ratos. MÉTODOS:Um ensaio biológico com 30 ratos divididos em três grupos (n=10 caracterizando os grupos controle e suplementados com as misturas comerciais AdvantEdge® e One® foi realizado. A concentração administrada foi de 2% em relação ao consumo de dieta e os animais foram suplementados durante 42 dias. O conteúdo total de lípides do fígado foi determinado e a morfologia do órgão foi examinada por meio de microscopia ótica. Índice de peróxido e malondialdeído foram determinados para avaliar a estabilidade oxidativa dos suplementos in vitro. Índice de peróxido, malondialdeído, 8-iso-PGF2α isoprostana e catalase foram determinados como indicadores da oxidação dos lípides biológicos. RESULTADOS: Os resultados demonstraram baixa estabilidade das misturas comerciais à oxidação in vitro. As associações entre o consumo de ácido linoléico conjugado e malondialdeído (r=-0,7914, pOBJECTIVE:The claimed action of conjugated linoleic acid as an antioxidant is unexpected and unclear, in view of its chemical structure - a conjugated diene, i.e., a fatty acid in its initial stage of autoxidation. Indeed, it can be speculated that it could act as a pro-oxidant, increasing oxidative stress in biological systems, nevertheless it has carbon-carbon bonds in the trans configuration. The objective of the present work was to evaluate the oxidative stability of commercial mixtures, and to investigate a possible correlation between conjugated linoleic acid supplementation and total hepatic lipid content, as well as some lipid oxidation indicators in rats. METHODS:A biological assay was done with thirty rats divided into three groups (n=10 characterized as

  19. Generation of novel metabolites of dietary linoleic acid (18:2n6) by guinea pig epidermis

    Energy Technology Data Exchange (ETDEWEB)

    Chapkin, R.S.; Ziboh, V.A.

    1986-03-05

    Although the authors have demonstrated the inability of rat and guinea pig (GP) skin enzyme preparations to desaturate 18:2n6 into gammalinolenic acid (18:3n6) using an in vitro microsomal system, the fate of this dietary essential fatty acid in the GP epidermis is unknown. To explore the fate of 18:2n6, intact tissue slices from GP epidermis were incubated with (1-/sup 14/C)18:2n6. After incubation, the extracted lipids were transesterified using methanolic-HCL. The fatty acid methyl esters were analyzed using a combination of (i) argentation TLC, scanned using a proportional TLC radioscanner, and (ii) reverse phase HPLC, equipped with a flow through radioscanner. The results indicate that the intact epidermis metabolized /sup 14/C-18:2n6 to a group of novel products more polar than 18:2n6. In subsequent experiments, /sup 14/C-18:2n6 was either incubated with the 800 xg supernatant, the 105,000 xg pellet or supernatant from GP epidermis. Metabolism of 18:2n6 by the high speed supernatant resulted in the generation of polar products with chromatographic properties of not greater than 2 double bonds. These results indicate that although the GP epidermis lacks the capacity to desaturate 18:2n6 to 18:3n6, it can convert dietary 18:2n6 into a group of novel polar metabolites via a cytosolic mediated process. The function of these metabolites in the GP integumentary system remains to be determined.

  20. Generation of novel metabolites of dietary linoleic acid (18:2n6) by guinea pig epidermis

    International Nuclear Information System (INIS)

    Chapkin, R.S.; Ziboh, V.A.

    1986-01-01

    Although the authors have demonstrated the inability of rat and guinea pig (GP) skin enzyme preparations to desaturate 18:2n6 into gammalinolenic acid (18:3n6) using an in vitro microsomal system, the fate of this dietary essential fatty acid in the GP epidermis is unknown. To explore the fate of 18:2n6, intact tissue slices from GP epidermis were incubated with [1- 14 C]18:2n6. After incubation, the extracted lipids were transesterified using methanolic-HCL. The fatty acid methyl esters were analyzed using a combination of (i) argentation TLC, scanned using a proportional TLC radioscanner, and (ii) reverse phase HPLC, equipped with a flow through radioscanner. The results indicate that the intact epidermis metabolized 14 C-18:2n6 to a group of novel products more polar than 18:2n6. In subsequent experiments, 14 C-18:2n6 was either incubated with the 800 xg supernatant, the 105,000 xg pellet or supernatant from GP epidermis. Metabolism of 18:2n6 by the high speed supernatant resulted in the generation of polar products with chromatographic properties of not greater than 2 double bonds. These results indicate that although the GP epidermis lacks the capacity to desaturate 18:2n6 to 18:3n6, it can convert dietary 18:2n6 into a group of novel polar metabolites via a cytosolic mediated process. The function of these metabolites in the GP integumentary system remains to be determined

  1. Novel metabolic pathways for linoleic and arachidonic acid metabolism.

    Science.gov (United States)

    Moghaddam, M; Motoba, K; Borhan, B; Pinot, F; Hammock, B D

    1996-08-13

    Mouse liver microsomes oxidized linoleic acid to form 9,10- or 12,13-epoxyoctadecenoate. These monoepoxides were subsequently hydrolyzed to their corresponding diols in the absence of the microsomal epoxide hydrolase inhibitor, 1,2-epoxy-3,3,3-trichloropropane. Furthermore, both 9,10- and 12,13-epoxyoctadecenoates were oxidized to diepoxyoctadecanoate at apparently identical rates by mouse liver microsomal P-450 epoxidation. Both epoxyoctadecanoates and diepoxyoctadecanoates were converted to tetrahydrofuran-diols by microsomes. Tetrahydroxides of linoleate were produced as minor metabolites. Arachidonic acid was metabolized to epoxyeicosatrienoates, dihydroxyeicosatrienoates, and monohydroxyeicosatetraenoates by the microsomes. Microsomes prepared from clofibrate (but not phenobarbital) -treated mice exhibited much higher production rates for epoxyeicosatrienoates and vic-dihydroxyeicosatrienoates. This indicated an induction of P-450 epoxygenase(s) and microsomal epoxide hydrolase in mice by clofibrate and not by phenobarbital. Incubation of synthetic epoxyeicosatrienoates with microsomes led to the production of diepoxyeicosadienoates. Among chemically generated diepoxyeicosadienoate isomers, three of them possessing adjacent diepoxides were hydrolyzed to their diol epoxides which cyclized to the corresponding tetrahydrofuran-diols by microsomes as well as soluble epoxide hydrolase at a much higher rate. Larger cyclic products from non-adjacent diepoxides were not observed. The results of our in vitro experiments suggest that linoleic and arachidonic acid can be metabolized to their tetrahydrofuran-diols by two consecutive microsomal cytochrome P-450 epoxidations followed by microsomal or soluble epoxide hydrolase catalyzed hydrolysis of the epoxides. Incubation experiments with the S-9 fractions indicate that the soluble epoxide hydrolase is more important in this conversion. This manuscript is the first report of techniques for the separation and

  2. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    Science.gov (United States)

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  3. Anaerobic degradation of linoleic oleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  4. A plasma needle generates nitric oxide

    International Nuclear Information System (INIS)

    Stoffels, E; Gonzalvo, Y Aranda; Whitmore, T D; Seymour, D L; Rees, J A

    2006-01-01

    Generation of nitric oxide (NO) by a plasma needle is studied by means of mass spectrometry. The plasma needle is an atmospheric glow generated by a radio-frequency excitation in a mixture of helium and air. This source is used for the treatment of living tissues, and nitric oxide may be one of the most important active agents in plasma therapy. Efficient NO generation is of particular importance in the treatment of cardiovascular diseases. Mass spectrometric measurements have been performed under various plasma conditions; gas composition in the plasma and conversion of feed gases (nitrogen and oxygen) into other species has been studied. Up to 30% of the N 2 and O 2 input is consumed in the discharge, and NO has been identified as the main conversion product

  5. Gas Generation from Actinide Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  6. Gas Generation from Actinide Oxide Materials

    International Nuclear Information System (INIS)

    Bailey, George; Bluhm, Elizabeth; Lyman, John; Mason, Richard; Paffett, Mark; Polansky, Gary; Roberson, G. D.; Sherman, Martin; Veirs, Kirk; Worl, Laura

    2000-01-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents

  7. 21 CFR 184.1065 - Linoleic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Linoleic acid. 184.1065 Section 184.1065 Food and... Substances Affirmed as GRAS § 184.1065 Linoleic acid. (a) Linoleic acid ((Z, Z)-9, 12-octadecadienoic acid (C17H31COOH) (CAS Reg. No. 60-33-3)), a straight chain unsaturated fatty acid with a molecular weight of 280.5...

  8. Evaluation of therapeutic effect of omega-6 linoleic acid and thymoquinone enriched extracts from Nigella sativa oil in the mitigation of lipidemic oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Shafeeque; Beg, Zafarul H

    2016-06-01

    Nigella sativa belongs to the Ranunculaceae family. The therapeutic role of methanolic extract (ME) and volatile oil (VO) fractionated from N. sativa seed oil was investigated for antiperoxidative and antioxidant effects in atherogenic suspension fed rats. We examined the protective effects of ME and VO on the enzymatic and nonenzymatic antioxidants status in erythrocytes and the livers of atherogenic suspension fed rats. As a marker of lipid peroxidation, we estimated the conjugated diene, lipid hydroperoxide, and malondialdehyde concentrations in plasma in the following groups of rats: normolipidemic control, hyperlipidemic control, hyperlipidemic methanolic extract, and hyperlipidemic volatile oil. ME 500 mg or VO 100 mg/kg body weight of male rat was orally administrated for 30 d. Pretreatment of hyperlipidemic rats with these test extracts resulted in a significant decrease (P < 0.001) in the level of lipid peroxidation markers, conjugated diene, lipid hydroperoxide, and malondialdehyde (16-50%) compared to the hyperlipidemic control rats. In addition, ME and VO significantly (P < 0.001) elevated the hepatic and erythrocyte superoxide dismutase, catalase, and glutathione reductase activities (19-58%) compared to the hyperlipidemic rats. In liver homogenate of hyperlipidemic-ME and hyperlipidemic-VO, the glutathione-S-transferase activity was protected by 93% and 89%, and in erythrocytes, the glutathione peroxidase activity was protected by 90% and 77%, respectively. Interestingly, reduced glutathione level and activities of ATPases were protected to near normal levels. Pretreatment of rats with the test extracts replenished effectively (P < 0.001) the plasma total antioxidant power by an average of 88% against free radicals. The lipidemic oxidative stress was effectively mitigated by antiperoxidative activities of ME and VO. Thus, these test extracts, especially ME, may be used as antioxidant as well as hypolipidemic agents in the form of natural food

  9. 21 CFR 582.5065 - Linoleic acid.

    Science.gov (United States)

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5065 Linoleic acid. (a) Product. Linoleic acid prepared from edible fats and oils and free from chick-edema factor. (b) Conditions of use. This substance is generally recognized as safe when...

  10. Docosahexaenoic acid prevents trans-10, cis-12 conjugated linoleic acid-induced non-alcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation

    Science.gov (United States)

    Background: Concomitant supplementation with docosahexaenoic acid (22:6 n-3; DHA) prevented t10, c12- conjugated linoleic acid (CLA)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Effective dose of DHA and mechanisms involved are poorly understood. Methods: We examined abi...

  11. Comparison of linoleic and conjugated linoleic acids in enzymatic acidolysis of tristearin

    DEFF Research Database (Denmark)

    Yang, Tiankui; Xu, Xuebing; Li, L.T.

    2001-01-01

    tristearin (SSS) and linoleic (L) or conjugated linoleic (cL) acids (1:6, mol/mol). The other was between tristearin and the mixture of linoleic and conjugated linoleic acids (1:3:3, mol/mol/mol). Acyl incorporation and migration together with triacylglycerol composition of the products were monitored...... with gas chromatography, pancreatic lipase hydrolysis, and high performance liquid chromatography. Both acyl incorporation and migration of linoleic acid were faster than those of conjugated linoleic acid. At 5 h reaction, there were 13.0% LLL, 46.5% LSL, 27.7% LSS, and 5.6% SSS in the product for a system...... between tristearin and linoleic acid; whereas there were 2.4% cLcLcL, 10.4% cLScL, 50.9% cLSS, and 36.2% SSS in the product for a system between tristearin and conjugated linoleic acid. The results suggest that linoleic acid was more reactive than conjugated linoleic acid in the enzymatic acidolysis...

  12. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  13. Generation and oxidation of aerosol deposited PdAg nanoparticles

    Science.gov (United States)

    Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.

    2013-10-01

    PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.

  14. Linoleic acid intake and vitamin E requirement

    NARCIS (Netherlands)

    Jager, F.C.

    1973-01-01

    In experiments with rats and Peking ducklings it has been investigated to what extent the linoleic acid content of the diet is of influence on the requirement of vitamin E. This requirement was determined by adding D-α-tocopheryl acetate in increasing doses to vitamin E-free diets and to determine

  15. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  16. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  18. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    Science.gov (United States)

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  19. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  20. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  1. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  2. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  3. Novel function of lecithin-cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation.

    Science.gov (United States)

    Goyal, J; Wang, K; Liu, M; Subbaiah, P V

    1997-06-27

    Although the major function of lecithin-cholesterol acyltransferase (LCAT) is cholesterol esterification, our previous studies showed that it can also hydrolyze platelet-activating factor (PAF). Because of the structural similarities between PAF and the truncated phosphatidylcholines (polar PCs) generated during lipoprotein oxidation, we investigated the possibility that LCAT may also hydrolyze polar PCs to lyso-PC during the oxidation of plasma. PAF acetylhydrolase (PAF-AH), which is known to hydrolyze polar PCs in human plasma, was completely inhibited by 0.2 mM p-aminoethyl benzenesulfonyl fluoride (Pefabloc), a new serine esterase inhibitor, which had no effect on LCAT at this concentration. On the other hand, 1 mM diisopropylfluorophosphate (DFP) completely inhibited LCAT but had no effect on PAF-AH. Polar PC accumulation during the oxidation of plasma increased by 44% in the presence of 0.2 mM Pefabloc and by 30% in the presence of 1 mM DFP. The formation of lyso-PC was concomitantly inhibited by both of the inhibitors. The combination of the two inhibitors resulted in the maximum accumulation of polar PCs, suggesting that both PAF-AH and LCAT are involved in their breakdown. Oxidation of chicken plasma, which has no PAF-AH activity, also resulted in the formation of lyso-PC from the hydrolysis of polar PC, which was inhibited by DFP. Polar PCs, either isolated from oxidized plasma or by oxidation of labeled synthetic PCs, were hydrolyzed by purified LCAT, which had no detectable PAF-AH activity. These results demonstrate a novel function for LCAT in the detoxification of polar PCs generated during lipoprotein oxidation, especially when the PAF-AH is absent or inactivated.

  4. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla

    2013-01-01

    oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy...... for trend=0.004). The 8-oxoGuo excretion was further increased after clinically effective ECT compared with pre-ECT values (P=0.006). There were no differences in 8-oxodG excretion between the groups or pre- vs. post-ECT. LIMITATIONS: Small sample size and the inclusion of both unipolar and bipolar patients...

  5. Nitric Oxide Generating Polymeric Coatings for Subcutaneous Glucose Sensors

    Science.gov (United States)

    2007-10-01

    primary polymer which was then aminated (2) for attachment of (Boc)3-cyclen-N-acetic acid (1). After the conjugation via EDC coupling chemistry, the Boc...dipping procedure is repeated 5 times. This is the needle-type NO sensor currently used (e.g., Figure 4 device but w/o the SePEI and alginic acid ...Cha, M. E. Meyerhoff, " Polymethacrylates with Covalently Linked Cu(II)-Cyclen Complex for the In-Situ Generation of Nitric Oxide from Nitrosothiols in

  6. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  7. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  8. The essential nature of linoleic acid in mammals

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1986-01-01

    Linoleic acid [CH(CH)(CH = CHCH)(CH) COOH] is a precursor of the icosanoids -20-carbon fatty acids which include leukotrienes, prostaglandins, thromboxanes and related compounds. Until recently, the classical symptoms resulting from deficiency of linoleic and other essential fatty acids (EFAs) ha...

  9. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  10. Alternative method for steam generation for thermal oxidation of silicon

    Science.gov (United States)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  11. Obesity and Age-Related Changes in Markers of Oxidative Stress and Inflammation Across Four Generations

    NARCIS (Netherlands)

    Hulsegge, Gerben; Herber-Gast, Gerrie-Cor M; Spijkerman, Annemieke M W; Picavet, H. Susan J; van der Schouw, Yvonne T; Bakker, Stephan J L; Gansevoort, Ron T; Dollé, Martijn E T; Smit, Henriette A; Monique Verschuren, W M

    OBJECTIVE: The prevalence of obesity increases with age and is higher in each younger generation (unfavorable generation shift). This may influence patterns of oxidative stress and inflammation. Age-related changes and generation shifts in markers of oxidative stress and inflammation were

  12. Obesity and Age-Related Changes in Markers of Oxidative Stress and Inflammation Across Four Generations

    NARCIS (Netherlands)

    Hulsegge, Gerben; Herber-Gast, Gerrie-Cor M; Spijkerman, Annemieke M W; Susan, H; Picavet, J; van der Schouw, Yvonne T; Bakker, Stephan J L; Gansevoort, Ron T; Dollé, Martijn E T; Smit, Henriette A; Monique Verschuren, W M

    ObjectiveThe prevalence of obesity increases with age and is higher in each younger generation (unfavorable generation shift). This may influence patterns of oxidative stress and inflammation. Age-related changes and generation shifts in markers of oxidative stress and inflammation were

  13. Conjugated linoleic acid in ewe milk fat.

    Science.gov (United States)

    Luna, Pilar; Fontecha, Javier; Juárez, Manuela; de la Fuente, Miguel Angel

    2005-11-01

    Ewe milk fat from five different herds was studied to determine the content of conjugated linoleic acid (CLA) isomers. Research was carried out by combining gas chromatography-mass spectrometry (GC-MS) of fatty acid methyl esters (FAME) and 4,4-dimethyloxazolyne derivatives (DMOX) with silver ion-high performance liquid chromatography (Ag+-HPLC). Reconstructed mass spectral profiles of CLA characteristic ions from DMOX were used to identify positional isomers and Ag+-HPLC to quantify them. Total CLA content varied from 0.57 to 0.97 g/100 g of total fatty acids. FAME and DMOX were separated into a complex mixture of minor isomers and major rumenic acid (9-cis 11-trans C18:2) by GC-MS using a 100-m polar capillary column. Rumenic acid would represent more than 75% of total CLA. 11-trans 13-trans, 11-13 cis/trans plus trans/cis and 7-9 cis/trans plus trans/cis were the main CLA isomers after rumenic acid. Minor amounts of 8-10 and 10-12 C18:2 isomers were also found. Although most of the isomers were present in each herd's milk, differences in content were observed for some CLA species.

  14. Role of linoleic acid in arsenical palmar keratosis.

    Science.gov (United States)

    Ahmed, Tarafder S; Misbahuddin, Mir

    2016-03-01

    Chronic arsenic exposure can lead to palmoplantar keratosis. In the stratum corneum of skin, linoleic acid is of the utmost importance to the inflammation, keratinization, and regeneration processes. The aims of this study were: (i) to present quantitative information on the linoleic acid fraction of intercorneocyte lipids, and (ii) to elucidate the role of linoleic acid in the pathophysiology of arsenical keratosis. Lipid extracts were collected from keratotic lesions in seven patients, seven arsenic-exposed subjects, and seven non-exposed control subjects. Linoleic acid levels of the specimens were estimated by reverse-phase high-performance liquid chromatography (RP-HPLC). There was a significant (P keratosis patients (palm: 25.66 ± 4.95 μg/cm(2); dorsum: 28.25 ± 6.20 μg/cm(2)) compared with arsenic-exposed (palm: 2.75 ± 0.85 μg/cm(2); dorsum: 1.96 ± 0.64 μg/cm(2)) and non-exposed (palm: 1.52 ± 0.61 μg/cm(2); dorsum: 1.28 ± 0.39 μg/cm(2)) control subjects. There was no significant difference (P = 0.556) in linoleic acid concentration in the non-affected skin of the dorsum of the hand (28.25 ± 6.20 μg/cm(2)) compared with that in the palmar sites (25.66 ± 4.95 μg/cm(2)) in the patient group. The change in linoleic acid levels in the arsenic-exposed control group did not differ from that in non-exposed controls (P = 1.000). Linoleic acid concentration is elevated in arsenical keratosis; this finding warrants further investigation to ascertain whether linoleic acid plays a direct role in the pathophysiology of arsenical keratosis. © 2015 The International Society of Dermatology.

  15. Generation and confinement of mobile charges in buried oxide of SOI substrates

    International Nuclear Information System (INIS)

    Gruber, O.; Krawiec, S.; Musseau, O.; Paillet, Ph.; Courtot-Descharles, A.

    1999-01-01

    We analyze the mechanisms of generation and confinement of mobile protons resulting from hydrogen annealing of SOI buried oxides. This study of the mechanisms of generation and confinement of mobile protons in the buried oxide of SOI wafers emphasizes the importance of H+ diffusion in the oxide in the formation of a mobile charge. Under specific electric field conditions the irradiation of these devices results in a pinning of this mobile charge at the bottom Si-SiO 2 interface. Ab initio calculations are in progress to investigate the possible precursor defects in the oxide and detail the mechanism for mobile proton generation and confinement. (authors)

  16. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  17. Anodically generated manganese(III) sulphate for the oxidation of ...

    Indian Academy of Sciences (India)

    Unknown

    oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study ... acetic acid (TFA) and N-methylmorpholine (NMM) were purchased ... and chloroform–methanol– acetic acid .... tion), manganese(II) sulphate and water (to keep the.

  18. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  19. Conjugated Linoleic Triacylglycerols Exhibit Superior Lymphatic Absorption Than Free Conjugate Linoleic Acids and Have Antiobesity Properties.

    Science.gov (United States)

    Woo, Hyunjoon; Chung, Min-Yu; Kim, Juyeon; Kong, Daecheol; Min, Jinyoung; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2016-05-01

    This study aimed to compare lymphatic absorption of conjugated linoleic acids (CLAs) in the triacylglycerol (TAG) or free fatty acid (FFA) form and to examine the antiobesity effects of different doses of CLAs in the TAG form in animals. Conjugated linoleic TAGs (containing 70.3 wt% CLAs; CLA-TAG) were prepared through lipase-catalyzed esterification of glycerol with commercial CLA mixtures (CLA-FFA). Lymphatic absorption of CLA-TAG and CLA-FFA was compared in a rat model of lymphatic cannulation. Greater amounts of cis-9,trans-11 and trans-10,cis-12 CLAs were detected in the collected lymph from a lipid emulsion containing CLA-TAG. This result suggests that CLA-TAG has greater capacity for lymphatic absorption than does CLA-FFA. The antiobesity efficacy of CLA-TAG at different doses was examined in mice with diet-induced obesity. A high-fat diet (HFD) for 12 weeks caused a significant increase in body weight and epididymal and retroperitoneal fat weights, which were significantly decreased by 2% dietary supplementation (w/w) with CLA-TAG. CLA-TAG at 2% significantly attenuated the HFD-induced upregulation of serum TAG, but led to hepatomegaly and exacerbated HFD-induced hypercholesterolemia. CLA-TAG at 1% significantly attenuated upregulation of retroperitoneal fat weight and significantly increased liver weight, which was decreased by the HFD. Nonetheless, the liver weight in group "HFD +1% CLA-TAG" was not significantly different from that of normal diet controls. CLA-TAG at 1% significantly reduced serum TAG levels and did not exacerbate HFD-induced hypercholesterolemia. Thus, 1% dietary supplementation with CLA-TAG reduces retroperitoneal fat weight without apparent hepatomegaly, a known side-effect of CLAs in mouse models of obesity.

  20. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Brødbæk, Kasper; Fink-Jensen, Anders

    2013-01-01

    such as cardiovascular disease, type 2 diabetes and dementia. We determined the urinary excretion of markers of systemic Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine, respectively, in 40 schizophrenia patients and 40 age- and sex...

  1. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation.

    Science.gov (United States)

    Yang, B; Qi, H; Gu, Z; Zhang, H; Chen, W; Chen, H; Chen, Y Q

    2017-11-01

    To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development. © 2017 The Society for Applied Microbiology.

  2. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  3. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids

    DEFF Research Database (Denmark)

    Cadet, Jean; Loft, Steffen; Olinski, Ryszard

    2012-01-01

    A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the ...

  4. Origin of interface states and oxide charges generated by ionizing radiation

    International Nuclear Information System (INIS)

    Sah, C.T.

    1976-01-01

    The randomly located trivalent silicon atoms are shown to account for the thermally generated interface states at the SiO 2 -Si interface. The interface state density is greatly reduced in water containing ambients at low temperatures (450 0 C) by forming trivalent silicon hydroxide bonds. Interface states are regenerated when the /triple bond/Si-OH bonds are broken by ionizing radiation and the OH ions are drifted away. In the bulk of the oxide film, the trivalent silicon and the interstitial oxygen donor centers are shown to be responsible for the heat and radiation generated positive space charge build-up (oxide charge) in thermally grown silicon oxide

  5. Variation in excess oxidant factor in combustion products of MHD generator. [Natural gas fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasik, M S; Mironov, V D; Zakharko, Yu A; Plavinskii, A I

    1977-12-01

    Methods and difficulties associated with determining the excess oxidant factor for natural gas-fired MHD generators are discussed. The measurement of this factor is noted to be essential for the optimization of the combustion chamber and operation of MHD generators. A gas analyzer of electrochemical type is considered as a quick - response sensor capable of analyzing the composition of the combustion products and thus determining accurately the excess oxidant factor. The principle of operation of this sensor is discussed and the dependence of the electrochemical sensor emf on excess oxidant factor is shown. Three types of sensors are illustrated and tables of test results are provided.

  6. Formation and characterization of samarium oxide generated from different precursors

    International Nuclear Information System (INIS)

    Hussein, G.A.M.; Buttrey, D.J.; DeSanto, P.; Abd-Elgaber, A.A.; Roshdy, Heba; Myhoub, Ali Y.Z.

    2003-01-01

    Sm(NO 3 ) 3 ·6H 2 O and Sm 2 (C 2 O 4 ) 3 ·10H 2 O were used as precursors for the formation of Sm 2 O 3 . Thermal processes involved in the decomposition course of both salts up to 800 deg. C in air were monitored by nonisothermal gravimetry and differential thermal analysis. Intermediates and final solid products were characterized by IR-spectroscopy, X-ray diffraction and scanning electron microscopy. The results showed that Sm(NO 3 ) 3 ·6H 2 O decomposes completely through nine endothermic mass loss processes. The dehydration occurs through the first four steps at 90, 125, 195, and 240 deg. C, culminating in a crystalline nitrate monohydrate, which subsequently decomposes to Sm(OH)(NO 3 ) 2 at 355 deg. C. The latter decomposes rapidly to form a stable and crystalline SmO(NO 3 ) at 460 deg. C, through nonstoichoimetric unstable intermediates. Finally Sm 2 O 3 forms at 520 deg. C. For the oxalate, the dehydration occurs in five steps: the anhydrous oxalate is thermally unstable and immediately decomposes to Sm 2 O 3 at 645 deg. C through two unstable intermediates. The crystalline oxide obtained from the nitrate contains larger pores than the oxide obtained from the oxalate, as indicated from scanning electron microscopy (SEM) results

  7. Evaluation of mutagenic/antimutagenic activity of conjugated linoleic ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... INTRODUCTION. Conjugated linoleic acid (CLA) is a dietary adjuvant for its ... who found unidentified anticarcinogenic factors in fried ground beef. ..... products decreases rectum cancer in 13% and colon cancer in 34%. .... alters mammary gland morphogenesis and reduces cancer risk in rats. J. Nutr.

  8. Aerosol generation by oxidation and combustion of plutonium and its compounds: literature survey

    International Nuclear Information System (INIS)

    Ballereau, P.

    1987-09-01

    Generation of aerosols by oxidation or combustion is one of the greatest risks due to plutonium. A review is made of the most interesting documents available on this topic. Following a brief study of plutonium oxydation conditions, characteristics of aerosols generated by accidents of fires involving metallic Pu and some of its compounds are assessed. Nuclear weapons are not included in this review [fr

  9. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    Science.gov (United States)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  10. Reactions and Diffusion During Annealing-Induced H(+) Generation in SOI Buried Oxides

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Fleetwood, D.M.; Vanheusden, K; Warren, W.L.

    1999-01-01

    We report experimental results suggesting that mobile protons are generated at strained Si-O-Si bonds near the Si/SiO 2 interface during annealing in forming gas. Our data further suggest that the presence of the top Si layer plays a crucial role in the mobile H + generation process. Finally, we show that the diffusion of the reactive species (presumably H 2 or H 0 ) towards the H + generation sites occurs laterally along the buried oxide layer, and can be impeded significantly due to the presence of trapping sites in the buried oxide

  11. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    that gastrointestinal exposure to single-walled carbon nanotubes (SWCNT), fullerenes C60, carbon black, titanium dioxide and diesel exhaust particles generates oxidized DNA base lesions in organs such as the bone marrow, liver and lung. Oral exposure to nanosized carbon black has also been associated with increased...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...

  12. Zinc oxide piezoelectric nano-generators for low frequency applications

    Science.gov (United States)

    Nour, E. S.; Nur, O.; Willander, M.

    2017-06-01

    Piezoelectric Zinc Oxide (ZnO) nanogenerators (NGs) have been fabricated for low frequency (wireless system using footstep pressure. These studies demonstrate the feasibility of using a ZnO NWs piezoelectric NG as a low-frequency self- powered sensor, with potential applications in wireless sensor networks. After that, we investigated and fabricated a sensor on a PEDOT: PSS plastic substrate using a one-sided growth and double-sided growth technique. For the first growth technique, the fabricated NG has been used as a sensor for an acceleration system; while the fabricated NG by the second technique works as an anisotropic direction sensor. This fabricated configuration showed stability for sensing and can be used in surveillance, security, and auto-Mobil applications. In addition to that, we investigated the fabrication of a sandwiched NG on plastic substrates. Finally, we demonstrated that doping ZnO NWs with extrinsic elements (such as Ag) will lead to the reduction of the piezoelectric effect due to the loss of crystal symmetry. A brief summary into future opportunities and challenges is also presented.

  13. HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Veyo

    1998-09-01

    During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

  14. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    International Nuclear Information System (INIS)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.; Sibilia, C.

    2009-01-01

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  15. Uranium oxide recycling to give more sustainable power generation

    International Nuclear Information System (INIS)

    Hagger, R.; Garner, D.S.J.; Beaumont, D.M.; Hesketh, K.

    2001-01-01

    In broad terms there are two routes for irradiated nuclear fuel, the closed cycle involving recycling and the open cycle culminating in direct disposal. The benefits of following the closed cycle are presented. The environmental burdens associated with open and closed cycles are compared using Life Cycle Assessment (LCA) for non-active burdens and human irradiation. Consideration is given to the extension of the nuclear fuel cycle to include a proportion of MOX fuel elements within a reactor core, and the impact in terms of total activity, waste volumes and Integrated Toxic Potential (ITP) discussed. The potential of moving to a fast reactor cycle is also raised in support of the recycling of spent nuclear fuel giving sustainable power generation. (author)

  16. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Erben-Russ, Michael; Bors, Wolf; Saran, Manfred

    1987-01-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N 2 O/O 2 -saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N 2 O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N 3 with rate constants exceeding 10 9 dm 3 mol -1 s -1 . Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10 7 dm 3 mol -1 s-? 1 ), with aroxyl radicals to form covalent adducts (> 10 8 dm 3 mol -1 s -1 ), as well as for their bimilecular decay (3.0 x 10 8 dm 3 mol -1 s -1 ). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution. (author)

  17. Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Erben-Russ, M.; Bors, W.; Saran, M.

    1987-09-01

    Linoleic acid peroxyl radicals (LOO) can be viewed as model intermediates occurring during lipid peroxidation processes. Formation and reactions of these species were investigated in aqueous alkaline solution using pulse radiolysis combined with kinetic spectroscopy. Irradiation of linoleic acid in N/sub 2/O/O/sub 2/-saturated solutions leads to a mixture of peroxyl radical isomers; reaction of 13-hydroperoxylinoleic acid (13-LOOH) with azide radicals in N/sub 2/O-saturated solution produces 13-LOO radicals specifically. These peroxyl radicals cannot be observed directly, but their reactions with kaempferol and quercetin, acting as radical-scavenging antioxidants, produced strongly absorbing aroxyl radicals (ArO). The same aroxyl radicals were generated by OH and N/sub 3/ with rate constants exceeding 10/sup 9/ dm/sup 3/ mol/sup -1/ s/sup -1/. Applying a reaction scheme that includes competing generation and decay reactions of both LOO and ArO radicals, individual rate constants were derived for LOO reactions with the phenols (> 10/sup 7/ dm/sup 3/ mol/sup -1/ s-./sup 1/), with aroxyl radicals to form covalent adducts (> 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/), as well as for their bimilecular decay (3.0 x 10/sup 8/ dm/sup 3/ mol/sup -1/ s/sup -1/). These results demonstrate high reactivity of fatty acid peroxyl radicals and flavone antioxidants in aqueous solution.

  18. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Poulsen, Henrik Enghusen; Kessing, Lars Vedel

    2015-01-01

    OBJECTIVES: The pathophysiological mechanisms underlying bipolar disorder and its multi-system nature are unclear. Oxidatively generated damage to nucleosides has been demonstrated in metabolic disorders; however, the extent to which this occurs in bipolar disorder in vivo is unknown. We...... investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS: Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers...... of oxidatively generated DNA and RNA damage, respectively, was measured in 37 rapid cycling patients with bipolar disorder and in 40 age- and gender-matched healthy control subjects. Employing a longitudinal design, repeated measurements of both markers were evaluated in various affective phases in patients...

  19. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  20. Optical Properties of Linoleic Acid Protected Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ratan Das

    2011-01-01

    Full Text Available Linoleic acid-protected gold nanoparticles have been synthesized through the chemical reduction of tetrachloroaurate ions by ethanol in presence of sodium linoleate. The structure of these nanoparticles is investigated using transmission electron microscopy, which shows that the Au nanoparticles are spherical in shape with a narrow size distribution which ranges from 8 to 15 nm. Colloidal dispersion of gold nanoparticles in cyclohexane exhibits absorption bands in the ultraviolet-visible range due to surface plasmon resonance, with absorption maximum at 530 nm. Fluorescence spectra of gold nanoparticles also show an emission peak at 610 nm when illuminated at 450 nm. UV-Vis spectroscopy reveals that these nanoparticles remain stable for 10 days.

  1. Generation and confinement of mobile charges in buried oxide of SOI substrates; Generation et confinement de charges mobiles dans les oxydes enterres de substrats SOI

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, O.; Krawiec, S.; Musseau, O.; Paillet, Ph.; Courtot-Descharles, A. [CEA Bruyeres-le-Chatel, DIF, 91 (France)

    1999-07-01

    We analyze the mechanisms of generation and confinement of mobile protons resulting from hydrogen annealing of SOI buried oxides. This study of the mechanisms of generation and confinement of mobile protons in the buried oxide of SOI wafers emphasizes the importance of H+ diffusion in the oxide in the formation of a mobile charge. Under specific electric field conditions the irradiation of these devices results in a pinning of this mobile charge at the bottom Si-SiO{sub 2} interface. Ab initio calculations are in progress to investigate the possible precursor defects in the oxide and detail the mechanism for mobile proton generation and confinement. (authors)

  2. Conjugated linoleic acid-rich soy oil triacylglycerol identification.

    Science.gov (United States)

    Lall, Rahul K; Proctor, Andrew; Jain, Vishal P; Lay, Jackson O

    2009-03-11

    Conjugated linoleic acid (CLA)-rich soy oil has been produced by soy oil linoleic acid (LA) photoisomerization, but CLA-rich oil triacylglycerol (TAG) characterization was not described. Therefore, the objectives were to identify and quantify new TAG fractions in CLA-rich oil by nonaqueous reversed-phase high-performance liquid chromatography (NARP-HPLC). Analytical NARP-HPLC with an acetonitrile/dichloromethane (ACN/DCM) gradient and an evaporating light scattering detector/ultraviolet (ELSD/UV) detector was used. New TAG peaks from LA-containing TAGs were observed. The LnLL, LLL, LLO, and LLP (Ln, linolenic; L, linoleic; O, oleic; and P, palmitic) peaks reduced after isomerization with an increase in adjacent peaks that coeluted with LnLnO, LnLO, LnOO, and LnPP. The newly formed peaks were wider than those of the original oil and absorbed at 233 nm, suggesting the possibility of various CLA containing TAGs. The HPLC profile showed five fractions of mixed TAGs, and fatty acid analysis showed that CLA isomers were found predominately in fractions 2 and 3, which originally contained most LA. The CLA isomers were 70-80% trans,trans and 20-30% cis,trans and trans,cis.

  3. Optimization of the In Situ Epoxidation of Linoleic Acid of Jatropha Curcas Oil With Performic Acid

    International Nuclear Information System (INIS)

    Hong, L.K.; Rahimi Mohd Yusop; Nadia Salih; Jumat Salimon

    2015-01-01

    The aim of this study is to optimise the epoxidation of linoleic acid of Jatropha curcas oil. This experiment was carried out with performic acid generated in situ by using hydrogen peroxide and formic acid. The method was evaluated on different parameters such as reaction temperature, mole ratios of formic acid to ethylenic unsaturation and hydrogen peroxide to ethylenic unsaturation. The optimum relative conversion into oxirane (80.4 %) and conversion of iodine (94.7 %) was achieved with ∼70 % yield at the condition of 45 degree Celsius reaction temperature, formic acid to ethylenic unsaturation mole ratio of 2.0, hydrogen peroxide to ethylenic unsaturation mole ratio of 12.0 for 2 hours of reaction time. The epoxidized linoleic acid was characterized by using Fourier transform infrared (FTIR) spectroscopy and NMR analysis. The result was also found that the formations of an epoxide and oxirane ring cleavage were both occurred at the same time if low amount of hydrogen peroxide was used. (author)

  4. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    Science.gov (United States)

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  7. Recent Progress in Nanostructured Oxide TE Materials for Power Generation at High Temperatures

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    Thermoelectric (TE) materials, which can convert waste heat into electricity, could play an important role in a global sustainable energy solution and environmental problems. Metal oxides have been considered as potential TE materials for power generation that can operate at high temperatures...

  8. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  9. Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Wu, Ranran; Tian, Xiaochun; Xiao, Yong

    2018-01-01

    of formate with 200 mV less over-potential. Notably they show unique selective activity toward electrochemical oxidation of formate, whereas no electrochemical catalysis was found for oxidation of ethanol, methanol and acetate. This work demonstrates a sustainable and low-cost method for producing efficient......Production of molecular scale palladium (Pd) nanoparticles (NPs) is important due to their catalytic function in electrochemical oxidation of a number of core fuel molecules in fuel cells. Biogenic methods offer an economic and environmentally friendly synthesis route. In this work...... membrane surface. Mapping by conductive atomic force microscopy shows that the presence of these PdNPs promotes electron transfer and enhances the electric conductivity of the cells. Compared to electrodeposited PdNPs, PdNPs generated by S. oneidensis MR-1 catalyze electrochemically the oxidation...

  10. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  11. Influence of startup oxidizing transients of IGA/SCC in PWR steam generators

    International Nuclear Information System (INIS)

    Gorman, J.A.; McIlree, A.R.; Gaudreau, T.; Bjornkvist, L.; Andersson, P.-O.

    1998-01-01

    There is a considerable amount of evidence oxidizing conditions during and following startups are an important factor in the intergranular corrosion/stress corrosion cracking (IGA/SCC) of mill annealed alloy 600 steam generator tubes. This evidence includes plant data that indicate that the growth of IGA/SCC correlates better in some cases with numbers of startups than with time at power, laboratory tests in several plausible crevice environments that show that small amounts of copper oxides accelerate the rate of IGA/SCC, laboratory tests that show that elevating the electrochemical potential (ECP) increases the rates of IGA/SCC in many chemical environments, and laboratory tests that show that copper oxides, hematite, and other oxidized corrosion products can raise the ECP of several solution chemistries into aggressive ranges. Some preliminary data also exist that show that some amounts of oxidized species are produced during typical layup and startup conditions, but data for the subsequent reduction of these oxides are largely lacking. The purpose of this paper is to review the available evidence, to arrive at conclusions regarding the probable importance of oxidizing conditions during startup on occurrence of IGA/SCC, and to identify needed research to better quantify the situation. (author)

  12. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    International Nuclear Information System (INIS)

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-01-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction

  13. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  14. Influence of steam generator surface state on corrosion and oxide formation

    International Nuclear Information System (INIS)

    Mazenc, Arnaud; Leclercq, Stephanie; Seyeux, Antoine; Galtayries, Anouk; Marcus, Philippe

    2012-09-01

    The corrosion and release of nickel-based alloy Steam Generator tubes are partly due to their surface state. Among the most important parameters influencing the corrosion, the effect of grain size and the effect of grain crystallographic orientation have been chosen to be studied. The aim of this study is to determine how these parameters have an impact on the corrosion of Steam Generator tubes. Thermal treatments (700 deg. C and 1050 deg. C) have been performed on several samples in Alloy 690 to obtain homogeneous grain sizes, varying from 25 μm to 110 μm. Two samples have been oxidised for four days in a recirculating autoclave, reproducing primary conditions. The changes of oxide composition and thickness were examined by ToF-SIMS on samples exposed to primary water conditions. The intensity profiles versus thicknesses of characteristic oxide anions, such as CrO - , NiO - or FeO - enable us to evaluate the effect of grain size and crystallographic orientation on the formation of an enriched inner chromium layer. As regards to the grain size, there was no effect on the growth, but smaller grains led to a chromium-rich oxide layer. The effect of crystallographic orientation was observed on the oxidation kinetics and the composition of oxide scales. (authors)

  15. Exogenous nitric oxide donor protects Artemisia annua from oxidative stress generated by boron and aluminium toxicity.

    Science.gov (United States)

    Aftab, Tariq; Khan, M Masroor A; Naeem, M; Idrees, Mohd; Moinuddin; Teixeira da Silva, Jaime A; Ram, M

    2012-06-01

    Nitric oxide (NO) is an important signal molecule modulating the response of plants to environmental stress. Here we report the effects of boron (B) and aluminium (Al) contamination in soil, carried out with or without application of exogenous SNP (NO donor), on various plant processes in Artemisia annua, including changes in artemisinin content. The addition of B or Al to soil medium significantly reduced the yield and growth of plants and lowered the values of net photosynthetic rate, stomatal conductance, internal CO(2) concentration and total chlorophyll content. The follow-up treatment of NO donor favoured growth and improved the photosynthetic efficiency in stressed as well as non-stressed plants. Artemisinin content was enhanced by 24.6% and 43.8% at 1mmole of soil-applied B or Al. When SNP was applied at 2mmole concentration together with either 1mmole of B and/or Al, it further stimulated artemisinin biosynthesis compared to the control. Application of B+Al+SNP proved to be the best treatment combination for the artemisinin content in Artemisia annua leaves. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  17. Role of masking oxide on silicon in processes of defect generation at formation of SIMOX structures

    CERN Document Server

    Askinazi, A Y; Miloglyadova, L V

    2002-01-01

    One investigated into Si-SiO sub 2 structures formed by implantation of oxygen ions into silicon (SIMOX-technology) by means of techniques based on measuring of high-frequency volt-farad characteristics and by means of electroluminescence. One determined existence of electrically active centres and of luminescence centres in the formed oxide layer near boundary with silicon. One clarified the role SiO sub 2 masking layer in silicon in defect generation under formation of the masked oxide layer. One established dependence of concentration of electrically active and luminescence centres on thickness of masking layer

  18. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    OpenAIRE

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average nu...

  19. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    Science.gov (United States)

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    Science.gov (United States)

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H 2 O 2 /Cl - system of leukocytes. At low molar ratio of oxidant to target protein N ε -lysine moiety, 2-AAA is formed via an initial N ε -monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N ε -lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N ε -dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  1. Determination of conjugated linoleic acid (CLA) concentrations in milk chocolate.

    Science.gov (United States)

    Hurst, W J; Tarka, S M; Dobson, G; Reid, C M

    2001-03-01

    The fatty acids from a series of milk-chocolate-based confectionery samples were analyzed as methyl esters by GC to determine the presence and amount of conjugated linoleic acid (CLA). A single peak corresponding to the 9-cis,11-trans isomer and ranging from less than 0.1% to nearly 0.2% of the total fatty acids, corresponding to up to 0.3 mg per g of chocolate, was observed. One of the chocolate extracts and a milk extract were subjected to silver ion HPLC and GC-MS in order to confirm the identity of the major isomer and tentatively identity minor isomers.

  2. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Temperature and duration of heating of sunflower oil affect ruminal biohydrogenation of linoleic acid in vitro

    OpenAIRE

    Privé , Florence; Combes, Sylvie; Cauquil, Laurent; Farizon, Yves; Enjalbert, Francis; Troegeler-Meynadier, Annabelle

    2010-01-01

    Sunflower oil heated at 110 or 150°C for 1, 3, or 6 h was incubated with ruminal content in order to investigate the effects of temperature and duration of heating of oil on the ruminal biohydrogenation of linoleic acid in vitro. When increased, these 2 parameters acted together to decrease the disappearance of linoleic acid in the media by inhibiting the isomerization of linoleic acid, which led to a decrease in conjugated linoleic acids and trans-C18:1 production. Nevertheless, trans-10 iso...

  4. Reaction product of pyrogallol with methyl linoleate and its antioxidant potential for biodiesel

    Science.gov (United States)

    Sutanto, H.; Ainny, L.; Lukman; Susanto, B. H.; Nasikin, M.

    2018-03-01

    The demand of biodiesel as an alternative fuel is increasing due to fossil fuel depletion. Biodiesel is a renewable diesel fuel in the form of fatty acid methyl ester or FAME as a result of an esterification of plant oils in a presence of catalyst. Compared to the conventional diesel fuel, biodiesel is more biodegradable, has higher lubricity, and lower toxic emissions. However, the high content of unsaturated fatty acid leads to a problem that biodiesel is prone to oxidation during storage period. This oxidation instability causes degradation of fuel quality and will affect engine performance. Pyrogallol and other phenolic derivatives have been used as the antioxidant additives to prevent biodiesel oxidation. As reported in many researches, pyrogallol is one of the best phenolic antioxidant. However, its low solubility in biodiesel needs an attention. Several reports indicate the increasing solubility of pyrogallol using molecule modification with the addition of alkyl groups to its benzene ring via electrophilic substitution. This paper discusses the idea about modification of pyrogallol molecule and methyl linoleate using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in order to increase its solubility in biodiesel while keeping its antioxidant property. Three responses were analyzed to examine the antioxidant activity: iodine value, viscosity, and color intensity. The result shown that the addition of 0.1% reaction product exhibit antioxidant activity in biodiesel.

  5. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  6. Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Abul, E-mail: abul_k33@yahoo.com [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia); Al-Sehemi, Abdullah G.; Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia); Du Gaohui [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Ahmad, Tokeer [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2012-06-15

    Well dispersed nickel oxide nanoparticles have been synthesized successfully by direct calcination of nickel linoleate. The structure, morphology and properties of the nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and ultraviolet-visible spectroscopy. Transmission electron microscopic studies show that nickel oxide nanoparticles are uniform with an average size of 14-20 nm. The optical band gap of 3.8 eV is obtained using UV-Visible spectroscopy which exhibits the red shift compared with the bulk counterpart. - Highlights: Black-Right-Pointing-Pointer Synthesis of metal oxide nanoparticles by using metal complexes as precursors. Black-Right-Pointing-Pointer Characterization of isolated nanoparticles using XRD, FTIR, SEM, TEM and HRTEM data. Black-Right-Pointing-Pointer The expected optical properties of these nanoparticles are clarified.

  7. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids

    International Nuclear Information System (INIS)

    Fu, Yang; Mei, Tao; Wang, Gang; Guo, Ankang; Dai, Guangchao; Wang, Sheng; Wang, Jianying; Li, Jinhua; Wang, Xianbao

    2017-01-01

    Graphical abstract: Nanocomposites of graphene oxide (GO) and gold (Au) were explored to generate solar vapor under nature sunlight, and the water vaporization efficiency of GO-Au nanofluids at a temperature far below the boiling point could be up to 59.2%. - Highlights: • Graphene oxide/gold nanofluids were used to generate solar vapor under nature sunlight. • Water vaporization efficiency of GO-Au nanofluids could be up to 59.2%. • GO can be reduced to graphene by sunlight irradiation without reductants. - Abstract: Solar vapor generation enabled by nanoparticles is a green, efficient and direct approach to utilize solar energy. In this work, nanocomposites of graphene oxide (GO) and gold (Au) nanoparticles were prepared to generate solar steam under sunlight irradiation. The changes on steam pressure, mass loss and temperature of water were used to study the solar photothermal properties of GO-Au nanocomposites in water, which demonstrated that the synergistic interaction between GO nanosheets and Au nanoparticles played an active role in the photothermal effect of the nanocomposites. Trace of Au nanoparticles (15.6 wt‰) in the GO nanofluids could significantly improve the efficiency of solar vapor generation. More interestingly, the morphology and color of GO-Au nanofluids varied with irradiation times under sunlight, and our results suggested that GO sheets were reduced to graphene sheets. This process of photothermal deoxygenation of GO provides an available solution for preparing graphene sheets under ambient conditions without any reductions, and the solar steam generation method can enable potential applications like sterilization of waste, seawater desalination, and disinfection.

  8. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  9. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    Science.gov (United States)

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  11. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  12. Characterization of Neptunium Oxide Generated Using the HB-Line Phase II Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, J

    2003-08-29

    Approximately 98 grams of neptunium(IV) oxide (NpO{sub 2}) were produced at the Savannah River Technology Center (SRTC) for use in gas generation tests to support the neptunium stabilization program at the Savannah River Site (SRS). The NpO{sub 2} was produced according to the anticipated HB-Line flowsheet consisting of anion exchange, oxalate precipitation, filtration, and calcination. Characterization of the NpO{sub 2} product to be used in gas generation tests included bulk and tap density measurements, X-ray diffraction, particle size distribution, specific surface area measurements, and moisture analysis.

  13. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2016-01-01

    Full Text Available Conjugated linoleic acids (CLA are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane.

  14. Production of conjugated linoleic acid-rich potato chips.

    Science.gov (United States)

    Jain, Vishal P; Proctor, Andrew

    2007-01-01

    Conjugated linoleic acid (CLA) is found primarily in diary and beef products, but the health benefits of CLA can only be realized if they are consumed at much greater levels than a normal healthy dietary intake. We have recently shown that a CLA-rich soy oil can be produced by simple isomerization of linoleic acid in soy oil by photoirradiation. This oil may allow greatly increased dietary CLA without significantly elevating fat intake. The objective of this study was to prepare CLA-rich potato chips by frying in CLA-rich soy oil. Soy oil was photoisomerized in the presence of iodine catalyst with UV/visible light. The irradiated oil was clay processed to remove the residual iodine and this oil was then used to fry potato chips. Oil was extracted from fried chips and analyzed for its CLA content with gas chromatography. A 1-oz serving of CLA-rich potato chips contained approximately 2.4 g CLA as compared to 0.1 g CLA in 3-oz serving of steak fillet and 0.06 g CLA in 8-oz serving of whole milk. The peroxide value of the oil extracted from potato chips was found to be 1 meq/1000 g sample, which was within the acceptable commercial standards. This study may lead to the commercialization of CLA-rich food products.

  15. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  16. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader.

    Science.gov (United States)

    Abd El-Hay, Soad S; Colyer, Christa L

    2017-01-13

    Despite the importance of nitric oxide (NO) in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. By using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1). Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Beer's law was linear over a nanomolar range (1-10 nM) of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10-1000 µM) of acetylcholine (ACh) for 3 min. To confirm specificity, N ω -Nitro-l-arginine methyl ester (l-NAME)-the standard inhibitor of endothelial NO synthase-was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  17. Development of High-Throughput Method for Measurement of Vascular Nitric Oxide Generation in Microplate Reader

    Directory of Open Access Journals (Sweden)

    Soad S. Abd El-Hay

    2017-01-01

    Full Text Available Background: Despite the importance of nitric oxide (NO in vascular physiology and pathology, a high-throughput method for the quantification of its vascular generation is lacking. Objective: By using the fluorescent probe 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM, we have optimized a simple method for the determination of the generation of endothelial nitric oxide in a microplate format. Methods: A nitric oxide donor was used (3-morpholinosydnonimine hydrochloride, SIN-1. Different factors affecting the method were studied, such as the effects of dye concentration, different buffers, time of reaction, gain, and number of flashes. Results: Beer’s law was linear over a nanomolar range (1–10 nM of SIN-1 with wavelengths of maximum excitation and emission at 495 and 525 nm; the limit of detection reached 0.897 nM. Under the optimized conditions, the generation of rat aortic endothelial NO was measured by incubating DAF-FM with serial concentrations (10–1000 µM of acetylcholine (ACh for 3 min. To confirm specificity, Nω-Nitro-l-arginine methyl ester (l-NAME—the standard inhibitor of endothelial NO synthase—was found to inhibit the ACh-stimulated generation of NO. In addition, vessels pre-exposed for 1 h to 400 µM of the endothelial damaging agent methyl glyoxal showed inhibited NO generation when compared to the control stimulated by ACh. Conclusions: The capability of the method to measure micro-volume samples makes it convenient for the simultaneous handling of a very large number of samples. Additionally, it allows samples to be run simultaneously with their replicates to ensure identical experimental conditions, thus minimizing the effect of biological variability.

  18. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    Science.gov (United States)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  19. Comparative effects of conjugated linoleic acid (CLA) and linoleic acid (LA) on the oxidoreduction status in THP-1 macrophages.

    Science.gov (United States)

    Rybicka, Marta; Stachowska, Ewa; Gutowska, Izabela; Parczewski, Miłosz; Baśkiewicz, Magdalena; Machaliński, Bogusław; Boroń-Kaczmarska, Anna; Chlubek, Dariusz

    2011-04-27

    The aim of this study was to investigate the effect of conjugated linoleic acids (CLAs) on macrophage reactive oxygen species synthesis and the activity and expression of antioxidant enzymes, catalase (Cat), glutathione peroxidase (GPx), and superoxide dismutase (SOD). The macrophages were obtained from the THP-1 monocytic cell line. Cells were incubated with the addition of cis-9,trans-11 CLA or trans-10,cis-12 CLA or linoleic acid. Reactive oxygen species (ROS) formation was estimated by flow cytometry. Enzymes activity was measured spectrophotometrically. The antioxidant enzyme mRNA expression was estimated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Statistical analysis was based on nonparametric statistical tests [Friedman analysis of variation (ANOVA) and Wilcoxon signed-rank test]. cis-9,trans-11 CLA significantly increased the activity of Cat, while trans-10,cis-12 CLA notably influenced GPx activity. Both isomers significantly decreased mRNA expression for Cat. Only trans-10,cis-12 significantly influenced mRNA for SOD-2 expression. The CLAs activate processes of the ROS formation in macrophages. Adverse metabolic effects of each isomer action were observed.

  20. Catalysts with Cu base supported in mixed oxides to generate H2: reformed of methanol in oxidant atmosphere

    International Nuclear Information System (INIS)

    Aguila M, M.M.; Perez H, R.; Rodriguez L, V.

    2006-01-01

    In this work, the characterization of Cu supported in CeO 2 -ZrO 2 , for to generate H 2 starting from the one reformed of methanol with water vapor and oxygen is presented. The sol-gel technique and classic impregnation for the obtaining of the supports and catalysts respectively were used. The materials were characterized by XRD, SEM, adsorption- desorption of N 2 and TPR. The catalytic materials presented crystalline phases associated with the zircon (tetragonal and monoclinic phase) and the ceria (cubic phase) depending on the CeO 2 /ZrO 2 relationship. The morphology of the catalysts was analyzed by SEM being observed semispheric particles for the rich materials in ZrO 2 and added planars in the rich materials in CeO 2 . The ceria addition to the zircon favors the specific area of the mixed oxides CeO 2 -ZrO 2 and it promotes the reducibility of the copper oxide at low temperatures. The rich catalysts in ceria also showed high activity in the methanol transformation and bigger selectivity toward the production of H 2 . This result is associated with the presence of copper species that decrease to low temperature present in the rich catalysts in ceria and that they are not present in the rich catalysts in zircon. (Author)

  1. Ácido linoléico conjugado e perda de peso Conjugated linoleic acid and weight loss

    Directory of Open Access Journals (Sweden)

    Denise Machado Mourão

    2005-06-01

    Full Text Available O tratamento e a prevenção da obesidade têm sido considerados uma enorme batalha para os profissionais da área de saúde. As indústrias de alimentos e de fármacos, por sua vez, têm oferecido cada vez mais uma vasta gama de novos produtos que preconizam a perda de peso. O ácido linoléico conjugado, encontrado em maiores concentrações na gordura de animais ruminantes, parece apresentar efeitos favoráveis quanto à manutenção do peso corporal. Esta revisão apresenta uma análise crítica dos dados disponíveis na literatura, que relacionam o ácido linoléico conjugado com o metabolismo energético e a composição corporal. Os estudos realizados com humanos ainda não são conclusivos, embora alguns apontem um possível aumento da lipólise e/ou redução da lipogênese, que reflete em alterações apenas na composição corporal, especialmente no tecido adiposo abdominal, mas não na perda de peso. Entretanto, as altas doses usadas nesses estudos podem implicar efeitos colaterais indesejáveis. Portanto, mais estudos são necessários para uma indicação desse ácido graxo como um agente para a melhora da composição corporal e/ou como um agente anti-obesidade.The prevention and the treatment of obesity have proved to be enormous challenges for health professionals. On their turn, the food and the pharmaceutical industries have been offering an increasingly vast array of new products which are said to promote weight loss. The conjugated linoleic acid, found in greater concentrations in the fat of ruminant mammals, seems to present favorable effects on body weight maintenance. This work reviewed the available data in the literature that related conjugated linoleic acid to energy expenditure and body composition, with the objective of better understanding its real or possible actions in the body, in particular, whether I does or does not promote weight loss. The studies on humans are not conclusive yet, although some of them have

  2. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  3. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  4. Types of gene effects governing the inheritance of oleic and linoleic ...

    African Journals Online (AJOL)

    Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio ...

  5. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Huatao Li

    2016-09-01

    Full Text Available This study explored the effects of butylated hydroxytoluene (BHT and ethoxyquin (EQ and ethyl ether extracts, ethyl acetate extracts (EAE, acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS, inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were

  6. Operating experience gained during the copper oxide plugging incident in Koeberg unit 1 generator stator

    Energy Technology Data Exchange (ETDEWEB)

    Mellor, S.P.; Matthee, F.W. [ESKOM, Koeberg Nuclear Power Station (South Africa)

    2002-07-01

    In June 1999 Koeberg's unit 1 started to experience adverse operating conditions which were later ascribed to blockages in the hollow conductors of the generator stator. These blockages were attributed to copper oxide plugs which developed progressively during the following year and culminated in reduced power operation. Many attempts were made to address the plugging by implementing various off-line and on-line cleaning processes. Subsequent to a successful on-line cleaning operation, the unit was returned to full power and the chemistry regime for the stator cooling water system was changed to allow for operation at an elevated pH. This paper discusses Koeberg's experience with copper oxide blockages, describes the initial indications of the problem and the impact on the operating parameters. The remainder of the paper focuses on the actions taken to address the deteriorating situation and the different cleaning methods implemented to remove the copper oxide deposits. The paper concludes with the current status of the unit 1 generator stator and the lessons learned during the resolution of this problem. (authors)

  7. Operating experience gained during the copper oxide plugging incident in Koeberg unit 1 generator stator

    International Nuclear Information System (INIS)

    Mellor, S.P.; Matthee, F.W.

    2002-01-01

    In June 1999 Koeberg's unit 1 started to experience adverse operating conditions which were later ascribed to blockages in the hollow conductors of the generator stator. These blockages were attributed to copper oxide plugs which developed progressively during the following year and culminated in reduced power operation. Many attempts were made to address the plugging by implementing various off-line and on-line cleaning processes. Subsequent to a successful on-line cleaning operation, the unit was returned to full power and the chemistry regime for the stator cooling water system was changed to allow for operation at an elevated pH. This paper discusses Koeberg's experience with copper oxide blockages, describes the initial indications of the problem and the impact on the operating parameters. The remainder of the paper focuses on the actions taken to address the deteriorating situation and the different cleaning methods implemented to remove the copper oxide deposits. The paper concludes with the current status of the unit 1 generator stator and the lessons learned during the resolution of this problem. (authors)

  8. Investigation of tritium removal by means of organic compounds. Catalytic hydrogenation (tritiation) of linoleic acid

    International Nuclear Information System (INIS)

    El-Sharnouby, A.; Weichselgartner, H.

    1984-11-01

    In the presence of noble-metal catalysts unsaturated fatty acids such as eruic acid and linoleic acid capture hydrogen (and tritium) quantitatively. The hydrogenation reaction of eruic acid has already been reported. The experimental results of the reaction of hydrogen (and tritium) with linoleic acid are now discussed in this paper. Obviously, the use of linoleic acid shows some advantages compared with eruic acid: - the hydrogenation reaction is faster, - linoleic acid is liquid, so that the choice of additional solvents is easier, and - linoleic acid is a more or less cheap natural product, which is available from a series of seeds, so that the cost of a technical tritium removal plant is not increased by the basic chemical material. (orig.)

  9. A Role of Fluoride on Free Radical Generation and Oxidative Stress in BV-2 Microglia Cells

    Directory of Open Access Journals (Sweden)

    Xi Shuhua

    2012-01-01

    Full Text Available The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD, glutathione (GSH, malondialdehyde (MDA, reactive oxygen species (ROS, superoxide anions (O2∙-, nitric oxide synthase (NOS, nitrotyrosine (NT and nitric oxide (NO, NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2∙- increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species.

  10. Pick up of cesium and cobalt activity by oxide sludge in steam generator

    International Nuclear Information System (INIS)

    Rufus, A.L.; Subramanian, H.; Velmurugan, S.; Santanu Bera; Narasimhan, S.V.; Reddy, G.L.N.; Sankara Sastry, V.

    2002-01-01

    A pinhole developed near the tube sheet in the steam generator (SG) tube of a pressurised heavy water reactor (PHWR) caused leak of primary coolant containing radioactive contaminants ( 137 Cs, 134 Cs and 60 Co) to the shell side. The sludge collected from the tube sheet region was found to have adsorbed these radionuclides at the high temperature (230-240 deg C) that prevailed in the SG. An attempt has been made to evaluate the quantity of activity retained in the various oxide phases that constitute the sludge and their mode of pick-up. The sludge was characterized by XRD and XPS, which showed the presence of various oxides of iron, copper and nickel along with the silicates of calcium, magnesium and aluminium. Gamma-spectrometry of the sludge confirmed the presence of 137 Cs, 134 Cs and 60 Co to an extent of 7.6, 1.3 and 0.9 μCi/g of sludge, respectively. Selective dissolution in various EDTA based formulations and equilibration with nitric acid and magnesium chloride solutions helped to understand the quantity of activity adsorbed by various constituents of the sludge. It was concluded that a major portion of cesium was picked up by a reversible ion exchange process on various oxide constituents and about 10% by an irreversible specific adsorption process on insoluble silicates. Also, it was proved that 60 Co was specifically adsorbed over the oxides of iron and nickel. (author)

  11. Oxidative degradation of lignin by photochemical and chemical radical generating systems

    International Nuclear Information System (INIS)

    Gold, M.H.; Kutsuki, H.; Morgan, M.A.

    1983-01-01

    Oxidation of specifically radiolabeled 14 C-lignins by UV/H 2 O 2 , Fenton's reagent, photosensitizing riboflavin, UV- and γ-irradiation was examined. In the presence of UV/H 2 O 2 , a hydroxyl radical (radicalOH) generating system, 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin were rapidly and extensively degraded as measured by gel filtration of the reaction products on Sephadex LH-20. This suggested that exposure to radicalOH leads to rapid, nonspecific lignin degradation. Rapid degradation of 14 C-methoxy, 2-[ 14 C-sidechain] and 14 C-ring labeled lignin also occurred in the presence of the radicalOH generating system, Fenton's reagent, confirming the primary role of radicalOH in these reactions. Photosensitizing riboflavin, also capable of effecting transformation of organic compounds via Type I hydrogen radical abstractions, caused extensive oxidative degradation of 14 C-methoxy labeled lignin and significant degradation of 2-[ 14 C-sidechain] and 14 C-ring labeled lignin. In addition, UV- and γ-irradiation caused slower but extensive degradation of the polymers, probably via radical type mechanisms. All of these results indicate that radicalOH as well as organic radical generating systems are effective agents for the purpose of degrading this heterogeneous, optically inactive and random biopolymer. (author)

  12. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    Science.gov (United States)

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  13. Assessment of a novel solid oxide fuel cell tri-generation system for building applications

    International Nuclear Information System (INIS)

    Elmer, Theo; Worall, Mark; Wu, Shenyi; Riffat, Saffa

    2016-01-01

    Highlights: • Experimental assessment of a first-of-its-kind tri-generation system. • High tri-generation efficiencies of 68–71%. • Inclusion of liquid desiccant provides efficiency increase of 9–15%. • System only economically viable with a government’s financial support. - Abstract: The paper provides a performance analysis assessment of a novel solid oxide fuel cell (SOFC) liquid desiccant tri-generation system for building applications. The work presented serves to build upon the current literature related to experimental evaluations of SOFC tri-generation systems, particularly in domestic built environment applications. The proposed SOFC liquid desiccant tri-generation system will be the first-of-its-kind. No research activity is reported on the integration of SOFC, or any fuel cell, with liquid desiccant air conditioning in a tri-generation system configuration. The novel tri-generation system is suited to applications that require simultaneous electrical power, heating and dehumidification/cooling. There are several specific benefits to the integration of SOFC and liquid desiccant air conditioning technology, including; very high operational electrical efficiencies even at low system capacities and the ability to utilise low-grade thermal energy in a (useful) cooling process. Furthermore, the novel tri-generation system has the potential to increase thermal energy utilisation and thus the access to the benefits achievable from on-site electrical generation, primarily; reduced emissions and operating costs. Using empirical SOFC and liquid desiccant component data, an energetic, economic and environmental performance analysis assessment of the novel system is presented. Significant conclusions from the work include: (1) SOFC and liquid desiccant are a viable technological pairing in the development of an efficient and effective tri-generation system. High tri-generation efficiencies in the range of 68–71% are attainable. (2) The inclusion of

  14. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    Science.gov (United States)

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Experiments of a 100 kV-level pulse generator based on metal-oxide varistor

    Science.gov (United States)

    Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu

    2018-03-01

    This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

  16. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery.

    Science.gov (United States)

    Choi, Hyung Woo; Kim, Jihoon; Kim, Jinhwan; Kim, Yonghwi; Song, Hyun Beom; Kim, Jeong Hun; Kim, Kimoon; Kim, Won Jong

    2016-04-26

    We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.

  17. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.

    Science.gov (United States)

    Balazy, M; Kaminski, P M; Mao, K; Tan, J; Wolin, M S

    1998-11-27

    Peroxynitrite (ONOO-) has been shown in studies on vascular relaxation and guanylate cyclase activation to react with glutathione (GSH), generating an intermediate product that promotes a time-dependent production of nitric oxide (NO). In this study, reactions of ONOO- with GSH produced a new substance, which was characterized by liquid chromatography, ultraviolet spectroscopy, and electrospray tandem mass spectrometry. The mass spectrometric data provided evidence that the product of this reaction was S-nitroglutathione (GSNO2) and that S-nitrosoglutathione (GSNO) was not a detectable product of this reaction. Further evidence was obtained by comparison of the spectral and chromatographic properties with synthetic standards prepared by reaction of GSH with nitrosonium or nitronium borofluorates. Both the synthetic and ONOO-/GSH-derived GSNO2 generated a protonated ion, GSNO2H+, at m/z 353, which was unusually resistant to decomposition under collision activation, and no fragmentation was observed at collision energy of 25 eV. In contrast, an ion at m/z 337 (GSNOH+), generated from the synthetic GSNO, readily fragmented with the abundant loss of NO at 9 eV. Reactions of ONOO- with GSH resulted in the generation of NO, which was detected by the head space/NO-chemiluminescence analyzer method. The generation of NO was inhibited by the presence of glucose and/or CO2 in the buffers employed. Synthetic GSNO2 spontaneously generated NO in a manner that was not significantly altered by glucose or CO2. Thus, ONOO- reacts with GSH to form GSNO2, and GSNO2 decomposes in a manner that generates NO.

  18. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.

    Science.gov (United States)

    Chaudhuri, Swades K; Lovley, Derek R

    2003-10-01

    Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.

  19. Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms.

    Directory of Open Access Journals (Sweden)

    Daniela de Paula Aguiar

    Full Text Available Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR, a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD increased, whereas the activity of Glutathione-S-Transferase (GST, Glutathione reductase (GR, and Glutathione peroxidase (GPX decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them.

  20. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  1. Fe-Chlorophyllin Promotes the Growth of Wheat Roots Associated with Nitric Oxide Generation

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2010-12-01

    Full Text Available : Effects of Fe-chlorophyllin on the growth of wheat root were investigated in this study. We found that Fe-chlorophyllin can promote root growth. The production of nitric oxide in wheat root was detected using DAF-2DA fluorescent emission. The intensity of fluorescent in the presence of 0.1 mg/L Fe-chlorophyllin was near to that observed with the positive control of sodium nitroprusside (SNP, the nitric oxide donor. IAA oxidase activity decreased with all treatments of Fe-chlorophyllin from 0.01 to 10 mg/L. At the relatively lower Fe-chlorophyllin concentration of 0.1 mg/L, the activity of IAA oxidase displayed a remarkable decrease, being 40.1% lower than the control. Meanwhile, Fe-chlorophyllin treatment could increase the activities of reactive oxygen scavenging enzymes, such as superoxide dismutase (SOD and peroxidase (POD, as determined using non-denaturing polyacrylamide gel electrophoresis. These results indicate that Fe-chlorophyllin contributes to the growth of wheat root associated with nitric oxide generation.

  2. [Evaluation of the possibilities to increase the content of conjugated linoleic acid (CLA) in meat and meat product].

    Science.gov (United States)

    Piotrowska, Anna; Swiader, Katarzyna; Waszkiewicz-Robak, Bozena; Swiderski, Franciszek

    2012-01-01

    The paper characterizes pro-health properties of conjugated linoleic acid (CLA) and assesses the possibility of increasing their content in pork and pork meat products. Studies conducted on animals indicate antitumor, antiatherosclerotic and antiinflammatory effect ofCLA, also find impact on reducing body fat and increasing muscle growth. However, the number of observations concerning human populations is insufficient to fully evaluate the relationship between CLA intake and reducing the risk of lifestyle diseases. Therefore, it is necessary to conduct further research. Literature data indicate that the use in pigs feed suplementation with CLA preparations, can increase the content of these compounds in the meat and also show, that isomer cis-9, trans-11 is accumulated at significantly higher level. However, these changes were accompanied by increased the share of saturated fatty acids at the expense of monounsaturated which is unfavorable for human health. A better way to increase the CLA content in pork meat appears to be the addition of CLA preparation during the production process, because it does not affect the level of saturated fats. Pork and pork meat products enriched in CLA are characterized by low susceptibility to oxidation, which may result from the coupling of double bonds, antioxidantive properties of conjugated linoleic acid and the increased content of saturated fatty acids. The issue of beneficial effects on human health of pork and pork products with a higher content of CLA, requires further studies conducted on humans. Only then these products can be classified as a functional foods.

  3. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Oxidation and reduction of copper and iron species in steam generator deposits - Effects of hydrazine, carbohydrazide and catalyzed hydrazine

    International Nuclear Information System (INIS)

    Marks, C.R.; Varrin, R.D.; Gorman, J.A.; McIlree, A.R.; Stanley, R.

    2002-01-01

    It has long been suspected that oxidation and reduction of secondary side deposits in PWR steam generators have a significant influence on the onset of intergranular attack and stress corrosion cracking (IGA/SCC) of mill annealed Alloy 600 steam generator tubes. It is believed that these same processes could affect the possible future occurrence of IGA/SCC of thermally treated Alloy 600 and Alloy 690 tubes that are in newer steam generators. The working hypothesis for describing the influence of oxides on accelerated tube degradation is that deposits formed during normal operation are oxidized during lay-up. During subsequent operation, these oxidized species accelerate tube degradation by raising the electrochemical potential. (authors)

  5. Biocompatibility evaluations and biomedical sensing applications of nitric oxide-releasing/generating polymeric materials

    Science.gov (United States)

    Wu, Yiduo

    Nitric oxide (NO) is a potent signaling molecule secreted by healthy vascular endothelial cells (EC) that is capable of inhibiting the activation and adhesion of platelets, preventing inflammation and inducing vasodilation. Polymeric materials that mimic the EC through the continuous release or generation of NO are expected to exhibit enhanced biocompatibility in vivo. In this dissertation research, the biocompatibility of novel NO-releasing/generating materials has been evaluated via both in vitro and in vivo studies. A new in vitro platelet adhesion assay has been designed to quantify platelet adhesion on NO-releasing/generating polymer surfaces via their innate lactate dehydrogenase (LDH) content. Using this assay, it was discovered that continuous NO fluxes of up to 7.05 x10-10 mol cm-2 min-1 emitted from the polymer surfaces could reduce platelet adhesion by almost 80%. Such an in vitro biocompatibility assay can be employed as a preliminary screening method in the development of new NO-releasing/generating materials. In addition, the first in vivo biocompatibility evaluation of NO-generating polymers was conducted in a porcine artery model for intravascular oxygen sensing catheters. The Cu(I)-catalyzed decomposition of endogenous S-nitrosothiols (RSNOs) generated NO in situ at the polymer/blood interface and offered enhanced biocompatibility to the NO-generating catheters along with more accurate analytical results for intra-arterial measurements of PO2 levels. NO-generating polymers can also be utilized to fabricate electrochemical RSNO sensors based on the amperometric detection of NO generated by the reaction of RSNOs with immobilized catalysts. Unlike conventional methodologies employed to measure labile RSNO, the advantage of the RSNO sensor method is that measurement in whole blood samples is possible and this minimizes sample processing artifacts in RSNO measurements. An electrochemical RSNO sensor with organoselenium crosslinked polyethylenimine (RSe

  6. Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture

    International Nuclear Information System (INIS)

    Eblin, K.E.; Bowen, M.E.; Cromey, D.W.; Bredfeldt, T.G.; Mash, E.A.; Lau, S.S.; Gandolfi, A.J.

    2006-01-01

    Arsenicals have commonly been seen to induce reactive oxygen species (ROS) which can lead to DNA damage and oxidative stress. At low levels, arsenicals still induce the formation of ROS, leading to DNA damage and protein alterations. UROtsa cells, an immortalized human urothelial cell line, were used to study the effects of arsenicals on the human bladder, a site of arsenical bioconcentration and carcinogenesis. Biotransformation of As(III) by UROtsa cells has been shown to produce methylated species, namely monomethylarsonous acid [MMA(III)], which has been shown to be 20 times more cytotoxic. Confocal fluorescence images of UROtsa cells treated with arsenicals and the ROS sensing probe, DCFDA, showed an increase of intracellular ROS within five min after 1 μM and 10 μM As(III) treatments. In contrast, 50 and 500 nM MMA(III) required pretreatment for 30 min before inducing ROS. The increase in ROS was ameliorated by preincubation with either SOD or catalase. An interesting aspect of these ROS detection studies is the noticeable difference between concentrations of As(III) and MMA(III) used, further supporting the increased cytotoxicity of MMA(III), as well as the increased amount of time required for MMA(III) to cause oxidative stress. These arsenical-induced ROS produced oxidative DNA damage as evidenced by an increase in 8-hydroxyl-2'-deoxyguanosine (8-oxo-dG) with either 50 nM or 5 μM MMA(III) exposure. These findings provide support that MMA(III) cause a genotoxic response upon generation of ROS. Both As(III) and MMA(III) were also able to induce Hsp70 and MT protein levels above control, showing that the cells recognize the ROS and respond. As(III) rapidly induces the formation of ROS, possibly through it oxidation to As(V) and further metabolism to MMA(III)/(V). These studies provide evidence for a different mechanism of MMA(III) toxicity, one that MMA(III) first interacts with cellular components before an ROS response is generated, taking longer to

  7. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    International Nuclear Information System (INIS)

    Namihira, T.; Sakai, S.; Matsuda, M.; Wang, D.; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-01-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N 2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO 2 ), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one

  8. Artifacts Generated During Azoalkane Peroxy Radical Oxidative Stress Testing of Pharmaceuticals Containing Primary and Secondary Amines.

    Science.gov (United States)

    Nefliu, Marcela; Zelesky, Todd; Jansen, Patrick; Sluggett, Gregory W; Foti, Christopher; Baertschi, Steven W; Harmon, Paul A

    2015-12-01

    We report artifactual degradation of pharmaceutical compounds containing primary and secondary amines during peroxy radical-mediated oxidative stress carried out using azoalkane initiators. Two degradation products were detected when model drug compounds dissolved in methanol/water were heated to 40°C with radical initiators such as 2,2'-azobis(2-methylpropionitrile) (AIBN). The primary artifact was identified as an α-aminonitrile generated from the reaction of the amine group of the model drug with formaldehyde and hydrogen cyanide, generated as byproducts of the stress reaction. A minor artifact was generated from the reaction between the amine group and isocyanic acid, also a byproduct of the stress reaction. We report the effects of pH, initiator/drug molar ratio, and type of azoalkane initiator on the formation of these artifacts. Mass spectrometry and nuclear magnetic resonance were used for structure elucidation, whereas mechanistic studies, including stable isotope labeling experiments, cyanide analysis, and experiments exploring the effects of butylated hydroxyanisole addition, were employed to support the degradation pathways. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    rahim aydin

    Dietary conjugated linoleic acid (CLA) was reported to increase the levels of saturated fatty ... Hence, the objective of this study was to determine the effects of dietary CLA on the fatty acid ..... silver ion-high performance liquid chromatography.

  10. Effect of dietary conjugated linoleic acid (CLA) on the growth and ...

    African Journals Online (AJOL)

    p4208528

    Keywords: Conjugated linoleic acid, geese, growth, lipid metabolism, fatty acid composition .... For determination of serum total cholesterol (TC), LDL-C, high density ... separated and quantified by gas–liquid chromatography (Carlo Erba Vega ...

  11. Linoleic acid, thymine, and tryptophan radiosensitization by protoporphyrin in presence of oxygene

    International Nuclear Information System (INIS)

    Champel, P.; Mignot, M.A.; Pillement, B.; Fontenil, L.; Rocquet, G.

    Sensitizing effect induced by protoporphyrin, an active molecule in photooxidation is studied. Studied substances are tryptophan, thymine, linoleic acid, each component representing one of the great groups of biological components, nucleic acid, proteins, lipids [fr

  12. Comparative evaluation of different nanostructured metal oxides for preparation of clinically useful 99Mo/99mTc generators

    International Nuclear Information System (INIS)

    Ram, Ramu; Chakravarty, Rubel; Dash, Ashutosh

    2015-01-01

    The potential of nanostructured metal oxides such as nanotitania, nanozirconia, nanoalumina and mesoporous alumina, as new generation sorbent materials for preparation of 99 Mo/ 99m Tc generator has recently been demonstrated. A comparative assessment of such materials is essential for determination of their suitability for preparation of clinically useful generators using (n,γ) 99 Mo. Characteristics which were compared included the sorption capacity, shelf-life of the generator, radioactive concentration and purity of 99m Tc for radiopharmaceutical applications. Mesoporous alumina was identified as the most suitable sorbent for ensuring sustainable production of clinical grade 99 Mo/ 99m Tc generators using low specific activity 99 Mo. (author)

  13. Conjugated linoleic acids as functional food: an insight into their health benefits

    OpenAIRE

    Benjamin Sailas; Spener Friedrich

    2009-01-01

    Abstract This review evaluates the health benefits of the functional food, conjugated linoleic acids (CLA) - a heterogeneous group of positional and geometric isomers of linoleic acid predominantly found in milk, milk products, meat and meat products of ruminants. During the past couple of decades, hundreds of reports - principally based on in vitro, microbial, animal, and of late clinical trials on humans - have been accumulating with varying biological activities of CLA isomers. These studi...

  14. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  15. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  16. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    International Nuclear Information System (INIS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ interface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°

  17. Photo-oxidation of cells generates long-lived intracellular protein peroxides

    DEFF Research Database (Denmark)

    Wright, Adam; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Singlet oxygen is generated by several cellular, enzymatic, and chemical reactions as well as by exposure to UV or visible light in the presence of a sensitizer. Consequently, this oxidant has been proposed to be a damaging agent many pathologies. Proteins are major targets for singlet oxygen...... as a result of their abundance and high rate constants for reaction. In this study, we show that illumination of viable rose bengal-loaded THP-1 (human monocyte-like) cells with visible light gives rise to intracellular protein-derived peroxides. The peroxide yield increases with illumination time, requires....../2) about 4 h at 37 degrees C. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions gives rise to radicals as detected by EPR spin trapping. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer leads...

  18. Field-controllable second harmonic generation at a graphene oxide heterointerface

    Science.gov (United States)

    Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy

    2018-03-01

    We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.

  19. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ngah Demon, Siti Zulaikha [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Department of Physics, Centre of Defence Foundation Studies, National Defence University of Malaysia, 53 000 Kuala Lumpur (Malaysia); Miyauchi, Yoshihiro [Department of Applied Physics, School of Applied Sciences, National Defense Academy of Japan, 239-8686 Kanagawa (Japan); Mizutani, Goro, E-mail: mizutani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Matsushima, Toshinori; Murata, Hideyuki [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan)

    2014-08-30

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ{sub interface} with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  20. Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol.

    Science.gov (United States)

    Sun, Xuhui; Zhang, Qi; Liang, He; Ying, Li; Xiangxu, Meng; Sharma, Virender K

    2016-12-05

    Ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) is a greener oxidant in the treatment of drinking water and wastewater. The electrochemical synthesis of Fe(VI) may be considered environmentally friendly because it involves one-step process to convert Fe(0) to Fe(VI) without using harmful chemicals. Electrolysis was performed by using a sponge iron as an anode in NaOH solution at different ionic strengths. The cyclic voltammetric (CV) curves showed that the sponge iron had higher electrical activity than the grey cast iron. The optimum current density was 0.054mAcm(-2) in 10M NaOH solution, which is much lower than the electrolyte concentrations used in other electrode materials. A comparison of current efficiency and energy consumption was conducted and is briefly discussed. The generated ferrate solution was applied to degrade phenol in water at two levels (2mgL(-1) and 5mgL(-1)). The maximum removal efficiency was ∼70% and the optimum pH for phenol treatment was 9.0. Experiments on phenol removal using conventional coagulants (ferric chloride (FeCl3) and polyaluminium chloride (PAC)) were performed independently to demonstrate that removal of phenol by Fe(VI) occurred mainly by oxidative transformation. A combination of Fe(VI) and coagulant may be advantageous in enhancing removal efficiency, adjusting pH, and facilitating flocculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  2. Rare-earth hafnium oxide materials for magnetohydrodynamic (MHD) generator application

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, D. D; Bates, J. L.

    1979-01-01

    Several ceramic materials based on rare-earth hafnium oxides have been identified as potential high-temperature electrodes and low-temperature current leadouts for open cycle coal-fired MHD generator channels. The electrode-current leadouts combination must operate at temperatures between 400 and 2000K with an electrical conductivity greater than 10/sup -2/ ohm/sup -1/ cm/sup -1/. The electrodes will be exposed to flowing (linear flow rates up to 100 m/s) potassium seeded coal combustion gases (plasma core temperatures between 2400 to 3200/sup 0/K) and coal slag. During operation the electrodes must conduct direct electric current at densities near 1.5 amp/cm/sup 2/. Consequently, the electrodes must be resistant to electrochemical decompositions and interactions with both the coal slag and potassium salts (e.g., K/sub 2/SO/sub 4/, K/sub 2/CO/sub 3/). The current leadout materials are placed between the hot electrodes and the water-cooled copper structural members and must have electrical conductivities greater than 10/sup -2/ ohm/sup -1/ cm/sup -1/ between 1400 and 400/sup 0/K. The current leadouts must be thermally and electrochemically compatible with the electrode, copper, and potassium salts. Ideally, the electrodes and current leadouts should exhibit minimal ionic conductivity. The fabrication, electrical conductivity, and electrochemical corrosion of rare-earth hafnium oxide materials are discussed. (WHK)

  3. PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations

    International Nuclear Information System (INIS)

    Khodadust, Rouhollah; Unsoy, Gozde; Yalcın, Serap; Gunduz, Gungor; Gunduz, Ufuk

    2013-01-01

    This study focuses on the synthesis and characterization of different generations (G 0 –G 7 ) of polyamidoamine (PAMAM) dendrimer-coated magnetic nanoparticles (DcMNPs). In this study, superparamagnetic iron oxide nanoparticles were synthesized by co-precipitation method. The synthesized nanoparticles were modified with aminopropyltrimethoxysilane for dendrimer coating. Aminosilane-modified MNPs were coated with PAMAM dendrimer. The characterization of synthesized nanoparticles was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering, and vibrating sample magnetometry (VSM) analyses. TEM images demonstrated that the DcMNPs have monodisperse size distribution with an average particle diameter of 16 ± 5 nm. DcMNPs were found to be superparamagnetic through VSM analysis. The synthesis, aminosilane modification, and dendrimer coating of iron oxide nanoparticles were validated by FTIR and XPS analyses. Cellular internalization of nanoparticles was studied by inverted light scattering microscopy, and cytotoxicity was determined by XTT analysis. Results demonstrated that the synthesized DcMNPs, with their functional groups, symmetry perfection, size distribution, improved magnetic properties, and nontoxic characteristics could be suitable nanocarriers for targeted cancer therapy upon loading with various anticancer agents.

  4. Development of planar solid oxide fuel cells for power generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q. [AlliedSignal Aerospce Equipment Systems, Torrance, CA (United States)

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  5. Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability.

    Science.gov (United States)

    Wood, Craig C; Okada, Shoko; Taylor, Matthew C; Menon, Amratha; Mathew, Anu; Cullerne, Darren; Stephen, Stuart J; Allen, Robert S; Zhou, Xue-Rong; Liu, Qing; Oakeshott, John G; Singh, Surinder P; Green, Allan G

    2018-03-06

    Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Conjugated Linoleic Acid Reduces Cholera Toxin Production In Vitro and In Vivo by Inhibiting Vibrio cholerae ToxT Activity.

    Science.gov (United States)

    Withey, Jeffrey H; Nag, Drubhajyoti; Plecha, Sarah C; Sinha, Ritam; Koley, Hemanta

    2015-12-01

    The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been shown to be a potent negative effector of V. cholerae virulence that acts on the major virulence transcription regulator protein, ToxT, to inhibit virulence gene expression. ToxT activates transcription of the two major virulence factors required for disease, cholera toxin (CT) and toxin-coregulated pilus (TCP). A conjugated form of linoleic acid (CLA) is currently sold over the counter as a dietary supplement and is generally recognized as safe by the U.S. Food and Drug Administration. This study examined whether CLA could be used as a new therapy to reduce CT production, which, in turn, would decrease disease duration and intensity in cholera patients. CLA could be used in place of traditional antibiotics and would be very unlikely to generate resistance, as it affects only virulence factor production and not bacterial growth or survival. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Chemical trapping and characterization of small oxoacids of sulfur (SOS) generated in aqueous oxidations of H2S.

    Science.gov (United States)

    Kumar, Murugaeson R; Farmer, Patrick J

    2018-04-01

    Small oxoacids of sulfur (SOS) are elusive molecules like sulfenic acid, HSOH, and sulfinic acid, HS(O)OH, generated during the oxidation of hydrogen sulfide, H 2 S, in aqueous solution. Unlike their alkyl homologs, there is a little data on their generation and speciation during H 2 S oxidation. These SOS may exhibit both nucleophilic and electrophilic reactivity, which we attribute to interconversion between S(II) and S(IV) tautomers. We find that SOS may be trapped in situ by derivatization with nucleophilic and electrophilic trapping agents and then characterized by high resolution LC MS. In this report, we compare SOS formation from H 2 S oxidation by a variety of biologically relevant oxidants. These SOS appear relatively long lived in aqueous solution, and thus may be involved in the observed physiological effects of H 2 S. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Science.gov (United States)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  9. Silica-gel modified with zirconium oxide as a novel 99Mo adsorbent 99mTc generators

    International Nuclear Information System (INIS)

    Salehi, H.; Mollarazi, E.; Abbasi, H.

    2010-01-01

    A new 99 Mo adsorbent has been prepared with modified silica gel with zirconium oxide (SiO 2 /ZrO 2 :Na 2 MoO 4 ) and used in technetium-99m generator. The adsorption behaviors of 99 Mo in the form of molybdate and 99m Tc in the form of pertechnetate on the new adsorbent was investigated showed that the adsorption capacity of molybdate on this generator was considerably higher than the usual generator with alumina column. Coating zirconium oxide on the surface of silica gel resulted in higher 99 Mo adsorption of this compound. 99m Tc is eluted with 0.9% NaCl, and the radionuclidic, radiochemical and chemical purities of the eluate were checked. This generator has a great potential as compared to the traditional alumina generators.

  10. Potentiation of the generation of reactive oxidants by human phagocytes during exposure to benoxaprofen and ultraviolet radiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Eftychis, H.A.

    1986-09-01

    The effects of ultraviolet (UV) radiation on the spontaneous membrane-associated oxidative metabolism of human polymorphonuclear leukocytes (PMNL) and mononuclear leukocytes (MNL), co-incubated in the presence and absence of the non-steroidal, anti-inflammatory drug (NSAID) benoxaprofen at various concentrations, were investigated in vitro. Assays of superoxide generation and luminol-enhanced chemiluminescence (CL) were used to detect the production of reactive oxidants by PMNL and MNL. The pro-oxidative effects of benoxaprofen and UV radiation alone and in combination are dependent on intact phagocyte membrane-associated oxidative metabolism. It is postulated that the pro-oxidative interactions which occur between human phagocytes, benoxaprofen and ultraviolet radiation cause the dermatological side-effects of benoxaprofen.

  11. Electrochemical One-Electron Oxidation of Low-Generation Polyamidoamine-Type Dendrimers with a 1,4-Phenylenediamine Core

    DEFF Research Database (Denmark)

    Hammerich, Ole; Hansen, Thomas; Thorvildsen, Asbjørn

    2009-01-01

    voltammetry (DPV) in methanol, acetonitrile, dichloromethane, and dimethyl sulfoxide. The dendrimers are more difficult to oxidize than N,N,N',N'-tetramethyl-p-phenylenediamine (TMePD). The oxidation potentials decrease with increasing dendrimer generation up to G0.5, after which the potential is essentially......A series of polyamidoamine (PAMAM)-type dendrimers with a 1,4-phenylenediamine (PD) core is prepared from PD by procedures including Michael addition of methyl acrylate followed by aminolysis with 1,2-ethanediamine. Their one-electron oxidation potentials are determined by differential pulse......,N,N',N'-tetra-n-alkyl-p-phenylenediamines, including a planar arrangement of the atoms linked to the two PD nitrogen atoms. Thus, the effect of chain size on the oxidation potential appears to be caused primarily by a simple electronic effect. The calculations indicate considerable reorientation of the dendrimer side chains on oxidation, presumably...

  12. Synthesis and Characterization of K-Ta Mixed Oxides for Hydrogen Generation in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Beata Zielińska

    2012-01-01

    Full Text Available K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3 and K2Ta4O11 were obtained. It was also found that the sample composed of KTaO3 and traces of unreacted Ta2O5 (annealed at 600°C exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD and diffuse reflectance (DR UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM and an energy dispersive X-ray spectrometer (EDX as its mode.

  13. Novel nitric oxide generating compound glycidyl nitrate enhances the therapeutic efficacy of chemotherapy and radiotherapy.

    Science.gov (United States)

    Ning, Shoucheng; Bednarski, Mark; Oronsky, Bryan; Scicinski, Jan; Knox, Susan J

    2014-05-09

    Selective release of nitric oxide (NO) in tumors could improve the tumor blood flow and drug delivery for chemotherapeutic agents and radiotherapy, thereby increasing the therapeutic index. Glycidyl nitrate (GLYN) is a NO generating small molecule, and has ability to release NO on bioactivation in SCC VII tumor cells. GLYN-induced intracellular NO generation was significantly attenuated by NO scavenger carboxy-PTIO (cPTIO) and NAC. GLYN significantly increases tumor blood flow, but has no effect on the blood flow of normal tissues in tumor-bearing mice. When used with cisplatin, GLYN significantly increased the tumor growth inhibition effect of cisplatin. GLYN also had a modest radiosensitizing effect in vitro and in vivo. GLYN was well tolerated and there were no acute toxicities found at its effective therapeutic doses in preclinical studies. These results suggest that GLYN is a promising new drug for use with chemotherapy and radiotherapy, and provide a compelling rationale for future studies of GLYN and related compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. [Efficiency of oxidant gas generator cells powered by electric or solar energy].

    Science.gov (United States)

    Brust Carmona, H; Benitez, A; Zarco, J; Sánchez, E; Mascher, I

    1998-02-01

    Diseases caused by microbial contaminants in drinking water continue to be a serious problem in countries like Mexico. Chlorination, using chlorine gas or chlorine compounds, is one of the best ways to treat drinking water. However, difficulties in handling chlorine gas and the inefficiency of hypochlorite solution dosing systems--due to sociopolitical, economic, and cultural factors--have reduced the utility of these chlorination procedures, especially in far-flung and inaccessible rural communities. These problems led to the development of appropriate technologies for the disinfection of water by means of the on-site generation of mixed oxidant gases (chlorine and ozone). This system, called MOGGOD, operates through the electrolysis of a common salt solution. Simulated system evaluation using a hydraulic model allowed partial and total costs to be calculated. When powered by electrical energy from the community power grid, the system had an efficiency of 90%, and in 10 hours it was able to generate enough gases to disinfect about 200 m3 of water at a cost of approximately N$8 (US $1.30). When the electrolytic cell was run on energy supplied through a photoelectric cell, the investment costs were higher. A system fed by photovoltaic cells could be justified in isolated communities that lack electricity but have a gravity-fed water distribution system.

  15. Study of defect generated visible photoluminescence in zinc oxide nano-particles prepared using PVA templates

    Energy Technology Data Exchange (ETDEWEB)

    Oudhia, A. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Choudhary, A., E-mail: aarti.bhilai@gmail.com [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Sharma, S.; Aggrawal, S. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Dhoble, S.J. [RTM University Nagpur, Maharashtra (India)

    2014-10-15

    Intrinsic defect generated photoluminescence (PL) in zinc oxide nanoparticles (NPs) obtained by a PVA template based wet-chemical process has been studied. A good controllability was achieved on the surface defects, structure and the morphology of ZnO NPs through the variation of solvents used in synthesis. The PL emission strongly depended on the defect structure and morphology. SEM, XRD, annealing and PL excitation studies were used to analyze the types of defects involved in the visible emission as well as the defect concentration. The mechanism for the blue, green and yellow emissions was proposed. The spectral content of the visible emission was controlled through generation/removal of defects through the shape transformation or annealing by focusing on defect origins and broad controls. - Highlights: • ZnO nanoparticles were synthesized using poly-vinyl alcohol template in various solvents. • The structure and morphology of ZnO nanoparticles were depended on dielectric constant and boiling point of solvents. • Photoluminescence properties of ZnO nanoparticles were studied. • Maximum optical absorbance and Photoluminescence intensity were found in ethanolic preparation. • ZnO nanoparticles were annealed at different temperatures for detection of defect emission.

  16. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.

    Science.gov (United States)

    Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao

    2017-09-06

    Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.

  17. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    Science.gov (United States)

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  18. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  19. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3 -/CO2 system

    KAUST Repository

    Joya, Khurram Saleem

    2014-06-04

    Neutral HCO3 -/CO2 is a new electrolyte system for in situ generation of robust and efficient Co-derived (Co-Ci) water oxidation electrocatalysts. The Co-Ci/indium tin oxide system shows a remarkable 2.0 mA cm-2 oxygen evolution current density that is sustained for several hours. 7.5 nmol of electroactive species per cm2 generates about 109 μmol of O2 at a rate of 0.51 per mol of catalyst per second.

  20. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3 -/CO2 system

    KAUST Repository

    Joya, Khurram Saleem; Takanabe, Kazuhiro; De Groot, Huub J M

    2014-01-01

    Neutral HCO3 -/CO2 is a new electrolyte system for in situ generation of robust and efficient Co-derived (Co-Ci) water oxidation electrocatalysts. The Co-Ci/indium tin oxide system shows a remarkable 2.0 mA cm-2 oxygen evolution current density that is sustained for several hours. 7.5 nmol of electroactive species per cm2 generates about 109 μmol of O2 at a rate of 0.51 per mol of catalyst per second.

  1. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    International Nuclear Information System (INIS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-01-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N 2 dissociated into NO under typical DBD voltage–current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases. (paper)

  2. Quantitative determination of conjugated linoleic acid and polyunsaturated fatty acids in milk with C17 as internal marker – Evaluation of different methylation procedures

    DEFF Research Database (Denmark)

    Lashkari, Saman; Jensen, Søren Krogh

    2017-01-01

    in the methylation steps, as they are sensitive to pH changes and oxidation. The present study was carried out to determine the efficiency of different methylation procedures on quantitative determination of conjugated linoleic acid (CLA), PUFA and response of internal standard. The highest response of internal...... standard was observed for boron trifluoride (BF3)/methanol and methanolic HCl followed by NaOCH3, while cis-9, trans-11 CLA, total CLA and PUFA was higher with methanolic HCl followed by NaOCH3 compared with the BF3 method. These data can be useful for quantitating of milk FA....

  3. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation.

    Science.gov (United States)

    Shaban, Mohamed; Rabia, Mohamed; El-Sayed, Asmaa M Abd; Ahmed, Aya; Sayed, Somaya

    2017-10-26

    In this work, roll-graphene oxide (Ro-GO), polyaniline (PANI) nano/microparticles, and PbS nanoparticles were prepared by modified Hammer, oxidative polymerization, and chemical bath deposition methods, respectively. These nano/microstructures were characterized, optimized, and designed to form PbS/Ro-GO/PANI nano/microcomposite. Also, the ratios of PbS and Ro-GO were optimized, and the optimized composition of the used composite was 0.4 g PANI, 0.125 g Ro-GO, and 0.075 g PbS. The band gap values for PANI, PbS, Ro-GO, and PbS/Ro-GO/PANI rocomposite were 3, 1.13, 2.86, (1.16, 2) eV, respectively. Two photoelectrode assemblies, Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass were used for the photoelectrochemical (PEC) hydrogen generation. In the first assembly 45 nm- Au layer was sputtered on the surface of a disk of PbS/Ro-GO/PANI composite. For the second assembly, a disk of PbS/Ro-GO/PANI composite was glued on ITO glass using Ag-THF paste. The lifetime efficiency values were 64.2 and 43.4% for the first and second electrode for 2 h, respectively. Finally, the incident photon-to-current conversion efficiency (IPCE) and photon-to-current efficiency (ABPE) were calculated under monochromatic illumination conditions. The optimum IPCE efficiency at 390 nm was 9.4% and 16.17%, whereas ABPE % efficiency was 1.01% and 1.75% for Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass, respectively.

  4. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman

    2005-03-01

    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  5. The effect of coating on heat generation properties of Iron oxide nanoparticles

    Science.gov (United States)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  6. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation.

    Science.gov (United States)

    Landers, J G; Esch, Tobias

    2015-12-01

    Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by

  7. Curcumin prevents the oxidation and lipid modification of LDL and its inhibition of prostacyclin generation by endothelial cells in culture.

    Science.gov (United States)

    Mahfouz, Mohamedain M; Zhou, Sherry Q; Kummerow, Fred A

    2009-11-01

    Low-density lipoprotein (LDL) was isolated from human plasma and oxidized by 5microM copper sulfate for 4h at 37 degrees C in the absence and presence of 1, 3, 5, 10, or 20microM of curcumin. LDL oxidized in the absence of curcumin (oxLDL) showed an increased levels of conjugated dienes, lipid peroxides (TBARS) and lysolecithin (lysoPC) and a significant loss of polyunsaturated fatty acids (PUFA). LDL oxidized with 5microM copper sulfate in the presence of curcumin caused a significant decrease of conjugated diene, lipid peroxides, lysoPC and significant increase of PUFA compared to oxLDL. These changes were dose dependent and reached a maximum at 5microM curcumin. Incubation of human endothelial cells (EC) with 200microg protein/ml of oxLDL caused a significant decrease of prostacyclin (PGI(2)) generation. LDL oxidized in presence of 5microM curcumin did not show any inhibition of PGI(2) generation compared to the control cells. These results indicate that curcumin is an effective chain-breaking antioxidant which prevents oxidation and lipid modification of LDL. The inhibition of oxLDL on PGI(2) is considered a contributing factor in the pathogenesis of thrombosis and atherosclerosis. Curcumin supplementation could be an effective strategy in preventing LDL oxidation and its impact on atherosclerosis and lesion formation.

  8. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.

    Science.gov (United States)

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2017-07-01

    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells

    International Nuclear Information System (INIS)

    Zhang, Houcheng; Kong, Wei; Dong, Feifei; Xu, Haoran; Chen, Bin; Ni, Meng

    2017-01-01

    Highlights: • Cascading thermoelectric devices are proposed to recover waste heat from SOFCs. • A theoretical model is developed to analyze the new hybrid system performance. • Performance parameters for evaluating the hybrid system are specified. • Feasibility and effectiveness of the proposed system are demonstrated. • Effects of some important parameters on the system performance are discussed. - Abstract: Besides electricity generation, solid oxide fuel cells (SOFCs) produce a significant amount of waste heat, which needs to be immediately removed to ensure the normal operation of SOFCs. If the waste heat is recovered through bottoming thermal devices, the global efficiency of SOFCs can be improved. In this study, a new hybrid system mainly consisting of a thermoelectric generator, a thermoelectric cooler and an SOFC is proposed to recover the waste heat from SOFC for performance enhancement. The thermodynamic and electrochemical irreversible losses in each component are fully considered. An analytical relationship between the SOFC operating current density and the thermoelectric devices dimensionless electric current is derived, from which the range of SOFC operating current density that permits the thermoelectric devices to effectively work is determined. The equivalent power output and efficiency for the hybrid system are specified under different operating current density regions. The feasibility and effectiveness are illustrated by comparing the proposed hybrid system with the stand-alone SOFC. It is found that the power density and efficiency of the proposed system allow 2.3% and 4.6% larger than that of the stand-alone SOFC, respectively. Finally, various parametric analyses are performed to discuss the effects of some design and operation parameters on the hybrid system performance.

  10. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    Science.gov (United States)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  11. Concentrations of retinol and tocopherols in the milk of cows supplemented with conjugated linoleic acid.

    Science.gov (United States)

    Gessner, D K; Most, E; Schlegel, G; Kupczyk, K; Schwarz, F J; Eder, K

    2015-12-01

    This study was performed to investigate the hypothesis that supplementation of conjugated linoleic acid (CLA) changes the concentrations of retinol and tocopherols in the milk of cows. To investigate this hypothesis, Holstein cows received daily from 3 weeks ante-partum to 14 weeks post-partum either 172 g of a CLA-free rumen-protected control fat (control group, n = 20) or the same amount of a rumen-protected CLA fat, supplying 4.3 g of cis-9, trans-11 CLA and 3.8 g of trans-10, cis-12 CLA per d (CLA group, n = 20). Milk samples (collected at weeks 1, 3, 5, 8 and 11 of lactation) were analysed for retinol, α- and γ-tocopherol concentrations. Milk of cows supplemented with CLA had higher concentrations of retinol (+34%), α-tocopherol (+44%) and γ-tocopherol (+21%) than milk of control cows (p tocopherol and γ-tocopherol, respectively, p tocopherols, concentrations of thiobarbituric acid-reactive substances, determined in milk of week 5, were lower in cows of the CLA group than in control cows, indicative of a lower susceptibility of milk lipids to peroxidation. Plasma concentrations of retinol and α-tocopherol, determined at 1 and 5 weeks post-partum, were not different between the two groups of cows. In conclusion, this study shows that supplementing dairy cows with a moderate amount of CLA causes an increase of the concentrations of vitamins A and E in the milk and results in an increased output of those vitamins via milk. These effects might be beneficial with respect to the nutritional value of dairy products and the susceptibility of milk fat to oxidative deterioration. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  12. Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites

    Directory of Open Access Journals (Sweden)

    Yuan Yao Chen

    2016-10-01

    Full Text Available Lactobacilli convert linoleic acid to the antifungal compound 10-hydroxy-12-octadecenoic acid (10-HOE by linoleate 10-hydratase (10-LAH. However, the effect of this conversion on cellularmembrane physiology and properties of the cell surface have not been demonstrated. Moreover, L. plantarum produces 13-hydroxy-9-octadecenoic acid (13-HOE in addition to 10-HOE, but the antifungal activity of 13-HOE was unknown. Phylogenetic analyses conducted in this study did not differentiate between 10-LAH and linoleate 13-hydratase (13-LAH. Thus, linoleate hydratases (LAHs must be characterized through their differences in their activities of linoleate conversion. Four genes encoding putative LAHs from lactobacilli were cloned, heterologous expressed, purified and identified as FAD-dependent 10-LAH. The unsaturated fatty acid substrates stimulated the growth of lactobacilli. We also investigated the role of 10-LAH in ethanol tolerance, membrane fluidity and hydrophobicity of cell surfaces in lactobacilli by disruption of 10-lah. Compared with the L. plantarum 10-lah deficient strain, 10-LAH in wild-type strain did not exert effect on cell survival and membrane fluidity under ethanol stress, but influenced the cell surface hydrophobicity. Moreover, deletion of 10-LAH in L. plantarum facilitated purification of 13-HOE and demonstration of its antifungal activity against Penicillium roquefortii and Aspergillus niger.

  13. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  14. Os efeitos do ácido linoléico conjugado no metabolismo animal: avanço das pesquisas e perspectivas para o futuro Effects of conjugated linoleic acid on animal metabolism: advances in research and perspectives for the future

    Directory of Open Access Journals (Sweden)

    Lilia Ferreira Santos-Zago

    2008-04-01

    consumidos em quantidades adequadas e de forma freqüente, poderiam atuar como coadjuvantes na prevenção e no controle de inúmeras doenças crônicas.This systematic review without date restrictions is about the physiological effects of conjugated linoleic acid on regression of carcinogenesis, oxidative stress, glucose and lipid metabolism and change in body composition. The objective was to establish the historical aspect of research advances regarding conjugated linoleic acid, considering original articles reporting work on animals, cell cultures and humans. Regarding the researches on the anticarcinogenic effect of conjugated linoleic acid, innumerous evidences were found in this respect, especially in the regression of mammary and colon tumors induced by both isomers which act distinctively. The researchers devoted considerable effort to reinvestigate the antioxidant properties of conjugated linoleic acid. Although the antioxidant properties have been investigated, pro-oxidant effect has been identified leading to oxidative stress in humans. Few studies demonstrated significant beneficial effects of conjugated linoleic acid on the metabolism of lipids and glucose and on the reduction of body fat, especially in humans. Studies with adverse effects were also identified. There is strong indication that the action of this conjugated fatty acid on a class of transition factors - the peroxisome proliferator-activated receptor - and on the consequent modulation of gene expression can be the fundamental explanation of its physiological effects. The most recent studies reinforce the nutrigenomic concept, that is, the modulation of gene expression induced by compounds present in the foods consumed by humans. This current scenario stimulates the scientific community to seek a consensus on the effects of conjugated linoleic acid in humans, since it is naturally found in some foods; when these foods are consumed regularly and in appropriate amounts, they could help prevent and

  15. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    Science.gov (United States)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  16. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    International Nuclear Information System (INIS)

    Hefny, Mohamed Mokhtar; Pattyn, Cedric; Benedikt, Jan; Lukes, Petr

    2016-01-01

    A remote microscale atmospheric pressure plasma jet ( µ APPJ) with He, He/H 2 O, He/O 2 , and He/O 2 /H 2 O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µ APPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H 2 O 2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O 2 plasma, followed by He/H 2 O, He/O 2 /H 2 O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O 2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O 2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µ APPJ He/O 2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity. (paper)

  17. Incorporation of conjugated linoleic acid (CLA and α-linolenic acid (LNA in pacu fillets

    Directory of Open Access Journals (Sweden)

    Deoclécio José Barilli

    2014-03-01

    Full Text Available The objective of this study was to evaluate the incorporation of conjugated linoleic acid and α-linolenic acid in fillets of pacu fish raised in net cages and fed diets enriched with these acids. The fish were fed for 49 days, and at the end of this period the fatty acid content in the fillets was determined by gas chromatography. Concentrations of α-linolenic acid, eicosapentaenoic acid, and the total omega-3 (n-3 fatty acid in the fillets increased, improving the n-6/n-3 ratio. In addition, the incorporation of conjugated linoleic acid in the fish fillets proved well established. This study showed that the use of diets enriched with conjugated linoleic acid and α-linolenic acid results in the incorporation of these acids in the of pacu fish fillets, improving their nutritional quality.

  18. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    Science.gov (United States)

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...... with other similar oxide modules reported in the literature. A maximum power density of 4.5 kW/m2 was obtained for an oxide module comprising of 8 p-n couples at a temperature difference of 496 K, an encouraging result in the context of the present high temperature oxide modules....

  20. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    Science.gov (United States)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  1. Conjugated Linoleic Acid (CLA) content in different tissues of ruminants fed with CLA supplementation

    OpenAIRE

    Pellattiero, Erika

    2014-01-01

    Conjugated Linoleic Acid (CLA) are a group of positional and geometric isomers of Linoleic Acid characterized by a carbon chain containing 18 carbon atoms and two double bonds, not in the classic position (cis), but conjugated from the carbons atoms 9, 10 or 11. Double bonds have different position in the carbon chain ([7,9], [8,10], [9,11], [10,12], [11,13] and [12,14]) and four different geometric distribution (cis/trans, trans/cis, cis/cis and trans/trans). In total 24 possible isomers are...

  2. Production of arachidonic and linoleic acid metabolites by guinea pig tracheal epithelial cells

    International Nuclear Information System (INIS)

    Oosthuizen, M.J.; Engels, F.; Van Esch, B.; Henricks, P.A.; Nijkamp, F.P.

    1990-01-01

    Pulmonary epithelial cells may be responsible for regulating airway smooth muscle function, in part by release of fatty acid-derived mediators. Incubation of isolated guinea pig tracheal epithelial cells with radiolabeled arachidonic acid (AA) leads to the production of 5- and 15-hydroxyeicosatetraenoic acid (5- and 15-HETE) and smaller amounts of leukotriene (LT) B4 and C4 and 12-hydroxyheptadecatrienoic acid (HHT). Epithelial cells also are able to release linoleic acid (LA) metabolites. Incubation with radiolabeled linoleic acid leads to the formation of 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE). The biological significance of these mediators produced by epithelial cells is discussed

  3. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2016-05-15

    Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra

  4. Solid oxide fuel cells, SOFC, in future power generation; Fastoxidbraensleceller, SOFC, i framtida kraftgenerering

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Kent; Baafaelt, M

    1997-02-01

    Solid Oxide Fuel Cell, SOFC, is a very promising technological area for generating electricity in the future. Especially for small scale cogeneration. SOFC is an excellent choice due to its high efficiencies at small power plant sizes. The expected size of the power plants is 10-20 MWe but larger ones might be built. An important part of the assumptions in this report is the SOFC electric efficiency dependence of the pressure in the process. The electric efficiency is assumed to be 50% at atmospheric pressure and 55% at 10 atmospheres. These assumptions lead to a formula that describes the electric efficiency as a function of the pressure. The parametric study shows that the pressure has a very large influence of the electric efficiency. At low pressure and high Turbine Inlet Temperature (TIT) the electric efficiency will be higher than at high pressure and low TIT. The post intercooler temperature and the pressure drop over the SOFC unit have a moderate effect on the electric efficiency. In the process calculations the TIT is shown to have a very small influence on the plant efficiencies. Consequently, by lowering the TIT, the need for blade cooling and tougher materials can be avoided, with only a small electric efficiency decrease. The recuperator is a central part of the process. It evens out the influence from other parts in the process. This is one of the reasons why the polytropic efficiencies of the compressor and the expander have such a low influence on the process efficiency. The report shows that to receive high efficiencies in a SOFC/GT power plant, the points mentioned below should be taken into consideration: The pressure in the process should be approximately 4 bar; The compressor should have an intercooler; The TIT should be below the temperature where blade cooling is needed; No steam cycle should be connected after the gas turbine at sizes of 5-20 MW. 32 refs, 67 figs, 9 tabs, 15 appendices

  5. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  6. Generation of synthesis gas by partial oxidation of natural gas in a gas turbine

    NARCIS (Netherlands)

    Cornelissen, R.; Tober, E.; Kok, Jacobus B.W.; van der Meer, Theodorus H.

    2006-01-01

    The application of partial oxidation in a gas turbine (PO-GT) in the production of synthesis gas for methanol production is explored. In PO-GT, methane is compressed, preheated, partial oxidized and expanded. For the methanol synthesis a 12% gain in thermal efficiency has been calculated for the

  7. Photochemical generation and 1H NMR detection of alkyl allene oxides in solution

    International Nuclear Information System (INIS)

    Breen, L.E.; Schepp, N.P.; Tan, C.-H.E.

    2005-01-01

    Irradiation of substituted 5-alkyl-4,5-epoxyvalerophenones leads to the formation of alkyl allene oxides that, in some cases, are sufficiently long-lived to be detected at room temperature by 1 H NMR spectroscopy. Absolute lifetime measurements show that the size of the alkyl group has a significant influence on the reactivity of the allene oxide, with tert-butyl allene oxide having a lifetime of 24 h in CD 3 CN at room temperature that is considerably longer than the 1.5 h lifetime of the ethyl allene oxide. The allene oxides react rapidly with water to give α-hydroxyketones. The mechanism involves nucleophilic attack to the epoxide carbon to give an enol, which can also be detected as an intermediate by 1 H NMR spectroscopy. (author)

  8. Gas generation over plutonium oxides in the 94-1 shelf-life surveillance program

    International Nuclear Information System (INIS)

    Berg, J.M.; Harradine, D.M.; Hill, D.D.; McFarlan, James T.; Padilla, D.D.; Prenger, F. Coyne; Veirs, D.K.; Worl, L.A.

    2002-01-01

    The Department of Energy (DOE) is embarking upon a program to store large quantities of plutonium-bearing materials for up to fifty years. The Los Alamos National Laboratory Shelf Life Project was established to bound the behavior of plutonium-bearing material meeting the DOE 3013 Standard. The shelf life study monitors temperature, pressure and gas composition over oxide materials in a limited number of large-scale 3013 inner containers and in many small-scale containers. For the large-scale study, baseline plutonium oxides, oxides exposed to high-humidity atmospheres, and oxides containing chloride salt impurities are planned. The first large-scale container represents a baseline and contains dry plutonium oxide prepared according to the 3013 Standard. This container has been observed for pressure, temperature and gas compositional changes for less than a year. Results indicate that no detectable changes in pressure and gas composition are observed.

  9. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ..., Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of castor oil, polymer with adipic acid, linoleic acid... pesticide formulation. Advance Polymer Technology submitted a petition to EPA under the Federal Food, Drug...

  10. Epithelial-mesenchymal interactions in early and late hepatocarcinogenesis with focus on the role of linoleic acid and its hydroperoxides

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    Hepatocellular carcinomas are devastating cancers with high mortality rates. Major risk factors are chronic hepatitis and associated cirrhosis as consequence of viral hepatitis infections, chronically ethanol consumption or metabolic disorders. While the stepwise development of liver cancer is well investigated, the role of mesenchymal cells in this process is largely unknown. To analyse epithelial-mesenchymal interactions in advanced stages of hepatocarcinogenesis, we established new cell lines from human hepatocellular carcinomas and obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)- and myofibroblastoid (MF)-lines. BLC- and MF-supernatants were able to increase DNA replication of premalignant hepatocytes. Supernatants of MF-lines enhanced angiogenesis and increased migration of HCC-lines. Besides these pro-tumourigenic effects we could also observe tumouricidal properties of mesenchymal cells, as BLC-supernatants induced cell death of HCC-lines. Linoleic acid is an important source for hydroperoxides, which may be generated either endogenously in the course of inflammation or exogenously during food processing. We found that linoleic acid hydroperoxides (=LOOH) were able to activate mesenchymal cells of the liver resulting in the release of pro-inflammatory cytokines and growth factors including TNF-alpha (=tumour necrosis factor alpha) and HB-EGF (=heparin-binding epidermal growth factor-like growth factor), which turned out to be a growth factor for premalignant hepatocytes. Furthermore LOOH enhanced the growth of hepatocarcinoma cells via upregulation of the antiapoptotic enzyme heme oxygenase 1 and stimulation of cell proliferation. In conclusion, the results of our studies confirm the crucial role of different mesenchymal cells in early and late hepatocarcinogenesis and propose a tumour-promoting effect of LOOH. (author) [de

  11. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Vaughan Roger A

    2012-10-01

    Full Text Available Abstract Background Polyunsaturated fatty acids are popular dietary supplements advertised to contribute to weight loss by increasing fat metabolism in liver, but the effects on overall muscle metabolism are less established. We evaluated the effects of conjugated linoleic acid (CLA or combination omega 3 on metabolic characteristics in muscle cells. Methods Human rhabdomyosarcoma cells were treated with either DMSO control, or CLA or combination omega 3 for 24 or 48 hours. RNA was determined using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Mitochondrial content was determined using flow cytometry and immunohistochemistry. Metabolism was quantified by measuring extracellular acidification and oxygen consumption rates. Results Omega 3 significantly induced metabolic genes as well as oxidative metabolism (oxygen consumption, glycolytic capacity (extracellular acidification, and metabolic rate compared with control. Both treatments significantly increased mitochondrial content. Conclusion Omega 3 fatty acids appear to enhance glycolytic, oxidative, and total metabolism. Moreover, both omega 3 and CLA treatment significantly increase mitochondrial content compared with control.

  12. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Siddiqui, Huma; Patil, Govil; Ashquin, Mohd; Ahmad, Iqbal

    2010-10-09

    Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation

    Directory of Open Access Journals (Sweden)

    Ghareib SA

    2015-11-01

    -gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 µM alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-L-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially attributed to its ability to increase the production of NO and stimulation of cyclic guanosine monophosphate. Keywords: diabetes, 6-gingerol, vasorelaxant, nitric oxide, advanced glycation end products, vascular complications

  14. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  15. Effects of keV electron irradiation on the avalanche-electron generation rates of three donors on oxidized silicon

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.

    1983-01-01

    After keV electron beam irradiation of oxidized silicon, the avalanche-electron-injection generation rates and densities of the bulk compensating donor, the interface states, and the turnaround trap all increase. Heating at 200 0 C can anneal out these three donor-like traps, however, it cannot restore the generation rates back to their original and lower pre-keV electron irradiation values. The experimental results also indicate that all three traps may be related to the same mobile impurity species whose bonds are loosened by the keV electrons and then broken or released by the avalanche injected electrons

  16. Effects of dietary conjugated linoleic acid (CLA), n-3 and n-6 fatty ...

    African Journals Online (AJOL)

    An experiment was conducted on broiler chickens to study the effects of conjugated linoleic acid (CLA), fish oil, soybean oil or their mixtures (at 7% for single and 3.5% + 3.5% for mixtures) as well as up 12% dosage of palm oil, on the performance and carcass traits of broiler chickens. The chicks fed 7% fish oil or 7% CLA ...

  17. Trends in linoleic acid intake in the United States adult population: NHANES 1999-2014

    Science.gov (United States)

    Linoleic acid (LA), the primary polyunsaturated fatty acid (PUFA) in the US diet, is an essential fatty acid. LA is available from a wide variety of foods, although it is primarily sourced from plant seed oils. Individual-level data on demography and food and nutrient intake were acquired from the N...

  18. Protein and energy metabolism of young male Wistar rats fed conjugated linoleic acid as structured triacylglycerol

    DEFF Research Database (Denmark)

    Jørgensen, H.; Hansen, C. H.; Mu, Huiling

    2010-01-01

    Twelve 4-week-old male Wistar rats weighing 100 g were fed diets semi-ad libitum for 22 d containing either 1.5% conjugated linoleic acid (CLA-diet) or high oleic sunflower oil (Control-diet). The CLA was structured triacylglycerol with predominantly cis-9, trans-11 and trans-10, cis-12 fatty acid...

  19. The effect of long-term feeding of conjugated linoleic acid on fertility ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effects of the long-term feeding of conjugated linoleic acid (CLA) on laying hen performance, egg fertility and hatchability of fertile eggs of Japanese quail (Coturnix coturnix japonica). One hundred and sixty 7-day old Japanese quail chicks were randomly assigned to four ...

  20. Comparison of bolus versus fractionated oral applications of [13C]-linoleic acid in humans.

    Science.gov (United States)

    Demmelmair, H; Iser, B; Rauh-Pfeiffer, A; Koletzko, B

    1999-07-01

    The endogenous conversion of linoleic acid into long-chain polyunsaturated fatty acids is of potential importance for meeting substrate requirements, particularly in young infants. After application of [13C]-linoleic acid, we estimated its conversion to dihomo-gamma-linolenic and arachidonic acids from only two blood samples. Oral tracer doses were given to five healthy adults as a single bolus. In four subjects the tracer was given in nine equal portions over 3 days. Concentration and 13C content of fatty acids from serum phospholipids were analysed by gas chromatography combustion isotope ratio-mass spectrometry. Areas under the tracer-concentration curves were calculated, and fractional transfer and turnover rates estimated from compartmental models. The median fractional turnover of linoleic acid was 93.7% per day (interquartile range 25.3) in the bolus group and 80. 0% per day (6.3) in the fraction group (NS). Fractional conversion of linoleic to dihomo-gamma-linolenic acid was 1.5% (0.9) vs. 2.1% (0.7) (bolus vs. fraction, P /= 0.94, P < 0.05) with the ratio of areas under the curve. Using areas under the curve overestimates the conversion, because different residence times are not considered. Estimation of conversion intensity appears possible with only one blood sample obtained after tracer application.

  1. Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up

    NARCIS (Netherlands)

    Villaverde, J.J.; Vlist, van der V.; Santos, S.A.O.; Haarmann, T.; Langfelder, K.; Pirttimaa, M.; Nyyssola, A.; Jylhä, S.; Tamminen, T.; Kruus, K.; Graaff, de L.H.; Pascoal Neto, C.; Simoes, M.M.Q.; Domingues, M.R.M.; Silvestre, A.J.D.; Eidner, J.; Buchert, J.

    2013-01-01

    Linoleic acid was converted into hydroperoxides by a Gaeumannomyces graminis tritici lipoxygenase produced recombinantly in Trichoderma reesei. Hydroperoxide production was optimized using a face-centred experimental design in order to study the effects of pH, temperature and time on the conversion

  2. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs

    DEFF Research Database (Denmark)

    Tous, Nuria; Theil, Peter Kappel; Lauridsen, Charlotte

    2012-01-01

    The aim of this study was to investigate underlying mechanisms of dietary conjugated linoleic acid (CLA) on lipid metabolism in various tissues of pigs. Sixteen gilts (73 ± 3 kg) were fed a control (containing sunflower oil) or an experimental diet in which 4% of sunflower oil was replaced by CLA...

  3. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    The effect of conjugated linoleic acid on the fatty acid composition of different tissues and yolk lipids in pigeons. ... South African Journal of Animal Science ... Eight established breeding pairs per group were fed either a commercially pelleted pigeon diet mixed with 0.5% safflower oil (SFO) or 0.5% CLA for 12 weeks. For fatty ...

  4. The effects of conjugated linoleic acid (CLA) and canola oil on the ...

    African Journals Online (AJOL)

    Dietary conjugated linoleic acid (CLA) causes adverse effects on quality of eggs by modifying the fatty acid composition of the yolk. Supplementing oils prevent CLA-induced changes, but cause a decrease in the level of egg CLA. The objective of the study was to investigate the incorporation of CLA into the egg and its effect ...

  5. Meat quality and tissue fatty acid profiles in rabbits fed diets supplemented with conjugated linoleic acid

    Czech Academy of Sciences Publication Activity Database

    Marounek, Milan; Skřivanová, V.; Dokoupilová, A.; Czauderna, M.; Berladyn, A.

    2007-01-01

    Roč. 52, č. 12 (2007), s. 552-561 ISSN 0375-8427 Institutional research plan: CEZ:AV0Z50450515 Keywords : rabbits * conjugated linoleic acid * fatty acids Subject RIV: GH - Livestock Nutrition Impact factor: 0.645, year: 2007

  6. Effect of dietary conjugated linoleic acid (CLA) on the growth and ...

    African Journals Online (AJOL)

    Effect of dietary conjugated linoleic acid (CLA) on the growth and lipid metabolism of geese and fatty acid composition of their tissues. ... Dietary CLA altered serum lipid concentrations by decreasing total cholesterol, triglyceride and low density lipoprotein-cholesterol concentrations, the atherogenic index and activity of ...

  7. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  8. Next Generation Hybrid Photo-Catalytic Oxidation (PCO) for Trace Contaminant Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Photocatalytic oxidation (PCO) is a primary candidate as an alternative to thermal-catalytic or sorbent- based technologies for VOC trace contaminant control due to...

  9. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  10. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  11. Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles

    Science.gov (United States)

    Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.

    2016-12-01

    Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.

  12. Quantitative determination of conjugated linoleic acid and polyunsaturated fatty acids in milk with C17:0 as internal marker – Evaluation of different methylation procedures

    Directory of Open Access Journals (Sweden)

    S. Lashkari

    2017-12-01

    Full Text Available Fatty acids are commonly analysed by gas chromatography as their corresponding fatty acid (FA methyl esters (FAME. For quantitative determination of individual FA an internal standard like C17:0 is necessary. Conjugated FA and polyunsaturated fatty acid (PUFA represents a challenge in the methylation steps, as they are sensitive to pH changes and oxidation. The present study was carried out to determine the efficiency of different methylation procedures on quantitative determination of conjugated linoleic acid (CLA, PUFA and response of internal standard. The highest response of internal standard was observed for boron trifluoride (BF3/methanol and methanolic HCl followed by NaOCH3, while cis-9, trans-11 CLA, total CLA and PUFA was higher with methanolic HCl followed by NaOCH3 compared with the BF3 method. These data can be useful for quantitating of milk FA. Keywords: Methylation procedures, Milk fatty acid, Conjugated linoleic acid

  13. Influence of * OH adsorbates on the potentiodynamics of the CO 2 generation during the electro-oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangxing; Namin, Lida M.; Aaron Deskins, N.; Teng, Xiaowei

    2017-09-01

    Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of electricity via the direct conversion of ethanol into CO2, showing higher thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. However, implementation of DEFCs is hampered by the low CO2 selectivity during the ethanol oxidation reaction (EOR). Comprehensive understanding of the electro-kinetics and reaction pathways of CO2 generation via CC bond-breaking is not only a fundamental question for electro-catalysis, but also a key technological challenge since practical implementation of DEFC technology is contingent on its ability to selectively oxidize ethanol into CO2 to achieve exceptional energy density through 12-electron transfer reaction. Here, we present comprehensive in situ potentiodynamics studies of CO2 generation during the EOR on Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts using a house-made electrochemical cell equipped with a CO2 microelectrode. Highly sensitive CO2 measurements enable the real time detection of the partial pressure of CO2 during linear sweep voltammetry measurements, through which electro-kinetics details of CO2 generation can be obtained. In situ CO2 measurements provide the mechanistic understanding of potentiodynamics of the EOR, particularly the influence of *OH adsorbates on CO2 generation rate and selectivity. Density functional theory (DFT) simulations of Pt, Pt/SnO2, and Pt/Rh/SnO2 surfaces clarify reaction details over these catalysts. Our results show that at low potentials, inadequate *OH adsorbates impair the removal of reaction intermediates, and thus Pt/Rh/SnO2 exhibited the best performance toward CO2 generation, while at high potentials, Rh sites were overwhelmingly occupied (poisoned) by *OH adsorbates, and thus Pt/SnO2 exhibited the best performance toward CO2 generation.

  14. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zeuch, Thomas [Institut fuer Physikalische Chemie, Tammannstrasse 6, 37077 Goettingen (Germany); Moreac, Gladys [Renault, 1, avenue du Golf, 78288 Guyancourt cedex (France); Ahmed, Syed Sayeed; Mauss, Fabian [Lehrstuhl fuer Thermodynamik und Thermische Verfahrenstechnik, Sielower Strasse 12, 03044 Cottbus (Germany)

    2008-12-15

    Applied to the primary reference fuel n-heptane, we present the chemistry-guided reduction (CGR) formalism for generating kinetic hydrocarbon oxidation models. The approach is based on chemical lumping and species removal with the necessity analysis method, a combined reaction flow and sensitivity analysis. Independent of the fuel size, the CGR formalism generates very compact submodels for the alkane low-temperature oxidation and provides a general concept for the development of compact oxidation models for large model fuel components such as n-decane and n-tetradecane. A defined sequence of simplification steps, consisting of the compilation of a compact detailed chemical model, the application of linear chemical lumping, and finally species removal based on species necessity values, allows a significantly increased degree of reduction compared to the simple application of the necessity analysis, previously published species, or reaction removal methods. The skeletal model derived by this procedure consists of 110 species and 1170 forward and backward reactions and is validated against the full range of combustion conditions including low and high temperatures, fuel-lean and fuel-rich mixtures, pressures between 1 and 40 bar, and local (species concentration profiles in flames, plug flow and jet-stirred reactors, and reaction sensitivity coefficients) and global parameters (ignition delay times in shock tube experiments, ignition timing in a HCCI engine, and flame speeds). The species removal is based on calculations using a minimum number of parameter configurations, but complemented by a very broad parameter variation in the process of compiling the kinetic input data. We further demonstrate that the inclusion of sensitivity coefficients in the validation process allows efficient control of the reduction process. Additionally, a compact high-temperature n-heptane oxidation model of 47 species and 468 reactions was generated by the application of necessity

  15. A device for reduction of metal oxides generated in electrokinetic separation equipment

    International Nuclear Information System (INIS)

    Kim, Gye-Nam; Kim, Seung-Soo; Kim, Il-Gook; Jeong, Jung-Whan; Choi, Jong-Won

    2015-01-01

    For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of the waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. The optimum pH of electrolyte in cathode chamber for a reduction of volume of metal oxides was below 2.35. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil per batch was manufactured to remove uranium from soil with high removal efficiency during a short time. For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured electrokinetic equipment. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil was manufactured to remove uranium from soil during a short time

  16. A device for reduction of metal oxides generated in electrokinetic separation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Kim, Seung-Soo; Kim, Il-Gook; Jeong, Jung-Whan; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of the waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured 1.2 ton electrokinetic decontamination equipment. The optimum pH of electrolyte in cathode chamber for a reduction of volume of metal oxides was below 2.35. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil per batch was manufactured to remove uranium from soil with high removal efficiency during a short time. For a reduction of waste electrolyte volume and metal oxide volume, the reuse period of waste electrolyte in the electrokinetic decontamination experiment and the method of a reduction of metal oxide volume in the cathode chamber were drawn out through several experiments with the manufactured electrokinetic equipment. Indoor electrokinetic decontamination equipment for treatment of 1.2 tons of the contaminated soil was manufactured to remove uranium from soil during a short time.

  17. Chloro-benquinone Modified on Graphene Oxide as Metal-free Catalyst: Strong Promotion of Hydroxyl Radical and Generation of Ultra-Small Graphene Oxide

    Science.gov (United States)

    Zhao, He; Wang, Juehua; Zhang, Di; Dai, Qin; Han, Qingzhen; Du, Penghui; Liu, Chenming; Xie, Yongbing; Zhang, Yi; Cao, Hongbin; Fan, Zhuangjun

    2017-03-01

    Carbon-based metal-free catalyst has attracted more and more attention. It is a big challenge to improve catalytic activity of metal-free catalyst for decomposition of H2O2 to produce hydroxyl radical (HO•). Here, we report chloro-benquinone (TCBQ) modified on graphene oxide (GO) as metal-free catalyst for strong promotion of HO•. By the incorporation of GO, the HO• production by H2O2 and TCBQ is significantly promoted. Based on density functional theory, TCBQ modified GO (GO-TCBQ) is more prone to be nucleophilic attacked by H2O2 to yield HO• via electron transfer acceleration. Furthermore, the generated HO• can cut GO nanosheets into uniform ultra-small graphene oxide (USGO) through the cleavage of epoxy and C-C bonds. Interestingly, the damaged GO and in situ formed GO fragments can further enhance decomposition of H2O2 to produce HO•. Different from other catalytic processes, the GO-TCBQ metal-free catalysis process can be enhanced by GO itself, producing more HO•, and uniform USGO also can be generated. Thus, the metal free catalysis will be considered a fabrication method for uniform USGO, and may be extended to other fields including detoxifying organic pollutants and the application as disinfectants.

  18. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  19. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  20. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  1. Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study

    International Nuclear Information System (INIS)

    Han Zhenhui; Lu Changyuan; Wang Wenfeng; Lin Weizhen; Yao Side; Lin Nianyun

    2000-01-01

    Direct excitation of riboflavin with 248 nm laser gives rise to a transient absorption spectrum with contributions from (1) oxidized radical, (2) hydrated electron, (3) triplet state and reduced radical, and distinction between the transient species below 360 nm is difficult for the absorption overlapped. The RF ·+ or RF(-H) · has been clearly produced via direct photoionization by 248 nm laser in aqueous solution, which has been unambiguously identified by SO 4 ·- radical oxidation, although its transient absorption can not be observed clearly for both lower absorption coefficient (ε = 2000 dm 3 mol -1 cm -1 at 640 nm at pH 7.1) and overlap from others. In the present paper, electron transfer from purine and pyrimidine nucleotides to one-electron oxidized radical of riboflavin were observed for the first time in aqueous solution, and the reaction rate constants were determined respectively, which would obviously be of considerable significance in vivo and in vitro. The results clearly demonstrate the importance of oxidized radical of riboflavin in flavin photochemistry and photobiology. These reaction paths are important for the elucidation of the interaction between riboflavin and DNA nucleotides under photoexcitation. When riboflavin was excited, triplet state and oxidized radical can be formed directly or by sequence reactions of triplet state. In the presence of DNA, electron transfer can take place to form a base radical cation, then hole migration to GG step along base-stacking of DNA leads to DNA strand scission, which has been verified by many steady product analysis. This selective cleavage of DNA shows the potential application of riboflavin as a site-specify photonuclease, which has become a highlight' in the currently photochemistry, photomedicine and photobiology areas. The mechanism implies that riboflavin can be applied potentially to photosensitization of oxygen deficient or under high intensity pulsed laser irradiation. (author)

  2. Cerium Oxide Nanoparticle Nose-Only Inhalation Exposures Using a Low-Sample-Consumption String Generator

    Science.gov (United States)

    There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low ...

  3. Effect of lead on Inconel 600 and Incoloy 800 oxide layers formed in simulated steam generator secondary environments

    International Nuclear Information System (INIS)

    Garcia-Mazario, M.; Lancha, A.M.; Hernandez, M.; Maffiotte, C.

    1996-01-01

    The existence of lead in steam generators, detected during the analysis of deposits in the damaged areas of tubing, supports the hypothesis that lead may contribute to the cracking problems experienced in steam generator tubes. In addition, the harmful effect of lead on Inconel 600 is known not only through laboratory tests but also as a result of operating experience. Operating experience of Incoloy 800 is, however, much more limited and there are very few laboratory studies in this area. Taking into account that thin films formed on metals reflect the interaction between such metals and the aqueous environment and also that incoloy 800 is considered to be a suitable material for new steam generators as a substitute for Inconel 600, attempts to determine the effect of lead on corrosion films are considered useful with a view to better understanding the stress-corrosion-cracking behaviour of these materials. For these reasons the objective of this paper is to gain some insights into the effect of lead on the oxide layers forming on Inconel 600 and Incoloy 800 tested in the laboratory in various aggressive lead-containing environments. Auger electron spectroscopy (AES) and electron spectroscopy for chemical analysis (ESCA) have been used to study the composition of these oxide layers. (orig.)

  4. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  5. An oxide-based thermoelectric generator: Transversal thermoelectric strip-device

    Science.gov (United States)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Töpfer, J.

    2015-07-01

    A special design of an oxide-based transversal thermoelectric device utilizing thermoelectric oxides in combination with a ceramic multilayer technology is proposed. Metal strips within the ceramic matrix replace the tilted stack of alternating layers used in artificial anisotropic transversal thermoelectric devices. Numerical three-dimensional simulations of both device types reveal better thermoelectric performance data for the device with metal stripes. A monolithic transversal strip-device based on the material combination La1.97Sr0.03CuO4/Ag6Pd1 was prepared and electrically characterized. A maximum power output of 4.0 mW was determined at ΔT = 225 K for the monolithic device. The observed results are in remarkable agreement with three-dimensional numerical simulations utilizing the transport parameters of the two materials and the geometry data of the device.

  6. Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors

    Science.gov (United States)

    2013-01-01

    conductive carbon supports. Many pro- tocols, including electrodeposition ,17 vapor deposi- tion,18 impregnation/decomposition,19 and solgel chemistry20 have...can be mitigated by dispersing the oxide on high-surface-area carbons (via solgel, impregnation, CVD, or electrodeposition methods), a strategy that...et al. Christopher Chervin is a staff scientist at the NRL, where his research focuses on redesigning cathodes for metalair batteries and exploring

  7. Oxidative stress, inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Seagrave, J.; Campen, M.J.; McDonald, J.D.; Mauderly, J.L.; Rohr, A.C. [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2008-07-01

    Oxidative stress may mediate adverse health effects of many inhaled pollutants. Cardiopulmonary responses of Sprague-Dawley rats to inhalation of whole or filtered gasoline engine exhaust (GEE, FGEE); simulated downwind coal emission atmospheres (SDCAs) from two types of coal, each tested at two concentrations; and two concentrations of re-aerosolized paved road dust (RD) were evaluated. In situ chemiluminescence and thiobarbituric acid-reactive substances (TBARS) were used to evaluate oxidative reactions in the lungs, heart, and liver immediately following exposures. Pulmonary inflammatory responses were measured by bronchoalveolar lavage (BAL) cell counts. Respiratory function parameters during exposure were measured by plethysmography. Only GEE significantly enhanced in situ chemiluminescence (all three organs), but only exposure to the high RD concentration increased TBARS (hearts only). There was a weak trend toward increased macrophages recovered in lavage fluid from both SDCAs, and macrophages were significantly elevated by both FGEE and the lower concentration of RD. Respiratory function effects were small, though the effects of the Central Appalachian low-sulfur SDCA on enhanced pause and the effects of the Powder River Basin SCDA on tidal volume were significant. The discordance between the oxidative stress indicators may relate to the use of a single time point in the context of dynamic changes in compensatory mechanisms. These results further suggest that inflammatory responses measured by BAL cellularity may not always correlate with oxidative stress. Overall, the toxicological effects from exposure to these pollutant mixtures were subtle, but the results show differences in the effects of atmospheres having different physical/chemical characteristics.

  8. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates

    Directory of Open Access Journals (Sweden)

    Casey L. Quinlan

    2013-01-01

    Full Text Available Mitochondrial radical production is important in redox signaling, aging and disease, but the relative contributions of different production sites are poorly understood. We analyzed the rates of superoxide/H2O2 production from different defined sites in rat skeletal muscle mitochondria oxidizing a variety of conventional substrates in the absence of added inhibitors: succinate; glycerol 3-phosphate; palmitoylcarnitine plus carnitine; or glutamate plus malate. In all cases, the sum of the estimated rates accounted fully for the measured overall rates. There were two striking results. First, the overall rates differed by an order of magnitude between substrates. Second, the relative contribution of each site was very different with different substrates. During succinate oxidation, most of the superoxide production was from the site of quinone reduction in complex I (site IQ, with small contributions from the flavin site in complex I (site IF and the quinol oxidation site in complex III (site IIIQo. However, with glutamate plus malate as substrate, site IQ made little or no contribution, and production was shared between site IF, site IIIQo and 2-oxoglutarate dehydrogenase. With palmitoylcarnitine as substrate, the flavin site in complex II (site IIF was a major contributor (together with sites IF and IIIQo, and with glycerol 3-phosphate as substrate, five different sites all contributed, including glycerol 3-phosphate dehydrogenase. Thus, the relative and absolute contributions of specific sites to the production of reactive oxygen species in isolated mitochondria depend very strongly on the substrates being oxidized, and the same is likely true in cells and in vivo.

  9. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  10. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.

    Science.gov (United States)

    Alarcon, R A

    2012-10-01

    A hypothesis suggesting the existence of a ubiquitous physiological anticancer system created by two highly reactive oxidative stress inducers with anticancer properties, acrolein and hydroxyl radical, is reported in this communication. Both components can originate separately or together in several biochemical interactions, among them, the enzymatic oxidation of the polyamine spermine, which appear to be their main source. The foundations of this hypothesis encompass our initial search for growth-inhibitors or anticancer compounds in biological material leading to the isolation of spermine, a polyamine that became highly cytotoxic through the generation of acrolein, when enzymatically oxidized. Findings complemented with pertinent literature data by other workers and observed anticancer activities by sources capable of producing acrolein and hydroxyl radical. This hypothesis obvious implication: spermine enzymatic oxidations or other biochemical interactions that would co-generate acrolein and hydroxyl radical, the anticancer system components, should be tried as treatments for any given cancer. The biochemical generation of acrolein observed was totally unexpected, since this aldehyde was known; as a very toxic and highly reactive xenobiotic chemical produced in the pyrolysis of fats and other organic material, found as an atmospheric pollutant, in tobacco smoke and car emissions, and mainly used as a pesticide or aquatic herbicide. Numerous studies on acrolein, considered after our work a biological product, as well, followed. In them, acrolein widespread presence, its effects on diverse cellular proteins, such as, growth factors, and its anticancer activities, were additionally reported. Regarding hydroxyl radical, the second component of the proposed anticancer system, and another cytotoxic product in normal cell metabolism, it co-generates with acrolein in several biochemical interactions, occurrences suggesting that these products might jointly fulfill some

  11. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  12. Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Jensen, Frank Bo

    2009-01-01

    In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between...... bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced...

  13. Production and characterization of ice cream with high content in oleic and linoleic fatty acids

    DEFF Research Database (Denmark)

    Marín-Suárez, Marta; García Moreno, Pedro Jesús; Padial-Domínguez, Marta

    2016-01-01

    Ice creams produced with unsaturated fats rich in oleic (OO, 70.7% of oleic) and linoleic (LO, 49.0% of linoleic) fatty acids, were compared to ice cream based on saturated coconut oil (CO, 50% of lauric acid). The globule size distribution of OO mix during aging (72 h at 4°C) followed a similar...... trend to CO mix, being stable after 48 h; whereas LO mix destabilized after 24 h. CO mix showed higher destabilization during ice cream production, but no significant differences among fats were observed in the particle size of the ice cream produced. The overrun was also lower for OO and LO ice creams...... (34.19 and 27.12%, respectively) compared to CO based ice cream (45.06%). However, an improved melting behavior, which gradually decreased from 88.69% for CO to 66.09% for LO ice cream, was observed....

  14. Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-?B

    OpenAIRE

    Panda, Lipsa; Gheware, Atish; Rehman, Rakhshinda; Yadav, Manish K.; Jayaraj, B. S.; Madhunapantula, SubbaRao V.; Mahesh, Padukudru Anand; Ghosh, Balaram; Agrawal, Anurag; Mabalirajan, Ulaganathan

    2017-01-01

    Studies have highlighted the role of nutritional and metabolic modulators in asthma pathobiology. Steroid resistance is an important clinical problem in asthma but lacks good experimental models. Linoleic acid, a polyunsaturated fatty acid, has been linked to asthma and glucocorticoid sensitivity. Its 12/15?lipoxygenase metabolite, 13-S-hydroxyoctadecadienoic acid (HODE) induces mitochondrial dysfunction, with severe airway obstruction and neutrophilic airway inflammation. Here we show that H...

  15. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs

    OpenAIRE

    Bee , Giuseppe

    2001-01-01

    International audience; Dietary conjugated linoleic acids (CLA) have been reported to profoundly affect lipid metabolism and to act as repartitioning agents. Currently, little is known about their effect on the fatty acid profile of tissue lipids in pigs. In the present study we determined the lipid composition of the backfat inner (BFI) and outer layer (BFO), omental fat (OF) and intramuscular fat (IMF) of the longissimus dorsi muscle in 24 Swiss Large White pigs fed diets supplemented eithe...

  16. Incorporation of 14C-linoleic acid in lipids of normal and psoriatic human skin

    International Nuclear Information System (INIS)

    Ruestow, B.; Metz, D.; Kunze, D.; Meffert, H.

    1980-01-01

    The 14 C-linoleic acid incorporation in lipids of surviving epidermis and corium of normal and psoriatic human skin was investigated. Changes of lipid metabolism were found in both epidermis and corium. Particularly the turnover of phospholipids was increased in the uninvolved psoriatic epidermis in relation to the involved psoriatic epidermis or to healthy controls. Possible reasons of these phenomena and the significance of structural lipids in psoriasis are discussed. (author)

  17. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    International Nuclear Information System (INIS)

    Cai, Demin; Li, Hongji; Zhou, Bo; Han, Liqiang; Zhang, Xiaomei; Yang, Guoyu; Yang, Guoqing

    2012-01-01

    Highlights: ► Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. ► Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. ► Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor α (TNFα) and the positive regulator Peroxisome Proliferator-Activated Receptor-γ (PPARγ) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  18. Substitution of Linoleic Acid for Other Macronutrients and the Risk of Ischemic Stroke.

    Science.gov (United States)

    Venø, Stine K; Schmidt, Erik B; Jakobsen, Marianne U; Lundbye-Christensen, Søren; Bach, Flemming W; Overvad, Kim

    2017-12-01

    Ischemic stroke is a major health problem worldwide, but the influence of dietary factors on stroke risk is not well known. This study aimed to investigate the risk of ischemic stroke and its subtypes with a higher intake from linoleic acid and a concomitant lower intake from saturated fatty acids, monounsaturated fatty acids, or glycemic carbohydrates. In the Danish prospective Diet, Cancer, and Health Study of 57 053 participants aged 50 to 64 years at baseline, information on diet was collected using a validated semiquantitative food frequency questionnaire. Information on ischemic stroke was obtained from the Danish National Patient Register, and cases were all validated and subclassified according to the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) classification. Substitution of linoleic acid for saturated fatty acid, monounsaturated fatty acid, or glycemic carbohydrates was investigated in relation to the risk of ischemic stroke and subtypes. Cox proportional hazards regression was used to estimate the associations with ischemic stroke adjusting for appropriate confounders. During 13.5 years of follow-up 1879 participants developed ischemic stroke. A slightly lower risk of ischemic stroke was found with a 5% higher intake of linoleic acid and a concomitant lower intake of saturated fatty acid (hazard ratio, 0.98; 95% confidence interval, 0.83-1.16), monounsaturated fatty acid (hazard ratio, 0.80; 95% confidence interval, 0.63-1.02), and glycemic carbohydrates (hazard ratio, 0.92; 95% confidence interval, 0.78-1.09), although not statistically significant. Similar patterns of association were found for large-artery atherosclerosis and small-vessel occlusions. This study suggests that replacing saturated fatty acid, glycemic carbohydrate, or monounsaturated fatty acid with linoleic acid may be associated with a lower risk of ischemic stroke. © 2017 American Heart Association, Inc.

  19. THE IMPACT OF CONJUGATED LINOLEIC ACID ADDITION ON PH VALUE OF LONGISSIMUS DORSI MUSCLE

    Directory of Open Access Journals (Sweden)

    Przemysław WASILEWSKI

    2009-08-01

    Full Text Available The subject of research was 60 crossbred gilts, divided into 6 groups, fed the fodder with addition of conjugated linoleic acid (CLA or sunflower oil (SFO in amount: 0.5; 1.0; and 2.0 %, respectively. Animals were slaughtered with the body weight ca. 95 kg. The aim of research was to determine pH value of loin meat tissue (Longissimus dorsi of right half-carcass in 45 minutes, 2, 3, 4, 5, 6 hours and 24 hours after slaughter. Results were statistically elaborated using one-way variance analysis. Longissimus dorsi muscle pH values measured 45 minutes after slaughter in case of all groups of pigs were in range from 6.34 up to 6.47, what shows good meat quality. The lowest pH1 (measured 45 minutes after slaughter had meat of fatteners where addition of 2 % sunflower oil was given into fodder and the highest value of this trait was in group of individuals where also was given sunflower oil in 1 % amount. Statistical significant differences in pH value measured in different time after slaughter i.e. after 45 minutes, 2, 3, 4, 6 and 24 hours between tested groups of pigs were not stated. The exception is the result of pH measurement 5 hours after slaughter. Statistical significant differences were between group of pigs getting 0.5 % addition of conjugated linoleic acid characterized by the highest pH value of meat and group of animals fed the fodder with 1 % addition of conjugated linoleic acid (P≤0.01. On the basis of the results obtained in presented paper may be stated that feeding pigs with addition of conjugated linoleic acid in amounts 0.5; 1.0 and 2.0 % did not impact negatively on meat quality defined by pH value.

  20. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Demin [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Li, Hongji [Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Zhou, Bo [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Han, Liqiang [Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Zhang, Xiaomei [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Yang, Guoyu, E-mail: haubiochem@163.com [Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China); Yang, Guoqing, E-mail: gqyang@yeah.net [College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan Province, People' s Republic of China (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  1. Development of a portable mini-generator to safely produce nitric oxide for the treatment of infants with pulmonary hypertension.

    Science.gov (United States)

    Yu, Binglan; Ferrari, Michele; Schleifer, Grigorij; Blaesi, Aron H; Wepler, Martin; Zapol, Warren M; Bloch, Donald B

    2018-05-01

    To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension. A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.4 ± 0.4 kg (mean ± SD, n = 8). Pulmonary hypertension was induced by chemically increasing right ventricular systolic pressure to 28-30 mmHg. The mini-NO generator was placed near the endotracheal tube. Production of NO was triggered by a pediatric airway flowmeter during the first 0.5 s of inspiration. In rabbits with acute pulmonary hypertension, the mini-NO generator produced sufficient NO to induce pulmonary vasodilation. Potentially toxic nitrogen dioxide (NO 2 ) and ozone (O 3 ) were removed by the Ca(OH) 2 scavenger. Metallic particles, released from the electrodes by the electric plasma, were removed by a 0.22 μm filter. While producing 40 ppm NO, the mini-NO generator was cooled by a flow of air (70 ml/min) and the external temperature of the housing did not exceed 31 °C. The mini-NO generator safely produced therapeutic levels of NO from air. The mini-NO generator is an effective and economical approach to producing NO for treating neonatal pulmonary hypertension and will increase the accessibility and therapeutic uses of life-saving NO therapy worldwide. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Evaluation on nitrogen oxides and nanoparticle removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor

    Science.gov (United States)

    Takehana, Kotaro; Kuroki, Tomoyuki; Okubo, Masaaki

    2018-05-01

    Nitrogen oxides (NOx) emitted from power plants and combustion sources cause air pollution problems. Selective catalytic reduction technology is remarkably useful for NOx removal. However, there are several drawbacks such as preparation of reducing agents, usage of harmful heavy metals, and higher cost. On the other hand, trace NO is a vasodilator agent and employed in inhalation therapies for treating pulmonary hypertension in humans. Considering these factors, in the present study, a wet-type nonthermal plasma reactor, which can control NOx and nanoparticle emissions and generate NO, is investigated. The fundamental characteristics of the reactor are investigated. First, the experiment of nanoparticle removal is carried out. Collection efficiencies of over 99% are achieved for nanoparticles at 50 and 100 ml min‑1 of liquid flow rates. Second, experiments of NOx removal under air atmosphere and NOx generation under nitrogen atmosphere are carried out. NOx-removal efficiencies of over 95% under the air plasma are achieved in 50–200 ml min‑1 liquid flow rates. Moreover, under nitrogen plasma, NOx is generated, of which the major portion is NO. For example, NO concentration is 25 ppm, while NOx concentration is 31 ppm at 50 ml min‑1 liquid flow rate. Finally, experiments of NO generation under the nitrogen atmosphere with or without flowing water are carried out. When water flows on the inner surface of the reactor, approximately 14 ppm of NO is generated. Therefore, NO generation requires flowing water. It is considered that the reaction of N and OH, which is similar to the extended Zeldovich mechanism, could occur to induce NO formation. From these results, it is verified that the wet-type plasma reactor is useful for NOx removal and NO generation under nitrogen atmosphere with flowing water.

  3. Orally administered conjugated linoleic acid ameliorates allergic dermatitis induced by repeated applications of oxazolone in mice.

    Science.gov (United States)

    Nakanishi, Tomonori; Tokunaga, Yuzo; Yamasaki, Masao; Erickson, Laurie; Kawahara, Satoshi

    2016-12-01

    Conjugated linoleic acid (CLA) is one of the constituents of animal products with possible health benefits such as anti-carcinogenic and anti-obesity effects. In this study, we investigated the immunomodulatory effects of CLA using a mouse model of allergic dermatitis. Mice were orally administered either a CLA mixture containing equal amounts of 9c, 11 t-CLA and 10 t, 12c-CLA, or high linoleic acid safflower oil, and allergic dermatitis was induced on the ear by repeated topical applications of oxazolone. Oral administration of the CLA mixture but not the high linoleic safflower oil attenuated the symptoms of allergic dermatitis in both ear weights and clinical scores. This effect was associated with decreased levels of ear interleukin-4 (IL-4) and plasma immunoglobulin E. The immunomodulatory effects of the CLA isomers were compared by an in vitro cytokine production assay. The results showed that 9c, 11 t-CLA, the most predominant isomer in animal products, significantly inhibited IL-4 and interferon-γ production from mouse splenocytes with similar potency to 10 t, 12c-CLA. These findings suggest that CLA, a constituent of animal products, has a potentially beneficial effect for amelioration of allergic dermatitis. © 2016 Japanese Society of Animal Science.

  4. Classroom Research: GC Studies of Linoleic and Linolenic Fatty Acids Found in French Fries

    Science.gov (United States)

    Crowley, Janice P.; Deboise, Kristen L.; Marshall, Megan R.; Shaffer, Hannah M.; Zafar, Sara; Jones, Kevin A.; Palko, Nick R.; Mitsch, Stephen M.; Sutton, Lindsay A.; Chang, Margaret; Fromer, Ilana; Kraft, Jake; Meister, Jessica; Shah, Amar; Tan, Priscilla; Whitchurch, James

    2002-07-01

    A study of fatty-acid ratios in French fries has proved to be an excellent choice for an entry-level research class. This research develops reasoning skills and involves the subject of breast cancer, a major concern of American society. Analysis of tumor samples removed from women with breast cancer revealed high ratios of linoleic to linolenic acid, suggesting a link between the accelerated growth of breast tumors and the combination of these two fatty acids. When the ratio of linoleic to linolenic acid was approximately 9 to 1, accelerated growth was observed. Since these fatty acids are found in cooking oils, Wichita Collegiate students, under the guidance of their chemistry teacher, decided that an investigation of the ratios of these two fatty acids should be conducted. A research class was structured using a gas chromatograph for the analysis. Separation of linoleic from linolenic acid was successfully accomplished. The students experienced inductive experimental research chemistry as it applies to everyday life. The structure of this research class can serve as a model for high school and undergraduate college research curricula.

  5. Conjugated linoleic acid as a potential protective factor in prevention of breast cancer 

    Directory of Open Access Journals (Sweden)

    Agnieszka Białek

    2013-01-01

    Full Text Available Cancers are the second leading cause of deaths in Poland, among both women and men. Breast cancer is the malignancy most frequently diagnosed in women. In 2008 mammary cancer was diagnosed in up to 14 500 patients. It is also the second most common cause of cancer deaths among women in our country. Although the etiology of most cases of this disease is not known, risk factors include a variety of nutritional factors. The amount of fat consumed in the diet and the quantity and quality of fatty acids are especially crucial. Among fatty acids to which great importance in modification of cancer risk is attributed are conjugated linoleic acid. Conjugated linoleic acids (CLA are a group of positional and geometric isomers of linoleic acid, with a conjugated double bond system in the carbon chain. The main natural source of them is milk and dairy products and meat of different species of ruminants, in which cis-9, trans-11 octadecadienoic acid (rumenic acid occurs in the largest quantities, constituting over 90�0of the total pool of CLA. Another important isomer is trans-10, cis-12 octadecadienoic acid, which occurs with rumenic acid in dietary supplements, usually in the ratio 1:1. Surveys conducted show their possible health promoting effects in obesity, atherosclerosis, cardiovascular diseases, osteoporosis, diabetes, insulin resistance, inflammation, and various types of cancer, especially breast cancer. 

  6. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  7. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  8. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  9. Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells.

    Science.gov (United States)

    Kim, Yong-Dae; Lantz-McPeak, Susan M; Ali, Syed F; Kleinman, Michael T; Choi, Young-Sook; Kim, Heon

    2014-05-01

    A major constituent of urban air pollution is diesel exhaust, a complex mixture of gases, chemicals, and particles. Recent evidence suggests that exposure to air pollution can increase the risk of a fatal stroke, cause cerebrovascular damage, and induce neuroinflammation and oxidative stress that may trigger neurodegenerative diseases, such as Parkinson's disease. The specific aim of this study was to determine whether ultrafine diesel exhaust particles (DEPs), the particle component of exhaust from diesel engines, can induce oxidative stress and effect dopamine metabolism in PC-12 cells. After 24 h exposure to DEPs of 200 nm or smaller, cell viability, ROS and nitric oxide (NO(2)) generation, and levels of dopamine (DA) and its metabolites, (dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)), were evaluated. Results indicated cell viability was not significantly changed by DEP exposure. However, ROS showed dramatic dose-dependent changes after DEP exposure (2.4 fold increase compared to control at 200 μg/mL). NO(2) levels were also dose-dependently increased after DEP exposure. Although not in a dose-dependent manner, upon DEP exposure, intracellular DA levels were increased while DOPAC and HVA levels decreased when compared to control. Results suggest that ultrafine DEPs lead to dopamine accumulation in the cytoplasm of PC-12 cells, possibly contributing to ROS formation. Further studies are warranted to elucidate this mechanism. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Influence of dietary conjugated linoleic acid (CLA and L-Lysine on heavy pigs performances and meat quality

    Directory of Open Access Journals (Sweden)

    C. Corino

    2010-01-01

    Full Text Available Conjugated linoleic acid (CLA refers to a group of positional and geometric fatty acid isomers derived from linoleic acid. Dietary CLA supplementation has been shown to increase feed efficiency and may reduce body fat content in swine as recently reviewed by Corino et al., (2005. There was only one research conducted in heavy pig in which the authors did not observed any significant effect of dietary CLA on growth performances and lean tissue (Corino et al., 2003.

  11. Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion

    Science.gov (United States)

    Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.

    2016-04-12

    A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.

  12. Problem of formation of nitrogen oxides during coal combustion in power plant steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Kuvaev, Yu.V.

    1992-07-01

    Analyzes a study of physical and chemical processes of nitrogen oxide formation during coal combustion conducted at Stanford University (USA). Experimental installation, pulverized coal feeding as well as measuring techniques and equipment are described. Experiments were conducted with 55 micron particles of semibituminous coal. An equation for the percentage of coal carbon converted to gaseous products is given. Active formation of NO from nitrogen content in the fuel was observed when oxygen content was under 4%. Conversion of the fuel nitrogen to NO[sub x] in the 1,350-1,850 K temperature range did not depend on gas temperature but rather on oxygen content. 2 refs.

  13. A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

    Directory of Open Access Journals (Sweden)

    Peter Krauß

    2017-09-01

    Full Text Available Chemical vapor deposition (CVD of carbon precursors employing a metal catalyst is a well-established method for synthesizing high-quality single-layer graphene. Yet the main challenge of the CVD process is the required transfer of a graphene layer from the substrate surface onto a chosen target substrate. This process is delicate and can severely degrade the quality of the transferred graphene. The protective polymer coatings typically used generate residues and contamination on the ultrathin graphene layer. In this work, we have developed a graphene transfer process which works without a coating and allows the transfer of graphene onto arbitrary substrates without the need for any additional post-processing. During the course of our transfer studies, we found that the etching process that is usually employed can lead to contamination of the graphene layer with the Faradaic etchant component FeCl3, resulting in the deposition of iron oxide FexOy nanoparticles on the graphene surface. We systematically analyzed the removal of the copper substrate layer and verified that crystalline iron oxide nanoparticles could be generated in controllable density on the graphene surface when this process is optimized. It was further confirmed that the FexOy particles on graphene are active in the catalytic growth of carbon nanotubes when employing a water-assisted CVD process.

  14. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation

    Science.gov (United States)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-01

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results.

  15. Generator module architecture for a large solid oxide fuel cell power plant

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  16. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars.

    Science.gov (United States)

    Kastner, James R; Miller, Joby; Das, K C

    2009-05-30

    Ammonia adsorbents were generated via pyrolysis of biomass (peanut hulls and palm oil shells) over a range of temperatures and compared to a commercially available activated carbon (AC) and solid biomass residuals (wood and poultry litter fly ash). Dynamic ammonia adsorption studies (i.e., breakthrough curves) were performed using these adsorbents at 23 degrees C from 6 to 17 ppmv NH(3). Of the biomass chars, palm oil char generated at 500 degrees C had the highest NH(3) adsorption capacity (0.70 mg/g, 6 ppmv, 10% relative humidity (RH)), was similar to the AC, and contrasted to the other adsorbents (including the AC), the NH(3) adsorption capacity significantly increased if the relative humidity was increased (4 mg/g, 7 ppmv, 73% RH). Room temperature ozone treatment of the chars and activated carbon significantly increased the NH(3) adsorption capacity (10% RH); resultant adsorption capacity, q (mg/g) increased by approximately 2, 6, and 10 times for palm oil char, peanut hull char (pyrolysis only), and activated carbon, respectively. However, water vapor (73% RH at 23 degrees C) significantly reduced NH(3) adsorption capacity in the steam and ozone treated biomass, yet had no effect on the palm shell char generated at 500 degrees C. These results indicate the feasibility of using a low temperature (and thus low energy input) pyrolysis and activation process for the generation of NH(3) adsorbents from biomass residuals.

  17. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Schaltz, Erik; Rosendahl, Lasse

    2015-01-01

    Characterization methods for thermoelectric generator (TEG) modules play an important role in studying their behavior and in enhancing the performance and simulation of TEG systems also. The purpose of this study is to analyze the behavior in transient and steady-state of the temperature applied...

  18. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Design optimisation of a hybrid solid oxide fuel cell and gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.J.; Siddle, A.; Pointon, K.

    2001-07-01

    The objectives of the combined ALSTOM Power Technology and Advantica Technologies project are reported as: (a) to design a gas turbine (GT) unit compatible with a solid oxide fuel cell (SOFC) in a high efficiency power system and aimed at the Distributed Power application range of 1-20MW, and (b) to identify the main features and components of a 'Proof of Concept' hybrid unit of output around 0.1MW, based on existing or near-market technology. The study showed: (i) while the potential for high efficiency SOFC + GT hybrid cycles is clear, little effort has been put into the design of the gas turbine and some other components and (ii) there is room for commercial exploitation in the areas of both component manufacture and system supply.

  20. Modelling and control of solid oxide fuel cell generation system in microgrid

    Science.gov (United States)

    Zhou, Niancheng; Li, Chunyan; Sun, Fangqing; Wang, Qianggang

    2017-11-01

    Compared with other kinds of fuel cells, solid oxide fuel cell (SOFC) has been widely used in microgrids because of its higher efficiency and longer operation life. The weakness of SOFC lies in its slow response speed when grid disturbance occurs. This paper presents a control strategy that can promote the response speed and limit the fault current impulse for SOFC systems integrated into microgrids. First, the hysteretic control of the bidirectional DC-DC converter, which joins the SOFC and DC bus together, is explored. In addition, an improved droop control with limited current protection is applied in the DC-AC inverter, and the active synchronization control is applied to ensure a smooth transition of the microgrid between the grid-connected mode and the islanded mode. To validate the effectiveness of this control strategy, the control model was built and simulated in PSCAD/EMTDC.

  1. Nanostructured Thermoelectric Oxide Materials for Effective Power Generation from Waste Heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. It is difficult to reclaim this heat due to the dispersed nature and relative smallness of its sources. Thermoelectric conversion can offer a very promising method to overcome these difficulties...... by converting heat directly into electricity. However, the requirements for this task place in the materials are not easily satisfied by the conventional thermoelectric materials. Not only they must possess a high thermoelectric performance, they should also be stable at high temperatures and be composed...... of nontoxic and low-cost elements, and must be able to be processed and shaped cheaply. Oxides are among the strongest candidate materials for this purpose, and recently they have been intensively investigated and developed [1-5]. In this report, the development progress of two state-of-the-art p-type Ca3Co4O...

  2. Reversal of acetaminophen-generated oxidative stress and concomitant hepatotoxicity by a phytopharmaceutical product

    Directory of Open Access Journals (Sweden)

    Afolabi C. Akinmoladun

    2017-03-01

    Full Text Available The increasing popularity of herbal medicine and the well-established health benefits of phytochemicals have spurred the multiplicity of nutraceutical and phytopharmaceutical products. In this study, Trévo™, a nutraceutical and phytopharmaceutical product, was evaluated for beneficial effects in acetaminophen-induced hepatic toxicity in Wistar rats. Animals received Trévo™ (1.5 mL/kg, 3.0 mL/kg or 4.5 mL/kg orally for 14 days. Hepatotoxicity was induced by the oral administration of acetaminophen (2 g/kg, 24 h prior to sacrifice. Biochemical liver function tests, oxidative stress indicators and histoarchitectural changes were evaluated. Acetaminophen administration occasioned significant increase (P < 0.05 in serum bilirubin level and activities of the aminotransferases, alkaline phosphatase, γ-glutamyltransferase and lactate dehydrogenase accompanied by a significant decrease (P < 0.05 in albumin level as well as histopathological alterations in liver sections. Promotion of hepatic oxidative stress by acetaminophen was revealed by significant (P < 0.05 increase in lipid peroxidation, depletion of reduced glutathione, and decrease in superoxide dismutase and catalase activities. Administration of Trévo™ remarkably ameliorated acetaminophen-induced histopathological alterations and changes in serum and tissue biochemical markers. The protective effect of Trévo™ (4.5 mL/kg was at par with that of Silymarin (25 mg/kg. The present study indicates that Trévo™ has notable salubrious effects.

  3. A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: an examination of salt effects

    Science.gov (United States)

    Brimblecombe, Robin; Rotstein, Miriam; Koo, Annette; Dismukes, G. Charles; Swiegers, Gerhard F.; Spiccia, Leone

    2009-08-01

    Most transport fuels are derived from fossil fuels, generate greenhouse gases, and consume significant amounts of water in the extraction, purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally from abundant water sources such as sea water or other non-potable sources, could potentially provide an unlimited, clean fuel for the future. Solar, electrochemical water splitting typically combines a photoanode at which water oxidation occurs, with a cathode for proton reduction to hydrogen. In recent work, we have found that a bioinspired tetra-manganese cluster catalyzes water oxidation at relatively low overpotentials (0.38 V) when doped into a Nafion proton conduction membrane deposited on a suitable electrode surface, and illuminated with visible light. We report here that this assembly is active in aqueous and organic electrolyte solutions containing a range of different salts in varying concentrations. Similar photocurrents were obtained using electrolytes containing 0.0 - 0.5 M sodium sulfate, sodium perchlorate or sodium chloride. A slight decline in photocurrent was observed for sodium perchlorate but only at and above 5.0 M concentration. In acetonitrile and acetone solutions containing 10% water, increasing the electrolyte concentration was found to result in leaching of the catalytic species from the membrane and a decrease in photocurrent. Leaching was not observed when the system was tested in an ionic liquid containing water, however, a lower photocurrent was generated than observed in aqueous electrolyte. We conclude that immersion of the membrane in an aqueous solution containing an electrolyte concentration of 0.05 - 0.5M represent good conditions for operation for the cubium/Nafion catalytic system.

  4. Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide

    Science.gov (United States)

    Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar

    2018-03-01

    An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.

  5. Medium-chain triglycerides and conjugated linoleic acids in beverage form increase satiety and reduce food intake in humans.

    Science.gov (United States)

    Coleman, Hannah; Quinn, Paul; Clegg, Miriam E

    2016-06-01

    Both developed and developing countries are seeing increasing trends of obesity in people young and old. It is thought that satiety may play a role in the prevention of obesity by increasing satiety and reducing energy intake. We hypothesized that medium-chain triglycerides (MCT) would increase satiety and decrease food intake compared with conjugated linoleic acid (CLA) and a control oil. Nineteen healthy participants were tested on 3 separate occasions, where they consumed a beverage test breakfast containing (1) vegetable oil (control), (2) CLA, or (3) MCT. Participants self-requested an ad libitum sandwich buffet lunch. Time between meals, satiety from visual analog scales, energy intake at lunch, and intake for the rest of the day using weighed food diaries were measured. The results indicated that the time until a meal request was significantly different between the 3 meals (P=.016); however, there were no differences in intakes at the ad libitum lunch (P>.05). The CLA breakfast generated the greatest delay in meal time request. There was a difference between the control lipid compared with both the CLA and MCT for energy intake over the remainder of the test day and for total energy intake on the test day (P.05). Both CLA and MCT increased satiety and reduced energy intake, indicating a potential role in aiding the maintenance of energy balance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    Science.gov (United States)

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  7. Geothermal Thermoelectric Generation (G-TEG) with Integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Renew, Jay [Southern Research Inst., Birmingham, AL (United States); Hansen, Tim [Southern Research Inst., Birmingham, AL (United States)

    2017-06-01

    Southern Research Institute (Southern) teamed with partners Novus Energy Technologies (Novus), Carus Corporation (Carus), and Applied Membrane Technology, Inc. (AMT) to develop an innovative Geothermal ThermoElectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium (Li) from low-temperature geothermal brines. The process combined five modular technologies including – silica removal, nanofiltration (NF), membrane distillation (MD), Mn-oxide sorbent for Li recovery, and TEG. This project provides a proof of concept for each of these technologies. The first step in the process is silica precipitation through metal addition and pH adjustment to prevent downstream scaling in membrane processes. Next, the geothermal brine is concentrated with the first of a two stage MD system. The first stage MD system is made of a high-temperature material to withstand geothermal brine temperatures up to 150C.° The first stage MD is integrated with a G-TEG module for simultaneous energy generation. The release of energy from the MD permeate drives heat transfer across the TE module, producing electricity. The first stage MD concentrate is then treated utilizing an NF system to remove Ca2+ and Mg2+. The NF concentrate will be disposed in the well by reinjection. The NF permeate undergoes concentration in a second stage of MD (polymeric material) to further concentrate Li in the NF permeate and enhance the efficiency of the downstream Li recovery process utilizing a Mn-oxide sorbent. Permeate from both the stages of the MD can be beneficially utilized as the permeates will contain less contaminants than the feed water. The concentrated geothermal brines are then contacted with the Mn-oxide sorbent. After Li from the geothermal brine is adsorbed on the sorbent, HCl is then utilized to regenerate the sorbent and recover the Li. The research and development project showed that the Si removal goal (>80%) could

  8. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.

    Science.gov (United States)

    Lin, Peng; Liu, Jiumeng; Shilling, John E; Kathmann, Shawn M; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365 nm = 0.78 m(2) g(-1)) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene atmosphere.

  9. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  10. Influence of chirality on catalytic generation of nitric oxide and platelet behavior on selenocystine immobilized TiO2 films.

    Science.gov (United States)

    Fan, Yonghong; Pan, Xiaxin; Wang, Ke; Wu, Sisi; Han, Honghong; Yang, Ping; Luo, Rifang; Wang, Hong; Huang, Nan; Tan, Wei; Weng, Yajun

    2016-09-01

    As nitric oxide (NO) plays vital roles in the cardiovascular system, incorporating this molecule into cardiovascular stents is considered as an effective method. In the present study, selenocystine with different chirality (i.e., l- and d-selenocystine) was used as the catalytic molecule immobilized on TiO2 films for decomposing endogenous NO donor. The influences of surface chirality on NO release and platelet behavior were evaluated. Results show that although the amount of immobilized l-selenocystine on the surface was nearly the same as that of immobilized d-selenocystine, in vitro catalytic NO release tests showed that l-selenocystine immobilized surfaces were more capable of catalyzing the decomposition of S-nitrosoglutathione and thus generating more NO. Accordingly, l-selenocystine immobilized surfaces demonstrated significantly increased inhibiting effects on the platelet adhesion and activation, when compared to d-selenocystine immobilized ones. Measurement of the cGMP concentration of platelets further confirmed that surface chirality played an important role in regulating NO generation and platelet behaviors. Additionally, using bovine serum albumin and fibrinogen as model proteins, the protein adsorption determined with quartz crystal microbalance showed that the l-selenocystine immobilized surface enhanced protein adsorption. In conclusion, surface chirality significantly influences protein adsorption and NO release, which may have significant implications in the design of NO-generating cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  12. Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics.

    Science.gov (United States)

    Zarrin, Hadis; Sy, Serubbabel; Fu, Jing; Jiang, Gaopeng; Kang, Keunwoo; Jun, Yun-Seok; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2016-09-28

    Acquiring reliable and efficient wearable electronics requires the development of flexible electrolyte membranes (EMs) for energy storage systems with high performance and minimum dependency on the operating conditions. Herein, a freestanding graphene oxide (GO) EM is functionalized with 1-hexyl-3-methylimidazolium chloride (HMIM) molecules via both covalent and noncovalent bonds induced by esterification reactions and electrostatic πcation-π stacking, respectively. Compared to the commercial polymeric membrane, the thin HMIM/GO membrane demonstrates not only slightest performance sensitivity to the operating conditions but also a superior hydroxide conductivity of 0.064 ± 0.0021 S cm(-1) at 30% RH and room temperature, which was 3.8 times higher than that of the commercial membrane at the same conditions. To study the practical application of the HMIM/GO membranes in wearable electronics, a fully solid-state, thin, flexible zinc-air battery and supercapacitor are made exhibiting high battery performance and capacitance at low humidified and room temperature environment, respectively, favored by the bonded HMIM molecules on the surface of GO nanosheets. The results of this study disclose the strong potential of manipulating the chemical structure of GO to work as a lightweight membrane in wearable energy storage devices, possessing highly stable performance at different operating conditions, especially at low relative humidity and room temperature.

  13. Identification of a novel structure in heparin generated by potassium permanganate oxidation

    Science.gov (United States)

    Beccati, Daniela; Roy, Sucharita; Yu, Fei; Gunay, Nur Sibel; Capila, Ishan; Lech, Miroslaw; Linhardt, Robert J.; Venkataraman, Ganesh

    2012-01-01

    The worldwide heparin contamination crisis in 2008 led health authorities to take fundamental steps to better control heparin manufacture, including implementing appropriate analytical and bio-analytical methods to ensure production and release of high quality heparin sodium product. Consequently, there is an increased interest in the identification and structural elucidation of unusually modified structures that may be present in heparin. Our study focuses on the structural elucidation of species that give rise to a signal observed at 2.10 ppm in the N-acetyl region of the 1H NMR spectrum of some pharmaceutical grade heparin preparations. Structural elucidation experiments were carried out using homonuclear (COSY, TOSCY and NOESY) and heteronuclear (HSQC, HSQC-DEPT, HMQC-COSY, HSQC-TOCSY, and HMBC) 2D NMR spectroscopy on both heparin as well as heparin-like model compounds. Our results identify a novel type of oxidative modification of the heparin chain that results from a specific step in the manufacturing process used to prepare heparin. PMID:25147414

  14. Stability of 99Tcsup(m)-DTPA injection: effect of delay after preparation, dilution, generator oxidant, air and oxygen

    International Nuclear Information System (INIS)

    Sampson, C.B.; Keegan, J.

    1985-01-01

    99 Tcsup(m)-DTPA injection is widely used in different activity concentrations and the parent solution may require dilution to achieve the correct activity and dose volume. The stability was studied after dilution of six makes of commercially available DTPA kits and it has been demonstrated that levels of free pertechnetate may reach as high as 95%. It has also been demonstrated that levels are increased by subdivision of the parent solution into vials containing air or high quantities of oxygen, by reconstitution with generator eluate containing oxidant, and by delay between preparation and injection into patients. Out of six makes tested only two were stable over a wide variety of conditions. (author)

  15. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Shi Huahong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)]. E-mail: huahongshi@tom.com; Wang Xiaorong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Luo Yi [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Su Yan [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)

    2005-09-30

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants (BFRs). To confirm its putative oxidative stress-inducing activity, freshwater fish Carassius auratus were injected intraperitoneally with TBBPA. One experiment lasted 3 h to 28 days after a single injection of 100 mg/kg TBBPA, and the other lasted 24 h after a single injection of 0-300 mg/kg TBBPA. Reactive oxygen species (ROS) were trapped by phenyl-tert-butyl nitrone (PBN) and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation product (LPO) content were also determined. A six-line EPR spectrum was detected in the sample prepared in air, and a multiple one was obtained in nitrogen. The observed spectrum in nitrogen fits the simulation one with PBN/{center_dot}OCH{sub 3} and PBN/{center_dot}CH{sub 3} quite well. As compared to the control group, TBBPA significantly induced ROS production marked by the intensity of the prominent spectra in liver and bile. TBBPA (100 mg/kg) also significantly increased PCO content in liver starting 24 h and LPO content 3 days after injection. Either PCO or LPO content showed significant relation with ROS production. Based on the hyperfine constants and shape of the spectrum, ROS induced by TBBPA was determined as {center_dot}OH. The results clearly indicated that TBBPA could induce {center_dot}OH generation and result in oxidative damage in liver of C. auratus.

  16. Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation

    International Nuclear Information System (INIS)

    Rocha, Barbara S.; Gago, Bruno; Barbosa, Rui M.; Laranjinha, Joao

    2009-01-01

    Nitrite, considered a biological waste and toxic product, is being regarded as an important physiological molecule in nitric oxide (·NO) biochemistry. Because the interaction of dietary phenolic compounds and nitrite would be kinetically (due to the high concentrations achieved) and thermodynamically (on basis of the redox potentials) feasible in the stomach, we have studied the potential reduction of nitrite by polyphenols present in several dietary sources. By measuring the time courses of ·NO production in simulated gastric juice (pH 2), the efficiency of the compounds studied is as follows: Epicatechin-3-O-gallate > quercetin > procyanidin B8 dimer > oleuropein > procyanidin B2 dimer > chlorogenic acid > epicatechin > catechin > procyanidin B5 dimer. The initial rates of ·NO production fall in a narrow range (ca. 1-5 μM s -1 ) but the distinct kinetics of the decay of ·NO signals suggest that competition reactions for ·NO are operative. The proof of concept that, in the presence of nitrite, phenol-containing dietary products induce a strong increase of ·NO in the stomach was established in an in vivo experiment with healthy volunteers consuming lettuce, onions, apples, wine, tea, berries and cherries. Moreover, selected mixtures of oleuropein and catechin with low nitrite (1 μM) were shown to induce muscle relaxation of stomach strips in a structure-dependent way. Data presented here brings strong support to the concept that polyphenols consumed in a variety of dietary products, under gastric conditions, reduce nitrite to ·NO that, in turn, may exert a biological impact as a local relaxant.

  17. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    Science.gov (United States)

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  18. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Science.gov (United States)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  19. Dietary linoleate preserves cardiolipin and attenuates mitochondrial dysfunction in the failing rat heart

    Science.gov (United States)

    Mulligan, Christopher M.; Sparagna, Genevieve C.; Le, Catherine H.; De Mooy, Anthony B.; Routh, Melissa A.; Holmes, Michael G.; Hickson-Bick, Diane L.; Zarini, Simona; Murphy, Robert C.; Xu, Fred Y.; Hatch, Grant M.; McCune, Sylvia A.; Moore, Russell L.; Chicco, Adam J.

    2012-01-01

    Aims Cardiolipin (CL) is a tetra-acyl phospholipid that provides structural and functional support to several proteins in the inner mitochondrial membrane. The majority of CL in the healthy mammalian heart contains four linoleic acid acyl chains (L4CL). A selective loss of L4CL is associated with mitochondrial dysfunction and heart failure in humans and animal models. We examined whether supplementing the diet with linoleic acid would preserve cardiac L4CL and attenuate mitochondrial dysfunction and contractile failure in rats with hypertensive heart failure. Methods and results Male spontaneously hypertensive heart failure rats (21 months of age) were administered diets supplemented with high-linoleate safflower oil (HLSO) or lard (10% w/w; 28% kilocalorie fat) or without supplemental fat (control) for 4 weeks. HLSO preserved L4CL and total CL to 90% of non-failing levels (vs. 61–75% in control and lard groups), and attenuated 17–22% decreases in state 3 mitochondrial respiration observed in the control and lard groups (P < 0.05). Left ventricular fractional shortening was significantly higher in HLSO vs. control (33 ± 2 vs. 29 ± 2%, P < 0.05), while plasma insulin levels were lower (5.4 ± 1.1 vs. 9.1 ± 2.3 ng/mL; P < 0.05), with no significant effect of lard supplementation. HLSO also increased serum concentrations of several eicosanoid species compared with control and lard diets, but had no effect on plasma glucose or blood pressure. Conclusion Moderate consumption of HLSO preserves CL and mitochondrial function in the failing heart and may be a useful adjuvant therapy for this condition. PMID:22411972

  20. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    Science.gov (United States)

    Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.

    2018-01-01

    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021

  1. Bovine milk fat enriched in conjugated linoleic and vaccenic acids attenuates allergic airway disease in mice.

    Science.gov (United States)

    Kanwar, R K; Macgibbon, A K; Black, P N; Kanwar, J R; Rowan, A; Vale, M; Krissansen, G W

    2008-01-01

    It has been argued that a reduction in the Western diet of anti-inflammatory unsaturated lipids, such as n-3 polyunsaturated fatty acids, has contributed to the increase in the frequency and severity of allergic diseases. We investigated whether feeding milk fat enriched in conjugated linoleic acid and vaccenic acids (VAs) ('enriched' milk fat), produced by supplementing the diet of pasture-fed cows with fish and sunflower oil, will prevent development of allergic airway responses. C57BL/6 mice were fed a control diet containing soybean oil and diets supplemented with milk lipids. They were sensitized by intraperitoneal injection of ovalbumin (OVA) on days 14 and 28, and challenged intranasally with OVA on day 42. Bronchoalveolar lavage fluid, lung tissues and serum samples were collected 6 days after the intranasal challenge. Feeding of enriched milk fat led to marked suppression of airway inflammation as evidenced by reductions in eosinophilia and lymphocytosis in the airways, compared with feeding of normal milk fat and control diet. Enriched milk fat significantly reduced circulating allergen-specific IgE and IgG1 levels, together with reductions in bronchoalveolar lavage fluid of IL-5 and CCL11. Treatment significantly inhibited changes in the airway including airway epithelial cell hypertrophy, goblet cell metaplasia and mucus hypersecretion. The two major components of enriched milk fat, cis-9, trans-11 conjugated linoleic acid and VA, inhibited airway inflammation when fed together to mice, whereas alone they were not effective. Milk fat enriched in conjugated linoleic and VAs suppresses inflammation and changes to the airways in an animal model of allergic airway disease.

  2. Generation of floor response spectra for mixed-oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Arthur, D.F.; Murray, R.C.; Tokarz, F.J.

    1975-01-01

    Floor or amplified response spectra are generally used as input motion for seismic analysis of critical equipment and piping in nuclear power plants and related facilities. The floor spectra are normally the result of a time-history calculation of building response to ground shaking. However, alternate approximate methods have been suggested by both Kapur and Biggs. As part of a study for the Nuclear Regulatory Commission horizontal floor response spectra were generated and compared by all three methods. The dynamic analyses were performed on a model of the Westinghouse Recycle Fuels Plant Manufacturing Building (MOFFP). Input to the time-history calculations was a synthesized accelerogram whose response spectrum is similar to that in Regulatory Guide 1.60. The response spectrum of the synthetic ground motion was used as input to the Kapur and Biggs methods. Calculations were performed for both hard (3500 fps) and soft (1500 fps) foundation soils. Results of comparison of the three methods indicate that although the approximate methods could easily be made acceptable from a safety standpoint, they would be overly conservative. The time-history method will yield floor spectra which are less uncertain and less conservative for a relatively modest additional effort. (auth)

  3. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    Science.gov (United States)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2016-02-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions

  4. Frying stability of high oleic sunflower oils as affected by composition of tocopherol isomers and linoleic acid content.

    Science.gov (United States)

    Aladedunye, Felix; Przybylski, Roman

    2013-12-01

    The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor

    International Nuclear Information System (INIS)

    Chen Hai-Feng; Guo Li-Xin; Zheng Pu-Yang; Dong Zhao; Zhang Qian

    2015-01-01

    Drain-modulated generation current I DMG induced by interface traps in an n-type metal-oxide-semiconductor field-effect transistor (nMOSFET) is investigated. The formation of I DMG ascribes to the change of the Si surface potential φ s . This change makes the channel suffer transformation from the inversion state, depletion I state to depletion II state. The simulation result agrees with the experiment in the inversion and depletion I states. In the depletion II state, the theoretical curve goes into saturation, while the experimental curve drops quickly as V D increases. The reason for this unconformity is that the drain-to-gate voltage V DG lessens φ s around the drain corner and controls the falling edge of the I DMG curve. The experiments of gate-modulated generation and recombination currents are also applied to verify the reasonability of the mechanism. Based on this mechanism, a theoretical model of the I DMG falling edge is set up in which I DMG has an exponential attenuation relation with V DG . Finally, the critical fitting coefficient t of the experimental curves is extracted. It is found that t = 80 mV = 3kT/q. This result fully shows the accuracy of the above mechanism. (paper)

  6. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  7. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    Science.gov (United States)

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 ± 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 ± 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors.

  8. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  9. Functionally undefined gene, yggE, alleviates oxidative stress generated by monoamine oxidase in recombinant Escherichia coli.

    Science.gov (United States)

    Ojima, Yoshihiro; Kawase, Daisuke; Nishioka, Motomu; Taya, Masahito

    2009-01-01

    Real-time PCR analysis showed that yggE gene was about two and three times up-regulated in Escherichia coli cells exposed to UVA irradiation and thermal elevation, respectively, suggesting that this gene is responsive to physiological stress. The yggE gene was introduced into E. coli BL21 cells, together with a monoamine oxidase (MAO) gene as a model source for oxidative stress generation. The distribution of independently isolated transformants (two dozen isolates) was examined in terms of MAO activity and cell vitality. In the case of control strain expressing MAO alone, the largest number of transformants existed in the low range of MAO activity less than 2 units mg(-1) and the number significantly decreased at increased MAO activity. On the other hand, the distribution of MAO/YggE-coexpressing transformants shifted to higher MAO activity with frequent appearance in the activity range of 4-8 units mg(-1). The yggE gene product therefore has a possible function for alleviating the stress generated in the cells.

  10. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws

    2017-04-01

    There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co 2+ . Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver

    Directory of Open Access Journals (Sweden)

    Azzouz I

    2013-12-01

    Full Text Available Inès Azzouz, Hamdi Trabelsi, Amel Hanini, Soumaya Ferchichi, Olfa Tebourbi, Mohsen Sakly, Hafedh AbdelmelekLaboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, TunisiaAbstract: The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip] in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip and selenium (0.20 mg/L, per os [by mouth] led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements' bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium to malondialdehyde level in rat liver.Keywords: nanocomplexes biosynthesis, antioxidative responses, X-ray diffraction, fluorescence microscopy, liver

  12. Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density

    International Nuclear Information System (INIS)

    Kogelschatz, U.; Baessler, P.

    1987-01-01

    Infrared absorption spectroscopy is utilized to identify and measure different nitrogen oxide species in the output of air-fed ozone generators. The concentrations of nitrous oxide (N 2 O) and dinitrogen pentoxide (N 2 O 5 ) were determined over a wide parameter range of modern high power medium-frequency ozone generators. With a typical ozonation dose of 1 mg ozone per liter of drinking water, less than 10 μ N 2 O and about 20 μ N 2 O 5 are introduced into one liter of drinking water

  13. Formulation of chemically reactive foams for the dissolution of oxides polluting the secondary circuits of steam generators

    International Nuclear Information System (INIS)

    Provens, Helene

    1999-01-01

    The fouling of the Steam Generators (SG) secondary circuits, due to oxides deposits like magnetite (Fe 3 O 4 ), induces the degradation of the internal SG equipment, the reduction of the plant power, implying to clean these circuits. This operation made in liquid phase generates an important volume of effluents with an expensive cost of treatment. The use of a reactive foam allows the reduction of this volume by ten. Among the reactive tested, oxalic acid is the most efficient to dissolve a magnetite quantity of 10 g.l -1 , at ambient temperature for 24 hours, as imposed by the industrial wishes. The dissolution is not complete in our experimental conditions and is a complex reaction of autocatalytic type, composed of an acid attack, a reductive step, both followed by a slow diffusion. The surfactants generating the foam, which transport the reactive, are adsorbed on the magnetite but this affects weakly the dissolution. Its effectiveness is evaluated varying the experimental conditions. The wetting properties and the stability of the foam induce erosion and undissolved particles transport capacities, during its circulation into the SG. These particles trapped in the inter-bubble liquid films or carried by the piston effect of the foam bed, can be recovered on filters placed out of the SG. To quantify the transport, the influence of different parameters is studied: the more stable the foam is, the more important the transport is. Innocuousness tests showed that oxalic acid was not harmful for constitutive SG materials, either they were isolated or coupled. The cleaning by oxalic acid causes ferrous oxalates precipitation, representing 10 to 15 pc of the total iron quantity depending on the sample. A rinsing out with a foam containing 1 pc oxalic acid and 5 pc hydrogen peroxide allows the dissolution of these precipitates without corrosion problems. (author) [fr

  14. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans.

    Science.gov (United States)

    Herbel, B K; McGuire, M K; McGuire, M A; Shultz, T D

    1998-02-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid (LA) with conjugated double bonds. CLA has anticarcinogenic properties and has been identified in human tissues, dairy products, meats, and certain vegetable oils. A variety of animal products are good sources of CLA, but plant oils contain much less. However, plant oils are a rich source of LA, which may be isomerized to CLA by intestinal microorganisms in humans. To investigate the effect of triacylglycerol-esterified LA consumption on plasma concentrations of esterified CLA in total lipids, a dietary intervention (6 wk) was conducted with six men and six women. During the intervention period a salad dressing containing 21 g safflower oil providing 16 g LA/d was added to the subjects' daily diets. Three-day diet records and fasting blood were obtained initially and during dietary and postdietary intervention periods. Although LA intake increased significantly during the dietary intervention, plasma CLA concentrations were not affected. Plasma total cholesterol and LDL-cholesterol concentrations were significantly lower after addition of safflower oil to the diet. In summary, consumption of triacylglycerol-esterified LA in safflower oil did not increase plasma concentrations of esterified CLA in total lipids.

  15. Conjugated linoleic acids as functional food: an insight into their health benefits

    Directory of Open Access Journals (Sweden)

    Benjamin Sailas

    2009-09-01

    Full Text Available Abstract This review evaluates the health benefits of the functional food, conjugated linoleic acids (CLA - a heterogeneous group of positional and geometric isomers of linoleic acid predominantly found in milk, milk products, meat and meat products of ruminants. During the past couple of decades, hundreds of reports - principally based on in vitro, microbial, animal, and of late clinical trials on humans - have been accumulating with varying biological activities of CLA isomers. These studies highlight that CLA, apart form the classical nuclear transcription factors-mediated mechanism of action, appear to exhibit a number of inter-dependent molecular signalling pathways accounting for their reported health benefits. Such benefits relate to anti-obesitic, anti-carcinogenic, anti-atherogenic, anti-diabetagenic, immunomodulatory, apoptotic and osteosynthetic effects. On the other hand, negative effects of CLA have been reported such as fatty liver and spleen, induction of colon carcinogenesis and hyperproinsulinaemia. As far as human consumption is concerned, a definite conclusion for CLA safety has not been reached yet. Parameters such as administration of the type of CLA isomer and/or their combination with other polyunsaturated fatty acids, mode of administration (eg., as free fatty acid or its triglyceride form, liquid or solid, daily dose and duration of consumption, gender, age, or ethnic and geographical backgrounds remain to be determined. Yet, it appears from trials so far conducted that CLA are functional food having prevailing beneficial health effects for humans.

  16. Linoleic acid and its potassium and sodium salts: A combined experimental and theoretical study

    Science.gov (United States)

    Gocen, Tuğba; Haman Bayarı, Sevgi; Haluk Guven, Mehmet

    2017-12-01

    Linoleic acid (cis, cis-9,12-octodecadienoic acid) is the main polyunsaturated -omega 6- essential fatty acid. The conformational behaviour of linoleic acid (LA) in the gas phase was investigated by means of density functional theory (DFT). The structures of conformers of LA were fully optimized by using the B3LYP/6-311++G(d,p) method. The theory showed that the tttttts‧CssCs‧tt conformation of LA (conformer I) is the more stable than the other conformations. Fourier Transform Infrared (FTIR) and micro-Raman spectra of pure LA in liquid form were recorded in the region 4000-450 and 3500-100 cm-1, respectively. The DFT calculations on the molecular structure and vibrational spectra of the dimer form of most stable conformer of LA were also performed using the same method. The assignment of the vibrational modes was made based on calculated potential energy distributions (PEDs). The simulated spectra of dimer form of LA are in reasonably good agreement with the experimental spectra. The sodium and potassium salts of LA were synthesized and characterized by FTIR and Raman spectroscopy, X-ray diffraction and DFT calculations. Several molecular and electronic properties of LA and its salts such as HOMO-LUMO energies, chemical hardness and electronegativity were also calculated and interpreted.

  17. Conjugated Linoleic Acid Stimulates Apoptosis in RH and Tehran Strains of Toxoplasma gondii, in Vitro.

    Directory of Open Access Journals (Sweden)

    Jebreil Shamseddin

    2015-06-01

    Full Text Available The aim of this study was to evaluate the effects of conjugated linoleic acid (CLA on apoptosis of tachyzoites of T. gondii, RH strain (type I and the cyst-forming Tehran strain (type II in vitro.Toxoplasma strains were injected into the peritoneal cavity of BALB/c mice. The Tehran strain forms cysts in the brain of mice. Bradyzoites within the cysts are reactivated to proliferative tachyzoites, by dexamethasone. Tachyzoites were aspirated from the peritoneum of infected mice, and the percentage of viable parasites was estimated with trypan blue staining. Tachyzoites were inoculated into HeLa cells cultivated in DMEM medium. Different concentrations of CLA were evaluated on T. gondii in HeLa cells by the tetrazolium (MTT colorimetric assay. Differentiation between apoptosis and cell death was determined by flow cytometry using Annexin V and propidium iodide (PI double staining. The statistical analysis performed by GraphPad Prism version 6.00.CLA induces apoptosis in virulent (RH and avirulent (Tehran strains of T. gondii. The results of MTT indicated that CLA could decrease the proliferation of tachyzoites of both strains in HeLa cells.Conjugated linoleic acid has anti-toxoplasmacidal activity on tachyzoites of T. gondii. Therefore, we recommended further studies on this component in order to achieve a new drug against the parasite.

  18. Alkylation of Methyl Linoleate with Propene in Ionic Liquids in the Presence of Metal Salts.

    Science.gov (United States)

    Pomelli, Christian Silvio; Ghilardi, Tiziana; Chiappe, Cinzia; de Angelis, Alberto Renato; Calemma, Vincenzo

    2015-12-07

    Vegetable oils and fatty acid esters are suitable precursor molecules for the production of a variety of bio-based products and materials, such as paints and coatings, plastics, soaps, lubricants, cosmetics, pharmaceuticals, printing inks, surfactants, and biofuels. Here, we report the possibility of using Lewis acidic ionic liquids (ILs) to obtain polyunsaturated ester dimerization-oligomerization and/or, in the presence of another terminal alkene (propene), co-polymerization. In particular, we have tested the Lewis acidic mixtures arising from the addition of a proper amount of GaCl₃ (Χ > 0.5) to two chloride-based (1-butyl-3-methylimidazolium chloride, [bmim]Cl, and 1-butylisoquinolium chloride, [BuIsoq]Cl) or by dissolution of a smaller amount of Al(Tf₂N)₃ (Χ = 0.1) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf₂N]. On the basis of product distribution studies, [bmim][Tf₂N]/Al(Tf₂N)₃ appears the most suitable medium in which methyl linoleate alkylation with propene can compete with methyl linoleate or propene oligomerization.

  19. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice.

    Science.gov (United States)

    Ewaschuk, Julia B; Walker, John W; Diaz, Hugo; Madsen, Karen L

    2006-06-01

    Probiotics have been shown to reduce the incidence of colon cancer in animal models. The mechanisms responsible for this activity are poorly defined. Conjugated linoleic acids (CLA) are a group of isomers of linoleic acid (LA) possessing anti-inflammatory and anticarcinogenic properties, which can be produced from LA by certain bacterial strains. In this study, the ability of probiotic bacteria to exert anticarcinogenic effects through the production of CLA was assessed. Incubation of probiotic bacteria (VSL3, Lactobacillus acidophilus, L. bulgaricus, L. casei, L. plantarum, Bifidobacterium breve, B. infantis, B. longum, and Streptococcus thermophilus) in the presence of LA yielded CLA production as measured by gas chromatography. Conditioned medium, containing probiotic-produced CLA, reduced viability and induced apoptosis of HT-29 and Caco-2 cells, as assessed by MTT assay and DNA laddering, respectively. Western blotting demonstrated an increased expression of PPARgamma in cells treated with conditioned medium compared with LA alone. Incubation of murine feces with LA after administering VSL3 yielded 100-fold more CLA than feces collected prior to VSL3 feeding. This study supports a role for supplemental probiotics as a strategy both for attenuating inflammation and for preventing colon cancer.

  20. Alkylation of Methyl Linoleate with Propene in Ionic Liquids in the Presence of Metal Salts

    Directory of Open Access Journals (Sweden)

    Christian Silvio Pomelli

    2015-12-01

    Full Text Available Vegetable oils and fatty acid esters are suitable precursor molecules for the production of a variety of bio-based products and materials, such as paints and coatings, plastics, soaps, lubricants, cosmetics, pharmaceuticals, printing inks, surfactants, and biofuels. Here, we report the possibility of using Lewis acidic ionic liquids (ILs to obtain polyunsaturated ester dimerization-oligomerization and/or, in the presence of another terminal alkene (propene, co-polymerization. In particular, we have tested the Lewis acidic mixtures arising from the addition of a proper amount of GaCl3 (Χ > 0.5 to two chloride-based (1-butyl-3-methylimidazolium chloride, [bmim]Cl, and 1-butylisoquinolium chloride, [BuIsoq]Cl or by dissolution of a smaller amount of Al(Tf2N3 (Χ = 0.1 in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonylimide, [bmim][Tf2N]. On the basis of product distribution studies, [bmim][Tf2N]/Al(Tf2N3 appears the most suitable medium in which methyl linoleate alkylation with propene can compete with methyl linoleate or propene oligomerization.

  1. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  2. RP-UHPLC-UV-ESI-MS/MS analysis of LPMO generated C4-oxidized gluco-oligosaccharides after non-reductive labeling with 2-aminobenzamide.

    Science.gov (United States)

    Frommhagen, Matthias; van Erven, Gijs; Sanders, Mark; van Berkel, Willem J H; Kabel, Mirjam A; Gruppen, Harry

    2017-08-07

    Lytic polysaccharide monooxygenases (LPMOs) are able to cleave recalcitrant polysaccharides, such as cellulose, by oxidizing the C1 and/or C4 atoms. The analysis of the resulting products requires a variety of analytical techniques. Up to now, these techniques mainly focused on the identification of non-oxidized and C1-oxidized oligosaccharides. The analysis of C4-oxidized gluco-oligosaccharides is mostly performed by using high pressure anion exchange chromatography (HPAEC). However, the alkaline conditions used during HPAEC analysis lead to tautomerization of C4-oxidized gluco-oligosaccharides, which limits the use of this technique. Here, we describe the use of reverse phase-ultra high performance liquid chromatography (RP-UHPLC) in combination with non-reductive 2-aminobenzamide (2-AB) labeling. Non-reductive 2-AB labeling enabled separation of C4-oxidized gluco-oligosaccharides from their non-oxidized counterparts. Moreover, RP-UHPLC does not require buffered mobile phases, which reduce mass spectrometry (MS) sensitivity. The latter is seen as an advantage over other techniques such as hydrophilic interaction liquid chromatography and porous graphitized carbon coupled to MS. RP-UHPLC coupled to UV detection and mass spectrometry allowed the identification of both labeled non-oxidized and C4-oxidized oligosaccharides. Non-reductive labeling kept the ketone at the C4-position of LPMO oxidized oligosaccharides intact, while selective reducing agents such as sodium triacetoxyborohydride (STAB) reduced this ketone group. Our results show that RP-UHPLC-UV-ESI-MS in combination with non-reductively 2-AB labeling is a suitable technique for the separation and identification of LPMO-generated C4-oxidized gluco-oligosaccharides. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells.

    Science.gov (United States)

    Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J

    2014-04-15

    ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.

  4. Effect of silage type and energy concentration on conjugated linoleic acid (CLA) in milk fat from dairy cows

    DEFF Research Database (Denmark)

    Nielsen, T.S.; Sejrsen, K.; Andersen, H.R

    2004-01-01

    40 lactating cows were fed either clovergrass or maize silage and a low or high dietary energy concentration in a 2x2 factorial design. The maize silage diets rich in starch and linoleic acid resulted in a higher content of c9t11 and t10c12 CLA in milk fat than the grass silage diets. A high energy...... concentration plus maize silage led to a pronounced shift in the biohydrogenation pathway of linoleic acid, the highest t10c12 CLA content and lowest milk fat percentage. Energy concentration had no effect on milk fat CLA content or milk fat percentage in grass silage fed cows....

  5. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement.

    Science.gov (United States)

    Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang

    2015-06-07

    A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.

  6. Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling

    Directory of Open Access Journals (Sweden)

    Rivero Montserrat

    2011-04-01

    Full Text Available Abstract Background Diet plays a role on the development of the immune system, and polyunsaturated fatty acids can modulate the expression of a variety of genes. Human milk contains conjugated linoleic acid (CLA, a fatty acid that seems to contribute to immune development. Indeed, recent studies carried out in our group in suckling animals have shown that the immune function is enhanced after feeding them with an 80:20 isomer mix composed of c9,t11 and t10,c12 CLA. However, little work has been done on the effects of CLA on gene expression, and even less regarding immune system development in early life. Results The expression profile of mesenteric lymph nodes from animals supplemented with CLA during gestation and suckling through dam's milk (Group A or by oral gavage (Group B, supplemented just during suckling (Group C and control animals (Group D was determined with the aid of the specific GeneChip® Rat Genome 230 2.0 (Affymettrix. Bioinformatics analyses were performed using the GeneSpring GX software package v10.0.2 and lead to the identification of 89 genes differentially expressed in all three dietary approaches. Generation of a biological association network evidenced several genes, such as connective tissue growth factor (Ctgf, tissue inhibitor of metalloproteinase 1 (Timp1, galanin (Gal, synaptotagmin 1 (Syt1, growth factor receptor bound protein 2 (Grb2, actin gamma 2 (Actg2 and smooth muscle alpha actin (Acta2, as highly interconnected nodes of the resulting network. Gene underexpression was confirmed by Real-Time RT-PCR. Conclusions Ctgf, Timp1, Gal and Syt1, among others, are genes modulated by CLA supplementation that may have a role on mucosal immune responses in early life.

  7. Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2015-06-01

    Full Text Available Q-switched and mode-locked erbium-doped fibre lasers (EDFLs are demonstrated by using non-conductive graphene oxide (GO paper as a saturable absorber (SA. A stable and self-starting Q-switched operation was achieved at 1534.4 nm by using a 0.8 m long erbium-doped fibre (EDF as a gain medium. The pulse repetition rate changed from 14.3 to 31.5 kHz, whereas the corresponding pulse width decreased from 32.8 to 13.8 µs as the pump power increased from 22 to 50.5 mW. A narrow spacing dual-wavelength Q-switched EDFL could also be realised by including a photonics crystal fibre and a tunable Bragg filter in the setup. It can operate at a maximum repetition rate of 31 kHz, with a pulse duration of 7.04 µs and pulse energy of 2.8 nJ. Another GOSA was used to realise mode-locked EDFL in a different cavity consisting of a 1.6 m long EDF in conjunction with 1480 nm pumping. The laser generated a soliton pulse train with a repetition rate of 15.62 MHz and pulse width of 870 fs. It is observed that the proposed fibre lasers have a low pulsing threshold pump power as well as a low damage threshold.

  8. Experimentally induced cerebral fat embolism with linoleic acid; MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, Jong Bae; Kim, Hak Jin; Kim, Yong; Lee, Suck Hong; Park, Byeong Rae

    2000-01-01

    To investigate the correlation between the MRI findings of cerebral fat embolism induced by injecting linoleic acid into ten cats, and pathologic diagnosis. Using a microcatheter, 30μ1 of linoleic acid was injeted into the internal carotid artery of ten cats. MR T2-weighted (T2WI), diffusion-weighted (DWI), and Gd-enhanced T1-weighted images(Gd-enhanced T1WI) were obtained after 30 minutes and after 2 hours of embolization. We pathlogically examined endothelial cell damage, cellular change, perivascular abnormality and fat vacuoles, and then determined the correlation between MRI and the pathologic findings. After 30 minutes of embolization, lesions of very high signal intensity were detected by T2WI in six cats, and of slightly high signal intensity in two:in the remaining two, signal intensity was normal. DWI showed lesions of very high intensity in nine animals and of slightly high intensity in one, while Gd-enhanced T1WI showed well-enhanced lesions in nine and a minimally enhanced lesion in one. After 2 hours of embolization, T2WI revealed lesions of very high signal intensity in nine cats, and of slightly high signal intensity in one, while DWI detected lesions of very high signal intensity in all cats. On Gd-enhanced T1WI, lesions in all cats were well enhanced. According to the findings of light microscopic examination, infarcted lesions mainly involved the gray matter, but also some white matter. In the lesions, neurophil matrix edema, neuronal degeneration, perivascular swelling, the widening of extracellular space, extravascular hemorrhage, and fat vacuoles were evident. During the initial two hours following injuction, MR imaging of cerebral fat embolism induced by linoleic acid through the internal carotid artery in cats showed high signal intensity on T2WI and DWI, and clear enhancement on Gd-enhanced T1WI. In cases involving cellular edema, cerebrovascular injury and extracellular space widening, the pathologic evidence suggested the coexistence of

  9. Kinetics of photoirradiation-induced synthesis of soy oil-conjugated linoleic acid isomers.

    Science.gov (United States)

    Jain, Vishal P; Proctor, Andrew

    2007-02-07

    Photoirradiation of soy oil with UV/visible light has been shown to produce significant amounts of trans,trans conjugated linoleic acid (CLA) isomers through conversion of various synthesized intermediate cis,trans isomers. The objective of this study was to determine the kinetics of CLA isomers synthesis to better understand the production of various isomers. Soy oil was irradiated with UV/visible light for 144 h in the presence of an iodine catalyst and CLA isomers analyzed by gas chromatography (GC). Arrhenius plots were developed for the conversion of soy oil linoleic acid (A) to form cis-, trans/trans-, cis-CLA (B), conversion of cis-, trans/trans-, cis-CLA to form trans,trans-CLA (C) with respect to B, and formation of trans,trans-CLA isomers with respect to C. The kinetics of consumption of linoleic acid (LA) to form cis-, trans/trans-, cis-CLA was found to be of second-order with a rate constant of 9.01 x 10-7 L/mol s. The rate of formation of cis-, trans/trans-, cis-CLA isomers depends on the rate of formation from LA and its rate of consumption to form trans,trans-CLA isomers. The conversion of cis-, trans/trans-, cis-CLA isomers to trans,trans-CLA isomers was found to be of first-order with a rate constant of 2.75 x 10-6 s-1. However, the formation of thermodynamically stable trans,trans-CLA isomers (C) with respect to C was found to be a zero-order reaction with a rate constant of 10.66 x 10-7 mol/L s. The consumption of LA was found to be the rate-determining step in the CLA isomers formation reaction mechanism. The findings provide a better understanding of the mechanism of CLA isomers synthesis by photoirradiation and the factors controlling the ratio of various isomers.

  10. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation

    Science.gov (United States)

    Li, Rong; Xin, Shan; Tao, Chengcheng; Jin, Xiang; Li, Hongbin

    2017-01-01

    Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway. PMID:28644407

  11. Preliminary observations on the effects of milk fortification with conjugated linoleic acid in yogurt preparation

    Science.gov (United States)

    Salamon, R. V.; Albert, I.; András, C. D.; Csapó, J.; Ibănescu, C.

    2015-04-01

    The fortification and enrichment of food with health benefic natural or natural identical substances creating new functional foods became an important issue for food researchers and processors. However, often occurs that the obtained products (despite of their health benefic activity) cannot be marketed due to strange or accustomed taste and/or texture. The aim of the research was to elucidate the effect of conjugated linoleic acid (CLA) enrichment of raw milk on the rheological properties of the obtained yogurt. The results show that the values of the complex viscosity at 50 rad.s-1 (correlated with the thickness and sliminess of the food gel structures) of the CLA-enriched yogurt was the lowest among the studied samples, meaning the enriched yogurt is more creamy than the commercial products. These observations gave us the hope that, in this case, the texture of enriched product will not present any drawback related to consumer quality judgment.

  12. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes

    DEFF Research Database (Denmark)

    Obsen, Thomas; Faergeman, Nils J; Chung, Soonkyu

    2012-01-01

    7-12 h, respectively. The mRNA levels of liver X receptor (LXR)α and sterol regulatory element binding protein (SREBP)-1c, transcription factors that regulate SCD-1, were decreased by 10,12 CLA within 5 h. These data suggest that the isomer-specific decrease in de novo lipid synthesis by 10,12 CLA......]-oleic or [(14)C]-linoleic acids. When using [(14)C]-acetic acid and [(14)C]-pyruvic acid as substrates, 30 μM 10,12 CLA, but not 9,11 CLA, decreased de novo synthesis of triglyceride, free FA, diacylglycerol, cholesterol esters, cardiolipin, phospholipids and ceramides within 3-24 h. Treatment with 30 μM 10...... is due, in part, to the rapid repression of lipogenic transcription factors that regulate MUFA synthesis, suggesting an anti-obesity mechanism unique to this trans FA....

  13. Comparison of Fatty Acid Composition in Selected Dietary Supplements Containing Conjugated Linoleic Acid.

    Science.gov (United States)

    Derewiaka, Dorota; Nestorowicz, Klara; Wołosiak, Rafał

    2017-07-04

    The market of pharmaceutical products is offering a wide range of supplements. Most of the consumers believe that these products will improve their state of health, but are they getting what they want and what they are paying for? The aim of the study was to evaluate the quality of selected dietary supplements containing conjugated linoleic acid (CLA). All supplements were available in the Warsaw markets and bought from pharmacies. Assessment of the quality of food supplements was achieved by analysis of fatty acid using gas chromatography coupled with a mass spectrometer. On the basis of the investigations carried out, it was found that content of CLA in selected dietary supplements ranged between 282 and 528 mg by weight of a single capsule. The content of bioactive ingredients found in three of the four product supplements assessed was lower than was claimed by the manufacturer.

  14. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    Science.gov (United States)

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María

    2014-04-01

    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation). Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  15. Epithelial-mesenchymal interactions in early and late hepatocarcinogenesis with focus on the role of linoleic acid and its hydroperoxides

    Energy Technology Data Exchange (ETDEWEB)

    Sagmeister, S

    2009-07-01

    Hepatocellular carcinomas are devastating cancers with high mortality rates. Major risk factors are chronic hepatitis and associated cirrhosis as consequence of viral hepatitis infections, chronically ethanol consumption or metabolic disorders. While the stepwise development of liver cancer is well investigated, the role of mesenchymal cells in this process is largely unknown. To analyse epithelial-mesenchymal interactions in advanced stages of hepatocarcinogenesis, we established new cell lines from human hepatocellular carcinomas and obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)- and myofibroblastoid (MF)-lines. BLC- and MF-supernatants were able to increase DNA replication of premalignant hepatocytes. Supernatants of MF-lines enhanced angiogenesis and increased migration of HCC-lines. Besides these pro-tumourigenic effects we could also observe tumouricidal properties of mesenchymal cells, as BLC-supernatants induced cell death of HCC-lines. Linoleic acid is an important source for hydroperoxides, which may be generated either endogenously in the course of inflammation or exogenously during food processing. We found that linoleic acid hydroperoxides (=LOOH) were able to activate mesenchymal cells of the liver resulting in the release of pro-inflammatory cytokines and growth factors including TNF-alpha (=tumour necrosis factor alpha) and HB-EGF (=heparin-binding epidermal growth factor-like growth factor), which turned out to be a growth factor for premalignant hepatocytes. Furthermore LOOH enhanced the growth of hepatocarcinoma cells via upregulation of the antiapoptotic enzyme heme oxygenase 1 and stimulation of cell proliferation. In conclusion, the results of our studies confirm the crucial role of different mesenchymal cells in early and late hepatocarcinogenesis and propose a tumour-promoting effect of LOOH. (author) [German] Bei hepatozellulaeren Karzinomen handelt es sich um Krebserkrankungen mit einer ausserordentlich hohen

  16. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

    Directory of Open Access Journals (Sweden)

    Wan Heo

    2016-03-01

    Full Text Available This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05. Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

  18. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry).

    Science.gov (United States)

    Liu, J; Burdette, J E; Sun, Y; Deng, S; Schlecht, S M; Zheng, W; Nikolic, D; Mahady, G; van Breemen, R B; Fong, H H S; Pezzuto, J M; Bolton, J L; Farnsworth, N R

    2004-01-01

    A methanol extract of chaste-tree berry (Vitex agnus-castus L.) was tested for its ability to displace radiolabeled estradiol from the binding site of estrogen receptors alpha (ERalpha) and beta (ERbeta). The extract at 46 +/- 3 microg/ml displaced 50% of estradiol from ERalpha and 64 +/- 4 microg/ml from ERbeta. Treatment of the ER+ hormone-dependent T47D:A18 breast cancer cell line with the extract induced up-regulation of ERbeta mRNA. Progesterone receptor (PR) mRNA was upregulated in the Ishikawa endometrial cancer cell line. However, chaste-tree berry extract did not induce estrogen-dependent alkaline phosphatase (AP) activity in Ishikawa cells. Bioassay-guided isolation, utilizing ER binding as a monitor, resulted in the isolation of linoleic acid as one possible estrogenic component of the extract. The use of pulsed ultrafiltration liquid chromatography-mass spectrometry, which is an affinity-based screening technique, also identified linoleic acid as an ER ligand based on its selective affinity, molecular weight, and retention time. Linoleic acid also stimulated mRNA ERbeta expression in T47D:A18 cells, PR expression in Ishikawa cells, but not AP activity in Ishikawa cells. These data suggest that linoleic acid from the fruits of Vitex agnus-castus can bind to estrogen receptors and induce certain estrogen inducible genes.

  19. Dietary Linoleic and a-Linolenic Acid Affect Anxiety-Related Responses and Exploratory Activity in Growing Pigs

    NARCIS (Netherlands)

    Clouard, C.M.; Gerrits, W.J.J.; Kerkhof, van I.; Smink, W.; Bolhuis, J.E.

    2015-01-01

    Background: Growing evidence suggests that the dietary ratio of linoleic acid (LA) to a-linolenic acid (ALA), the precursors of arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively, may affect behavior in mammals. Objective: This study aimed at evaluating the impact of dietary LA and

  20. Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in the Netherlands

    NARCIS (Netherlands)

    Rist, L.; Mueller, A.; Barthel, C.; Snijders, B.; Jansen, M.; Simões-Wüst, A.P.; Huber, M.; Kummeling, I.; Mandach, U. von; Steinhart, H.; Thijs, C.

    2007-01-01

    The aim of the present study was to find out whether the incorporation of organic dairy and meat products in the maternal diet affects the contents of the conjugated linoleic acid isomers (CLA) and trans-vaccenic acid (TVA) in human breast milk. To this purpose, milk samples from 312 breastfeeding

  1. Conjugated linoleic acid mitigates testosterone-related changes in body composition in male guinea pigs.

    Science.gov (United States)

    Yang, Susan Q; DeGuire, Jason R; Lavery, Paula; Mak, Ivy L; Weiler, Hope A; Santosa, Sylvia

    2016-05-01

    We hypothesize that conjugated linoleic acid (CLA) may be effective in preventing the changes in total and regional body composition and increases in interleukin (IL) 6 that occur as a result of hypogonadism. Male guinea pigs (n = 40, 70- to 72-week retired breeders) were block randomized by weight into 4 groups: (1) sham surgery (SHAM)/control (CTRL) diet, (2) SHAM/conjugated linoleic acid (CLA) diet (1%), (3) orchidectomy (ORX)/CTRL diet, and (4) ORX/CLA diet. Dual-energy x-ray absorptiometry scans were performed at baseline and week 16 to assess body composition. Serum IL-6 was analyzed using an enzyme-linked immune sorbent assay. Fatty acids (FAs) from visceral and subcutaneous adipose tissue were analyzed using gas chromatography. In ORX/CTRL guinea pigs, percent total body fat increased by 6.1%, and percent lean mass decreased by 6.7% over the 16-week treatment period, whereas no changes were observed for either parameter in ORX/CLA guinea pigs. Guinea pigs fed the CLA diet gained less percent total, upper, and lower body fat than those fed the CTRL diet regardless of surgical treatment. Regional adipose tissue FA composition was reflective of dietary FAs. Serum IL-6 concentrations were not different among groups. In this study, we observed that, in male guinea pigs, hypogonadism resulted in increased fat mass and decreased lean mass. In addition, CLA was effective in reducing gains in body fat and maintaining lean mass in both hypogonadal and intact guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation.

    Science.gov (United States)

    de Freitas-Silva, Larisse; Rodríguez-Ruiz, Marta; Houmani, Hayet; da Silva, Luzimar Campos; Palma, José M; Corpas, Francisco J

    2017-11-01

    Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H 2 O 2 , ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H 2 0 2 , nitric oxide or peroxynitrite. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Demonstration using EPR spin-trapping of an oxygen-dependent, carbon-centered free radical generated by soybean lipoxygenase

    International Nuclear Information System (INIS)

    Carpenter, M.F.; Smith, F.L.

    1986-01-01

    Purified prostaglandin synthase produces a carbon-centered, oxygen-dependent free radical which they have shown forms a spin-trapped adduct with 4-POBN and has characteristic hyperfine spin coupling constants (hfsc). As production of this radical is cyclooxygenase-dependent, additional studies on radical production were done using soybean lipoxygenase. The latter generates a lipid substrate-derived free radical trapped by the EPR spin trap 4-POBN [α-(4-pyridyl 1-oxide)N-tert-butyl nitrone]. With linoleate as substrate, the hfsc are a/sub N/ = 15.5 G, a/sub β//sup H/ = 2.7 G. This signal is inhibited by ETYA, various antioxidants and heat inactivation of the enzyme. Additional hfsc are not seen when the enzyme is incubated in an 17 O 2 atmosphere, but the signal is inhibited by anaerobeosis. Substitution of 13 C 18 carbon free fatty acids from Chlorella pyrenoisdosa for linoleate produces 2 new lines for each of the original 6 observed with 12 C substrate; the new spectrum has hfsc of a/sub N/ = 16.0 G, a/sub β//sup H/ = 2.4 G, a/sub β/ 13 C = 4.2 G. This demonstrates that the radical is carbon centered and oxygen-dependent and appears not to be the same radical formed by enzymic hydrogen abstraction from the lipid substrate. This radical and the prostaglandin synthase-dependent radical appear to be nearly identical

  4. Characterisation of Oxides Formed on the Internal Surface of Steam Generator Tubes in Alloy 690 Corroded in the Primary Environment of Pressurised Water Reactors

    International Nuclear Information System (INIS)

    Carrette, Florence; Leclercq, Stephanie; Legras, Laurent

    2012-09-01

    Since the end of the 1990s, EDF R and D has been studying the phenomenon of corrosion product release from Steam Generator tubes in order to minimize the Source Term of the contamination and radiation exposure during operation and maintenance of Pressurised Water Reactors. With the BOREAL loop, release tests in primary water at 325 deg. C were performed on various Steam Generator tubes made of alloy 690. The experimental conditions of these tests (chemistry, temperature and hydraulics) were the same for all the tests but the results showed various behaviours towards release. For some tubes, the release was weak whereas for others, it was higher; the release rate of the tubes decreased more or less quickly with time. In order to explain these results, the internal surface of the tubes was characterised before and after the tests. Before the tests, various parameters were studied; the main parameters were the roughness, the impurities, the grain size and the cold work. The results demonstrated that it was not easy to quantify the influence of each parameter on release and to differentiate the tubes. A new parameter was proposed to characterise the internal extreme surface of SG tubes: the surface nano-hardness by nano-indentation measurements. The tubes were also observed and analysed by SEM, (X)TEM. Data obtained by (X)TEM revealed differences of the surface state (layer of perturbed microstructure, density of dislocations, grain size, impurities, initial oxide,...). After the tests, the oxides formed on the internal surface and the underlying material of the samples were characterised by SEM, (X)TEM and SIMS. The examinations showed various types of oxides. For some tubes, a duplex oxide scale was identified, for the others, only one oxide scale was observed. For equivalent durations of corrosion, the thickness of the enriched - chromium oxide layer can vary from 5 nm to 100 nm and the chemical composition can be different. The examinations of the underlying

  5. Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes

    DEFF Research Database (Denmark)

    Fang, Cheng; Min, Booki; Angelidaki, Irini

    2011-01-01

    with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC......Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power...... density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3−–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode...

  6. Anti-inflammatory effects of conjugated linoleic acid isomers and essential fatty acids in bovine mammary epithelial cells.

    Science.gov (United States)

    Dipasquale, D; Basiricò, L; Morera, P; Primi, R; Tröscher, A; Bernabucci, U

    2018-01-09

    Fatty acids are important modulators of inflammatory responses, in particular, n-3 and n-6 essential fatty acids and CLA have received particular attention for their ability to modulate inflammation. The objectives of this study were to compare the effects of CLA and essential fatty acids on the expression of pro and anti- inflammatory cytokines and their protective efficacy against inflammatory status in mammary gland by an in vitro model based on bovine mammary epithelial cells (BME-UV1). Bovine mammary epithelial cells were treated with complete medium containing either 50 µM of cis-9, trans-11 CLA (c9,t11 CLA) or trans-10, cis-12 CLA (t10,c12 CLA) or (α)-linolenic acid (aLnA) or (γ)-linolenic acid (gLnA) or linoleic acid (LA). After 48 h by fatty acids administration the cells were treated for 3 h with 20 µM of lipopolysaccharide (LPS) to induce inflammatory stimulus. Reactive oxygen species (ROS) production after treatments was assessed to verify and to compare the potential protection of different fatty acids against LPS-induced oxidative stress. The messenger RNA abundance of bovine pro and anti-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukine-10 (IL-10)) and peroxisome proliferator receptor-α/γ (PPARγ/α) were determined in BME-UV1 by real-time PCR. The results showed that cells treated with fatty acids and LPS increased ROS production compared with control cells. Among treatments, cells treated with c9,t11 CLA and t10,c12 CLA isomers revealed significant lower levels of ROS production compared with other fatty acids. All fatty acids reduced the gene expression of pro- and anti-inflammatory cytokines. Among fatty acids, t10,c12 CLA, LA and gLnA showed an homogeneous reduction of the three pro-inflammatory cytokines and this may correspond to more balanced and efficient physiological activity and may trigger a better protective effect. The PPARγ gene expression was

  7. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  8. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes

    International Nuclear Information System (INIS)

    Xue, Yudong; Wang, Yunting; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-01-01

    Highlights: • Novel alkaline electro-Fenton-like was applied for V 2 O 3 oxidative dissolution. • N-doped carbon felt electrode was fabricated for the two-electron ORR. • ROS including ·OH and HO 2 − was in-situ generated from the electrochemical system. • A significant enhancement of V 2 O 3 dissolution was achieved due to the ROS. - Abstract: Oxidative dissolution is a critical step for the efficient remediation of heavy metal oxides in large-scale solid wastes. In the present study, a novel electro-oxidative dissolution process of V 2 O 3 to VO 4 3− is achieved by the in-situ generated reactive oxygen species on the N-doped carbon felt cathode in alkaline media. The electro-catalytic HO 2 − generation and hydrophilic behavior were significantly enhanced by the introduction of nitrogen-containing functional groups. Besides, the mechanism of electrochemical vanadium conversion is systematically illustrated, and a vanadium self-induced electro-Fenton-like reaction is proposed. By employing the radical quenching and ESR measurements, the contributions for V(III) dissolution is determined to be 43.5% by HO 2 − and 56.5% by hydroxyl radicals, respectively. It should be noted that the V 2 O 3 solid particles can be efficiently dissolved via adsorption-reaction scheme on the carbon felt electrode. This novel electrochemical strategy provides a promising solution for the heavy metal oxide treatment and further understanding for the in situ reactive oxygen species.

  9. Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia

    Science.gov (United States)

    Meng, Ze-Da; Zhao, Wei; Kim, Sukyoung

    2017-11-01

    Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2- nor NO3- were detected.[Figure not available: see fulltext.

  10. Advanced oxidation of biorefractory organics in aqueous solution together with bioelectricity generation by microbial fuel cells with composite FO/GPEs

    Science.gov (United States)

    Fu, Bao-rong; Shen, Chao; Ren, Jing; Chen, Jia-yi; Zhao, Lin

    2018-03-01

    In this study, ferric oxide loading graphite particle electrodes (FO/GPEs) were prepared as cathode of a three-dimensional electrode MFC-Fenton system. The properties of the composite cathode were examined with higher surface area and more mesopores. FO/GPEs could work as both cathode and Fenton iron reagents, contributing to high oxidation activity and better performance of electricity generation. The application of FO/GPEs MFC-Fenton system on degrading p-nitrophenol presented high catalytic efficiency in a wide range of pH value. The removal of p-nitrophenol and TOC attained to about 85 % within 8 and 64 h at neutral pH, respectively. A neutral FO/GPEs MFC-Fenton oxidation mechanism was also proposed. Specifically, both the surface iron sites and dissolved iron ions catalyzed the decomposition of H2O2. As results, the generated hydroxyl radicals were used for p-nitrophenol degradation and the iron oxide was recycled.

  11. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  12. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation.

    Science.gov (United States)

    Pinto, A Viviana; Deodato, Elder L; Cardoso, Janine S; Oliveira, Eliza F; Machado, Sérgio L; Toma, Helena K; Leitão, Alvaro C; de Pádula, Marcelo

    2010-06-01

    Although titanium dioxide (TiO(2)) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO(2) is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO(2)-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO(2) associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO(2) plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO(2) protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO(2) plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO(2) plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A. Viviana, E-mail: alicia.pinto@incqs.fiocruz.br [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Deodato, Elder L. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Cardoso, Janine S. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Leitao, Alvaro C. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Padula, Marcelo de [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil)

    2010-06-01

    Although titanium dioxide (TiO{sub 2}) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO{sub 2} is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO{sub 2}-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO{sub 2} associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO{sub 2} plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO{sub 2} protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO{sub 2} plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO{sub 2} plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  14. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    International Nuclear Information System (INIS)

    Pinto, A. Viviana; Deodato, Elder L.; Cardoso, Janine S.; Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K.; Leitao, Alvaro C.; Padula, Marcelo de

    2010-01-01

    Although titanium dioxide (TiO 2 ) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO 2 is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO 2 -UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO 2 associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO 2 plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO 2 protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO 2 plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO 2 plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  15. Use of oxidative and reducing vapor generation for reducing the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Vtorushina, Eh.A.; Saprykin, A.I.; Knapp, G.

    2009-01-01

    Procedures of microwave combustion in an oxygen flow and microwave acid decomposition of biological samples were optimized for the subsequent determination of iodine. A new method was proposed for the generation of molecular iodine from periodate iona using hydrogen peroxide as a reductant. Procedures were developed for determining iodine in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) using oxidative and reducing vapor generation; these allowed the detection limit for iodine to be lowered by 3-4 orders of magnitude. The developed procedures were used to analyze certified reference materials of milk (Skim Milk Powder BCR 150) and seaweed (Sea Lettuce BCR 279) and a Supradyn vitamin complex

  16. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  17. Oxide Dispersion Strengthened Fe3Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    2002-02-08

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100% in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is

  18. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells

    DEFF Research Database (Denmark)

    Zheng, Lin; Terman, Alexei; Hallbeck, Martin

    2011-01-01

    and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production...... and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration....

  19. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and a-linolenate

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1985-01-01

    sphingolipids. These rats showed increased evaporation which was comparable to that of essential fatty acid-deficient rats. We interpret these results as strong evidence for a very specific and essential function of linoleic acid in maintaining the integrity of the epidermal water permeability barrier......Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water...... loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from...

  20. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    Science.gov (United States)

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  1. Matrice lipidique et biodisponibilité de l’acide alpha-linolénique

    Directory of Open Access Journals (Sweden)

    Couëdelo Leslie

    2017-03-01

    Full Text Available Les acides gras poly-insaturés (AGPI de la série oméga-3 (ω3 ont un rôle important dans la prévention de certaines pathologies. En plus d’être nécessaires dans des conditions physiologiques particulières (développement pré- et post-natal, croissance (Riediger et al., 2009. J Am Diet Assoc 109 : 668–679, ils sont associés à des effets santé en termes de prévention, notamment au niveau de pathologies cardiovasculaires, inflammatoires, certains cancers et certaines maladies neuro-dégénératives (De Lorgeril et al., 1994. Lancet 343 : 1454–1459 ; Simopoulos, 2008. Exp Biol Med (Maywood, NJ 233 : 674–688. Cependant, les dernières études épidémiologiques montrent que les apports en AGPI ω3, et notamment en acide alpha-linolénique (ALA, précurseur métabolique des AGPI à longue chaîne ω3, sont deux fois inférieurs aux recommandations de l’Agence national de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (ANSES, 2011. Outre la nécessité d’augmenter l’apport en ALA, il est désormais nécessaire de prendre en considération les facteurs qui améliorent sa biodisponibilité. Dans ce contexte, nous avons testé plusieurs paramètres susceptibles de moduler le devenir métabolique de l’ALA. Nos recherches ont mis en évidence que plusieurs paramètres physiques et chimiques, tels que l’émulsification d’une huile linolénique avec de la lécithine de soja, la position de l’ALA sur le squelette glycérique du triglycéride alimentaire mais aussi la composition de la matrice permettraient de moduler la biodisponibilité et le devenir métabolique de l’ALA dans l’organisme.

  2. Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Frøkiær, Hanne; Andersen, Anders D.

    2008-01-01

    with a high- or low-LA intake affects overall CVD risk profile. Healthy men (n = 64) were randomized to 5 mL/d fish oil capsules (FO) [mean intake 3.1 g/d (n-3) LCPUFA] or olive oil capsules (control) and to oils and spreads with either a high (S/B) or a low (R/K) LA content, resulting in a 7.3 g/d higher LA......Both (n-3) long-chain PUFA (LCPUFA) and linoleic acid [LA, 18:2(n-6)] improve cardiovascular disease (CVD) risk factors, but a high-LA intake may weaken the effect of (n-3) LCPUFA. In a controlled, double-blind, 2 x 2-factorial 8-wk intervention, we investigated whether fish oil combined......, C-reactive protein, interleukin-6, vascular cell adhesion molecule-1, P-selectin, oxidized LDL, cluster of differentiation antigen 40 ligand (CD40L), adiponectin, or fasting or postprandial BP or HR after adjustment for body weight changes. In conclusion, neither fish oil supplementation nor the LA...

  3. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  4. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  5. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko

    2015-01-01

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis

  6. Linoleic acid-menthyl ester reduces the secretion of apolipoprotein B100 in HepG2 cells.

    Science.gov (United States)

    Inoue, Nao; Yamano, Naomi; Sakata, Kotaro; Arao, Keisuke; Kobayashi, Takashi; Nagao, Toshihiro; Shimada, Yuji; Nagao, Koji; Yanagita, Teruyoshi

    2009-01-01

    The effect of linoleic acid-menthyl ester (LAME) on lipid metabolism were assessed in HepG2 cells. It is well known that high level of apolipoprotein (apo) B100 in the serum is risk for atherosclerosis. Although linoleic acid (LA) treatment and LA plus L-mentol treatment increased apo B100 secretion, LAME treatment significantly decreased apo B100 secretion in HepG2 cells compared with control medium. The hypolipidemic effect of LAME was attributable to the suppression of triglyceride synthesis in HepG2 cells. It is also known that the risk of coronary heart disease is negatively related to the concentration of serum apo A-1. In the present study, LAME treatment increased apo A-1 secretion as compared with LA treatment in HepG2 cells. These results suggest that mentyl-esterification of fatty acids may be beneficial in anti-atherogenic dietary therapy.

  7. A comparison between two methods of generating power, heat and refrigeration via biomass based Solid Oxide Fuel Cell: A thermodynamic and environmental analysis

    International Nuclear Information System (INIS)

    Mortazaei, M.; Rahimi, M.

    2016-01-01

    Highlights: • Two novel trigeneration systems based biomass and Solid Oxide Fuel Cell are compared. • A complete environmental analysis for three different cases is conducted. • Digester based system has 14.56% more exergetic efficiency than gasifier based one. • Gasifier based system has 14.31% more energetic efficiency than Digester based one. • Gasifier, Digester and air heat exchanger have the highest exergy destruction. - Abstract: Utilization of biomass energy is of prevalence focus these days. Using these fuels to run the fuel cells is of primary interest. In this regard, two new trigeneration systems (producing power and heating alongside with cooling) based on solid oxide fuel cell fed by either the syngas or biogas are proposed. The performance of systems is analyzed and compared with each other from the thermodynamic viewpoint. Applying the conservation of mass and energy as well as the exergy for each system component and using the engineering equation solver, the system’s performance are modeled. Through a parametric study, the effects of some key variables such as the current density and the fuel utilization factor in the systems’ performance are investigated. In addition, considering the system as a combination of three subsystems, that is, the power generation system, heat and power generation system and trigeneration system, an environmental impact assessment in terms of Carbon dioxide emission is carried out for both digester based Solid Oxide Fuel Cell and gasifier based one. It is observed that using biogas from digester leads to more exergetic (which is 14.56%) and less energetic efficiency (Which is 14.31%), with a Carbon dioxide emission of 17.87 ton/MW h for the tri-generation system. The value of this parameter is 21.32 ton/MW h when gasifier is used as the supplier of fuel for solid oxide fuel cell.

  8. Effect of abscisic acid on the linoleic acid metabolism in developing maize embryos

    International Nuclear Information System (INIS)

    Abian, J.; Gelpi, E.; Pages, M.

    1991-01-01

    Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-[ 14 C]LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. α- and γ-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating form two isomeric trihydroxy acids (9,12,13-trihydroxy-10-octadecenoic and 9,10,13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young development stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9,13-dihydroxy-11-octadecenoic acid and 12-oxo-9,13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed

  9. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.

    Science.gov (United States)

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2016-11-15

    Stoichiometric, kinetic and thermodynamic aspects of complex formation between heat-induced aggregates of ovalbumin (ovalbumin nanoparticles, OVAn) and linoleic acid (LA) were evaluated. Extrinsic fluorescence data were fitted to modified Scatchard model yielding the following results: n: 49±2 LA molecules bound per OVA monomer unit and Ka: 9.80±2.53×10(5)M. Kinetic and thermodynamic properties were analyzed by turbidity measurements at different LA/OVA monomer molar ratios (21.5-172) and temperatures (20-40°C). An adsorption approach was used and a pseudo-second-order kinetics was found for LA-OVAn complex formation. This adsorption process took place within 1h. Thermodynamic parameters indicated that LA adsorption on OVAn was a spontaneous, endothermic and entropically-driven process, highlighting the hydrophobic nature of the LA and OVAn interaction. Finally, Atomic Force Microscopy imaging revealed that both OVAn and LA-OVAn complexes have a roughly rounded form with size lower than 100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma.

    Science.gov (United States)

    Evans, Nicholas P; Misyak, Sarah A; Schmelz, Eva M; Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-03-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.

  11. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    Science.gov (United States)

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  12. Chemometric deconvolution of gas chromatographic unresolved conjugated linoleic acid isomers triplet in milk samples.

    Science.gov (United States)

    Blasko, Jaroslav; Kubinec, Róbert; Ostrovský, Ivan; Pavlíková, Eva; Krupcík, Ján; Soják, Ladislav

    2009-04-03

    A generally known problem of GC separation of trans-7;cis-9; cis-9,trans-11; and trans-8,cis-10 CLA (conjugated linoleic acid) isomers was studied by GC-MS on 100m capillary column coated with cyanopropyl silicone phase at isothermal column temperatures in a range of 140-170 degrees C. The resolution of these CLA isomers obtained at given conditions was not high enough for direct quantitative analysis, but it was, however, sufficient for the determination of their peak areas by commercial deconvolution software. Resolution factors of overlapped CLA isomers determined by the separation of a model CLA mixture prepared by mixing of a commercial CLA mixture and CLA isomer fraction obtained by the HPLC semi-preparative separation of milk fatty acids methyl esters were used to validate the deconvolution procedure. Developed deconvolution procedure allowed the determination of the content of studied CLA isomers in ewes' and cows' milk samples, where dominant isomer cis-9,trans-11 is eluted between two small isomers trans-7,cis-9 and trans-8,cis-10 (in the ratio up to 1:100).

  13. Effect of oral supplementation of the linoleic and gammalinolenic acids on the diabetic pregnant rats

    Directory of Open Access Journals (Sweden)

    Marcos Consonni

    2012-10-01

    Full Text Available The aim of this work was to evaluate the direct protective action of oral fatty acid supplementation against the deleterious effect of hyperglycemia on maternal reproductive outcomes; fetal growth and development on female Wistar rats. The animals were distributed into four experimental groups: G1= non-diabetic without supplementation (Control group; G2= non-diabetic treated with linoleic (LA and gammalinolenic acid (GLA (1 mL of Gamaline-V/day; G3= diabetic without supplementation and G4= diabetic treated with LA and GLA. Diabetes was induced by streptozotocin (40 mg/kg. At day 21 of pregnancy, the gravid uterus was weighed and dissected to count the dead and live fetuses, resorption, implantation, and corpora lutea numbers. The fetuses were analyzed for external and internal anomalies. The treatment with Gamaline-V supplementation to diabetic rats interfered in the maternal reproductive outcome (reduced number of live fetuses and embryonic implantation; however, it protected the deleterious on the incidence of congenital anomalies caused by hyperglycemia.

  14. The effect of conjugated linoleic acid supplementation on the nutritional status of COPD patients.

    Science.gov (United States)

    Ghobadi, Hassan; Matin, Somaieh; Nemati, Ali; Naghizadeh-Baghi, Abbas

    2016-01-01

    COPD patients are susceptible to anorexia, reduction of caloric intake, weight loss, and malnutrition. One of the possible mechanisms is the increase of inflammatory markers such as interleukin 1β (IL 1β ), is highly correlated with anorexia. Considering the anti-inflammatory role of conjugated linoleic acid (CLA), this study aimed to investigate the effect of CLA supplementation on the nutritional status of COPD patients. In a double-blind clinical trial, 93 COPD patients who volunteered to participate in the study and who filled out a written consent form, were randomly assigned to control or supplementation groups. The patients in the supplementation group received 3.2 g of CLA on a daily basis for 6 weeks, while those in the control group received placebo on a daily basis for 6 weeks. For IL 1β assessment, the patients' anthropometric indices and appetite score were checked and their blood samples were collected both before and after the treatment. Moreover, in order to investigate the changes in the caloric intake trend during the study, their dietary intake levels were assessed using 24-hour dietary recall, 3 days a week at the onset, in the 4th week, and at the end of the study. Eventually, 90 patients completed the study. The results demonstrated a significant increase in appetite score ( P =0.001), average caloric intake ( P =0.01), and macronutrient intake ( P nutritional status of patients suffering from COPD through adjusting the serum level of IL 1β .

  15. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism.

    Science.gov (United States)

    Lehnen, Tatiana Ederich; da Silva, Marcondes Ramos; Camacho, Augusto; Marcadenti, Aline; Lehnen, Alexandre Machado

    2015-01-01

    Conjugated linoleic acid (CLA) is highly found in fats from ruminants and it appears to favorably modify the body composition and cardiometabolic risk factors. The capacity of CLA to reduce the body fat levels as well as its benefic actions on glycemic profile, atherosclerosis and cancer has already been proved in experimental models. Furthermore, CLA supplementation may modulate the immune function, help re-synthetize of glycogen and potentiate the bone mineralization. CLA supplementation also could increase the lipolysis and reduce the accumulation of fatty acids on the adipose tissue; the putative mechanisms involved may be its action in reducing the lipase lipoprotein activity and to increase the carnitine-palmitoil-transferase-1 (CAT-1) activity, its interaction with PPARγ, and to raise the expression of UCP-1. Although studies made in human have shown some benefits of CLA supplementation as the weight loss, the results are still discordant. Moreover, some have shown adverse effects, such as negative effects on glucose metabolism and lipid profile. The purpose of this article is to review the available data regarding the benefits of CLA on the energetic metabolism and body composition, emphasizing action mechanisms.

  16. Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass

    Directory of Open Access Journals (Sweden)

    Irena Kolouchová

    2016-01-01

    Full Text Available We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp. and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae as potential producers of dietetically important major fatty acids. The main objective was to examine the cultivation conditions that would induce a high ratio of dietary fatty acids and biomass. Though genus-dependent, the type of nitrogen source had a higher influence on biomass yield than the C/N ratio. The nitrogen source leading to the highest lipid accumulation was potassium nitrate, followed by ammonium sulfate, which is an ideal nitrogen source supporting, in both oleaginous and nonoleaginous species, sufficient biomass growth with concomitantly increased lipid accumulation. All yeast strains displayed high (70–90% content of unsaturated fatty acids in total cell lipids. The content of dietary fatty acids of interest, namely, palmitoleic acid and linoleic acid, reached in Kluyveromyces and Trichosporon strains over 50% of total fatty acids and the highest yield, over 280 mg per g of dry cell weight of these fatty acids, was observed in Trichosporon with ammonium sulfate as nitrogen source at C/N ratio 70.

  17. role of conjugated linoleic acid in the prevention of radiation hazard in male rats

    International Nuclear Information System (INIS)

    Hussien, E.M.; Osman, N.N.; Haggag, A.M.

    2009-01-01

    the objective of the present study was to examine the effect of conjugated linoleic acid (CLA) as a natural product in minimizing the radiation hazards. male rats were assigned to six groups each of 7 animals throughout six weeks, fed 1% CLA (wt/wt)added to commercial diet in the form of milk powder 182 g/kg diet. rats exposed to 6 Gy whole body gamma irradiation showed significant increase in total cholesterol (TC), low density lipoprotein cholesterol (LDL-C).triglycerides (TG), atherosclerosis index, total lipid (TL), phospholipids (ph-lipids), malondialdehyde (MDA), urea,creatinine, uric acid, calcium (Ca) and phosphorous levels associated with decrease in high density lipoprotein-cholesterol (HDL-C), activity of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total antioxidant status, body weight, testes weight and testosterone both irradiated and non-irradiated milk powder administrated to irradiated rat groups minimized the radiation damage in the assayed parameters indicating its beneficial role as a promising antioxidant in scavenging free radicals and reactive oxygen species

  18. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    Science.gov (United States)

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  19. The effects of conjugated linoleic acids on breast cancer: A systematic review

    Directory of Open Access Journals (Sweden)

    Arman Arab

    2016-01-01

    Full Text Available Recently prevention strategies for breast cancer are focused on lifestyle modification such as diet. Some dietary factors such as Conjugated linoleic acid (CLA can lower the risk of breast cancer, metastasis and some factors concerning this malignancy. Many studies have been established in this field, but their results are inconsistent. Therefore, we evaluated this association based on systematic review among published scientific literature. We performed an electronic search using PubMed, Cochrane, Scopus, Google Scholar and Persian database (Iran Medex, magiran to identify relevant studies. We summarized the findings of 8 papers in this review. Although, three cohort studies were not overall identified a protective effect of CLA dietary intake or CLA content in breast tissue on breast cancer incidence, metastasis and death, one of them showed an inverse association after adjusting for age. Also, among case-control studies a weak inverse association between breast cancer risk and CLA dietary intake and serum levels among post-menopausal women was reported. Besides, a clinical trial showed that some indicator of breast tumor decreased after CLA administration among women with breast adenocarcinoma. Lacking published evidence suggested inconsistent results. So, further well-designed studies are required, particularly in considering the main breast cancer risk factors.

  20. Impact of lactic acid bacteria on conjugated linoleic acid content and atherogenic index of butter

    Directory of Open Access Journals (Sweden)

    L Roufegari-Nejad

    2012-11-01

    Full Text Available This is a study aimed to investigate the effect of lactic acid bacteria including Lactobacillus acidophilus and Sterptococcus thermophilus (as thermophilic culture, Lactococcus lactis subsp. lactis, cremoris and diacetylactis, Leuconostoc citrovorum (as mesophilic culture, Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium lactis and a mixed culture of L.acidophilus, L. casei and B. lactis on fatty acid profile, conjugated linoleic acid (CLA and atherogenic index (AI of butter. Fatty acid analysis with gas chromatography indicated that application of thermophilic and mixed culture decreased the ratio of saturated to unsaturated fatty acid; whereas, the butters made with L. acidophilus had the highest content of CLA. Moreover, AI in the samples prepared with thermophilic cultures was the least. Sensory evaluation of the treatments revealed no significant differences (p> 0/05 in appearance and color. However, the butters prepared with thermophilic and mesophilic cultures had more desirable taste in comparison with the samples made with L. acidophilus, L. casei and B. lactis. From the nutritional point of view, the adverse effect of butter could be diminished via the application of selected lactic acid bacteria.

  1. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice

    OpenAIRE

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute...

  2. Autoxidation of conjugated linoleic acid methyl ester in the presence of α-tocopherol: the hydroperoxide pathway

    OpenAIRE

    Pajunen, Taina

    2009-01-01

    The autoxidation of conjugated linoleic acid (CLA) is poorly understood in spite of increasing interest in the beneficial biological properties of CLA and growing consumption of CLA-rich foods. In this thesis, the autoxidation reactions of the two major CLA isomers, 9-cis,11-trans-octadecadienoic acid and 10-trans,12-cis-octadecadienoic acid, are investigated. The results contribute to an understanding of the early stages of the autoxidation of CLA methyl ester, and provide for the first time...

  3. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    Science.gov (United States)

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  4. Oxidative stress generated by diesel seawater contamination in the digestive gland of the Antarctic limpet, Nacella concinna

    Energy Technology Data Exchange (ETDEWEB)

    Ansaldo, M. [Instituto Antartico Argentino, Buenos Aires (Argentina); Najle, R. [Universidad del Centro de la Provincia de Buenos Aires, Tandil (Argentina). Facultad Cs. Veterinarias; Luquet, C.M. [Universidad de Buenos Aires, Ciudad Univ. (Argentina). Dept. de Biodiversidad y Biologia Experimental

    2005-05-01

    The aim of this work was to investigate the activity of antioxidant enzymes and oxidative damage in the digestive gland of the limpet Nacella concinna, and their suitability as biomarkers for hydrocarbon pollution in Antarctic coasts. Three groups of 30 individuals each were kept in seawater containing 0%, 0.05% or 0.1% diesel. Superoxide dismutase, catalase, glutathione S transferase and glutathione peroxidase activities, as well as lipid peroxidation and protein oxidation were studied in 18 animals of each group after 24, 48 and 168 h of exposure. The activity levels of most enzymes were increased by diesel in a dose-dependent manner. Glutathione peroxidase showed the most clear effect; its activity significantly increased in the 0.1% diesel group respect to the control. Lipid peroxidation and protein oxidation were significantly increased by diesel after 168 h. Both variables were higher in the group exposed to the lowest dose. (author)

  5. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    Science.gov (United States)

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  6. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  7. Effect of substratum, serum and linoleic acid on the lipid synthesis of isolated alveolar type II cells

    International Nuclear Information System (INIS)

    Cott, G.R.; Edeen, K.E.; Hale, S.G.; Mason, R.J.

    1986-01-01

    The authors examined the effect of cellular substratum (plastic or amnionic basement membrane (ABM)) and serum additive (fetal bovine (FBS), pork, horse, rat or human) on phospholipid synthesis in alveolar type II cells. The cells were isolated from adult rats, cultured for 48 hours under the various substratum and serum conditions, and then incubated for an additional 2 hours with [1- 14 C] acetate. ABM consistently caused a significant increase in the percent of radiolabel incorporated into phosphatidylcholine (PC) and/or phosphatidylglycerol (PG). Serum also had a significant effect with the highest values of PC and saturated PC being obtained with rat serum and the highest PG values with horse serum. The fatty acid composition of the sera used varied according to species with the largest variations in percent linoleic acid. Supplementing media with linoleic acid resulted in a marked increase in saturated PC values and a fall in PG values. Therefore, they conclude that: 1) ABM improves differentiated function, 2) FBS supplementation may not be optimal, and 3) the different effects of linoleic acid supplementation on PC, saturated PC, and PG values suggests an independent regulation of synthesis for these lipid species in vitro

  8. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  9. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    International Nuclear Information System (INIS)

    Santos, Michel D.; Lopes, Norberto P.; Iamamoto, Yassuko

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  10. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michel D.; Lopes, Norberto P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: npelopes@fcfrp.usp.br; Iamamoto, Yassuko [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Quimica

    2008-07-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  11. Expression of Neuronal and Inducible Nitric Oxide Synthase Isoforms and Generation of Protein Nitrotyrosine in Rat Brain Following Hypobaric Hypoxia

    Science.gov (United States)

    2001-06-01

    Promoci6n General del Conocimiento , Ministerio de Educaci6n y Cultura. We thank Mr. E. Sfnchez and directors and staff of the Hospital del Aire and CIMA... based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626-632. Lowenstein, C.J

  12. Chronic restraint stress in rats causes sustained increase in urinary corticosterone excretion without affecting cerebral or systemic oxidatively generated DNA/RNA damage

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Maigaard, Katrine; Wörtwein, Gitta

    2013-01-01

    acids, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, in rats subjected to chronic restraint stress. To reliably collect 24h urine samples, the full 3-week restraint stress paradigm was performed in metabolism cages. We further determined frontal...... and Tnf). The metabolism cage housing in itself did not significantly influence a range of biological stress markers. In the restraint stress group, there was a sustained 2.5 fold increase in 24h corticosterone excretion from day 2 after stress initiation. However, neither whole-body nor cerebral measures......Increased oxidatively generated damage to nucleic acids (DNA/RNA) may be a common mechanism underlying accelerated aging in psychological stress states and mental disorders. In the present study, we measured the urinary excretion of corticosterone and markers of systemic oxidative stress on nucleic...

  13. Catalysts development to base of Cu and Ni supported in ZrO2 for the H2 generation by the methanol reformed in oxidizing atmosphere

    International Nuclear Information System (INIS)

    Lopez C, P.; Gutierrez, A.; Gutierrez W, C.; Mendoza A, D.; Martinez, G.; Perez H, R.

    2009-01-01

    The search of new alternating sources of energy is at the present time one of the primordial objectives to world level because of the global heating caused by the high emissions of CO 2 at the atmosphere. In this sense the employment of H 2 through the fuel cells offers a more viable alternative for the use of the energy coming from the connection H-H that can be appointed for use of mobile, industrial and homemade applications. However, to generate H 2 in enough quantities is a great challenge at technological level for the necessity of to count with highly selective and efficient catalysts to low reaction temperatures as well as a source that comes from renewable resources. Under this context the methanol reformed in oxidizing atmosphere offers great ecological as energetics and industrial advantages; inside this investigation plane, the Cu seems to be one of the suitable candidates for this reaction due to its high capacity to generate H 2 , besides the great potential of improvement in its physical-chemical properties when being worked in nano metric size and /or associated with other materials. On the other hand, it is known that the Ni addition improvement the catalytic properties because of a better material dispersion, what offers big possibilities of being applied in the H 2 generation in situ by means of the methanol reformed reaction in oxidizing atmosphere; and that the conformation of bimetallic particles Cu/Ni presented high selectivity and catalytic activity for the reaction in question. (Author)

  14. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide.

    Science.gov (United States)

    Chaves, Guilherme Maranhão; da Silva, Walicyranison Plinio

    2012-12-01

    To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.

  15. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide

    Directory of Open Access Journals (Sweden)

    Guilherme Maranhão Chaves

    2012-12-01

    Full Text Available To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods and glutaredoxins (Grxs. The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.

  16. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.

    Science.gov (United States)

    Lanaspa, Miguel A; Sanchez-Lozada, Laura G; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y; Johnson, Richard J

    2012-11-23

    Uric acid is an independent risk factor in fructose-induced fatty liver, but whether it is a marker or a cause remains unknown. Hepatocytes exposed to uric acid developed mitochondrial dysfunction and increased de novo lipogenesis, and its blockade prevented fructose-induced lipogenesis. Rather than a consequence, uric acid induces fatty liver Hyperuricemic people are more prone to develop fructose-induced fatty liver. Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.

  17. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  18. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb.

    Science.gov (United States)

    Boles, J A; Kott, R W; Hatfield, P G; Bergman, J W; Flynn, C R

    2005-09-01

    The objective of this study was to determine whether increasing levels of dietary safflower oil would alter unsaturated fat (especially CLA) and tocopherol content of lamb, animal performance, carcass characteristics, or color stability of lamb muscle tissue. Targhee x Rambouillet wethers (n = 60) were assigned to one of three diets (four pens per treatment with five lambs per pen) in a completely random design. Diets were formulated with supplemental safflower oil at 0 (control), 3, or 6% (as-fed basis) of the diet. Diets containing approximately 80% concentrate and 20% roughage were formulated, on a DM basis, to be isocaloric and isonitrogenous and to meet or exceed NRC requirements for Ca, P, and other nutrients. A subsample of 12 wethers per treatment was selected based on average BW (54 kg) and slaughtered. Carcass data (LM area, fat thickness, and internal fat content) and wholesale cut weight (leg, loin, rack, shoulder, breast, and foreshank), along with fatty acid, tocopherol, and color analysis, were determined on each carcass. The LM and infraspinatus were sampled for fatty acid profile. Increasing safflower oil supplementation from 0 to 3 or 6% increased the proportion of linoleic acid in the diet from 49.93 to 55.32 to 62.38%, respectively, whereas the percentage of oleic acid decreased from 27.94 to 23.80 to 20.73%, respectively. The percentage of oil in the diet did not (P > or = 0.11) alter the growth and carcass characteristics of lambs, nor did it alter the tocopherol content or color stability of meat. Increasing levels of safflower oil in lamb diets decreased (P safflower oil, up to 6% of the diet, resulted in increasing levels of unsaturated fatty acids and CLA in the lean tissue, without adversely affecting growth performance, carcass characteristics, or color stability of lamb.

  19. Determination of the conjugated linoleic acid-containing triacylglycerols in New Zealand bovine milk fat.

    Science.gov (United States)

    Robinson, N P; MacGibbon, A K

    2000-07-01

    Reversed-phase high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 233 nm was used to separate, quantify, and identify the triacylglycerols (TAG) of milk fat that contain conjugated linoleic acid (CLA). The absorbance at 233 nm was substantially due to CLA-TAG (chromatography of some representative TAG devoid of CLA, such as tripalmitin and triolein, showed poor responses at 233 nm, 1/800th that of CLA-TAG). A CLA molar extinction coefficient at 233 nm of 23,360 L mol(-1) cm(-1) and an HPLC UV response factor were obtained from a commercially available cis-9,trans-11-CLA standard. This molar extinction coefficient was only 86% of reported literature values. Summation of all chromatographic peaks absorbing at 233 nm using the corrected response factor gave good agreement with independent determinations of total CLA by gas chromatography and UV spectrophotometry. This agreement allowed quantification of individual CLA-TAG peaks in the HPLC separation of a typical New Zealand bovine milk fat. Three CLA-containing TAG, CLA-dipalmitin, CLA-oleoyl-palmitin and CLA-diolein, were prepared by interesterification of tripalmitin with the respective fatty acid methyl esters and used to assign individual peaks in the reversed-phase chromatography of total milk fat, of which CLA-oleoyl-palmitin was coincident with the largest UV peak. Band fractions from argentation thin-layer chromatography of total milk fat were similarly employed to identify five predominant CLA-TAG groups in total milk fat: CLA-disaturates, CLA-oleoyl-saturates, CLA-vaccenyl-saturates, CLA-vaccenyl-olein, and CLA-diolein.

  20. Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products.

    Science.gov (United States)

    Kramer, John K G; Cruz-Hernandez, Cristina; Deng, Zeyuan; Zhou, Jianqiang; Jahreis, Gerhard; Dugan, Michael E R

    2004-06-01

    The chemistry of conjugated fatty acids, specifically octadecadienoic acids (18:2; commonly referred to as conjugated linoleic acid, or CLA), has provided many challenges to lipid analysts because of their unique physical properties and the many possible positional and geometric isomers. After the acid-labile properties of CLAs during analytic procedures were overcome, it became evident that natural products, specifically dairy fats, contain one dominant (c9,t11-CLA), 3 intermediate (t7,c9-, t9,c11-, and t11,c13-CLA), and up to 20 more minor CLA isomers. The best analytic techniques to date include a combination of gas chromatography that uses 100-m highly polar capillary columns, silver ion-HPLC, and a combination of silver ion-thin-layer chromatography and gas chromatography to analyze the CLA and trans 18:1 isomers, because some of them serve as precursors of CLA in biological systems. These analytic techniques have assisted commercial suppliers to prepare pure CLA isomers and have permitted the evaluation of individual CLA isomers for their nutritional and biological activity in animal and human systems. It is increasingly evident that different CLA isomers have distinctly different physiologic and biochemical properties. These techniques are essential to evaluate dairy fats for their CLA content, to design experimental diets to increase the amount of CLA in dairy fats, and to determine the CLA profile in these CLA-enriched dairy fats. These improved techniques are used to evaluate the CLA profile in pork products from pigs fed different commercial CLA mixtures.

  1. Next Generation Energetic Materials: New Cluster Hydrides and Metastable Alloys of Aluminum in Very Low Oxidation States

    Science.gov (United States)

    2016-10-01

    knowledge of barrier heights . For the reactions of 3O2 with closed- and open-shell Alx − and Gax − clusters, these cal- culations are complicated not only...nanoparticle nucleation on functionalized graphene surfactants from aluminum monochloride solutions. This data shows a strong affinity of AlCl units for... graphene vacancy sites; adsorption of AlCl to the site results in oxidative insertion into the Al–Cl bond and formation of an Al(III) center. Preliminary

  2. Macrophage Interaction with Paracoccidioides brasiliensis Yeast Cells Modulates Fungal Metabolism and Generates a Response to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Juliana Alves Parente-Rocha

    Full Text Available Macrophages are key players during Paracoccidioides brasiliensis infection. However, the relative contribution of the fungal response to counteracting macrophage activity remains poorly understood. In this work, we evaluated the P. brasiliensis proteomic response to macrophage internalization. A total of 308 differentially expressed proteins were detected in P. brasiliensis during infection. The positively regulated proteins included those involved in alternative carbon metabolism, such as enzymes involved in gluconeogenesis, beta-oxidation of fatty acids and amino acids catabolism. The down-regulated proteins during P. brasiliensis internalization in macrophages included those related to glycolysis and protein synthesis. Proteins involved in the oxidative stress response in P. brasiliensis yeast cells were also up-regulated during macrophage infection, including superoxide dismutases (SOD, thioredoxins (THX and cytochrome c peroxidase (CCP. Antisense knockdown mutants evaluated the importance of CCP during macrophage infection. The results suggested that CCP is involved in a complex system of protection against oxidative stress and that gene silencing of this component of the antioxidant system diminished the survival of P. brasiliensis in macrophages and in a murine model of infection.

  3. Effects of Vitamin C on Oxidative Stress in Erythrocytes Following Exposure to Radiofrequency Waves Generated by a BTS Antenna Model

    Directory of Open Access Journals (Sweden)

    Gholam Ali Jelodar

    2014-12-01

    Full Text Available Background: Radiofrequency waves (RFW of electronic devices and wireless communication systems affect biological systems by changing free radicals, increase lipid peroxidation and changes of antioxidant activity thereby leading to oxidative stress. This study was conducted to evaluate the RFW-induced oxidative stress in the erythrocytes and the prophylactic effect of vitamin C on these cells by measuring antioxidant enzymes activity including: glutathione peroxidase (GPx, superoxide dismutase (SOD, catalase (CAT, and malondialdehyde (MDA. Materials and Methods: In this experimental study, 32 adult male Sprague-Dawley rats were randomly divided into 4 experimental groups and treated daily (4 h/day for 45 days as follows: sham, sham+vitamin C (200 mg/kg/day by nasogastric tube, RFW (exposed to 900 MHz RFW and RFW+ vitamin C group (received vitamin C in addition to exposure to RFW. At the end of the experiment blood sample was collected by heart puncture for measurement of antioxidant enzymes activity and MDA level. Results: The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p<0.05. In the treated group vitamin C improved antioxidant enzymes activity and improved MDA level compared to the test group (p<0.05. Conclusion: It can be concluded that RFW causes oxidative stress in erythrocytes, and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  4. Distribution of 14C after oral administration of [1-14C]linoleic acid in rats fed different levels of essential fatty acids

    International Nuclear Information System (INIS)

    Becker, W.

    1984-01-01

    Rats from an inbred Sprague-Dawley strain were fed semisynthetic diets with a low [0.3 energy percent (en %)], normal (3 en %) or high (10 en %) content of essential fatty acids (EFA) for at least three generations. Twenty-nine- to 33-day-old male rats were given a single intragastric dose of [1-14C]linoleic acid in olive oil, and the respiratory CO2, urine and feces were collected for 46 hours (expt 1) or 20 hours (expt 2). The 14C activity in respiratory CO2, feces, urine and the carcass was determined in both experiments. In experiment 2 it was also measured in samples of the brown fat, liver, adrenals, white fat, skeletal muscles and brain. In both experiments the rats fed the low EFA diet retained significantly more 14C activity than the rats fed the normal or high EFA diets. In all groups the concentration of label was highest in the brown fat and the adrenals, but the above differences among the groups with respect to 14C retention were mainly observed in the liver, skeletal muscles and brain

  5. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  6. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  7. Control of the oxidation kinetics of H-terminated (111)Si by using the carrier concentration and the strain: a second-harmonic-generation investigation

    International Nuclear Information System (INIS)

    Gokce, B.; Gundogdu, K.; Aspnes, D. E.

    2012-01-01

    We discuss recent results regarding the effects of strain, carrier type and concentration on the oxidation of H-terminated (111)Si. Second-harmonic-generation data show that this is a two-stage process where the H of the 'up' bonds of the outermost Si layer is replaced by OH, followed by O insertion into the 'back' bonds. These data provide additional detailed information about both stages. In particular, directional control of the in-plane surface chemistry by using the applied uniaxial stress provides new opportunities for interface control.

  8. Control of the oxidation kinetics of H-terminated (111)Si by using the carrier concentration and the strain: a second-harmonic-generation investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gokce, B.; Gundogdu, K. [North Carolina State University, Raleigh, NC (United States); Aspnes, D. E. [Kyung Hee University, Seoul (Korea, Republic of)

    2012-05-15

    We discuss recent results regarding the effects of strain, carrier type and concentration on the oxidation of H-terminated (111)Si. Second-harmonic-generation data show that this is a two-stage process where the H of the 'up' bonds of the outermost Si layer is replaced by OH, followed by O insertion into the 'back' bonds. These data provide additional detailed information about both stages. In particular, directional control of the in-plane surface chemistry by using the applied uniaxial stress provides new opportunities for interface control.

  9. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  10. Nitric Oxide Generated by Tumor-Associated Macrophages Is Responsible for Cancer Resistance to Cisplatin and Correlated With Syntaxin 4 and Acid Sphingomyelinase Inhibition

    Directory of Open Access Journals (Sweden)

    Cristiana Perrotta

    2018-05-01

    Full Text Available Tumor microenvironment is fundamental for cancer progression and chemoresistance. Among stromal cells tumor-associated macrophages (TAMs represent the largest population of infiltrating inflammatory cells in malignant tumors, promoting their growth, invasion, and immune evasion. M2-polarized TAMs are endowed with the nitric oxide (NO-generating enzyme inducible nitric oxide synthase (iNOS. NO has divergent effects on tumors, since it can either stimulate tumor cells growth or promote their death depending on the source of it; likewise the role of iNOS in cancer differs depending on the cell type. The role of NO generated by TAMs has not been investigated. Using different tumor models in vitro and in vivo we found that NO generated by iNOS of M2-polarized TAMs is able to protect tumor cells from apoptosis induced by the chemotherapeutic agent cisplatin (CDDP. Here, we demonstrate that the protective effect of NO depends on the inhibition of acid sphingomyelinase (A-SMase, which is activated by CDDP in a pathway involving the death receptor CD95. Mechanistic insights indicate that NO actions occur via generation of cyclic GMP and activation of protein kinase G (PKG, inducing phosphorylation of syntaxin 4 (synt4, a SNARE protein responsible for A-SMase trafficking and activation. Noteworthy, phosphorylation of synt4 at serine 78 by PKG is responsible for the proteasome-dependent degradation of synt4, which limits the CDDP-induced exposure of A-SMase to the plasma membrane of tumor cells. This inhibits the cytotoxic mechanism of CDDP reducing A-SMase-triggered apoptosis. This is the first demonstration that endogenous NO system is a key mechanism through which TAMs protect tumor cells from chemotherapeutic drug-induced apoptosis. The identification of the pathway responsible for A-SMase activity downregulation in tumors leading to chemoresistance warrants further investigations as a means to identify new anti-cancer molecules capable of specifically

  11. Vitamin C protects rat cerebellum and encephalon from oxidative stress following exposure to radiofrequency wave generated by a BTS antenna model.

    Science.gov (United States)

    Akbari, Abolfazl; Jelodar, Gholamali; Nazifi, Saeed

    2014-06-01

    Radio frequency wave (RFW) generated by base transceiver station has been reported to produce deleterious effects on the central nervous system function, possibly through oxidative stress. This study was conducted to evaluate the effect of RFW-induced oxidative stress in the cerebellum and encephalon and the prophylactic effect of vitamin C on theses tissues by measuring the antioxidant enzymes activity, including: glutathione peroxidase, superoxide dismutase, catalase, and malondialdehyde (MDA). Thirty-two adult male Sprague-Dawley rats were randomly divided into four equal groups. The control group; the control-vitamin C group received L-ascorbic acid (200 mg/kg of body weight/day by gavage) for 45 days. The RFW group was exposed to RFW and the RFW+ vitamin C group was exposed to RFW and received vitamin C. At the end of the experiment, all groups were killed and encephalon and cerebellum of all rats were removed and stored at -70 °C for measurement of antioxidant enzymes activity and MDA. The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p < 0.05). The protective role of vitamin C in the treated group improved antioxidant enzymes activity and reduced MDA compared with the test group (p < 0.05). It can be concluded that RFW causes oxidative stress in the brain and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  12. Macrophage activation by a vanadyl-aspirin complex is dependent on L-type calcium channel and the generation of nitric oxide

    International Nuclear Information System (INIS)

    Molinuevo, Maria Silvina; Etcheverry, Susana Beatriz; Cortizo, Ana Maria

    2005-01-01

    Bone homeostasis is the result of a tight balance between bone resorption and bone formation where macrophage activation is believed to contribute to bone resorption. We have previously shown that a vanadyl(IV)-aspirin complex (VOAspi) regulates cell proliferation and differentiation of osteoblasts in culture. In this study, we assessed VOAspi and VO effects and their possible mechanism of action on a mouse macrophage cell line RAW 264.7. Both vanadium compounds inhibited cell proliferation in a dose-dependent manner. Nifedipine completely reversed the VOAspi-induced macrophage cytotoxicity, while it could not block the effect of VO. VOAspi also stimulated nitric oxide (NO) production, the oxidation of dihydrorhodamine 123 (DHR-123) and enhanced the expression of both constitutive and inducible isoforms of nitric oxide syntases (NOS). All these effects were abolished by nifedipine. Althogether our finding give evidence that VOAspi-induced macrophage cytotoxicity is dependent on L-type calcium channel and the generation of NO though the induction of eNOS and iNOS. Contrary, the parent compound VO exerted a cytotoxic effect by mechanisms independent of a calcium entry and the NO/NOS activation

  13. The herbicide 2,4-dichlorophenoxyacetic acid induces the generation of free-radicals and associated oxidative stress responses in yeast

    International Nuclear Information System (INIS)

    Teixeira, Miguel C.; Telo, Joao P.; Duarte, Nuno F.; Sa-Correia, Isabel

    2004-01-01

    The pro-oxidant action of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated in this study using Saccharomyces cerevisiae as a eukaryotic experimental model. Evidence is presented for the generation of hydroxyl-radicals, in yeast cells suddenly exposed to 2,4-D, detected by in vivo electron paramagnetic resonance (EPR) spectroscopy using 5,5'-dimethyl-1-pyrroline N-oxide and 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide as spin-traps. The intensity of the EPR spectra was dependent on the concentration of herbicide tested and was consistently higher in a mutant (Δsod1) devoid of the cytosolic CuZn-superoxide dismutase. A time-course-dependent variation of the level of free-radical adducts was registered upon sudden exposure of an yeast cell population to concentrations of 2,4-D that lead to an initial period of viability loss, before resumption of inhibited growth by the viable adapted population. The variation pattern of the level of hydroxyl-radical adducts correlated with the one determined for the activity of Sod1p, cytosolic catalase Ctt1p, and the dithiol glutaredoxins Grx1p and Grx2p

  14. The Prophylactic Effect of Vitamin C on Oxidative Stress Indexes Following Exposure to Radio Frequency Wave Generated by a BTS Antenna Model in Rat Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Gholamali Jelodar

    2014-02-01

    Full Text Available Background: Radio frequency wave (RFW generated by base transceiver station (BTS has been reported to make deleterious effects on liver and kidney, possibly through oxidative stress. This study was conducted to evaluate the effect of radiofrequency wave (RFW-induced oxidative stress in the liver and kidney and the prophylactic effect of vitamin C on this organs by measuring the antioxidant enzymes activity including: glutathione peroxidase (GPx, superoxide dismutase (SOD and catalase (CAT, and malondialdehyde (MDA. Materials and Methods: In this experimental study, thirty-two adult male Sprague-Dawley rats were randomly divided into four experimental groups and treated daily for 45 days as follows: control, vitamin C (L-ascorbic acid 200 mg/kg of body weight/day by gavage, test (exposed to 900MHz RFW and the treated group (received vitamin C in addition to exposure to RFW. At the end of the experiment all animals were sacrificed and their liver and kidney were removed and were used for measurement of antioxidant enzymes and MDA activity. Results: The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p<0.05. In the treated group vitamin C improved antioxidant enzymes activity and reduced MDA compared to the test group (p<0.05. Conclusion: It can be concluded that RFW causes oxidative stress in liver and kidney, and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  15. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  16. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxia-reoxygenated newborn piglets.

    Directory of Open Access Journals (Sweden)

    Richdeep S Gill

    Full Text Available Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H(2O(2 production and markers of oxidative stress. Piglets (1-4 d, 1.4-2.5 kg were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation (n = 8/group. At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls or cyclosporine (2.5 or 10 mg/kg i.v. bolus in a blinded-randomized fashion. An additional sham-operated group (n = 4 underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe, cerebral cortical H(2O(2 production (electrochemical sensor, cerebral tissue glutathione (ELISA and cytosolic cytochrome-c (western blot levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40-48% of baseline, hypotension (mean arterial pressure 27-31 mmHg and acidosis (pH 7.04 at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg, significantly attenuated the increase in cortical H(2O(2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H(2O(2 production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation.

  17. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  18. Influence of *OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangxing; Namin, Lida M.; Aaron Deskins, N.; Teng, Xiaowei

    2017-09-01

    Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of electricity via the direct conversion of ethanol into CO2, showing higher thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. However, implementation of DEFCs is hampered by the low CO2 selectivity during the ethanol oxidation reaction (EOR). Comprehensive understanding of the electro-kinetics and reaction pathways of CO2 generation via CC bond-breaking is not only a fundamental question for electro-catalysis, but also a key technological challenge since practical implementation of DEFC technology is contingent on its ability to selectively oxidize ethanol into CO2 to achieve exceptional energy density through 12-electron transfer reaction. Here, we present comprehensive in situ potentiodynamics studies of CO2 generation during the EOR on Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts using a house-made electrochemical cell equipped with a CO2 microelectrode. Highly sensitive CO2 measurements enable the real time detection of the partial pressure of CO2 during linear sweep voltammetry measurements, through which electro-kinetics details of CO2 generation can be obtained. In situ CO2 measurements provide the mechanistic understanding of potentiodynamics of the EOR, particularly the influence of *OH adsorbates on CO2 generation rate and selectivity. Density functional theory (DFT) simulations of Pt, Pt/SnO2, and Pt/Rh/SnO2 surfaces clarify reaction details over these catalysts. Our results show that at low potentials, inadequate *OH adsorbates impair the removal of reaction intermediates, and thus Pt/Rh/SnO2 exhibited the best performance toward CO2 generation, while at high potentials, Rh sites were overwhelmingly occupied (poisoned) by *OH adsorbates, and thus Pt/SnO2

  19. Development and Improvement of Devices for Hydrogen Generation and Oxidation in Water Detritiation Facility Based on CECE Technology

    International Nuclear Information System (INIS)

    Rozenkevich, M.; Andreev, B.; Magomedbekov, E.; Park, Yu.; Sakharovsky, Yu.; Perevezentsev, A.

    2005-01-01

    Water detritiation facility based on CECE (Combined Electrolysis and Catalytic Exchange) technology needs an electrolyser for water conversion to hydrogen. Use of a conventional alkali electrolyser requires a very deep purification of hydrogen stream from alkali prior to injection to LPCE (Liquid Phase Catalytic Exchange) column. In some applications conversion of detritiated hydrogen back into water is required. This is usually performed via hydrogen catalytic oxidation in a recombiner. This paper presents results of study to improve hydrogen and oxygen purification for alkali electrolysers and develop a hydrogen recombiner based on use of hydrophobic catalyst

  20. Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal

    Directory of Open Access Journals (Sweden)

    K. Takeya

    2017-01-01

    Full Text Available When combined with a nonlinear waveguide crystal, Cherenkov phase matching allows for highly effective generation of high power and broadband terahertz (THz waves. Using a ridged Lithium Niobate (LiNbO3 waveguide coupled with a specially designed silicon lens, we successfully generated THz waves with intensity of approximately three orders of magnitude stronger than those from conventional photoconductive antenna. The broadband spectrum was from 0.1 THz to 7 THz with a maximum dynamic range of 80 dB. The temporal shape of time domain pulse is a regular single cycle which could be used for high depth resolution time of flight tomography. The generated THz wave can also be easily monitored by compact room-temperature THz camera, enabling us to determine the spatial characteristics of the THz propagation.

  1. Determination of arsenic species in seafood samples from the Aegean Sea by liquid chromatography-(photo-oxidation)-hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, Richard [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Soeroes, Csilla [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Ipolyi, Ildiko [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Fodor, Peter [Department of Applied Chemistry, Corvinus University, Villanyi ut 29-35, 1118 Budapest (Hungary); Thomaidis, Nikolaos S. [Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistiomopolis Zografou, 15776 Athens (Greece)]. E-mail: ntho@chem.uoa.gr

    2005-08-15

    In this study arsenic compounds were determined in mussels (Mytulis galloprovincialis), anchovies (Engraulis encrasicholus), sea-breams (Sparus aurata), sea bass (Dicentrarchus labrax) and sardines (Sardina pilchardus) collected from Aegean Sea using liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry [LC-(PO)-HG-AFS] system. Twelve arsenicals were separated and determined on the basis of their difference in two properties: (i) the pK {sub a} values and (ii) hydride generation capacity. The separation was carried out both with an anion- and a cation-exchange column, with and without photo-oxidation. In all the samples arsenobetaine, AB was detected as the major compound (concentrations ranging between 2.7 and 23.1 {mu}g g{sup -1} dry weight), with trace amounts of arsenite, As(III), dimethylarsinic acid, DMA and arsenocholine, AC, also present. Arsenosugars were detected only in the mussel samples (in concentrations of 0.9-3.6 {mu}g g{sup -1} dry weight), along with the presence of an unknown compound, which, based on its retention time on the anion-exchange column Hamilton PRP-X100 and a recent communication [E. Schmeisser, R. Raml, K.A. Francesconi, D. Kuehnelt, A. Lindberg, Cs. Soeroes, W. Goessler, Chem. Commun. 16 (2004) 1824], is supposed to be a thio-arsenic analogue.

  2. An overview of the oxidation performance of silicide diffusion coatings for vanadium-based alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Chaia, N.; Mathieu, S.; Cozzika, T.; Rouillard, F.; Desgranges, C.; Courouau, J.L.; Petitjean, C.; David, N.; Vilasi, M.

    2013-01-01

    Highlights: ► Diffusion barrier to oxygen were manufactured by pack cementation diffusion process. ► The use of CrSi 2 + Si and TiSi 2 + Si as masteralloys increased the quality of the coating. ► Thermodynamic stability (coatings/vanadium) was obtained at the operating temperature. ► MSi 2 coatings developed low growing oxide scale in air and at low oxygen pressure. ► Coatings presented high compatibility with liquid sodium ( 2 ) for 360 h. - Abstract: This study focuses on the development of new protective coatings for the vanadium-based alloy V-4Cr-4Ti. Halide-activated pack-cementation (HAPC) technique was used to develop V x Si y multilayered diffusive silicide coatings. The outer layers (coatings) were formed of VSi 2 doped with 27 at.% Cr or TiSi 2 . These compounds exhibited a very low oxidation rate at 650 °C, both in air and at a low oxygen pressure (He, 5 ppm O 2 ). The coatings formed mainly of MSi 2 were found to be insensitive to pesting and largely unreactive to liquid sodium ( 2 ) during a 360 h compatibility test at 550 °C.

  3. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  4. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with non-alcoholic steatohepatitis.

    Science.gov (United States)

    Loffredo, L; Del Ben, M; Perri, L; Carnevale, R; Nocella, C; Catasca, E; Baratta, F; Ceci, F; Polimeni, L; Gozzo, P; Violi, F; Angelico, F

    2016-08-01

    Activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is considered a pathogenetic mechanism determining fibrosis and disease progression in non-alcoholic steatohepatitis (NASH). Polyphenols exert antioxidant action and inhibit NADPH oxidase in humans. To analyse the effect of cocoa polyphenols on NADPH oxidase isoform 2 (NOX2) activation, oxidative stress and hepatocyte apoptosis in a population affected by NASH. In a cross-sectional study comparing 19 NASH and 19 controls, oxidative stress, as assessed by serum NOX2 activity and F2-isoprostanes, and hepatocyte apoptosis, as assessed by serum cytokeratin-18 (CK-18) levels, were measured. Furthermore, the 19 NASH patients were randomly allocated in a crossover design to 40 g/day of dark chocolate (>85% cocoa) or 40 g/day of milk chocolate (chocolate intake. Compared to controls, NASH patients had higher sNOX2-dp, serum isoprostanes and CK-18 levels. A significant difference for treatments was found in subjects with respect to sNOX2-dp, serum isoprostanes and serum CK-18. The pairwise comparisons showed that, compared to baseline, after 14 days of dark chocolate intake, a significant reduction in sNOX2-dp serum isoprostanes and CK-18 M30 was found. No change was observed after milk chocolate ingestion. A simple linear regression analysis showed that ∆ of sNOX2-dp was associated with ∆ of serum isoprostanes. Cocoa polyphenols exert an antioxidant activity via NOX2 down-regulation in NASH patients. © 2016 John Wiley & Sons Ltd.

  5. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Pan

    2009-06-01

    Full Text Available Photodegradation of secondary organic aerosol (SOA prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm and D-limonene (0.02–3 ppm concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  6. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease.

    Science.gov (United States)

    Cruces-Sande, Antón; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón

    2017-06-01

    Copper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals. In this study, we examined the effects induced by copper on 6-OHDA autoxidation. Our data show that both Cu + and Cu 2+ caused an increase in • OH production by 6-OHDA autoxidation, which was accompanied by an increase in the rate of both p-quinone formation and H 2 O 2 accumulation. The presence of ascorbate greatly enhanced this process by establishing a redox cycle which regenerates 6-OHDA from its p-quinone. However, the presence of glutathione did not change significantly the copper-induced effects. We observed that copper is able to potentiate the ability of 6-OHDA to cause both lipid peroxidation and protein oxidation, with the latter including a reduction in free-thiol content and an increase in carbonyl content. Ascorbate also increases the lipid peroxidation induced by the action of copper and 6-OHDA. Glutathione protects against the copper-induced lipid peroxidation, but does not reduce its potential to oxidize free thiols. These results clearly demonstrate the potential of copper to increase the capacity of 6-OHDA to generate oxidative stress and the ability of ascorbate to enhance this potential, which may contribute to the destruction of dopaminergic neurons. © 2017 International Society for Neurochemistry.

  7. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells.

    Science.gov (United States)

    Choi, Hye Yeon; Lee, Tae-Jin; Yang, Gwang-Mo; Oh, Jaesur; Won, Jihye; Han, Jihae; Jeong, Gun-Jae; Kim, Jongpil; Kim, Jin-Hoi; Kim, Byung-Soo; Cho, Ssang-Goo

    2016-08-10

    Clinical applications of induced pluripotent stem cells (iPSCs) require development of technologies for the production of "footprint-free" (gene integration-free) iPSCs, which avoid the potential risk of insertional mutagenesis in humans. Previously, several studies have shown that mRNA transfer can generate "footprint-free" iPSCs, but these studies did not use a delivery vehicle and thus repetitive daily transfection was required because of mRNA degradation. Here, we report an mRNA delivery system employing graphene oxide (GO)-polyethylenimine (PEI) complexes for the efficient generation of "footprint-free" iPSCs. GO-PEI complexes were found to be very effective for loading mRNA of reprogramming transcription factors and protection from mRNA degradation by RNase. Dynamic suspension cultures of GO-PEI/RNA complexes-treated cells dramatically increased the reprogramming efficiency and successfully generated rat and human iPSCs from adult adipose tissue-derived fibroblasts without repetitive daily transfection. The iPSCs showed all the hallmarks of pluripotent stem cells including expression of pluripotency genes, epigenetic reprogramming, and differentiation into the three germ layers. These results demonstrate that mRNA delivery using GO-PEI-RNA complexes can efficiently generate "footprint-free" iPSCs, which may advance the translation of iPSC technology into the clinical settings. Copyright © 2016. Published by Elsevier B.V.

  8. Improvements in the shelf life of commercial corn dry masa flour (CMF) by reducing lipid oxidation.

    Science.gov (United States)

    Márquez-Castillo, A; Vidal-Quintanar, R L

    2011-03-01

    To improve the shelf life of commercial nixtamalized corn dry masa flour (CMF), the modified atmosphere packaging (MAP) was used. Pouches (20 × 20 cm) of ethyl vinyl alcohol (EVOH) with 180 g of CMF were stored at 55 °C, and a(w) of 0.45; under Light and Dark conditions, antioxidants (0.02% TBHQ), Vacuum, and N(2) and CO(2), and used as treatments. Thereafter, changes in their linoleic acid (LA) concentration by GC, peroxide (PV), and anisidine values (p-A), which were monitored for 180 d. EVOH showed a significantly lower consumption of LA by autoxidation (11.7% ± 0.2% in 117 d) than polyethylene film (70.5% ± 0.3% in 113 d) under the same storage temperature. The elimination of oxygen by vacuum in each pouch allowed a low consumption (16.4% ± 0.1%) of LA. PV (14.5 ± 0.09 mEq/kg of fat), and p-A (63 ± 0.16 mmol/kg) were low, and generated over 121 d of storage. CMF stored under MAP had 100% protection against oxidation of LA. A combination of Vacuum and EVOH packaging extended the shelf life of CMF to 108 d with only 10% of LA loss. For retail stores, the EVOH packaging will reduce lipid oxidation of CMF and safety related to off odors and flavors from the oxidation of tortillas will increase dramatically.

  9. Co-treatment with conjugated linoleic acid and nitrite protects against myocardial infarction

    Directory of Open Access Journals (Sweden)

    Natia Qipshidze-Kelm

    2014-01-01

    Full Text Available According to the CDC, the most common type of heart disease is coronary artery disease, which commonly leads to myocardial infarction (MI. Therapeutic approaches to lessen the resulting cardiovascular injury associated with MI are limited. Recently, MicroRNAs (miRNAs have been shown to act as negative regulators of gene expression by inhibiting mRNA translation and/or stimulating mRNA degradation. A single miRNA can modulate physiological or disease phenotypes by regulating whole functional systems. Importantly, miRNAs can regulate cardiac function, thereby modulating heart muscle contraction, heart growth and morphogenesis. MicroRNA-499 (miRNA-499 is a cardiac-specific miRNA that when elevated causes cardiomyocyte hypertrophy, in turn preventing cardiac dysfunction during MI. Previous studies revealed that combination treatment with conjugated linoleic acid (cLA and nitrite preserved cardiovascular function in mice. Therefore, it was hypothesized that cLA and nitrite may regulate miRNA-499, thus providing cardiac protection during MI. To test this hypothesis, 12-week old mice were treated with cLA (10 mg/kg/d-via osmotic mini-pump or cLA and nitrite (50 ppm-drinking water 3 days prior to MI (ligation of the left anterior descending artery. Echocardiography and pressure–volume (PV-loop analysis revealed that cLA and nitrite-treated MI mice had improved heart function (10 days following MI compared to untreated MI mice. Treatment with cLA and nitrite significantly induced levels of miRNA-499 compared to untreated MI mice. In addition, treatment with cLA and nitrite abolished MI-induced protein expression of p53 and dynamin-related protein-1 (DRP-1. Moreover, the antioxidant enzyme expression of heme oxygenase-1 (HO-1 was elevated in MI mice treated with cLA and nitrite compared to untreated MI mice. Confocal imaging on heart tissue confirmed expression the levels of HO-1 and p53. Taken together, these results suggest that therapeutic

  10. Milk phospholipids: Organic milk and milk rich in conjugated linoleic acid compared with conventional milk.

    Science.gov (United States)

    Ferreiro, T; Gayoso, L; Rodríguez-Otero, J L

    2015-01-01

    The objective of this study was to compare the phospholipid content of conventional milk with that of organic milk and milk rich in conjugated linoleic acid (CLA). The membrane enclosing the fat globules of milk is composed, in part, of phospholipids, which have properties of interest for the development of so-called functional foods and technologically novel ingredients. They include phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and the sphingophospholipid sphingomyelin (SM). Milk from organically managed cows contains higher levels of vitamins, antioxidants, and unsaturated fatty acids than conventionally produced milk, but we know of no study with analogous comparisons of major phospholipid contents. In addition, the use of polyunsaturated-lipid-rich feed supplement (extruded linseed) has been reported to increase the phospholipid content of milk. Because supplementation with linseed and increased unsaturated fatty acid content are the main dietary modifications used for production of CLA-rich milk, we investigated whether these modifications would lead to this milk having higher phospholipid content. We used HPLC with evaporative light scattering detection to determine PE, PI, PC, PS, and SM contents in 16 samples of organic milk and 8 samples of CLA-rich milk, in each case together with matching reference samples of conventionally produced milk taken on the same days and in the same geographical areas as the organic and CLA-rich samples. Compared with conventional milk and milk fat, organic milk and milk fat had significantly higher levels of all the phospholipids studied. This is attributable to the differences between the 2 systems of milk production, among which the most influential are probably differences in diet and physical exercise. The CLA-rich milk fat had significantly higher levels of PI, PS, and PC than conventional milk fat, which is also attributed to dietary differences: rations for

  11. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    Directory of Open Access Journals (Sweden)

    Liu Suling

    2008-07-01

    Full Text Available Abstract Background Conjugated linoleic acid (CLA, a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. Methods The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. Results The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2 stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA

  12. The effect of conjugated linoleic acid supplementation on the nutritional status of COPD patients

    Directory of Open Access Journals (Sweden)

    Ghobadi H

    2016-10-01

    Full Text Available Hassan Ghobadi,1 Somaieh Matin,2 Ali Nemati,3 Abbas Naghizadeh-baghi4 1Pulmonary Division, 2Internal Medicine Department, 3Biochemistry and Nutrition Department, 4Basic Sciences Department, Ardabil University of Medical Sciences, Ardabil, Iran Background: COPD patients are susceptible to anorexia, reduction of caloric intake, weight loss, and malnutrition. One of the possible mechanisms is the increase of inflammatory markers such as interleukin 1β (IL1β, is highly correlated with anorexia. Considering the anti-inflammatory role of conjugated linoleic acid (CLA, this study aimed to investigate the effect of CLA supplementation on the nutritional status of COPD patients.Patients and methods: In a double-blind clinical trial, 93 COPD patients who volunteered to participate in the study and who filled out a written consent form, were randomly assigned to control or supplementation groups. The patients in the supplementation group received 3.2 g of CLA on a daily basis for 6 weeks, while those in the control group received placebo on a daily basis for 6 weeks. For IL1β assessment, the patients’ anthropometric indices and appetite score were checked and their blood samples were collected both before and after the treatment. Moreover, in order to investigate the changes in the caloric intake trend during the study, their dietary intake levels were assessed using 24-hour dietary recall, 3 days a week at the onset, in the 4th week, and at the end of the study. Eventually, 90 patients completed the study.Results: The results demonstrated a significant increase in appetite score (P=0.001, average caloric intake (P=0.01, and macronutrient intake (P<0.05, while a significant decrease was observed in the serum level of IL1β among the patients of the supplementation group (P=0.008. Meanwhile, although the supplementation group’s body mass index was also higher on completion, compared to their own initial state as well as to that in the control

  13. Evaluation of conjugated linoleic acid and dietary antibiotics as growth promotants in weanling pigs.

    Science.gov (United States)

    Weber, T E; Schinckel, A P; Houseknecht, K L; Richert, B T

    2001-10-01

    An experiment was conducted to determine the efficacy of dietary conjugated linoleic acid (CLA) as a growth promotant in weanling swine. Weanling pigs (n = 192; 7.6 kg and 29 d of age) were randomly assigned to four treatments that were arranged as a 2 x 2 factorial. Concentrations of dietary CLA (0 or 0.6%) and antibiotics (+/-) constituted the main effect variables. Dietary CLA treatments consisted of a 1% addition of an oil containing 60% CLA isomers or 1% soybean oil, and dietary antibiotic treatments were antibiotics or no antibiotics. The experimental diets were fed for 9 wk in four phases (1, wk 1; 2, wk 2 and 3; 3, wk 4 through 6; and 4, wk 7 through 9), after which all pigs were fed identical medicated diets for the duration of the finishing phase. Live weights were recorded at wk 17 postweaning and at marketing to determine any residual effects of dietary treatments on finisher ADG and days to market. Medicated diets fed during phases 1 and 2 contained 55 mg carbadox/kg; during phase 3 contained 299 mg tilmicosin/kg; and during phase 4 contained 110 mg tylosin and 110 mg sulfamethazine/kg. Pigs fed medicated diets had higher overall ADG than pigs fed unmedicated diets for wk 0 through 9 (P pigs fed medicated diets than for pigs fed unmedicated diets during phase 1 (P residual effects of nursery CLA or antibiotics on finisher ADG and days to market. Blood samples collected from a subset of pigs (n = 72) at the completion of phases 2, 3, and 4 were assayed for serum IGF-I and antibody concentrations to porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae. There was a tendency for pigs fed medicated diets to have greater IGF-I concentrations than pigs fed unmedicated diets at the completion of phase 4 (P Pigs fed CLA had greater antibody titers (P pigs fed diets without CLA. These results indicate that feeding 0.6% dietary CLA did not enhance growth performance in weanling swine and that the use of dietary antibiotics can

  14. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    International Nuclear Information System (INIS)

    Wang, Li-Shu; Huang, Yi-Wen; Liu, Suling; Yan, Pearlly; Lin, Young C

    2008-01-01

    Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E 2 ) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. These data, therefore, demonstrate that

  15. Detection of biologically active isomers of conjugated linoleic acid in kaymak

    Directory of Open Access Journals (Sweden)

    Ökten, Sevtap

    2005-12-01

    Full Text Available Numerous physiological effects are attributed to conjugated linoleic acids (CLA. Biologically active isomers of CLA ( cis -9, trans -11 (C18:2 and trans- 10, cis- 12 (C18:2 have been reported to have anticarcinogenic, antioxidative and antiatherosclerotic properties. Relatively rich sources of CLA include milk fat-containing foods such as kaymak. Kaymak is a kind of concentrated cream which is traditionally manufactured from buffalo or cow's milk mainly in Turkey . The objective of this study was to determine CLA concentrations during kaymak production. Kaymak was manufactured from cow's milk which was enriched with unfermented cream. Biologically active isomers of CLA in raw milk, cream and kaymak were analyzed using gas chromatography. The method was quick, repeatable and sensitive for the CLA determination of samples. Significant differences were found among the concentrations of both isomer and total CLA during the production process (pNumerosos efectos fisiológicos se atribuyen a los ácidos linoleico conjugados (CLA. Así los isómeros biológicamente activos ( cis -9, trans -11 (C18:2 y trans- 10, cis del ácido linoleico han sido descritos con propiedades anticarcinogénicas, antioxidantes y antiarterioscleróticas. Fuentes relativamente ricas de CLA incluyen alimentos con grasas lácteas tales como el kaymak. El kaymak es una crema concentrada elaborada de leche de búfalo o vaca principalmente en Turquía. El objetivo de este estudio fue la determinación de la concentración de CLA durante la producción de kaymak. El kaymak objeto de estudio fue elaborado a partir de leche de vaca que fue enriquecida con crema no fermentada. Los isómeros biológicamente activos del CLA fueron analizados por cromatografía gaseosa en leche cruda, crema y kaymak. El método empleado fue rápido, reproducible y sensible. Se encontraron diferencias significativas en las concentraciones de ambos isómeros y de CLA total durante el proceso de producci

  16. Reduced ex Vivo Interleukin-6 Production by Dietary Fish Oil Is Not Modified by Linoleic Acid Intake in Healthy Men

    DEFF Research Database (Denmark)

    Damsgaard, C. T.; Lauritzen, L.; Calder, P. C.

    2009-01-01

    production from cultures of whole blood, peripheral blood mononuclear cells (PBMC), and monocytes in healthy men. The study was a double-blinded, controlled, 2 X 2 factorial 8-wk intervention. Sixty-four healthy men were randomized to 5 mL/d FO or olive oil (00) provided in capsules and to spreads and oils......Fish oil (FO) is considered antiinflammatory, but evidence regarding its effect on human cytokine production is conflicting. High linoleic acid (LA) intake may impair any effects of FO. The aim of this study was to investigate how FO combined with high or low LA intake affected ex vivo cytokine...

  17. Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate

    OpenAIRE

    Hodson, Leanne; McQuaid, Siobh?n E.; Karpe, Fredrik; Frayn, Keith N.; Fielding, Barbara A.

    2008-01-01

    There has been much interest in the health effects of dietary fat, but few studies have comprehensively compared the acute metabolic fate of specific fatty acids in vivo. We hypothesized that different classes of fatty acids would be variably partitioned in metabolic pathways and that this would become evident over 24 h. We traced the fate of fatty acids using equal amounts of [U-13C]linoleate, [U-13C]oleate, and [U-13C]palmitate given in a test breakfast meal in 12 healthy subjects. There wa...

  18. Sum-frequency generation spectroscopy on metals, oxides, and oxide-supported metal particles; Summenfrequenzerzeugungsspektroskopie an Metallen, Oxiden und oxidgetraegerten Metallpartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Aumer, Andreas

    2010-06-21

    This thesis focuses on 4 different model systems of surface science. The experimental techniques used for the measurements include sum frequency generation (SFG), thermal desorption spectroscopy (TDS), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), infrared adsorption spectrosocopy (IRAS) and scanning tunneling microscopy (STM). By using SFG, measurements could be performed up to a pressure of 50 mbar. The systems under investigation were: CO on Pt(111), water on Ag(001) and on MgO/Ag(001), CO on Au/MgO/Ag(001), and CO on Au-Pd/MgO/Ag(001). The system of CO on Pt(111) exhibits a two peak-pattern under certain pressure and temperature conditions which has not been studied so far. Various experiments helped to elucidate the origin of this distinct behaviour. The measurements of water on Ag(001) and MgO/Ag(001) show that on MgO, water first adsorbs as a monolayer with a following multilayer, whereas on Ag(001) it adsorbs as a multilayer from the beginning. The monolayer can be studied below the multilayer and some resonances can be identified. For the case of Au/MgO/Ag(001), STM shows that the growth mode of Au depends on the thickness of the supporting MgO film, which can not be seen with spectroscopic methods. For mixed Au-Pd particles on MgO/Ag(001) a clear difference in the adsorption behaviour between pure metal particles and mixed particles can be seen, which is explained by an interaction between these metals. Annealing the mixed particles to 600 K leads to a segregation of the metals, where the Au atoms diffuse to the shell and the Pd atoms make up the core. The results of all these measurements are discussed in the light of recent publications. (orig.)

  19. APPLICATION OF MEMBRANES FROM POLYACRYLONITRITE DOPPED WITH GRAPHEN OXIDE IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Tomasz Turek

    2017-08-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped with graphene oxide (GO to remove contaminations of galvanic wastewater. Membranes were obtained using phase inversion method from PAN and GO solution in N,N-dimethylformamide (DMF. Wastewater was pre-treated with the flocculant Magnafloc®336. Next, ultrafiltration of the treated wastewater was carried out in the ultrafiltration cell AMICON on the previously prepared PAN/GO composite membranes. Physico-chemical properties and composition of solutions before and after integrated purification process were analyzed by UV-Vis spectrophotometer and atomic absorption spectrometry (AAS. As a result of flocculation from wastewater there have been removed phosphates (97%, chlorides (5,2%, sulfates (5,9% and iron (82%. In addition, as a result of ultrafiltration was complete removal of phosphate anions (100% and iron (~91-92%, zinc (68÷84%, lead (65-98% and cadmium (~67%.

  20. Production of 7,8-Dihydroxy Unsaturated Fatty Acids from Plant Oils by Whole Recombinant Cells Expressing 7,8-Linoleate Diol Synthase from Glomerella cingulata.

    Science.gov (United States)

    Seo, Min-Ju; Kang, Woo-Ri; Shin, Kyung-Chul; Oh, Deok-Kun

    2016-11-16

    The reaction conditions for the production of 7S,8S-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by recombinant Escherichia coli expressing 7,8-linoleate diol synthase from Glomerella cingulata were optimized using response surface methodology. The optimal reaction conditions were pH 7.0, 18.6 °C, 10.8% (v/v) dimethyl sulfoxide, 44.9 g/L cells, and 14.3 g/L linoleic acid, with agitation at 256 rpm. Under these conditions, recombinant cells produced 7,8-dihydroxy unsaturated fatty acids in the range of 7.0-9.8 g/L from 14.3 g/L linoleic acid, 14.3 g/L oleic acid, and plant oil hydrolysates such as waste oil and olive oil containing 14.3 g/L linoleic acid or oleic acid. To the best of the authors' knowledge, this is the first report on the biotechnological production of 7,8-dihydroxy unsaturated fatty acids.

  1. Oxidation state specific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer

    Energy Technology Data Exchange (ETDEWEB)

    Matousek, Tomas [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 14220 Prague (Czech Republic)], E-mail: matousek@biomed.cas.cz; Hernandez-Zavala, Araceli [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7310 (United States); Svoboda, Milan; Langrova, Lenka [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 14220 Prague (Czech Republic); Charles University, Faculty of Science, Albertov 8, 12840 Prague 2 (Czech Republic); Adair, Blakely M. [Pharmacokinetics Branch, Experimental Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Drobna, Zuzana [Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Thomas, David J. [Pharmacokinetics Branch, Experimental Toxicology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Styblo, Miroslav [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7310 (United States); Department of Nutrition, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 14220 Prague (Czech Republic)

    2008-03-15

    An automated system for hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer is described. Arsines are preconcentrated and separated in a Chromosorb filled U-tube. An automated cryotrapping unit, employing nitrogen gas formed upon heating in the detection phase for the displacement of the cooling liquid nitrogen, has been developed. The conditions for separation of arsines in a Chromosorb filled U-tube have been optimized. A complete separation of signals from arsine, methylarsine, dimethylarsine, and trimethylarsine has been achieved within a 60 s reading window. The limits of detection for methylated arsenicals tested were 4 ng l{sup -1}. Selective hydride generation is applied for the oxidation state specific speciation analysis of inorganic and methylated arsenicals. The arsines are generated either exclusively from trivalent or from both tri- and pentavalent inorganic and methylated arsenicals depending on the presence of L-cysteine as a prereductant and/or reaction modifier. A TRIS buffer reaction medium is proposed to overcome narrow optimum concentration range observed for the L-cysteine modified reaction in HCl medium. The system provides uniform peak area sensitivity for all As species. Consequently, the calibration with a single form of As is possible. This method permits a high-throughput speciation analysis of metabolites of inorganic arsenic in relatively complex biological matrices such as cell culture systems without sample pretreatment, thus preserving the distribution of tri- and pentavalent species.

  2. Studies of gel metal-oxide composite samples as filling materials for W-188/Re-188 generator column

    Czech Academy of Sciences Publication Activity Database

    Iller, E.; Polkowska-Motrenko, H.; Lada, W.; Wawszczak, D.; Sypula, M.; Doner, K.; Konior, M.; Milczarek, J.; Zoladek, J.; Ráliš, Jan

    2009-01-01

    Roč. 281, č. 1 (2009), s. 83-86 ISSN 0236-5731. [9th International Conference on Nuclear Analytical Methods in the Life Sciences. Lisbon, 07.09.2008-12.09.2008] Institutional research plan: CEZ:AV0Z10480505 Keywords : W-188/Re-188 generator * W-Zr gels * W-Zr composites * Sol-gel process Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.631, year: 2009

  3. Nanostructured metal oxides: promise opportunity and challenge to develop clinically useful 99Mo/99mTc generators using (n, gamma)99Mo

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2014-01-01

    The role of 99m Tc diagnostic nuclear medicine needs hardly to be reiterated. Today, it is the most widely used radionuclide for single photon emission computed tomography (SPECT) imaging procedures. The current strategy of availing 99m Tc is ensured from column chromatographic 99 Mo/ 99m Tc generators using a bed of acidic alumina. While the column chromatographic 99 Mo/ 99m Tc generator constitute a successful exemplar of availing 99m Tc, the limited capacity of alumina (2-20 mg Mo per g of alumina) for taking up molybdate ions necessitates the use of 99 Mo of the highest specific activity available, as can be found in fission produced 99 Mo (F 99 Mo). In order to reduce dependence of F 99 Mo, the scope of using low specific activity (n,γ) 99 Mo along with high capacity adsorbent is an interesting prospect. In this context, the scope of using nanomaterials as a viable adsorbent seemed attractive by virtue of their huge surface to volume ratios, altered physical properties, tailored surface chemistry, favorable adsorption characteristics, and enhanced surface reactivity resulting from the nanoscale dimensions. This emerging class of adsorbent represents an innovative paradigm and is expected to play an important role in the development of 99 Mo/ 99m Tc generators adaptable to the existing and foreseeable demands. This talk outlines a critical assessment on the role of nanostructured metal oxides, recent developments, the contemporary status, and key challenges and apertures to the near future. (author)

  4. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    Science.gov (United States)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  5. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants

    DEFF Research Database (Denmark)

    de Sousa, David P; Miller, Christopher J; Chang, Yingyue

    2017-01-01

    The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....

  6. On the oxidation and combustion of AlH{sub 3} a potential fuel for rocket propellants and gas generators

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, Volker; Eisenreich, Norbert; Koleczko, Andreas; Roth, Evelin [Fraunhofer-Institut fuer Chemische Technologie (ICT), Joseph-von-Fraunhoferstrasse 7, 76327 Pfinztal (Germany)

    2007-06-15

    Aluminum hydride is a promising candidate for application in energetic materials and hydrogen storages. E.g. an AP/HTPB rocket propellant filled with alane was calculated for a 100 N s kg{sup -1} higher specific impulse compared to the same concentration of aluminum. Different investigations on {alpha}-AlH{sub 3} polyhedra using thermoanalytical methods and X-ray diffraction were performed to receive a better understanding of dehydration at about 450 K, passivation of the remaining porous aluminum particles and further oxidation. A modeling approach to describe these conversions including diffusion processes, Avrami-Erofeev mechanism and Arrhenius type reaction steps of n-th order were introduced. Results were discussed in comparison to experimental investigations under pressure with model propellants on the base of gelled pure nitromethane and also filled with alane or pure aluminum in concentrations of 5%, 10% and 15%. Both alane and aluminum increase the burning rate on a factor of two correlated with a temperature increase up to 500 K and more. A mesa burning effect at 6 to 10 MPa was indicated by the mixtures with alane. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  8. Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation.

    Science.gov (United States)

    Faradilla, R H Fitri; Lee, George; Arns, Ji-Youn; Roberts, Justine; Martens, Penny; Stenzel, Martina H; Arcot, Jayashree

    2017-10-15

    Demand for bioplastic, especially for food packaging, increases as the consumers become more aware of the destructive effect of non-biodegradable plastics. Nanocellulose from banana pseudo-stem has great potential to be formed as a bioplastic. This study aimed to characterize the free-standing film produced from banana pseudo-stem nanocellulose that was prepared by TEMPO-mediated oxidation. The film was found containing calcium oxalate crystals, which most likely influenced the film transparency and possibly affected the contact angle and tensile strength. The film had initial degradation temperature at 205°C, the contact angle of 64.3°, the tensile strength of 59.5MPa, and elongation of 1.7%. This initial characterization of free-standing nanocellulose film showed a promising potential of TEMPO-treated nanocellulose from banana pseudo-stem as a source of bioplastic. This study could also be beneficial information for further possible modification to improve the banana pseudo-stem film properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.

    Science.gov (United States)

    Shi, Jiayuan; Kuwahara, Yasutaka; Wen, Meicheng; Navlani-García, Miriam; Mori, Kohsuke; An, Taicheng; Yamashita, Hiromi

    2016-09-06

    A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of cathode on the electro-generation of peroxydisulfuric acid oxidant and its application for effective removal of SO_2 by room temperature electro-scrubbing process

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Muthuraman, Govindan; Moon, Il Shik

    2015-01-01

    Highlights: • Electrolytic production of peroxydisulfuric acid (PDSA) with BDD anode. • PDSA yield enhanced by proper selection of cathode material. • Electro-scrubbing of SO_2 in presence of PDSA monitored by online FTIR analyzer. • 100% SO_2 removal was achieved for 25 ppm and 50 ppm in less than 10 min. - Abstract: Peroxydisulfuric acid oxidant (H_2S_2O_8) was electro-generated using boron doped diamond (BDD) anode in an undivided electrolytic cell under the optimized conditions and used for the oxidative removal of gaseous SO_2. The influence of the nature of cathode material on the formation yield of H_2S_2O_8 was investigated with Ti, Pt, Zr and DSA electrodes in a flow type electrolytic cell under batch recirculation mode. Among the various cathodes employed Ti exhibited a good performance and the formation yield was nearly doubled (0.19 M) compared to the reported value of 0.07 M. The optimization of electrode area ratio between the anode and cathode brought out the fact that for nearly 8 times smaller Ti cathode (8.75:1) the achieved yield was ∼65% higher than the 1:1 ratio of anode and cathode. The highest concentration of 6.8% (0.48 M) H_2S_2O_8 was seen for 35 cm"2 BDD anode with 4 cm"2 Ti at 20 °C with the measured redox potential value of +1200 mV. The oxidative removal of SO_2 in an electro-scrubbing column attached to the online production of peroxydisulfuric acid under the optimized conditions of cell parameters shows that SO_2 removal efficiency was nearly 100% for 25 and 50 ppm inlet concentrations and 96% for 100 ppm at the room temperature of 25 °C.

  11. BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion.

    Science.gov (United States)

    Kolarow, Richard; Kuhlmann, Christoph R W; Munsch, Thomas; Zehendner, Christoph; Brigadski, Tanja; Luhmann, Heiko J; Lessmann, Volkmar

    2014-01-01

    BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.

  12. Inhibitory Effect of Inflexinol on Nitric Oxide Generation and iNOS Expression via Inhibition of NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Jae Woong Lee

    2007-01-01

    Full Text Available Inflexinol, an ent-kaurane diterpenoid, was isolated from the leaves of Isodon excisus. Many diterpenoids isolated from the genus Isodon (Labiatae have antitumor and antiinflammatory activities. We investigated the antiinflammatory effect of inflexinol in RAW 264.7 cells and astrocytes. As a result, we found that inflexinol (1, 5, 10 μM suppressed the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as the production of nitric oxide (NO in LPS-stimulated RAW 264.7 cells and astrocytes. Consistent with the inhibitory effect on iNOS and COX-2 expression, inflexinol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus. These results suggest that inflexinol inhibits iNOS and COX-2 expression through inhibition of NF-κB activation, thereby inhibits generation of inflammatory mediators in RAW 264.7 cells and astrocytes, and may be useful for treatment of inflammatory diseases.

  13. EFFECT OF A PLURONIC® P123 FORMULATION ON THE NITRIC OXIDE-GENERATING DRUG JS-K

    Science.gov (United States)

    Kaur, Imit; Kosak, Ken M.; Terrazas, Moises; Herron, James N.; Kern, Steven E.; Boucher, Kenneth M.; Shami, Paul J.

    2014-01-01

    Purpose O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] or JS-K is a nitric oxide-producing prodrug of the arylated diazeniumdiolate class with promising anti-tumor activity. JS-K has challenging solubility and stability properties. We aimed to characterize and compare Pluronic® P123-formulated JS-K (P123/JS-K) with free JS-K. Methods We determined micelle size, shape, and critical micelle concentration of Pluronic® P123. Efficacy was evaluated in vitro using HL-60 and U937 cells and in vivo in a xenog raft in NOD/SCID IL2Rγnull mice using HL-60 cells. We compared JS-K and P123/JS-K stability in different media. We also compared plasma protein binding of JS-K and P123/JS-K. We determined the binding and Stern Volmer constants, and thermodynamic parameters. Results Spherical P123/JS-K micelles were smaller than blank P123. P123/JS-K formulation was more stable in buffered saline, whole blood, plasma and RPMI media as compared to free JS-K. P123 affected the protein binding properties of JS-K. In vitro it was as efficacious as JS-K alone when tested in HL-60 and U937 cells and in vivo greater tumor regression was observed for P123/JS-K treated NOD/SCID IL2Rγnull mice when compared to free JS-K-treated NOD/SCID IL2Rγnull mice. Conclusions Pluronic® P123 solubilizes, stabilizes and affects the protein binding characteristics of JS-K. P123/JS-K showed more in vivo anti-tumor activity than free JS-K. PMID:25330743

  14. Effect of a Pluronic(®) P123 formulation on the nitric oxide-generating drug JS-K.

    Science.gov (United States)

    Kaur, Imit; Kosak, Ken M; Terrazas, Moises; Herron, James N; Kern, Steven E; Boucher, Kenneth M; Shami, Paul J

    2015-04-01

    O(2)-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] or JS-K is a nitric oxide-producing prodrug of the arylated diazeniumdiolate class with promising anti-tumor activity. JS-K has challenging solubility and stability properties. We aimed to characterize and compare Pluronic(®) P123-formulated JS-K (P123/JS-K) with free JS-K. We determined micelle size, shape, and critical micelle concentration of Pluronic(®) P123. Efficacy was evaluated in vitro using HL-60 and U937 cells and in vivo in a xenograft in NOD/SCID IL2Rγ (null) mice using HL-60 cells. We compared JS-K and P123/JS-K stability in different media. We also compared plasma protein binding of JS-K and P123/JS-K. We determined the binding and Stern Volmer constants, and thermodynamic parameters. Spherical P123/JS-K micelles were smaller than blank P123. P123/JS-K formulation was more stable in buffered saline, whole blood, plasma and RPMI media as compared to free JS-K. P123 affected the protein binding properties of JS-K. In vitro it was as efficacious as JS-K alone when tested in HL-60 and U937 cells and in vivo greater tumor regression was observed for P123/JS-K treated NOD/SCID IL2Rγ (null) mice when compared to free JS-K-treated NOD/SCID IL2Rγ (null) mice. Pluronic(®) P123 solubilizes, stabilizes and affects the protein binding characteristics of JS-K. P123/JS-K showed more in vivo anti-tumor activity than free JS-K.

  15. CELLULAR DISTRIBUTION STUDIES OF THE NITRIC OXIDE-GENERATING ANTINEOPLASTIC PRODRUG JS-K, FORMULATED IN PLURONIC P123 MICELLES

    Science.gov (United States)

    Kaur, Imit; Terrazas, Moises; Kosak, Ken M.; Kern, Steven E.; Boucher, Kenneth M.; Shami, Paul J.

    2014-01-01

    Objective Nitric oxide (NO) possesses anti-tumor activity. It induces differentiation and apoptosis in acute myeloid leukemia (AML) cells. The NO prodrug O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate, or JS-K, has potent antileukemic activity. JS-K is also active in vitro and in vivo against multiple myeloma, prostate cancer, non-small cell lung cancer, glioma and liver cancer. Using the Pluronic® P123 polymer, we have developed a micelle formulation for JS-K in order to increase its solubility and stability. The goal of the current study was to investigate the cellular distribution of JS-K in AML cells. Methods We investigated the intracellular distribution of JS-K (free drug) and JS-K formulated in P123 micelles (P123/JS-K) using HL-60 AML cells. We also studied the S-glutathionylating effects of JS-K on proteins in the cytoplasmic and nuclear cellular fractions. Key findings Both free JS-K and P123/JS-K accumulate primarily in the nucleus. Both free JS-K and P123/JS-K induced S-glutathionylation of nuclear proteins, although the effect produced was more pronounced with P123/JS-K. Minimal S-glutathionylation of cytoplasmic proteins was observed. Conclusions We conclude that a micelle formulation of JS-K increases its accumulation in the nucleus. Post-translational protein modification through S-glutathionylation may contribute to JS-K’s anti-leukemic properties. PMID:23927471

  16. A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC system

    DEFF Research Database (Denmark)

    Rudra, Souman; Lee, Jinwook; Rosendahl, Lasse

    2010-01-01

    efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges...... of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper...... describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam...

  17. Oxidative stability of structured lipids containing C18:0, C18:1, C18:2, C18:3 or CLA in sn 2-position - as bulk lipids and in milk drinks

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Nielsen, Nina Skall; Xu, Xuebing

    2004-01-01

    In this study, we compared the oxidative stability of a specific structured lipid (SL) containing conjugated linoleic acid (CLA) in the sn2-position with SL containing other C18 fatty acids of different degree of unsaturation (stearic, oleic, linoleic or linolenic acid). SL was produced...... by enzymatic interesterification with caprylic acid. Oxidative stability was compared in the five lipids themselves and in milk drinks containing 5% of the different SL. During storage, samples were taken for chemical and physical analyses. Moreover, sensory assessments were performed on milk drinks....... The oxidative stability of our SL was very different when comparing (a) bulk lipids and milk drink and (b) the five different batches of each product. SL based on oleic acid was the most unstable as bulk lipid, while SL based on linoleic acid was the most unstable in milk drink. SL based on CLA was the second...

  18. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing

    Directory of Open Access Journals (Sweden)

    S. H. Jathar

    2016-02-01

    Full Text Available Multi-generational oxidation of volatile organic compound (VOC oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1 consider only functionalization reactions but do not consider fragmentation reactions, (2 have not been constrained to experimental data and (3 are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM of Cappa and Wilson (2012, constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under

  19. Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA

    Science.gov (United States)

    Ma, Prettiny K.; Zhao, Yunliang; Robinson, Allen L.; Worton, David R.; Goldstein, Allen H.; Ortega, Amber M.; Jimenez, Jose L.; Zotter, Peter; Prévôt, André S. H.; Szidat, Sönke; Hayes, Patrick L.

    2017-08-01

    Secondary organic aerosol (SOA) is an important contributor to fine particulate matter (PM) mass in polluted regions, and its modeling remains poorly constrained. A box model is developed that uses recently published literature parameterizations and data sets to better constrain and evaluate the formation pathways and precursors of urban SOA during the CalNex 2010 campaign in Los Angeles. When using the measurements of intermediate-volatility organic compounds (IVOCs) reported in Zhao et al. (2014) and of semi-volatile organic compounds (SVOCs) reported in Worton et al. (2014) the model is biased high at longer photochemical ages, whereas at shorter photochemical ages it is biased low, if the yields for VOC oxidation are not updated. The parameterizations using an updated version of the yields, which takes into account the effect of gas-phase wall losses in environmental chambers, show model-measurement agreement at longer photochemical ages, even though some low bias at short photochemical ages still remains. Furthermore, the fossil and non-fossil carbon split of urban SOA simulated by the model is consistent with measurements at the Pasadena ground site. Multi-generation oxidation mechanisms are often employed in SOA models to increase the SOA yields derived from environmental chamber experiments in order to obtain better model-measurement agreement. However, there are many uncertainties associated with these aging mechanisms. Thus, SOA formation in the model is compared to data from an oxidation flow reactor (OFR) in order to constrain SOA formation at longer photochemical ages than observed in urban air. The model predicts similar SOA mass at short to moderate photochemical ages when the aging mechanisms or the updated version of the yields for VOC oxidation are implemented. The latter case has SOA formation rates that are more consistent with observations from the OFR though. Aging mechanisms may still play an important role in SOA chemistry, but the

  20. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    Science.gov (United States)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  1. Is it possible to design a portable power generator based on micro-solid oxide fuel cells? A finite volume analysis

    Science.gov (United States)

    Pla, D.; Sánchez-González, A.; Garbayo, I.; Salleras, M.; Morata, A.; Tarancón, A.

    2015-10-01

    The inherent limited capacity of current battery technology is not sufficient for covering the increasing power requirements of widely extended portable devices. Among other promising alternatives, recent advances in the field of micro-Solid Oxide Fuel Cells (μ-SOFCs) converted this disruptive technology into a serious candidate to power next generations of portable devices. However, the implementation of single cells in real devices, i.e. μ-SOFC stacks coupled to the required balance-of-plant elements like fuel reformers or post combustors, still remains unexplored. This work aims addressing this system-level research by proposing a new compact design of a vertically stacked device fuelled with ethanol. The feasibility and design optimization for achieving a thermally self-sustained regime and a rapid and low-power consuming start-up is studied by finite volume analysis. An optimal thermal insulation strategy is defined to maintain the steady-state operation temperature of the μ-SOFC at 973 K and an external temperature lower than 323 K. A hybrid start-up procedure, based on heaters embedded in the μ-SOFCs and heat released by chemical reactions in the post-combustion unit, is analyzed allowing start-up times below 1 min and energy consumption under 500 J. These results clearly demonstrate the feasibility of high temperature μ-SOFC power systems fuelled with hydrocarbons for portable applications, therefore, anticipating a new family of mobile and uninterrupted power generators.

  2. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    Science.gov (United States)

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  4. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    International Nuclear Information System (INIS)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-01-01

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model

  5. The effect of micro-particles of linoleic acid emulsion on the blood-brain barrier in cats

    International Nuclear Information System (INIS)

    Kim, Hak Jin; Lee, Chang Hun; Lee, Tae Hong; Pyun, Yong Seon

    2004-01-01

    The purpose of this study was to investigate the permeability change of the blood-brain barrier and the reversibility of the embolized lesions induced with a fat-emulsion technique by using magnetic resonance imaging (MRI), and we also wished to evaluate the resultant histologic findings in cat brains. MR imaging was scheduled serially at 1 hour, day 1, day 4 and day 7 after infusion of linoleic acid-emulsion (0.05 ml linoleic acid + 20 ml saline) to the internal carotid artery in 12 cats. Abnormal signal intensity or contrast enhancement was evaluated on diffusion-weighted images (DWIs), the apparent diffusion coefficient (ADC) maps, and gadolinium-enhanced T1-weighted images (Gd-T1WIs) at the stated times. MR imaging was stopped if the lesion shows isointensity and no contrast enhancement was observed at the acquisition time, and then brain tissue was harvested and examined. Light microscopic (LM) and electron microscopic (EM) examinations were performed. The embolized lesions appeared as isointensities (n = 7) or mild hyperintensities (n = 5) on DWIs, as isointensities (n = 12) on the ADC maps, and as contrast enhancements (n = 12) on Gd-T1WIs at 1 hour. The lesions showed isointensity on DWIs and the ADC maps, and as no contrast enhancement for all cats at day 1. The LM findings revealed small (< 1 cm) focal necrosis and demyelination in three cats. EM examinations showed minimal findings of small (< 3 μm) fat globules within the endothelial wall (n = 10) and mild swelling of the neuropils (< 5 μm). Widening of the interstitium or morphologic disruption of the endothelial wall was not seen. Cerebral fat embolism induced by linoleic acid emulsion revealed vasogenic edema and reversible changes as depicted on the MR images. These results might help us to understand the mechanisms of fat on the blood-brain barrier, and this technique could be used as a basic model for research of the effects of drugs on the disrupted blood-brain barrier, and also as a research

  6. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery.

    Science.gov (United States)

    Turchetto, Jeremy; Sequeira, Ana Filipa; Ramond, Laurie; Peysson, Fanny; Brás, Joana L A; Saez, Natalie J; Duhoo, Yoan; Blémont, Marilyne; Guerreiro, Catarina I P D; Quinton, Loic; De Pauw, Edwin; Gilles, Nicolas; Darbon, Hervé; Fontes, Carlos M G A; Vincentelli, Renaud

    2017-01-17

    Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large

  7. Portable Nitric Oxide (NO) Generator Based on Electrochemical Reduction of Nitrite for Potential Applications in Inhaled NO Therapy and Cardiopulmonary Bypass Surgery.

    Science.gov (United States)

    Qin, Yu; Zajda, Joanna; Brisbois, Elizabeth J; Ren, Hang; Toomasian, John M; Major, Terry C; Rojas-Pena, Alvaro; Carr, Benjamin; Johnson, Thomas; Haft, Jonathan W; Bartlett, Robert H; Hunt, Andrew P; Lehnert, Nicolai; Meyerhoff, Mark E

    2017-11-06

    A new portable gas phase nitric oxide (NO) generator is described for potential applications in inhaled NO (INO) therapy and during cardiopulmonary bypass (CPB) surgery. In this system, NO is produced at the surface of a large-area mesh working electrode by electrochemical reduction of nitrite ions in the presence of a soluble copper(II)-ligand electron transfer mediator complex. The NO generated is then transported into gas phase by either direct purging with nitrogen/air or via circulating the electrolyte/nitrite solution through a gas extraction silicone fiber-based membrane-dialyzer assembly. Gas phase NO concentrations can be tuned in the range of 5-1000 ppm (parts per million by volume for gaseous species), in proportion to a constant cathodic current applied between the working and counter electrodes. This new NO generation process has the advantages of rapid production times (5 min to steady-state), high Faraday NO production efficiency (ca. 93%), excellent stability, and very low cost when using air as the carrier gas for NO (in the membrane dialyzer configuration), enabling the development of potentially portable INO devices. In this initial work, the new system is examined for the effectiveness of gaseous NO to reduce the systemic inflammatory response (SIR) during CPB, where 500 ppm of NO added to the sweep gas of the oxygenator or to the cardiotomy suction air in a CPB system is shown to prevent activation of white blood cells (granulocytes and monocytes) during extracorporeal circulation with cardiotomy suction conducted with five pigs.

  8. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

    Directory of Open Access Journals (Sweden)

    Marya Aziz

    2015-01-01

    Full Text Available Commercial lipases, from porcine pancreas (PPL, Candida rugosa (CRL, and Thermomyces lanuginosus (Lipozyme TL IM, were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO for the liberation of free linoleic acid (LA, used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%, its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%. On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  9. Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor.

    Science.gov (United States)

    Aziz, Marya; Husson, Florence; Kermasha, Selim

    2015-01-01

    Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

  10. Phase equilibrium measurements of ternary systems formed by linoleic and linolenic acids in carbon dioxide/ethanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Sibele R. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil); Franceschi, Elton; Borges, Gustavo R.; Corazza, Marcos L.; Oliveira, J. Vladimir [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS 99700-000 (Brazil); Ferreira, Sandra R.S. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil)], E-mail: sandra@enq.ufsc.br

    2009-11-15

    This work reports phase equilibrium measurements for the ternary systems linoleic (acid + CO{sub 2} + ethanol) and (linolenic acid + CO{sub 2} + ethanol). The fatty acids present in the ternary systems were selected based on composition of banana peel oil extracted by supercritical CO{sub 2} at 20 MPa and 313 K. The motivation of this research relies on the fact that these unsaturated fatty acids are recognized to play an important role in lowering blood pressure and serum cholesterol and because they are present in high concentrations in banana peel extract. Besides that, equilibrium data of these compounds are scarce in literature. The phase equilibrium experiments were performed using a high-pressure variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 19 MPa. For both systems, only vapour-liquid phase transitions were visually recorded for all data measured.

  11. Conjugated linoleic acid supplementation does not maximize motor performance and abdominal and trunk fat loss induced by aerobic training in overweight women

    Directory of Open Access Journals (Sweden)

    Fábio Luiz Cheche PINA

    Full Text Available ABSTRACT Objective: To analyze the effect of eight weeks of conjugated linoleic acid supplementation on physical performance, and trunk and abdominal fat in overweight women submitted to an aerobic training program. Methods: Twenty-eight overweight women (body mass index ³25 kg/m2 were divided randomly and double-blindly to receive conjugated linoleic acid or placebo, both associated with an aerobic exercise program (frequency = three times a week, duration=30 min/session, intensity=80% of maximum heart rate. Conjugated linoleic acid (3.2 g and placebo (4.0 g supplements were consumed daily (four capsules for eight weeks. Maximum speed and time to exhaustion were determined in incremental treadmill test. Trunk fat was estimated by dual-energy X-Ray absorptiometry. Waist circumference was used as indicator of abdominal fat. Results: Main effect of time (p0.05. Similarly, significant reductions (p0.05. Conclusion: The results of this study suggest that conjugated linoleic acid supplementation does not maximize motor performance, and loss of body and abdominal fat induced by aerobic training in overweight women.

  12. Hydrogenation Alternatives - Effects of Trans-Fatty-Acids and Stearic-Acid Versus Linoleic-Acid on Serum-Lipids and Lipoproteins in Humans

    NARCIS (Netherlands)

    Zock, P.L.; Katan, M.B.

    1992-01-01

    The objective of this study was to compare the effects of linoleic acid (cis,cis-C18:2(n-6)) and its hydrogenation products elaidic (trans-C18:1(n-9)) and stearic acid (C18:0) on serum lipoprotein levels in humans.Twenty-six men and 30 women, all nor

  13. The effect of adding urea, manganese and linoleic acid to wheat straw and wood chips on lignin degradation by fungi and subsequent

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2016-01-01

    The aim of this study was optimizing Ceriporiopsis subvermispora and Lentinula edodes pre-treatment of wheat straw and wood chips by adding urea, manganese and linoleic acid. Optimization was defined as more lignin degradation and an increase in in vitro gas

  14. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immune function in healthy men

    NARCIS (Netherlands)

    Albers, R.; Wielen, R.P.J. van der; Brink, E.J.; Hendriks, H.F.J.; Dorovska-Taran, V.N.; Mohede, I.C.M.

    2003-01-01

    Objectives: To study the effects of two different mixtures of the main conjugated linoleic acid (CLA) isomers cis-9, trans-11 CLA and trans-10, cis-12 CLA on human immune function. Design: Double-blind, randomized, parallel, reference-controlled intervention study. Subjects and intervention:

  15. Effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine

    Directory of Open Access Journals (Sweden)

    Ebrahim Amini

    2016-04-01

    Full Text Available Background: Linoleic acid (LA is a polyunsaturated fatty acid present in high concentrations in follicular fluid, when added to maturation culture media, it affects oocyte competence. Objective: In the present study, we investigated effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine Materials and Methods: The experiments conducted on 450 ovine Cumulus-oocyte complexes (COCs with homogenous ooplasm and more than two compact layers of cumulus cells. For in vitro maturation COCs were randomly allocated into four treatment groups for 24 hr period. Treatment groups were as follow: control maturation media, 0 μM LA, 50 μM LA, 100 μM LA and 200 μM LA. The cumulus cell expansion and blastocysts rates were recorded. Total RNA was isolated from embryo pools, reverse transcribed into cDNA, and subjected to apoptotic gene expression by real-time PCR. Results: Highest concentration (200 μM/mL of LA significantly decreased the rate of fully expanded cumulus cells 24 hr after in vitro maturation (IVM and the percentage of blastocyste rate compared with the control (p<0.05. These inhibitory effects were associated with an increased in relative mRNA expression of Bax (Bcl-2- associated X gene compared with controls. Conclusion: Data obtained in present study suggest that low concentration of LA used for maturation had no deleterious effect on subsequent embryonic development compared to high concentration of LA. Relative expression of Bcl-2 (B-cell lymphoma 2 and Bax in embryos seems to be associated with LA concentration.

  16. Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety

    International Nuclear Information System (INIS)

    Sharifzadeh, Mahdi; Meghdari, Mojtaba; Rashtchian, Davood

    2017-01-01

    Highlights: • Integrating Solid Oxide Fuel Cells with thermal power plants enhance overall energy efficiency. • However, the high degree of process integration in hybrid power plants limits the operating window. • Multi-objective optimization was applied for integrated design and operation. • The Pareto optimal solutions demonstrated strong trade-off between energy efficiency and operational safety. - Abstract: Energy efficiency is one of the main pathways for energy security and environmental protection. In fact, the International Energy Agency asserts that without energy efficiency, 70% of targeted emission reductions are not achievable. Despite this clarity, enhancing the energy efficiency introduce significant challenge toward process operation. The reason is that the methods applied for energy-saving pose the process operation at the intersection of safety constraints. The present research aims at uncovering the trade-off between safe operation and energy efficiency; an optimization framework is developed that ensures process safety and simultaneously optimizes energy-efficiency, quantified in economic terms. The developed optimization framework is demonstrated for a solid oxide fuel cell (SOFC) power generation system. The significance of this industrial application is that SOFC power plants apply a highly degree of process integration resulting in very narrow operating windows. However, they are subject to significant uncertainties in power demand. The results demonstrate a strong trade-off between the competing objectives. It was observed that highly energy-efficient designs feature a very narrow operating window and limited flexibility. For instance, expanding the safe operating window by 100% will incur almost 47% more annualized costs. Establishing such a trade-off is essential for realizing energy-saving.

  17. Neurobehavioral impairments, generation of oxidative stress and release of pro-apoptotic factors after chronic exposure to sulphur mustard in mouse brain

    International Nuclear Information System (INIS)

    Sharma, Deep Raj; Sunkaria, Aditya; Bal, Amanjit; Bhutia, Yangchen D.; Vijayaraghavan, R.; Flora, S.J.S.; Gill, Kiran Dip

    2009-01-01

    Recent global events have focused attention on the potential threat of international and domestic chemical terrorism, as well as the possibility of chemical warfare proliferation. Sulphur mustard (SM) is one of the potent chemical warfare agents (CWA), which initiates a cascade of events that converge on the redox mechanisms common to brain injury. The present study was designed to examine the effects of chronic SM exposure on neurobehavioral impairments, mitochondrial oxidative stress in male Swiss Albino mice and its role in inducing apoptotic neuronal cell death. The animals were divided into four groups (control, low, medium and high dose) of 5 animals each. Exposure to SM was given percutaneously daily for 12 weeks. The results demonstrated impairment in neurobehavioral indices viz. rota rod, passive avoidance and water maze tests in a dose dependent manner. There was a significant increase in lipid peroxidation and protein carbonyl content whereas, decrease in the activity of manganese superoxide dismutase (MnSOD), glutathione reductase and glutathione peroxidase suggesting impaired antioxidant defense system. Immunoblotting of cytochrome c, Bcl-2, Bax and activation of caspase-3 suggest induction of apoptosis in a dose dependent manner. Finally, increased p53 expression suggests that it may target the mitochondrial pathway for inducing apoptosis in response to DNA damage signals. In conclusion, chronic SM exposure may have the potential to generate oxidative stress which may trigger the release of cytochrome c as well as caspase-3 activation in neurons leading to cell death by apoptosis in a dose dependent manner which may in the end be responsible for the disruption of cognitive functions in mice.

  18. EPR detection of hydroxyl radical generation and oxidative perturbations in lead-exposed earthworms (Eisenia fetida) in the presence of decabromodiphenyl ether.

    Science.gov (United States)

    Liu, Kou; Chen, Lin; Zhang, Wei; Lin, Kuangfei; Zhao, Li

    2015-03-01

    Lead (Pb) and decabromodiphenyl ether (BDE209) are the main contaminants at e-waste recycling sites, and their potential toxicological effects on terrestrial organisms have received extensive attention. However, the impacts on the oxidative perturbations and hydroxyl radical (·OH) generation in earthworms of exposure to the two chemicals remain almost unknown. Therefore, indoor incubation tests were performed on control and contaminated soil samples to determine the effects of Pb in earthworms Eisenia fetida in the presence of BDE209 through the use of several biomarkers in microcosms. The results have demonstrated that the addition of BDE209 (1 or 10 mg kg(-1)) decreased the enzymatic activities [superoxide dismutase, catalase (CAT), peroxidase] and total antioxidant capacity (T-AOC) compared with exposure to BDE209 alone (50, 250 or 500 mg kg(-1)). Electron paramagnetic resonance spectra indicated that ·OH radicals in earthworms were significantly induced by Pb in the presence of BDE209. The changing pattern of malondialdehyde (MDA) contents was accordant with that of ·OH intensity suggested that reactive oxygen species might lead to cellular lipid peroxidation. Furthermore, CAT exhibited more sensitive response to single Pb exposure than the other biomarkers, while T-AOC, ·OH and MDA might be three most sensitive biomarkers in earthworms after simultaneous exposure to Pb and BDE209. The results of these observations suggested that oxidative stress appeared in E. fetida, and it may play an important role in inducing the Pb and BDE209 toxicity to earthworms.

  19. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    Science.gov (United States)

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  20. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  1. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Lior, Noam; Xiang, Wenguo

    2015-01-01

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO 2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe 2 O 3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO 2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO 2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO 2 compression and the SOFC. (4) Compared with the CLC Fe 2 O 3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first

  2. Generation of Free Oxygen Atoms O(3P) in Solution by Photolysis of 4-Benzoylpyridine N-Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack M. [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Bakac, Andreja [Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2014-08-04

    Laser flash photolysis of 4-benzoylpyridine N-oxide (BPyO) at 308 nm in aqueous solutions generates a triplet excited state 3BPyO* that absorbs strongly in the visible, λmax 490 and 380 nm. 3BPyO* decays with the rate law kdecay/s-1 = (3.3 ± 0.9) × 104 + (1.5 ± 0.2) × 109 [BPyO] to generate a mixture of isomeric hydroxylated benzoylpyridines, BPy(OH), in addition to small amounts of oxygen atoms, O(3P). Molecular oxygen quenches 3BPyO*, kQ = 1.4 × 109 M-1 s-1, but the yields of O(3P) increase in O2-saturated solutions to 36%. Other triplet quenchers have a similar effect, which rules out the observed 3BPyO* as a source of O(3P). It is concluded that O(3P) is produced from either 1BPyO* or a short-lived, unobserved, higher energy triplet generated directly from 1BPyO*. 3BPyO* is reduced by Fe2+ and by ABTS2- to the radical anion BPyO.- which exhibits a maximum at 510 nm, ε = 2200 M-1 cm-1. The anion engages in back electron transfer with ABTS.- with k = 1.7 × 109 M-1 s-1. The same species can be generated by reducing ground state BPyO with .C(CH3)2OH. The photochemistry of BPyO in acetonitrile is similar to that in aqueous solutions.

  3. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

    Directory of Open Access Journals (Sweden)

    Wei Sha

    Full Text Available Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

  4. The combination of ascorbic acid 6-palmitate and [Fe III 3(µ3-O)]7+ as a catalyst for the oxidation of unsaturated lipids

    NARCIS (Netherlands)

    Micciche, F.; Long, G.J.; Shahin, A.M.; Grandjean, F.; Ming, W.; Haveren, van J.; Linde, van der R.

    2007-01-01

    Recently, iron 2-ethylhexanoate (Fe-eh, 1) in combination with ascorbic acid 6-palmitate (AsA6p) has been reported as a good catalytic system for the oxidation of ethyl linoleate (EL), an unsaturated lipid. In response to the fascinating chemistry of this bio-inspired iron-based catalyst the

  5. In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate

    International Nuclear Information System (INIS)

    Tong Guoxiu; Guan Jianguo; Xiao Zhidong; Huang Xing; Guan Yao

    2010-01-01

    Ferric